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Abstract 23 

Values are attributed to goods during free viewing of objects which entails 24 

multi- and trans-saccadic cognitive processes. Using electroencephalographic eye-25 

fixation related potentials, the present study investigated how neural signals related 26 

to value-guided choice evolved over time when viewing household and office 27 

products during an auction task.  28 

Participants completed a Becker-DeGroot-Marschak auction task whereby 29 

half of the stimuli were presented in either a free or forced bid protocol to obtain 30 

willingness-to-pay. Stimuli were assigned to three value categories of low, medium 31 

and high value based on subjective willingness-to-pay. Eye fixations were organised 32 

into five 800 ms time-bins spanning the objects total viewing time. Independent 33 

component analysis was applied to eye-fixation related potentials. 34 

 One independent component (IC) was found to represent fixations for high 35 

value products with increased activation over the left parietal region of the scalp. An 36 

IC with a spatial maximum over a fronto-central region of the scalp coded the 37 

intermediate values. Finally, one IC displaying activity that extends over the right 38 

frontal scalp region responded to intermediate- and low-value items. Each of these 39 

components responded early on during viewing an object and remained active over 40 

the entire viewing period, both during free and forced bid trials. 41 

 Results suggest that the subjective value of goods are encoded using sets of 42 

brain activation patterns which are tuned to respond uniquely to either low, medium, 43 

or high values. Data indicates that the right frontal region of the brain responds to 44 

low and the left frontal region to high values. Values of goods are determined at an 45 

early point in the decision making process and carried for the duration of the decision 46 

period via trans-saccadic processes. 47 
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1. Introduction 48 

Selecting appropriate courses of action entails a value assignment process 49 

wherein the most subjectively beneficial action is selected (Rangel et al., 2008). 50 

Being a function of momentary needs, value itself is unique to the individual and is 51 

typically revealed via behavioural measures (Schultz, 2017), such as auction tasks. 52 

The Becker-DeGroot-Marschak (BDM) auction (Becker et al., 1964) is from a class 53 

of incentive compatible methods that reveal participant willingness-to-pay (WTP) for 54 

goods and prospects (Wilkinson and Klaes, 2012). BDM auctions have been often 55 

utilised in value-based decision making research (Chib et al., 2009; Grueschow et 56 

al., 2015; Hare et al., 2008; Harris et al., 2011; Peters and Buchel, 2010; Plassmann 57 

et al., 2007, 2010; Weber et al., 2007), though a variety of methods for prompting 58 

unique valuations are employed (see Peters and Büchel, 2010). 59 

Neuroeconomic research has posited the explicit representation of value 60 

signals in the brain (Glimcher and Fehr, 2014), with the ventromedial prefrontal 61 

cortex, orbitofrontal cortex (OFC) and ventral striatum playing prominent roles 62 

(Bartra et al., 2013; Chib et al., 2009; Clithero and Rangel, 2014; Lebreton et al., 63 

2009; Levy and Glimcher, 2012). Valuation appears to be largely an automatic 64 

process which resolves values even if people focus on value-irrelevant aspects of 65 

objects such as perceptual features (Grueschow et al., 2015; Polania et al., 2014; 66 

Tyson-Carr et al., 2018), or when subjects are not required to valuate items 67 

(Plassmann et al., 2007, 2010). Although BOLD-fMRI methods excel in terms of 68 

spatial resolution to isolate brain regions responsible for economic valuation, these 69 

methods are limited by the temporal resolution which allows tracking brain activation 70 

on a scale of seconds (Shmuel and Maier, 2015). 71 
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Capitalising on the high temporal resolution of electrophysiological methods, 72 

electroencephalography (EEG) has aimed to show the temporal dynamics of value-73 

based decisions, though research is sparse. Event-related potential (ERP) signals 74 

have been shown to represent value in binary decision tasks, even as early as 150 75 

ms post-stimulus (Harris et al., 2011; Larsen and O'Doherty, 2014; Tzovara et al., 76 

2015). It has also been demonstrated that activation may progress from occipito-77 

temporal regions to frontal regions of the scalp over time following stimulus 78 

presentation (Harris et al., 2011; Larsen and O'Doherty, 2014). Our recent study 79 

(Tyson-Carr et al., 2018) revealed that a visual evoked potential component within 80 

the latency of N2 and originating in the right anterior insula was preferentially 81 

activated with items having low subjective values. Moreover, Roberts et al. (2018) 82 

reported that the parietal P200 eye movement-related potential may index attention 83 

to low value products in a realistic setting. Similarly, magnetoencephalographic 84 

methods have also been used to classify the neural mechanism of value-guided 85 

choices (Hunt et al., 2012). In addition to the initial value attribution stage, outcome 86 

specific modulation of ERPs have also been observed in the P300, which may 87 

encode valence (San Martin, 2012; Yeung and Sanfey, 2004), and also the event- 88 

and feedback-related negativity which may be linked to reward-prediction errors 89 

(Gehring et al., 2012; Nieuwenhuis et al., 2004; Yu and Huang, 2013).  90 

While previous fMRI and ERP studies shed light on spatial and temporal 91 

aspects of valuation during economic decision making, the detailed dynamics of the 92 

valuation process that evolve while an object is being viewed is poorly understood. 93 

When people evaluate objects to make economic decisions, their valuation evolves 94 

during free viewing of a visual scene. In free viewing, one or more objects in the 95 

visual field are explored in a series of saccades and fixations concatenated by trans-96 
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saccadic integration mechanisms (Melcher and Colby, 2008). Objects of greater 97 

value or those having a pleasant emotional connotation tend to be viewed for a 98 

longer time than objects of low value or aversive stimuli (Krajbich et al., 2010; van 99 

der Laan et al., 2015). If values are attributed to objects automatically, the 100 

assignment of an object to a high or low subjective value category would be captured 101 

by the brain early on during the viewing process and, once established, the value 102 

category would persist throughout the viewing period. In contrast, if values are 103 

attached to objects only after a careful exploration, purportedly involving volitional 104 

effort, objects would be assigned a provisional value, e.g., suggested initially by the 105 

automatic valuation process, but this value would be updated over a series of 106 

successive eye fixations. In such case, information about brain valuation while 107 

people are viewing objects before they decide to purchase would likely be encoded 108 

in the cortical responses to eye fixations, occurring just before a purchasing decision 109 

is made. 110 

Eye-fixation related potentials (EFRPs) allow for the unveiling of neural 111 

processes at the point of fixation (Baccino and Manunta, 2005), and are often utilised 112 

during the free reading of words or viewing of scenes (Dimigen et al., 2011; Fischer 113 

et al., 2013; Hutzler et al., 2007; Nikolaev et al., 2016; Simola et al., 2015).  BOLD-114 

fMRI lacks the temporal resolution necessary to investigate the brain processes 115 

occurring on a scale of hundreds of milliseconds, and averaged ERPs only pick up 116 

information about the cortical activations occurring in the initial stage of valuation 117 

locked to the onset of visual stimulus. To overcome both of these shortcomings, 118 

EFRPs can provide a window into the cortical activations occurring over the entire 119 

period of free viewing accompanying the valuation.  120 
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Firstly, following up on our previous study (Tyson-Carr et al., 2018), we 121 

predicted that one activation component localised across the right frontal region of 122 

the scalp would encode low-value items. Since the range of products was expanded 123 

in the high-value interval in the present study (£0 - £8) compared to our previous 124 

study (£0 - £4; Tyson-Carr et al., 2018), it was also hypothesised that other 125 

components would encode high- or medium-value items independently of the low-126 

value sensitive component. Based on previous studies reporting the latency of value-127 

based decision processes within the range of the N2 visual-evoked potential 128 

component (Harris et al., 2011; Kiss et al., 2009; Larsen and O'Doherty, 2014; 129 

Telpaz et al., 2015), we hypothesised that value encoding would occur in the latency 130 

of the N2 EEG component. Secondly, it was hypothesised that due to automaticity of 131 

valuation demonstrated in a number of previous studies (Grueschow et al., 2015; 132 

Lebreton et al., 2009; Plassmann et al., 2007, 2010; Polania et al., 2014), 133 

components would categorise the value of objects during initial eye fixations and 134 

maintain activations in subsequent eye fixations throughout the viewing period; the 135 

automaticity of value-based decision making would manifest in similarity of activation 136 

profiles over the viewing period for forced and free bids. 137 

2. Methods 138 

2.1. Participants 139 

 Twenty-four healthy participants (16 females) with a mean age of 25 ± 5.06 140 

(mean ± SD) years took part in the study. The experimental procedures were 141 

approved by the Research Ethics Committee of the University of Liverpool. All 142 

participants gave written informed consent in accordance with the declaration of 143 

Helsinki. Participants were reimbursed for their time and travel expenses. Due to 144 
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technical issues with eye-tracking data, 6 participants were excluded, thus data from 145 

18 participants were submitted for analysis. 146 

2.2. Procedure 147 

All experimental procedures were carried out in a dimly lit, sound attenuated 148 

room. Participants sat in front of a 19-inch LCD monitor. The study was carried out in 149 

a single experimental session involving the completion of an auction task. The stimuli 150 

included 180 everyday household items varying in value from £0.35 to £8.00 with a 151 

mean value of £4.30 ± 2.41 obtained from a shopping catalogue. Stimuli were 152 

presented in random order. Presentation of stimuli was controlled using Cogent 2000 153 

(UCL, London, UK) in Matlab 7.8 (Mathworks, Inc., USA).  154 

2.3. EEG recordings 155 

 EEG was recorded continuously using the 128-channel Geodesics EGI 156 

system (Electrical Geodesics, Inc., Eugene, Oregon, USA) with the sponge-based 157 

HydroCel Sensor Net. The sensor net was aligned with respect to three anatomical 158 

landmarks (two pre-auricular points and the nasion). Electrode-to-skin impedances 159 

were kept below 50 kΩ across all electrodes as recommended for the system (Picton 160 

et al. 2000; Ferree et al. 2001; Luu et al. 2003). The sampling rate was 1000 Hz and 161 

electrode Cz was used as the initial reference. The recording bandpass-filter was 162 

0.1-200 Hz. 163 

2.4. Eye-tracking recordings 164 

 Gaze positions were monitored using the Pupil head-mountable binocular 165 

eye-tracker (Kassner et al., 2014). Eye-cameras ran at a sampling rate of 120 Hz 166 

and the world camera at 60 Hz. Gaze tracking was calibrated using a 9-point manual 167 

marker calibration protocol in which calibration markers were presented sequentially 168 

on the stimulus presentation monitor. Following calibration, gaze position accuracy 169 
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was tested using a program that presented markers randomly on the screen for the 170 

participant to track. If gaze position was not easily discernible, calibration was 171 

repeated, otherwise the experiment was continued. Pupil Capture software v 0.8.1 172 

was used for data collection. Pupil Player software v 0.8.6 running in Xubuntu was 173 

used for data visualisation and raw data exporting.  174 

During the auction task, a series of digital fiducial surface markers were 175 

placed in each corner of the screen in order to define the surface of the monitor 176 

display. These markers were displayed continuously throughout the trials. Offline 177 

surface detection was carried out post data-collection but prior to fixation detection to 178 

allow fixations to be localised relative to the surface.  179 

2.5. Auction task 180 

The protocol (see Figure 1) for the auction task was adapted from previous 181 

studies (Plassmann et al., 2007, 2010) and employed the BDM mechanism (Becker 182 

et al. 1964; Wilkinson and Klaes 2012). Each stimulus was presented once in either 183 

a free bid or forced bid protocol, resulting in a total of 180 auctions.  184 

Each auction consisted of a fixation cross followed by an evaluation stage, a 185 

bidding phase and then feedback. During the evaluation stage, participants 186 

appraised the stimulus. Afterwards, they were required to bid between £0 and £8 187 

using a mouse to select the appropriate option on the screen. Bidding options were 188 

in increments of £0.50 between £0 and £2 and in increments of £1 between £2 and 189 

£8. This allowed more resolution at lower ends of the value scale, thus giving a total 190 

of 11 options. Participants clicked an orange square once satisfied with their bid. The 191 

screen had a horizontal size of 38.8º and vertical size of 34.7º when participants 192 

were viewing at a distance of 65 cm, stimuli had a horizontal and vertical size of 193 

19.5º and the bidding scale had a horizontal size of 34.5º and vertical size of 2.3º. 194 
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After bid selection, feedback was provided as to whether the item was purchased or 195 

not. The outcome of an auction was dependent on the bid and a randomly generated 196 

number, in which the item was purchased when	� ≥ �, where b represents the bid 197 

and r represents the randomly generated number for that auction. Following the 198 

experiment, one of the auctions that resulted in a purchase were selected at random 199 

and the outcome was implemented. Here, the participant’s endowment of £8 was 200 

reduced by an amount equal to r for the implemented auction. The item purchased 201 

could be picked up within a few days of completion of the experiment.  202 

Half of the stimuli were presented in the free bid condition whereas the other 203 

half were presented in the forced bid condition. In the free bid condition, participants 204 

were presented with a question mark above the bid amounts, indicating that they are 205 

free to bid whatever they like for the item. In the forced bid condition, participants 206 

were presented with a monetary amount above the bid amounts to indicate what 207 

they are required to bid for the item. Here, the participant cannot select any other 208 

option and cannot continue until they have selected that option. The only difference 209 

between these two conditions is the need for a computation of value.  210 

 After the main auction task, another auction task was conducted without 211 

recording EEG in order to obtain subjective WTP values for the items presented in 212 

the forced bid protocol. This is to allow categorisation of stimulus value that is not 213 

represented by a trivial forced bid procedure in which they have no influence over 214 

the reported value.  215 

2.6. Split of WTP values 216 

 The stimulus set was divided into three groups of high, medium and low 217 

subjective value products for both the free bid and forced bid stimuli. To avoid 218 

overlapping values between these conditions, stimuli were removed randomly so that 219 
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there were six groups of equal size (free bid and low / medium / high value; forced 220 

bid and low / medium / high value), with each value category containing unique WTP 221 

values that did not overlap with any other value category. An average of 118 ± 17.3 222 

trials were submitted for analysis for each subject, giving 19.7 ± 2.88 trials per 223 

condition. 224 

The splitting of WTP into three categories was decided based on our previous 225 

study (Tyson-Carr et al., 2018) which included a stimulus set that was comprised of 226 

a relatively small range of subjective values (£0 to £4), split into two value categories 227 

of low and high value. The expansion of the stimulus value range to between £0 and 228 

£8 afforded us the ability to include a third value category comprised of products with 229 

intermediate WTP, increasing the ability to capture brain components for distinct 230 

increments of value. An increased number of value categories was not possible due 231 

to limited numbers of epochs. 232 

2.7. EEG pre-processing 233 

EEG data were pre-processed using BESA v. 6.1 program (MEGIS GmbH, 234 

Munich, Germany). EEG data were spatially transformed to reference-free data 235 

using common average reference method (Lehmann, 1984). Oculographic artefacts 236 

and electrocardiographic artefacts were removed using principle component analysis 237 

based on averaged eye-blinks and artefact topographies (Berg and Scherg, 1994). 238 

Data were also visually inspected for the presence of atypical electrode artefacts 239 

occurring due to muscle movement. Data were filtered from 0.5-45 Hz and exported 240 

to EEGLab (Delorme and Makeig, 2004) for further processing. 241 

2.8. Detection of eye fixations 242 

Fixations were detected based on the given parameters of 150 ms minimum 243 

duration and a 1° dispersion threshold (Blignaut, 2009). Each subject made on 244 
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average 3965 ± 792 (mean ± SD) fixations on the screen across the experiment. 245 

Next, only fixations occurring during image presentation were accepted, resulting in 246 

1725 ± 299 fixations. Following the splitting of stimuli into three value categories and 247 

the required exclusion of overlapping stimuli, fixations occurring during trials of 248 

excluded stimuli were also removed, resulting in 1154 ± 222 fixations. Given the two 249 

trial types accompanying the three value conditions, this resulted in a mean of 192 ± 250 

5.4 fixations for each of the six conditions. Fixations overlapping with artefacts within 251 

the EEG data were also removed, resulting in 171 ± 4.6 fixations per condition. In 252 

addition to the six conditions, fixations were also organised into five time bins. These 253 

time bins were classified based on five 800 ms intervals encompassing the 4000 ms 254 

of image presentation. This allowed the organisation of fixations into five discrete 255 

and equally spaced categories between image onset and offset. These categories 256 

will be referred to as TB1, TB2, TB3, TB4 and TB5 hereafter. Since the data was 257 

also split into five time bins, this further reduced the number of fixations per condition 258 

to 34 ± 2.44 fixations and 8.76 ± 1.5 fixations per trial for every subject submitted for 259 

analysis. 260 

2.9. Eye-fixation related potential analysis 261 

Since EEG and eye-tracking was recorded with separate systems, the data 262 

had to be synchronised. A TTL pulse inputted into the EEG data stream indicating 263 

image onset and the corresponding appearance of the image in the word-view 264 

camera of the eye-tracking allowed for synchronisation.  265 

After synchronising eye-tracking and EEG data, EFRPs in response to fixation 266 

onset were computed separately for each level of value condition (low, medium, 267 

high), trial type (free, forced) and time bin (TB1, TB2, TB3, TB4, TB5) by averaging 268 

respective epochs in the intervals ranging from 200 ms before fixation onset to 400 269 
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ms following fixation onset. Epochs were baseline corrected using an individual 270 

baseline in the time window of -200 to -100 ms relative to fixation onset (Luck, 2005). 271 

This baseline was selected to mitigate effects of the saccadic spike potential (SP). 272 

Given the modulation of the SP by a variety of eye-movement characteristics, 273 

baselines encompassing the SP may induce differences between conditions due to 274 

condition specific eye-movements (Nikolaev et al., 2016). 275 

2.10. Eye-movement characteristics 276 

 Since eye-movement characteristics can modulate the pre-saccadic activity, 277 

the SP and the lambda brain potentials, eye-movement characteristics were 278 

analysed (Boylan and Doig, 1989; Keren et al., 2010; Nikolaev et al., 2016; Riemslag 279 

et al., 1988; Thickbroom and Mastaglia, 1986). Saccade amplitude was defined as 280 

the gaze distance between saccade initiation and fixation onset, expressed in 281 

degrees of visual angle, for each fixation. Saccade direction represented the angle 282 

between these two points for each fixation.  283 

2.11. Component clustering 284 

 EFRPs were input into the EEGLab (Delorme and Makeig, 2004) STUDY 285 

structure to allow for the clustering of similar independent components (ICs) across 286 

subjects. Independent component analysis (ICA) was first carried out on the 287 

concatenated epochs for each subject to identify a set of ICs. Next, ERP and scalp 288 

map component measures were computed and used to build a pre-clustering array 289 

for clustering components into 18 clusters. Clustering into 18 clusters was chosen to 290 

reflect the number of participants submitted for analysis to allow independent 291 

components to be distributed amongst an appropriate number of clusters for a 292 

suitable separation of brain components. To restrict analysis to the most significant 293 

clusters, 95% confidence intervals were computed on the time course of each 294 
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cluster. If the confidence intervals did not exceed zero, i.e. the interval overlaps with 295 

zero, the cluster was excluded.  296 

2.12. Unfold toolbox 297 

 Free-viewing in EEG paradigms allow us to examine neural processes over 298 

an extended period of time. However, the introduction of free-viewing is 299 

accompanied by overlapping neural responses from subsequent fixation events. 300 

Thus, any value- or condition-related changes in EFRPs may be confounded by 301 

associated eye-movements. To control for the impacts of eye movements on EFRPs,  302 

the Unfold toolbox (Ehinger and Dimigen, 2018) was employed. This toolbox uses 303 

linear deconvolution to isolate the neural response from events with varying temporal 304 

overlap.  305 

  To ensure that the changes in IC clusters were not a result of saccadic eye-306 

movements occurring within the latency of each epoch, each IC cluster was back 307 

projected onto the continuous EEG data and analysed using the Unfold toolbox to 308 

test for the influence of overlapping potentials on the data (see Supplementary 309 

materials). Firstly, a linear model was defined for the linear deconvolution procedure 310 

to estimate potentials across all fixations. Since we were not interested in the 311 

potentials for each condition, but rather the grand average deconvolution, the 312 

potentials for each condition were not modelled here. Next, a regression analysis 313 

was applied to the continuous EEG data using the following formula: 314 

��� = �	
� + �   (Eq. 1) 315 

where �	
 encodes covariates for all time samples in the continuous EEG data, � 316 

contains the regression (beta) coefficients and � the residuals. Next, the regression 317 

formula was solved for the beta (�) coefficients, wherein these betas represented 318 
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non-overlapping potentials. Since our model did not include terms for any condition, 319 

the intercept represented the de-convolved brain potentials for each IC cluster. 320 

3. Results 321 

3.1. Behavioural data 322 

Mean WTP values were computed for each condition separately. In the free 323 

bid trials, a mean value of £0.71 ± £0.64 was observed for low value items, £2.23 ± 324 

£1.14 for medium value items and £5.02 ± £1.50 for high value items. In the forced 325 

bid trials, a mean WTP value of £0.76 ± £0.85 was observed for low value items, 326 

£1.99 ± £1.44 for medium value items and £4.31 ± £1.80 for high value items.  327 

All value categories were significantly different from each other (P < .001). 328 

There was also a significant difference between free and forced bid trials, F(1,17) = 329 

8.84, P = .009, ƞp
2 =.342, as well as an interaction between value and trial type, 330 

F(2,34) = 18.9, P < .001, ƞp
2 =.526. Pairwise comparisons reveal a significant 331 

difference between medium value items for free and forced bids, t(17) = 2.31, P = 332 

.037, d = 0.19, and also between high value items, t(17) = 4.15, P < .001, d = 0.43. 333 

Given that this could potentially confound results when interpreting any main effect 334 

or interaction including trial type, these analyses will have the addition of a covariate 335 

analysis with WTP values. 336 

3.2. Fixation location data 337 

The mean saccade amplitude for each condition was calculated and input into 338 

a 3 (values) * 2 (forced vs. free) * 5 (time bins) ANOVA for repeated measures. 339 

There were no significant main effects or interactions between conditions for 340 

saccade amplitude. 341 

The circular nature of saccade direction required statistical testing appropriate 342 

for circular statistics. The mean circular saccade direction for each subject and 343 
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condition was calculated using the CircStat toolbox (Berens, 2009) before being 344 

analysed using the bpnreg package (Cremers and Klugkist, 2018) implemented in R 345 

(R Core Team, 2018). A mixed effects model was fitted to assess the interaction 346 

between value category, trial type and time bin regarding the circular outcome of 347 

saccade direction. This analysis produced the 95% highest posterior density (HPD) 348 

intervals, an interval allowing probability statements about the parameters, displayed 349 

in Figure 2. Inspection of the intervals reveal overlapping intervals between all value 350 

categories, within all time bins, for both free and forced bids, with the exception of 351 

time bin 2 for free bids wherein low value products elicited different saccade 352 

directions. We therefore conclude that saccade direction was only intermittently 353 

different between conditions, given the overlapping distributions of circular mean 354 

directions. 355 

To aid in the interpretation of EFRPs, fixation data across the screen was 356 

converted into a 40*40 bivariate histogram to visualise the locations of fixations for 357 

each condition. During the evaluation stage of the paradigm, a large part of the 358 

screen had no relevance to the participant. Therefore, analysis was restricted to two 359 

regions of interest – the product region of interest (ROI) and the value scale ROI 360 

(green shaded area of Figure 3A-B). The fixation data, comprised of number of 361 

fixations per histogram bin, across the whole of each ROI were then submitted to a 3 362 

(WTP categories) * 2 (free vs. forced) * 5 (time bins) repeated measures ANOVA to 363 

investigate the differences in fixation location between conditions. Given the large 364 

number of analyses from computing a three-way ANOVA on each histogram bin, P 365 

values were corrected using the Bonferroni-Holm (Holm, 1979) correction for multiple 366 

comparisons. Figure 3 summarises the results of all main effects. Firstly, three 367 

clusters of differences were observed across the product ROI, all indicating a 368 
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significantly increased number of fixations for high value products. Secondly, a small 369 

cluster of significant differences was found on the left side of the value ROI, 370 

indicating an increased number of fixations for low value products. Thirdly, the 371 

cluster of significant differences indicated an increased number of fixations on the 372 

product ROI during forced bid trials, as well as an increased number of fixations on 373 

the value scale ROI during forced bid trials. Lastly, participants fixated progressively 374 

less on the product ROI and more so on the value scale ROI. Interaction effects did 375 

not indicate significant modulation and therefore did not require further investigation. 376 

The same 40*40 bivariate histogram illustrating statistically significant 377 

differences between conditions was calculated with fixation duration parameters 378 

across the product and value scale ROI (Figure 4). Two major differences are 379 

observed between the number of fixations and corresponding fixation durations. 380 

Firstly, an increased number of fixations across the product ROI for high value 381 

products was paired with irregular differences in fixation duration. This suggests an 382 

increased number of fixations for high value products, independent of fixation 383 

duration, due to sporadic differences in fixation duration but a systematic increase in 384 

number of fixations. Secondly, an increased number of fixations on the product ROI 385 

during forced bid trials is paired with longer fixation durations during free bid trials on 386 

the product ROI. Hence, free bid trials elicited fewer but longer fixations, in contrast 387 

to forced bid trials eliciting many short fixations. 388 

To further explore fixation data within the value scale ROI, fixations were 389 

extracted for each condition and the location of the fixations along the x-axis of the 390 

computer screen were normalised between -1 and 1. Transforming the time axis 391 

allowed for the visualisation of what set of values were being fixated during each 392 

time bin for each value category and trial type. Figure 5A demonstrates in the form of 393 
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a bar graph how individuals were fixating in the centre of the value scale ROI 394 

regardless of value condition during TB1 for free bids. Fixating the centre of the 395 

screen during the initial viewing period was likely related to the indication of the type 396 

of condition (free vs forced) at this spot. However, in free bids, fixation location 397 

during TB2 was already predictive regarding low value items, with fixation location 398 

predicting their bid from TB3 onwards. This bias towards the left of the screen was 399 

reflected in the subjective WTP values in which the mean WTP for low and medium 400 

value items fall below the middle value of the scale. Figure 5B illustrates fixation 401 

locations during each time bin and each value category for forced bid trials, though 402 

no significant relationships were found. 403 

3.3. Eye-fixation related potentials  404 

 ICs were clustered into 18 clusters. To identify the most significant clusters, 405 

confidence intervals were computed across the waveform for each cluster. To be 406 

submitted for further analysis, 95% confidence intervals had to exceed zero at peak 407 

component amplitude. This check resulted in nine clusters being submitted for 408 

further analysis. Mean component amplitude across the whole time course and IC 409 

maps are summarised in Figure 6. The number of components, as well as the 410 

number of subjects included in the cluster, are also reported.  411 

 The data from each of the nine clusters were submitted to a permutation-412 

based repeated-measures ANOVA utilising 2500 permutations. Analysis was 413 

constrained to latencies between 50 ms and 270 ms to limit analysis to the latencies 414 

of brain potentials known to be involved in economic decisions (Tyson-Carr et al., 415 

2018). A single cluster could contain a varying number of components belonging to 416 

different subjects, with subjects not necessarily contributing an equal number of 417 

components to any one cluster. Therefore, components belonging to the same 418 
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subject were summated to produce a single component for each subject thus 419 

allowing for the preservation of the original null hypothesis. Consequently, statistical 420 

analysis on IC amplitude is in terms of summated component amplitude. 421 

Firstly, an ANOVA with value category and trial type as independent variables 422 

was carried out to highlight the influence of these two factors on IC amplitude, either 423 

individually or interactively. Secondly, to investigate the interaction between value 424 

category and time bin, an ANOVA with value category and time bin as independent 425 

variables was carried out. Lastly, trial type and time bin were submitted to an 426 

ANOVA to investigate the interaction between these two variables. This resulted in a 427 

set of significant latencies for each cluster illustrating one of the above effects. Our 428 

method of permutation testing was limited to two factors which produced overlapping 429 

factors between the three ANOVAs completed. Hence, these permutation tests were 430 

used to detect latencies of interest across the clusters. Following extraction of these 431 

significant latencies, the corresponding omnibus ANOVA was completed to ensure 432 

the results were robust to the appropriate statistical tests. 433 

 In order to further restrict analyses, significant latencies were excluded based 434 

on two criteria. Firstly, significant differences had to be observed for a minimum of 5 435 

consecutive milliseconds to ensure that the differences were not the result of 436 

momentary spikes. Next, latencies demonstrating significant interactions were 437 

excluded if the cluster did not first demonstrate a main effect within one of the 438 

independent variables. Results are summarised in Figures 7A-C. 439 

 Figure 7A highlights all significant latencies that demonstrated a significant 440 

main effect of value category across clusters. A significant effect of value was 441 

revealed between 158 and 165 ms in IC1, F(2,34) = 3.46, P = .046, ƞp
2 = .17. High 442 

value items produced significantly decreased amplitude in comparison to both low 443 
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value items, t(17) = 2.26, P = .033, d = 0.57, and medium value items, t(17) = 2.58, P 444 

= 0.02, d = 0.65. Separation of value categories was also observed for IC2 between 445 

50 and 70 ms, F(2,34) = 6.49, P = .004, ƞp
2 = .28, in which significantly increased 446 

amplitude was demonstrated for high value items in comparison to low value items, 447 

t(17) = 3.7, P < .001, d = 0.56, and medium value items, t(17) = 2.5, P = .024, d = 448 

0.5. A similar effect was also demonstrated in IC3 between 148 and 160 ms, F(2,32) 449 

= 3.97, P = .028, ƞp
2 = .2, with medium value items eliciting greater activity in 450 

comparison to low value items, t(16) = 2.34, P = .037, d = 0.61, and high value items, 451 

t(16) = 2.076, P = .041, d = 0.43. However, the component was at its strongest over 452 

a fronto-central region of the scalp. A statistically significant effect was revealed 453 

between 85 and 103 ms for IC4, F(2,34) = 3.42, P = .044, ƞp
2 = .167, with high value 454 

items eliciting significantly increased amplitude in comparison to low value items, 455 

t(17) = 2.78, P = .015, d = 0.43. A second statistically significant effect of value in IC4 456 

was revealed between 155 and 214 ms, F(2,34) = 3.7, P = .035, ƞp
2 = .178. Post-hoc 457 

testing revealed significantly increased amplitude for medium value items in 458 

comparison to low value items, t(17) = 3.06, P = .004, d = 0.42. 459 

 Figure 7B demonstrates the main effects of trial type (free vs. forced bids). 460 

Three of the clusters demonstrated significantly increased activation during free bid 461 

trials. This effect was observed between 190 and 195 ms for IC1, F(1,17) = 5.06, P = 462 

.038, ƞp
2 = .23, between 172 and 179 ms for IC2, F(1,17) = 4.72, P = .044, ƞp

2 = .22, 463 

and lastly between 100 and 110 ms for IC5, F(1,16) = 4.9, P = .041, ƞp
2 = .23. In 464 

contrast, two clusters demonstrated significantly increased activation during forced 465 

bid trials, firstly between 97 and 105 ms in IC4, F(1,17) = 4.9, P = .04, ƞp
2 = .22, and 466 

also between 126 and 144 ms in IC6, F(1,17) = 11.8, P = .003, ƞp
2 = .41.  467 
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 As shown in Figure 7A, three significant effects separate different value 468 

categories. We therefore show in Figure 7C the corresponding time course of these 469 

activations across the 5 time bins in the same latencies. A main effect of time bin 470 

was observed for IC1 between 158 and 165 ms, F(4,68) = 8.02, P < .001, ƞp
2 = .32. 471 

Post-hoc testing revealed significantly increased activation in TB1 in comparison to 472 

TB2, t(17) = 4.66, P < .001, d = 1.25, TB3, t(17) = 4.95, P < 0.001, d = 1.47, TB4, 473 

t(17) = 4.39, P < 0.001, d = 1.37, and TB5, t(17) = 3.43, P = 0.007, d = 0.91. For IC2 474 

between 50 and 70 ms, no significant differences between time bins were found. A 475 

statistically significant effect of time bin was found for IC3 between 148 and 160 ms, 476 

F(4,64) = 3.1, P = .021, ƞp
2 = .16. Post-hoc tests revealed significantly increased 477 

amplitude in TB1 in comparison to TB2, t(16) = 2.34, P = 0.03, d = 0.81, TB4, t(16) = 478 

2.78, P = 0.013, d = 0.91, and TB5, t(16) = 2.77, P = 0.014, d = 0.82. It therefore 479 

appears that for clusters encoding low and medium value, activity is greatest early 480 

on during valuation, whereas it is maintained throughout the viewing period for high 481 

value brain components. 482 

 The interactions between value category and trial type are reported in Figure 483 

7D. Here, only one significant effect was found for IC4 at a latency between 180 and 484 

190 ms, F(2,34) = 3.5, P = .041, ƞp
2 = .17. Following on from the main effect of value 485 

at a similar latency, this interaction appears to be a result of decreased amplitude for 486 

low value items in comparison to medium value items, t(17) = 3.54, P = .002, d = 487 

0.75, and high value items, t(17) = 2.7, P = .012, d = 0.51, in the forced bid trials 488 

only. 489 

Finally, the interactions between value and time bin are reported in Figure 7E. 490 

The only statistically significant interaction was found in IC2 in the epoch of 150 and 491 

160 ms, F(8,136) = 2.2, P = .035, ƞp
2 = .11. Post-hoc tests revealed significant 492 
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differences in TB2, TB3 and TB4. In TB2, high value items elicited significantly 493 

increased amplitude in comparison to low value items, t(17) = 2.19, P = .017, d = 494 

0.84. In TB3, medium values elicited increased amplitude in comparison to high 495 

value items, t(17) = 2.35, P = .028, d = 0.75. Finally, in TB4, high value items elicited 496 

significantly increased amplitude in comparison to low value items, t(17) = 2.1, P = 497 

0.048, d = 0.74.  498 

Since stimulus onset may have an influence on eye-fixation related potentials 499 

in the first time bin (Dimigen et al., 2011; Nikolaev et al., 2016), we carried out further 500 

analysis to account for any confounds. Firstly, we calculated the global field power 501 

based on the original grand average EFRP for each time bin and subject. Secondly, 502 

we averaged data across four separate latencies to summarise activity at the latency 503 

of the P1, P2, N2 and P3 components. Finally, we submitted this data to separate 504 

ANOVAs to determine whether the average amplitude of the corresponding 505 

components was influenced by time bin. Significant main effects of time bin were 506 

revealed for the P1 measured between 50 and 120 ms, F(4,68) = 8.46, P < .001, ƞp
2 507 

= .33, the P2 between 150 and 200 ms, F(4,68) = 18.9, P < .001, ƞp
2 = .53, the N2 508 

between 200 and 280 ms, F(4,68) = 21.3, P < .001, ƞp
2 = .56, and the P3 between 509 

280 and 350 ms, F(4,68) = 23, P < .001, ƞp
2 =.57. All post-hoc tests revealed 510 

differences between time bin 1 and all other time bins (P < .05), with no other 511 

differences being present (P ≥ .05). This suggests stimulus onset had a significant 512 

influence on the grand average EFRPs, and therefore, this may explain the 513 

differences observed between time bins in IC1 between 158 and 165 ms, and also 514 

between time bins in IC3 between 148 and 160 ms. However, the lack of differences 515 

between time bins in IC2 between 50 and 70 ms implies that this cluster is not 516 

influenced by stimulus onset, and therefore, may represent value-related activity. 517 
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Lastly, although EFRPs have been shown to be modulated by fixation rank (Fischer 518 

et al., 2013; Kamienkowski et al., 2018), the absence of differences between time 519 

bins after time bin 1 suggests brain data is not modulated by fixation rank in the 520 

current study. 521 

4. Discussion 522 

The present study postulated the presence of value-specific cortical activation 523 

components of which at least some would respond to a specific value category early 524 

on during the viewing period and maintain their activations throughout the viewing 525 

period both during free and forced bid trials. The findings largely support our 526 

predictions. Firstly, unique cortical activation components were observed for high, 527 

medium and low/medium value products. Additionally, a left, middle, right 528 

lateralisation effect was found for high, medium, low/medium value products, 529 

respectively. Secondly, effects were mostly observed within the latency of the N2 530 

EEG component, emphasising the importance of this component in economic 531 

valuation processing. Lastly, the brain component specific to high value did not 532 

significantly vary throughout the valuation stage. The maintained component 533 

activation for high value products suggests the increased cognitive processing 534 

required for high value items in comparison to low and medium value items. The 535 

fixation heat maps indicating an increased number of fixations, independent of 536 

fixation duration, across the product for high value products provides further support 537 

for this increased cognitive processing, similar to previous studies (Anderson and 538 

Halpern, 2017; Anderson and Yantis, 2012). 539 

Brain components encoding distinct categories of stimuli is prevalent across 540 

many domains. For example, the N170 EEG component has frequently been 541 

described as being an activation specific to face-processing (Calvo and Beltran, 542 
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2013; Cao et al., 2014; Zhang et al., 2013), as well as encoding the emotional 543 

valence of faces (Qiu et al., 2017). Evidence for the encoding of emotional valence is 544 

also prevalent amongst several other brain components. For example, the P1, N1, 545 

P2 and N2 components have been shown to respond to stimuli with a negative 546 

valence (Huang and Luo, 2006; Lithari et al., 2010; Smith et al., 2003). It has also 547 

been demonstrated that the encoding of negative valence can persist into later 548 

components such as the LPP (Schupp et al., 2004). Lithari et al. (2010) highlighted 549 

the role of the P3 component in the encoding of positive valence, however, also 550 

emphasised the role of the P2 component in positive valence encoding. A rapid 551 

categorisation of stimuli according to their economic value may encourage fast 552 

responses offering the best possible decision outcome (Brosch et al., 2010). Results 553 

suggest a rapid and approximate categorisation of stimuli according to their 554 

subjective values in which low and high value items are clearly differentiated. 555 

Interestingly, a separate scalp pattern was associated with medium value products. 556 

The presence of a specific component featuring activation over the midline scalp 557 

regions may be a result of absence of either the left-hemisphere high-value or the 558 

right-hemisphere low-value value allocation. 559 

Further to the categorisation of subjective value, lateralisation of cortical 560 

activation was also observed. IC2, which distinguished the processing of high value 561 

items, was most prominent over the left parietal region of the scalp, whereas IC1 562 

demonstrated a spatial maximum that extended over a right frontal region of the 563 

scalp and responded to low/medium value products. Hemispheric asymmetry 564 

regarding the role of the left and right hemispheres, and their relatedness to 565 

approach and withdrawal behaviours respectively, has long been established (see 566 

Hakim and Levy, 2019). Similarly, this asymmetry has been observed concerning 567 
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emotions, motivation and affect (Davidson, 1998; Demaree et al., 2005; Harmon-568 

Jones et al., 2010). The affective valence hypothesis (Alves et al., 2008) and 569 

previous studies (Lawrence et al., 2012; Price and Harmon-Jones, 2011) also 570 

highlight the role of the left hemisphere in approach behaviour. 571 

In the ERP domain, Aguado et al. (2013) reported an increase in LPP 572 

amplitude over left temporal regions for positive facial expressions – also, the 573 

encoding of negative affect in the right hemisphere has been frequently observed 574 

(Ahern and Schwartz, 1985; Balconi and Mazza, 2009; Kokmotou et al., 2017; 575 

Windmann et al., 2006). Additionally, a left/right hemispheric lateralisation during the 576 

evaluation of pleasant/unpleasant odours has been reported (Cook et al., 2015; 577 

Henkin and Levy, 2001). Critically, Pizzagalli et al. (2005) link approach behaviour 578 

with the evaluation of rewards allowing us to speculate on hemispheric asymmetry in 579 

terms of valuation processes. In the time-frequency domain, increased slow-wave 580 

oscillations originating from the right prefrontal cortex were indicative of an increased 581 

inclination for risk (Gianotti et al., 2009). From a neuromarketing perspective, Ohme 582 

et al. (2010) posited that frontal asymmetry might be an important tool for evaluating 583 

the effectiveness of adverts. Further evidence for this comes from the increase of 584 

theta and alpha activity in the left and right hemisphere whilst observing pleasant 585 

and unpleasant adverts respectively (Vecchiato et al., 2014; Vecchiato et al., 2011).  586 

The present finding of left frontal activations, represented by IC2, is in line 587 

with the valence hypothesis and suggest that goods with high economic value may 588 

share the same neural representation as positive affect and could possibly be 589 

indicative of motivation related processes, specifically approach behaviours. It could 590 

be argued that in a similar fashion to the bias towards low value items (Tyson-Carr et 591 

al., 2018), low value stimuli could induce withdrawal behaviours due to being 592 
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potential sources of financial loss. For example, Shenhav et al. (2018) reported that 593 

choosing between low value items could induce anxiety since these items can be 594 

interpreted as aversive in certain situations. 595 

From a functional brain imaging perspective, brain regions encoding value 596 

either positively or negatively have been reported (Bartra et al., 2013). In their meta-597 

analysis, Bartra et al. pointed out that several brain regions demonstrated either 598 

positive or negative encoding of value, or even both positive and negative encoding 599 

together. Anatomically, the OFC specifically has been subject to a volume of 600 

research regarding the functions of its sub-regions. The discrimination of the lateral 601 

and medial aspects of the OFC is well documented (Kringelbach and Rolls, 2004; 602 

Zald et al., 2014), and even finer organisations have been suggested (Kahnt et al., 603 

2012; Mackey and Petrides, 2010; Ongur et al., 2003). The distinct functional 604 

connectivity of multiple sub-regions demonstrates the ability of the OFC to encode a 605 

wide variety of values, such as both reward and punishment (Elliott et al., 2000; 606 

O'Doherty et al., 2001), making it a candidate for the encoding of distinct value 607 

categories. Our data suggests that the valuation process occurring during free 608 

viewing of goods is based on sets of activation patterns which are employed in 609 

response to either low, medium or high value but none of these patterns encodes the 610 

value throughout the whole range of values.  611 

  A benefit of analysing cortical responses to individual successive eye fixations 612 

is the ability to highlight value encoding across the time course of a decision. A 613 

single interaction between value and time bin within IC2 is characterised by 614 

differences within TB2, TB3 and TB4, with the most linear encoding of value present 615 

in TB2. As is emphasised by the fixation location data, it was as early as 800-1600 616 

ms post stimulus onset when individuals have most likely already decided the 617 
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amount they are ultimately willing to bid. IC strength was also highest in this time bin 618 

for high value items, reiterating the link between this cluster and the valuation of high 619 

value products. However, an important finding was the activation cluster observed 620 

over subsequent time bins, specifically for the ICs that decode different value 621 

categories. The brain component encoding high value showed no significant 622 

variation throughout the time course, although confidence intervals did overlap with 623 

zero in the third time bin, suggesting the increased amount of cognitive processing 624 

that takes place when valuating high value options.  625 

The reported fixation heat maps showed an increased number of fixations for 626 

high value items. This greater number of fixations is an indicator of an increased 627 

amount of time spent valuating the product and provides evidence for an increased 628 

amount of cognitive resources utilised during the valuation of high value products, 629 

something that has been observed in previous studies (Audrin et al., 2018; McGinty 630 

et al., 2016; Simola et al., 2015). A wealth of research has highlighted how the 631 

emotional content of a scene can modulate the nature of eye-fixations. A previous 632 

study demonstrated increased attention towards both positive and negative stimuli, 633 

reflected in longer fixation durations and more rapid fixation onsets (Nummenmaa et 634 

al., 2006). Similarly, eye-movements are more likely to be directed towards scenes 635 

that are affectively salient in comparison to scenes that are simply visually salient 636 

(Niu et al., 2012). Various eye-movement characteristics have also been shown to 637 

predict scene valence (Tavakoli et al., 2015) and eye-tracking can be used to infer 638 

cognitive processes such as attention (Hayhoe and Ballard, 2005). From an 639 

economic decision making perspective, we are more likely to choose items that we 640 

fixate for longer (Cisek et al., 2014; McGinty et al., 2016), which is especially true for 641 

luxury products (Audrin et al., 2018). A study by Simola et al. (2015) reported 642 
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enhanced fixation rates and longer gaze durations for unpleasant stimuli when they 643 

also had high arousal. However, gaze duration and fixation rates were increased for 644 

pleasant stimuli when they had low arousal. The increased number of fixations for 645 

high value products in the current study, as demonstrated in the fixation heat maps, 646 

may reflect the same processes as reported in this previous study by Simola et al., 647 

whereby the high value products are pleasant but not arousing, thus eliciting a larger 648 

number of fixations. Conversely, the fixation heat maps also demonstrate an 649 

increased number of fixations on the value scale for low value products, indicating 650 

that the value of low value products was decided rapidly and fixating on the product 651 

was no longer necessary given this quick categorisation.  652 

Our data are relevant for evaluation of the drift-diffusion models of the 653 

valuation processing resting on accumulation of evidence during decision making 654 

tasks. Drift-diffusion models have been utilised to explain choices during binary 655 

decisions (Krajbich et al., 2010), trinary decisions (Krajbich and Rangel, 2011) and 656 

simple purchase decisions (Krajbich et al., 2012). Milosavljevic et al. (2010) 657 

employed the drift-diffusion model to demonstrate a fast, under 1000 ms, elaboration 658 

of decision value by accumulation of noisy information until a decision threshold is 659 

reached. Using single neuron recordings, much of this research revealed the role of 660 

the OFC, the lateral prefrontal cortex and the anterior cingulate cortex in value 661 

encoding in animals (Padoa-Schioppa, 2009; Padoa-Schioppa and Assad, 2006; 662 

Tremblay and Schultz, 1999; Wallis and Miller, 2003), with value differentiation 663 

observed at approximately 450 ms post stimulus (Kennerley et al., 2009). Single 664 

neuron recordings in humans have also revealed the role of the amygdala in value 665 

encoding, and importantly, how the neuronal spike count differentiated value as early 666 

as 250 ms (Jenison et al., 2011). ERP methods have also reiterated this and 667 
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revealed rapid value encoding in the brain (Larsen and O'Doherty, 2014), even as 668 

early as 150 ms (Harris et al., 2011). Our results point to a rapid categorisation of 669 

stimuli according to their economic values occurring within an epoch comprising two 670 

800-ms time bins and this finding is consistent with both the drift-diffusion model data 671 

(Milosavljevic et al., 2010) and single-neuron studies in animals. 672 

The automaticity of the valuation process was captured in the differences 673 

between forced and free bids. Forced bidding trials allowed for the disentanglement 674 

of valuation specific processes from generic, non-specific neural processes 675 

(Plassmann et al., 2007, 2010). IC1, IC2 and IC5 each demonstrated increased 676 

strength for free bids. It would, therefore, seem that brain component expressed in 677 

IC1 is responsible for the encoding of low value products, and IC2 for high value 678 

products, most prominently in free bidding procedures. IC5, though showing no 679 

segregation of value, is specific to deliberate valuation. IC4, a component that was 680 

reported to be unique to medium/high value items in the forced bidding condition, 681 

demonstrated increased strength during forced bidding along with IC6. The presence 682 

of an automatic valuation system in the brain has previously been demonstrated in 683 

which value appeared to be computed in value-irrelevant tasks (Grueschow et al., 684 

2015; Lebreton et al., 2009). There is also a wealth of research investigating value-685 

driven attentional capture, the process whereby value is used as a cue to capture 686 

attention, which highlights the automatic nature of valuation processes. For example, 687 

the presence of a distractor in a binary decision task will increase reaction times and 688 

reduce decision optimality as the learned value of the distractor increases 689 

(Itthipuripat et al., 2015). Additionally, attention and eyes were captured during 690 

unconstrained viewing by task-irrelevant but previously rewarded stimuli (Anderson 691 
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and Yantis, 2012), thus emphasising the ability to automatically evaluate stimuli 692 

within our visual field despite their lack of relevance to the current task.  693 

An important consideration when using simultaneous EEG and eye-tracking 694 

recordings is the potential influence of eye-movement characteristics on EEG 695 

components. The SP, a potential observed at saccade onset, is modulated by 696 

saccade sizes and direction (Keren et al., 2010), and the visual lambda response 697 

can be modulated by fixation duration and saccade sizes (Nikolaev et al., 2016). In 698 

the present study, the varying temporal overlap between fixation events suggests 699 

that some effects could be explained by eye-movement related events alone. 700 

However, this is an inherent condition of free-viewing situations and several methods 701 

can be used to control for these factors. For example, we utilise here the method of 702 

linear deconvolution, using Unfold (Ehinger and Dimigen, 2018), to confirm our 703 

independent component clusters. Using this method, we revealed that saccade 704 

initiation was not likely to have had an influence on the cluster waveforms.  705 

 Traditional ERP experimental designs limit understanding to the initial 706 

cognitive processing that takes place within the first second following stimulus onset. 707 

However, although evidence suggests that value encoding occurs rapidly (Harris et 708 

al., 2011; Roberts et al., 2018; Tyson-Carr et al., 2018), further deliberation over time 709 

may influence the final evaluation. Past research indeed highlights how value-based 710 

decisions are guided by evidence accumulation until a decision point is ultimately 711 

reached (Krajbich et al., 2010; Krajbich et al., 2012; Krajbich and Rangel, 2011; 712 

Polania et al., 2014). Importantly, Melcher and Colby (2008) highlight in their 713 

framework how information between subsequent saccades is integrated to produce a 714 

more complex view of the world and it is this sequential remapping of sensory 715 

information that we speculate could underpin value-guided choice. It is these trans-716 



NEURAL UNDERPINNINGS OF VALUE-GUIDED CHOICE 30 
 

saccadic processes that are of great relevance to the growing field of real-world 717 

neuroimaging. In real life, our conscious experience comprises a series of fixations 718 

to gather information and initiate motor behaviours. Not only can we disentangle the 719 

trans-saccadic gathering of information, the method also benefits from the 720 

outstanding temporal resolution of EEG, something which fMRI methods severely 721 

lack. The method described in this study is also easily applicable to real life settings 722 

to help further our understanding of value-guided choice in a naturalistic setting 723 

(Roberts et al., 2018; Soto et al., 2018). A well-known drawback of this method is the 724 

contamination of EEG data with saccades. Any systematic difference in eye-725 

movements between conditions can easily produce false-positives. However, recent 726 

advanced methods of analysis of eye fixation related potentials, such as the Unfold 727 

toolbox (Ehinger and Dimigen, 2018), can account for a large proportion of the 728 

confounds that eye-movements can introduce. 729 

The present study aimed to reveal the brain components responsible for 730 

valuating specific value categories in the context of EEG. However, the treatment of 731 

WTP as a continuous factor may reveal, more generally, the dynamics of economic 732 

valuation in the brain. Future research would benefit from revealing correlations of 733 

brain components with WTP to emphasise the temporal characteristics of a more 734 

general subjective valuation system. A final consideration is the minimum effect 735 

duration in the current study. The current study implemented a minimum duration of 736 

5 ms for effects to be interpreted. Although this avoids interpreting effects resulting 737 

from momentary differences spanning a few samples, it is uncertain to what extent 738 

differences being observed for 5 ms may reflect higher-order cognitive processes. 739 

 To conclude, we demonstrate for the first time that valuation processes can 740 

be tracked over the time course of a decision using combined eye-tracking and EEG 741 



NEURAL UNDERPINNINGS OF VALUE-GUIDED CHOICE 31 
 

recordings. Our study advances the knowledge of temporal dynamics of the 742 

valuation process which has been acquired using event-related potentials locked to 743 

the onset of fixations. A set of brain components were revealed that encoded distinct 744 

value categories, each with a unique presentation across the scalp that reiterated the 745 

encoding of positive and negative affect in the left and right hemispheres 746 

respectively. Value categorisation for products is achieved automatically as it also 747 

occurred during forced bid choices and economic valuation appears to be largely 748 

completed within 1600 ms after presenting a visual stimulus.  749 
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Figure Legends 754 

Figure 1 A timeline of the main auction task. A fixation cross was presented for 2 s 755 

followed by image presentation for 4 s, during which the trial type is indicated. If a ‘?’ 756 

is presented below the image, individuals are allowed to bid freely after the image 757 

has offset. If a monetary amount is shown instead, the individuals must bid the 758 

reported amount. Following bidding, feedback was presented for 1 s to indicate the 759 

auction outcome.  760 

Figure 2 95% HPD confidence intervals for saccade direction measured in degrees 761 

of visual angle for each condition. 762 

Figure 3 Fixation locations. Heatmaps indicating fixation location differences within 763 

conditions for the image region (A; green highlighted area) and the scale region (B; 764 

green highlighted area). Bar graphs showing mean number of fixations per histogram 765 

bin. Bar graphs also indicate direction of effects for each cluster of differences.  766 

Figure 4 Fixation durations. Heatmaps indicating fixation duration differences within 767 

conditions for the image region (A; green highlighted area) and the scale region (B; 768 

green highlighted area). Bar graphs showing mean fixation duration in each 769 

histogram bin. Bar graphs also indicate direction of effects for each cluster of 770 

differences.  771 

Figure 5 Scale fixations x-axis coordinates. Mean x-axis coordinates for fixations on 772 

the scale normalised between -1 and 1. Mean coordinates for each value category 773 

and time bin are shown for free bids (A) and forced bids (B). Post-hoc tests are 774 

shown: * = P < .05, ** = P < .01, *** = P < .001. 775 

Figure 6 EFRP clusters. Independent component clusters for EFRP data that 776 

passed confidence intervals checks are illustrated with their corresponding 777 

waveforms and scalp maps. Time scales of IC waveforms are measured in ms. 778 
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Figure 7 EFRP cluster effects. Clusters that demonstrate main effects of value 779 

category (A) or trial type (B) are shown, along with the time course of activations for 780 

the value relevant effects in IC1, IC2 and IC3 with corresponding effects (C). An 781 

interaction between value category and trial type (D) and an interaction between 782 

value category and time bin (E) are also illustrated. Time scales of IC waveforms are 783 

measured in ms.  784 
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