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Abstract

We introduce two optimal regulators for linear stochastic systems. The first
is of a linear state-feedback form, and it generalises the linear-quadratic reg-
ulator by introducing state-dependent weights in the cost functional. The
second is a certain risk-sensitive version of the first, and it is of a nonlinear
state-feedback form. Both regulators are applied to the optimal investment
problem.

Keywords: Stochastic regulators; Risk-sensitive control; Optimal
investment.

1. Introduction

Let (Ω,F , (F(t), t ≥ 0),P) be a fixed complete probability space on which
a d-dimensional standard Brownian motion (W (t), t ≥ 0) is defined. We
assume that F(t) is the augmentation of σ{W (s) : 0 ≤ s ≤ t} by all the
P-null sets of F . Consider the linear scalar stochastic control system:

dx(t) = [a(t)x(t) + u′(t)b(t)]dt+ [c′(t)x(t) + u′(t)D(t)]dW (t),

x(0) = x0 ∈ R,
(1.1)

for some given F(t)-adapted coefficient processes a(·), b(·), c(·), D(·), and a
suitable F(t)-adapted control process u(·) such that (1.1) has a unique strong
solution. The stochastic linear-quadratic (LQ) control problem is the optimal
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control problem of minimizing the quadratic cost functional

E

{∫ T

0

[q(t)x2(t) + x(t)k′(t)u(t) + u′(t)R(t)u(t)]dt+ sx2(T )

}
, (1.2)

subject to (1.1), for some suitable F(t)-adapted weight processes q(·), k(·),
R(·), and an F(T )-measurable random variable s. The LQ control prob-
lem has been studied extensively since its introduction by Kalman [1] for
deterministic systems (see, e.g., [2], [3]), and continues to be developed in
various stochastic settings (see, e.g., [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15]). An important characteristic of this problem is that it admits
an explicit closed-form solution in a linear state-feedback form through the
Riccati equation.

In this paper, we generalise the cost functional (1.2) by introducing state-
dependent weights as follows:

J(u(·)) :=E

{∫ T

0

xγ−2(t)[q(t)x2(t)+x(t)k′(t)u(t)+u′(t)R(t)u(t)]dt+sxγ(T )

}
,

for some γ ∈ R. Thus, compared with (1.2), instead of q(t), k(t), R(t), s,
here we have xγ−2(t)q(t), xγ−2(t)k(t), xγ−2(t)R(t), xγ−2(T )s, respectively.
The idea of using state-dependent weights is well-known for both deter-
ministic and stochastic systems (see, e.g., [16], [17], [18], [19]). In these
papers the optimal control problems are solved only approximately, and
thus no closed-form solutions are given. Two examples of J(u(·)) appear
in the optimal investment problem: a special case of J(u(·)) with γ = 1 ap-
pears in [20] in the setting of deterministic coefficients, whereas the case of
J(u(·)) = E[−xγ(T )] with γ ∈ (0, 1) is the criterion of the well-known Merton
problem (see, e.g., [21], [22], [23]). In both of these cases explicit closed-form
solutions are found to the corresponding optimal control problem in a linear
state-feedback form.

In §2, we formulate the optimal control problem of minimising J(u(·))
subject to (1.1). We find an explicit closed form solution in terms of a new
Riccati backward stochastic differential equation (BSDE). The solution is in
a linear state-feedback form. Both the finite and infinite horizon cases are
considered. In §3, a certain risk-sensitive version of this problem is consid-
ered. An explicit closed-form solution is found in this case as well, however,
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the optimal controller is of a nonlinear state feedback form. In §4, we apply
our results to the optimal investment problem and thus generalise the result
of [20] to the setting of random coefficients, and resolve the optimal invest-
ment problem with exponential utility and random interest rate, which turns
out to be qualitatively different from the case of a deterministic interest rate.

The following notation is used: L0
F(0, T ;E) is the set of all F(t)-adapted

processes f : [0, T ] × Ω → E, where E is an Euclidian space; if f(·) ∈
L0
F(0, T ;E) and E

∫ T
0
|f(t)|2dt < ∞, we write f(·) ∈ L2

F(0, T ;E); if f(·) ∈
L0
F(0, T ;E) is uniformly bounded we write f(·) ∈ L∞F (0, T ;Rn); for F(t)-

adapted processes f : [0,∞)×Ω→ E we use all of the above notations with
∞ instead of T ; if ζ : Ω → E is an F(T )-measurable uniformly bounded
random variable, we write ζ ∈ L∞F(T )(Ω;E).

2. Generalised regulator

In this section, we consider the problem of minimizing J(u(·)) subject to
(1.1). Unless otherwise stated, we assume throughout that x0 > 0, γ ∈ R,
R(·) is symmetric, and

a(·), q(·) ∈ L∞F (0, T ;R), c(·) ∈ L∞F (0, T ;Rd), D(·) ∈ L∞F (0, T ;Rm×d),

b(·), k(·) ∈ L∞F (0, T ;Rm), s ∈ L∞F(T )(Ω;R), R(·) ∈ L∞F (0, T ;Rm×m).

In order to define the admissible set of controls and thus the optimal control
problem to be solved, we first consider the following Riccati BSDE:

dp(t) +

[
γa(t) +

γ(γ − 1)

2
c′(t)c(t)

]
p(t)dt+ γc′(t)z(t)dt+ q(t)dt

−g′(t)
[
R(t) +

γ(γ − 1)

2
D(t)D′(t)p(t)

]
g(t)dt− z′(t)dW (t) = 0,

R(t) +
γ(γ − 1)

2
D(t)D′(t)p(t) > 0 a.e. t ∈ [0, T ] a.s.,

p(T ) = s a.s.,

(2.1)
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where the controller gain process g(·) is defined as

g(t) := −1

2

[
R(t) +

γ(γ − 1)

2
D(t)D′(t)p(t)

]−1
× {k(t) + [γb(t) + γ(γ − 1)D(t)c(t)] p(t) + γD(t)z(t)} .

Equation (2.1) is similar to the one of stochastic LQ control problem (see,
e.g., [7], [9], [10]), and it contains it as a special case for γ = 2. However,
there are examples of (2.1) which do not have an equivalent in the Riccati
BSDE of LQ control, e.g., when γ ∈ (0, 1); D(t)D′(t) > 0 a.e. t ∈ [0, T ] a.s..

Assumption 1. Equation (2.1) admits a unique solution pair (p(·), z(·)) ∈
L∞F (0, T ;R)× L2

F(0, T ;Rd).

The validity of this assumption for γ = 2 has been considered at least since [4]
and [6], and continues to be studied under different assumptions on the co-
efficients (see, e.g., the more recent papers [24], [25]). The following result
covers some new solvability cases of (2.1).

Theorem 1. Equation (2.1) has a solution pair (p(·), z(·)) ∈ L∞F (0, T ;R)×
L2
F(0, T ;Rd) in the following cases:

(i) γ = 0; R(t) > 0 a.e. t ∈ [0, T ] a.s., R−1(·) ∈ L∞F (0, T ;Rm×m),

(ii) D(t) = 0, R(t) > 0, q(t) − k′(t)R−1(t)k(t)/4 ≥ 0, a.e. t ∈ [0, T ] a.s.,
s ≥ 0 a.s., and R−1(·) ∈ L∞F (0, T ;Rm×m),

(iii) γ ∈ (0, 1); s ≤ 0 a.s.; D(t)D′(t) > 0, R(t) > 0, q(t)−k′(t)R−1(t)k(t)/4 ≤
0, a.e. t ∈ [0, T ] a.s.; R−1(·) ∈ L∞F (0, T ;Rm×m); (DD′)−1(·) ∈ L∞F (0, T ;Rm×m).

(iv) γ ∈ (−∞, 0) ∩ (1,∞); s ≥ 0 a.s.; D(t)D′(t) > 0, R(t) > 0, q(t) −
k′(t)R−1(t)k(t)/4 ≥ 0, a.e. t ∈ [0, T ] a.s.; R−1(·) ∈ L∞F (0, T ;Rm×m); (DD′)−1

(·) ∈ L∞F (0, T ;Rm×m).

Proof. (i) If γ = 0, then (2.1) reduces to following linear BSDE:
dp(t) + q(t)dt− 1

4
k′(t)R−1(t)k(t)dt− z′(t)dW (t) = 0,

R(t) > 0 a.e. t ∈ [0, T ] a.s.,

p(T ) = s a.s..

(2.2)
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If R(t) > 0 a.e. t ∈ [0, T ] a.s., then existence of solution to (2.2) follows
from [26] and the unboundedness of coefficients.

(ii) If D(t) = 0 a.e. t ∈ [0, T ] a.s., then (2.1) reduces to

dp(t) +

[
γa(t) +

γ(γ − 1)

2
c′(t)c(t)− γ

2
k′(t)R−1(t)b(t)

]
p(t)dt+ γc′(t)z(t)dt

−γ
2

4
b′(t)R−1(t)b(t)p2(t)dt+

[
q(t)− 1

4
k′(t)R−1(t)k(t)

]
dt− z′(t)dW (t) = 0,

R(t) > 0 a.e. t ∈ [0, T ] a.s.,

p(T ) = s a.s.,

If s ≥ 0 a.s., R(t) > 0 and q(t)−k′(t)R−1(t)k(t)/4 ≥ 0 a.e. t ∈ [0, T ] a.s.,
then conclusion follows from Theorem 5.1 of [7].

(iii) We suppress the argument t below for notational simplicity, and adapt
the approach of Theorem 4.1 of [10]. Let ā := γa + γ(γ − 1)c′c/2, c̄′ := γc′,
b̄ := γb+ γ(γ − 1)Dc. Equation (2.1) can now be written as:

dp+ āpdt+ c̄′zdt+ qdt− 1

4
(k + b̄p+ γDz)′

×
[
R +

γ(γ − 1)

2
DD′p

]−1
(k + b̄p+ γDz)dt− z′dW = 0,

R +
γ(γ − 1)

2
DD′p > 0 a.e. t ∈ [0, T ] a.s.,

p(T ) = s a.s..

(2.3)

We first consider the following related equation:

dp+ āpdt+ c̄′zdt+ qdt− 1

4
(k + b̄p− + γDz)′

×
[
R +

γ(γ − 1)

2
DD′p−

]−1
(k + b̄p− + γDz̄)dt− z′dW = 0,

p(T ) = s a.s.,

(2.4)
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where p− = min(0, p). If R > 0 and DD′ > 0, then |(R+γ(γ−1)DD′p−/2)−1|
≤ |R−1| and |(R + γ(γ − 1)DD′p−/2)−1| ≤ |(γ(γ − 1)DD′p−/2)−1| if p 6= 0,
and thus by Lemma 2.1 of [10] (due to Koblyanski) equation (2.4) admits a
solution (p(·), z(·)) ∈ L∞F (0, T ;R)× L2

F(0, T ;Rd). Since equation

dq + āqdt+ c̄′ydt+
1

4
k′

{
R−1 −

[
R +

γ(γ − 1)

2
DD′q−

]−1}
kdt

−1

2
k′
[
R +

γ(γ − 1)

2
DD′q−

]−1
(b̄q− + γDy)dt

−1

4
(b̄q− + γDȳ)′

[
R +

γ(γ − 1)

2
DD′q−

]−1
(b̄q− + γDȳ)dt− y′dW = 0,

q(T ) = 0 a.s.,

admits a solution (q(·), y(·)) = (0, 0), it follows from the comparison result
in Lemma 2.1 (ii) of [10] that p ≤ 0 under the stated assumptions, and thus
the pair (p(·), z(·)) is a solution to (2.4).

(iv) The proof follows closely that of part (iii) (instead of p− use p+ :=
max(0, p)), and is thus omitted. �

We restrict the set of admissible controls to those that ensure x(t) > 0
∀t ∈ [0, T ] a.s.. This is due to our assumption of γ ∈ R and the weight
xγ−2(t) appearing in the cost functional J(u(·)). This is also desirable in ap-
plications such as optimal investment where x(·) represents investors wealth.

Since we use a certain completion of squares method to solve the control
problem, we need the following integrability condition:

E

∫ T

0

{p(t)γ[xγ(t)c′(t) + xγ−1(t)u′(t)D(t)] + xγ(t)z′(t)}dW (t) = 0. (2.5)

The admissible set of controls and the corresponding optimal control
problem to be considered are defined, respectively, as:

A := {u(·) ∈ L0
F(0, T ;Rm) : (1.1) has a unique strong positive solution and (2.5) holds},
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min
u(·)∈A

J(u(·)),

s.t. (1.1).

(2.6)

Theorem 2. Let u∗(t) := g(t)x(t). If u∗(·) ∈ A, then it is the unique solu-
tion to (2.6). The corresponding optimal cost is J(u∗(·)) = p(0)xγ0 .

Proof. We write (2.1) as:

dp(t) = p0(t)dt+ z′(t)dW (t),

with the definition of p0(·) being clear from (2.1). For all u(·) ∈ A we have

E[sxγ(T )] = p(0)xγ0

+ E

∫ T

0

xγ(t)

{
p0(t) + p(t)

[
γa(t) +

1

2
γ(γ − 1)c′(t)c(t)

]
+ γc′(t)z(t)

}
dt

+ E

∫ T

0

xγ−1(t)u′(t) {p(t)[γb(t) + γ(γ − 1)D(t)c(t)] + γD(t)z(t)} dt

+ E

∫ T

0

xγ−2(t)u′(t)p(t)
γ(γ − 1)

2
D(t)D′(t)u(t)dt,

and thus we can write the cost functional J(u(·)) as:

J(u(·)) = p(0)xγ0

+ E

∫ T

0

xγ(t)

{
q(t)p0(t) + p(t)

[
γa(t) +

1

2
γ(γ − 1)c′(t)c(t)

]
+ γc′(t)z(t)

}
dt

+ E

∫ T

0

xγ−1(t)u′(t) {k(t) + p(t)[γb(t) + γ(γ − 1)D(t)c(t)] + γD(t)z(t)} dt

+ E

∫ T

0

xγ−2(t)u′(t)

[
R(t) + p(t)

γ(γ − 1)

2
D(t)D′(t)

]
u(t)dt,

which after completion of squares with respect to u(·) becomes

J(u(·)) = p(0)xγ0 + E

∫ T

0

xγ−2(t)[u(t)− g(t)x(t)]′

×
[
R(t) + p(t)

γ(γ − 1)

2
D(t)D′(t)

]
[u(t)− g(t)x(t)]dt

≥ p(0)xγ0 .
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This lower bound is achieved if and only if u(t) = u∗(t) a.e. t ∈ [0, T ] a.s..�

Note that in the above proof it is not necessary to assume that the solution
pair of (2.1) is unique. However, such a uniqueness is a consequence of the
remaining assumptions of the above theorem, as the following result shows
(the proof is omitted as it is almost identical to that of Theorem 3.2 of [10]).

Corollary 1. Let the generalised Riccati equation (2.1) have two solution
pairs (pi(·), zi(·)) ∈ L∞F (0, T ;R) × L2

F(0, T ;Rd), i = 1, 2, such that for the
corresponding controls u∗i (·), i = 1, 2, the state equation (1.1) has a unique
strong positive solution x∗i (·), i = 1, 2, and the condition (2.5) holds. Then
p1(t) = p2(t) ∀t ∈ [0, T ] a.s., and z1(t) = z2(t) a.e. t ∈ [0, T ] a.s..

We now consider an infinite horizon version of (2.6), and thus assume that
coefficients a, b, c,D, q, k, R, are constant for the reminder of this section. Our
cost functional now is:

J∞(u(·)) := E

∫ ∞
0

xγ−2(t)[qx2(t) + x(t)k′u(t) + u′(t)Ru(t)]dt.

The following algebraic Riccati equation appears in the solution to the
problem of minimizing J∞(u(·)) subject to (1.1):

γap+
γ(γ − 1)

2
c′cp+ q − g′

[
R +

γ(γ − 1)

2
DD′p

]
g = 0,

γ(a+ g′b) +
1

2
γ(γ − 1)(c′ + g′D)(c+D′g) ≤ 0,

R +
γ(γ − 1)

2
DD′p > 0,

(2.7)

where the constant controller gain g is defined as:

g := −1

2

[
R +

γ(γ − 1)

2
DD′p

]−1
{k + [γb+ γ(γ − 1)Dc] p} .

Assumption 2. Equation (2.7) admits a unique solution.

Equation (2.7) is similar to the corresponding one of LQ control, and con-
tains it as a special case for γ = 2. It can be reformulated in terms of linear
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matrix inequalities (LMIs), and thus the validity of Assumption 2 be checked
numerically as in, e.g., [27], [28].

As in the case of a finite time horizon, we restrict controls to the ones
that ensure x(t) > 0 a.s. ∀t ∈ [0,∞), and satisfy the integrability condition

E

∫ ∞
0

pγ[xγ(t)c′ + xγ−1(t)u′(t)D]dW (t) = 0. (2.8)

We further require the following stability condition to hold:

lim
t→∞

E[xγ(t)] = η ≥ 0, ∀x0 > 0. (2.9)

The admissible set of controls and the corresponding optimal control problem
to be solved are thus defined, respectively, as:

A∞ := {u(·) ∈ L0
F(0,∞;Rm) : (1.1) has a unique, strong, positive solution

that satisfies (2.8) and (2.9)}.
min

u(·)∈A∞
J∞(u(·)),

s.t. (1.1).

(2.10)

Theorem 3. Let u∗∞(t) := gx(t). If u∗∞(·) ∈ A∞, then it is the unique
solution to (2.10). The corresponding optimal cost is J∞(u∗∞(·)) = p(xγ0−η).

Proof. For all u(·) ∈ A∞ it holds that:

pη = pxγ0 + E

∫ ∞
0

xγ(t)p

[
γa+

1

2
γ(γ − 1)c′c

]
dt

+ E

∫ ∞
0

xγ−1(t)u′(t)p[γb+ γ(γ − 1)Dc]dt

+ E

∫ ∞
0

xγ−2(t)u′(t)p
γ(γ − 1)

2
DD′u(t)dt.

The cost J∞(u(·)) can now be written as

J∞(u(·)) = p(xγ0 − η) + E

∫ ∞
0

xγ(t)

{
q + p

[
γa+

1

2
γ(γ − 1)c′c

]}
dt

+ E

∫ ∞
0

xγ−1(t)u′(t) {k + p[γb+ γ(γ − 1)Dc]} dt

+ E

∫ ∞
0

xγ−2(t)u′(t)

[
R + p

γ(γ − 1)

2
DD′

]
u(t)dt,
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which after completion of squares with respect to u(·) becomes

J∞(u(·)) = p(xγ0 − η) + E

∫ ∞
0

xγ−2(t)[u(t)− gx(t)]′

×
[
R + p

γ(γ − 1)

2
DD′

]
[u(t)− gx(t)]dt

≥ p(xγ0 − η).

This lower bound is achieved if and only if u(t) = u∗∞(t) a.e. t ∈ [0,∞) a.s..�

3. Risk-sensitive regulator

The risk-sensitive control problem was introduced by Jacobson [29] as
the optimal control of a linear stochastic system with additive noise and an
exponential of quadratic forms as a cost functional. Jacobson found an ex-
plicit closed-form solution in a linear state-feedback form for the case of full
observation, whereas for the case of partial observations see, e.g., [30], [31],
for discrete-time systems see, e.g., [32], [33], and for the connection with ro-
bust control see [34]. The risk-sensitive maximum principle for systems with
multiplicative noise is given in [35], [36]. Despite the availability of these
general methods, the analog to Jacobson’s result in the setting of random
coefficients and multiplicative noise remains open. A partial result in this di-
rection is [37], where the optimal investment problem with exponential utility
is considered in a market with random coefficients, which corresponds to an
exponential-linear cost. The recent paper [38] is another partial result of a
system with multiplicative noise and exponential-linear cost.

In this section, we introduce a certain risk-sensitive version of the optimal
regulator problem (2.6), and find its explicit closed-form solution. It turns
out that the optimal control is of a nonlinear state-feedback form. This sheds
light into difficulties in finding an analog to Jacobson’s result in the setting
of random coefficients and multiplicative noise.

We first extend the state equation (1.1) to include another scalar state
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as: 
dx(t) = [a(t)x(t) + u′(t)b(t)]dt+ [c′(t)x(t) + u′(t)D(t)]dW (t),

dy(t) = [α(t)y(t) + v′(t)β(t)]dt+ [λ′(t)y(t) + v′(t)Σ(t)]dW (t),

x(0) = x0 > 0 and y(0) = y0 ∈ R are given.

(3.1)

The exponential cost functional to be considered is:

I(u(·), v(·)) := E

{
exp

{∫ T

0

xγ−2(t)[q(t)x2(t) + x(t)u′(t)g(t) + u′(t)R(t)u(t)]dt

+

∫ T

0

[θ(t)y(t) + ρ′(t)v(t)]dt+ sxγ(T ) + µy(T )

}}
.

Unless otherwise stated, we assume:

α(·), θ(·) ∈ L∞F (0, T ;R), λ(·) ∈ L∞F (0, T ;Rd), Σ(·) ∈ L∞F (0, T ;Rn×d),

β(·), ρ(·) ∈ L∞F (0, T ;Rn), 0 6= µ ∈ L∞F(T )(Ω;R),

Σ(t)Σ′(t) > 0 a.e t ∈ [0, T ] a.s..

The motivation for introducing state y(·), and for it to appear linearly
in the cost functional, is that it enables an explicit solution, and it is this
case that has an immediate application (see §4.2 below). The derivation of
solution to the problem of minimising I(u(·), v(·)) subject to (3.1) proceeds
similarly to the previous section, although it is considerably more involved.
In particular, we now have three BSDEs to consider. The following is the
first of those BSDEs, and it depends only on the coefficients associated with
state y(·).

11





dpy(t) + θ(t)dt− λ′(t)Σ′(t)[Σ(t)Σ′(t)]−1ρ(t)dt

+[α(t)− λ′(t)Σ′(t)[Σ(t)Σ′(t)]−1β(t)]py(t)dt

+[λ′(t)− β′(t)[Σ(t)Σ′(t)]−1Σ(t)− λ′(t)Σ′(t)[Σ(t)Σ′(t)]−1]zy(t)dt

−p−1y (t)z′y(t)Σ
′(t)[Σ(t)Σ′(t)]−1ρ(t)dt

−p−1y (t)z′y(t)Σ
′(t)[Σ(t)Σ′(t)]−1Σ(t)zy(t)dt− z′y(t)dW (t) = 0,

py(t) 6= 0 ∀t ∈ [0, T ) a.s.,

py(T ) = µ a.s..

(3.2)

This BSDE, due to the term −p−1y (t)z′y(t)Σ
′(t)[Σ(t)Σ′(t)]−1ρ(t)dt, is not of

the usual Riccati type, but it reduces to it if ρ(t) = 0. We further define the
process

`∗(t) := −p−1y (t)Σ′(t)[Σ(t)Σ′(t)]−1[ρ(t) + py(t)β(t) + Σ(t)zy(t)], t ∈ [0, T ].

Assumption 3. Equation (3.2) admits a unique solution pair (py(·), zy(·)) ∈
L∞F (0, T ;R)× L2

F(0, T ;Rd) such that

E

{
exp

{
−1

2

∫ T

0

[`∗(τ)]′`∗(τ)dτ +

∫ T

0

[`∗(τ)]′dW (τ)

}}
= 1.

If the coefficients associated with the state y(·) are all deterministic with
ρ(t) = 0, then equation (3.2) is an ordinary linear differential equation and
Assumption 3 holds. Our second BSDE is linear with coefficients depending
on `∗(·):

dp`(t)− z′`(t)`∗(t)dt−
1

2
[`∗(t)]′`∗(t)dt− z′`(t)dW (t) = 0,

p`(T ) = 0 a.s..

(3.3)

Assumption 4. Equation (3.3) admits a unique solution pair (p`(·), z`(·)) ∈
L∞F (0, T ;R)× L2

F(0, T ;Rd).
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The third BSDE is of a Riccati type considered in the previous section,
however, its coefficients depend on the pair (py(·), zy(·)), and thus may be
unbounded.

dpx(t) + q(t)dt+

[
γa(t) +

γ(γ − 1)

2
c′(t)c(t)

]
px(t)dt

−p−1y (t)γc′(t)Σ′(t)[Σ(t)Σ′(t)]−1[ρ(t) + py(t)β(t) + Σ(t)zy(t)]px(t)dt

+γc′(t)zx(t)− z′x(t)p−1y (t)Σ′(t)[Σ(t)Σ′(t)]−1[ρ(t) + py(t)β(t) + Σ(t)zy(t)]dt

−1

4
{k(t) + px(t)γb(t) + px(t)γ(γ − 1)D(t)c(t) + γD(t)zx(t)

− px(t)p−1y (t)γD(t)Σ′(t)[Σ(t)Σ′(t)]−1[ρ(t) + py(t)β(t) + Σ(t)zy(t)]
}′

×
[
R(t) +

γ(γ − 1)

2
D(t)D′(t)px(t)

]−1
×{k(t) + px(t)γb(t) + px(t)γ(γ − 1)D(t)c(t) + γD(t)zx(t)

− px(t)p−1y (t)γD(t)Σ′(t)[Σ(t)Σ′(t)]−1[ρ(t) + py(t)β(t) + Σ(t)zy(t)]
}
dt− z′x(t)dW (t) = 0,

R(t) +
γ(γ − 1)

2
D(t)D′(t)px(t) > 0 a.e. t ∈ [0, T ] a.s.,

px(T ) = s a.s..

(3.4)

Assumption 5. Equation (3.4) admits a unique solution pair (px(·), zx(·)) ∈
L∞F (0, T ;R)× L2

F(0, T ;Rd).

Before we proceed further, let us remark that the last two BSDEs are with
possibly unbounded coefficients. In the case of linear equation (3.3), and
(3.4) with γ = 0, the results of [39], [40], [41], can be used to derive sufficient
conditions for solvability. On the other hand, we are not aware of general
existence results for Riccati BSDE with unbounded coefficients. Some spe-
cial cases are known (see, e.g., [42], [39]), and they also appear in [43]. The
simplest case where this unboundedness issue does no arise, and our conclu-
sions remain novel, is when system and cost coefficients are deterministic.

13



We can now define the admissible set, and thus consider:

`′(t) := z′`(t) + xγ(t)[px(t)γc
′(t) + z′x(t)] + px(t)x

γ−1(t)u′(t)γD(t)

+ y(t)[z′y(t) + py(t)λ
′(t)] + py(t)v

′(t)Σ(t), t ∈ [0, T ]

M(t) := exp

{
−1

2

∫ t

0

`′(τ)`(τ)dτ +

∫ t

0

`′(τ)dW (τ)

}
, t ∈ [0, T ].

The admissible set of controls and the corresponding optimal control problem
to be solved are, respectively:

U := {(u(·), v(·)) ∈ L0
F(0, T ;Rm)× L0

F(0, T ;Rn) : (3.1) has a unique strong solution,

x(t) > 0 ∀t ∈ [0, T ] a.s, and E[M(T )] = 1}.


min

(u(·),v(·))∈U
I(u(·), v(·)),

s.t. (3.1).

(3.5)

The following are the gain processes that define the candidates for the optimal
controls u∗(·) and v∗(·), also defined below.

gx(t) := −1

2

[
R(t) +

γ(γ − 1)

2
D(t)D′(t)px(t)

]−1
× {k(t) + px(t)γb(t) + px(t)γ(γ − 1)D(t)c(t) + γD(t)zx(t)

− px(t)p
−1
y (t)γD(t)Σ′(t)[Σ(t)Σ′(t)]−1[ρ(t) + py(t)β(t) + Σ(t)zy(t)]

}
,

g′`(t) := [`∗(t)− z`(t)]′p−1y (t)Σ′(t)[Σ(t)Σ′(t)]−1,

g′y(t) := −[p−1y (t)z′y(t) + λ′(t)]Σ′(t)[Σ(t)Σ′(t)]−1,

g′yx(t) := −p−1y (t)[px(t)γc
′(t) + px(t)g

′
x(t)γD(t) + z′x(t)]Σ

′(t)[Σ(t)Σ′(t)]−1.

14



u∗(t) := gx(t)x(t),

v∗(t) := g`(t) + gy(t)y(t) + gyx(t)x
γ(t).

Theorem 4. If (u∗(·), v∗(·)) ∈ U , then they are the unique solution to (3.5).
The corresponding optimal cost is:

I(u∗(·), v∗(·)) = exp[px(0)xγ0 + py(0)y0 + p`(0)].

Proof. It is convenient to write equations (3.4), (3.2), (3.3), respectively, as:

dpx(t) = p1(t)dt+ z′x(t)dW (t),

dpy(t) = p2(t)dt+ z′y(t)dW (t),

dp`(t) = p3(t)dt+ z′`(t)dW (t),

where the definitions of p1(·), p2(·), p3(·), are clear from (3.4), (3.2), (3.3),
respectively. Since

sxγ(T ) = px(0)xγ0

+

∫ T

0

xγ(t)

[
px(t)γa(t) +

px(t)

2
γ(γ − 1)c′(t)c(t) + p1(t) + γc′(t)zx(t)

]
dt

+

∫ T

0

xγ−1(t)u′(t) [px(t)γb(t) + px(t)γ(γ − 1)D(t)c(t) + γD(t)zx(t)] dt

+

∫ T

0

px(t)

2
γ(γ − 1)xγ−2(t)u′(t)D(t)D′(t)u(t)dt

+

∫ T

0

[
px(t)γx

γ(t)c′(t) + px(t)x
γ−1(t)u′(t)γD(t) + xγ(t)z′x(t)

]
dW (t),

µy(T ) = py(0)y0 +

∫ T

0

y(t)[p2(t) + α(t)py(t) + λ′(t)zy(t)]dt

+

∫ T

0

v′(t)[py(t)β(t) + Σ(t)zy(t)]dt

+

∫ T

0

[y(t)z′y(t) + y(t)py(t)λ
′(t) + py(t)v

′(t)Σ(t)]dW (t),

0 = p`(0) +

∫ T

0

p3(t)dt+

∫ T

0

z`(t)dW (t),
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we can write the cost functional I(u(·), v(·)) as:

I(u(·), v(·)) = E{exp {px(0)xγ0 + py(0)y0 + p`(0)

+

∫ T

0

xγ(t)

[
px(t)γa(t) +

px(t)

2
γ(γ − 1)c′(t)c(t) + p1(t) + γc′(t)zx(t) + q(t)

]
dt

−
∫ T

0

xγ(t)p−1y (t)[px(t)γc
′(t) + z′x(t)]Σ

′(t)[Σ(t)Σ′(t)]−1[ρ(t) + py(t)β(t) + Σ(t)zy(t)]dt

+

∫ T

0

xγ−1(t)u′(t) [k(t) + px(t)γb(t) + px(t)γ(γ − 1)D(t)c(t) + γD(t)zx(t)] dt

−
∫ T

0

xγ−1u′(t)p−1y (t)px(t)γD(t)Σ′(t)[Σ(t)Σ′(t)]−1[ρ(t) + py(t)β(t) + Σ(t)zy(t)]dt

+

∫ T

0

xγ−2(t)u′(t)

[
R(t) +

px(t)

2
γ(γ − 1)D(t)D′(t)

]
u(t)dt

+

∫ T

0

y(t)[θ(t) + p2(t) + α(t)py(t) + λ′(t)zy(t)]dt

−
∫ T

0

y(t)[p−1y (t)z′y(t) + λ′(t)]Σ′(t)[Σ(t)Σ′(t)]−1[ρ(t) + py(t)β(t) + Σ(t)zy(t)]dt

+

∫ T

0

[p3(t)− z′`(t)`∗(t)]dt

+

∫ T

0

{
`′(t)`(t)

2
+ `′(t)p−1y (t)Σ′(t)[Σ(t)Σ′(t)]−1[ρ(t) + py(t)β(t) + Σ(t)zy(t)]

}
dt,

−
∫ T

0

`′(t)`(t)

2
+

∫ T

0

`(t)dW (t)

}}
.
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The completion of squares with respect to u(·) and `(·) results in:

I(u(·), v(·)) = E{exp{px(0)xγ0 + py(0)y0 + p`(0)

+

∫ T

0

xγ−2[u(t)− gx(t)x(t)]′
[
R +

px
2
γ(γ − 1)D(t)D′(t)

]
[u(t)− gx(t)x(t)]dt

+

∫ T

0

1

2
[`(t) + `∗(t)]′[`(t) + `∗(t)]dt

−
∫ T

0

`′(t)`(t)

2
+

∫ T

0

`(t)dW (t)

}}
≥ exp [px(0)xγ0 + py(0)y0 + p`(0)]E

{
exp

[
−
∫ T

0

`′(t)`(t)

2
+

∫ T

0

`(t)dW (t)

]}
= exp [px(0)xγ0 + py(0)y0 + p`(0)] .

This lower bound is achieved if and only if u(t) = u∗(t) a.e. t ∈ [0, T ] a.s.,
and v(t) = v∗(t) a.e. t ∈ [0, T ] a.s.. �

We now formulate and solve an infinite horizon version of (3.5). Thus,
let all the coefficients be constant and consider the criterion

I∞(u(·), v(·)) := lim
T→∞

1

T
logE

{
exp

{∫ T

0

xγ−2(t)[qx2(t) + x(t)u′(t)k + u′(t)Ru(t)]dt

+

∫ T

0

[θy(t) + v′(t)ρ]dt

}}
.

We assume θ − λ′Σ′(ΣΣ′)−1ρ 6= 0, α− λ′Σ′(ΣΣ′)−1β 6= 0, and define

py := [θ − λ′Σ′(ΣΣ′)−1ρ][α− λ′Σ′(ΣΣ′)−1β]−1.

The following Riccati algebraic equation will appear in the solution to
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the problem of minimizing I∞(u(·), v(·)) subject to (3.1):

q +

[
γa+

γ(γ − 1)

2
c′c− p−1y γc′Σ′(ΣΣ′)−1(ρ+ pyβ)

]
px

−1

4

[
k + pxγb+ pxγ(γ − 1)Dc− pxp−1y γDΣ′(ΣΣ′)−1(ρ+ pyβ)

]′
×
[
R +

γ(γ − 1)

2
DD′px

]−1
×
[
k + pxγb+ pxγ(γ − 1)Dc− pxp−1y γDΣ′(ΣΣ′)−1(ρ+ pyβ)

]
= 0,

R +
γ(γ − 1)

2
DD′px > 0,

px ≥ 0.

(3.6)

Assumption 6. There exists a solution to (3.6).

Similarly to the case of algebraic Riccati equation of LQ control, (3.6) can
be reformulated in terms of LMIs and the validity of Assumption 6 checked
numerically. In order to define the admissible set of controls, we introduce
the processes:

f ′(t) := pxγx
γ−1(t)[c′x(t) + u′(t)D] + py[λ

′y(t) + v′(t)Σ], t ∈ [0,∞),

N(t) := exp

{
−1

2

∫ t

0

f ′(τ)f(τ)dτ +

∫ t

0

f ′(τ)dW (τ)

}
t ∈ [0,∞).

If E[N(t)] = 1 ∀t > 0, then

P̃f,t(A) :=

∫
A

N(t, ω)dP(ω), ∀A ∈ F .

defines a probability measure. The stability condition that we impose on the
controls is:

lim
T→∞

1

T
log Ẽf,T

[
e−pxx

γ(T )−pyy(T )
]

= κ ≥ 0, ∀x0 > 0, y0 ∈ R, (3.7)

18



where Ẽf,T [·] is the expectation under P̃f,T . The admissible set of controls
and the corresponding optimal control problem to be solved are defined as:

U∞ := {(u(·), v(·)) ∈ L0
F(0,∞;Rm)× L0

F(0,∞;Rn) : (3.1) has a unique strong

solution x(t) > 0 ∀t ∈ [0,∞) a.s; E[N(T )] = 1 ∀T ∈ [0,∞); and (3.7) holds}.


min

(u(·),v(·))∈U∞
I∞(u(·), v(·)),

s.t. (3.1).

(3.8)

The following gains will be used to define the optimal controls:

f ∗ := −Σ′(ΣΣ′)−1p−1y (ρ+ pyβ),

gx := −1

2

[
R +

γ(γ − 1)

2
DD′px

]−1
× [k + pxγb+ pxγ(γ − 1)Dc− pxp−1y γDΣ′(ΣΣ′)−1(ρ+ pyβ)],

g′f := (f ∗)′p−1y Σ′(ΣΣ′)−1, g′y := −λ′Σ′(ΣΣ′)−1,

g′yx := −p−1y pxγ(c′ + g′xD)Σ′(ΣΣ′)−1.

Theorem 5. Let u∗∞(t) := gxx(t) and v∗∞(t) := gf + gyy(t) + gyxx
γ(t). If

(u∗∞(·), v∗∞(·)) ∈ U∞, then they are the unique solution to (3.8). The corre-
sponding optimal cost is I∞(u∗∞(·), v∗∞(·)) = κ− (f ∗)′f ∗/2.

Proof. Since

pxx
γ(T ) = pxx

γ(0)

+

∫ T

0

{
pxγx

γ−1(t)[ax(t) + u′(t)b] +
px
2
γ(γ − 1)xγ−2[c′x(t) + u′(t)D][cx(t) +D′u(t)]

}
dt

+

∫ T

0

pxγx
γ−1(t)[c′x(t) + u′(t)D]dW (t),

pyy(T ) = pyy0 +

∫ T

0

py[αy(t) + u′(t)β]dt+

∫ T

0

py[λ
′y(t) + v′(t)Σ]dW (t),
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we can write the cost functional I∞(u(·), v(·)) as:

I∞(u(·), v(·)) := lim
T→∞

1

T
logE {exp {pxxγ0 − pxxγ(T ) + pyy0 − pyy(T )

+

∫ T

0

xγ(t)
[
q + pxγa+

px
2
γ(γ − 1)c′c− p−1y pxγc

′Σ′(ΣΣ′)−1(ρ+ pyβ)
]
dt

+

∫ T

0

xγ−1(t)u′(t)
[
k + pxγb+

px
2
γ(γ − 1)Dc− p−1y pxγDΣ′(ΣΣ′)−1(ρ+ pyβ)

]
dt

+

∫ T

0

xγ−2(t)u′(t)
[
R +

px
2
γ(γ − 1)DD′

]
u(t)dt

+

∫ T

0

y(t)[θ + αpy − λ′Σ′(ΣΣ′)−1(ρ+ pyβ)]dt

+

∫ T

0

[
1

2
f ′(t)f(t) + f ′(t)p−1y Σ′(ΣΣ′)−1(ρ+ pyβ)

]
dt

−
∫ T

0

1

2
f ′(t)f(t)dt+

∫ T

0

f(t)dW (t)

}}
,

which after completion of squares with respect to u(·) and f(·) becomes

I∞(u(·), v(·)) := lim
T→∞

1

T
logE

{
exp

{
pxx

γ
0 − pxxγ(T ) + pyy0 − pyy(T )− 1

2
(f ∗)′f ∗T

+

∫ T

0

xγ−2(t)[u(t)− gxx(t)]′
[
R +

px
2
γ(γ − 1)DD′

]
[u(t)− gxx(t)]dt

+

∫ T

0

1

2
[f(t) + f ∗]′[f(t) + f ∗]dt

−
∫ T

0

1

2
f ′(t)f(t)dt+

∫ T

0

f(t)dW (t)

}}
,

≥ −1

2
(f ∗)′f ∗ + lim

T→∞

1

T
logE {exp {−pxxγ(T )− pyy(T )

−
∫ T

0

1

2
f ′(t)f(t)dt+

∫ T

0

f(t)dW (t)

}}
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= −1

2
(f ∗)′f ∗ + lim

T→∞

1

T
log Ẽf,T

[
e−pxx

γ(T )−pyy(T )
]

= −1

2
(f ∗)′f ∗ + κ.

This lower bound is achieved if and only if u(t) = u∗∞(t) a.e. t ∈ [0,∞) a.s.,
and v(t) = v∗∞(t) a.e. t ∈ [0,∞) a.s.. �

Let us finally remark that the case of γ = 2 is special as it permits a
multidimensional generalisation, i.e. with both x(·) and y(·) permitted to
be vectors. Such derivations are the same as in this section, and are thus
omitted.

4. Applications to optimal investment

In this section, we apply our results to the problem of optimal investment.
Thus, consider a market of m + 1 assets the prices of which satisfy the
following equations (see, for example, [21], [22], [23]):



dS0(t) = S0(t)r(t)dt,

dSi(t) = Si(t)

{
µi(t)dt+

d∑
j=1

σij(t)dWj(t)

}
, i = 1, ...,m,

Si(0) > 0 is given for all i = 0, ...,m.

Here the interest rate r(·), the appreciation rates µi(·), and the volatilities
σij(·), are assumed to be F(t)-adapted and bounded processes. If we define

B′(t) := [µ1(t)− r(t), ..., µm(t)− r(t)],
σi(t) := [σ1i(t), σ2i(t), ..., σmi(t)], i = 1, ..., d,

σ(t) := [σ′1(t), σ
′
2(t), ..., σ

′
d(t)],

then the equation describing the value Y (t) of a self-financing portfolio is
dY (t) = [r(t)Y (t) + u′(t)B(t)]dt+ u′(t)σ(t)dW (t),

Y (0) > 0 is given,
(4.1)

where Y (0) the investors initial wealth, whereas the component i of vector
u(·) is the value of the holdings in asset Si(·). The optimal investment problem
is the optimal control of Y (·) for some suitable cost functional.
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4.1. Risk-return criterion

In [20], the following risk-return criterion was introduced:

H(u(·)) := E

[∫ T

0

1

Y (t)
u′(t)Γ(t)u(t)dt− Y (T )

]
.

Here the return is measured with the linear utility of wealth, whereas the risk
by the quadratic form u′(t)Γ(t)u(t) of risky assets. The wealth dependent
weight 1/Y (t) permits for more risky investments if the wealth is increasing,
i.e. a lesser penalty on controls, whereas if the wealth is decreasing, then
the controls are penalized more and thus giving preference to investment in
the bank account S0(·). The control problem of minimising H(u(·)) subject
to (4.1) was solved in [20] in the setting of deterministic coefficients using
dynamic programming and the Hamilton-Jacobi-Bellman equation. Since
(4.1) is a special case of system (1.1) and H(u(·)) is a special case of J(u(·)),
we can use Theorem 2 to generalise the result of [20] to the setting of random
coefficients. In this case we have:

γ = 1, a(t) = r(t), b(t) = B(t), c(t) = 0, D(t) = σ(t),

s = −1, q(t) = 0, k(t) = 0, R(t) = Γ(t) > 0 a.e. t ∈ [0, T ] a.s..

If assumptions of §2 hold, then the Riccati BSDE, the optimal control, and
the optimal cost now become, respectively:

dp(t) + r(t)p(t)dt− 1

4
[B(t)p(t) + σ(t)z(t)]′Γ−1(t)

×[B(t)p(t) + σ(t)z(t)]dt− z′(t)dW (t) = 0,

p(T ) = −1 a.s.,

u∗(t) = −1

2
Γ−1(t)[B(t)p(t) + σ(t)z(t)]Y (t),

H(u∗(·)) = p(0)Y (0).

4.2. Exponential utility

Another criterion for optimal investment is the expected utility from ter-
minal wealth (see, for example, [21], [23], [22]). An important example of
utility function is the exponential utility, given by:

V (u(·)) := E
[
e−ξY (T )

]
,
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where 0 < ξ ∈ R. The optimal investment problem of minimising V (u(·))
subject to (4.1) was essentially solved by Merton [21] in the setting of deter-
ministic coefficients (see [38] for a recent generalisation). An explicit closed
form solution was found by Merton as an open-loop control. In [37], the case
of random coefficients was considered, and again an open-loop control was
found as a solution. A restriction in [37] is that it assumes a deterministic
interest rate r(·). Since (4.1) is a special case of system (3.1) and V (u(·))
is a special case of I(u(·), v(·)), we can use Theorem 4 to solve the optimal
investment problem with exponential utility and random interest rate. As
we show below, the optimal control is now affine state-feedback, and thus
qualitatively different from the case of a deterministic interest rate. In this
case we have:

a(t) = 0, b(t) = 0, c(t) = 0, D(t) = 0,

q(t) = 0, k(t) = 0, R(t) = 0, s = 0,

α(t) = r(t), β(t) = B(t), λ(t) = 0, Σ(t) = σ(t),

θ(t) = 0, ρ(t) = 0, µ = −ξ.

If assumptions of §3 hold, then the corresponding BSDEs, the optimal con-
trol, and the optimal cost, are, respectively:

dpy(t) + r(t)py(t)dt−B′(t)[σ(t)σ′(t)]−1σ(t)zy(t)dt

−p−1y (t)z′y(t)σ
′(t)[σ(t)σ′(t)]−1σ(t)zy(t)dt− z′y(t)dW (t) = 0

py(t) 6= 0 ∀t ∈ [0, T ] a.s.,

py(T ) = −ξ a.s..

(4.2)


dp`(t)− z′`(t)`∗(t)dt−

1

2
[`∗(t)]′`∗(t)dt− z′`(t)dW (t) = 0,

`∗(t) = −p−1y (t)σ′(t)[σ(t)σ′(t)]−1[B(t)py(t) + σ(t)zy(t)],

p`(T ) = 0 a.s..
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u∗(t) = [σ(t)σ′(t)]−1σ(t)[`∗(t)− z`(t)]p−1y (t)

− [σ(t)σ′(t)]−1σ(t)zy(t)p
−1
y (t)Y (t), (4.3)

V (u∗(·)) = exp[p`(0) + py(0)Y (0)].

Note that if the interest rate r(·) is deterministic, then the solution pair to
BSDE (4.2) is:

py(t) = −ξ exp

[∫ T

t

r(τ)dτ

]
, zy(t) = 0,

which makes (4.3) an open-loop control (as expected from [21], [37]).

5. Conclusions

We have introduced two optimal regulators for linear stochastic systems
with random coefficients. The first regulator, which is a generalisation of
the LQ regulator, is of a linear-state feedback form and its gain is obtained
through a new Riccati BSDE. The second regulator is of a risk-sensitive type
and is of nonlinear state-feedback form. Both of these results represent rare
cases of optimal control problems with explicit closed-form solutions. Their
applicability is illustrated with applications to optimal investment. Here
we have considered only the most basic forms of these regulators, and it
would be interesting to consider other settings, such as the case of coefficients
with Markovian switching, systems driven by jump-diffusions, systems with
constraints, or mean-field systems.
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