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ABSTRACT. Let k be an uncountable algebraically closed field of character-
istic 0, and let X be a smooth projective connected variety of dimension 2p,
appropriately embedded into P over k. Let Y be a hyperplane section of X,
and let AP(Y) and APT1(X) be the groups of algebraically trivial algebraic
cycles of codimension p and p + 1 modulo rational equivalence on Y and X
respectively. Assume that, whenever Y is smooth, the group AP(Y) is regu-
larly parametrized by an abelian variety A and coincides with the subgroup
of degree 0 classes in the Chow group CHP?(Y'). In the paper we prove that
the kernel of the push-forward homomorphism from A?(Y) to APT1(X) is the
union of a countable collection of shifts of a certain abelian subvariety Ag in-
side A. For a very general section Y either Ag = 0 or Aq coincides with an
abelian subvariety A; in A whose tangent space is the group of vanishing cy-
cles H?*71(Y)yan. Then we apply these general results to sections of a smooth
cubic fourfold in P°.
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Let X be a smooth projective variety over an algebraically closed field. The
Picard-Lefschetz theory yields that the monodromy action on the (n — 1)-th
vanishing cohomology of a smooth section of the variety X is irreducible. The
proof of this fact in terms of étale cohomology groups was given by N. Katz
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in his second article (Exposé XVIII) in [12], and by P. Deligne in [7]. It is also
explained in terms of singular cohomology in Section 7.3 of Lamotke’s paper [14].

The irreducibility of the monodromy action plays an important role in the
Hodge theoretical study of algebraic varieties over C, and it was amply utilized
in the work by C. Voisin, see, for example, [28], [29], [30], [33] and [35]. More
importantly, the irreducibility of monodromy action on cohomology affects alge-
braic cycles through Hodge theory, see pages 304 - 305 in the second volume of
the book [31], and Proposition 2.4 on page 854 in [32].

To explain the latter idea, let X be a smooth projective complex surface,
embedded into a projective space, let Y be a general hyperplane section of X
with the Jacobian A = Jac(Y), and let Ag(X) be the Chow group of 0-cycles
of degree 0 on X. Let, furthermore, A; be an abelian subvariety in A which
corresponds, via Hodge theory, to the vanishing cohomology in H'(Y). Then
the kernel of the push-forward homomorphism from A to Ay(X) is a countable
union of shifts of a certain abelian subvariety Aj inside A;. The cohomological
monodromy argument implies that, for a general Y, either Ay = A; or Ay = 0,
see the top of page 305 in the second volume of [31]. Clearly, this alternative for
Ap must play an important role in the study of 0-cycles on surfaces, especially
in the context of Bloch’s conjecture.

The aim (and novelty) of the present paper is twofold. First, we will extend
the cycle-theoretic monodromy argument from 0-cycles on surfaces to algebraic
cycles of dimension p — 1 on a smooth projective variety X of even dimension
2p, embedded into a projective space, such that, if Y is a smooth hyperplane
section of X, the “continuous” Chow group AP(Y) is weakly representable in the
sense of Spencer Bloch, see Definition 1.1 in [2] or Definition 3.3. in [4]. The
main case for us will be the case of 1-cycles on a 4-fold X with representable
1-cycles on its section Y (take, for example, a general cubic hypersurface X in
P®). Second, we will develop a cycle-theoretic monodromy argument working in
terms of étale cohomology groups over an abstract field of definition. This is of
high importance because the nature of the abelian variety Ay, appearing also in
the general (p — 1)-dimensional case, has actually nothing to do with complex-
analytic arguments. Though we were not able to avoid the uncountability and 0
characteristic of the ground field in the present paper, we strongly believe that
these two requirements can be effectively omitted in a more subtle arithmetic
theory, in which the intrinsic nature of the abelian variety Ay will be revealed
(work in progress by the second named author).

Let us now describe the results of the paper. Let k be an uncountable alge-
braically closed field of characteristic 0, and let

r:Y — X

be a codimension e closed embedding of smooth projective varieties over k. The
morphism r induces a push-forward homomorphism

re: AP(Y) — APY(X)

on the Chow groups of algebraically trivial algebraic cycles, and our aim is to
study the kernel
K = ker(r,)
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under the assumption that the group AP(Y) is weakly representable, or, equiva-
lently, it can be regularly parametrized by an abelian variety A over k.

Fix an embedding of the variety X into a projective space P™, such that
X is not contained in a hyperplane. For simplicity, and as it is sufficient for
applications we have in mind, we will also assume that the group CHP(Y)qeg—o,
defined by the embedding of Y into P, coincides with the group AP(Y"). Clearly,
this assumption is satisfied if p = 1 and the Néron-Severi group is of rank 1, or if
p is the dimension of Y (i.e. we study 0-cycles). They are also satisfied when Y
is a Fano threefold of Picard number 1 inside X and p = 2. For example, when
Y is a smooth section of a smooth cubic fourfold in P?.

Our first result is a generalization of the Mumford-Roitman countability lemma
for 0-cycles, see [17] and [19], to cycles of positive dimension.

THEOREM A. Under the assumptions above, there exists an abelian sub-
variety Ay in A, and a countable set = of closed points on A, such that

K = U:L"EE(Q: =+ AO)

inside the abelian variety A.

The presentation of the group AP(Y) by the abelian variety A provides a
homomorphism from H'(A) to H?**71(Y), in terms of [-adic cohomology groups.
Assuming that this homomorphism is an isomorphism, which is known to be
true for p < 2, and also using the Tate conjecture for abelian varieties proven by
Faltings, one can construct an abelian subvariety A; in A whose tangent space
is the kernel of the Gysin homomorphism from H?**~1(Y) to H*P+9)~1(X). We
prove in the paper that the abelian variety Aq is a subvariety in Aj.

Let now S be an integral algebraic scheme over k, let 7 be the geometric generic
point of S, and choose a c-open subset U in S, such that for any closed point P in
U there is a scheme-theoretical isomorphism between 1 and P over Q. Consider
a closed embedding % — 2 of smooth families over S. The scheme-theoretic
isomorphisms 77 ~ P induce scheme-theoretic isomorphisms sp between %5 and
%5 over Q. Assume that AP(%f;) is presented by an abelian variety A; and AP(%p)
is presented by an abelian variety Ap, for every closed point P in U. Then the
isomorphisms »p induce isomorphisms xp between Ap and Aj; compatible with
the isomorphisms on Chow groups induced by the isomorphisms »p. In the
paper we show that kp(Apy) = Ajo and kp(Ap1) = Aj for every k-point P in
U. In other words, one can study the varieties Ay in a family either working at
the geometric generic point or at a very general closed point on the base scheme
S. The c-open set U is not unique, of course, and all remains the same over any
of them. What happens to Ay beyond the union of such c-open sets, is a big and
important question which deserves a separate research programme.

Within this paper we are interested in the case where the family in question is
a family of smooth hyperplane sections, so that we can enhance the study of the
abelian variety Ay by the monodromy action. So let X be a smooth projective
variety of even dimension 2p over the ground field k£, embedded into a projective
space P, let 2" = X x P™Y, where P™" is the dual projective space, and let
% be the intersection of .2~ with the universal hyperplane inside P™ x P™Y. Let
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also T' be the complement to the discriminant locus inside the dual projective
space, and consider the family %4 — T of smooth hyperplane sections of the
variety X over k. Clearly, %7 is embedded into Z7 over T'. Let, furthermore, &
be the generic point of T', let £ be the corresponding geometric generic point, and
choose a c-open subset U in T', so that k-points P in U are scheme-theoretically
isomorphic to £. Now again, assuming our standard assumptions for the fibres
Yz and Yp, and applying the [-adic monodromy argument in Lefschetz pencils
passing through U, in conjunction with Theorem A, we obtain

THEOREM B. In terms above, we have the following alternative: either
Ago =0 or Agg = Ag;. Respectively, either Apg =0 or Apg = Aps, for
any closed point P in U.

Notice that the assumptions of Theorem B are satisfied, for example, for all
smooth projective fourfolds X whose very general hyperplane sections are Fano
varieties of Picard number 1. In all such cases Theorem B brings new information
about rational equivalence of algebraic 1-cycles on the fourfold X.

Let now f/p be the resolution of singularities on Yp, and set f/p = Yp whenever
the section Yp is smooth. Assume that p < 2 and the group A?(Yp) is weakly
representable for every section Yp having at worst one ordinary double point.
The next theorem generalizes Voisin’s result on page 305 in Volume II of [31].

THEOREM C. If the group AP™'(X) is not rationally weakly representable,
it follows that the kernel of the push-forward homomorphism from AP(Yp)
to APY1(X) is countable, for a very general hyperplane section Yp.

The practical meaning of Theorem C is as follows. Suppose we want to prove
that AP™1(X) is weakly representable. Then, by Theorem C, “all we need” is
to find a positive-dimensional variety in the kernel of the homomorphism from
AP(Y') to APTH(X), for a very general ample section Y on X.

Our original motivation for proving Theorem C was to understand more about
the structure of the huge Chow group C H3(X) for a general cubic hypersurface
X in P5, whence the title of the paper. Recall that C H3(X) is generated by lines,
see Theorem 1.1 in [24], and A*(X) is not weakly representable by Theorem 0.5
in [21]. Then, as a particular case of Theorem C, we obtain

COROLLARY D. Let X be a smooth cubic hypersurface in P?, and let
Y be a very general hyperplane section of X. Then the kernel of the
push-forward homomorphism from A?(Y') to A3(X) is countable.

Intuitively, this corollary tells us that one can think of A3(X) as a collection of
Prymians of smooth hyperplane sections modulo countable kernels generated by
1-cycles rationally equivalent to 0 on X. We expect that these countable kernels
are of deep arithmetical nature relevant to the famous non-rationality conjecture.

ACKNOWLEDGEMENTS. We are grateful to Sergey Gorchinskiy, Mingmin
Shen, Alexander Tikhomirov, Claire Voisin and Yuri Zarhin for useful discus-
sions relevant to the theme of this paper. The second named author has been
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2. PROBLEM SETTING AND STANDARD ASSUMPTIONS

The purpose of the first section is to set up the main problem and justify three
basic assumptions which we will keep throughout the paper.

Let k£ be an algebraically closed field, and let Y be an algebraic variety over k.
Denote by CHP(Y') the Chow group of codimension p algebraic cycles modulo
rational equivalence on Y, and let AP(Y") be the subgroup in C H?(Y") generated
by algebraically trivial algebraic cycles on Y. Let, furthermore, V' be another
algebraic variety over k, and let Z = " m;Z; be an algebraic cycle on the product
Y x V', such that the composition g; : Z; — V of the closed embedding Z; — Y xV
and the projection Y x V' — V' is surjective for each i. If P is a closed point on
V, the scheme-theoretic preimage g; ' (P) is also a closed subscheme in the fibre
Y x {P} =Y. Let Z;(P) be the corresponding fundamental cycle, and define
Z(P) to be the cycle > . m;Z;(P) on Y. If the relative dimension of Z over V' is
n, then Z(P) is a codimension p = dim(Y') — n algebraic cycle on the variety Y,
for each closed point P on V. Fix a closed point Fy on V. The cycle

Z(P) = Z(R)
is algebraically trivial, and we obtain a map
V(k) — AP(Y)

sending P to the class of the cycle Z(P) — Z(Fy) on Y. This map can be
considered as a family of codimension p algebraically trivial cycle classes on Y,
induced by the cycle Z on Y x V and the fixed point P on V.

In terms of relative cycles (see [13] or [25]) the same can be expressed by saying
that a relative cycle Z of relative dimension n on Y x V over V, and a closed
point Py on V| induce a family of algebraically trivial cycles of codimension
p=dim(Y)—nonY.

The next definition appears in Murre’s paper [18], and is important for what
follows.

Definition 1. Let A be an abelian variety over k. A group homomorphism
AP(Y) — A(k) is said to be regular if its pre-composition with any family of
algebraic cycles V (k) — AP(Y), in the sense above, is a regular morphism of
varieties over k. A regular homomorphism

v AP(Y) — A(k)
to an abelian variety A over k is said to be universal if, having another regular
homomorphism AP(Y') — B(k), there exists a unique homomorphism of abelian

varieties A — B, such that the obvious diagram commutes, see [18], page 981.
Clearly, if 1) exists, then it is an epimorphism in the category of abelian groups.

Let
r:Y —- X
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be a closed embedding of smooth projective connected varieties over k of codi-
mension e, let
r.: AP(Y) — APTE(X)

be the push-forward homomorphism induced by the proper morphism r, and let
K be the kernel of the homomorphism r,. Our aim is to study the kernel K
of the push-forward homomorphism r,. Certainly, it is difficult to study K in
general, and therefore we need to impose some reasonable assumptions on the
Chow group AP(Y).

Assumption 1

Our first assumption is that the universal regular epimorphism
v AP(Y) — A(k)

exists, and that the group AP(Y') is weakly representable in the sense of Spencer
Bloch, in which case the universal regular homomorphism ¢ is an isomorphism
of abelian groups, so that we can identify AP(Y) and A(k) by means of v, see
2] or [4].

Remark 2. Clearly, the universal homomorphism v exists and is an isomorphism
if p = 1. The main result of [18] asserts that 1 exists in case p = 2. Therefore,
Assumption 1 is satisfied whenever p = 2 and A?*(Y') is weakly representable in
the sense of Bloch, see [2] and [4]. Notice that if the group A%(Y") of 0-cycles on Y
is weakly representable, so is the group A*(Y), see Lemma 3.1 in [11]. Therefore,
Assumption 1 is satisfied whenever A3(Y) is representable. In particular, it is
satisfied when Y is rationally connected. This is so, for example, if Y is a Fano
threefold inside a smooth projective variety X over k.

Assumption 2

Fix an embedding of the variety X into a projective space P™. Since Y is a sub-
variety in X, it induces the embedding of Y into the same space P™. Obviously,
AP(Y') C CHP(Y )geg—o. For simplicity, and as it is sufficient for applications we
have in mind, we will also assume that

AP(Y) = CHP(Y )qegoo -

Remark 3. If p = 1, this assumption is obviously satisfied. If p = 2, Assumption
2 is satisfied, for example, for all Fano threefolds Y inside a smooth projective
fourfold X over k, such that the Picard number of Y is equal to 1. In particu-
lar, the second assumption is satisfied for smooth sections Y of a smooth cubic
fourfold in P*.

Assumption 3

Since v is an isomorphism, and hence the group AP(Y') is weakly representable,
there exists a smooth projective curve I', a cycle Z of codimension p on I' X Y,
and an algebraic subgroup G C Jr in the Jacobian variety Jr, such that the
induced homomorphism

zo 1 Jp=ANT) = AP(Y) ~ A
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is surjective, and its kernel is the group GG. Here z is the cycle class of Z in the
Chow group CHP(I" x Y'). Furthermore, the class z gives the morphism

2 MI)@LPt — M(Y),

where M (—) is the functor from smooth projective varieties over k to (contravari-
ant) Chow motives over k, L is the Lefschetz motive and L" is the n-fold tensor
power of .. Fix a point on the curve I' and consider the induced embedding

ir:I'— Jpr.

Let also
(67 JF — A

be the projection from the Jacobian Jr onto the abelian variety A = Jr/G.
Define w to be the composition

zo (M(aoir)®idge-1)

in the category of Chow motives with coefficients in Z. Then w is a morphism
from the motive M(A) ® LP~! to the motive M(Y'), which induces the homo-
morphism

(1) w,  Hy (A, Qi1 —p)) — HX (Y, Q) ,

see [11]. Our third assumption is that the homomorphism w, is an isomorphism
of cohomology groups.

Remark 4. If p = 1 and dim(Y") = 1, then w, is an isomorphism by the standard
argument. If p = 2 and dim(Y) = 3, Assumption 3 is satisfied by Lemma 4.3 in
[11]. Conjecturally, w, is an isomorphism for any p > 2 as well, but we did not
prove that in the paper. The reason for that is that Lemma 4.3 from [11] uses
some result by Merkurjev and Suslin on the injectivity of Bloch’s map A\?, see
[16]. Thought we believe that the Bloch-Kato conjecture, which is now a theorem
due to Voevodsky and Rost, can help us to prove that w, is an isomorphism for
an arbitrary p, this may well be quite a big piece of work, deserving a separate
paper to be worked it out.

Of course, if k = C, then the isomorphism between H'(A, C) and H*~!(Y,C)
can be easily achieved by the Hodge-theoretical methods, and Assumption 3 is
always satisfied.

Consider the Gysin homomorphism
(2) H (Y, Q) = BT (X, Q).

induced by the closed embedding r on the [-adic cohomology groups. Assumption
3 gives us an advantage that we now can describe the kernel of the homomor-
phism (2) in terms of an abelian subvariety in A, transporting Hodge-theoretical
arguments in to [-adic representations.

Indeed, let
Ap = ker(A N A)
be the ["-torsion subgroup in the abelian variety A over ko, let
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be the Tate module of A, and let
Vi(A) = T)(A) @z, Q.

Let G be the image in the group HZ (A, Q;(1 — p)) of the kernel of the Gysin
homomorphism (2) under the isomorphism w; !, inverse to (1). Then G induces
a Q-vector subspace in Hj (A, Q). But the group Hj (A, Q) is isomorphic to
the dual vector space Homg,(V;(A), Q;). Therefore, the kernel G induces a vector
subspace G’ in Homg, (V;(A), Q). Since the space V;(A) is finite-dimensional, the
dual space Homg, (V;(A), Q) is isomorphic to V;(A), and therefore G’ induces a
vector subspace in V;(A). The latter vector subspace determines an idempotent
ec in the associative ring Endg, (Vi(A)).

Now, without loss of generality, one can temporarily assume that £k is the
algebraic closure of a field which is finitely generated over Q. In such a case,
the Tate conjecture for abelian varieties, proven by Faltings, tells us that the
canonical [-adic representation

End(A) ® Q, — End(Vi(A))

is an isomorphism, see the article [9] (or page 72 in [26], or page 74 in [22]).
Therefore, the idempotent eg induces an idempotent é4 in the associative ring
End(A) ® Q;. This idempotent determines a unique, up to an isogeny, abelian
subvariety

Al CA

in the abelian variety A, such that the image of the injective homomorphism

H;t<A17@l)(1 —p) — He}t(Av@l)(l -p),

induced by the inclusion A; C A, coincides with the kernel of the composition
of the isomorphism w, with the Gysin homomorphism r, from He?f _I(Y, Q) to

He?f_‘-l(Xv @l)

Remark 5. If p = 1, dim(Y) = 1 and dim(X) = 2, then A; is the connected
component of the kernel of the induced homomorphism from the Jacobian A of
the curve Y to the Albenese variety Alb(X) of the surface X.

Remark 6. In the applications below we will be dealing with the case when
X is embedded into a projective space, the dimension of X is 2p and Y is a
smooth hyperplane section of X, so that dim(Y) = 2p — 1 and e = 1. Assume
also that p = 1 or 2, in order to have that w, is an isomorphism by Remark
4. If H thp +1(X , Q) vanishes, then the primitive cohomology group coincides with
HéQtp_l(Y, Qy), in which case A; = A. This is so, for example, when X is a smooth
hypersurface in P%+1. If the group does not H."*'(X,Q;) vanish, the abelian
variety A; can be smaller than the variety A.

Remark 7. If, moreover, k = C, then A; can be described Hodge-theoretically.
Indeed, for any algebraic variety V' over C and any non-negative integer n the
étale cohomology group H (V, Q) is functorially isomorphic to the singular coho-
mology group H*(V(C),Q,) = H*(V(C),Q) ® Q;. The étale cohomology groups
with coefficients in Q; can be further tensored with the algebraic closure Q; of
the l-adic field over ;. Fixing an isomorphism between Q; and C, the étale
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cohomology groups H},(—,Q;) are functorially isomorphic to the singular coho-
mology groups H*(—,C). The Gysin homomorphism r, from H*~'(Y,C) to
H?PT1(X,C) is a morphism of Hodge structures, so that its kernel H; is a Hodge
substructure in H*~1(Y,C). Suppose p = 2. By Remark 4 the group H?(Y,C)
is isomorphic to the group H'(A,C) via the homomorphism w,, and w, is ob-
viously a morphism of Hodge structures too. It follows that H; is of weight 1.
This gives the abelian subvariety A; in A, where A = J?(Y),, is the intermedian
Jacobian of the threefold Y (see [18]).

3. THE GENERALIZATION OF THE MUMFORD-ROITMAN THEOREM

In this section we generalize a certain result due to Mumford and Roitman,
appeared first in [17] and then in [19], to algebraic cycles of positive dimension.
For that purpose we shall use the theory of relative cycles developed by Suslin
and Voevodsky in [25] and, independently, by Kolldr in [13].

So, let N be the category of locally Noetherian schemes over k. Let X be a
scheme of finite type over k and consider the presheaf of monoids' %,.(X) on N,
where for any scheme S in N the value %,(X)(S) is the monoid %,(X x S/5)
freely generated by relative cycles on X x S of relative dimension r over S,
in the sense of Suslin and Voevodsky, and the pullbacks are the pullbacks as
constructed in Section 3 in [25]. To understand why the monoids %, (X)(S) are
free, see Corollary 3.1.6, or Corollaries 3.4.5 and 3.4.6, in loc.cit. The presheaf
%,(X) is actually a sheaf in cdh, and hence in the Nisnevich topology on N, see
Theorem 4.2.9 in [25]. If X is equidimensional, we will also write ¢7(X)(S), or
¢P(X x S/S), for the same monoids of relative cycles of relative codimension
p, where p = dim(X) — r. If X is projective over k, we fix a closed embedding
of X into a projective space P™ over k and consider the subsheaf €7 (X) of
relative cycles of degree d in €7(X), whose sections €7 (X x S/S) are generated
by relative cycles of relative codimension p and degree d, where the degree is
understood with regard to the closed embedding of X into P™.

Since now we will always assume that X is equidimensional and projective over
k, and that the embedding of X into P™ is fixed. Corollary 4.4.13 in [25] says
then that the sheafification of the presheaf €7(X) in h-topology on the category
N is representable by a Chow scheme C%(X), projective over k. Let

or(x) = [T s
d>0

be the total Chow scheme, where the coproduct is taken in the category N.

Now, let Ny be the full subcategory of seminormal schemes in N. Since k is
of characteristic 0, the above h-representability can be replaced by the usual
representability, if we restrict the presheaves on the category Ny, see Theorem
3.21 in [13], and notice that the Suslin-Voevodsky’s pullbacks of relative cycles
coincide with the Kollar’s ones in our case. Thus, for each seminormal S, one
has the bijection

TI(X,S) : €2(X x §/S) < Hom(S, C%(X))

Lall monoids in this paper will be commutative monoids
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functorial in S. Moreover, these bijections are also functorial in X by Corollary
3.6.3 in [25).

Notice that if d = 0, then, by convention, Cf(X) = Spec(k) and the unique
k-point of Spec(k) is the neutral element 0 of the free monoid €?(X). Since 0
can be also considered as the empty codimension p relative cycle over Spec(k),
we in fact identify the unique k-point of Spec(k) with the empty relative cycle.

It is trivial but worth noticing that if &’ is another field and o : k& = &
is an isomorphism of fields, the scheme C,.(X’) is the pull-back of the scheme
C,(X) with respect to the morphism Spec(a), where X’ is the pull-back of X
and the corresponding morphism from C?(X’) to C?(X) is an isomorphism of
schemes. The bijections Y?(X’, S) and YT?(X,S) commute through the obvious
isomorphisms on monoids and Hom-sets, induced by the isomorphism «.

Next, for a commutative (additive) monoid M, its completion M™ can be
constructed as the quotient of M @& M by the image of the diagonal embedding.
Let

T MeM—> MT

be the corresponding quotient homomorphism, and let
viM— M"

be the composition of the embedding of M as one of the two direct summands
and the homomorphism 7. Then v possesses the obvious universal property, and
for any (a,b) in M @& M the value 7(a, b) is the difference v(a) — v(b). If M is a
cancellation monoid then v is injective, and we can identify M with its image in
M. Modulo this identification,

T(a,b) =a—>b.

In particular, we can consider the presheaf Z7(X) of abelian groups on N, such
that for each S the group of sections

ZP(X x S/S)=6"(X xS/S)*

is the group completion of the monoid €?(X x S/95).

Identifying schemes with representable presheaves, we identify the presheaf
%} (X) with the Chow scheme C%(X). Looking at €7(X) = [[,%47(X) as a
monoid object in the category of presheaves, we may also interpret the presheaf
ZP(X) as the group completion €P(X)* of this monoid in the category of
presheaves.

Let S and Y be two Noetherian schemes over k. Define a functor .7Zom(S,Y’)
on N sending a scheme 7" to the set #om(S,Y)(T) of morphisms from S x T to
Y xT over T'. The graphs of such morphisms give us an embedding of 7Zom(S,Y’)
into the Hilbert functor s#ulb(S x Y). If S and Y are projective over k, the
latter functor is representable by the projective Hilbert scheme Hilb(S x Y) and
S om(S,Y) is representable by an open subscheme Hom(S,Y") in Hilb(S x V).
By the universal property of fibred products over k one has the natural bijection
between Zom(S,Y)(T) and Hom(T x S,Y’). This yields the adjunction

Hom(T x S,Y) ~ Hom(T, Hom(S,Y"))
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and the corresponding regular evaluation morphism
esy : Hom(S,Y) xS =Y .

Within this paper we are interested in the case when S = P!. Also, fixing
a very ample sheaf €/(1) on Y allows us also to define an appropriate func-
tor som?(P',Y), and the corresponding quasi-projective scheme Hom?(P',Y)
parametrizing morphisms from P! to Y whose graphs are of degree d in Y, with
regard to the corresponding projective embedding of P! x Y. Then we obtain a
regular evaluation morphism of quasi-projective schemes

epy : Hom*(PLY) x Pt —» V|
for each positive integer d. If P is a closed point of P!, then one has the
evaluation-at- P morphism
ep : Hom*(PY) - Y,
sending f to f(P). More details about schemes of morphisms can be in Kollar’s
book [13], or in [6].

Let now X be a smooth projective variety embedded into P™ over k. Let A
and A’ be two algebraic cycles of codimension p on X. The cycle A is rationally
equivalent to the cycle A" if and only if there exists an effective codimension p
algebraic cycle Z on X x P! and an effective codimension p algebraic cycle B on
X, such that

Z0)=A+B and Z(oco)=A"+B.
Assume that A is rationally equivalent to A’, and let
fz="(2)
and
fBXIF’l = T(B X Pl)
be two regular morphisms from P! to ¢?(X), where
T = TP(X,PY): 6°(X x P'/P') — Hom(P!, C?(X))
is the functorial bijection considered above. Let also
f=12® fexp : P! = CP(X) @ CP(X)

be the morphism generated by fz and fpypi. Since CP(X) is a cancellation
monoid, for any two elements a,b € C?(X) the value 7(a,b) in C?(X)* is a — b,
after the identification of C?(X) with its image in C?(X)" under the injective
homomorphism v from C?(X) to CP(X)*. Then

7f(0) = 7(f2(0), fexpr) = f2(0) — fpxp(0) = Z(0) — B = A

and

7f(00) = 7(f2(00), fxm) = f2(0) = fxp1(00) = Z(00) — B =A".

Vice versa, suppose there is a regular morphism f = f; @ fo from P! to the
direct sum CP(X) & CP(X), such that 7f(0) = A and 7f(c0) = A’. Let Z; and
Zy be two algebraic cycles in ¢7(X x P!/P'), such that Y(Z;) = f; for i = 1,2,
and let Z = Z; — Zy. Then Z(0) = A and Z(oo) = A’, which means that A is
rationally equivalent to A’.
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For any non-negative integers dy, ..., ds let

Cl.a,(X) = Cg (X) x - x O (X)

.....

be the fibred product over the ground field k. For any degree d > 0 let
Wa={(A,B) € Ci,(X) | A B}

be the Zariski closed subset in C ;(X) determined by ordered pairs (A, B) of
closed points in C7(X), such that the cycle A is rationally equivalent to the cycle
B on X. For any non-negative u and positive v let also

W —
{(A,B) € C} ((X) | 3f € Hom"(P', CY,, (X)), s.th. 7f(0) = A, 7f(c0) = B}
Then
Wi’ Cc Wy and Wy = Uy W7 .
Let also W be the Zariski closure of the set Wj* in the scheme C¥ ,(X).

Proposition 8. For any d, u and v, the set W™ is a quasi-projective subscheme
in CY (X)) whose Zariski closure W™ is contained in Wy.

Proof. To prove the proposition all we need is to extend the arguments in [19]
from zero-cycles and symmetric powers to codimension p cycles and Chow vari-
eties.
Let
1
e : Hom" (]P) Cngu u( )) — CnguudJru u(X)

be the evaluation morphism sending f to the ordered pair (f(0), f(c0)), and let
S Cg,u,d,u (X> — C§+u u,d+u, u(X>
be the regular morphism given by the formula
s(A,C,B,D)=(A+C,C,B+D,D).
The two morphisms e and s allow us to take the product
V = Hom"(P", Cy,, . (X)) Xz, x) Clluan(X)
which is a closed subvariety in the product
Hom" (Pl OSJru u( )) X Cg,u,d,u(X)
over Spec(k) consisting of quintuples (f, A,C, B, D) with e(f) = s(A,C, B, D),
ie.
(f(0), f(o0)) =(A+C,C,B+ D, D).
The latter equality gives that
pr273(V) - Wu’v
where pr, 5 is the projection of Hom"(P', CY,, (X)) x CF, ;.. (X) onto C} ;,(X).
Vice versa, if (A, B) is a closed point of W3"*, there exists a regular morphism
f € Hom"(P', Cg,,..(X))
with
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Let f(0) = (C',C) and f(oc0) = (D', D). Then
7f(0)=C"-C=A
and
7f(0)=D"—-D =B

in the completed monoid Z7(X) = CP(X)*. This means that there exist effec-
tive codimension p algebraic cycles M and N on X, such that

C'+M=C+A+M and D+N=D+B+N

in C?P(X). Since CP(X) is a free monoid, it possesses the cancellation property.
Therefore, the latter two equalities imply the equalities

C'=C+A and D'=D+B

respectively. This yields

e(f)=s(A,C,B,D),
whence

(f,A,C,B,D) eV .
It means that (A, B) is in pry3(V).

Thus,
pr273(V) = W;,v :

Being the image of a quasi-projective variety under the projection pry 5 the set
W3 is itself a quasi-projective variety.
Let

S . P P
S Cd,d,u,u(X> - CdJru,dJru,u,u

(X)

be the morphism obtained by composing and precomposing s with the transpo-
sition of the second and third factors in the domain and codomain of s. Then

Wy = pry (57 (Wapa x Wa)) .
Let (A, B,C, D) be a closed point in Cg,d,u,u(X>7 such that the value
5(A,B,C,D)=(A+C,B+ D,C,D)
is in ngu x W2, It means that there exist two regular morphisms
g € Hom"(P', C%, (X)) and h € Hom"(P', C?(X))
with
g(0)=A+C, glco)=B+ D, h(0)=C and h(co)=D.

Then
f=gxhe Hom'(PL, Y, (X))
f(0)=(A+C,C) and f(oo)=(B+D,D).
Hence, 7f(0) = A and 7f(c0) = B. It means that (A, B) € W;"’. We have
shown that
pryo (871 (W, x W) € Wi
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Vice versa, suppose (A, B) € W;", and let f be a morphism from P! to
Cliuu(X) with 7£(0) = A and 7f(00) = B. Composing f with the projections

of Cy,,..(X) onto C}, (X) and CE(X) one can easily show that
Wit € pry (571 (W, x W)
Thus,
Wit = pry (31 (W, x W)

Since § is continuous and pry , is proper, we obtain that
W =pryo(5” (WOU W) -

This gives us that in order to prove the second assertion of the proposition it
suffices to show that WC? ¥ is contained in Wj.

Let (A, B) be a closed point of Wy, If (A, B) is in W3, then it is also in
Wy. Suppose that (A, B) is in WC? N W(g Y. Let W be an irreducible component
of the quasi-projective variety Wg " whose Zariski closure W contains the point
(A, B). Let U be an affine neighbourhood of (A, B) in W. Since (A, B) is in the
closure of W the set U N W is non-empty. Let C' be an irreducible curve passing
through (A, B) in U and let C be the Zariski closure of C'in W. The evaluation
regular morphisms

eo : Hom"(P', C%(X)) — CH(X) and e, : Hom"(P', CH(X)) — CH(X)
give the regular morphism
€0.0 : Hom"(P, CH(X)) — Cfa(X)

Then W; ¥ is exactly the image of the regular morphism e , and we can choose
a quasi-projective curve T' in Hom"(P', C%(X)), such that the closure of the
image ep (7T is C. Since Hom" (P!, ¢7(X)) is a quasi-projective variety, we can
embed it into some projective space P™. Let T be the closure of T in P™, let T
be the normalization of T and let Ty be the pre-image of T in T. Consider the
composition

fo:To x P = T x P! € Hom"(P', C%(X)) x P! -5 CP(X)

where e is the evaluation morphism epL P (x)- The regular morphism f, defines
a rational map

f:T xP' - C¥(X)
Since T is a smooth projective curve, the product T x P! is a smooth projective
surface over the ground field. Under this condition there exists a finite chain of
o-processes (T x P') — T x P! resolving indeterminacy of f and giving a regular
morphism

(T xPY — Co(X) .

The regular morphism Ty — T — C' extends to the regular morphism 7 — C.
Let P be a point in the fibre of this morphism at (A, B). For any closed point Q)
on P! the restriction f|, o of the rational map f onto T x {Q} ~ T is regular
on the whole curve 7', because T is smooth. Then

(fl7xgop)(P) = A
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and

(f’f‘x{oo})(P) =B.

It means that the points A and B are connected by a finite collection of curves
which are the images of rational curves on (7' x P!)" under the regular morphism
f'. In turn, it follows that A is rationally equivalent to B, whence

(A,B) e W,.
O

In what follows, for any equi-dimensional algebraic scheme V over k, let
CHP(V) be the Chow group, with coefficients in Z, of codimension p algebraic
cycles modulo rational equivalence on V. If a closed embedding V' C P™ is
fixed, let C'HP(V )qeg—o be the subgroup generated by cycles classes of degree 0
in CHP(V'). Then, for any two nonnegative integer d, we have a map

0y - Cg.a(X) = CH"(X)acg=0

sending an ordered pair (A, B) of closed points on the Chow variety C%(X) to
the class of the difference Z, — Zp, where Z4 and Zp are codimension p algebraic
cycles on X corresponding to the points A and B respectively.

Corollary 9. (09)71(0) is a countable union of irreducible Zariski closed subsets
in the Chow scheme C7 4(X).

Proof. Proposition 8 gives that W, is the countable union of Zariski closed sets
W3 over u and v. This completes the proof. O

4. COUNTABILITY LEMMAS AND THE ABELIAN VARIETY Ag

The purpose of this section is to prove Theorem A in Introduction, which
generalizes the argument from Section 10.1.2 in the second volume of the book
[31] (see also pp 304 - 305 in loc.cit.). Theorem A introduces the abelian variety
Ag which is of key importance to the whole approach. We shall also prove that
Ap is a subvariety of the abelian variety A; introduced in Section 2. Since now
and throughout the rest of the paper we shall assume that the ground field k is
uncountable.

Lemma 10. Let V' be an irreducible quasi-projective algebraic variety over k.
Then V' cannot be written as a countable union of its Zariski closed subsets, each
of which is not the whole V.

Proof. Since V is supposed to be irreducible, without loss of generality we may
assume that V is affine. Let d be the dimension of V' and suppose V = U,enV,,
is the union of closed subsets V,, in V', such that V,, # V for each n. By Emmy
Noether’s lemma, there exists a finite surjective morphism f : V — A? over k.
Let W,, be the image of V,, under f. Since f is finite, it is proper. Therefore,
W,, are closed in A?, so that we obtain that the affine space A? is the union of
W,’s. Since the ground field is uncountable, the set of all hyperplanes in A? is
uncountable. Therefore, there exists a hyperplane H, such that W,, ¢ H for any
index n. Induction reduces the assertion of the lemma to the case when d = 1. O
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A countable union V' = U, ¢nV,, of algebraic varieties will be called irredundant
if V,, is irreducible for each n and V,, ¢ V, for m # n. In an irredundant
decomposition, the sets V,, will be called c-components of V.

Lemma 11. Let V' be a countable union of algebraic varieties over an uncount-
able algebraically closed ground field. Then V' admits an irredundant decomposi-
tion, and such an irredundant decomposition is unique.

Proof. Let V' = U,enV, be a countable union of algebraic varieties over k. For
eachnlet V; =V  U---UV,  be the irreducible components of V. Ignoring all
components V,, ; with V| ; C V] ; for some n and j we end up with a irredundant
decomposition. Having two irredundant decompositions V' = U,enV, and V =
UnenW,,, suppose there exists V;,, such that V,, is not contained in W, for any
n. Then V,, is the union of the closed subsets V,,, N W,,, each of which is not V,,.
This contradicts to Lemma 10. Therefore, any V,,, is contained in some W,,. By
symmetry, any W, is in V; for some [. Then V,, C V;. By irredundancy, | = m
and V,, = W,,. O

Lemma 12. Let A be an abelian variety over k, and let K be a subgroup which
can be represented as a countable union of Zariski closed subsets in A. Then the
irredundant decomposition of K contains a unique irreducible component passing
through 0, and this component is an abelian subvariety in A.

Proof. Let K = U,enK, be the irredundant decomposition of K, which exists by
Lemma 11. Since 0 € K, there exists at least one component in the irredundant

decomposition, which contains 0. Suppose there are s components K, ..., K
containing 0 and s > 1. The summation in K gives the regular morphism
from the product K7 x --- X K, into A, whose image is the irreducible Zariski

closed subset K; + ---+ K, in A. By Lemma 10, there exists n € N, such that
Ki+---+ K, C K, and so K; C K, for each 1 <i <n. By irredundancy, s = 1,
which contradicts to the assumption s > 1.

After renumbering of the components, we may assume that 0 € K. If Ky =
{0}, then K is trivially an abelian variety. Suppose Kj # {0} and take a non-
trivial element x in K. Since —x + K| is irreducible, it must be in some K, by
Lemma 10. As 0 € —z + K, it follows that 0 € K,, and so n = 0. It follows that
—x € Ky. Similarly, since Ky + K| is irreducible and contains K, we see that
Ky + Ko = Ky. Being a Zariski closed abelian subgroup in A, the set Kj is an
abelian subvariety in A. |

Now we are ready to prove Theorem A in Introduction.

Theorem 13. In terms above, there exists an abelian subvariety Ay and a count-
able subset of closed points in A, such that
K = Uges(z + Ao)
inside the abelian variety A.
Proof. Let n be the dimension of Y. Since %,_, is a functor on Noetherian

schemes over k, the closed immersion r induces a morphism from %,_,(Y) to
%n—p(X) in the category presheaves on seminormal schemes. In upper indices,
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this is a morphism from €7(Y") to €P*¢(X). Passing to Chow schemes, we obtain
a regular morphism

re: CP(Y) — CP*(X)
of projective schemes over k. Since X is embedded into P™, and since Y is a
closed subvariety in X, the morphism r, induces the morphisms

r: CO(Y) = O (X))

one for each degree d. Taking in to account Assumption 2, we obtain the obvious
commutative diagram

LLa7s e
114 Caa(Y) — [1. Caa"(X)
1163 [reg™
AP(Y) = CHP*e (X)degzo

Since AP(Y) is weakly representable, there exists a smooth projective curve
I' over k, and an algebraic cycle Z of codimension p on I' X Y, such that the
induced homomorphism
Z,: AYT) — AP(Y)
is surjective. On the other hand, since A'(T") is representable by the Jacobian of
I', the map
0y : Ciqa(l) — AYT)
is surjective for big enough d. Using these two facts one can show that the
right vertical arrow of the above commutative diagram is surjective. Then the
kernel K of the bottom horizontal homomorphism is the image under the map
[167 of the preimage of 0 under the composition of the maps [[,7. and [] 65
Corollary 9 implies that the latter preimage is the coproduct of countable unions
of Zariski closed subsets in the schemes C% ,(Y).
Now, consider the composition 7

Yoty Chy(Y)— A(Y) — A,

for each number d. By the definition of the regularity of 1, this composition is a
regular morphism of schemes. Since these schemes are projective, the composi-
tion is proper. It follows that the subgroup ¥ (K) is a countable union of Zariski
closed subsets in the abelian variety A.

For simplicity of notation, identify ¢(K) and K. By Lemma 11, the set K
admits a unique irredundant decomposition inside the abelian variety A, say

Let Ay be the unique component of that decomposition passing through 0, which
is an abelian subvariety in A by Lemma 12. For any x in K the set = + Ag is
an irreducible Zariski closed subset in K. Since K coincides with U,cx (2 + Ay),
ignoring each set  + Ay which is a subsets in y + Ay for some y € K, we can
find a subset = in K, such that

K = U:EEE('I + AO) P
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and for any two elements x,y € = the irreducible sets x + Ay and y + Ag are not
contained one in another. Since x + Ag is irreducible, it is contained in K, for
some n by Lemma 10. Then Ag C —z + K,,. Similarly, —x 4+ K,, C K for some
[, so that K; = Ay by Lemma 12. This yields

T+ AO = Kn )
for each z € =. It means that the set = is countable. O

Let us also prove that the abelian variety Ay, provided by Theorem 13, is
contained in the abelian variety A; introduced in Section 2. Choose an ample
line bundle L on the abelian variety A. Let

1: AO — A
be the closed embedding of Ay into A, and let Ly be the pull-back of L to Ag under

the embedding ¢. Define the homomorphism ¢ on divisors via the commutative
diagram

Al (Ao) AN (A)

(ALg)+ AL
AYAY) —— AY(AY)

Similarly, we define the homomorphism (7, on cohomology by means of the com-
mutative diagram

Cz,

Hélt(AOaZl> Hgt(Ale)

ALO>)< )\2

-\ %

HL(AY, 2) — 5 HL(AY, 7))

and analogously for the homomorphism
Gz + He(Ao, Qu/Zi) — He(Ao, Qu/Z) -
The homomorphism (7, induces the injective homomorphisms
Car + Hay(Ao, Qi) = He (Ao, Zi) @ Q — Hey (Ao, Qi) = He(A, Zy) @ Q

and
Cz, Q)7 - Hi (Ao, 7)) @ Q)7 — Hi (Ao, Zy) @ Q)7 .

Proposition 14. The image of the composition
G Wi -
iy (Ao, Qu(1 = p)) = HL(A,Qu(1 —p)) = H (Y, Q)
s contained in the kernel of the Gysin homomorphism

Hé2tp_1(y7 @l> L> HéQt(p+6)_1(X7 @l) :
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Proof. For the proof we will be using Bloch’s [-adic Abel-Jacobi maps. For any
abelian group A, a prime [ and positive integer n let A;» be the kernel of the
multiplication by " endomorphism of A and let A(l) be the [-primary part of A,
i.e. the union of the groups A;x for all n. For any smooth projective variety V'
over k, there is a canonical homomorphism

N (V) CHYV)(1) = HY ™ (V.Qu/Zi(p)) ,

constructed by Bloch in [3]. The homomorphisms AJ(V) are functorial with
respect to the action of correspondences between smooth projective varieties
over k. Moreover, the homomorphisms

A (V) CHY(V)(1) = Hg (V,Qu/Zi(1))

are all isomorphisms, loc.cit.
Since Ay and A are abelian varieties, their Néron-Severi groups are torsion free.
It follows that C'H'(Ag)(l) = A'(Ag)(1) and CH'(A)(l) = A'(A)(I), so that we
actually have the isomorphism A} (Ag) between A'(Ag)(1) and HZ, (Ao, Qi/Z(1)),
and the isomorphism A} (A) between A'(A)(I) and H} (A, Q;/Z(1)). Similarly,
one has the isomorphisms A} (AY) and A} (AY) for the dual abelian varieties.
The functorial properties of Bloch’s maps A} give us that the diagram

¢

A (Ag)(1) AN A) (D)

(3) AL(Ao) | ~ AL(A) | ~

Coy /2

Hét(Am@l/Zl(l)) Hét(Aan/Zl(l»

is commutative.
For a smooth projective V' over k, one has the homomorphisms

07 (V) « Hiy (V. Zu(5)) ® Qu/Zy — H(V,Qu/Zi(5))

with finite kernels and cokernels, used in [11], and much earlier in [5]. In partic-
ular, we have the commutative diagram

o, /2

H (Ao, Qi/Z(1)) H{ (A, Qi/7(1))

(4) oM (Ap) o(A)

(z,@Q1 /7

Hy (Ao, Z(1) ® Qi/Z Hy (A, Zi(1) @ Qu/Zy

Let 0 : Ag = A'Y(AY) and 0 : A = A'(AY) be the autoduality isomorphisms.
The morphism of motives

w: M(A)@LP — M(Y)
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induces the homomorphism w, : A'(A) — AP(Y) on Chow groups. A straight-
forward verification shows that the diagram

AN A1) ——— A (Y)())

(5) by W)t

ANAY)(D) : A(l)
1s commutative.

The homomorphism w, : A*(A) — AP(Y") on Chow groups and the homomor-
phism w, : HX (A, Q/Z(1)) — H2>"'(Y,Q;/Z(p)) induced by w on cohomology
fit into the commutative diagram

ANA)D)

Wx

(6) AH(A) |~ M)

HE (A, Qu/7(1)) HP (Y, Qu/Zu(p))

The commutativity of the diagrams (3), (4), (5) and (6), the definition of
the abelian variety Ay and easy diagram chase over the obvious commutative
diagrams with Gysin mappings show that the image of the triple composition

reow, o (Cz, @ Qu/Zy) + Hy (Ao, Z(1)) @ Qu/Zy — HZ" 07X, Zu(p+e) @ Q) Z
is contained in the kernel of the homomorphism
g "I  HY T X Tap ) 0 Qo2 — Hi" T (XL Qu/ZTap +e))

Since the latter kernel is finite, the image of the composition 7, ow, o ((z, ®Q;/Z;)
is finite too. Since the étale cohomology groups of smooth projective varieties
with Z;-coefficients are finitely generated Z;-modules, it follows that the image
of the triple composition

re 0w, o (o : HY (Ao, Qi(1)) = H2PT7 X, Qup + ¢))

is zero, which finishes the proof of the proposition. |

Corollary 15. The abelian variety Aq is contained in the abelian variety A;.

Proof. Since the triple composition 7, o w, o (g, is 0 by Proposition 14, the
homomorphism (g, factorizes through the group H} (A1, Qi(1 — p)). O

5. GEOMETRIC GENERIC VERSUS VERY GENERAL VERSION OF A

Since the ground field £ is uncountable and algebraically closed, its transcen-
dental degree over the primary subfield is infinite. We will be using the following
terminology. If S is an integral algebraic scheme, a (Zariski) c-closed subset in
S is a union of a countable collection of Zariski closed irreducible subsets in S.
A (Zariski) c-open subset in S is the complement to a c-closed subset in S. A
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property P of points in S holds for a very general point on S if there exists a
c-open subset U in S, such that P holds for each closed point in U.

The purpose of this section is to convince the reader that, given a flat family
2 — S over an integral base S over k, there exists a natural c-open subset U in
S, such that the fibres Zp, for all closed k-points P € U, are isomorphic to the
geometric generic fibre 27, as schemes over Spec(Q), and these isomorphisms
preserve algebraic and rational equivalence of algebraic cycles. This is certainly
a folklore, see, for example, [27], but we give all the proofs here for clarity and
completeness. Then we use such isomorphisms to show that the abelian variety
Ag for fibres in a family is of purely algebraic nature, and therefore its very
general and geometric generic versions coincide.

Let S be an integral affine scheme of finite type over k, let k(.S) be the function
field of S, and let k(S) be the algebraic closure of the field k(S). Let I(S) be the
ideal of S and let fi,..., f, be a set of generators of I(S). The polynomials f;
have a finite number of coefficients. Then we can choose a countable algebraically
closed subfield kg in k, such that there exists an irreducible quasi-projective
scheme Sy over ko with S = Sy Xgpec(ko) SPEC(K).

Let Z be a closed subscheme of Sy, and let iz : Z C S be the corresponding
closed embedding. Then Z is defined by an ideal a in ko[Sp]. Since the field
ko is countable and a is finitely generated, there exists only countably many
closed subschemes Z in Sy. For each Z let Uz be the complement Sy ~\ im(iy),
Zk =7 X ko k and (UZ>k =Uy X ko k. If (ZZ)k : Zk — S is the pull—back of iz with
respect to the extension k/ko, then (Uz) is the complement S\ im((iz)). Let,
furthermore,

U=85~\ Uzlm((Zz)k) - mZ(UvZ)k ’

where the union is taken over closed subschemes Z, such that im((iz)x) # S.
Notice that the last condition is equivalent to the condition im(iz) # Sp. The
set U is c-open by its construction (see also the proof of Lemma 2.1 in [27]).

Lemma 16. For any closed k-point P in U, one can construct a field isomor-
phism between k(S) and k, whose value at f € ko[So] is f(P).

Proof. If now P is a closed k-point in the above defined subset U in .S, defined
by the corresponding morphism fp : Spec(k) — S, then its image under the pro-
jection 7 : S — Sy belongs to Uy for each Z, such that im(iz) # Sp. This means
that this image is noting but the generic point 17y = Spec(ky(Sp)) of the scheme
So. In other words, there exists a morphism hp : Spec(k) — Spec(ko(So)) = 1o,
such that mo fp = gg o hp, where gy is a morphism from the generic point 7y to
So. In terms of commutative rings, it means the following. If evp : k[S] — k
is the evaluation at P, i.e. the morphism inducing fp on spectra, there exists a
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morphism of fields ep making the diagram

evp

k[S]

ko [So] —_— > k‘o (So)

to be commutative, where k in the top right corner is considered as the residue
field of the scheme S at P. Since the left vertical morphism is injective, ko[Sp] ~
{0} is a multiplicative system in k[S]. It is not hard to see that the localization
(ko[So] ~ {0})71k[S] is the tensor product of k[S] and ky(Sy) over ko[Sp]. This
is why there exists a unique universal morphism of rings €p whose restriction on
the ring k[S] is evp and the restriction on ko(Sp) is €p. Our aim is to construct
an embedding of k(.S) into k£ whose restriction to ko(Sp) would be ep. Certainly,
such an embedding will not be over the ring (ko[So] ~ {0})~1k[S].

Let d be the dimension of Sy. By the Noether normalization lemma, there exist
d algebraically independent elements, x1,...,x4 in ko[Sp], such that the latest
ring is integral (i.e. finitely generated) over the ring ko[z1, ..., x4, and ko(Sp) is
algebraic over the field of fractions ko(z1, ..., 2q). Then k[S] is integral over the
ring k[zy,..., x4 and k(S) is algebraic over k(z1,...,x4). Let b; = evp(z;) for
1=1,...,d. Since P € U, the quantities by, ..., by are algebraically independent
over ko. Extend the set {by,...,b4} to a transcendental basis B of k over kg, so
that k = ko(B). Since B is of infinite cardinality, so is the set B \ {b1,...,bq}.

Choose and fix a bijection

B = B~ Ab,..., b} .
It gives a field embedding
k= ]{?()(B) ~ ]{?()(B AN {bl, ey bd}) C k’o(B) =Q

over ko, such that the set {b1,...,by} is algebraically independent over its image.
The latter embedding induces a new field embedding

k(xy,...,xq) = k

sending x; to b; for each i. The restriction of this field embedding on ko(z1, . . ., z4)
is the restriction of €p on the same field. Since k(S) is the tensor product of
k(xy,...,zq) and ko(Sp) over ko(zq,...,xq), we get a uniquely defined embed-
ding

k(S) =k,
which can be extended to an isomorphism

Ep . (S) ;> k.
As the square (7) is commutative, ep(f) = f(P) for each f in ko[Sp]. O
Remark 17. It is important to mention that the above isomorphism ep is non-

canonical depends on the choice of the transcendental basis B containing the
quantities by, ..., by.
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Let now f : 2 — S be a smooth morphism of schemes over k. Extending kq if
necessary, we may assume that there exists a morphism of schemes fy : 25 — Sy
over kg, such that f is the pull-back of f; under the field extension from kg to
k. Let nmy = Spec(ko(Sp)) be the generic point of the scheme Sy, n = Spec(k(S5))
the generic point of the scheme S, and 7 = Spec(k(S)) be the geometric generic
point of S. Then we also have the corresponding fibres 2 ,,, £, and 27.

Pulling back the scheme-theoretic isomorphism Spec(ep) to the fibres of the

family f, we obtain the Cartesian square

Zp Spec(k)
%p Spec(ep)
L U

Since Spec(ep) is an isomorphism of schemes over 7y, the morphism sp is an
isomorphism of schemes over 2, .

For any field F', a scheme Y over F' and an automorphism o of F' let Y, be the
fibred product of Y and Spec(F') over Spec(F'), with regard to the automorphism
Spec(o), and let w, : Y, = Y be the corresponding isomorphism of schemes over
Spec(F7), where F is the subfield of o-invariant elements in F'.

Let L be a field subextension of k/kg. The projection 2~ — 2, naturally
factorizes through 2o, = 2o Xspee(ro) SPec(L). Composing the embedding of
the fibre Zp into the total scheme 2 with the morphism 2 — Zy; we can
consider Zp as a scheme over 2.

If now P’ is another closed k-point in U, let oppr = eps © e;l be the automor-
phism of the field k, and let »pp = %13/1 o »p be the induced isomorphism of the
fibres as schemes over Spec(k?r#’). In these terms, (2p),,,, = Zp/, the isomor-
phism w,,,, :+ Zp = Zp is over 2 X Spec(ko) OPeC(k7PP"), and w,,,, = xp/p.
To see that we just need to use Lemma 16 and pull-back the scheme-theoretic
isomorphisms between points on S to isomorphisms between the corresponding
fibres of the morphism f: 2" — S.

Remark 18. The assumption that S is affine is not essential, of course. We can
always cover S by open affine subschemes, construct the system of isomorphisms
> in each affine chart and then construct “transition isomorphisms” between
very general fibres in a flat family over an arbitrary integral base S.

Let now S be an integral scheme of finite type over k, let 2 and % be two
schemes, both smooth, projective and connected over S, and let

N

S

be a closed embedding morphism of schemes over the base S. Extending kg
appropriately we may assume that there exist models fy, go and ¢ over kg of the
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morphisms f, g and r respectively, such that gy o rg = fy. Then, for any closed
k-point P in U, the diagram

Bp — > Xp

is commutative, where rp and r; are the obvious morphisms on fibres induced
by the morphism r. Then, of course, the isomorphisms spp: commute with the
morphisms rp and rp/, for any two closed k-points P and P’ in U. Cutting out
more Zariski closed subsets from U we may assume that the fibres of the families
f and g over the points from U are smooth.

Lemma 19. The scheme-theoretic isomorphisms »p preserve the algebraic and
rational equivalence of algebraic cycles.

Proof. As we already explained in Section 3, if o : k = k' is an isomorphism
of fields, the functorial bijections T from the representation of Chow monoids
by Chow schemes commute through the isomorphisms of monoids and Hom-sets
induced by the isomorphism Spec(a). In particular, if ¥ = k(S) and o = ep’,
the bijections Y(.2;) over k(S) commute with the bijections T(Zp) over k, and
the same for %¢'. The commutativity for the sections of the corresponding pre-
sheaves on an algebraic curve C' over k and its pull-back C” over £’ gives the first

assertion of the lemma. If C'= P!, we get the second one. O

Assume now that Assumptions 1, 2 and 3 are satisfied for the geometric generic
fibre %7, and for the fibre #p for each closed point P in U. Let also

vy T AP(%) = Ay
and
Q/JP . Ap(@p) :> Ap

be the corresponding regular parametrizations. By Lemma 19, the isomorphism
»p induces the push-forward isomorphism of abelian groups

Hpy . Ap(gp) — AP(%) .
Let
Kp : Ap — Aﬁ

be the composition given by the commutative diagram

Ap—20 o Av(ap)
(9) kp APy
Ag—"1— ar(%,)
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Consider the obvious commutative diagram

Yp Oa
Ap AP (Zp) Cha(Zp)
(10) Kp 2P P 4 (ep)
1/’17 D 04 D
Az AP (%) Caa(%5)

The top and bottom horizontal compositions in this diagram are regular mor-
phisms of schemes over k£ and m respectively, and the vertical morphism from
the right hand side is a regular morphism of schemes over Q. It follows that the
homomorphism xp : Ap — Aj is a regular morphism of schemes over Q too.

Now, the commutative diagram (8) gives the commutative diagram

AP (%) ik APe( 2p)

(11) APy Py

AP(Hy) — s APTe(25)

where e is the codimension of %5 in 2Z7. Let Ap; and Az, be the abelian sub-
varieties in Ap and Aj; respectively, constructed in Section 2. Let, furthermore,
App and Az be the abelian subvarieties in Ap; and Ay, respectively, provided
by Theorem 13 and Corollary 15.

Proposition 20. For any closed point P in U,
kp(Ap1) = Aga

and

KP(AP,O) = Aﬁ,O

Proof. The first claim is actually true for any closed point P on S, not only on U,
and can be easily deduced using specialization isomorphisms on étale cohomology
groups. Let us prove the second claim. Let Zp be the countable subset in Ap
and Z; the countable subset in Ay, such that we have the kernels

Kp =Uzezp(s + Apg) and Ky = Uges, (¢ + Azp)
in Ap and Aj respectively (see Theorem 13). Then
kp(Kp) = kp(Usezp (T 4+ Apo)) = Usez, (kp(2) + £p(App))
The definition of kp and the commutative diagram (11) give that
kp(Kp) = K .
Therefore,
Ugezp (Fp(2) + kp(APo)) = Ugez, (T + Agp)

inside the abelian variety A;. Since the group isomorphisms xp are regular
morphisms of schemes over Spec(Q), we obtain that kp(Apy) is a Zariski closed
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subset in Aj. Since kp(Apy) is a subgroup in Ay, it is an abelian subvariety in
A;. Lemma 11 and Lemma 12 finish the proof. O

Remark 21. Of course, the set U is not uniquely defined, and all the same
works well over the union of all such c-open subset in the integral scheme S. The
behaviour of Ag beyond the union of the sets U is an open question of particular
importance and deserves a separate big research programme.

6. ETALE MONODROMY ARGUMENT FOR CYCLES OF DIMENSION p — 1

This is the main section of the paper, in which we apply Theorem A in the
family of hyperplane sections of a projective variety embedded into a projective
space. In such a case one can enhance the study of Ay by the monodromy
argument in terms of étale [-adic cohomology over k.

Let d = 2p and let X be a smooth d-dimensional projective variety over the
ground field k. Fix a closed embedding X C P™, such that X is not contained
in a smaller linear subspace in P™. Let

H ={(PH)cP" xP" | Pec H}

be the universal hyperplane, and let p; and ps; be the projections of .7 on P™
and P™" respectively. Let

2 =X x PV

and let
YW =X NAH

inside P™ x P™,

Let

[ =P

be the composition of the closed embedding % C .7 with the projection ps, let
g: X — P

be the composition of the closed embedding of 2~ into P™ x P™" with the
projection onto P™, and let

ay " A
N
P

be the obvious closed embedding over the dual projective space.
For any scheme S and for any morphism of schemes

S — pmY

let 7% — S be the pull-back of p, with respect to the morphism S — P™V, let
%5 be the fibred product of ¢ and 7% over the universal hyperplane 7, and
let

fs: % — S
be the induced projection, i.e. the composition of the closed embedding of %5
into 775 and the morphism 5 — S. Let also Zs — S be the pull-back of trivial
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family 2~ — P™" with respect to the morphism S — P™". Then we obtain the
closed embedding

T

s P
S
over S.

Assume that the scheme S is integral. Let k(S) be the function field of .S,
n = Spec(k(5))

be the generic point of S, k(S) be the algebraic closure of k(S) and

s

il = Spec(k(5))
be the geometric generic point of S. Then we also have the closed embeddings
ry and ry over i and 7 respectively.

As in the previous section, choose an appropriate c-open subset U in S, such
that the point 7 scheme-theoretically is isomorphic to each closed point in P,
and assume that Assumptions 1, 2 and 3 are satisfied for the geometric generic
fibre

Ye=%,
and for the fibre
Yr=%p,
for each closed point P in U. Let also
Uy s AP(Yy) = Ay
and
Vvp: AP(Yp) = Ap
be the corresponding regular parametrizations. Then we have the abelian sub-
varieties
Ajo C Az1 C Az and Apo C Ap1 C Ap
for each closed point P in U.

Let first S = D be a projective line inside the dual space P™", such that the
morphism fp is a Lefschetz pencil for the variety X. Let L be the minimal

subextension of k(D) in k(D), such that the abelian varieties Aso, Az and Aj
are defined over L. Then L is finitely generated and algebraic of finite degree n
over k(D). Let D’ be an algebraic curve, such that L = k(D’) and the embedding
of k into k(D) is induced by a generically of degree n morphism from D’ onto D.
Since the closed embedding of A;( into Az, and Aj;; into A; are now defined
over L, there exist a Zariski open subset U’ in D', spreads <7, @7;1 and 7; of

Az, Az1 and Aj respectively over U’, and morphisms
Do =

and
1 — Sy
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over U’, such that, when passing to the fibres at the geometric generic point 7,
we obtain the closed embeddings

Ao = Aja

and
Ajn — Ay
over FD)

Let a be the morphism from .« onto U’, and let oy and «; be the morphism
from % and, respectively, 2 onto U'. Since </ is a spread of Az over U’ and
Aj is a projective variety over L = k(D’), the morphism « is locally projective
and, therefore, proper. Similarly, the morphisms oy and «; are proper. Cutting
more points from D’ we may assume that the morphisms a, ag and «; are all
smooth over U'.

Let 1’ be the generic point of D', let 77 = 7 be the geometric generic point
of D', let m(U’,77) be the étale fundamental group of D’ pointed at 7, and let
miame(U’ ) be the corresponding tame fundamental group. For any scheme V
and non-negative integer n let (Z/I™)y be the constant sheaf on V' associated to
the group Z/1".

Since the morphisms «q, o and a are smooth and proper, the higher direct
images

R'ag (Z)1") .y, R'ar (Z)1"). and R'a(Z)1") .
are locally constant by Theorem 8.9, Ch. I in [10]. Then the fibres of these
sheaves at the geometric generic point 7 are finite continuous m (U’, 77)-modules,
see Proposition A 1.7 in loc. cit. The proper base change (see, for example,
Theorem 6.1" on page 62 in loc. cit.) gives that
(RIO‘O*(Z/ZTL)W())ﬁ - Hélt(%ﬁv Z/ln) )
(Rl (Z)1))q = He (9, Z/17)
and
(R'au(Z/1"))q = He (A, ZJ1") .
Then we obtain that m (U’,7) acts continuously on
H (g, Z/17)
Hy, (g, Z/1")
and
H (e, ZJ17) -
Passing to limits on n and then tensoring with @Q; we then obtain that m; (U’, )
acts continuously on

H(élt(%ﬁ7(@l) = Hélt(Aﬁ,Ole> )
H (g, Qu) = Hy (Ag1, Qi)
and
Hélt(%an) = Hélt(Aﬁan) :

The homomorphism
CQz : Hélt(Aﬁ,(le) — Hélt(Aﬁv@l)
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is the composition of the obvious homomorphisms

Co, + 4, 5 (Aq0, Q) = He(Az1, Q1)
and
(o : Hg(Ag1, Qi) = Hg (Ag, Q)
The action of m (U, ) naturally commutes with both (g, and (g

Without loss of generality, we may assume that U’ is the pre-image of a Zariski
open subset U in D and all the fibres of the Lefschetz pencil

fop:%p — D

over the closed points of U are smooth. Let
for % — D'

be the pull-back of the pencil fp with respect to the morphism D' — D, and let
for % — U’

be the pull-back of fp, with respect to the open embedding of U’ to D’. Apply-
ing the same arguments to the morphism fy, we obtain the continuous action
of the étale fundamental group m1(U’,7) on the group ij’_l(Y,—],Ql), and it is
well known that this action is tame, in the sense that it factorizes through the
surjective homomorphism from 71 (U’, 7)) onto m{*™<(U’, 7).

For each closed point s in the complement D \ U let

55 S Hé2tp_1(Y77> Ql)

be the unique up-to conjugation vanishing cycle corresponding to the point s in
the standard sense (see Theorem 7.1 on page 247 in [10]), and let

EC Hg‘fil(Y;?? @l>

be the Q;-vector subspace generated by all the elements d,, s € D ~\ U. In other
words, F is the space of vanishing cycles in H, jtp _I(Yﬁ, @;). One can show that

E = ker(HP™(Yq, Q) — HZ ™ (X5,Q)) |

where X; = X X 7, see Section 4.3 in [§].
In what follows we will be using the étale [-adic Picard-Lefschetz formula for
the monodromy action. For each s € D \ U let

s C (U, 1)
be the so-called tame fundamental group at s, a subgroup uniquely determined
by the point s up to conjugation in 7*™¢(U, 7). In terms of [10], 7 5 is the image
of the homomorphism
Vs Z(l) — (U, q)

where Z(1) is the limit of all groups u,, and p, is the group of n-th roots of
unity in the algebraically closed field k£(U) whose exponential characteristic is 1.

The tame fundamental group {*™¢(U,7) is generated by the subgroups 7 .

If u is an element in Z(1), let @ be the image of u in Z;(1). If now v is an element
in the Q;-vector space H thp _1(}/}7, Q) the Picard-Lefschetz formula says

(12) vs(u)x = x £ ulx, ds)ds .
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Proposition 22. Under the assumptions above, either Azo =0 or Azo = Aj 1.

Proof. By Proposition 14 and the fact that the space E of vanishing cycles
coincides with the kernel of the Gysin homomorphism

2p—1 2p+1
Ty - Hétp (Y;%Ql) - Hégw (Xﬁ?@l) )
we see that the image of the composition

o W, _
HE(Ano, Qu(1 = p)) =5 HL (A, Qu(1 — p)) 2 HZP (Y5, Q)

is contained in £. The homomorphism (g, is injective and compatible with the
action of m(U’, 7). Since p < 2, the homomorphism w, is bijective, see Remark
4. Then
E ~ Hg (A1, Qi(1 - p))

via (g, and w,.

Since the variety Y; satisfies Assumption 1, there exists a smooth projective
curve I' and an algebraic cycle Z on I' X Y over 7, such that the cycle class z of
Z induces the surjective homomorphism

2 AND) = A(Yy),
whose kernel is G. The homomorphism
Wy Hgt<Aﬁ7 Ql(l o p)) — Héinl(Yﬁv Ql)

is then induced by the composition of the embedding of the curve I' into its
Jacobian Jr over 7, the quotient map from Jr onto the abelian variety A = Jr,
also over 77, and the homomorphism induced by the correspondence Z (see Section
2). Spreading out the morphisms I' — Jr and Jr — A, as well as the cycle X,
over a certain Zariski open subset in D’, we can achieve that the homomorphism
w, is compatible with the action of the fundamental group m (U’, 7).

This gives that the composition w, o (g, is an injection of the m;(U’, 7)-module
H3 (As0,Qi(1 = p)) into the 71 (U, 77)-module of vanishing cycles E. Let

Ey = im(w, o (g,)

be the image of this injection.

Since U’ is finite of degree n over U, the group m(U’,7) is a subgroup of
finite index n in the étale fundamental group 7 (U, 77), and the latter group acts
continuously on E by the standard étale monodromy theory.

We are now going to use the Picard-Lefschetz formula in order to show that

Eq is a m™¢(U, i7)-equivariant subspace in E. Obviously, it is enough to show

that for each element ~s(u) in 7*¢(U, 7)) and any element x in E, the element
vs(uw)z is again in the space Ejy.
Indeed, since (Js, 05) = 0, the Picard-Lefschetz formula (12) and easy induction
give that
(vs(uw)™z = x £ mu(x, 05)0s ,
for a natural number m, whence

i, 6.8, = — ((w)) " )
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When m is the index of w1 (U’, 7)) in w1 (U, 77), then (ys(u))™ sits in the subgroup
m(U’,7), so that the right hand side of the latter formula is an element of Ej.
Applying the Picard-Lefschetz formula again, we see that vs(u)z is in Ey.

Thus, Ey is a submodule in the 7j*™¢(U, 77)-module E. Since FE is known to be
an absolutely irreducible (see, for example, Corollary 7.4 on page 249 in [10]),
we see that either Fy =0 or Ey = E. In the first case H}, (A;0,Q;) = 0, whence
Aso = 0. In the second case

Co, Hg(An0, Qu(1 = p)) = Hg(Ap1, Qi(1 - p))
is an isomorphism, whence Az o = Az 1. O

Let now T be the complement to the discriminant variety of X in P™Y. In
other words, T' is the set hyperplanes in P™ whose intersections with X are
smooth. Now we want to consider the global case, when the base scheme S is
the scheme T'. Let again U be a c-open subset in T constructed as in Section 5.
In other words, we define U by removing the images of the pull-backs of all closed
embeddings into the model Ty of T' defined over the minimal field of definition of
T. Then U is a c-open subset in T, and in the dual projective space (P™), such
that, if € is the generic point of the projective space P™" and £ the corresponding
geometric generic point, for any closed point P € U one has the isomorphism
»xp between Yp and Yg, and for any two closed points P and P’ in U one has the
scheme-theoretic isomorphism spp between Yp and Yp/, constructed in Section
5. As above, we assume that Assumptions 1, 2 and 3 are satisfied for the fibres
at ¢ and at every closed point P of the set U.

The next theorem is Theorem B in Introduction, and it represents the main
result in the paper.

Theorem 23. In terms above, either Agq = 0, in which case Apy = 0, or
Ago = Agq, so that Apg = Apy, for any closed point P in U.

Proof. For every closed point P in P™" let Hp be the corresponding hyperplane
in P, Let ¥ be a Zariski closed subset in P™", such that for each point P in
the complement to ¥ in P™" the hyperplane Hp does not contain X and the
scheme-theoretic intersection of X, and X N Hp is either smooth or contains at
most one singular point, which is double point, see Definition 1.4 and Proposition
1.5 in [10], or read through Exposé XVII in [12]. Let G be the Grassmannian of
lines in P™". There is a Zariski open subset W in G, such that for each line D in
W the line D does not intersect > and the corresponding codimension 2 linear
subspace in P™ intersects X transversally. In other words, any line D from W
gives rise to a Lefschetz pencil on X, see the top of page 180 in [10] or Exposé
XVII in [12]. Let Z be the complement to the above c-open subset U in P™".
Then Z is the union of a countable collection of Zariski closed irreducible subsets
in P™V, each of which is irreducible. In particular, Z is c-closed. It follows that
the condition for a line D € G to be not a subset in Z is c-open. By Lemma 10,
the intersection of the corresponding c-open subset in G with W is non-empty, so
that we can choose a line D, such that D gives a Lefschetz pencil fp : %, — D
and DNU # (). Let Py be a point in D N U and let 77 be the geometric generic
point of D. By Proposition 22, either A;y = 0 or A;9 = Aj;1. Suppose A; o = 0.
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Proposition 20, being applied to the pencil fp, gives that Ap o = 0. Applying
the same proposition to the family fr we obtain that Ag, = 0 and so for each
closed point P in U the abelian variety Apg is zero. Similarly, if Az¢ = Az,
then, by Proposition 20 applied to fp we obtain that Ap, o = Ap, 1. Applying
Proposition 20 to the family f we see that Agy = Az, and Apy = Ap; for each
closed point P in U. O

7. APPLICATIONS IN THE STUDY OF 1-CYCLES ON 4-DIMENSIONAL VARIETIES

The purpose of this section is to apply Theorem 23 (Theorem B in Introduc-
tion) in the study of rational equivalence of 1-dimensional algebraic cycles on
4-dimensional varieties, extending Voisin’s idea on page 305 in the second vol-
ume of [31]. We keep all the notation and assumptions of the previous section.
To enhance and, at the same time, simplify the exposition, we will assume that
Assumptions 1, 2 and 3 are satisfied not only for the fibres at closed points of
the c-open subset U C T', but rather for the fibres at all closed points of the set
T, i.e. at all smooth sections of the variety X by hyperplanes in P™". Assume,
moreover, that p < 2 and that the group Hgf (X, Q) vanishes. The latter
implies that A;; = Ay for the generic point n of S, Ag; = Ag and Ap; = Ap for
each closed point P in T

For any closed point P € P™ let Yp be the resolution of singularities of
the section Yp. In addition to the assumptions above, we will also require that
whenever the section Yp has at worst one singular point and this point is an
ordinary double point, the continuous group AP (f/p) is weakly representable.

Since the group AP(Yz) is weakly representable, we can choose a smooth pro-
jective curve C over ¢ and an appropriate algebraic cycle Z on C' x Y, such that
the induced homomorphism Z, from A'(C) to AP(Yg) is surjective. Then the
homomorphism 6 from C7 ;(Yz) to AP(Yg) is surjective for big enough d (see the
proof of Theorem 13). Since the group A? (}7]3) is weakly representable, whenever
Yp has at worst one singular point and this point is an ordinary double point,
the homomorphism ¢ from ngd(ffp) to AP(Yp) is surjective as well.

It is important to stress that, as we now assume that Assumptions 1, 2 and
3 are satisfied for the fibre at every closed point P of T, accordingly we have
the abelian varieties Apy C Ap; C Ap for every closed point P of T. However,
it does not mean that we can extend the coherence provided by Proposition 20
from fibres at closed points of U to fibres at closed points of T. Let T? be the
set of closed points in T such that P € T? if and only if A po coincides with Ap;.

Lemma 24. The set T is constructible.

Proof. Let
¥ = {(2.P) € 67" (X) x P™ | Z C Hp}
be the incidence subvariety, where Z C Hp means that the codimension p + 1

algebraic cycle Z of degree d on X is supported on the hyperplane section XN Hp
for a closed point P in P™". Let

UTqu/T—>T
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be the corresponding pull-back of the projection to P™" with respect to the
inclusion of 7" into P™Y, and let

St 4//T — Cg;l(X)
be the obvious morphism from 77 to C’fl';l(X ). Let
7/2 = 7/T X7 /VT

be the 2-fold fibred product of ¥4 over T, and the consider the corresponding
morphisms

vg Vg =T
and
sh VPR — C’g;l(X) .
By Corollary 9 we have that (657")~1(0) is the union of a countable collection
of irreducible Zariski closed subsets in C’g;l(X ), say

(057)7H(0) = Uier Z: -
Let
Wi = (s7) (%)
for each 7 € I. For any closed point P in T the pre-image (vZ)~'(P) is the
2-fold product ¥ of the fibre ¥p of the morphism vy at P over Spec(k). Since
the homomorphism 6% from C'g’d(Yp) to AP(Yp) is surjective, we obtain that the
condition rp, = 0 is equivalent to the condition that the fibre ¥ of the morphism

v2 at P is a subset of the pre-image U;c;W; of 0 under the composition 05“
By Lemma 10, this is equivalent to saying that ¥}% is a subset in

Wi, U--UW,

052

n

for a finite collection of indices 4i,...,4, in I. It follows that the set 79 is
constructible. 0

We need one more easy lemma about c-open sets over an uncountable field.

Lemma 25. Let V' be an irreducible quasi-projective variety over k, and let U
be a nonempty c-open subset in V. Then the Zariski closure of U in'V is V.

Proof. Indeed, since U is c-open, there exists a countable union Z = U;c;Z; of
Zariski closed irreducible subsets in V, such that U = V . Z. Then U is nothing
but the complement to the interior Int(Z) of the set Z in V. Assume that that
Int(Z) is nonempty. Then there exists a nonempty subset W in Int(Z), which is
Zariski open in V. By Lemma 10, there exists an index iy € I, such that W is
contained in Z;,. This gives that Int(Z;,) of the set Z;, is nonempty. This is not
possible as Z;, is a closed proper subset in a Zariski topological space. O

Now, Bloch’s definition of weak representability in [2] (see also [4]) can be
done for chow groups with coefficients in Z and with coefficients in Q. In the
latter case we will speak about rational weak representability. Keeping the as-
sumptions made in the beginning of this section, we can now prove Theorem C
in Introduction.
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Theorem 26. If the group AP™(X) is not rationally weakly representable, then
the kernel of the push-forward homomorphism from AP(Yp) to APT(X) is count-
able, for a very general hyperplane section Yp.

Proof. By Theorem 23, we have that either Az, = 0 or Agy, = Az. Suppose
the latter. By the same Theorem 23, Apy = Ap for each closed point P in the
c-open subset U in T. On the other hand, U is a subset in 7%, and the set T*
is constructible by Lemma 24. Represent U as the complement to a countable
union U;c;D; of irreducible Zariski closed subsets D; in T, and represent 7% as a
countable union Uj¢ JY}u, where Tf is Zariski open in an irreducible Zariski closed
subset Z; in T'. Let Z be the union Ujc;Z; and let W be the complement to Z
in T. Then W is c-open in T and W N U = (). The intersection of W and U is
the complement to the union of all D; and Z;, i € I, j € J,in T. As U # 0,
it follows that D; # T for each index i. Since W N U = (), by Lemma 10, there
must exist an index j, € J, such that Z;) = T". This gives that Apy = Ap, i.e.
rp, = 0, for each closed point P in the nonempty Zariski open subset Tjh0 inT.
By Lemma 25, the intersection of 7% with U is nonempty. Let

fog/D—>D

be a Lefschetz pencil for X, such that the set-theoretic intersection of the line
D = P! with the set 7% N U is nonempty. Since the group AP*!(Yp) is weakly
representable for each closed point P € T and D passes through U, it follows
that the group AP (Y;) is weakly representable too. Let T'; be a smooth pro-
jective curve and Zj; be an algebraic cycle of codimension 1 on I'; X Y} over 7
implementing the weak representability of AP*!(Y;). Let

D' — D

be a finite extension of the curve D, such that both I'; and Zj; are defined over
the function field k(D’). Spreading out the curve I'; and the cycle Z; into a
relative curve ¥4 — V' and a relative cycle 2 on ¢ Xy %, over the preimage
V' of a certain Zariski open subset V' in D under the map D’ — D, we obtain a
homomorphism

D@i : Al(g) — Ap+1(@‘//) .

Compactifying and resolving singularities, we obtain a surface ¢’ a codimension
1 algebraic cycle 2’ on the variety ¢’ x pr % and the homomorphism

Qil : Al(g/) — Aerl(@D/) .

Take any element « in the group AP* (%), Let o be its image in APT(Y,),
and let @ be the image of o in AP™1(Y;). Take a cycle 3 € A'(T';) which goes to &
under the surjective homomorphism Z;_ from A'(I';) to AP*1(Y;), and consider
a finite extension

D" — D",

such that /3 is defined over the function field k(D").
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Let n" and n” be the generic points of D" and D" respectively and consider the
following commutative diagram

Z

e ()

Al (Fn”) 7o AP+l (Y;w)

AY(Dy) — s APH(Y,)

g/

Al(g/) * Aerl(@Dl)

which illustrates what is going on.

The cycle class 3 comes from a cycle class 8" € AYT,») under the pullback
from AY(T,) to AY(T';). Let 3" be the image of 8" under the pushforward
homomorphism from A*(T,») to AY(T',), and let B be a cycle class in AY(¥’)
going to B’ under the surjective homomorphism from A*(¥’) to AY(T',y). Let v
(respectively, 7' and ") be the image of the cycle class § (respectively, f and
(") under the homomorphism 2 (respectively, Z,/. and Z,» ). Without loss of
generality, we may assume that " /1’ is Galois. Let N be the corresponding norm
on the group AP*!(Y,~). Since the kernel of the homomorphism from AP™(Y,)
to APT1(Y;) is torsion, there exists a positive integer m, such that

m(v"—a")=0.
Then
mN(v") =mN (") = mna’,

where

n=[n":n].
It follows that

my — mna
belongs to the kernel of the homomorphism from AP (%)) to AP (Y;).
We see that, if

By = im(AY(@") L5 AP ()
and

By = ker(APTH (%) — APTH(Y,)
the Q-vector space APTH(#p/) ® Q is generated by the vector subspaces B; ® Q
and By ® Q.
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Now, as AP (Y,/) is the colimit of the groups AP*'(%), where W' runs
through Zariski open subsets in D', the localization sequences for open embed-
dings %y C #p show that kernel Bj is generated by the image of the homo-
morphism

@p/eD/Ap(Yp/) — Ap+1(@D/) ,

induced by the proper push-forward homomorphisms rpr,. If D% is the inter-
section of T% and D, and D’ ¥ is the pre-image of D under the finite map from
D' onto D, then rpr, = 0 for each closed point P’ in D'®. It follows that B, is
generated by the image of the homomorphism

@P’ED/\D/hAp(YP’) — AP+1(@D,) .

Notice that the complement D’ ~. D'* is finite.

Next, if Ypr is smooth, then Yp = Yp, where P is the image of P’ under the
finite map from D’ onto D, and AP(Yp:) is isomorphic to the abelian variety
Ap via the universal regular morphism t¢p. In particular, AP(Yp) is weakly
representable. If the section Yp = Yp is singular, resolving the double point on
it we obtain a nonsingualr variety Yp whose group A”(Y/p) is weakly representable
by our assumption.

Thus, By is covered by the finite direct product of weakly representable groups
AP(Yp) and AP(Yp). It means that B, itself is weakly representable. Then, of
course, By ® Q is rationally weakly representable. The image B; of the homo-
morphism 27 ®Q is weakly representable because A'(#”) is parametrized by the
Picard variety of the surface 2. Since AP (%p/) ® Q is generated by rationally
weakly representable Q-vector subspaces B; and By, the whole group AP*(%)
is rationally weakly representable. This contradicts to the third assumption of
the theorem.

Hence, Ag, = 0, and Theorem 23 finishes the proof. O

8. APPLICATION TO HYPERPLANE SECTIONS OF CUBIC FOURFOLDS IN P?

Let first X be a K3-surface embedded appropriately into P™. Since smooth
hyperplane sections of a projective surface are smooth projective curves, As-
sumptions 1, 2 and 3 are satisfied. It is also well-known that the group A?(X)
is divisible (see Lemma 0.1.1 in [1]). The third cohomology of a K 3-surface van-
ishes, so that the Albanese variety is trivial. By Roitman’s theorem, [20], the
group A%(X) is uniquely divisible. Then there is no difference between rational
and integral weak representability for this group. Moreover, we know that A%(X)
is not representable by Mumford’s result in [17]. By Theorem 26, for a very
general hyperplane section Yp of the surface X the kernel of the push-forward
homomorphism rp, from AP(Yp) to AP™1(X) is countable. This is, of course, a
particular case of Proposition 2.4 in [32]. Another application of Theorem 26 is
this (Corollary D in Introduction).

Corollary 27. Let X be a smooth cubic hypersurface in P°, and let Y be a very
general hyperplane section of X. Then the kernel of the push-forward homomor-
phism from A%(Y) to A3(X) is countable.
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Proof. For the cubic X we have that HZ (X, Q;) = 0 and so A; = A for Yz and
every smooth section Yp of the fourfold X. Any such a section smooth is a cubic
3-fold in Hp ~ P*  whose group A?(Yp) is well known to be representable by the
corresponding Prymian variety Prym(Yp), see [1]. Since the Prym construction
is of purely algebraic-geometric nature, we can do it over ¢ getting the Prym
variety Prym(Yg) for the geometric generic fibre Yz. In other words, all the
Assumptions 1, 2 and 3 are satisfied for Yz, as well as for all smooth hyperplane
sections Yp.

If a hyperplane section Yp of the cubic fourfold X has one singular point and
this point is an ordinary double point, then the singular cubic Yp is rational, so
that Yp is rational. It follows that the group A2(Yp) is weakly representable. If
Yp is smooth, then it is unirational and so rationally connected. Hence, A%(Yp)
is trivial. The group A%(X) is not weakly representable by Theorem 0.5 in [21].
Since, moreover, it is uniquely divisible, see Theorem 4.7(iii) in [23], it is also
not rationally weakly representable. Thus, all the assumptions of Theorem 26
are also satisfied.

By Theorem 26, for each closed point P in the c-open subset U of P™" there
exists a countable set Zp of closed points in the Prymian Prym(Yp) of the hyper-
plane section Yp, such that the kernel of the homomorphism rp, from Prym(Yp)
to A3(X) is countable. 0

In particular, if ¥ and ¥’ are two linear combinations of lines of the same
degree on X, supported on Yp, then X is rationally equivalent to >’ on X if and
only if the point on Prym(Yp), represented by the class of 3 — ¥/ occurs in Zp.

Notice also that the group A*(Y,) can be nonzero, but we know that it is
torsion. Since A%(Yp) is divisible, any cycle class in A%(X) is represented, up to
torsion, by line configurations supported on hyperplane sections.
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