Journal of Computational Geometry jocg.org

DYNAMIC ORTHOGONAL RANGE SEARCHING ON THE RAM,
REVISITED*

Timothy M. Chan' and Konstantinos Tsakalidist

ABSTRACT. We study a longstanding problem in computational geometry: 2-d dynamic

orthogonal range reporting. We present a new data structure achieving O <lo§ign + k)

optimal query time (amortized) and O (logQ/ 3+o(1) n) update time (amortized) in the word
RAM model, where n is the number of data points and k is the output size. This is the
first improvement in over 10 years of Mortensen’s previous result [SIAM J. Comput., 2006],

which has O (10g7/ 8te n) update time for an arbitrarily small constant € > 0.

In the case of 3-sided queries, our update time reduces to O (logl/ 2te n), improving

Wilkinson’s previous bound [ESA 2014] of O (logQ/ 3te n) We also obtain an improved result
in higher dimensions d > 3.

1 Introduction

Orthogonal range searching is one of the most well-studied and fundamental problems in
computational geometry: the goal is to design a data structure to store a set of n points so
that we can quickly report all points inside a query axis-aligned rectangle. In the “emptiness”
version of the problem, we just want to decide if the rectangle contains any point. (We will
not study the counting version of the problem here.)

The static 2-d problem has been extensively investigated [18, 7, 28, 12, 25, 1, 24], with
the current best results in the word RAM model given by Chan, Larsen, and Patragcu [9]
for the general case (or Fries et al. [15] for the special case of 3-sided query rectangles).

In this paper, we are interested in the dynamic 2-d problem, allowing insertions and
deletions of points. A straightforward dynamization of the standard range tree [30] supports
queries in O (log2 n+ k:) time and updates in O (log2 n) time, where k£ denotes the number

of reported points (for the emptiness problem, we can take k = 0). Mehlhorn and Néher [20]
improved the query time to O (lognloglogn + k) and the update time to O (logn loglogn)
by dynamic fractional cascading.

*Part of this work was done while the first author was at the University of Waterloo, Canada, and while
the second author was at New York University, USA. Work of the first author was partially supported by an
NSERC Discovery Grant and NSF grant CCF-1814026. Work of the second author was partially supported
by NSF grants CCF-1319648 and CCF-1533564. A preliminary version of this paper appeared in Proceedings
of the 33rd Annual Symposium on Computational Geometry, pages 28:1-28:13, 2017.

t Department of Computer Science, University of Illinois at Urbana-Champaign, tmc@illinois.edu

 Department of Computer Science, University of Liverpool, K.Tsakalidis@liverpool.ac.uk

http://jocg.org/

Journal of Computational Geometry jocg.org

The first data structure to achieve logarithmic query and update (amortized) time was
presented by Mortensen [22]. In fact, he obtained sublogarithmic bounds in the word RAM

model: the query time is O (~28" + k) and the amortized update time is O (log/®tn
loglogn

where € denotes an arbitrarily small positive constant.

On the lower bound side, Alstrup et al. [2] showed that any data structure with ¢,

update time for 2-d range emptiness requires {2 (log n)) query time in the cell-probe

log(tu logn
model. Thus, Mortensen’s query bound is optimal for any data structure with polylogarithmic
update time. However, it is conceivable that the update time could be improved further
while keeping the same query time. Indeed, the O (log7/ 8+e n) update bound looks too

peculiar to be optimal, one would think.

Let us remark how intriguing this type of “fractional-power-of-log” bound is, which
showed up only on a few occasions in the literature. For example, Chan and Patragcu [10]
gave a dynamic data structure for 1-d rank queries (counting number of elements less

than a given value) with O (log)ign) query time and O (10g1/ A n) update time. Chan

and Patrasgcu also obtained more /logn-type results for various offline range counting
problems. Another example is Wilkinson’s recent paper [27]: he studied a special case of
2-d orthogonal range reporting for 2-sided and 3-sided rectangles and obtained a solution

with O (101;1% gn + k) amortized query time, O (logl/ 2te n) update time for the 2-sided case,

and O (logQ/ 3+e n) update time for 3-sided; the latter improves Mortensen’s O (log5/ b+e n)
update bound for 3-sided [22]. He also showed that in the insertion-only and deletion-only
settings, it is possible to get fractional-power-of-log bounds for both the update and the
query time. However, he was unable to make progress for general 4-sided rectangles in the
insertion-only and deletion-only settings, let alone the fully dynamic setting.

New results. Our main new result is a fully dynamic data structure for 2-d orthogonal range
logn
loglogn

reporting with O (+ k) optimal query time and O (logQ/ 3+o(1) n) update time, greatly

improving Mortensen’s O (log7/ 8+e n) bound. In the 3-sided case, we obtain O (logl/ 2+e n)

2/3+e n) bound. (See Table 1 for comparison.)

update time, improving Wilkinson’s O (log
Our update bounds seem to reach a natural limit with this type of approach. In particular,
it is not unreasonable to conjecture that the near-y/logn update bound for the 3-sided case
is close to optimal, considering prior “fractional-power-of-log” upper-bound results in the

literature (though there have been no known lower bounds of this type so far).

Like previous methods, our bounds are amortized (this includes query time). Our
results are in the word-RAM model, under the standard assumption that the word size w is
at least logn bits (in fact, except for an initial predecessor search during each query/update,
we only need operations on (logn)-bit words). Even to researchers uncomfortable with
sublogarithmic algorithms on the word RAM, such techniques are still relevant. For example,

d—1
Mortensen extended his data structure to d > 3 dimensions and obtained O <(10§i gn) +

k) query time and O (logd_g/ 8+e n) update time, even in the real-RAM model (where each
word can hold an input real number or a (logn)-bit number). We can also obtain further

http://jocg.org/

Journal of Computational Geometry jocg.org

Table 1: Dynamic planar orthogonal range reporting: previous and new results.

Update time Query time
4-sided Lueker and Willard [30] log®n log?n + k
Mehlhorn and Néher [20] lognloglogn lognloglogn + k
7/8 1
Mortensen [22] 10g2;3+5 n o) pioen T
ogn
New log**nlog™Vlogn o ﬁ)gn +k
3-sided McCreight [19] logn logn + k
. 1 1
Willard [29] oo Tglogn T F
Mortensen [22] log®/%*e oeiogn T K
Wilkinson [27] (lognloglog n)2/3 logn + k
s 2/3 1
Wilkinson [27] log?/3+e n oeioan T F
New log'/?ten 1og0fgogn +k

improvements, with the same query time and O (logd_2+o(1/ d) n) update time.

Overview of techniques: Micro- and macro-structures. Our solution builds on ideas
from Mortensen’s paper [22]. His paper was long and not easy to follow, unfortunately; we
strive for a clearer organization and a more accessible exposition (which in itself would be a
valuable contribution).

The general strategy towards obtaining fractional-power-of-log bounds, in our view,
can be broken into two parts: the design of what we will call micro-structures and macro-
structures.

e Micro-structures refer to data structures for handling a small number s of points;
by “small”, we mean s = 21°°" for some fraction a < 1 (rather than s being
polylogarithmic, as is more usual in other contexts). When s is small, by rank space
reduction we can make the universe size small, and as a consequence are able to pack

multiple points (about -7~) into a single word. As observed by Chan and Patragcu [10]

and by Wilkinson [27], we can design micro-structures by thinking of each word as a

block of multiple points, and borrowing known techniques from the world of external-

memory algorithms (specifically, buffer trees [4]) to achieve (sub)constant amortized
update time. Alternatively, Mortensen described his micro-structures from scratch,

which required a more complicated solution to a certain “pebble game” [22, Section 6].

One subtle issue is that to simulate rank space reduction dynamically, we need list
labeling techniques, which, if not carefully implemented, can worsen the exponent in
the update bound (as was the case in both Mortensen’s and Wilkinson’s solutions).

e Macro-structures refer to data structures for large input size n, constructed using
micro-structures as black boxes. This part does not involve bit packing, and relies
on more traditional geometric divide-and-conquer techniques such as higher-degree
range trees, as in Mortensen’s and in Chan and Patragcu’s solutions, with degree

http://jocg.org/

Journal of Computational Geometry jocg.org

] . L o .
2log” for some fraction B < 1. Van Emde Boas recursion is also a crucial ingredient
in Mortensen’s macro-structures.

Our solution will require a number of new ideas in both micro- and macro-structures.
On the micro level, we bypass the “pebbling” problem by explicitly invoking external-memory
techniques, as in Wilkinson’s work [27], but we handle the list labeling issue more carefully
in order to avoid worsening the update time. On the macro level, we use higher-degree range
trees but with a more intricate analysis (involving Harmonic series, interestingly), plus a
few bootstrapping steps, in order to achieve the best update and query bounds.

2 Preliminaries

In all our algorithms, we assume that during each query or update operation, we are given a
pointer to the predecessor/successor of the x- and y-values of the given point or rectangle.
At the end, we can add the cost of predecessor search to the query and update time (which
is no bigger than O (v/logn) [3] in the word RAM model).

We assume a word RAM model that allows for a constant number of “non-standard”
operations on w-bit words. By setting w := d logn for a sufficiently small constant ¢, these
operations can be simulated in constant time by table lookup, after preprocessing the tables
in 20w) = pOO) time.

For simplicity, we concentrate on emptiness queries; all our algorithms can be modified
for reporting queries, with an additional O (k) term to the query time bounds.

A 3-sided query deals with a rectangle that is unbounded on the left or right side.
In contrast, a flipped 3-sided query deals with a rectangle that is unbounded on the top
or bottom side. (A flipped 4-sided query is the same as a 4-sided query.) A 2-sided (or
dominance) query deals with a rectangle that is unbounded on two adjacent sides.

Let [n] denote {0,1,...,n —1}.

We now quickly review a few useful tools.

List labeling. Monotone list labeling is the problem of assigning labels to a dynamic set of
totally ordered elements, such that whenever z < y, the label of element z is less than the
label of element y. As elements are inserted, we are allowed to change labels. The following
result is well known:

Lemma 1. [13] (see also [14, 6, 16]) A monotone labeling for n totally ordered elements

o)

with labels in [n can be maintained under insertions by making O (nlogn) label changes

in total, in O (nlogn) total time.

Weight-balancing. Weight-balanced B-trees [5] are B-tree implementations with a rebal-
ancing scheme that is based on the nodes’ weights, i.e., subtree sizes, in order to support
updates of secondary structures efficiently.

http://jocg.org/

Journal of Computational Geometry jocg.org

Lemma 2. [5, Lemma 4] In a weight-balanced B-tree of degree s, nodes at height i have
weight © (s*), and any sequence of n insertions requires at most O (n/s') splits of nodes at
height 1.

Colored predecessors. Colored predecessor searching is the problem of maintaining a
dynamic set of multi-colored, totally ordered elements and searching for the predecessors
with a given color.

Lemma 3. [22, Theorem 14] Colored predecessor searches and updates on n colored, totally
ordered elements can be supported in O (log2 log n) time deterministically.

Van Emde Boas transformation. A crucial ingredient we will use is a general technique of
Mortensen [21, 22] that transforms any given data structure for orthogonal range emptiness
on small sets of s°1) points, to one for point sets in a narrow grid [s] x R, at the expense of
an increase in cost by loglogn factors. We state the result in a slightly more general form,
allowing the narrow grid to be X x R for an arbitrary set X of O(s) values:

Lemma 4. [22, Theorem 1] Let X be a set of O (s) values. Given a dynamic data structure
for j-sided orthogonal range emptiness (j € {3,4}) on s% points in X x R with (amortized)
update time Uj(s,sz) and query time Q;(s, s2), there exists a dynamic data structure for
j-sided orthogonal range emptiness on n points in X x R with update time Uj(s,n) =

O (Uj(s, s%) log? log n) and query time Q;(s,n) = O (Q;(s, s?) loglogn).

If the given data structure supports updates to X (i.e., insertions/deletions of values
in X) in Ux(s) time and this update procedure depends solely on X (and not the point set),
the new data structure can support updates to X in Ux(s) time.

Mortensen’s transformation is obtained via a van-Emde-Boas-like recursion [26]. His
paper stated the above lemma only for the case of a static y-universe (there, one of the
log log-factors in the update time can be eliminated). It isn’t entirely clear to us how he
dealt with the issue of dynamic y-universes. For the sake of completeness, we give a concise
re-description of the proof in the Appendix, to show how the data structure can handle the
dynamic y-universe setting.

3 Part 1: Micro-Structures

We first design micro-structures for 3- and 4-sided dynamic orthogonal range emptiness
when the number of points s is small. This part heavily relies on bit-packing techniques.

3.1 Static universe
. . . . O(1 2
We begin with the case of a static universe {s ()} .

2
Lemma 5. For s points in the static universe [50(1)} , there exist data structures for
dynamic orthogonal range emptiness that support

http://jocg.org/

Journal of Computational Geometry jocg.org

(i) updates in O (% + 1) amortized time and 3-sided queries in O (logs) amortized
time;

(i) updates in O (% + 1) amortized time and 4-sided queries in O (log2 s) amortized
time.

Proof. We mimick existing ezternal-memory data structures with a block size of B := ngﬂ

for a sufficiently small constant §, observing that B points can be packed into a single word.

(i) For the 3-sided case, Wilkinson [27, Lemma 1] has already adapted such an
external-memory data structure, namely, a buffered version of a binary priority search tree
due to Kumar and Schwabe [17] (see also Brodal’s more recent work [8]), which is similar to
the buffer tree of Arge [4]. For 3-sided rectangles unbounded to the left /right, the priority
search tree is ordered by y, where each node stores O (B) z-values. Wilkinson obtained
(@) (% -log s + 1) =0 (% + 1) amortized update time and O (logs) amortized query
time.

(ii) For the general 4-sided case, we use a buffered version of a binary range tree.
Although we are not aware of prior work explicitly giving such a variant of the range tree,
the modifications are straightforward, and we will provide only a rough outline. The range
tree is ordered by y. Each node holds a buffer of up to B update requests that have not
yet been processed. Each node is also augmented with a 1-d binary buffer tree (already
described by Arge [4]) for the z-projection of the points. To insert or delete a point, we
add the update request to the root’s buffer. Whenever a buffer’s size of a node exceeds
B, we empty the buffer by applying the following procedure: we divide the list of © (B)
update requests into two sublists for the two children in O(1) time using a non-standard
word operation (since B update requests fit in a word); we then pass these sublists to the
buffers at the two children, and also pass another copy of the list to the node’s 1-d buffer
tree. These 1-d updates cost O (% -log s) each [4], when amortized over 2 (B) updates.
Since each update eventually travels to O (logs) nodes of the range tree, the amortized

update time of the 4-sided structure is O (% log? s + 1) =0 (% + 1).

A 4-sided query is answered by following two paths in the range tree in a top-down
manner, performing O (logs) 1-d queries; since each 1-d query takes O (logs) time, the
overall query time is O (log2 s). However, before we can answer the query, we need to first

empty the buffers along the two paths of the range tree. This can be done by applying the
procedure in the preceding paragraph at the O (log s) nodes top-down; this takes O (log s)

time, plus the time needed for O (Blogs) 1-d updates, costing O (% -log s) each [4]. The
final amortized query time is thus O (log2 s). 0

The above methods can be modified for range reporting with an extra query cost of
O (k) for reporting k output points.

Notice that the above update time is constant when the number of points s is as
large as 2V¥ for 3-sided queries or 2v'? for 4-sided.

(It is possible to eliminate one of the logarithmic factors in the query time for the

http://jocg.org/

Journal of Computational Geometry jocg.org

above 4-sided result, by augmenting nodes of the range tree with 3-sided structures. However,
this alternative causes difficulty later in the extension to dynamic universes. Besides, the
larger query time turns out not to matter for our macro-structures at the end.)

3.2 Dynamic universe

To make the preceding data structures support a dynamic universe, the simplest way is to

2
0(1)} . Whenever a

apply monotone list labeling (Lemma 1), which maps coordinates to {s
label of a point changes, we just delete the point and reinsert a copy with the new coordinates
into the data structure. However, since the total number of label changes is O (slogs) over
s insertions, this slows down the amortized update time by a log s factor and will hurt the

final update bound.

Our approach is as follows. We first observe that the list labeling approach works
fine for changes to the y-universe. For changes to the x-universe, we switch to a “brute-force”
method with large running time. This turns out to be adequate for our macro-structures at
the end, since the number of xz-universe changes will be relatively small, as we will see later
in Section 4.1. (The brute-force idea can also be found in Mortensen’s paper [22], but his
macro-structures were less efficient.)

Lemma 6. Both data structures in Lemma 5 can be modified to work for s points in a

universe X x'Y with |X|,|Y| = O (s). The update and query time bounds are the same, and
we can Support

(a) updates to'Y in O (log2 log 3) amortized time (given a pointer to the predecessor/
successor in'Y), and

(b) updates to X in 20(W) time, where the update procedure for X depends solely on X
(and not the point set).

Proof. (a) To start, let us assume that X = [50(1)] but Y is arbitrary. We divide the sorted
list Y into O (s/A) blocks of size © (A) for a parameter A to be set later. It is easy to
maintain such a blocking using O (s/A) number of block merges and splits over s updates.
(Such a blocking was also used by Wilkinson [27].) We maintain a monotone labeling of
the blocks by Lemma 1. In the proof of Lemma 5(i) or (ii), we construct the y-ordered
priority search tree or range tree using the block labels as the y-values. Each leaf then
corresponds to a block. We build a small range tree for each leaf block to support updates
and queries for the O (A) points in, say, O (log2 A) time. We can encode a y-value n € Y
by a pair consisting of the label of the block containing 7 (from [O (s/A)]), and the rank of
n with respect to the block (from [O (A)]). We will use these encoded values, which still are
O (log s)-bit long, in all the buffers. The block labels provide sufficient information to pass
the update requests to the leaves and the z-ordered 1-d buffer trees. For a particular leaf,
the ranks with respect to its corresponding block provide sufficient information to handle a
query or update at this leaf.

http://jocg.org/

Journal of Computational Geometry jocg.org

During each block split/merge and each block label change, we need to first empty
the buffers along the path to the block before applying the change. This can be done by
applying the procedure from the proof of Lemma 5 at O (log s) nodes top-down, requiring
O (log s) amortized time. Since the total number of block label changes is O (4 log %), the
total time for these steps is O (5 log 5 - log s) = O (s) by setting A := log? s. The amortized
cost for these steps is thus O (1). The final amortized cost is O (log2 A) =0 (log2 log s).

o)

(b) Now, we remove the X = [s } assumption. We assign elements in X to labels

in [O (s)], but this time we do not use monotone labeling. This way, the label of an z-value
does not need to change once it is assigned. Buffers store the labels rather than the actual
z-values. However, the non-standard word operations on the z-values in the buffers have
to be done differently. For example, consider the operation of finding the minimum of B
x-values packed in a word (needed to implement the buffered priority search tree); in the
modified operation, we are given B labels packed in a word and want to output the minimum
of the B z-values corresponding to these labels. Such an operation can still be simulated by
table lookup, where the answers to all 20(*) possible inputs can be precomputed in 2°0®)
time. Inserting a new z-value to X requires more work now: during an insertion of X, after
we assign the new z-value a new label in [O(s)], we need to compute 2°(*) table entries
from scratch by brute force, taking 20(*) time. O

4 Part 2: Macro-Structures

We now present macro-structures for 3- and 4-sided dynamic orthogonal range emptiness
when the number of points n is large, by using micro-structures as black boxes. This part
does not involve bit packing (and hence is more friendly to computational geometers). The
transformation from micro- to macro-structures is based on variants of range trees.

4.1 Range tree transformation |

We present our first transformation. As warm up, we start by stating a shorter version of
the transformation, which is easier to understand (this simpler version is sufficient in the
special case when there are no updates to the X universe). We then state and prove the
long version that we will actually use.

Lemma 7. (Abridged version) Given a data structure D; for dynamic j-sided orthogonal
range emptiness (j € {3,4}) on n points in X x R (|X| = O (s)) with (amortized) update
time Uj(s,n) and query time Q;(s,n), where updates to X are allowed with no extra cost,
there exist data structures for dynamic orthogonal range emptiness on n points in the plane
with the following amortized update and query time:

(i) for the 3-sided case,

Us(n) = O (Ug(s,n) log,n + log, nlog? logn)

Qs(n) = O(Qs(s,n)log,n + log,nlog*logn) ;

http://jocg.org/

Journal of Computational Geometry jocg.org

(ii) for the 4-sided case,

Ug(n) = O <(U4(s, n) + Ug(s,n)) log,n + log, nlog?log n)

Qa(n) = O (Qu(s,n) + Qs(s,n)log,n + log,nlog?logn).
Lemma 7. (Long version) Given a family of data structures DJ@ (ie{l,...,logsn}) for
dynamic j-sided orthogonal range emptiness (j € {3,4}) on n points in X xR (|X|= 0 (s))
with (amortized) update time U}Z)(s,n) and query time Qy)(s,n), where updates to X take

U)((i)(s) time, there exist data structures for dynamic orthogonal range emptiness on n points
in the plane with the following amortized update and query time:

(i) for the 3-sided case,

log, logs n r7(1)
Us(n) = (Z U (s,m) + Z (+ log, nlog? logn)
Q3(n) = O <max Qgi)(s,n) logsn + logg nlog?log n> ;

(ii) for the 4-sided case,

log, n) log, n U()()

Uy(n) = O Z (Uil)(s,n)) + Z X + log, nlog?logn
i=1

Quln) = o<many><s,n> + Q4 s) o + log, nlog?logn).

Proof. We store a range tree ordered by x, implemented as a degree-s weight-balanced
B-tree. (Deletions can be handled lazily without changing the weight-balanced tree; we can
rebuild periodically when n decreases or increases by a constant factor.) At every internal
node v at height ¢, we let X, be the set of z-coordinates of the O (s) vertical lines dividing
the children nodes of v, and store the points in its subtree in the given data structure Dj(-l)
for j-sided orthogonal range emptiness on a narrow grid X, x R, where the z-coordinate of
every point is replaced with its predecessor in X,. We also store the y-coordinates of these
points in a colored predecessor searching structure of Lemma 3, where points in the same
child’s vertical slab are assigned the same color. And we store the z-coordinates in another
colored predecessor searching structure, where X, is colored black and the rest is colored
white.

To insert or delete a point, we update the narrow-grid structures at the nodes along

the path in the tree. This takes O (Zlogs U]@(s,n)) total time. Note that given the

y-predecessor/successor of the point at a node, we can obtain the y-predecessor /successor at
the child by using the colored predecessor searching structure. We can also determine the
xz-predecessor in X,, by another colored predecessor search. The extra cost for descending

along the path is thus O <log8 nlog?log n)

http://jocg.org/

Journal of Computational Geometry jocg.org

To keep the tree balanced, we need to handle node splits. For nodes at height i,
there are O (n/s') splits by Lemma 2. Each such split requires rebuilding two narrow-
grid structures on O (s') points, which can be done naively by O (s') insertions to empty

structures. This has O(logs (n/s') - s ()) total cost, i.e., an amortized cost of

(@) (Ziozgf "U]@(s, n)) A split of a child of v also requires updating (deleting and reinserting)

the points at the child’s slab. This has O (Ziff "(n/sth) si_lU]@(s, n)) total cost, i.e.,
an amortized cost of O (Zlozgf U(i) (s, n)) Moreover, a split of a child of v requires an
update to X,. This has O (Zlo_gs (n/s=1) - U)(?(s)) total cost, i.e., an amortized cost of

0 (Zlogs (1/s71) U)((Z)(s)) Furthermore, the split requires O (1) updates to the colored
predecessor structures for X, and O (s) updates to the colored predecessor structures at
the two new nodes. This has O (Zio_gé (n/s'=1) -log?logn + Eiozgfn (n/s') - slog®log n) =

0 (n log? log n) total cost, i.e., an amortized cost of O (log2 log n)

To answer a 3-sided query, we proceed down a path of the tree and perform queries
in the narrow-grid structures at nodes along the path. These queries take total time
0 (logs n - max; Qg)(s, n)) As before, given the y-predecessor/successor of the coordinates
of the rectangle at a node, we can obtain the y-predecessor /successor at the child by using
the colored predecessor searching structure. We can also determine the x-predecessor in X,
by another colored predecessor search. The extra cost for descending along the path is thus
(@) (logS nlog?log n) .

To answer a 4-sided query, we find the highest node v whose dividing vertical lines
cut the query rectangle, by descending along a path from the root in O (logS nlog? log n)
time. We obtain two 3-sided queries at two children of v, which can be answered as
above, plus a remaining query that can be answered via the narrow-grid structure at v in

0 (maxl Qi (s,)) time. O

Combining with our preceding micro-structures and the van Emde Boas transfor-
mation, we obtain the following results, achieving the desired update time but slightly
suboptimal query time (which we will fix later):

Theorem 1. Given n points in the plane, there exist data structures for dynamic orthogonal
range emptiness that support

(i) updates in amortized O (logl/2 nlogo(l) log n) time and 3-sided queries in amortized
O (lognloglogn) time;

o(1)

(ii) updates in amortized O (log2/3 nlog log n) time and 4-sided queries in amortized

O (lognloglogn) time.

Proof. (i) For the 3-sided case, Lemmata 5(i) and 6 give micro-structures with update
w)

time O (% + log? log S) and query time O (log s), while supporting updates to X in 20(
time. Observe that we can choose to work with a smaller word size W < w, so long as

http://jocg.org/

Journal of Computational Geometry jocg.org

w = (logs). We choose w := dilog s for a sufficiently small absolute constant § and for
any given i € [2,log, n|. To summarize, we have micro-structures with the following update
time, query time, cost for updating X:

i |
U3()(s, s = 0 (Ofs + log? log s>
Q(s,5%) = O(logs)

U)((i) (s) — 80(51’)

For the special case i = 1, we use a standard priority search tree, with U:.El)(s, s?), :(31)(5, 5?)

= O (logs) and U)((1)(s) = 0. By Lemma 4 (van Emde Boas transformation), we obtain

narrow-grid structures with update time Uéi)(s, n) = O(U3i)(s, s%)1log?logn) and query time
:()f)(s, n) = O(Q:(;)(s, s?)loglogn). Substituting into Lemma 7, we obtain

log, n 2 log, n O(64)
log slog“logn S
Us(n) = O (E - + log, nlog*logn + E G
i=1 i=2

= 0 (logslog3 logn + log, nlog*log n) ,

since the first sum is a Harmonic series and the second sum is a geometric series. (This
assumes a sufficiently small constant for ¢, as the hidden constant in the exponent O (97)
does not depend on §.) Furthermore,

Qs3(n) = O (log slog, nloglogn + log, nlog?log n)
= 0 (log nloglogn + log,n log? log n) .

We set s := 2VI98" to get Uz(n) = O (logl/2 nlog®M log n) and Q3(n) = O (lognloglogn).

(ii) Similarly, for the 4-sided case, Lemmata 5(ii) and 6 with a smaller word size
w := dilog s give micro-structures with

1og2 s

Uf)(s,s2) = O(;

Qii)(s,sz) = O(log2s>
UP(s) = 009,

+ log? log s)

For the special case i = 1, we use a standard range tree, achieving Uil)(s, s?), 5})(3, s?) =
(@) (log2 s) and U)((l)(s) = 0. Applying Lemmata 4 and 7, we obtain

7 8171

logsm 9 2 logsn _O(6i)
1 log=1
Us(n) = O(g 08 508 08T log, nlogtlogn + E o)
i=1 =2

= 0 (log2 slog3logn + log,n log* log n)

http://jocg.org/

Journal of Computational Geometry jocg.org

and

Qi(n) = O (log2 sloglogn + logslog,nloglogn + log,n log? log n)

= 0 (log2 sloglogn + lognloglogn + log,nlog?log n) .

We set s 1= 218"/"" {0 obtain Us(n) = O (10g2/3nlog0(1) logn> and Q4(n) = O(logn
loglogn). O

4.2 Range tree transformation Il

We now reduce the query time to optimal by another transformation:

Lemma 8. Given a data structure D; for dynamic j-sided orthogonal range emptiness
(7 €1{2,3,4}) onn points in X xR (|X| = O (s)) with (amortized) update time U;(s,n) and
query time Q;(s,n), where updates to X are allowed with no extra cost, and given a data
structure for dynamic (j — 1)-sided orthogonal range emptiness on n points with update time
Uj—1(n) and query time Q;—1(n), there exist data structures for dynamic flipped j-sided
orthogonal range emptiness (j € {3,4}) on n points in the plane with the following amortized
update and query time:

Uj(n) O ((Uj(s, n) + Uj_l(n)) log,n + log, nlog?log n)

Qi(n) = 0(Qj(s,m) + Qj-1(n) + log,nlog?logn).

Proof. We modify the range tree in the proof of Lemma 7, where every internal node is
augmented with a (j — 1)-sided structure on the set of points in its subtree.

During an insertion or deletion of a point, we update the narrow-grid structures along
a path as before, in O (log,n - U;(s,n)) time. We now also need to update the (j — 1)-sided
structures at nodes along the path. This adds O (U;—1(n)log,n) to the update time.

During rebalancing, each split of a node at height ¢ now requires rebuilding the (j —1)-
sided structures, which can be done naively by O (s') insertions to an empty structure. This
has O (Z;O:gfn (n/s) - Sin,l(n)) total cost, i.e., an amortized cost of O (U;j_1(n)log,n).

To answer a flipped j-sided query, we find the highest node v whose dividing vertical
lines cut the query rectangle, by descending along a path from the root as before in
(@) (logs nlog?log n) time. We obtain two (j — 1)-sided queries at two children of v, plus a
query in the narrow-grid structure at v. (In the case j = 3, it is important here that we are

given a flipped 3-sided query.) The two (j — 1)-sided queries can be answered directly using
the augmented structures. These queries take O (Q;(s,n) + Q;—1(n)) time. O

We obtain our final results by bootstrapping:

Theorem 2. Given n points in the plane, there exist data structures for dynamic orthogonal
range emptiness that support

http://jocg.org/

Journal of Computational Geometry jocg.org

1/240(e)

n) time and 3-sided queries in amortized O(logn)

(i) updates in amortized O(log Toglogn

time for an arbitrarily small constant € > 0;

(ii) updates in amortized O (log2/3 nlogo(l) log n) time and 4-sided queries in amortized

logn .
O (loglogn) time.

Proof. (i) Theorem 1(i) achieves
Us(s,s*) = O (logl/2 slog®M log 5)
Q3(s,5%) = O (logsloglogs).
Wilkinson [27] has given a data structure for 2-sided (dominance) queries with

Us(n) = O<10g1/2+5n>
Q2(n) = O(logn)

log logn
Applying Lemmata 4 and 8, we obtain

Us(n) = O (log1/2 slogsn logo(l) logn + logl/2+5 nlog, n + log, nlog®log n)
1
Q3(n) = O (logslog log sloglogn + _o8n log, nlog? log n) .
loglogn

logn

We set s := 21g%logn to get Us(n) = O <log1/2+0(5) n) and Q3(n) = O (101;%);”).

These time bounds for flipped 3-sided queries apply to (non-flipped) 3-sided queries
as well, by a symmetric data structure.

(ii) Similarly, Theorem 1(ii) achieves
Us(s) = O (10g2/3310g0(1) log s)
Q4(s) = O (logsloglogs).
Part (i) above gives

Us(n) = O(logl/QJrO(E)n)
Q3(n) = O(logn)

loglogn

Substituting into Lemma 8, we obtain

Ui(n) = O <log2/3 slog, nlog®Mlogn + log'/?T9E) nlog, n + log, nlog? log n)
/ logn 2
Qy(n) = O [logsloglogsloglogn + ——=—— + log,nlog”logn | .
loglogn

logn

We set s := 2leg®losn to get Uj(n) = O (log2/3 nlog®M log n) and Q)(n) = O (mfﬁ&)- O

http://jocg.org/

Journal of Computational Geometry jocg.org

As we have noted, the micro-structures in Section 3 can handle reporting queries; so
are the structures obtained via the van Emde transformation (see the end of the Appendix).
It can be easily checked that the entire data structure can support reporting queries with
extra cost O(k) for k output points.

5 Higher Dimensions

We can automatically extend our result to higher constant dimensions d > 3 by using
a standard degree-b range tree, which adds a blog,n factor per dimension to the up-
date time and a log,n factor per dimension to the query time. With b = log®n, this
gives O ((log n/loglog n)d_l) query time and O (logd75/3+o(5) n) update time, improving
Mortensen’s result.

Alternatively, we can directly modify our micro- and macro-structures, and obtain a
better update time of the form O (logd*ﬂO(l/ d) n), as we now show.

In this section, all input points and query boxes lie in d dimensions. A j-sided query
(d < j < 2d) is for a box that projects to bounded intervals along j — d coordinate axes and
to half-intervals along the remaining 2d — j coordinate axes—the formal set of j — d axes
are called double-sided.

Definition 1. Define a Pj(s,n) structure to be a dynamic data structure for j-sided
orthogonal range emptiness on a set of n points in d dimensions, where the all j-sided queries
have the same set of double-sided azes, and there are at most s distinct coordinate values
along d — £ of the d coordinate axes—these d — £ azes are called short, and the remaining ¢
azes are called long.

Define a Pje(s,n) structure to be a P;e(s,n) structure under the further restriction
that all long axes are double-sided.

5.1 Preliminaries: Van Emde Boas transformation

Lemma 4 can be immediately generalized to higher dimensions, to handle the case of one
long axis.

Lemma 9. Given a dynamic data structure for j-sided orthogonal range emptiness on
s24=1) points with (amortized) update time U;(s*@~ YY) and query time Q;(s*@~Y), there
ezists a Pj1(s,n) structure with amortized update time Uj1(s,n) = O (Uj(sz(dfl)) log? log n)

and query time Qj1(s,n) = O (QJ(SQ(d*U) log log n)
The loglogn factors disappear for the j = d case.
The last part for 7 = d does not require van Emde Boas recursion: for dominance

queries, it suffices to maintain the minimum/maximum point at each of the O(s?~1) lines
parallel to long axis.

http://jocg.org/

Journal of Computational Geometry jocg.org

5.2 Micro-structures: Static universe

Lemma 5 can be generalized to the following;:

d
Lemma 10. For s points in the static universe [50(1)] and a given b > 2, there exist data
structures for dynamic orthogonal range emptiness that support

(i) updates in O (% + 1) amortized time and (d + 1)-sided queries in O (logg_1 s)
amortized time;

(i) updates in O (bgdﬁ + 1) amortized time and (2d)-sided queries in O (logd s) amor-

w
tized time.

Lemma 10(i) is established using a buffered version of a higher-dimensional range
tree, with the 2-d 3-sided structure from Lemma 5(i) for base case. The bounds for (i) above
are stated with a tradeoff parameter b, which follow by increasing the fan-out of the tree
(e.g., see Wilkinson’s paper [27] in 2-d).

5.3 Micro-structures: Dynamic universe

To make the preceding micro-structures support a dynamic universe, the simplest way is to
apply monotone list labeling (Lemma 1). Since each insertion causes an amortized O(log s)
number of label changes and thus deletions and reinsertions to the data structure, the
amortized update time increases by a log s factor:

Lemma 11. For s points in d dimensions and a given b > 2, there exist data structures for
dynamic orthogonal range emptiness that support

(i) updates in O (blogiﬂﬁ + 1) amortized time and (d + 1)-sided queries in O (loggfl s)
amortized time;

(ii) updates in O (bgdj + 1) amortized time and (2d)-sided queries in O (logd S) amor-

w
tized time.

For simplicity, we will not attempt to remove the extra log s factor this time. This

bypasses the complications we faced in our 2-d solution for dealing with Ux cost functions.

5.4 Macro-structures: Range tree transformation |

Lemma 7 can be generalized to the following;:

Lemma 12. Let ¢ > 0.

(i) Given a Pje—1(s,n) structure with (amortized) update time Uj¢_1(s,n) and query time
Qj.e—1(s,n), there exists a Pjo(s,n) structure with amortized update and query time

Uie(s,n) = O (Uﬂ_l(s, n)log, n + log, nlog?log n)

Qje(s,n) = O (Qj’g,l(s,n) log, n + log, nlog? log n) .

http://jocg.org/

Journal of Computational Geometry jocg.org

(ii) Given a Pj o—1(s,n) structure with (amortized) update time Uj o_1(s,n) and query
time Qy o—1(s,n) for j' € {j —1,j}, there exists a Pj(s,n) structure with amortized
update and query time

Uju(s,n) = O ((Uj,g_l(s, n) +Uj—1,0-1(s, n)) log, n + log, nlog?log n)

Qj,f(& n) = 0O (@j,ﬁ—l(sa TL) + @j—l,ﬂ—l(sv TL) logs n+ logs n10g2 log TL) .

The proof is as in the proof of Lemma 7, where we divide along some long axis
(which, in (ii), must also be double-sided by definition of P;).

Combining with our preceding micro-structures and the van Emde Boas transforma-
tion, we obtain the desired update time but slightly suboptimal query time in (ii) (which we
will fix later):

Theorem 3. Given n points in a constant dimension d > 3, there exist data structures for
dynamic orthogonal range emptiness that support

d—1
(i) updates in amortized O (%) time and d-sided (dominance) queries in amor-

tized O (log‘ffl n) time for an arbitrarily small constant € > 0;

(7i) updates in amortized O (% log®M log n) time and (2d)-sided queries in amor-

tized O (logd_1 nloglog n) time.

Proof. For (i), applying Lemma 12(i) d — 1 times yield a structure for dominance queries
with update and query time

Ui(n) = Uga(s,n) = O(UdJ(s,n) log§_1n+log§_1nlog210gn)
Qdi(n) = Qgqda(s,n) = O (le(s,n) log? ™1 n + log? ! nlog? logn).
By Lemmata 11(i) and 9, we have Uyy(s,n) = O(Us(s°M)) = O (blogTdHSJrl) and

Qa1(s,m) = 0(Qu(s°V)) = O (logf " s). Setting b = w* and s = 2"/ yields

B log¢~!n

— d—1 —

Ua(n) = O(blogs n) = O(w(d—l)/(d—i-l)—a>
Qatn) = O (logi ' slog? ' n) = O (logln).

For (ii), applying Lemma 12(ii) repeatedly yields a structure for (2d)-sided queries
with update and query time

2d
Usa(n) = Usga(s,n) = O(Z Uji(s,n) logg_ln—i—logg_lnlongogn)
j=d+1

2d
Q2a(n) = Qyqa(s,n) = 0(> Qja(s,n)log2¥ 7 n +logd ! nlog? logn).
j=d+1

http://jocg.org/

Journal of Computational Geometry jocg.org

By Lemmata 11 and 9, we have U; 1(s,n) = O(U;(s°1)) log? log n), Qj1(s,n) = 0(Q;(s°W)
loglogn), U;(s°M) = O (@ + 1), Q;(s°M)y =0 (logd 5) for j > d+2, and Q;(s°W)) =

w

0 (logd_1 3) for j =d+ 1. Setting s = qu!/(@+2) yields

_ log?~'n
Uza(n) = O(logg L nlog? logn) =0 (11)([1_1)/(d+2)log2 logn)

Q24(n) = O (<1ogd_1 s logg_1 n + log? s log‘si_2 n) log log n) =0 (logd_1 nloglog n) . g

5.5 Macro-structures: Range tree transformation II

Lemma 8 can be generalized to the following;:

Lemma 13. Given a Py ¢ (s,n) structure with (amortized) update time Uy ¢ (s,n) and
query time Qjr ¢ (s,n) for (j',0) € {(j — 1,£),(j,¢ — 1)} with j > 2d — {, there exists a
Pje(s,n) structure with amortized update and query time

Uje(s,n) = O ((Uj,u(s, n) + Uje-1(s, n)) log, n + log, nlog2 log n)
Qj(s,n) = O (Qj_lyg(s, n) + Qj—1(s,n)log,n + log, nlog?log n) .

The proof is as in the proof of Lemma 8, where we divide along some long, double-sided
axis (which exists since there are ¢ long axes and j — d double-sided axes and £+ j — d > d).

We obtain our final result by bootstrapping:

Theorem 4. Given n points in a constant dimension d > 3, there exist data structures
d—1
for dynamic orthogonal range emptiness that support updates in amortized O (%

logo(l) w) =0 <logd_2+3/(d+2)nlogo(1) logn> time and (2d)-sided queries in amortized
d—1
@) (logfu_1 n) =0 ((101;%0271)) time.

Proof. Applying Lemma 13 repeatedly yields a structure for (2d)-sided queries with update
and query time

2d
Usa(n) = Usga(s,n) = O (Ud,d(s,n) logdn + Z Ui 2a—(s,n)log?n + log? nlog? logn)
j=d+1

2d
Q24(n) = Qaaa(s,n) = O (Qd7d(87n)+ > Qj,Qd—j(san)) -

j=d+1

d—1

By Theorem 3(i), we have Ugq4(s,n) = Ug(n) = O (%) and Qgq4(s,n) =
Qutn) =0 (o).

http://jocg.org/

Journal of Computational Geometry jocg.org

Applying Lemma 12(i) repeatedly yields

Uj2i—j(s,n) = O (UjJ(s, n)log??=I=1 n 4+ log?4=7=1 nlog? log n)

S S

Qj2d—j(s,m) = O (Qj,l(s, n) logzol*j*1 n + log?dij*1 nlog2 log n) .

By Lemma 9, we have U;(s,n) = O(U;(s°M)log?logn) and Q;1(s,n) = O(
Q;(s°M)loglogn).

By Theorem 3(ii), we have U;(s°M)) = O (% 10g®™M log s) and Q;(s°0)) =
(@) (logd_1 sloglog s).

Putting everything together, we obtain

logd~1n logd~1s oa o(d
Usa(n) = O <<w1—2/(d+1)—5 T I3/(dr) log?M log s | log? @ n

Q24(n) = O (logfu_1 n+logd s log§_2 nlog? log n) .

Setting s = 2'°8n/ log™*! w yields the result. O

6 Final Remarks

We have not yet mentioned space complexity. We can trivially upper-bound the space of our
data structure by n times the update time, i.e., O (n 10g2/3+0(1) n) for the 2-d 4-sided case,

which is already an improvement over Mortensen’s O (n log7/ 8+¢ n) space bound. Similarly,

we obtain O (n log!/?te

n) space for our 3-sided structures, matching the space complexity
of Wilkinson’s structures. It might be possible to improve space further by using more
bit-packing tricks, but it is not clear at all how to reduce space all the way to near linear,
especially for the 4-sided case. See also the work by Nekrich [23, 24], which can achieve near

linear space but require larger, super-logarithmic update time.

We hope that our ideas on micro- and macro-structures will find more applications
in dynamic geometric data structures. In fact, we have recently obtained new results [11] on
dynamic 2-d orthogonal point location based on a similar approach.

References

[1] Stephen Alstrup, Gerth Stelting Brodal, and Theis Rauhe. New data structures for
orthogonal range searching. In Proceedings of the 41st Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 198-207, 2000.

[2] Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked ancestor problems. In
Proceedings of the 89th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 534-543, Nov 1998.

http://jocg.org/

Journal of Computational Geometry jocg.org

[3]

[10]

[11]

Arne Andersson and Mikkel Thorup. Dynamic ordered sets with exponential search
trees. Journal of the ACM, 54(3):13, 2007.

Lars Arge. The buffer tree: A technique for designing batched external data structures.
Algorithmica, 37(1):1-24, 2003.

Lars Arge and Jeffrey Scott Vitter. Optimal external memory interval management.
SIAM Journal on Computing, 32(6):1488-1508, 2003.

Michael A. Bender, Richard Cole, Erik D. Demaine, Martin Farach-Colton, and Jack
Zito. Two simplified algorithms for maintaining order in a list. In Proceedings of the
10th Annual European Symposium on Algorithms (ESA), pages 152-164, 2002.

Jon Louis Bentley. Decomposable searching problems. Information Processing Letters,
8(5):244-251, 1979.

Gerth Stelting Brodal. External memory three-sided range reporting and top-k queries
with sublogarithmic updates. In Proceedings of the 83rd Annual Symposium on Theo-
retical Aspects of Computer Science (STACS), pages 23:1-23:14, 2016.

Timothy M. Chan, Kasper Green Larsen, and Mihai Patragcu. Orthogonal range
searching on the RAM, revisited. In Proceedings of the 27th Annual Symposium on
Computational Geometry (SoCG), pages 1-10, 2011.

Timothy M. Chan and Mihai Patragcu. Counting inversions, offline orthogonal range
counting, and related problems. In Proceedings of the 21st Annual ACM-SIAM Sympo-
situm on Discrete Algorithms (SODA), pages 161-173, 2010.

Timothy M. Chan and Konstantinos Tsakalidis. Dynamic planar orthogonal point
location in sublogarithmic time. In Proceedings of the 34th Annual Symposium on
Computational Geometry (SoCG), volume 99, pages 25:1-25:15, 2018.

Bernard Chazelle. A functional approach to data structures and its use in multidimen-
sional searching. SIAM Journal on Computing, 17(3):427-462, 1988.

Paul F. Dietz. Maintaining order in a linked list. In Proceedings of the 14th Annual
ACM Symposium on Theory of Computing (STOC), pages 122-127, 1982.

Paul F. Dietz and Daniel Dominic Sleator. Two algorithms for maintaining order in
a list. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing
(STOC), pages 365-372, 1987.

Otfied Fries, Kurt Mehlhorn, Stefan Néher, and Athanasios K. Tsakalidis. A loglogn
data structure for three-sided range queries. Information Processing Letters, 25(4):269—
273, 1987.

Tsvi Kopelowitz. On-line indexing for general alphabets via predecessor queries on
subsets of an ordered list. In Proceedings of the 53rd Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 283-292, 2012.

http://jocg.org/

Journal of Computational Geometry jocg.org

[17]

[18]

[25]

[26]

[27]

[28]

[29]

[30]

Vijay Kumar and Eric J. Schwabe. Improved algorithms and data structures for solving
graph problems in external memory. In Proceedings of the 8th Annual IEEE Symposium
on Parallel and Distributed Processing, pages 169-176, 1996.

George S. Lueker. A data structure for orthogonal range queries. In Proceedings of the
19th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
28-34, 1978.

Edward M. McCreight. Priority search trees. SIAM Journal on Computing, 14(2):257—
276, 1985.

Kurt Mehlhorn and Stefan Naher. Dynamic fractional cascading. Algorithmica, 5(1):215—
241, 1990.

Christian Worm Mortensen. Fully-dynamic two dimensional orthogonal range and line
segment intersection reporting in logarithmic time. In Proceedings of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 618-627, 2003.

Christian Worm Mortensen. Fully dynamic orthogonal range reporting on RAM. SIAM
Journal on Computing, 35(6):1494-1525, 2006.

Yakov Nekrich. Space efficient dynamic orthogonal range reporting. Algorithmica,
49(2):94-108, 2007.

Yakov Nekrich. Orthogonal range searching in linear and almost-linear space. Compu-
tational Geometry, 42(4):342-351, 20009.

Mark H. Overmars. Efficient data structures for range searching on a grid. Journal of
Algorithms, 9(2):254-275, 1988.

Peter van Emde Boas. Preserving order in a forest in less than logarithmic time and
linear space. Information Processing Letters, 6(3):80-82, 1977.

Bryan T. Wilkinson. Amortized bounds for dynamic orthogonal range reporting. In
Proceedings of the 22th Annual European Symposium on Algorithms (ESA), pages
842-856, 2014.

Dan E. Willard. New data structures for orthogonal range queries. SIAM Journal on
Computing, 14(1):232-253, 1985.

Dan E. Willard. Examining computational geometry, Van Emde Boas trees, and hashing
from the perspective of the fusion tree. SIAM Journal on Computing, 29(3):1030-1049,
2000.

Dan E. Willard and George S. Lueker. Adding range restriction capability to dynamic
data structures. Journal of the ACM, 32(3):597-617, 1985.

http://jocg.org/

Journal of Computational Geometry jocg.org

Appendix: Proof of Lemma 4 (van Emde Boas transformation)

Mortensen proved the version of Lemma 4 for a static y-universe. We give a brief re-
description of the method (which is similar to van Emde Boas trees), which can deal with
dynamic y-universes.

The data structure. Let S be the input point set of size at most n. Divide the plane into
O(y/n) horizontal slabs each with at most 2y/n points of S.

1. For each slab o, let M, contain the topmost and bottommost point of S N o at each
x-coordinate of X. Store this set M, of at most 2s points in a structure with Uj(s, 2s)
update time and Q;(s,2s) query time.

2. For each slab o, recursively build a data structure for the remaining points in (S N
o)\ M,.

3. Let R denote the set of points in S after “rounding” down y-coordinates to align with
the slab boundary lines. Recursively build a data structure for R.

In addition, for each slab o, store the points of SNo with the same z-coordinate in a common
linked list, ordered by y. Store a pointer from each y-coordinate in S to the slab containing
it. The base case is when n < s?, where we directly use the structure with Uj(s, s*) update
time and Q;(s, s?) query time.

Let Uj prep (s, n) denote the amortized preprocessing time of the above data structure,
i.e., the preprocessing time divided by the number of input points. Each point contributes
to a recursive data structure for (S N o)\ M, or for R, but not both. It follows that
Uj.prep(S,Qn) < Ujprep(s,0(v/n)) +0(Uj(s,2s)), implying Uj prep (s, n) < O(Uj(s, 2s) loglogn
+Uj(s,s%)).

Updates. To insert a point ¢ in S:

1. find the horizontal slab ¢ containing ¢ (by following pointers in O(1) time);

2. if ¢ replaces another point ¢’ as the lowest or bottommost point of S N o at ¢’s
z-coordinate, then delete ¢’ from M,, insert q to M,, and recursively insert ¢’ to

(SNo)\ My;

3. else if there is no point of S N o with ¢’s z-coordinate, then recursively insert ¢ to R
after rounding.

4. if o contains more than 2y/n points of S, split o into two subslabs o1 and o9 with \/n
points, build M,, and M,, with O(y/n) insertions, and update R with O(s) deletions
and re-insertions.

http://jocg.org/

Journal of Computational Geometry jocg.org

Deletions are similar (except that splitting is not necessary).

Line 4 deals with rebalancing when y-universe is dynamic. Note that it is done only
after Q(y/n) updates. Thus, the amortized update time satisfies the recurrence

Uj(s,n) < Uj(s,0(v/n))+O(Uj(s,2s)) +

1
0 (= - (ViUyprep(s. OV) + Uy (5. OV

< (140 2 U;(s,0(v/n)) + O(U;(s,2s) loglog n + Uj (s, s%)).
vn

This implies Uj(s,n) = O(Uj (s, 2s) log? logn + Uj (s, 5%)).

Updates in X. An update in X takes Ux(s) time, since all the M, structures and base
cases share the same set X of z-coordinates.

Queries. To answer a query in the point set S for rectangle ¢:

1. find the (at most) two horizontal slabs o and ¢’ containing the top and bottom edges
of ¢ (by following pointers in O(1) time);

2. if o = ¢/, then answer the query in M,, and recursively answer the query in (SNo)\ My;

3. else answer the query in M, and M,, and recursively answer the query in R.

The query time satisfies the recurrence Q;(s,n) < Q;(s,0(v/n)) + O(Q;(s,2s)), implying
Qj(s,n) = 0(Q,(s,2s)loglogn + Q;(s,s%)). This concludes the proof of the lemma.

Remarks on reporting. The query algorithm above can be modified to handle range
reporting queries. Each point is reported once, but if we are not careful, the query time for k
reported points could increase by an O (kloglogn) term, because at each of the O (loglogn)
levels of recursion, we may need to “decode” each reported point in R (i.e., we need to find
which points in S are rounded to that point in R).

We can fix the issue by maintaining pointers to global lists (as was proposed in
Mortensen’s paper). For each z-coordinate in X, we store all input points with that z-value
in a global linked list, ordered by y. In each set S encountered during recursion, a point
p in S corresponds to a contiguous subsequence of points in the global linked list at p’s
z-coordinate; we store pointers from p to the first and last point in the subsequence. Each
reported point can then be decoded in O (1) time, and total extra cost for reporting k points
is just O (k).

http://jocg.org/

	Introduction
	Preliminaries
	Part 1: Micro-Structures
	Static universe
	Dynamic universe

	Part 2: Macro-Structures
	Range tree transformation I
	Range tree transformation II

	Higher Dimensions
	Preliminaries: Van Emde Boas transformation
	Micro-structures: Static universe
	Micro-structures: Dynamic universe
	Macro-structures: Range tree transformation I
	Macro-structures: Range tree transformation II

	Final Remarks

