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Abstract 

Predicting environmental risk of transmission of 

leptospirosis 

Gabriel Ghizzi Pedra 

Leptospirosis is a zoonotic disease distributed worldwide, caused by contact with the 

spirochete bacteria Leptospira. The bacteria are transmitted when animal and human 

reservoirs come into contact with an environment contaminated with the urine of an infected 

animal. The ecology of leptospirosis includes complex interactions between the 

environmental reservoir, the animal reservoir, human infection and the bacteria. Most of the 

knowledge built up about leptospirosis and human infection is related to medical 

epidemiology and the animal reservoir. In this thesis, some of the main issues related to the 

dynamics of Leptospira in the environment were explored and tools were developed to 

improve understanding of the dynamics of the bacteria in the environment.  

In order to improve parameter estimation related to the dynamics of the bacteria in the 

environment, some major gaps were identified and techniques to fill those gaps improved. 

The first technique developed was to improve animal abundance estimation using removal 

methods. The improvement of the technique showed that animal abundance could be 

estimated more accurately and precisely while also being robust to intrinsic variation. This 

method will provide a more accurate estimation of the level of environmental contamination 

by rats. 

Although models that estimate bacterial survival in the environment exist, no models 

specifically looked at the survivability of leptospires within the environment. Therefore, a 

survival model was developed that could estimate survival rates of leptospires in microcosms 

designed to replicate natural environments. The results provided very insightful results that 

can help planning the duration and frequency of an environmental intervention.  

Water has been shown to be very relevant for the transmission of human leptospirosis, 

where rainfall has been associated with infections in endemic regions. The last two studies 

developed here explored different hydrological techniques in order to produce fine scale 

environmental risk maps which can be used in disease management.  

The results obtained here demonstrated in particular the role of multidisciplinary 

research. Here, the research produced an improvement of the knowledge in different areas 

such as population ecology, microbiology, hydrology and public health. 
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Chapter 1: Introduction 
 

 

1.1 Infectious diseases and environment 

The global population is growing fast. In the past 50 years, city-dwelling has 

increased exponentially and now more than 50% of the population are living in 

urban centres. Unfortunately, access to safe drinking water and sanitation has not 

followed the rapid urbanisation and the number of inadequate settlements has 

increased: 881 million people were living in urban slums in 2014 (Moreno et al., 

2016). In addition, 32% of the global population still lack adequate sanitation and it 

is estimated that half of the world’s population will be living in tropical environments 

by 2050, which is the region with the highest incidence of infectious diseases on the 

globe (Guernier, Hochberg and Guégan, 2004; Hemingway, 2014). 

As a consequence of population growth there has been an increase in the 

number of infectious diseases, mainly in urban areas. Pathogens are emerging or 

re-emerging, representing a threat to people’s life and wellbeing. This might be 

caused by changes in the environment, such as the expansion of urban areas into 

natural environments, which increases exposure to pathogens and changes the 

dynamics of infectious diseases. Zika, Ebola, SARS and H1N1 are examples of 

emerging infectious diseases that have caused a significant impact due to change in 

the pathogen dynamics and environment in the last decade. In 2012, environmental 

factors could be identified as the cause of 23% of all deaths reported globally, 

mostly in low and middle-income countries hold most of it (Prüss-Ustün et al., 2016).  
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The role of the environment in the dynamics of infectious disease transmission is 

important both because it may be involved in the life cycle of a pathogen and/or may 

be one of the routes of transmission. Annual variations in mean precipitation, and 

annual temperatures, have been shown to be predictors of pathogens species 

distributions based on a global analysis (Guernier, Hochberg and Guégan, 2004). 

The main taxa affected by these patterns have an ‘external’ stage, such as 

helminths, which requires a free-living stage to complete its life cycle. Besides 

explaining global distribution of the pathogens, rainfall and temperature have been 

reported as a risk factor for humans for many infectious diseases. Malaria, cholera, 

dengue and leptospirosis are a few of the examples of diseases that have reported 

this association.  

Climate change predictions are showing that temperature and precipitation are 

rising globally and that tropical environments will expand towards temperate 

environments. This expansion can affect the distribution of the many infectious 

diseases that are related to temperature and rainfall and occur in the tropics. 

Therefore, together with rapid urbanisation and population growth, climate change 

will change the distribution of infectious diseases by increasing its distribution range 

towards temperate climates. Understanding the role of the environment in the 

transmission and life cycle of pathogens can be relevant to inform health authorities 

in the public management of resources to reduce transmission and improve people’s 

life and wellbeing. 

A disease that have been changing its epidemiology due to urbanisation in the 

last 50 years is leptospirosis. Leptospirosis used to affect mostly miners and rice 

plantation workers in rural areas. However, the rapid urbanisation and the growth of 

inadequate settlements have changed its epidemiology and, nowadays, it is 

associated with low-income communities and can be considered an occupational 

disease. The disease is worldwide in its distribution but the places with the highest 
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incidence are tropical countries. The next sections will provide an overview of 

leptospirosis, how the environment is involved in the life cycle of the pathogen, and 

in its disease transmission. 

 

1.2 Leptospirosis 

1.2.1 Epidemiology 

Leptospirosis is a zoonotic disease distributed worldwide and caused by contact 

with the spirochete bacteria Leptospira of which there are over 200 serovars 

described. It was originally considered mostly a rural disease, but rapid urbanization 

and other environmental changes have led to changes in the dynamics of the 

bacteria. In 2003 the World Health Organization (WHO) classified leptospirosis as a 

neglected disease and found it to be more frequent in developing countries with 

poor sanitation conditions (WHO, 2003b). It is estimated that approximately 

1,000,000 cases and 59,000 deaths are caused by disease around the world each 

year (Costa, Hagan, et al., 2015). 

Many animals are considered to be reservoir hosts in which the infection can be 

asymptomatic and pathogenic Leptospira are shed through the urine during the 

entire lifetime of the host (Babudieri, 1958; Thiermann, 1981; Faine et al., 1999). 

Nearly all mammals can carry the bacteria (Thiermann, 1977; Bunnell et al., 2000; 

Levett, 2001), but the natural reservoirs of bacteria threatening humans are often 

rodents (Faine et al., 1999). The bacteria colonize the kidneys of its hosts and are 

eliminated in the urine from infected animals and can persist in the environment, 

potentially, for long periods (between one week and a few months) (Faine et al., 

1999; Trueba et al., 2004b). Humans may be infected through direct contact with an 

infected animal or through an environment contaminated by urine of those animals. 
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Infection might occur through penetration of damaged skin or mucous surfaces 

(Faine et al., 1999). There is no human to human infection as the concentration of 

the bacteria shed by humans is too low for them to be considered a reservoir (WHO, 

2003b). 

Infections in humans by Leptospira do not always result in clinical symptoms; it 

can be asymptomatic or the disease can be considered biphasic with an acute 

and/or a severe phase. Acute leptospirosis symptoms can include fever, severe 

headache, myalgia, nausea, vomiting, chills, malaise and conjunctival hyperaemia 

(Fraga et al., 2015). In severe cases, the clinical symptoms can be jaundice, 

myocarditis, meningitis, renal failure, lethal pulmonary haemorrhage and multiorgan 

failure. Severe cases can be a result of a single illness or a second phase of the 

acute phase. Renal failure (Weil’s disease) and pulmonary haemorrhage cause 

fatality in 30% and 50% of cases, respectively (Faine et al., 1999; World Health 

Organization, 2003). Leptospirosis is often misdiagnosed due the similarity that 

acute symptoms have with other diseases, such as dengue and typhoid fever, which 

results in an underestimated number of cases (WHO, 2003b; Marchiori et al., 2011; 

Fraga et al., 2015). In addition, laboratory diagnose is complex, expensive and time 

consuming because it involves Leptospira culture, PCR techniques, IgM-ELISA and 

microscopic agglutination test (MAT) depending which infection phase patients are 

in (Faine et al., 1999; Levett, 2001; Marchiori et al., 2011; Fraga et al., 2015). 

There are varying patterns of human infection and those patterns depend on the 

ecological setting. In rural settings, the infections are associated with agricultural 

and livestock areas and there are peaks of transmission during rainy seasons (Faine 

et al., 1999; Bharti et al., 2003; McBride et al., 2005). In urban areas the infections 

are associated with poor sanitation, overcrowding and poverty in developing 

countries (A I Ko et al., 1999; Levett, 2001; Vanasco et al., 2008). In developed 
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countries, outdoor recreational exposure and international travel have been 

associated with the infection (Lau et al., 2010a).  

1.2.2 Reservoir hosts 

Rodents have been found to be the main reservoir of the bacteria despite the 

bacteria also occurring in other mammal species.  In urban areas, rats carry the 

bacteria with varied prevalence. High prevalence of infected rats has been reported 

in Baltimore, USA for example, where 65% of rats sampled were infected with the 

bacteria (Easterbrook et al., 2007). In Salvador, Brazil, the prevalence was even 

higher with 80% of the animals infected (de Faria et al., 2008). On the other hand, 

only 11% of the animals were infected in Vancouver, Canada (Himsworth et al., 

2013). Rats are the main source of human leptospirosis in urban areas. Most of the 

human cases come from serovars that is found in species of Rattus (Levett, 2001). 

Other rodent species can also carry the bacteria and serve as a reservoir. For 

example house mice, voles, shrews, muskrats and coypus were also found to be 

infected (Michel et al., 2001; Adler et al., 2002; Turk et al., 2003; Aviat et al., 2009). 

Other mammals can also be a reservoir for leptospirosis, such as livestock animals 

and wild animals. In livestock farming, infected animals can be a risk factor for 

farmers and butchers in developing countries (Levett, 2001). Cattle, sheep, pigs and 

goats are farming animals that have been reported as carrying leptospirosis (Levett, 

2001; Dorjee et al., 2008; Brown et al., 2011; Suepaul et al., 2011; dos Santos et al., 

2012; Martins and Lilenbaum, 2013). Wildlife populations have also been reported 

as reservoirs. In Pantanal, Brazil, 40% of the animals of four wild mammals species 

were positive for the bacteria (Vieira et al., 2016), whereas in Africa, birds and 

reptiles were found positive (Jobbins and Alexander, 2015). Finally, marsupials, bats 

and rodents have been found carrying the bacteria in the Amazon (Bunnell et al., 

2000). 
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Some animals are reservoir for one serovar and susceptible for others. For 

example, canine populations are reservoirs for the serovar Canicola but are very 

susceptible to others serovars (Goarant, 2016). Similarly, for cattle, the common 

serovar is Hardjo and for pigs it is Australis. These associations can be related to 

evolution and adaptation of the parasite which is advantageous to a successful 

establishment in the host population. Other associations are between rats and 

serogroup Icterohaemorrhagiae; and mice and serogup Ballum (Goarant, 2016). 

These associations have helped health authorities to identify the source of human 

leptospirosis in particular cases. 

 

1.2.3 Environment 

Pathogenic leptospires are not able to reproduce in the environment but are able 

to survive from days to months, as elaborated below. Animal reservoirs and humans 

can be infected if in contact with an environment contaminated with the urine of an 

infected animal. However, the role of the environment seems to be more relevant in 

human infections than in the animal reservoir. Minter et al. (2017) modelled the 

routes of transmission between animal reservoirs and identified that 17% of the 

youngest captured animals had leptospirosis. Their results indicate that transmission 

occurs before the animals leave their nests and suggest vertical transmission as one 

of the routes of transmission together with the environment transmission. In 

humans, the environment can be considered its primary source of infection where 

environmental variables are one of the main risk factors related to the disease (see 

section 1.2.3.2).  

The search for the bacteria in the environment started when the epidemiology of 

the disease revealed that the infections were associated with a patient’s occupation 

and were first described in soldiers, miners, and sewer worker and rice planters, all 
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in wet conditions (Faine, 1982; Katz, Manea and Sasaki, 1991; Faine et al., 1999). 

Some epidemics were found in sugar cane cutters, rice harvesters and stable hands 

in cattle stables (Faine et al., 1999). These findings boosted studies to search for 

the presence and distribution of the bacteria in the environment, such as water and 

soil samples, where the infections occurred.  

Baker and Baker (1970) were one of the pioneers to demonstrate the 

pathogenicity of water and wet soil in transmitting leptospirosis. Firstly, they 

identified water and soil samples that were positive for pathogenic leptospires, then 

inoculated them in hamsters and observed the survival of the animals. 

Approximately 30% of the deaths could be attributed to leptospirosis and the 

estimated survival time was around nine days. On the other hand, Henry and 

Johnson (1978) isolated leptospires from water and soil samples, but they were from 

the Biflexa serogroup and they could not infect any of the experimental animals, 

supporting the believe that this serogroup is nonpathogenic. The following sections 

will explore how the environment is related with the bacteria itself in terms of 

persistence and occurrence; and how it is related to the transmission of human 

leptospirosis. 

 

1.2.3.1 Leptospires in the environment 

The search for the bacteria in the environment was inspired from 

epidemiological studies as previously mentioned. Here, a literature review was 

performed in 2016 and was intended to find and describe the occurrence of the 

bacteria in the environment. The literature review was performed using Web of 

Knowledge and the words used were: “Leptospira”; and “Leptospira*Environment”. 

The criteria of inclusion were studies where the presence of the bacteria was 

evaluated in environmental samples, such as water and soil. In total, 21 studies 
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were selected and information was collected in each case such as location, setting 

(urban or rural), year, species group (pathogenic or saprophytic), type of sample 

(rodent, soil or water), total number of samples, proportion of positive samples and 

method used (culture, PCR or qPCR). The results are presented in Table 1.1. 
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Table 1.1: Results of the presence of Leptospira spp. obtained from environmental studies. NA= not available.
Year Area Location Country Species Method Authors (year)

Positive Total % Positive Total % Positive Total % % moisture

1973 rural Illinois USA both NA NA NA 56 101 55.4 NA NA NA NA culture Tripathy & Hanson 1973

1978 natural reserve lake Minnesota (USA) saprophytic NA NA NA 83 126 65.9 15 20 75.0 6.8-86.5 culture Henry & Johnson 1978

1978 natural reserve stream Minnesota (USA) saprophytic NA NA NA 30 30 100.0 NA NA NA NA culture Henry & Johnson 1978

1978 natural reserve bog Minnesota (USA) saprophytic NA NA NA 2 35 5.7 15 34 44.1 27-75 culture Henry & Johnson 1978

1978 natural reserve spring water/soil Minnesota (USA) saprophytic NA NA NA 8 28 28.6 22 37 59.5 25-82 culture Henry & Johnson 1978

1994 NA NA China pathogenic NA NA NA 3 140 2.1 5 102 4.9 NA culture Yang et al . 1994

2006 urban market area Belem (Peru) pathogenic NA NA NA 53 78 67.9 NA NA NA NA qPCR Ganoza et al . 2006

2006 urban living area Belem (Peru) pathogenic NA NA NA 38 114 33.3 NA NA NA NA qPCR Ganoza et al . 2006

2006 rural rural area Padrecocha (Peru) pathogenic NA NA NA 60 236 25.4 NA NA NA NA qPCR Ganoza et al . 2006

2009 rural camps Malasya both NA NA NA 15 144 10.4 15 145 10.3 NA culture/PCR/MAT Ridzlan et al . 2009

2009 urban multiple cities France pathogenic 38 516 7.4 114 151 75.5 NA NA NA NA PCR Aviat et al . 2009

2009 rural areas Guilan province Iran both NA NA NA 40 222 18.0 NA NA NA NA culture Issazadeh et al . 2009

2010 urban Rio de Janeiro Brazil both NA NA NA 3 100 3.0 NA NA NA NA Multiplex/PCR Vital-Brazil et al . 2010

2011 coastal streams NA Hawai pathogenic NA NA NA 87 88 98.9 NA NA NA NA qPCR Viau & Boehn 2011

2013 urban Metro Manila Philipines both NA NA NA 8 39 20.5 NA NA NA NA culture Saito et al . 2013

2013 rural Nueva Ecija Philipines both NA NA NA 13 18 72.2 3 3 100.0 NA culture Saito et al . 2013

2013 urban Fukuoka Japan both NA NA NA 10 16 62.5 3 12 25.0 NA culture Saito et al . 2013

2013 rice crop Tonekabon Iran saprophytic NA NA NA 35 67 52.2 16 36 44.4 NA culture Yassouri et al . 2013

2013 urban multiple sites Malasya both NA NA NA 28 121 23.1 7 30 23.3 NA culture Benacer et al . 2013

2013 pig farm Monteria Colombia pathogenic NA NA NA 2 54 3.7 NA NA NA NA cultue/PCR Calderon et al.  2013

2014 coast Leyte province Philipines pathogenic NA NA NA NA NA NA 11 23 47.8 NA culture Saito et al . 2014

2014 urban/flooding Lublin Poland both NA NA NA 2 40 5.0 0 40 0.0 NA PCR Wójcik-Fatla et al . 2014

2014 urban/non flooding Lublin Poland both NA NA NA 0 64 0.0 0 68 0.0 NA PCR Wójcik-Fatla et al . 2014

2014 rice crop Tonekabon Iran pathogenic NA NA NA 29 67 43.3 9 36 25.0 NA culture Yassouri et al . 2014

2014 rural village Los Rios Chile pathogenic NA NA NA 27 213 12.7 NA NA NA NA PCR Muñoz-Zanzi et al . 2014

2014 farms Los Rios Chile pathogenic NA NA NA 50 357 14.0 NA NA NA NA PCR Muñoz-Zanzi et al . 2014

2014 island St kitts Caribe pathogenic NA NA NA 8 44 18.2 NA NA NA NA qPCR Rawlins et al . 2014

2015 urban Sedayu district Indonesia pathogenic 6 31 19.4 13 32 40.6 13 36 36.1 NA qPCR Sumanta et al. 2015

2015 urban Bantul district Indonesia pathogenic 10 36 27.8 29 52 55.8 38 61 62.3 NA qPCR Sumanta et al. 2015

2015 urban Sewon district Indonesia pathogenic 9 32 28.1 9 35 25.7 13 53 24.5 NA qPCR Sumanta et al. 2015

2012 urban Andaman Island India pathogenic NA NA NA 11 113 9.7 NA NA NA NA PCR Lall et al . 2016

2012 urban Andaman Island India nonpathogenic NA NA NA 50 113 44.2 NA NA NA NA PCR Lall et al . 2016

2012 rural Andaman Island India pathogenic NA NA NA 9 133 6.8 NA NA NA NA PCR Lall et al . 2016

2012 rural Andaman Island India nonpathogenic NA NA NA 58 133 43.6 NA NA NA NA PCR Lall et al . 2016

2014 urban Andaman Island India pathogenic NA NA NA 15 56 26.8 NA NA NA NA PCR Kumar et al . 2015

2014 rural Andaman Island India pathogenic NA NA NA 19 86 22.1 NA NA NA NA PCR Kumar et al . 2015

Water SoilRodents
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The presence of Leptospira in the environment varies between locations, and 

consequently the proportion of positive samples varied in each study. It was 

observed that Leptospira are able to survive in alkaline soil, mud, swamps, streams 

and rivers, organs and tissues of live and dead animals or dilute milk (Faine et al., 

1999). Overall, water and soil samples were taken from streams, nature reserves, 

rice crops, farms, rural areas, urban areas, flooding and coastal areas. The locations 

varied from temperate countries such as the USA, France and Poland to tropical 

countries such as the Philippines, Indonesia and the Caribbean. Saprophytic and 

pathogenic bacteria were examined together or separately, and the technique used 

to detect the bacteria varied from culture methods to DNA amplification methods 

such as qPCR. 

There was a gap of approximately 20 years from the first studies that evaluated 

the presence of the bacteria in water and sample soils until the next study was 

published. This could be a result of the development of more sophisticated 

techniques to detect Leptospira in the environment. Despite culture techniques 

being considered gold standard methods, they are expensive, time consuming and 

the media used are not specific for leptospirosis which increases the number of false 

negatives. When DNA techniques became more accessible, studies that explored 

the occurrence of leptospires in the environment started appearing again. The 

renewal of interest may also have happened because leptospirosis has changed its 

epidemiology. The incidence of human leptospirosis increased and WHO included 

leptospirosis as a neglected disease of general concern in 2003. This raised 

awareness of leptospirosis and studies started to explore and understand patterns 

of infection and how transmission occurs. 

Tripathy and Hanson (1973) were the pioneers who isolated pathogenic bacteria 

from water samples in an agricultural center in Illinoi. They were followed by 
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Alexander et al. (1975) who isolated leptospires from surface water and wet soil in 

the Malaysian jungles. They found a variety of serovars that was consistent with the 

ones identified from soldiers who had leptospirosis at the time. Henry and Johnson 

(1978) found over 92% of positive water and soil samples  in Minnesota when the 

average temperature was 25°C. In addition, the proportion of positive sample was 

higher for soil samples than water where the moisture content of the soil was greater 

than 65%. 

 In general, the proportion of positive water samples varied from 3% in an urban 

area of Rio de Janeiro, Brazil (Vital-Brazil et al., 2010), to 67% and 75% in an urban 

area in Peru and France respectively (Ganoza et al., 2006; Aviat et al., 2009). In 

rural areas, this varied from 3.7% in a pig farm in Colombia (Calderón et al., 2014) 

to 100% in a nature reserve in Minnesota (Henry and Johnson, 1978). The bacteria 

were also able to survive in seawaters. Saito et al. (2014) observed that the bacteria 

that comes from soil to the seawater, survived for four days in seawater whereas the 

bacteria inoculated straight in seawater survived for three days only. Their results 

suggest that the soil increased the chance of the bacteria surviving in seawater. 

Fewer studies have evaluated the presence of the bacteria in the soil, and only 

one study looked at how the moisture of the soil is related with positive samples. 

The proportion of positive soil samples in urban areas varied from 0% in Poland 

(Wójcik-Fatla et al., 2014) to 62% in Bantul district, Indonesia (Sumanta et al., 2015) 

,whereas, in rural areas, it varied from 10% in rural camps in Malaysia (Ridzlan et 

al., 2010) to 75% in a stream in Minnesota (Henry and Johnson, 1978). Henry and 

Johnson (1978) were the only investigators who observed that soils with higher 

moisture had the highest proportion of positive samples. 

Another factor that affects the survival of leptospires in the environment is pH. 

Okazaki and Ringen (1957) observed that the bacteria survived in the environment 

with pH ranging from 6 to 8.4. Similarly, Diesch et al. (1969) observed that the 
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bacteria survived in creek water at a pH ranging from 6.9 to 8.7. None of these 

studies has quantified the survival of the bacteria in the environment, and until now, 

the rate at which the cells died in the environment is unknown. 

The results on the occurrence of pathogenic bacteria in soil and water samples 

indicates that these environments can be considered a reservoir for the bacteria. 

The association between outbreaks of leptospirosis and floods and/or heavy rain 

(see section 1.2.3.2) could plausibly be a result of the presence of the bacteria in the 

environment that increases exposure to the disease. Most of the research, if not all, 

has focused on finding the bacteria in different environments. However, 

understanding the survival and transportation of the bacteria in the environment can 

be crucial to understanding its distribution and how the environmental risk of 

transmission of leptospirosis can be estimated.  

 

1.2.3.2 Environmental risk factors in human leptospirosis 

Human leptospirosis was previously considered an occupational and rural 

disease, as mentioned, where the first description of cases came from farmers, 

soldiers, miners and rice plantations. Baker (1965) described a leptospirosis 

outbreak between soldiers in Malaysia and identified that most of the individuals had 

been to the forest a drunk water that might have been contaminated. In Britain, most 

of the cases reported between 1933-48 were farmers/fisher workers, coal miners, 

sewer workers and soldiers (Waitkins, 1986). Additionally to the importance of 

occupation, recreational activities were also related to occurrence of infection, 

whereby canoeists were reported having leptospirosis (Waitkins, 1986). Nowadays, 

human leptospirosis cases have increased and it is also frequently reported in urban 

environments. However, environmental risk factors are reported in both urban and 

rural environments. From a combination of epidemiological, cohort (transversal and 
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longitudinal) and case-control studies, risk factors have been identified and related 

with socioeconomics and environmental characteristics (A I Ko et al., 1999; 

Barcellos and Sabroza, 2001a; Sarkar et al., 2002; Maciel et al., 2008; Reis et al., 

2008; Ko, Goarant and Picardeau, 2009; Oliveira et al., 2009; Hagan et al., 2016).  

Lower levels of income and education are the most important socioeconomic 

characteristics affecting the infection (Barcellos and Sabroza, 2001a; Reis et al., 

2008; Oliveira et al., 2009). Environmental risk factors varied and included variables 

such as contact with mud, elevation, flooding, open sewage and litter less than ten 

meters from residences. Such links have been found with asymptomatic infection 

and with severe cases of the disease (A I Ko et al., 1999; Sarkar et al., 2002; Reis et 

al., 2008; Oliveira et al., 2009; Hagan et al., 2016). 

Hagan et al. (2016), in a four year prospective study, identified that leptospirosis 

transmission in a urban slum in Salvador, Brazil, was associated with poverty, 

geography and climate. Illiteracy, the level of rat infestation, contact with mud, and 

elevation were all related with the infections throughout the four years follow-up. 

Distance to an open sewer and household income were related to primary and 

secondary infections in the same urban slum, suggesting that environmental setting 

and behaviour contributes to exposure to Leptospira (Felzemburgh et al., 2014a). 

Similarly, in a urban slum in Rio de Janeiro, Brazil, the environmental risk factors 

associated with leptospirosis were solid waste accumulation and coverage, flood 

risk areas, proximity to sewer and proximity to rainwater drainage (Barcellos and 

Sabroza, 2001a; Sarkar et al., 2002; Reis et al., 2008). However, these 

environmental risk factors are imperfect proxies for the presence of the bacteria and 

do not represent the intensity of environmental contamination. Flooding and heavy 

rain are also associated with infections in endemic and non-endemic regions. They 

are responsible for outbreaks and for the seasonality on the number of cases 

observed in endemic regions. Ko et al. (1999) observed that rainfall was responsible 
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to an increase on the number of cases in Salvador, Brazil where the maximum 

number of infections occurred two weeks after the heaviest rainfall of the year. In 

Malaysia, leptospirosis is endemic, and flooding have been associated with human 

cases (Garba, Bahaman, Khairani Bejo, et al., 2017). Studies have shown this 

relationship with between rainfall and leptospirosis cases in another endemic 

regions such as Thailand and tropical islands (Goarant et al., 2009a; Desvars et al., 

2011a; Chadsuthi et al., 2012a). 

An outbreak in Philippines in 2009 occurred after a flooding event where 178 

people died after a typhon caused a major flood in the city of Metro Manila 

(Amilasan et al., 2012a). Similarly, unusual epidemics of leptospirosis and 

melioidosis occurred after a typhon reached Taiwan on the same year (Su, Chan 

and Chang, 2011). Furthermore, outbreaks of leptospirosis, also have been 

associated with rainfall in many other countries such as Australia (Smythe et al., 

2002), Brazil (Barcellos and Sabroza, 2001a; Blanco and Romero, 2015), France 

(Socolovschi et al., 2011), Guyana (Dechet et al., 2012), Hawaii (Gaynor et al., 

2007), Honduras (Naranjo et al., 2008), India (Sehgal, Sugunan and Vijayachari, 

2002; Jena, Mohanty and Devadasan, 2004; Pappachan, Sheela and Aravindan, 

2004), Malaysia (Garba, Bahaman, Khairani-Bejo, et al., 2017), Nicaragua (Zaki and 

Shieh, 1996; Schneider et al., 2012), the Philippines (Amilasan et al., 2012b; SUMI 

et al., 2017), Thailand (Chadsuthi et al., 2012b), United States (Stern et al., 2010).  

 

1.2.4 Geographical distribution of leptospirosis 

Costa et al. (2015) estimated global morbidity and mortality of leptospirosis 

where the estimations shown that the regions with the highest incidence of the 

disease are Southeast Asia, Oceania and Caribbean (Figure1.1). Those areas also 

have the highest annual average rainfall on the globe (Fick and Hijmans, 2017) as 
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shown in Figure 1.2, from which it is clear that water is playing an important role in 

human infection – another reason  for environmental studies indicating 

environmental levels of contamination are important both to understand and to 

predict the environmental risk of infection. 

 
Figure 1.1: Figure extracted from Costa et al. (2015) showing the estimated morbidity of leptospirosis 
based on systematic literature review. The colour gradient represents number of cases per 100,000 
population where white represent cases from 0 to 3, yellow from 7 to 10, orange from 20 to 25 and red 
over 100. 

 
Figure 1.2: Annual average of precipitation (mm) data between 1960-1990 obtained from WorldClim 
repository - http://worldclim.org/version2 (Fick and Hijmans, 2017). Map author: Gabriel Ghizzi Pedra. 

 

http://worldclim.org/version2
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Human leptospirosis does not only vary globally. Distributions of cases within a 

city or a country are also found to be geographically clustered. For example, at a city 

level, Gutiérrez & Martínez-Vega (2018) identified six clusters of incidence of 

leptospirosis in Colombia, South America, and identified that anomalous rainfall 

were associated with elevated number of cases. There was evidence that 

agriculture was a common factor in municipalities that have higher incidence of 

leptospirosis (García-Ramírez et al., 2015). At a district level, an uneven distribution 

of leptospirosis cases was observed in New Caledonia (Goarant et al., 2009a), 

Futuna, south pacific (Massenet et al., 2015), Republic of Serbia (Svirčev et al., 

2009), Thailand (Suwanpakdee et al., 2015), Siri Lanka (Robertson, Nelson and 

Stephen, 2012), Mexico (Sánchez-Montes et al., 2015), American Samoa (Lau et 

al., 2012), Nicaragua (Schneider et al., 2012), China (Dhewantara et al., 2018) and 

Trinidad (Vega-Corredor and Opadeyi, 2014). Even at a very small scale, 

geographical variation have been observed. In Brazil, Hagan et al. (2016) observed 

geographical variation on the risk of infection at a very small scale, within a low-

income community in Salvador, Brazil.  

All those studies have found association with environmental variables, such as 

rainfall and flooding, which also supports the idea that water is an important risk 

factor at many scales. Furthermore, Gracie et al. (2014) evaluated the effect of 

different risk factors on the incidence of leptospirosis at different scales. They found 

an association between the proportion of areas prone to flood and leptospirosis at a 

local scale, whereas the percentage of densely urbanized areas and the number of 

households in slums were associated at a regional level. The use of geographically 

distributed data helps to identify high risk areas that can further be used to target 

actions to control and prevent leptospirosis incidence.  
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1.2.5 Conceptual model of the bacteria in the environment 

To understand the mechanisms of disease transmission, it is necessary to know 

the life cycle of the pathogen and the determinants of its occurrence. There is still a 

lack of information on the determinants of bacterial occurrence and transport in the 

environment. We have shown the role of the environment in human leptospirosis as 

well as in its reservoir host, but knowledge of what happen with the bacteria in the 

environment is still very basic and is growing. In this section, a conceptual model 

that represents the dynamics of the bacteria in the environment is proposed and this 

thesis will explore key compartments of this conceptual model. 

Based on what has been shown here and further discussion with experts on 

leptospirosis, a conceptual model was developed. This conceptual model is a 

simplification of the complex interaction between the bacteria and the environment 

and it is shown in Figure 1.3.  

 
Figure 1.3: Conceptual model representing the dynamics of the bacteria in the environment. The boxes 
represent the location where the bacteria occur, called compartments. Blue arrows represent movements 
between compartments. Red and black arrows are the way the bacteria leave the system – by mortality 
(dark) or human infection (red). Lambda represents a reservoir of the bacteria external to the system, 
often a population of rats. 
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The bacteria get into the environment through shedding from an animal 

reservoir, represented by lambda. This quantity depends on the reservoir’s 

abundance and the shedding rate, which will indicate the level of local 

contamination. Leptospirosis shedding rate varies depending on the animal 

reservoir. Rats, Rattus norvegicus, shed approximately 5.7 × 106 cells/ml of urine 

whereas large mammals such as cattle shed less, 1.7x105 cells/ml (Barragan et al., 

2017). Costa et al. (2015) estimated that a population of 82 rats would shed daily 

more than 9.1 x 1010 leptospires. However, the population size of the reservoir often 

remains unknown and in studies that attempt to incorporate abundance, this has 

either been assumed to be the total number of animals trapped (Costa, Wunder, et 

al., 2015) or relative abundance has been used (Himsworth et al., 2013). These 

attempts do not represent absolute abundance of a population and therefore the 

level of contamination cannot be properly estimated.  CHAPTER 2 of this thesis will 

demonstrate a new method to estimate absolute abundance, applicable especially 

to rats in urban environments, and show the difficulties of current techniques on 

estimating animal abundance. 

The central assumption of the model in Figure 1.3 is that there are three 

environmental states where the bacteria is present: soil surface, soil sub-surface 

and water bodies. Saito et al. (2013), for example, observed Leptospira at 3cm 

depth after three drought days at a location that was a dried rain puddle previously. 

In addition, the same place was positive for Leptospira five months later. This 

observation indicates a role for the sub-surface as a reservoir of the bacteria in the 

environment, but there is still very little information about this environmental state. 

The bacteria leave each state based on a survival rate or human infection 

represented by the black and red arrows, respectively, in the figure. Neither the 

quantitative nor the qualitative nature of the survival curve of the bacteria is known, 

and in a collaboration between the University of Liverpool and Yale University, 
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microcosms experiments were developed to estimate the survival rate of the 

bacteria in different environments such as spring water, soil, mud and sewage. The 

results of these experiments are shown on CHAPTER 3 where a statistical survival 

model was developed. 

It is evident that water plays an important role in leptospirosis transmission, 

since most of the environmental risk factors are water related variables. There are 

peaks in the number of cases every year in endemic areas and they have been 

associated with rainfall. In addition, outbreaks are reported after extreme weather 

events, such as typhoons, El Niño events and heavy rainfall. Therefore, the 

mechanisms behind bacteria transportation between the compartments in the 

environment are driven by hydrology, where runoff carries the bacteria from soil to a 

water body and flooding will do the opposite (blue arrows). The survival of the 

bacteria is very short at the soil surface as the bacteria is exposed to ultraviolet 

radiation and dehydration. Hence, there is no movement from the surface to the 

water body and the bacteria pass to the sub-surface via diffusion. 

Hydrology has not been explored extensively in leptospirosis studies. An 

investigation by Vega-Corredor & Opadeyi (2014) was the only study that looked at 

how hydrology can be associated with human leptospirosis. Their research was 

based in Trinidad and Tobago, two islands in the Caribbean region and they 

collected information on leptospirosis cases at a community level (~250 

communities). It found that areas that are more likely to be flooded are the ones 

where more cases of leptospirosis were observed. CHAPTER 4 will develop 

methodologies, exploring how it is possible to use hydrology to create more 

informative maps related to bacteria contamination, and in CHAPTER 5 the 

association between these maps will be validated with surveillance data on 

leptospirosis in Salvador, Brazil. 
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1.3 How hydrology can help infectious disease 

dynamics 

 

As a basic definition, hydrology is a discipline focused on the movement, 

distribution and quality of water. Some of the areas within Hydrology are interested 

in water flow, which can be looked at different scales. The process behind water 

flow can involve precipitation, topography, evapotranspiration, soil saturation and 

groundwater movement, all of which will influence the amount of water flowing or 

accumulating in certain areas. However, water flow will primarily depend on the rain 

that falls on the ground and the amount of that rain that becomes runoff. Two 

different classes of mathematical models have been developed to understand the 

water flow – lumped and distributed models. Lumped models work at a catchment 

level and do not include finer-scale spatial variation, whereas distributed models 

work at a fine scale and therefore rely on the spatial resolution of the data captured. 

Waterborne diseases, as the name suggests, rely on water for pathogen 

transportation and/or infection. They are called waterborne because the main route 

of transmission occurs through water. Examples of waterborne diseases include the 

historical cholera that is estimated to have killed over one million people in Europe in 

the 19th century, typhoid fever, diarrheal diseases, schistosomiasis, dengue, 

cryptosporidiosis, SARS (Severe Acute Respiratory Syndrome) and leptospirosis. 

Hydrological models have been integrated with dynamic modelling of waterborne 

diseases. The assumption behind the use of hydrology is that water can mobilize 

pathogens, hence, modelling water flow can indicate the routes of pathogen 

contamination and distribution. Medema & Schijven (2001) modelled the 

transportation of Cryptosporidium and Giardia in the Netherlands to identify the 
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origin of contamination. It was observed that most of Cryptosporidium contamination 

came from wastewater treatment plants, whereas, Giardia had most of 

contamination coming from untreated wastewater discharge and sewer overflow. 

Pathogen load were also addressed by Ferguson et al. (2007) and Mahajan et al. 

(2014) where their aim was to identify the sources of contamination. 

Additionally, the assumption of pathogen transportation was incorporated by 

using river networks.  Bertuzzo et al. (2008) integrated river pathways to model an 

outbreak of cholera in South Africa in 2000. They were able to show how the 

predictive power of the tool and how the river pathways played an important role in 

controlling the direction of the infections. Subsequently, Mari et al. (2012) showed 

that long-range human movement was able to explain the unexplained inter-

catchment movement of the pathogen. For schistosomiasis, the hydrological 

transport was integrated in the vector compartment. Channel flows were key to 

predict infection intensity and in periods of absence of flow, the risk was significantly 

reduced (Remais, Liang and Spear, 2008). The ephemerality of rivers we also 

shown to be associated with schistosomiasis cases in West Africa (Perez-Saez et 

al., 2017). 

Hydrological models can also help predict abundance of vectors. Shaman et al. 

(2002) used a dynamic hydrological model to predict mosquitoes’ abundance. They 

used a combination of historical meteorological data, topography, soil and 

vegetation information to produce wetness map of the surface. From that, they 

identified potential swamp and fresh water hence and predicted mosquitoes’ 

abundance. 

 

1.4 Aims 
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In summary, the ecology of leptospirosis includes complex interactions between 

the environmental reservoir, the animal reservoir, human infection and the bacteria. 

All those compartments have an important role to play in transmission, but most of 

the knowledge built up about leptospirosis and human infection is related to 

epidemiology and the animal reservoir. Therefore, the main aim of this thesis is to 

develop new tools related to the dynamics of the bacteria in the environment. It is 

hoped that the tools developed here will facilitate environmental research and 

contribute to understanding the main environmental drivers of human leptospirosis.  

Furthermore, this thesis aims to enhance the application of hydrology in 

infectious disease dynamics by exploring hydrological techniques and associating 

results with disease outcomes. Understanding these relationships will help to 

produce fine scale environmental risk maps, which can be used in disease 

management. 

 

1.5 Note on collaborative research and data 

collection 

 

This project is part of a multidisciplinary project with three institutions involved, 

Oswaldo Cruz Foundation (Fiocruz, Brazil), University of Liverpool (UK) and Yale 

University (USA). The project is called “Eco-epidemiology of urban leptospirosis” 

and the main aim is to determine the main drivers of human infection. There are 

data collection in all compartments related to the infection, reservoir, humans and 

environment. Not all data used in this thesis was collected by the author. The data 
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collection on rodents were performed by a team, including the author, based in 

Salvador, Brazil, where Fiocruz was responsible for the data collection and quality 

control. Laboratory analysis from chapter 3 and 5 were performed at Yale University 

and the author was not involved.  
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Chapter 2: A new approach to making 

multiple estimates of animal abundance using 

removal methods 
 

2.1 Introduction 

A key interest for ecologists is in estimating the population size of organisms. 

This is important for monitoring population dynamics over time and in managing 

ecosystems and making conservation decisions (Soulé, 1987; He and Gaston, 

2000; Wilson et al., 2004; Lyons et al., 2008). Also, by following variation in the 

population size of an organism over time, it may be possible to obtain further 

demographic information such as survival and migration rates (Seber, 1986; 

Borchers, Buckland and Zucchini, 2002). However, population ecologists face 

difficulties in the process of estimating population size, including constraints on effort 

and costs, animal detection, and invalid assumptions made by estimation methods 

(Seber, 1986; Schwarz and Seber, 1999; MacKenzie and Manly, 2001). 

The crucial issue in estimating animal abundance is the detectability of individual 

animals. Various statistical models have been developed to estimate the probability 

of detection in order to estimate the abundance of the population (Leslie and Davis, 

1939; Moran, 1951; Zippin, 1958; Otis et al., 1978; Seber, 1982; MacKenzie and 

Manly, 2001; Borchers, Buckland and Zucchini, 2002; Davis et al., 2016). Capture-

recapture methods are widely used in wildlife research, where individuals are tagged 

and then released into to the population for subsequent possible recapture (Schwarz 

and Seber, 1999). These methods do not impact on population size, but problems 

may occur with animals not retaining marks, or when capture and marking is 

associated with increased mortality. In addition, recapture rates need to be high 
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enough to generate reliable estimates (Schwarz and Seber, 1999) and the methods 

are typically costly in terms of time and effort. 

A simpler alternative is to use methods that are based on removing individuals 

from the population (Seber, 1986; Borchers, Buckland and Zucchini, 2002; Dorazio, 

Jelks and Jordan, 2005; Dorazio et al., 2008; St. Clair, Dunton and Giudice, 2012). If 

the same trap effort is used in each removal occasion, it is expected that the same 

proportion of individuals will be removed from the population (Schwarz and Seber, 

1999). Hence, the sizes of samples and their rate of decrease can be used to infer 

the probability of capture and abundance of the population. But these methods are  

prone to error when the number of individuals caught in each occasion does not 

decrease consistently (Schwarz and Seber, 1999). 

Monitoring abundance may be necessary in pest control or conservation, 

because of the need to know whether the population is declining. Also, monitoring 

invasive species before, during and after control may help to improve action plans to 

minimize the impact of that species (Blossey, 1999; Davis et al., 2016). For these 

and other reasons, serial estimates of abundance may be required. Alternatively, it 

may be necessary to estimate the abundance of a species at different sites at the 

same time – for example in case-control population studies.  

This paper focuses on an improvement to the removal method of estimating 

animal abundance to facilitate its use. The motivation of this study arose from a 

need to estimate the true population size of the rodent reservoir for human disease, 

Rattus norvegicus. For rats, there is difficulty of consistently observing a decrease 

over time in the number of rats captured per unit effort, as assumed by removal 

models. Note particularly that despite these difficulties, removal methods may be the 

only option when working in pest control or on a reservoir for infectious disease, 

where release of a captured animal into the population is typically not acceptable. In 

many cases, for example in infectious diseases studies, removing and killing 
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animals may also provide data for other parameters (transmission, pathology) as 

well as for the prevalence of an infection. 

Making multiple related estimates of abundance may, however, provide a means 

of overcoming shortcomings in individual data sets in cases where the use of 

removal methods is unavoidable. These methods typically provide an estimate of 

abundance by considering probability of ‘capture’, that is, the probability that an 

animal will enter a trap (or whatever capture method is used). Abundance estimates 

are inaccurate or impossible to make if estimates of the probability of capture are 

inaccurate or impossible. Abundance is likely to vary from time to time and from 

place to place, in which case monitoring that variation is likely to be an objective of 

the study, but the probability of capture can be assumed in many cases to remain 

constant, since this will reflect intrinsic qualities of the study species, the habitat and 

the field methods. The method developed here, therefore, combines data from 

multiple similar sites in order to derive a consensus estimate of the probability of 

capture with the aim of overcoming shortcomings in individual small data sets – and 

then applies this probability to each site in turn to generate individual abundance 

estimates. This new method was applied to data collected as part of a study of the 

dynamics of leptospirosis in rats, Rattus norvegicus (Berkenhout 1769), in the 

tropical urban setting of Salvador, Brazil (Kajdacsi et al., 2013; Costa et al., 2014, 

2016; Costa, Wunder, et al., 2015; De Oliveira et al., 2016; Hagan et al., 2016; 

Panti-May et al., 2016; Richardson et al., 2016; Walker et al., 2017). 

 

2.2 Materials and methods 

2.2.1 The Borchers et al. (2002) method 
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 The removal method was first proposed by Leslie & Davis (1939) to estimate 

the absolute abundance of the black rat, Rattus rattus, in Sierra Leone. Moran 

(1951) and Zippin (1958) then improved the Leslie & Davis model using Maximum 

Likelihood Estimation (MLE) to estimate total abundance under explicitly declared 

assumptions, namely: (1) the population is closed (no migration into or out of the 

area of trapping); (2) the probability of an individual being caught is the same for all 

individuals; and (3) the probability of capture is the same for all trapping occasions 

of a survey. Borchers et al. (2002) subsequently included one more assumption, 

namely (4) captures are independent between occasions. 

Two parameters are estimated by MLE using the notation in Borchers: total 

abundance (N) and probability of capture (p). The likelihood is based on the 

following joint probability distribution for the numbers, 𝑛𝑠, of animals removed on 

sampling occasions 𝑠 = 1, 2, … , 𝑆: 

𝐿(𝑛|𝑝, 𝑁) = ∏ (
𝑁𝑆

𝑛𝑠
) 𝑝𝑛𝑠(1 − 𝑝)𝑁𝑠−𝑛𝑠

𝑆

𝑠=1

 

eqn 1 

where, 

n = (𝑛1, 𝑛2, … , 𝑛𝑠) 

p = probability of capture; 

𝑁𝑠 = 𝑁1 − ∑ 𝑛𝑗
𝑆
𝑗<𝑠  : population size immediately before sampling occasion s = 1,2,…,S. 

 The model parameters are 𝑁 and 𝑝, where 𝑁 = 𝑁1, the initial population size, 

is the parameter of interest. The likelihood of N and p is a product of the likelihood 

contributions from each removal occasion s. Estimation of N by maximizing this 

likelihood is referred to here as the individual method. 
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Figure 2.1 illustrates how the estimation procedure works; if the same effort is 

applied to remove individuals on each removal occasion, then the expected number 

of individuals removed at each occasion will decrease. The predicted cumulative 

number of removals (Figure 2.1) will reach an asymptote when most of the 

individuals have been removed and the estimated number of individuals at occasion 

one (N1) will be the height of the curve. When the number of animals caught does 

not decrease over time, estimation becomes problematic because the set of 

admissible combinations of N and p becomes more complex. Underestimation can 

also arise when there is heterogeneity in the probability of capture between each 

removal occasion (Seber, 1982; Borchers, Buckland and Zucchini, 2002).  

 
Figure 2.1: Cumulative removal used to estimate animal abundance. Dots are the observed data and 
solid line is the predicted cumulative curve. The height of the dashed represents the abundance 
estimated for the population. 

 

 

2.2.2 Pooled method 
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In contrast to this individual method, we now propose a new, ‘pooled method’ in 

which we assume, additionally to (1) to (4) above, that: (5) all individuals have the 

same probability of being caught in any survey. The likelihood now is a joint 

probability distribution for the numbers, 𝑛𝑖,𝑠, of animals removed on sampling 

occasions 𝑠 = 1, 2, … , 𝑆 in each survey 𝑖 = 1, 2, … , 𝐼: 

𝐿(𝒏|𝑝, 𝑵) = ∏ ∏ (
𝑁𝑖,𝑆

𝑛𝑖,𝑠
) 𝑝𝑛𝑖,𝑠(1 − 𝑝)𝑁𝑖,𝑠−𝑛𝑖,𝑠

𝑆

𝑠=1

𝐼

𝑖=1

 

eqn 2 

where, 

n = (𝑛1,1, 𝑛1,2, … , 𝑛1,𝑠 , 𝑛2,𝑠 , … , 𝑛𝑖,𝑠) 

p = probability of capture; 

𝑁𝑖,𝑠 = 𝑁𝑖,1 − ∑ 𝑛𝑖,𝑗
𝑆
𝑗<𝑠  : population size in each survey i = 1,2,…,I immediately before 

sampling occasion s = 1,2,…,S. 

Now, the likelihood of N in each survey i is the product of the likelihood for each 

removal occasion s with a common probability of capture p. Note that if the number 

of surveys is one (I=1), we recover the individual method.  

 

2.2.3 Extension to non-constant probability of capture 

Heterogeneity in probability of capture can generate biased animal abundance 

estimates if it is not taken into account (Seber, 1982; Borchers, Buckland and 

Zucchini, 2002). Borchers et al. (2002) extended the individual method by allowing 

the probability of capture to vary between surveys. In their example, the probability 

of capture can be a function of the catch-per-unit-effort (CPUE), a relative 

measurement that reflects the effort used on each removal occasion s. Here, the 
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effort is assumed to have a linear effect on the log-odds of capture, so the larger the 

effort, the larger the probability of capture. Other functions can be assumed. For 

example, an exponential function could be used if the relationship with effort 

reaches a plateau corresponding to a proportion of “untrappable” animals. 

Therefore, for the individual method, the probability of capture ps is now a 

function of the effort (ls) used in each removal occasion s: 

𝑝𝑠 = 1
(1 + 𝑒−𝛼𝑠)⁄  

eqn 3 

𝛼𝑠 = 𝛽0 + 𝛽1 ∗ 𝑙𝑠 

eqn 4 

where the parameters  𝛽0 and 𝛽1 are to be estimated. 

 

Similarly, the probabilities of capture pis in the pooled method would depend on 

the effort (𝑙𝑖,𝑠) used in each removal occasion s of a survey i.  

𝑝𝑖,𝑠 = 1
(1 + 𝑒−𝛼𝑖,𝑠)⁄  

eqn 5 

𝛼𝑖,𝑠 = 𝛽0 + 𝛽1 ∗ 𝑙𝑖,𝑠 

eqn 6 

2.2.4 Simulation and validation of the model 
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To examine the performance of the model, the trapping scheme of rats from 

Salvador, Brazil (Panti-May et al., 2016) was used as a basis for choosing 

appropriate population sizes and probabilities of capture. Thus, perfect and 

imperfect datasets (see below) with four consecutive occasions of trapping were 

simulated, grouped into sets of ten surveys that could be independent surveys 

varying in time and/or space but from within the same region. The characteristics of 

the simulated datasets were based on a previous study by Borchers et al. (2002) 

and on results of applying the individual method to the trapping data from Salvador.  

Borchers et al. (2002) performed simulations to validate the individual method 

and concluded that accurate estimation depends on both the size of the population 

and the probability of capture. Their estimates were inaccurate with small 

populations (N<250) or with lower probabilities of capture (p<0.3). However, with 

p>0.5, the probability of capture fell within the 95% confidence interval of its 

estimate in 90% of the cases, and this did not change significantly when p was 

increased.  When the individual method was applied to data from Salvador, the 

results typically led either to a bad performance of the algorithm or to large 

confidence intervals. The average estimated population size was 48 individuals with 

a mean probability of capture of 0.27.  

Hence, for the simulations, the value for population size was rounded to 100 

individuals, and two different types of ‘imperfect’ dataset were created. One, called 

‘imperfect removal’ incorporated a reduction in the numbers of captured individuals 

in each removal occasion with a small but constant probability of capture in each 

survey (p=0.24). The other, called ‘messy’ included random variation around this 

same probability of capture, normally distributed, with standard deviation of 0.1.  

‘Perfect’ datasets were also created with a probability of capture of 0.5.  The 

simulated data were randomly sampled from a binomial distribution of size, N, equal 

to the population size minus the cumulative number of animals removed on any 
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previous occasions, sampled according to the probability of capture defined in each 

type of dataset.  

Each of the three types of dataset, with five independent sites/surveys and four 

removal occasions per survey, was reproduced 2,000 times, producing 10,000 

estimates in total per dataset. All analyses used the R software (R Core Team, 

2014). See supporting information for a description of the R code (S2 Appendix).  

Both methods, individual and pooled, were applied to the same sets of simulated 

data of the three types (perfect, imperfect and messy). The results from each 

method were first examined on the basis of the performance (satisfactory or 

otherwise) of the optimization algorithm, specifically checking whether the 

optimization process converged to a global maximum of the likelihood surface. Once 

performance in this regard had been checked, it was possible to evaluate which 

estimations had been successful by examining their accuracy, defined as whether 

the true value was within the confidence interval of the estimate. Also, precision of 

each accurate estimate was evaluated, defined as the width of its confidence 

interval.  

 

2.2.5 Application of the pooled method to Salvador data 

Estimates obtained by the individual and pooled methods were also compared 

for rat population size in Salvador, Brazil (Costa, Wunder, et al., 2015; Panti-May et 

al., 2016). Briefly, the sampled area was divided into three valleys of the Pau da 

Lima district, an urban slum community (Felzemburgh et al., 2014b). Within each 

valley, three surveys of trapping (also called events) were performed, each over four 

consecutive days, with intervals of a month between them, so there are replicate 

estimates of abundance in both space and time. Trapping sites were chosen 

according to a stratified random scheme but, primarily because of the non-
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compliance of households, some points were not trapped. Thus, the valleys had 23, 

38 and 39 trapping points, respectively. Surveys were pooled by valley and a 

probability of capture for each valley was obtained. The three valleys are separated 

by more major thoroughfares, and genetic data have shown that from 70% to 90% 

of migrations occur within each valley. The streets appear to be serving as barriers 

to impede movement (Kajdacsi et al., 2013; Richardson et al., 2016). Hence, we 

assumed that each valley had a closed population of rats during the study period. 

For both the individual and pooled methods, the rat abundance in each valley 

and event was estimated assuming first homogeneity then heterogeneity in the 

probability of capture, and models for the two cases were compared. In this case, 

sample effort was assumed to influence the probability of capture and was defined 

as the total number of traps minus 50% of traps that were closed (had been 

triggered) but contained no rats. This sample effort is a standard method that 

accounts for traps where rats had a limited chance of being trapped due to 

disturbance of some traps. A best model, with constant or non-constant probability 

of capture, was selected based on the best fit (log-likelihood) given its complexity 

(number of parameters) by using likelihood ratio tests (LRTs). LRTs use the fact  

that in comparing two nested models, if the simpler of the two models is correct,  

twice the difference in maximized log-likelihoods between the two follows a chi-

squared distribution with degrees of freedom equal to the difference in the number 

of parameters (Neyman and Pearson, 1928a, 1928b; Wilks, 1938; Lewis, Butler and 

Gilbert, 2011).  

In addition, standardized residuals were plotted against the fitted values to check 

for any systematic lack of fit of the model. For the individual method this was not 

possible as there were only four data points in each case. 
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2.2.6 Ethical statement 

The ethical approval the field data was issued by the ethics committee for the 

use of animals from Oswaldo Cruz Foundation, Salvador, Brazil (protocol number 

003/2012), which is in accordance to the guidelines of the American Society of 

Mammalogists for the use of wild mammals in research and the guidelines of the 

American Veterinary Medical Association for the euthanasia of animals. In addition, 

the protocol was also approved by Yale University’s Institutional Animal Care and 

Use Committee (IACUC), protocol number: 2012-11498. 

 

2.3 Results 

For the simulated data, the optimization process to maximize the likelihood was 

very successful for perfect datasets using both methods (individual and pooled) with 

all optimizations converging. However, a difference in performance of the algorithm 

between the methods was apparent when the data were not perfect. Approximately, 

33% and 18% of attempts to estimate abundance did not converge for the individual 

method in messy and imperfect datasets, respectively, whereas for the pooled 

method, the corresponding Figures were only 4% and 0.008%, respectively (Table 

2.1). 

Table 2.1: Summary of the performance of the models for each dataset produced. 

 
MESSY IMPERFECT PERFECT 

 
Individual Pooled Individual Pooled Individual Pooled 

Number of sites 10000 10000 10000 10000 10000 10000 
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Flat or did not 

converge 
3316 (33%) 380 (4%) 1797 (18%) 8 (0.008%) 0 (0%) 0 (0%) 

Accurate 3655 (55%) 4880 (51%) 6943 (85%) 8056 (81%) 8203 (82%) 8151 (82%) 

 

For those cases where estimation was possible, Figure 2.2 shows the 

distribution of estimated population sizes and probabilities of capture for each type 

of dataset using the two methods. For the perfect datasets, using the pooled method 

estimates ranged from 85 to 137 individuals, and 82% were accurate, i.e. the 95% 

confidence interval contained the true population size. For the individual method, the 

range of the values was between 85 and 125, and 82% were accurate. Regarding 

the distribution of probability of capture, the pooled method gave narrower range of 

values, than the individual method; estimates ranged between 0.30 and 0.60 and 

between 0.26 and 0.72, respectively. 
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Figure 2.2: Distribution of the estimations using individual and pooled methods for each dataset (Messy, 
Imperfect removal and Perfect). Light grey bars represents accurate estimations whereas dark grey bars 
are innacurate. Small graphs inside are the distribution of the probability of capture for each method. 

 

For imperfect removal, the pooled method estimates of the true population size 

ranged from 66 to 154, with 81% accurate, whereas the individual method estimates 

ranged from 56 to 144 with 70% accurate. The probability of capture ranged from 

1.70 x 10-5 to 0.53 for the individual method and 0.1 to 0.39 for the pooled method. 

For the messy datasets, the pooled method had a range of 8 to 221 with 49% 

accuracy, whereas for the individual method the range was from 5 to 156 individuals 
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with only 37% accuracy (Figure 2.2). Finally, the probability of capture ranged from 

5.41 x 10-6 to 1 for the individual method and between 9.78 x 10-5 and 0.56 for the 

pooled method. 

In terms of the precision of the accurate population size estimates, for the 

perfect dataset, the pooled method had a mean confidence interval width was 7.0 

for the pooled method and 10.6 for the individual method. (Figure 2.3). A similar 

pattern is seen with the other two datasets, where imperfect removal had means of 

35.0 and 89.9 for the pooled and individual methods (Figure 2.3), respectively, while 

for the messy dataset the corresponding values were 39.7 and 82.7 (Figure 2.3). 

 
Figure 2.3: Boxplot of the size of the confidence intervals (precision) for the accurate estimations for all 
datasets. The small graph for perfect dataset is a zoom in of the same graph. 

 

2.3.1 Salvador data 

The trapping campaigns in Salvador caught 282 rats in three surveys covering 

the three valleys (hence nine campaigns overall). Some data had poor patterns of 

removal, in which the pattern of fewer animals being removed in successive days of 

trapping was not seen (Table 2.2). For the pooled method, abundance was 
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estimated in all cases, always with a bounded confidence interval and there was no 

pattern showing any lack of fit of the model when looking at the residual plots 

(Figure 2.1 in S1 Appendix). This was observed for three of the nine surveys for the 

individual method; in the others, no confidence interval could be estimated or the 

upper bound was infinite. None of the models with CPUE were selected as the best 

model (Table 2.1 in S1 Appendix). 

Table 2.2: Results of capture data and the abundance estimated (NOBSERVED) with individual and pooled 
method for Salvador data. 

  
VALLEY 4 VALLEY 1 VALLEY 2 

 
Event 1 2 3 1 2 3 1 2 3 

Capture 

data 

Day 1 20 15 10 9 4 11 12 3 6 

Day 2 15 14 5 13 6 4 8 8 5 

Day 3 16 4 15 9 1 4 8 9 3 

Day 4 11 9 8 6 0 1 7 0 3 

NOBSERVED
a 62 42 38 37 11 20 35 20 17 

Pooled 

method 

NESTIMATED
b 123 83 75 45 13 24 55 31 26 

CIlower
c 90 60 54 39 11 21 42 23 20 

CIupper
d 251 171 154 55 17 30 98 56 48 

pe 0.16 0.35 0.22 

Individual 

method 

NESTIMATED
b 113 58 10684 70 11 20 59 32 22 

CIlower
c 80 47 67 46 NA NA 41 22 18 

CIupper
d 453 113 Inf Inf NA NA Inf Inf 83 
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pe 0.18 0.27 0.00 0.17 0.58 0.57 0.20 0.21 0.30 

a Total numbers of animals caught; 

b Estimated animal abundance; 

c Lower confidence interval; 

d Upper confidence interval. 

e Probability of capture 

 

2.4 Discussion 

We have proposed an improvement to the removal method for estimating 

abundance of a closed population, either assuming a constant probability of capture 

between surveys (p), or a varying probability of capture which can be described by a 

suitable non-linear regression model. We evaluated the performance of the model in 

three different situations: variation in p (messy datasets), a constant but relatively 

small p (imperfect removal), and a constant but higher p (perfect removal). These 

datasets were created to reflect a range of possible field scenarios. Such field 

studies can be divided into those that do and those that do not have an 

approximately constant p between surveys, and those where p is high (and numbers 

trapped generally decline between trapping occasions) and those where p is low 

(and numbers often fluctuate), creating four categories of studies in all. Of these, 

studies where p is variable but generally high are clearly more suited to the 

application of the original, individual method, because it avoids the additional 

assumption that p either is constant or can be assumed to vary according to a 

suitable non-linear regression model. 

We found that even for ‘perfect’ data sets where the individual method is 

expected to perform well, the pooled method gave a marginal improvement 

precision, with a mean confidence interval width of 7.0 compared to 10.6 for the 

individual method. In contrast, when p was constant but low (imperfect removal), in 
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which case  the individual method is known to perform poorly (Borchers, Buckland 

and Zucchini, 2002), the improvement in performance  by using  the pooled method 

was greater: almost 100% of estimations converged, compared with 81% for the 

individual method, and 81% were accurate compared with  69%.  In addition, the 

mean confidence interval width was 35.0 compared with 89.9. 

Finally, when p was variable (messy data sets), the improvement in performance 

by using the pooled method was even greater: 96% of estimations converged 

compared to 67%, 49% were accurate compared to 37%, and the mean confidence 

interval width was 39.7 compared to 82.7. Note, however, that these measures of 

performance must be considered together. For example, in this last case, the mean 

confidence interval of 82.7 applies only to the 37% of estimates which were accurate 

(many were relatively precise but inaccurate), and these metrics fail to take account 

of the 63% of cases where the estimation procedure did not converge. Similarly, the 

range of the estimates of probability of capture using the pooled method were 

narrower and closer to the true value in all three types of dataset. However, the 

bigger difference in their distribution is for the messy dataset, where the distribution 

of p using the pooled method narrowed significantly in comparison with individual 

method.  

Overall, therefore, the simulations indicate that for wide range of scenarios the 

pooled method is likely to perform better than the individual method. On the other 

hand, in cases where the data sets are all well behaved (a steady fall over time in 

the numbers trapped) and there are reasons to be cautious in adopting a regression 

model for the probability of capture, it will still be preferable to use the individual 

method. 

While analyzing field data on rodent populations in a Brazilian urban slum 

setting, we could not evaluate accuracy, since the true abundances are not known. 

Nonetheless, it is notable that several patterns apparent in the simulations are again 
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evident. With the pooled method, all campaigns had their abundance estimated, all 

confidence intervals were bounded, and the lower bound was always greater than 

(or in one case equal to) the number caught. In these senses, all estimates were 

informative. With the conventional individual method, on the other hand, this was 

true for only three of the nine campaigns, whereas in the others either the estimation 

procedure did not converge, or the upper confidence interval was infinite. 

The number of sites/surveys to be pooled should be considered cautiously. If the 

data are too sparse (too much inconsistency in animals caught between 

sites/surveys), the algorithm might not find an admissible combination of N and p. In 

the present study, the data were originally produced by pooling ten sites/surveys, 

but 20% of the attempts to estimate the abundance failed to converge for messy 

data sets. Therefore, the data were rearranged and the number of pooled 

sites/surveys was reduced to five, such that the estimation procedure converged in 

96% of the cases for messy data sets. 

As noted above, the main issue with abundance estimation using the removal 

method is the difficulty in validating some of the assumptions of the model. 

Attempting to overcome this, several authors have assumed that there is variation in 

each removal occasion driven by the effort used to remove individuals from the 

population, basing estimates on catch-per-unit-effort (CPUE) or sampling effort (E) 

(Seber, 1982; Lancia et al., 1996; Borchers, Buckland and Zucchini, 2002). The new 

method presented here incorporates variable sampling effort in the analysis, 

provided this can be modelled using available information, for example trapping 

effort or time of year, that might affect the probability of capture in particular 

contexts.  This extends the applicability of the method to other situations where 

there are variations in catchability and the cause of these can be identified. For 

example, in bat surveys the effect of the moon on the detectability of the animals is 

well known (Morrison, 1978; Mello, Kalko and Silva, 2013; Saldaña-Vázquez and 
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Munguía-Rosas, 2013). The phase of the moon should therefore be considered as 

affecting the probability of capture in the abundance estimation of bats. However, for 

the Salvador data, there was no support for assuming heterogeneity in effort (Table 

2.1 in S1 Appendix); a model with variable sampling effort did not significantly 

improve the fit to the data. 

Overall, our results provide support for the use of the pooled method even in 

circumstances where the probability of capture p is high and the individual method 

would be expected to perform satisfactorily. On the other hand, if p is high but also 

variable for identifiable reasons (for example, different environments), then the 

individual method may be preferred. The main benefits of using the pooled model 

are likely to arise where p is low, and/or variation in p can be modelled using 

available covariate information. Our simulation results also suggest that the pooled 

method is more robust to stochastic variation in p. For our application, all pooled 

surveys took place in the same valley in Pau da Lima. As stated previously, much of 

the variation observed with real trap datasets like these may be random variation in 

the number of animals trapped rather than a reflection of underlying differences in 

the probability of capture. In such cases, the pooled method provides estimates of 

abundance when the individual method would be, at best, inefficient. Given that 

such data are often difficult and expensive to obtain, we believe that this improved 

method will often prove valuable. 
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2.7 S1 APENDIX 

Table 2.1: Results of the likelihood ratio test of a model with catch-per-unit-effort for each valley in 
Salvador, Brazil. In all cases the simple model was considered the best model to estimate the abundance 
of rats. 

Valley Model type l(θ) k p 

4 
simple -30.92 4   

effort -30.27 5 0.254 

1 
simple -22.89 4   

effort -21.80 5 0.140 

2 
simple -26.75 4   

effort -26.60 5 0.584 

l(θ) is the maximum log-likelihood of the model; k is the number of parameters of the 

model; p is the p-value. 

 

 

Figure 2.1: Standardized residuals of the estimations of rat abundance from three valleys in Pau da 
Lima, Salvador, Brazil. The estimations were produced using pooled method. 
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Chapter 3: Survival analysis of Leptospira spp. 

in microcosms 
 

3.1 Introduction 

Leptospirosis is a disease caused by a spirochete bacterium of the genus 

Leptospira. It is a worldwide disease that affects over one million people each year, 

of which more than 50% occurs in poor and developing countries (Costa, Hagan, et 

al., 2015). Its epidemiology has changed over the recent years in that it used to be 

considered a rural disease but now is more often seen as an occupational urban 

disease associated with poverty. All mammals can get infected, but the main 

reservoirs of the disease are rodents that shed the bacteria into the environment 

through urine with humans getting infected through the contact with an environment 

contaminated by this urine (Albert I Ko et al., 1999).  

Once the bacteria are released into the environment, there are certain conditions 

that can affect their survival such as pH, salinity and water content. Leptospira can 

survive in the environment from hours to months. Saito et al. (2013), for example, 

observed the presence of the bacteria in a puddle for over five months and found 

that the bacteria survived in wet soil during dry days and appeared in the surface 

water after the rain. In water, experiments have shown that the bacteria can survive 

up to several months, whereas in the soil the longest lifespan reported was 193 

days (Chang, Buckingham and Taylor, 1948; Smith and Self, 1955; Kirschner and 

Maguire, 1957; Okazaki and Ringen, 1957; Smith and Turner, 1961; Hellstrom and 

Marshall, 1978; Khairani-Bejo et al., 2004; Saito et al., 2013, 2014; Andre-Fontaine, 

Aviat and Thorin, 2015). Despite all the interest in understanding the survival 

conditions of the bacteria in the environment, all those studies used culture 

techniques or direct animal inoculation which is time consuming, insensitive and 
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prone to errors such as the overgrowth of autochthonous microbiota. In addition, 

those methods are qualitative and the quantitative survival of Leptospira remains 

unknown.  

Determining how long a parasite and/or microbe can persist in their environment 

has an important role in studies of the dynamics of diseases, mainly because this 

can help to predict areas with high risk for infection and to determine the appropriate 

duration and frequency of an intervention. The determination of the process behind 

cell inactivation (death) started with Chick (1908) where the first model for survival 

curves was proposed. His work is based on the first order of a chemical reaction, 

which assume that population survival depends on the initial concentration and a 

rate of decay. The product of this reaction through time on a logarithm scale is a 

straight line and it is called a first order kinetic model.  

Nowadays, it has been observed that the proportion in which cell die is not a 

linear function, and thus this process is not always driven by kinetic order (Peleg 

and Cole, 1998a). The kinetic order, for example, does not cover situations in which 

the cells are not affected equally by the environment and die at a different rate 

(Peleg and Cole, 1998a). Hence, different models have been developed to 

represent different curves which are widely used in food microbiology (Peleg and 

Cole, 1998b; Xiong et al., 1999; Geeraerd, Herremans and Van Impe, 2000; 

Nevecherya et al., 2005). Their main interest is to know how long it takes for a 

microbe population to decrease to zero under certain conditions. 

There are four commonly observed types of survival curves (on semi-log plots): 

linear curves (Figure 3.1, curve A), curves with a shoulder (Figure 3.1, curve B), 

curves with a tail (biphasic curves) (Figure 3.1, curve C and D) and sigmoidal curves 

(Figure 3.1, curves E and F). In some systems, there is a time lag before the 

population starts to react to a certain condition and these are described by curves 

with a shoulder. In addition, some population have resistant cells, which have a 
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different decay rate, or residual cells that persist for longer. These are represented 

by biphasic curves. When both situations can happen, this is represented by a 

sigmoidal curve (Xiong et al., 1999).  

 

Figure 3.1: Graph extracted from Xiong et al. (1999) representing the different types of bacterial survival 
curves. 

 

From each survival curve, a variety of models have been developed. For 

example, biphasic curves can be formed because the bacteria population can be 

divided into two distinctive groups, more and less resistant cells, and a model with 

two linear curves was adapted from the first order kinetic model. On the other hand, 

the biphasic shape can also occur because dead cells aggregate, creating a 

microclimate which increases the survival of the remaining cells, and there is a 

different model for this situation (see Xiong et al. (1999) for a review of the survival 

models). However, many models still rely on the assumption of knowing the shape 

of the survival curve and only the rate of decay is estimated. To overcome some of 

these issues, Weibull functions have been used, where the shape of the survival 

and the decay can be estimated together. Weibull survival functions can estimate 

most of the shapes in Figure 3.1 when combined with a long survival sub-population 

term but it does not consider D and F curves where there is a slow decay. Here in 

this chapter, the quantitative survival curve of the bacteria Leptospira will be 
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addressed by developing a survival model where the shape of the survival will be 

estimated together with its decay rate. 

Understanding the survival of Leptospira in the environment is particularly 

important because this can provide insights into the role of the environment in 

driving both reservoir and human infection. It is well known from epidemiological 

studies that water and other environmental variables such as distance to sewers are 

important risk factors for leptospirosis (A I Ko et al., 1999; Sarkar et al., 2002; Reis 

et al., 2008; Oliveira et al., 2009; Lau et al., 2016; Zhao et al., 2016). Therefore, 

knowing the survival of Leptospira in the environment can indicate how long after 

shedding it is possible to find live bacteria, which are the ultimate risk factor for 

leptospirosis.  

 

3.2 Materials and methods 

3.2.1 Microcosms 

To perform a survival experiment of Leptospira, microcosms were created where 

the bacteria was inoculated into different matrices and their concentration evaluated. 

Two species of Leptospira were used in the microcosms, Leptospira interrogans 

serovar Copenhageni strain Fiocruz L1-130 (Nascimento et al., 2004) and 

Leptospira biflexa serovar Patoc strain Patoc1 (Babudieri, 1961). The former is a 

pathogenic bacteria isolated from an infected person in Salvador, Brazil. The latter is 

a non-pathogenic (saprophyte) isolated from the environment. A total of six different 

matrices, which came from soil and water samples, were created to inoculate the 

bacteria. Soil samples were a sandy loam soil (60% sand, 35% silt, 5% clay and 

3.17% organic matter) collected in an urban slum in Salvador (Bahia, Brazil) and a 

loam soil (40% sand, 35% silt, 25% clay and 12.3% of organic matter) collected in 



79 
 

New Haven (Connecticut, US). To create mud conditions, soil moisture was 

increased to 35% and 45%, respectively. The water samples were a bottled spring 

water obtained from a local retailer, and sewage collected from the New Haven 

wastewater facility after use of a bar screen (large object filter) and grit removal. 

Finally, some of the soil and water samples were sterilized in order to see the role of 

the community of other microbes in the persistence of the bacteria in the 

environment. 

Each microcosm was prepared by distributing either 40 g of soil or 40 mL of 

water or sewage in sterile Pyrex glass beakers. The surface of the microcosm was 

spiked by dispersing droplets of Leptospira spp. suspensions to achieve a 

concentration of 106 cells/g or mL and thoroughly mixed. After spiking, microcosms 

were thoroughly homogenized, sealed with plastic paraffin film to protect them from 

external inputs and prevent evaporation, and placed in a humid thermostatic 

chamber at 29°C under dark conditions. Samples of 1 g or 1 mL were withdrawn 

from each microcosm at 0, 1, 2, 4, 6, 7, 12, 16, 21 and 28 days, for a total of 10 

sampling time points. A growth control was carried out using EMJH medium instead 

of the environmental matrix. All microcosms were conducted in three independent 

biological replicates for L. interrogans serovar Copenhageni and in two for L. biflexa 

serovar Patoc. 

 

3.2.2 DNA extractions and bacteria quantification 

The DNA extraction from soil samples and sewage were based on Power Soil™ 

DNA Isolation Kit (Mobio), with minor modifications. Spring water and EMJH 

samples were extracted using a bead beating method with CTAB and 

phenol/chloroform/isoamyl alcohol. For the PMA assays, spring water was extracted 

with the automated Maxwell® 16 Cell DNA Purification Kit (Promega). 
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Two techniques were used to quantify the bacteria concentration, qPCR and 

PMA-qPCR, representing the quantification of DNA and intact cells respectively. 

qPCR: The quantification of DNA consists of running a standard curve on each 

plate which is used to transform quantification cycles (Cq) into concentrations 

(genome equivalents (GE)/reaction). In addition, non-template controls were 

randomly included in all rows of each plate to discard the presence of contaminating 

DNA. All negative controls were negative in all cases. For the description of the 

marker used, calibrators and inhibitors, please see Casanovas-Massana et al. 

(2018) and its supplementary material in the appendix. 

PMA-qPCR: The ability of propidium monoazide (PMA) to selectively amplify 

DNA from membrane-intact L. interrogans cells in spring water and Brazilian soil 

was investigated in the original manuscript. This technique was used to quantify the 

concentration of intact cells as a more accurate way to consider only infective cells. 

See Casanovas-Massana et al. (2018) for a fuller description of the protocol used. 

 

3.2.3 Statistical modelling 

3.2.3.1 Model 

Following Peleg and Cole (1998) and van Boekel (2002) we used a Weibull 

distribution to model the survival time, T, with the following survival function: 

𝑆(𝑡; 𝜙, 𝑘) = 𝑃(𝑇 > 𝑡) = exp (− (𝑡
𝜙⁄ )

𝑘

) : 𝑡 ≥ 0 

(1) 

The parameter 𝑘 determines the shape of the survival curve, whilst  𝜙 defines 

how stretched the shape is; specifically, 𝜙  is the expectation (average value) of T, 

which following from equation 1 and if we consider a closed population of cells with 
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initial concentration 𝜇0 at time t=0 and measure the concentration of surviving cells 

at a subsequent time t, the expected concentration at time t is 𝜇𝑡 = 𝜇0𝑆(𝑡; 𝜙, 𝜅). 

However, in our experiments, we observed that a proportion of the cells appeared to 

survive well beyond the maximum follow-up time. We therefore extended the model 

to 𝜇𝑡 = 𝜇0(𝛼 + (1 − 𝛼)𝑆(𝑡; 𝜙, 𝜅)), where 𝛼 is the proportion of long-term survivors. 

We now consider a set of experiments, i=1,..,r,  the ith of which is characterized 

by the values of a set of covariates 𝑥𝑖. In each experiment we measure the 

concentration at a sequence of times 𝑡𝑗: 𝑗 = 1,2, … , 𝑚.  Our model for the complete 

set of experiments becomes: 

  

𝜇𝑖𝑗 = 𝜇0 ∗ (𝛼𝑖 + (1 − 𝛼𝑖) ∗ (𝑆(𝑡𝑗 ; 𝜙𝑖 , κ)) 

(2) 

In equation (2), the effects of the covariates on the values of 𝜙 and 𝛼 were 

explored to determine if there were any differences in survival between species, 

treatment and method of quantification by specifying log-linear and logistic models 

for 𝜙 and 𝛼 respectively, hence: 

                                                          𝜙𝑖 = 𝑒𝑥𝑖
′𝛽                                                        

(3) 

and 

                                                        𝛼𝑖 = 1
(1 + 𝑒−𝑥𝑖

′𝛾)⁄                                         

 (4) 

where 𝑥𝑖 is the design matrix for the explanatory variables and 𝛽 and 𝛾 its 

coefficients related to 𝜙 and 𝛼, respectively.  
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Finally, we assume that observed concentrations 𝑌𝑖𝑗 are independent and 

Normally distributed, 

𝑌𝑖𝑗 = 𝜇𝑖𝑗 + 𝑍𝑖𝑗    𝑖 = 1, … , 𝑟; 𝑗 = 1, … , 𝑚 

(5) 

where 𝑍𝑖𝑗, the observation level residuals, are Normally distributed 𝑍𝑖𝑗~𝑁(0, 𝜏2) 

with variance 𝜏2. 

 

3.2.3.2 Log-likelihood 

The log-likelihood for the complete set of data contains contributions of two 

kinds:  measured values 𝑦𝑖𝑗 and results recorded only as below-detection, 

representing values yij < d.  Let  𝑓(𝑦; 𝜇, 𝜏2) denote the probability density, and 

𝐹(𝑦; 𝜇, 𝜏2)  the cumulative probability distribution, of the Normal distribution mean 𝜇 

and variance 𝜏2. Then, the log-likelihood for the complete set of parameters 𝜃 =

(𝛽, 𝛾, 𝜇0, 𝜏2) is: 

𝑙(𝜃) = ∑ ∑ 𝑙𝑖𝑗(𝜃)

𝑚

𝑗=1

𝑟

𝑖=1

 

(6) 

where: 

for observations   𝑦𝑖𝑗 , 𝑙𝑖𝑗(𝜃) = log 𝑓(𝑦; 𝜇𝑖𝑗, 𝜏2); 

for observations 𝑦𝑖𝑗 < 𝑑 , 𝑙𝑖𝑗(𝜃) = log 𝐹(𝑑; 𝜇𝑖𝑗, 𝜏2); 

 

The parameters were estimated by optimizing the log-likelihood function, using 

the optim() function in the R software (R Core Team 2014). 
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3.2.3.3 Confidence intervals 

95% Confidence intervals for individual parameters (𝛽, 𝜆, 𝜇0, 𝑘) were calculated 

as  

 

𝜃 ± 1.96𝑆𝐸(𝜃) 

(7) 

where SE denotes the square root of the variance of 𝜃 as given by the 

information matrix.  To calculate 95% confidence intervals for 𝜙𝑖 we calculate the 

variance of log(𝜙) as 𝑣 = 𝑥𝑖
′𝑉𝑎𝑟(�̂�)𝑥𝑖, calculate limits a and b as 𝑥𝑖

′�̂� ± 1.96√𝑣,  

then transform a and b to give the confidence interval (𝑒𝑎 , 𝑒𝑏). Similarly, to calculate 

95% confidence intervals for 𝛼𝑖, we  calculate 𝑣 = 𝑥𝑖
′𝑉𝑎𝑟(𝛾)𝑥𝑖, calculate limits a and 

b as 𝑥𝑖
′𝛾 ± 1.96√𝑣, then transform a and b to give the confidence interval 

(1
(1 + 𝑒−𝑎)⁄ , 1

(1 + 𝑒−𝑏)⁄ ). 

 

3.2.3.4 Checking assumptions 

A plot of standardized residuals against fitted values was inspected to check the 

fit of the model to the data. The plot (Figure 3.2) indicates a reasonably good fit in 

that the residuals do not deviate away from zero (more than two units) and do not 

show a clear trend in any direction.  
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Figure 3.2: Standardized residuals vs fitted values. The red dots are the fitted values for below detection 
limit samples. 

 

3.2.3.5 Model selection 

The selection of the covariates in the model was based on a Likelihood ratio test 

(LRT), whereby twice the difference between the log-likelihoods of two nested 

models is compared with critical values of a chi-squared distribution with degree of 

freedom equal to the difference in the number of parameters in the two models. 

Firstly, the main effect of each covariate was tested against a null model with no 

covariates. Then, interactions were tested against the selected main-effects-only 

model. 

 

3.3 Results 
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For the quantification of the survival of Leptospira in microcosms, there were 

initially four candidate covariates, species (L. interrogans and L. biflexa), medium 

(spring water, soil, mud and sewage), treatment (sterile and non-sterile) and 

quantification method (qPCR and PMA-qPCR). The model selection showed that 

treatment did not contribute significantly to the model fit. Hence, the final model only 

included species, medium and quantification method (Table 3.1). 

Table 3.1: Candidate models with effects of the covariates on 𝜶 and 𝝓 and Likelihood Ratio test (LR) 
showing the best model. The final model selected is highlighted in bold. 

 

Log 

Likelihood k* df** LR 

Null model -739.74 5 - - 

Treatment -738.08 7 2 0.19 

Species -736.08 7 2 0.03 

Method -716.83 7 2 <0.0001 

Medium -496.32 15 10 <0.0001 

Medium -496.32 15 - - 

Medium+species -458.25 17 2 <0.0001 

Medium+Method -265.09 17 2 <0.0001 

Medium+Method -265.09 17 - - 

Medium+Method+Species -201.46 19 2 <0.0001 

Medium+Method+Medium*Method -257.89 25 8 0.072 

Medium+Method+Species -201.46 19 - - 

Medium+Method+Species+Medium*Method -196.59 27 8 0.28 

* Number of parameters;  

** Degrees of freedom is based in the difference between the number of parameters of each pair of comparison. 

 

The shape of the survival curve (k) was 0.75±0.03 and the initial concentration 

(𝜇0) was 5.673±0.041 log10 units, 2.3log10 units different from the concentration 
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spiked. The estimated rate of decay (ϕ) and the residual population (α) for each 

experiment are shown in Table 3.2. 

Table 3.2: Modelled decay parameters (ϕ and α) and 95% confidence intervals of L. interrogans and L. 
biflexa markers in spring water, soil, mud and sewage microcosms. Estimates with intervals that overlap 
are not significantly different at the 95% significance level. 

    ϕ LCI UCI α LCI UCI 

L.
 in

te
rr

o
g

a
ns

 

q
P

C
R

 

Spring Water 51.45 38.44 68.86 0.90 0.80 0.95 

Brazilian Soil 16.34 13.16 20.29 0.08 0.03 0.17 

Brazilian Mud 14.11 11.05 18.02 0.10 0.05 0.18 

US Soil 4.33 3.07 6.11 0.21 0.14 0.29 

US Mud 5.67 4.13 7.80 0.28 0.21 0.35 

Sewage 2.23 1.66 2.99 0.18 0.13 0.23 

P
M

A
-q

P
C

R
 Brazilian Soil 8.20 7.43 9.05 0.00* 0.00 1.00 

Spring Water 25.82 22.46 29.69 0.00* 0.00 1.00 

L.
 b

if
le

xa
 

q
P

C
R

 

Spring Water 42.16 27.43 64.81 0.96 0.92 0.98 

Brazilian Soil 13.39 9.21 19.46 0.21 0.11 0.37 

Brazilian Mud 11.56 7.94 16.85 0.25 0.15 0.39 

US Soil 3.55 2.42 5.20 0.45 0.39 0.51 

US Mud 4.65 3.15 6.87 0.54 0.48 0.60 

Sewage 1.83 1.32 2.53 0.40 0.36 0.44 

* Not significantly different from 0. 

The concentration of markers (based on qPCR) for both L. interrogans and L. 

biflexa decreased in all the microcosms after spiking (Figure 3.3). No differences 

were observed between decay rates (ϕ) of L. interrogans and L. biflexa markers in 
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spring water or soil. In spring water, Leptospira markers presented an almost flat 

decay curve (ϕ = 51.45 and 42.16 for L. interrogans and L. biflexa, respectively) in 

which the DNA concentration had decreased by approximately 0.5 log10 units at the 

end of the experimental time. In addition, more than 90% of the cells survived 

beyond the time of the experiment in spring water (α = 0.9 and 0.96 for L. 

interrogans and L. biflexa, respectively). In contrast, the decay in soil microcosms 

was significantly faster than spring water (ϕ = 16.34 and 13.39, for L. interrogans 

and L. biflexa, respectively), with a rapid decrease during the first 8 days (Figure 

3.3; Table 3.2).  

 

 

 

Looking at the survival curves and their estimated parameters for mud and soil, 

the decay parameters ϕ were not statistically different from each other (Figure 3.4; 

Figure 3.3: Fate of L. interrogans (A) and L. biflexa (B) markers measured by qPCR in microcosms of 
spring water (squares), soil (circles) and EMJH media (triangles). The solid line represents the modeled 
decay curve in spring water and the dashed line in soil. Open symbols represent data points for which at 
least one observation was below the limit of detection. Error bars indicate standard deviations. The 
horizontal dashed line indicates limit of detection in soil samples. 
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Table 3.2). However, the decay rates (ϕ) of microcosms with Brazilian medium were 

significantly slower for L. interrogans and L. biflexa in comparison with US. 

Conversely, the proportion of long term survivors (α) was significantly higher for both 

species in US soil and mud than in Brazilian soil and mud, except for L. interrogans 

in Brazilian soil that showed no difference (Figure 3.4; Table 2). In addition, the 

proportion of survivors between the two species were different on US soil and mud 

microcosms, where the proportions were equal to 0.21 and 0.28 respectively for L. 

interrogans and, 0.45 and 0.54 for L. biflexa (Table 3.2). 
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In sewage microcosms, Leptospira markers showed a rapid decay (ϕ = 2.23 and 

1.83 for L. interrogans and L. biflexa, respectively), significantly faster than the 

Figure 3.4: Persistence of L. interrogans and L. biflexa measured by qPCR in microcosms of 
Brazilian soil (A and B), US soil (D and E) and sewage (F and G). In soil microcosms, circles 
denote soil adjusted to field capacity and squares denote mud soils. Sewage samples are 
represented by triangles. The solid line represents the modeled decay curve in field capacity soil 
and the dashed line in mud soils. Open symbols represent data points for which at least one 
observation was below the limit of detection. Error bars indicate standard deviations. The 
horizontal dashed line indicates the limit of detection. 
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decays observed in other media (Figure 3.4E and 4F; Table 3.2). In addition, it was 

observed that L. interrogans markers could only be consistently quantified above the 

limit of detection for eight days (Figure 3.4E) as opposed to L. biflexa, which was 

detected until the end of the experiment (Figure 3.4F). This result is consistent with 

the estimated α which indicated that a larger proportion of L. biflexa markers 

persisted beyond the experimental time than L. interrogans (Table 3.2). 

There was a bigger difference in the concentration of the bacteria depending on 

the method used in spring water and Brazilian soil microcosms, in that while the 

decay rate based on qPCR were very slow (ϕ = 51.45 and 16.34 respectively), the 

PMA-qPCR showed that most of the intact cells died very quickly with ϕ = 25.82 and 

8.20 respectively (Figure 3.5; Table 3.2). There was no effect of treatment on the 

survival of the bacteria, so the curves shown on Figure 3.4 are the same for sterile 

and non-sterile. 
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3.4 Discussion 

Here in this chapter, the survival of Leptospira was described in a fully 

quantitative way for the first time using microcosms experiments. Despite being a 

laboratory-based experiment, the conditions simulated a real situation, warm 

weather, and the experiments were standardized to make the different sets of 

Figure 3.5: Persistence of L. interrogans measured by qPCR and PMA-qPCR in sterile and non-
sterile microcosms. (A and B) Spring water. (C and D) Brazilian soil. Squares denote measurements 
by qPCR and circles by PMA-qPCR. The solid line represents the modeled curve for qPCR 
measurements and the dashed line for PMA-qPCR ones. Open symbols represent data points for 
which at least one observation was below the limit of detection. Error bars indicate standard 
deviations. The horizontal dashed line indicates the limit of detection. 
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results comparable. Hence, the same initial concentrations of the bacteria, volume 

of the medium and temperature were used in all experiments. The role of different 

medium and species was mainly addressed, but also the method used to quantify 

the bacteria concentration (qPCR and PMA-qPCR) and the role of autochthonous 

microbial communities were explored. The quantification method was designed to 

discriminate between live and dead cells as a proxy for infective cells, whereas, 

sterile and non-sterile microcosms were created to explore the role of the 

autochthonous microbial communities in the survival of the bacteria. The first 

observation was lack of net growth of the bacteria in all microcosms which makes 

the environment not a habitat but a temporary carrier of the pathogenic bacteria. 

The results from these experiments showed that the survival curves, for the two 

species of Leptospira, are biphasic with a tail, where the concentration decreased 

very quickly within the first couple of weeks then slowed down, and a proportion of 

individuals survived beyond the time of the experiment. The shape parameter of the 

Weibull function was lower than one (kappa=0.78), which means that the hazard 

decreased with time. Despite the mechanisms behind this long survival not being 

explored here, the formation of biofilms and cell aggregation in water have been 

shown and could potentially decrease hazard by creating a microenvironment and 

protecting the cells form dying  (Trueba et al., 2004a; Ristow et al., 2008). 

Alternatively, for other species different processes have been proposed such as 

population regulation via quorum-sensing, predation and nutrient limitation (Tanaka 

et al., 1999; Easton et al., 2005). 

Looking at the rates in which the cells are dying, it was observed that species of 

Leptospira survive differently depending on the environment. The concentration of 

the bacteria went down to the limit of the detection of the technique. However, these 

results are consistent with what is observed in the soil and sewage from an urban 

slum in Brazil, where the Brazilian soil was collected. Soil and sewage samples 
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have concentrations of pathogenic bacteria fluctuating around the limit of detection, 

depending on the location and the time of the day they were sampled (Casanovas-

Massana, Costa, et al., 2018). 

Two different techniques to detect the bacteria into the environment was used, 

qPCR and PMA-qPCR which the former only detect DNA and the later detects intact 

cells. The results for spring water shown a big difference on the decay estimated by 

qPCR and PMA-qPCR where live cells and dying quicker but the DNA is remaining 

intact. When looking to the differences in the soil microcosm, qPCR is 

overestimating the decay but the shape is the same. Despite PMA-qPCR be more 

close to represent alive cells, this technique is more labor intensive and expensive 

to use whereas qPCR have more resources available. qPCR can still be 

recommended to use in soil samples but in spring water samples, it is not a good 

technique to capture the survival of Leptospira.  

Studies on the epidemiology of leptospirosis have shown that water is involved 

in human infection. For example, rainfall, flooding and sewage are widely seen as 

risk factors for infection (Reis et al., 2008; Oliveira et al., 2009; Desvars et al., 

2011b; Felzemburgh et al., 2014b; Zhao et al., 2016). However, the results from the 

microcosms demonstrate that the survival of the bacteria in the sewage is very 

short, where more than a half of the population had died off within two days. This 

result might indicate that the infections could occur from either bacteria recently 

shed into environment from rats, from the runoff that washes off the soil 

contaminated, or a combination of both.  

A key element of the model developed here was the use of samples below the 

detection limit, where previous studies have either removed samples below the 

detection limit from their data analysis or collected survival data only until they reach 

their detection limit (Kaden et al., 2018; Li et al., 2018). This can be crucial for 

survival analysis as a sample below the detection limit indicates the least observable 
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concentration at a time t. Here, the likelihood function of a sample that is below the 

detection limit was based on the cumulative probability function, where the 

probability of that sample being below or equal to the detection limit is maximized 

given the parameter values. Hence, this feature in the model makes the use of all 

data available.  This added power provides further support for the parameter 

estimations. 

Two species of Leptospira were used in the experiments, a saprophyte and a 

pathogenic species, with the expectation that the free-living species would either not 

decrease in abundance or decrease much more slowly than pathogenic species. 

However, the results observed here showed that L. biflex died at a very similar rate 

to L. interrogans. The decay rate of L. biflexa was slightly lower than L. interrogans, 

but the main difference was the proportion of long-term survivors, where a higher 

proportion of individuals survived beyond the time of the experiment for L. biflexa 

(Table 2). The saprophytic species used here was isolated from the environment 

decades ago, which could be one of the reasons for the fast decay, as the 

individuals might have lost their ability to survive in the environment. Alternatively, it 

could be that the environment’s carrying capacity is low, around the detection limit, 

and the usual concentration of the bacteria is lower than the one used in the 

microcosm. The concentration defined here, 107 cells/g or ml, was designed to 

mimic the concentration of pathogenic bacteria that the rats shed into the 

environment, which might be different for the usual concentration of saprophytic 

species. Therefore, the concentration of L. biflexa might be decreasing until it 

reaches the environment’s carrying capacity, where they would remain at that 

concentration, and here it has been shown as a higher proportion of long-term 

survivors. 

This is the first evidence of the survival of the bacteria performed in a way that 

allowed key hypotheses to be tested. Microcosms were shown to be a useful 
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technique to represent the environment, although different settings could be 

explored such as adding variation in temperature, as the temperature is not the 

same throughout the day in the environment. Also, the long-term survivors are 

around the limit of the detection of the technique, which could be improved in order 

to observe lower concentrations values. However, even with some limitations it was 

possible to observe that the bacteria survive at different rates in the environment, 

most of the individuals dying within the first couple of weeks but with a proportion of 

individuals that can persist in the environment for longer. These results can 

generate further hypotheses regarding the life cycle of Leptospira species and the 

adaptive value of long-term survival, and can also be integrated into species 

distribution models to better predict and identify areas with high risk of transmission 

of leptospirosis. 
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Chapter 4: Hydrology and its implications to 

waterborne diseases 
 

4.1 Introduction 

The Millennium Development Goals, signed in 2000 by member countries of the 

United Nations, aimed to increase accessibility to safe drinking water and basic 

sanitation. Although all countries have increased their access to water and 

sanitation, many parts of the world, especially the least developed countries, still 

had not reached the target in 2015. Nearly, 663 million people still do not have 

access to improved drinking water sources and 2.4 billion people still lack basic 

sanitation (WHO, 2015). 

There are many possible consequences for a population of a lack of sanitation 

and/or access to safe drinking water sources, but one great concern is waterborne 

diseases, defined as any disease that is transmitted through water such as cholera, 

typhoid fever, leptospirosis and diarrheal diseases. The impact of waterborne 

diseases is enormous, causing significant numbers of deaths (5 million per year), 

having a big impact on the economy (for example, U$$950 million per year in US) 

and on people’s life and wellbeing (Collier et al., 2012).  

In 2004, unsafe water, sanitation and hygiene were responsible for 4% of annual 

deaths and 5.7% of the health burden world-wide (Disability-Adjusted Life in Years) 

(Prüss et al., 2002). The main cause of waterborne diseases is faecal 

contamination, and diarrheal diseases are the most common type of disease 

reported (Ozioma Forstinus et al., 2016). For diarrheal diseases, 88% of the cases 

are attributable to unsafe water, sanitation and hygiene (WHO, 2003a). Many efforts 

have been made to understand the main drivers of infection of waterborne diseases, 

where in most cases rainfall and flood is a very common risk factor related to the 
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outbreaks (Curriero et al., 2001; Auld, MacIver and Klaassen, 2004; Pappachan, 

Sheela and Aravindan, 2004; Gaynor et al., 2007; Lau et al., 2010a; Yang et al., 

2012; Cann et al., 2013; Garba, Bahaman, Khairani-Bejo, et al., 2017; SUMI et al., 

2017). 

In Pau da Lima, a community of Salvador, Brazil, our group have been 

conducting research to understand the determinants of leptospirosis, a disease 

caused there by the spirochete bacterium, Leptospira iterrogans, by looking at the 

dynamics of transmission within its host (rat) population, human infection and 

environmental contamination by the bacteria. Three main factors have led us to 

explore deeply the effects of the environment on the dynamics of infection. First, 

there are peaks in number of cases every rainy season (Albert I Ko et al., 1999). 

Second, 80% of the rats trapped are infected with the bacteria, which indicates a 

high level environmental contamination (Costa et al., 2014). And third, most of the 

cases observed occur in the bottom of valleys, where flooding might be frequent 

(unpublished data). This observation leads to a hypothesis that rainfall might wash 

out the bacteria in the ground causing its mobilization and increasing the risk of 

infection in downstream areas. 

One approach to test this hypothesis is to track where water flows, considering 

that water can mobilize microbes from one place to another. This can be from 

upslope to downslope or from the surface to underground, or vice versa. The results 

of such mobilization can, for example, increase the concentration of pathogens in 

areas that receive upslope, contaminated water, and therefore increase the risk of 

infection in those areas.  

The transportation of pathogens in the environment is enhanced by their 

capability to attach to sediments, which can be weak or strong (Berry and Hagedorn, 

1991; Jamieson et al., 2004). Subsequently, the strength of the water flow can 

detach pathogens from the sediment or mobilize the sediment, hence causing their 
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transportation. Cryptosporidium sp. and Escherichia coli are the main microbial 

models widely studied as an indicator of faecal contamination and waterborne 

diseases (cryptosporidiosis and diarrheal diseases). Their fate and transportation in 

different types of soil (for example, soils high in clay content) have contributed to the 

development of mechanistic models to describe watershed contamination (S. E. 

Walker et al., 1990; Edwards et al., 1997; Medema and Schijven, 2001; Atwill et al., 

2002; Tian et al., 2002; Crowther et al., 2003; Davies et al., 2004; Jamieson et al., 

2004).  

Ferguson et al. (2007), for example, developed a process-based model to 

predict pathogen contamination of a drinking water catchment in Sydney, Australia. 

Their model has a hydrological compartment as well as microbiological information, 

which allows them to identify which sub-catchments contribute most to the pathogen 

loadings ‘downstream’. Similarly, Mahajan et al. (2014) developed a dynamic model 

to quantify pathogen load from sewage overflow to assess microbial risk 

assessment downstream.  

In addition, Mari et al. (2012) and Bertuzzo et al. (2008) have included 

hydrological transport of the pathogen into their dynamic epidemiological models to 

understand the spread of cholera during an epidemic in 2000 in South Africa. Their 

results support the hypothesis that a cholera epidemic relies on human mobility and 

the spread through an environmental matrix defined by river corridors (upstream to 

downstream rivers). Although the hydrological transport of the pathogen was 

assumed, no transport between catchments was considered. 

These models have demonstrated the usefulness of incorporating hydrological 

information into a dynamic model to understand disease transmission. However, 

their frameworks rely on high quality information/resolution in which microbial, 

rainfall and demographic data is collected. Using topographic analysis by itself can 

be an alternative to provide a cheap but informative risk map for waterborne 
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diseases as the main outputs of the analysis are based on elevation information 

mainly.  

For example, Vega-Corredor & Opadeyi (2014) used topographic analysis to 

observe associations with cases of leptospirosis in the West Indies, where their 

covariates were: a topographic wetness index (TWI – see below), river density, soil 

permeability and average rainfall. They observed a direct link between leptospirosis 

cases and areas that are more likely to be flooded (TWI) only, a measurement 

based on flow and slope. In addition, Herrera et al. (2017) have shown that 

upstream tree cover is associated with lower risk for diarrheal diseases in children. 

Those results are examples of how basic topography information can provide 

valuable insights regarding the risk of infection.  

Since water can be seen an important risk factor for many waterborne disease, 

the question arises: Are places where we observe more cases of waterborne 

diseases the ones that are more likely to be flooded? Or are they likely to receive 

more upstream water flowing past them? Answering these questions can be crucial 

in understanding the dynamics of infection and in planning intervention control and 

surveillance.  

Distance to rivers, river density and TWI are derived from topographic data, and 

have been used in epidemiology. However, other information can be extracted from 

topographic data. Water flow, for example, can be indicative of where the water 

passed through and might carry more pathogens hence increasing risk of infection. 

In addition, demographic data can also be related with waterborne diseases, as 

human population can be sources of direct or indirect water contamination in some 

cases and this have not been considered previously.  

Depending on the characteristics of the disease, different hydrological maps can 

be used to understand the determinants of transmission. For example, the main 
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cause of diarrheal diseases is water contamination. Hence, including human density 

to evaluate upstream water contamination combined with the likelihood of flooding 

might be crucial for the risk of transmission. On the other hand, zoonotic diseases 

with a widespread wildlife reservoir might have their transmission associated with 

runoff as the reservoir might be assumed to be distributed throughout the 

environment. In addition, long-term flooding areas might indicate a higher infection 

dose in comparison with areas where the water flowing past because more 

pathogens could be coming in and not getting carried out. Therefore, the exploration 

of other measurements than TWI, distance to river and river density can provide 

additional insights of the dynamics of the pathogens in the environment and its 

transmission. Hence, the focus of this chapter is to develop tools that can be used to 

assess the risk for waterborne diseases based on different hydrological 

measurements using topographical data combined with population data. 

 

4.2 Material and methods 

One of the main aims of topographic analysis is to identify river basins, 

catchments, mountains and ridge patterns by using location and altitude points. The 

analysis is performed with a map, frequently called a Digital Elevation Model (DEM), 

containing X and Y coordinates and Z elevation. Therefore, based on the simple 

assumption that if all the rainfall that reaches the ground becomes runoff, and there 

are no barriers, the water will flow to the lowest elevation point (Figure 4.1). This 

basic hydrological assumption can generate very informative maps of water flow and 

flow accumulation that can be translated into a flood risk map, for example.  
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Figure 4.1- 3D graph demonstrating the basic hydrological process of water flowing from upslope to 
downslope, the red square represent the lowest point in the map and the arrows an example of the water 
flow. This graph is called a Digital Elevation Model (DEM). 

 

Here, a series of hydrological measurements derived from a DEM and 

population information are developed so that they can be translated into maps of 

risk for waterborne diseases: flow accumulation, permanent and temporary rivers, 

water contamination, water rurality and a topographic wetness index.  

Initially, to generate a DEM, a contour map of the elevation data of the city of 

Salvador with five meters resolution was used, kindly provided by the Urban 

Planning Department of Salvador, CONDER (BAHIA). The map was then 

transformed into a gridded map of the same resolution (DEM) using linear 

interpolation in MATLAB. However, as the elevation map does not account for 

houses or barriers, the street map of the city was added into the DEM by subtracting 

one meter in elevation wherever there are streets. This reflects the fact that water is 

more likely to flow to the streets than to an adjacent house, and is supported by the 

general observations of runoff during periods of rain, as the streets are 

impermeable.  
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Thus, from a DEM and population information from the area, the next sections 

describe how each map was produced. Figure 4.2 shows a visual representation of 

the work flow during the productions of the maps. 

 

Figure 4.2: Work flow diagram of the layers used to obtain each map and how each layer contributed to 
the production of another. Light grey boxes represent informative layers necessary to produce the basic 
maps, here represented by rhombuses. Note that some maps were also used as an informative layer to 
produce other maps, and the directional arrows represent these contributions. 

 

4.2.1 Flow accumulation 

Flow accumulation refers to one of the fundamental procedures in obtaining 

hydrological features from a DEM such as channels, watersheds or ridges (Jenson 

and Domingue, 1988). The method calculates a flow accumulation value for every 
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cell in the DEM, that is, for every cell, the number of upslope cells that ultimately 

flow into it (O’Callaghan and Mark, 1984).  

The procedure uses a flow direction map in which, based on elevation, every cell 

is assigned a direction of the flow. In this case, we use an approach developed by 

Tarboton (1997), where it is assumed the water can flow to more than one 

downslope neighbour, referred to as multidirectional flow. Hence, the flow from one 

cell to another depends on the proportion of upslope cells that flows to it.  

Each cell is squared and has eight neighbours (diagonals were also included) 

with the exception of the border cells. Values of zero indicate that the cell does not 

receive any flow and correspond to being part of a ridge. A function called ‘Upslope 

Area functions’ (version 1.3.0.1), developed by Steven L. Eddins was used and is 

freely available in the repository MathWorks (https://uk.mathworks.com/). 

In addition, the same procedure is used to identify river basin and catchments 

based on a defined threshold. This threshold is defined by the minimum number of 

cells flowing into a target cell, and is related to permanent rivers and streams. But 

this threshold can also be related to temporary rivers and runoff if a lower value is 

defined. The value of the threshold is a gradient going from temporary (lower value) 

to permanent rivers (higher value). Here, three thresholds were selected, 50, 500 

and 5000, and every cell that had a number of cells flowing into it smaller than the 

threshold was assigned a value of zero. 

 

4.2.2 Population weighted accumulation 

Population density can affect the dynamics of infection of waterborne diseases 

in many different ways. The effect can be associated with higher infection rates due 

to more contact rates between susceptible and infected individuals, but also by 

https://uk.mathworks.com/
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contaminating the environment with pathogens. In the case of leptospirosis, for 

example, the bacteria are shed into the environment in the urine of a reservoir host, 

Norway rats (Rattus norvegicus), the abundance of which is correlated with where 

people are, as a result of easy access to resources such as food and shelter 

(Boisier et al., 1997; Guan et al., 2009). Thus, when the rain falls, the water that 

flows through highly populated areas is expected to have a higher concentration of 

the pathogen. For that reason, areas that receive this water will have a greater risk 

of infection. Therefore, the risk seen in a cell would be a combination of the amount 

of water the cell receives but also the population density of the areas through which 

water flows before reaching the cell.  

Furthermore, for example for gastro-intestinal illness, places that lack sanitation 

would have a bigger impact in the dynamics of infection. Medema & Schijven (2001) 

observed that 80% of Giardia discharged in the Netherlands was from untreated 

wastewater discharge and sewer overflows, whereas, for Cryptosporidium, the 

contamination came from wastewater treatment plants. Hence, considering 

population density alone may not be the best representation of the risk. Therefore, 

population weighted maps were developed that included two types of population 

information: population numbers and the number of people without sanitation. The 

approach used for flow accumulation was used again, but the number of cells 

flowing to a target cell was not counted. Rather, the cumulative number of people 

(total or without sanitation) in every upslope cell that the water would have passed 

through if the rain had become runoff was counted. 

The population data was obtained from the census of 2010 performed by the 

Instituto Brasileiro de Geografia e Estatistica (IBGE). The city of Salvador was 

divided into census districts where the total number of residents, the total number of 

houses, the number of houses without sanitation and other variables were collected. 

This data was rescaled to the size of the DEM, 5 meters pixel size, assuming 
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homogenous distribution of the population inside each census district. Therefore, 

number of people (total or without sanitation) per square meter (m2) was multiplied 

by the area of the pixel, 25m2 to give final values per cell. 

 

4.2.3 Water rurality 

Another way of assessing risks for waterborne diseases is to focus on the 

concentration of the pathogen in the water. Flow accumulation maps carry no 

information of how clean or dirty the water is, whereas Population weighted maps 

can be a proxy for the absolute level (amount) of water contamination. Hence, 

population weighted and flow accumulation maps can be seen as two extreme 

points of a gradient and the ratio between them gives an insight into where most of 

the water is coming from. 

 

4.2.4 Topographic Wetness Index (TWI) 

The Topographic wetness index (TWI) is the main output of a mechanistic 

model, TOPMODEL, developed to understand theoretical and practical forecasting 

in which hydrological processes are perceived (Beven and Kirkby, 1979; Beven, 

1997). The main difference from other maps described here is that it focuses on 

flood risk (ultimate destination of water) rather than the water flowing into (and 

possibly through) a cell. Specifically it takes into account the slope of the cell (β) and 

the area of a catchment (a) in order to produce a flood risk map. 

𝑇𝑊𝐼 = log (𝑎
tan 𝛽⁄ ) 

(1) 
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TWI states that areas with the same value would have the same hydrological 

response to rainfall and hence are hydrologically similar. Higher values indicate that 

an area/cell is more suitable for flooding and are caused by lower slopes (flat areas) 

and/or convergence points of long slopes (Beven and Kirkby, 1979; Beven, 1997). 

 

4.3 Model output 

A dummy data set was created to exemplify how each map is produced. Then, 

in the following section, the maps will be produced using real data from Salvador 

city. Hence, given a digital elevation model (DEM) where each value is the elevation 

information of a pixel, 

DEM =  

2 1 0 

4 3 2 

6 5 4 

and a population map (P), 

 P =  

0 4 3 

0 0 0 

6 0 0 

 Tarboton (1997) uses the elevation of the centre of the pixels to calculate 

slope and flow direction. The method uses facets of a triangle to calculate the slope 

of all eight neighbours cells and determine the steepest downward slope between 
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the eight planar triangular facets. Eight triangular facets are drawn from the centre of 

the pixel to all its neighbours. Each of these facets will have a downslope vector 

going outward from the centre and having an angle that falls within or outside of 45 

degrees. The steepest vector is determined when the angle of the downslope vector 

lie within the 45 degrees at the centre of the facet and this is assign the direction of 

the flow. Once the steepest facet is identified, the proportion of flow to each slope 

can be obtained based on equations 1-5 of Tarboton (1997) method. The flow 

accumulation map (F) will produce a map showing the cumulative number of pixels 

where the water is coming from assuming that all pixels received water, starting 

from high to low elevated areas. The dark arrows indicate which pixels are receiving 

the flow and where the flow is going to. 

F =  

1.6 4.2 9.0 

1.4 2.0 2.6 

1.0 1.0 1.0 

 Thus, for example, the value of 2.0 in the central cell is arrived at by adding 

1.0 (the cell itself) to 0.6 from the bottom-left cell and 0.4 from the centre-left cell, 

and so on. Note that the water can flow to more than one pixel given their elevation, 

so a proportion of one pixel will flow to more than one downstream pixel if their 

elevation is similar or equal. This is a feature of the model created by Tarboton 

(1997). In this example, the pixel in the centre is receiving its water from itself and 

the two pixels in the bottom line of the first two columns. 

The flow accumulation threshold (T) can be applied by first defining a threshold 

value (in this example we arbitrary define a value of 1.5) and everything that is 

bigger than that value will be assigned a value of one, or otherwise zero. This map 
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displays a network of connected areas through which the water passes. The bigger 

the threshold defined, the less complex is the network and the more it will represent 

more permanent rivers/streams. 

T =  

1 1 1 

0 1 1 

0 0 0 

 Similar to the flow accumulation map, the population weighted map (PW) will 

produce a map showing the cumulative number of people that the water would have 

passed through. This map shows that even when there are no people living in the 

pixel, the pixel still receives water from upslope populated areas. In this model, any 

type of population information can be included. In the case of Salvador city, for 

example (below), population density and people without sanitation were used to 

produce two population weighted maps. 

PW =  

1.0 8.0 13 

2.5 3.5 0 

6.0 0 0 

 Now that Flow accumulation and the population weighted maps have been 

generated, the water rurality map (W) can be produced based in the ratio between 

them. The range of this measurement varies from zero to infinite, where zero means 

that the water did not pass through any populated pixels before it reached the target 

pixel, which happens with non-populated ridges areas, for example. 
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W =  

0.6 1.9 1.4 

1.7 1.8 0.0 

6.0 0.0 0.0 

 The last map produced is the topographic wetness index (TWI), which from a 

DEM, a slope can be generated, and TWI produced based on Equation 4.1. This 

map indicates areas that are more likely to be flooded than others, higher values. 

TWI =  

7.7 8.7 13 

6.8 7.1 7.5 

6.5 6.5 6.6 

 Taking the second row and first column for demonstration, the flow 

accumulation represents the catchment and is firstly transformed in area by 

multiplying its values by the size of the pixel, five meters in this case (1.4 ∗ 5 = 7.05). 

Then the TWI is the natural logarithm of the division between catchment area and 

the tangent of the slope in radiants: log(7.05
0.0079⁄ ) = 6.8.  

 

4.4 Application to Salvador city  

A total of eight different sets of maps were generated as previously described, 

using elevation data from Salvador, Brazil. To demonstrate the differences within 

and between every map, at a range of scales, maps were generated in each case 

for the whole of Salvador and also for a section of a neighbourhood of the city, 
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named Piraja. Figure 4.3 shows the digital elevation model itself for the whole city 

and for Piraja, however, the other maps will be presented at three different scales, 

going from local scale (Piraja), medium scale (Piraja and its region) to a city level 

map. 

 
Figure 4.3: Digital elevation model of Salvador, Brazil used to demonstrate the difference between risk 
maps. A community inside Salvador named Piraja (red area on top right map) was selected to illustrate 
the output of the model at a local scale. 

 

The DEM of Salvador shows a city composed of many valleys in the whole area, 

which makes the flow accumulation look heterogeneous, with higher and lower flow 

accumulation areas, throughout the city (Figure 4.4).  There is an extended area 

with higher flow accumulation values going from middle to north in the flow 

accumulation map for Piraja (Figure 4.4). In addition, the inclusion of streets into the 

DEM makes the flow go to the streets in many cases, which can be seen to the 

south of Piraja on Figure 4.4.  
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Figure 4.4: Flow accumulation risk map, which represents water flow. The map in the centre is the flow 
accumulation of a neighbourhood named Piraja. The bottom right is a medium scale map showing Piraja 
and its region and top right map is the flow accumulation for the whole city. 

 

For the flow accumulation thresholds (Figures 4.5-4.7), the maps displayed a 

connected network of runoff/rivers throughout the space. When the threshold is 

higher, equal to 1000, fewer networks can be seen. For example, two more 

extended paths are shown in the north and southwest of the map for Piraja in Figure 

4.5. Then, if the threshold decreases to 500, more paths are connected to the main 

path (Figure 4.6) and if the threshold decreases even more, to 50, there are more 

short paths revealing a very complex network (Figure 4.7).  
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Figure 4.5: Flow accumulation threshold obtained from the Flow accumulation map, the threshold 
defined is 1000. The map in the centre is the flow accumulation threshold of a neighbourhood named 
Piraja. The bottom right is a medium scale map showing Piraja and its region and top right map is the 
flow accumulation threshold for the whole city. 
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Figure 4.6: Flow accumulation threshold obtained from the Flow accumulation map, the threshold 
defined is 500. The map in the centre is the flow accumulation threshold of a neighbourhood named 
Piraja. The bottom right is a medium scale map showing Piraja and its region and top right map is the 
flow accumulation threshold for the whole city. 
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Figure 4.7: Flow accumulation threshold obtained from the Flow accumulation map, the threshold 
defined is 50. The map in the centre is the flow accumulation threshold of a neighbourhood named Piraja. 
The bottom right is a medium scale map showing Piraja and its region and top right map is the flow 
accumulation threshold for the whole city. 

 

The population weighted accumulation show a map with some patches of 

homogenous low risk at the city level, which is associated with low density areas 

(red and orange colours in Figure 4.8). However, looking at Piraja (local scale) in 

Figure 4.8, it is possible to see that in those homogeneous areas, there are a few 

lines associated with higher risk - for example a line path going from the centre to 

the north of Piraja. This is an indication that the risk is coming from upslope dense 

populated areas. Similarly, when the density of people without sanitation is 

considered, the map shows a pattern associated with higher density areas of people 

without sanitation, which in this case is concentrated at the north bound of the city 

(top right map in Figure 4.9). In addition, at a local scale, the map show areas with 

heterogeneous risk such as the southeast but also homogeneous areas, at the 

north, with a line of higher risk locations (Figure 4.9). 
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Figure 4.8: Population weighted accumulation map showing the cumulative number of people where the 
water would have flown through. The map in the centre is the population weighted accumulation of a 
neighbourhood named Piraja. The bottom right is a medium scale map showing Piraja and its region and 
top right map is the population weighted accumulation for the whole city. 
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Figure 4.9: Population weighted accumulation map where is only considering the population density of 
people without sanitation. The map in the centre is the population weighted accumulation of a 
neighbourhood named Piraja. The bottom right is a medium scale map showing Piraja and its region and 
top right map is the population weighted accumulation for the whole city. 

 

 

The water rurality map (Figure 4.10) represents how diluted the water is, where 

the red colours represent a higher concentration of pathogens because most of the 

water flowing to the pixel is coming from risky areas. The map in Figure 4.10 shows 

an area at the centre of Piraja where the risk is very high and surrounded by low 

risk. Finally, for the flooding risk map, measure by the TWI, the risk is very 

heterogeneous and is evidently focused on streets in many cases, which it is 

possible to see in the straight lines of higher values in the map (Figure 4.11). 
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Figure 4.10: Water rurality map obtained from the ratio between population weighted accumulation and 
flow accumulation. The map in the centre is the water rurality of a neighbourhood named Piraja. The 
bottom right is a medium scale map showing Piraja and its region and top right map is the water rurality 
for the whole city. 
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Figure 4.11: Topographic wetness index (TWI) map, which is a flooding risk map. The map in the centre 
is the TWI of a neighbourhood named Piraja. The bottom right is a medium scale map showing Piraja 
and its region and top right map is the TWI for the whole city. 

 

4.5 Discussion 

This chapter aimed to develop a range of topographical analyses that can be 

used as measures of risk for waterborne diseases in public health. Even though the 

direct association with waterborne diseases has not been addressed here, the 

results should help to produce risk maps that can be used to understand 

hydrological drivers of waterborne disease outcomes (see Chapter 3). The contrasts 

between the results of each measurement demonstrate how complementary each 

map can be in estimating the risk, and hence their importance. 

The role of the environment in disease transmission has been increasingly 

addressed recently and has been shown to be relevant in disease transmission. 

Studies have either incorporated the environment in dynamic models of 
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transmission or have looked at how those variables are associated with diseases 

outcomes. In dynamic modelling, hydrological transport of pathogens or rainfall-

runoff models have been integrated with epidemiological dynamic models (Bertuzzo 

et al., 2007, 2008; Remais, Liang and Spear, 2008; Mari et al., 2012; Collender et 

al., 2016; Rinaldo et al., 2017). For cholera, for example, the transport of pathogens 

is assumed to happen through river networks and infection depends on the contact 

rate between a susceptible individual and the river network (Bertuzzo et al., 2008; 

Mari et al., 2012), whereas for schistosomiasis, the hydrological transport of the 

pathogen occurs through the transport of the intermediate host (snail) which is 

aquatic and gets carried out by runoff (Remais, Liang and Spear, 2008; Perez-Saez 

et al., 2016). In addition, direct associations between flooding risk (TWI), river 

density and leptospirosis have been found (Vega-Corredor & Opadeyi 2014). In 

these different ways, the incorporation of the environment has helped explain 

disease infection patterns. Here, our results can provide additional environmental 

characteristics that have not been addressed yet but could improve our 

understanding of the role of the environment in the dynamics of waterborne 

diseases. 

Flow accumulation thresholds provided a network map that can represent, 

depending on the threshold defined, a network of temporary and/or permanent 

rivers. Those maps carry information of where the possible runoff or river routes are, 

which can be a risk for waterborne diseases due to the water mobilization of 

pathogens. Complementary to flow accumulation threshold maps, flow accumulation 

by itself carries information on how long the water travels before it reach a pixel, 

which is indicative of the catchment area feeding the pixel. In that case, flow 

accumulation can be hypothesized that the longer the water travels, more pathogen 

is carrying, and hence, the risk of infection is higher. 
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On the other hand, while flow accumulation shows areas that receive more flow 

than others, most of its flow can be coming from non/less populated area. That is 

the difference between flow accumulation and population weighted maps. When 

population data are incorporated, the data generated show the cumulative number 

of people that the water might have passed through which can be a proxy for water 

contamination or rat’s distribution in the case of leptospirosis. Despite using the 

same principle (flow direction), maps produced by flow accumulation and population 

weighted accumulation generated different patterns. Population weighted 

accumulation showed high risk even in some non-populated areas because those 

areas are receiving water from upslope-populated areas. In addition, the risk map 

changed significantly when a map with sanitation information was produced, but, 

there are higher risk areas in places with sanitation, indicating that the risk is mostly 

coming from upslope areas that does not have sanitation.  

The combination of hydrology and population data was inspired based on the 

leptospirosis study in Salvador, Brazil. The issue came from the difficulty to obtain 

high resolution data on rat’s distribution throughout the city. Alternatively, population 

data can be seen as a proxy for the distribution of Norway rats as its occurrence can 

be associated with human density (Boisier et al., 1997; Guan et al., 2009). However, 

the use of population data go beyond that, Cryptosporidium, for example, is a 

pathogen that are eliminated in the environment through human (and other 

mammals) faeces, therefore, considering people without sanitation can be seen as a 

risk for local and downstream contamination (Fayer, Speer and Dubey, 1997). 

Furthermore, Katz et al (2006) observed that the reason of prolonged propagation of 

Giardia during an outbreak in Boston was caused by person-to-person transmission, 

indicating that population density can play a role in the transmission of giardiasis. 

The topographic wetness index (TWI) has been used in epidemiology as noted 

previously. The inclusion of this measurement in this chapter demonstrates how TWI 
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by itself does not catch all the hydrological variation in the environment such as the 

water that flows through populated places. However, TWI combines flow 

accumulation and slope of each cell in order to have a proxy of how likely it is for a 

cell to be flooded. While flow accumulation may show large differences between 

neighbouring cells, perhaps because some of them are receiving water from long 

distance, the correction by the slope indicates if the water will be retained in a cell or 

will just pass through. Therefore, even if a cell is receiving water from a short 

distance (low flow), they might have the same likelihood of flooding as a cell that has 

high flow, simply because of differences in slope. 

A big contrast within water rurality map was observed, where the results showed 

a patchier pattern with areas being either ‘dirty’ or ‘clean’. The reason for this 

contrast is a combination of the population distribution throughout the city and the 

water flow. The north area of the city is less populated, with most of the flow in those 

areas coming from low or non-populated places, whereas in the other parts of the 

city the opposite is the case. The population information used here were based on 

district census, which varies with area and has been rescaled to the same scale of 

the DEM. A better resolution of population density would result in a smoother 

transition between ‘dirty’ and ‘clean’. 

The maps produced here are considered proxies of water flow and do not 

represent areas that will produce runoff or will be flooded every time it rains. To 

predict runoff in the environment with high accuracy, it is necessary to collect a set 

of many other factors such as high resolution rainfall data and soil permeability, 

which makes the model very complex and expensive. Using topographic analysis 

can be much cheaper and could be seen as an initial step in understanding not only 

the dynamics of disease transmission in the environment but also the movement 

and distribution of pathogens.  
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Therefore, the results shown her, demonstrate the usefulness of different 

measurements of risk that can be applied to a range of waterborne diseases. These 

features are important in terms of risk perception, which therefore changes 

depending on the approach that has been used, or the approaches can be 

complimentary. Use of these maps may help organizations and governments to 

understand patterns of infection and derive actions to reduce transmission.  
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Chapter 5: 14 years of leptospirosis 

surveillance in Salvador city, Brazil: spatial 

distribution of leptospirosis cases and its 

relationship with hydrology 
 

5.1 Introduction 

From 1990, the world urban population had approximately doubled its size by 

2015, going from 2.3 billion to 4 billion people living in urban areas. Most of this 

change came from low income countries in Asia, Africa and Latin America. Despite 

many efforts to reduce the number of urban slum settlements, in developing 

countries 880 million people lived in urban slums (low income settings) in 2015, 

which represents a substantial increase in comparison with 690 million in 1990 

(Moreno et al., 2016). This drastic change in human demographics changed the 

epidemiology of human leptospirosis, a disease caused by spirochete bacteria 

(Leptospira spp.). The transmission of the disease involves complex interactions 

between the animal reservoir, human demographics and the environment, where the 

infection can occur through direct or indirect contact with urine of an infected animal 

or water contaminated with urine. 

Historically, human leptospirosis mostly occurred in rural settings such as rice 

plantations, mining and livestock farms (Faine, 1982; Waitkins, 1986; Katz, Manea 

and Sasaki, 1991; Faine et al., 1999). However, nowadays, human leptospirosis is 

considered an occupational disease in tropical countries occurring, mainly, in low 

income including urban settings (Albert I Ko et al., 1999; Felzemburgh et al., 2014a; 

Costa, Hagan, et al., 2015; Torgerson et al., 2015). The risk factors associated with 

the infections are related to socioeconomics and environmental characteristics such 
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as lower levels of income and distance to an open sewer (Albert I Ko et al., 1999; 

Barcellos and Sabroza, 2001a; Sarkar et al., 2002; Maciel et al., 2008; Reis et al., 

2008; Ko, Goarant and Picardeau, 2009; Oliveira et al., 2009). In addition, outbreaks 

of the disease have been observed after heavy rainfall and flooding, and also, peaks 

in the number of cases have been observed during rainy seasons in endemic areas 

(Albert I Ko et al., 1999; Barcellos and Sabroza, 2001b; Smythe et al., 2002; Jena, 

Mohanty and Devadasan, 2004; Gaynor et al., 2007; Desvars et al., 2011b; Blanco 

and Romero, 2015; Gutiérrez and Martínez-Vega, 2018). For example, Ko et al 

(1999) observed an association between an outbreak that occurred in Salvador, 

Brazil two weeks after heavy rainfall and flooding in 1996. Similarly, many other 

studies reported leptospirosis outbreaks after heavy rainfall and flooding such as 

Malaysia in 2000 and 2010, Guyana 2005, New Caledonia in 2008, Philippines in 

2009, Fiji in 2012 and many others (see Lau et al (2010b)). 

These findings, which did not in themselves aim to look the spatial distribution of 

the cases, led to explorations of the spatial variation of human leptospirosis (i.e. at 

the community level) and its association with environmental variables. Schneider et 

al. (2012), for example, identified that municipalities closer to the Pacific ocean in 

Nicaragua have more cases of leptospirosis. Average precipitation over the previous 

two months, maximum precipitation and the rural proportion of the population were 

the main drivers that explained the spatial distribution of cases. In American Samoa, 

the distribution of cases was associated with factors at the environmental 

household-level as well as individual factor-levels, and four spatial clusters were 

identified (Lau et al., 2012). Occupation, knowledge of leptospirosis and gender 

were individual factors associated with cases, whereas the environmental factors 

were vegetation and soil type. In China, the use of spatial techniques combined with 

time (spatiotemporal analysis) not only helped to observe a decline in the number of 
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cases from 2005-2015 at county level but also observed a decreased disease 

burden in endemic areas (Dhewantara et al., 2018). 

Vega-Corredor & Opadeyi (2014), in a study of human leptospirosis cases 

between communities in Trinidad, used a Geographic Information System (GIS) 

approach in order to generate water-related environmental variables such as rainfall, 

proportion of soil free drainage, proportion of imperfect/impeded drainage soil, river 

density and the topographic wetness index (TWI). Firstly, their study observed 

evidence of spatial variation in cases between communities. Secondly, rainfall, 

imperfect/impeded drainage soil and TWI were associated with those cases, where 

rainfall and imperfect/impeded drainage soil had a stronger association with cases in 

the south, and TWI had higher odds ratios in the north of the island. Their spatial 

scale looked at cases at a county level, which gave them a large areal coverage but 

low resolution. 

The addition of spatial data at a regional level in human leptospirosis studies in 

Trinidad confirms that the environment has an important role to play in the spatial 

variation of cases. This was only possible due to the use of spatial statistics and GIS 

techniques, which allowed associations with disease outcomes to be explored, given 

the evaluation of spatial dependency. Although rainfall has been demonstrated to be 

associated with leptospirosis cases world-wide, with the exception of the study of 

Vega-Corredor & Opadeyi (2014), the exploration of other hydrological variables has 

not been addressed previously. Human leptospirosis can be considered a 

waterborne disease, and so other water-related variables can be associated with 

disease outcomes, as shown by Vega-Corredor & Opadeyi (2014). Chapter Four 

developed a set of different hydrological variables based on topographical and 

population data, which have been shown to be complementary to each other. These 

hydrological variables are designed to track the path of the rainfall once it has 

reached the ground. Looking for an association with those variables can be very 
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informative about the mechanisms of transmission of the disease. Therefore, this 

chapter will evaluate the spatial distribution of human leptospirosis cases in 

Salvador, Brazil and make inferences about how those cases might be associated 

with the hydrology of the city.  

 

5.2 Material and methods 

5.2.1 Study area 

The study was carried out in Salvador, a city located in the northeast of Brazil, 

which is the third biggest city in the country. Salvador is divided into approximately 

4000 census districts used by the Brazilian Institute of Geography and Statistics 

(IBGE) to perform census counts and collect other demographic information on the 

population. The latest census performed in Brazil is from 2010 and will be used here 

to generate population counts for each district. 

Human leptospirosis is endemic in Salvador with seasonal peaks every rainy 

season. In 1996, the city had an outbreak reported later by Ko et al (1999) who 

evaluated the epidemiology of the outbreak and helped to implement protocols for 

surveillance of the disease. Until 2010, all the suspected cases of human 

leptospirosis were designated to Couto Maia hospital, an infectious disease state 

hospital, for treatment and confirmatory diagnosis. After 2010, the protocol for the 

diagnosis of leptospirosis changed, which changed the coverage of the surveillance, 

whereby more hospitals could receive suspected cases and perform laboratorial 

diagnoses. 

5.2.2 Data collection and case definition 
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Since the outbreak in 1996, the Oswaldo Cruz Foundation (Fiocruz) has been 

conducting active population-based surveillance in Salvador. This is a collaboration 

together with the state and city’s secretaries of health. The surveillance is conducted 

in the reference hospital for infectious disease diagnosis and treatment, Couto Maia 

Hospital, where a prospective analysis is performed on each patient admitted into 

the hospital. The clinical definition of severe human leptospirosis is: acute 

undifferentiated fever associated with either bleeding, acute renal failure, jaundice, 

or acute liver injury with transaminases <1,000 U/L (Nabity et al., 2012).  

Each individual who fulfilled the criteria for a clinical suspicion of severe 

leptospirosis was asked for their consent to participate in the study. Once consent 

was given, the patients were submitted to a questionnaire to collect demographic 

information, symptoms, length of hospital stay and outcome (discharged). The 

protocol was approved by the hospital, the Oswaldo Cruz Foundation, the Brazilian 

National Commission for Ethics in Research and Yale University. All individuals 

admitted with clinical leptospirosis between 1996 and 2010 were included in the 

study. The data were grouped by census district and this will be the scale of the 

analysis carried out here. 

 

5.2.3 Hydrological data 

The hydrological data used in this chapter were produced based on a 

topographical (elevation) map layer obtained from CONDER, the urban planning 

department of Salvador. This map had squared pixels of 5 meters resolution 

containing the elevation information and was used to produce a set of four different 

hydrological maps. The main assumption is that once water has reached the 

ground, it will become runoff and will flow to the lowest point in the surface.  Flow 

accumulation, population weighted accumulation (PWA), water rurality and 
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topographic wetness index (TWI) are the maps used here (see Chapter 4). Flow 

accumulation represents how far the water have travelled through the surface until 

reaches a pixel, in other words, it is the cumulative number of pixels that the water 

has flown through. Similarly, PWA represents the number of people the water would 

have passed through which can be used as a proxy for water contamination. PWA 

was generated with a combination of demographic data obtained from 2010 

population census and was re-scaled to the same resolution as the topographical 

map. Water rurality is the ratio between flow accumulation and PWA and can 

represent a spectrum of water contamination (more rural or urbanised areas). The 

TWI has been used previously by Vega-Corredor & Opadeyi (2014) and evaluates 

the likelihood of a pixel being flooded given its flow accumulation and the slope. The 

higher the value the more likely is a pixel to be flooded. All the maps were produced 

using MATLAB. For an in depth description of the methods please see the previous 

chapter. 

There is a difference in the resolution between hydrological maps and the 

recorded number of leptospirosis cases. The former were obtained with very high 

resolution (hydrological information every five meters), whereas the latter was the 

observation of cases at district level. The hydrological data were grouped inside the 

areas of each district and the 90th quantile of the range of values was obtained. The 

decision to use quantiles rather than averages was made with the intention of 

reflecting the spectrum of the hydrological values that represent a risk for 

leptospirosis. The histogram of the values in each district is very right skewed, with 

large numbers of small values. Hence, averages would not capture the true 

distribution of values at district level.  

 

5.3 Statistical analysis 
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Statistical analysis was performed in three steps: development of a non-spatial 

model, seeking evidence of spatial variation in the data, and development of a 

geostatistical model. The non-spatial model was developed to select covariates to 

further evaluate if there was spatial variation in the predictions. Once the evidence 

of spatial variation was shown, the geostatistical model was developed. 

5.3.1 Non-spatial model 

Let 𝑌𝑖 denote the total number of human leptospirosis cases and 𝑃𝑖 the 

population of each ith census district of Salvador. The generalised linear mixed 

effects model assumes that 𝑌𝑖 are conditionally independent observations of the 

random effect 𝑍𝑖. Hence, 𝑌𝑖 are Poisson distributed with expectation 𝑒𝜂𝑖   

𝑌𝑖|𝑍𝑖  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 ( 𝑒𝜂𝑖  ) 

where, 

 𝜂𝑖 =  log 𝑃𝑖 + 𝑋𝛽 + 𝑍𝑖 + 𝑒𝑖 

𝑃𝑖 is the offset for the population; 𝛽 is a vector of the coefficients for the 

explanatory variables; 𝑋 is the design matrix containing the variables for the fixed 

effects; 𝑍𝑖 is a vector of unobservable random effects which follows a multivariate 

normal distribution centered at zero with variance 𝐷, where 𝐷 is diagonal with entry 

of the unknown vector of random effects; 𝑒𝑖 is the residual variance assumed to be 

normally distributed 𝑒𝑖  ~ 𝑁(0, 𝜎2). The analysis was performed using R software, 

function glmer() from the package lme4. 

There are four explanatory (hydrological) variables which were selected via 

nested model selection - flow accumulation, PWA, water rurality and TWI. The 

mixed effects model used the district census as a random effect and the 
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hydrological variables as fixed effects. The first step of the model selection is to 

compare univariate models against a null model. This comparison was ranked from 

the most significantly different to the least from the null model. The models which 

were not significantly different from the null model were removed from the next steps 

because this indicates that they are not associated with human leptospirosis cases. 

The model with the highest rank was considered a baseline and the remaining 

variables were added individually as candidate new models. The same process was 

then used in comparing the baseline model with the new candidate models. If the 

candidate model was significant different from the baseline, then it was ranked and 

the same process repeated until no more variables could be added into the model. 

 

5.3.2 Empirical variogram 

Empirical variograms are used to describe the degree of spatial dependency in a 

set of data, hence demonstrating whether closer locations are more similar than far 

locations. A semivariogram of each paired location was calculated and its distance 

recorded. If there is evidence of spatial dependency, the semivariogram values 

would be smaller for points closer to each other, and the values should increase 

until reaching, in most of the cases, an asymptote. 

There are three components of the empirical variogram: the nugget, sill and 

range. The nugget represents the variation which is not explained by spatial 

location, in other words, it is the semivariogram evaluated right after a zero meter 

distance. The sill is where the semivariogram values reaches an asymptote. Finally, 

the range is where the semivariogram values reaches 95% of the sill. Practically, the 

nugget will give an insight as to whether there is unexplained variance that space 

does not capture, and the range is the distance interval over which all the 

observations are spatially dependent. 
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Another feature to be considered when exploring spatial dependency with 

empirical semivariograms is the direction of the dependency. Some diseases can 

spread more in one direction than another and this represents an uneven spread 

(for example, airborne diseases downwind of a source). Here, for leptospirosis 

studies, it is assumed to be evenly spread in all directions, which is called an 

isotropic process. In this case, the semivariogram obtained from a point a to b is the 

same as the semivariogram from point b to a. The last feature is that there is no 

temporal dependency from the data observed, which are assumed to be stationary. 

Therefore, the variogram for each unit distance 𝑢 is: 

𝑣(𝑢) = 𝜏2 + 𝜎2 ∗ (1 − 𝑝(𝑢)) 

where, 𝑢 is a vector of the Euclidean distances between locations 𝑥 and 𝑥′ that 

was used to evaluate the variogram; 𝜏2 is the nugget effect; 𝜎2 is the variance of the 

spatial process and 𝑝(𝑢) is the spatial correlation function. An exponential 

correlation function was used as 𝑝(𝑢) and is a special case of the Matern correlation 

function where the smoothness parameter is fixed at 𝜅 = 0.5 (see Giorgi & Diggle 

(2017) for the Matern correlation function). The validity of the correlation function 

was explored through Monte Carlo simulations which evaluate if the empirical 

variogram is different from what would be expected if there was no spatial 

dependency. 

The analysis was performed using R software. The predicted random effects of 

the non-spatial model were extracted using the function ranef() from the package 

lme4 and the empirical variogram was generated using the package PrevMap and 

function spat.corr.diagnostic(). 

 

5.3.3 Geostatistical model 
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A geostatistical model assumes that 𝑌𝑖 are realisations of a continuous space 

such that 𝑌𝑖 are dependent observations of an unobserved spatial stochastic 

process 𝑆(𝑥𝑖). Therefore, the total number of cases 𝑌𝑖 given the location 𝑥𝑖: 𝑖 =

1, … , 𝑛 is Poisson distributed: 

𝑌𝑖|𝑆(𝑥𝑖) ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑒𝜂(𝑥𝑖)) 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛 

where, 

𝜂(𝑥𝑖) = log 𝑃𝑖 + 𝑑(𝑥𝑖)′𝛽 +  𝑆(𝑥𝑖) + 𝑍𝑖 

𝑃𝑖 is the population of each district; 𝑑(𝑥𝑖) is a vector of explanatory variables 

associated with location i; 𝛽 is a vector with the coefficients for each explanatory 

variables; 𝑆(𝑥𝑖) is the structured random effect that accounts for the spatial 

dependency which is an isotropic and stationary Gaussian process with mean zero, 

variance 𝜎2 and correlation function 𝜌(𝑥, 𝑥′) = 𝐶𝑜𝑟𝑟[𝑆(𝑥), 𝑆(𝑥′)] where 𝑥 and 𝑥′ are 

two distinct locations. 𝑍𝑖 are the unstructured random effects that account for the 

variance that is not explained by the space and is normally distributed with mean 

zero and variance 𝜏2. 

The spatial process is assumed to be stationary and isotropic, hence 

𝐶𝑜𝑟𝑟[𝑆(𝑥), 𝑆(𝑥′)] = 𝜌(‖𝑥 − 𝑥′‖), where ‖ . ‖ indicates Euclidean distance.  A Matern 

correlation function 𝜌(𝑢; 𝜙, 𝜅) was used with a smoothness parameter fixed at 𝜅 =

0.5 and 𝜙 being the scale of the spatial correlation. See Giorgi & Diggle (2017) for a 

description of the Matern correlation function and the method of estimating the 

spatial model. The routine is an example of Monte Carlo Maximum Likelihood 

(MCML) which uses an importance sampling in order to approximate the likelihood 

function and estimate the parameters from the model. All the statistical analysis 
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were performed using the R software, function poisson.log.MCML() from the 

package PrevMap. 

 

5.3.4 Model validation 

The correlation function was validated using a variogram algorithm to simulate 

data and compare with the results observed. This process was obtained from that 

described in Macharia et al. (2018) which was developed in the PrevMap package. 

The process consists of simulating data under the fitted model, computing a 

variogram and obtaining a 95% envelop of the empirical variogram. If the estimated 

variogram falls within the 95% envelope, indicates that there is no further spatial 

variation and the adopted spatial correlation function was considered sufficient. 

 

5.3.5 Identification of areas with high risk of leptospirosis 

transmission 

From the geostatistical model, a target 𝑇 can be defined for predictive inference. 

Here, the interest is to identify areas that have more cases of leptospirosis than 

expected. It is assumed that those areas would have a higher risk of leptospirosis 

transmission. The baseline incidence of leptospirosis in Salvador will be estimated 

by 𝛼, which is the intercept of the linear predictor. The predicted incidence of 

leptospirosis for each location and its confidence interval can be given by 

�̂� (�̂�0.25; �̂�97.5). Areas with high risk of leptospirosis would be the ones where the 

lower confidence interval is greater than the baseline incidence. This indicates that 

those areas have an incidence rate higher than expected. 

𝑇𝑖 = {𝑥: (�̂�0.25(𝑥𝑖) − 𝛼) > 0} 𝑖 = 1, … , 𝑛; 
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5.3.6 Risk of having at least one case of human leptospirosis 

From the predicted incidence of leptospirosis obtained in the geostatistical 

model, another great interest for public health management can be extracted, 

namely, finding the risk of a census district having at least on case of leptospirosis. 

This can be defined as the probability of 𝑌𝑖 being bigger than zero, hence, the target 

can be defined as: 

𝑇𝑖 = 𝑃(𝑌𝑖 > 0|𝑆(𝑥𝑖)) = 1 − 𝑒−𝑒 �̂�(𝑥𝑖)
 𝑖 = 1, … , 𝑛; 

 

5.4 Results 

In total, 2168 individuals were admitted to Couto Maia Hospital with clinical 

leptospirosis between 1996 and 2010. However, there were some cases where 

explanatory variables were absent. The total number of cases used in the 

regression analysis was 2010 and the total number of districts was 3412. The 

average number of cases per district was 0.59±1.15 (SD) where the maximum 

number of cases reported was 13. Approximately, 31% (N=1060) of the districts had 

cases reported. Figure 5.1 shows the distribution of cases in each district of 

Salvador, Brazil, where most of the districts with the highest numbers of cases are 

located in the northwest of the city. Figure 5.2 shows the distribution of the 

aggregated values of the covariates in each district census of Salvador city. Flow 

accumulation and TWI had higher values in the north of the city whereas PWA and 

water rurality had lower values. 
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Figure 5.1: Distribution of human leptospirosis cases in the city Salvador, Brazil. The cases were 
obtained from active surveillance in Couto Maia Hospital from 1996-2010. 

 

 
Figure 5.2: Hydrological explanatory variables of Salvador, Brazil used in the analysis. The values were 
aggregated from each census district where the 90th quantile was obtained. 
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The model selection results indicate that only water rurality was associated with 

leptospirosis cases in Salvador, Brazil (Table 5.1). The other covariates were not 

significantly different from the null model and were not used in the rest of the 

analysis. The empirical variogram of the predicted random effects demonstrated that 

there was spatial dependency in the predictions of the mixed effects model, which 

supports the use of spatial analysis (Figure 5.3). 

 

Table 5.1: Results of the model selection base on likelihood ratio test where all the models were 
compared against the null model. (k is the difference on the number of parameters; LogLik is the log 
likelihood of the model) 

  LogLik k p-value 

Null model -3482.62 - - 

Population weighted accumulation -3482.46 1 0.58 

Flow accumulation -3482.22 1 0.37 

Topographic wetness index -3482.27 1 0.40 

Water rurality -3474.75 1 0.00007 

 

 
Figure 5.3: Empirical variogram of the predicted random effects from the best model selected. The grey 
area in the graph indicates the interval where the variogram is not different from what is expected by 
chance. 
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The correlation function of the spatial model was validated by simulation and 

Figure 5.4 show the envelope (grey shade) and the empirical variogram estimated 

(dark lines). The empirical variogram lay inside the envelope and indicates that there 

is no spatial dependency in the model and the correlation function used was 

appropriate. The practical range for an exponential function is three times the scale 

of the spatial dependency estimated which is approximately 12km. The model 

estimated two types of variance that are not explained by the linear predictor, the 

spatial structured variance (𝜎2) and the unstructured variance (𝜏2) (Table 5.2). 

 

Table 5.2: Estimated coefficients of the geostatistical model. The first two rows are the predictors 
presented as odd ratio whereas 𝜎2 is the variance of the Gaussian process, 𝜙 is the scale of the spatial 

correlation and 𝜏2 is the variance of the nugget effect. (CI= Confidence interval) 

  Estimates Lower CI Upper CI 

Intercept 0.0002 0.0001 0.0006 

Water rurality 0.7973 0.6964 0.9128 

𝜎2 1.0456 0.4122 2.6528 

𝜙 4.2599 1.4617 12.4148 

𝜏2 1.0167 0.1592 6.4924 
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Figure 5.4: Validation of the empirical variogram estimated in the spatial model. Grey shade represent 
the 95% interval of the variogram and dark line is the variogram estimated. 

 

Water rurality was the only covariate selected in the model selection process 

and the results of the regression shown that water rurality is negatively associated 

with human leptospirosis cases (Table 5.2). The predicted incidence per 10,000 

people and 95% confidence interval are shown in Figure 5.5, Figure 5.6 and Figure 

5.7. The northwest and centre of Salvador city are the regions where the predicted 

incidence per 10,000 people (Figure 5.5) and the risk of having at least one case of 

leptospirosis (Figure 5.8) are higher. However, areas where there were more cases 

than expected extended from the northwest, passing through the west and a few 

places in the south of the city (Figure 5.9). The standardized residual plot can be 

seen in Figure 5.10. 
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Figure 5.5: Predicted leptospirosis incidence per 10,000 population in Salvador, Brazil obtained from the 
geostatistical model. 

 

 
Figure 5.6: Lower confidence interval of the predicted leptospirosis incidence per 10,000 population of 
Salvador, Brazil. 
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Figure 5.7: Upper confidence interval of the predicted leptospirosis incidence per 10,000 population in 
Salvador, Brazil. 

 

 
Figure 5.8: Risk of having one case or more of human leptospirosis in each census district of Salvador, 
Brazil. 
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Figure 5.9: Areas with incidence of human leptospirosis in Salvador Brazil. Higher and lower than 
expected are shown in the colours orange and green, respectively. 

 
Figure 5.10: Standardized residual plot. 
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5.5 Discussion 

 

 This chapter aimed to explore the association between human leptospirosis 

and hydrological variables by looking at the total number of cases per district census 

and extreme (ninetieth percentile) hydrological values. A set of new hydrological 

variables was developed that are complementary to each other and can be used as 

measures of environmental risk for waterborne diseases such as leptospirosis. 

Before going into the results it is perhaps useful to reiterate the meaning of each 

hydrological variable and the motivation behind the use of extreme values in the 

statistical analysis. These explanations will help to understand how each 

hydrological variable can be translated into risk and how these risks can be 

associated with leptospirosis infections. There were four hydrological variables 

extracted from a Digital Elevation Model - flow accumulation, population weighted 

accumulation (PWA), water rurality and the topographic wetness index (TWI).  

Flow accumulation can be considered as the area of a catchment because it 

summarises all the upslope cells that water flows through until it reaches a target 

cell. For that reason, it is possible to say that flow accumulation gives information on 

how far the runoff water has flown over the surface, but also how much water has 

been ‘collected’ since the same amount of water originally fell on each cell. In the 

context of waterborne diseases, it can be considered as a way of describing the 

abundance of pathogen reaching a cell by assuming simply that more water implies 

more pathogen. Similarly, PWA can be thought of as either an area or an amount, 

but in this case weighted by how populated areas are. Hence, the assumption might 

be that water that flows through populated areas carries more pathogens because 

more populated areas have more human waste and garbage and more rats. 

Alternatively, we might propose that water that flows through populated areas 
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carries fewer pathogens because in more populated areas water tends to flow over 

paved surfaces and has less opportunity to acquire pathogens.  Furthermore, if a 

ratio between those two measurements is taken, it is possible to scale the origin of 

the water arriving in a targeted cell, independent of quantity. This ratio is given by 

‘water rurality’ and higher values indicate the water is coming from more populated 

areas whereas lower values indicate water is coming from non-populated areas. 

Finally, TWI is a commonly used as a proxy for flood risk as it takes to account the 

catchment area (flow accumulation) and the slope. Higher values are indicative of a 

higher likelihood of flooding. In the present context, therefore, it is assumed that the 

higher is the likelihood of flooding, the larger the number of pathogens that will 

accumulate in a target cell (rather than simply passing through). 

The hydrological variables were calculated at a very fine scale, five meters 

resolution. On the other hand, human leptospirosis cases were taken at a district 

level. To match the scale of the observed disease cases, the hydrological data had 

to be aggregated at the district level. The first exploration on the data showed that 

the distribution of the hydrological values for all variables were very right skewed, 

showing a lot of small values and a very few higher values. These results were 

expected at that scale due to the topography of the city. The city is not flat but is 

composed of many valleys (Figure 5.11). This characteristic means that each district 

has a very high variation of values and few very large values in the bottom of the 

valleys (canals), which is where there will be more cells flowing to target cells, 

consequently will also have a higher likelihood of flooding. These canals will connect 

areas but most of the values are very small and will be coming from the top of the 

ridges within each district. Averaging the hydrological values per district would 

therefore not identify those areas that it is assumed have higher risk. Therefore, in 

order to test the assumption that higher values represents a risk for transmission of 
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leptospirosis it was decided to use the 90th quantile from the distribution of 

hydrological values in each district. 

 
Figure 5.11: Photo of a valley in the community of Pau da Lima in Salvador, Brazil. This photo 
demonstrate a common topography of the city which is composed of many valeys like in the photo. 

 
The results from the model selection have shown that only water rurality is 

associated with human leptospirosis at the district level. However even considering 

the district level as a random effect, there was spatial dependency in the data. 

These results are consistent with other studies that have evaluated the distribution 

of human leptospirosis. For example, it has been shown that the distribution of 
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human leptospirosis cases is clustered in American Samoa (Lau et al., 2012), New 

Caledonia (Goarant et al., 2009b), Mexico (Sánchez-Montes et al., 2015) and many 

other regions. 

Water rurality was found to be negatively associated with the number of human 

leptospirosis cases in each district. This result indicates that water coming from less 

populated areas has a higher risk of causing leptospirosis infections. Gracie et al. 

(2014) found that the proportion of urban usage in areas was negatively correlated 

with leptospirosis incidence in Rio de Janeiro, Brazil. However, they did not find any 

evidence of spatial autocorrelation and used simple correlation functions. Similarly, 

Schneider et al. (2012) found a positive correlation between the proportion of rural 

population in an area and leptospirosis. However their results were based at the 

country level, a bigger scale than this analysis and the analysis performed by Gracie 

et al. (2014). Despite the differences in scale, these results might suggest that 

human leptospirosis is still a rural disease but present in urban areas. There are two 

possible reasons for these associations in urban areas. Firstly, more populated 

areas have more impermeable surfaces just because they will have more houses 

and streets, but leptospires have not been found in those surfaces and its survival in 

such exposed locations is likely to be very low. Therefore, water passing through 

populated areas is passing over impermeable surfaces and is less likely to carry any 

bacteria. On the other hand, less populated areas will have more impermeable 

surfaces such as exposed soil and the water will pass through the soil surface and 

will be more likely to carry the bacteria downslope. Furthermore, it has been 

observed that many unpopulated areas serve as locations for informal rubbish 

deposition for the community where rats have been associated with rubbish (Santos 

et al., 2017). These areas can therefore be a source for environmental 

contamination and the water flowing through those areas might mobilise the bacteria 

carrying it downstream. Therefore, an important next step would be to explore how 
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soil permeability and/or a measurement of rubbish management is associated with 

infections between districts in Salvador. 

The results from this analysis are very encouraging and have demonstrated that 

hydrology needed to be more explored in infectious disease research. Studies that 

have included hydrological variables in their analyses have used flooding risk as the 

main approach or have simply used rainfall (Vega-Corredor and Opadeyi, 2014; 

Suwanpakdee et al., 2015; Gutiérrez and Martínez-Vega, 2018). Gutiérrez and 

Martínez-Vega (2018) looked at anomalies in rainfall and found evidence of 

association between rainfall anomalies and leptospirosis cases at a city level in 

Colombia. Suwanpakdee et al. (2015) analysed how flooding risk, measured by 

satellite imagery, is associated with leptospirosis cases also at a city level in 

Thailand. They found that flooding was less important than expected and suggested 

that agriculture and farming could explain more the pattern of leptospirosis infection 

found in Thailand. Conversely, Vega-Corredor and Opadeyi (2014) looked at the 

role of a set of hydrological variables and found that flooding risk were associated 

with leptospirosis infections in Trinidad at the city level. Here, it was demonstrated 

that water rurality was associated with risk of leptospirosis infection but at a district 

level. Hydrological variables seem to be associated with leptospirosis at many 

scales, but at the individual level, this association have not been explored yet. 

Additionally, given the nature of how hydrology was assessed in this thesis 

(using topographic analysis based on elevation), the association with water rurality 

could be given by the correlation between water rurality and elevation. However, the 

Pearson correlation between those two variables were checked and it was observed 

very little correlation (r= -0.11). This correlation result gives more support that the 

association between leptospirosis cases and water rurality it is not caused by a 

colinearity between elevation and water rurality. The analysis on this chapter 

focused on evaluating purely hydrological, however, elevation should be considered 
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as an environmental variable in further analysis in order to quantify the 

environmental risk factors of leptospirosis. 

Despite the predictions’ confidence intervals showing there to be high variation 

around the predictions of the model, it was nonetheless possible to explore how the 

risk varies spatially. If the intention is to predict the number of cases in a target 

district, this would be very imprecise as it was possible to see the variation in the 

maps of the confidence interval (Figure 5.6 and Figure 5.7). This imprecision might 

be an feature of main cities in developing countries where inequality is very high and 

there are abrupt change in the living conditions between neighbouring communities. 

This feature can cause noise in the predictions. Additionally, human leptospirosis is 

not a very common disease, which results in lower case counts and hence in higher 

variance as the mean and variance of a poisson distribution are the same. However, 

the geostatistical model used here accounts for unexplained variation, both spatially 

structured and unstructured. Thus, despite the imprecision of the estimation at a 

target point, the spatial variation of the risk can still be explored and has shown 

parts of the city where the risk is higher than in others, such as the northwest of the 

city. 

This analysis was performed at the district level, which was able to show an 

association between human leptospirosis and hydrology. Another issue of high 

interest is to explore how the disease cases are associated with hydrology at a more 

local scale. Exploring this association could show the importance that hydrology 

plays in the dynamics of infection. Pau da Lima is a community of Salvador where 

our research group has been investigating the dynamics of human leptosirosis 

involving epidemiological, ecological and environmental approaches. From a 

longitudinal cohort followed from 2003-2004, it was found that the environmental risk 

factors associated with transmission of assymptomatic cases were contact with 

mud, household elevation and rat infestation (Hagan et al., 2016). They found that 
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the spatial distribution of risk in the community was varied and localized. 

Incorporating the hydrological variables into the system might direct and help to 

identify areas of high risk of transmission. 

Attention might be needed in northwest Salvador, where the risk was identified 

to be high, in order to reduce infection rates and improve people’s health and 

wellbeing. Despite the model not considering individual characteristics and any 

social aspects of the disease, it was possible to observe an association between 

hydrology and leptospirosis infections at the district level. Combining hydrological 

variables alongside socioeconomic characteristics of the individuals might help to 

improve the model fit and identify risk more accurately, but the challenge would be 

combine both types of data. Additionally, looking at the associations at the local 

scale can potentially give more insights on the role of the environment in the 

dynamics of leptospirosis infection. 
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Chapter 6: General discussion 
 

Leptospirosis has been shown to be a complex disease with many interacting 

factors influencing it that can be grouped into socioeconomic, ecological and 

environmental. Socioeconomic factors are related more to the individual such as 

illiteracy, income and gender. Ecological factors can be related to individual risk 

factors such as rat infestation or to the reservoir risk factors such as rat contact and 

contamination. Finally, environmental factors are more complex and can be related 

to the individual, the reservoir or the environment itself. Contact with mud, distance 

to the sewer, elevation and flooding are examples of environmental risk factors. 

They all seem to interact with each other, which produces very diverse outcomes 

with different associations that will depend on the scale and region of the 

observations. The introduction to this thesis showed that there is lack of 

understanding of the dynamics of the bacteria in the environment. Thus, this thesis 

tried to explore some key issues that can be very relevant to understand the 

dynamics of the bacteria in the environment and how this can be associated with 

human leptospirosis. 

A conceptual model was developed based on what is known in the literature but 

there were several assumptions that were made. The first assumption of the model 

is that the bacteria enter into the system via shedding from its reservoir, which are 

Norway rats in the case of Salvador and many other urban centres. The second 

assumption is that there are three compartments where the bacteria can be found: 

water bodies, soil surface and sub-surface. The next assumption is that hydrology 

drives the transportation of the bacteria between compartments where runoff 

mobilises the bacteria from the soil to water bodies and flooding mobilises in the 

other direction. The last assumption is that the bacteria leave each compartment 

with a survival rate and/or through human infection. Issues found in addressing each 
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part of the model directed the development of this thesis and will be addressed in 

the following paragraphs.  

The first issue arose from estimating abundance of the animal reservoir, Norway 

rats, which is essential to understand the level of contamination/shedding by 

leptospires in the environment. Standard methods to estimate animal abundance 

are based on capture-recapture methods where captured animals are marked and 

released, and the absolute abundance is estimated based on recording historical 

capture-recapture observations (Borchers, Buckland and Zucchini, 2002). However, 

Norway rats are invasive species that carry a significant number of zoonotic 

diseases, and releasing those animals is not appropriate, as they are a risk for 

people’s health. Alternatively, animal abundance can be estimated if animals are 

removed and a decay in the number of animals captured per day is observed. The 

issue found in this method is that the assumption of a reduction in the number of 

animals captured is crucial and thus the model does not allow for intrinsic variation 

in trapping history that does not necessarily reflect variation in the abundance. In 

fact, the new proposed method, developed in Chapter Two, was shown to be more 

robust regarding those variations and the animal abundance could be estimated 

more precisely. The application of this method goes beyond its use in urban rats; it 

could be applied in any situation where removal methods are appropriate such as 

monitoring invasive species in wild. 

Following animal abundance, another key issue found is the survival of 

leptospires in the environment. Once the bacteria are released into the environment, 

it is known that there is a set of factors that are related to its survival such as 

temperature, pH and soil moisture. Evidence has shown that the bacteria can be 

found in soil sub-surface for months but, before the analysis produced in Chapter 

Three, there was no evidence of the survival of the bacteria being quantitatively 

estimated. The first feature of the model developed in Chapter Three is to allow the 
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user to make inferences regarding the shape of the survival curve, which will be 

informative as to whether the hazard is constant through time. Secondly, the model 

can quantify the decay rate of the bacteria and make inferences regarding whether 

the decay rate is different depending on the environment. Finally, the last feature of 

the model is the ability to quantify the proportion of individuals that survive beyond 

the time of the experiment. The results from the model show that leptospires in 

microcosms have a survival shape with a tail, which means that most of the 

individuals died within the first two weeks of the experiment, but there is a small 

proportion of individuals who survived for longer. The bacteria have different decay 

rates in soil and sewage microcosms, which indicates that soil seemed to be more 

suitable for the survival of the bacteria. Despite the results being based on 

microcosms where there are controlled conditions, it is believed that this can be a 

good approximation of how the bacteria can survive in the environment. This 

information can help to coordinate the time and duration of an environmental 

intervention control. 

The next two chapter of this thesis, Chapters Four and Five, were related to 

hydrology. The conceptual model assumed that hydrology is the main driver of 

leptospirosis in the environment and that human infection can occur from contact 

with the environment. However, the role of how hydrology is related to human 

infection is not well explored, mainly because hydrological modelling can be 

complex and requires high resolution of empirical data. In Chapter Four, hydrology 

was explored in a way that minimises the amount of data necessary to produce 

hydrological risk maps. Based on the assumption that if all rain that falls become 

runoff and there are no barriers, the water will flow into the lowest point. Hence, a 

set of hydrological measurements could be explored and used as environmental risk 

factors for leptospirosis or other waterborne diseases. The maps produced have 

shown to be complementary to each other such that the risk they describe depends 
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on the measurement. Those maps can be further explored and additional 

information can be included such as soil permeability, which will then influence the 

amount of water that reaches an area. 

The hydrological measurements were applied to leptospirosis cases in Salvador, 

Brazil. The aim of Chapter Five was to investigate and validate the measurements 

used as risk factors for waterborne diseases. From four hydrological measurements 

(flow accumulation, population weighted accumulation, water rurality and 

topographic wetness index), only one variable was associated with human 

leptospirosis in Salvador. Water rurality was negatively associated with the number 

of cases in the districts of Salvador. This result indicates that if water is flowing 

through non-populated areas, the risk of infection seems to be higher than from 

populated regions. Considering that leptospirosis was originally described as a rural 

disease, it seems fair to say that leptospirosis in Salvador presents patterns of a 

rural disease but in an urban environment. 

 

6.1 The value of methodological advances 

Although this thesis is in many respects methodological, the results obtained 

here have many implications that will improve the understanding of the dynamics of 

the bacteria in the environment. Additionally, the results can direct the development 

of a mathematical model of the bacteria in the environment as well as parameter 

estimation. The conceptual model can be updated to incorporate the results based 

on this thesis. With the new abundance method, animal abundance will be 

estimated more precisely and accurately which could improve the parameter 

estimation related to the input of the bacteria into the environment. The survival 

model indicated that the survival of the bacteria varies between compartments, such 
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as soil and water, hence, a different survival parameter should be considered in 

each compartment.  

New hydrological variables were produced that can represent different risks not 

only for leptospirosis, but also for waterborne diseases in general. Hydrological 

transport was used in the dynamic modelling of cholera where the movement of the 

pathogen would occur through a catchment network (Bertuzzo et al., 2007; Mari et 

al., 2012). The hydrological variables could be used instead of catchment network, 

mainly because they would provide richer information on water flow. The variables 

produced in Chapter Four could be applied to develop a dynamic model for the 

bacteria in the environment, which could go even further and a spatially explicitly 

model could be developed. The hydrological variables could help map bacteria 

concentration, however, the amount of bacteria that is mobilised by runoff should be 

considered as well as bacteria diffusion in the soil. Thus, an experiment could be 

designed to provide empirical evidence of the bacteria transportation via hydrology, 

runoff and flooding. Once proven and quantified, the information could be combined 

with hydrological variables and the dynamic model could be developed further. 

Leptospirosis in Salvador is associated with water rurality, a new hydrological 

variable that measures if most of the water is flowing through areas that are 

considered rural. Those results can be incorporated into the dynamic modelling of 

human infection, where an exposure compartment could be included. A series of 

mathematical models for leptospirosis have been developed. Baca-Carrasco et 

al.(2015) developed a mathematical model for human and animal leptospirosis 

where there is a compartment related to the bacteria in the environment. However, 

their model only assumed that the bacteria enter via an infected animal or human 

and have an average survival time. Other models for human leptospirosis 

transmission have been developed. For example, Ismail et al (2017) had an 

exposure compartment in their dynamic modelling but only looked at a standard 



172 
 

susceptible-infected-recovered (SIR) model. Triampo et al. (2008), Pimpunchat et al. 

(2013) and Moustafa (2014) are other examples of studies of dynamic modelling of 

leptospirosis. However, none of those studies have used empirical data; they all 

performed analytical analysis to explore the behaviour of the infection in their 

system of equations. Here, the evidence of a hydrological factor being associated 

with leptospirosis cases in Salvador has shown that hydrological risk maps are 

important in studying infections. Similarly, Vega-Corredor & Opadeyi (2014) found 

that flood risk was associated to human leptospirosis. Despite there being only few 

studies that have linked hydrology to leptospirosis, we know that water-related 

variables such as rainfall, flooding and distance to sewage are risk factors that are 

found to be associated with leptospirosis cases (Albert I Ko et al., 1999; Barcellos 

and Sabroza, 2001b; Sarkar et al., 2002; Reis et al., 2008; Goarant et al., 2009b; 

Amilasan et al., 2012b; Garba, Bahaman, Khairani Bejo, et al., 2017). Therefore, a 

future direction in the development of a dynamic modelling of human leptospirosis 

would be to include an exposure compartment associated with hydrology. 

Discussions around climate change are increasing as its effect on infectious 

disease dynamics is becoming more evident. Extreme weather events are 

increasing and epidemic events of leptospirosis have been reported worldwide (Lau 

et al., 2010a). The association between heavy rainfall and flooding have been 

reported in many countries such as Brazil, France and Trinidad and Tobago (Albert I 

Ko et al., 1999; Kupek, de Sousa Santos Faversani and de Souza Philippi, 2000; 

Baranton and Postic, 2006; Mohan et al., 2009). There is an urgent need to 

understand how climate change will affect the spread of infectious diseases such as 

leptospirosis. Understanding the role of the environment in the dynamics of the 

bacteria might help to understand how climate change will affect leptospirosis 

transmission. 
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6.2 Post script: Two years of work in the 

community of Pau da Lima and how the results of 

this thesis can help the community 

Before applying for my PhD scholarship, I moved to Salvador, Brazil to start 

working as a field technician in the project where Prof Mike Begon and Prof Peter 

Diggle were involved. The project was called “Eco-epidemiology of urban 

leptospirosis” and was developed in a low-income community of Salvador, called 

Pau da Lima. The project is a multidisciplinary one that aims to understand all facets 

(reservoir host, environment and disease) of human infection by Leptospira. There 

were three main types of field work to be done: serosurvey, rodent trapping and 

environmental sampling, though there was no overlap or real integration between 

these. My involvement in the project went through all facets, starting in the human 

infection theme, collecting samples for the serosurvey, then rodent trapping, and 

then planning environmental sampling. My time in the community helped 

significantly in the development of my PhD thesis.It elucidated the complexity of 

leptospirosis and how each compartment of the disease plays an important role in 

the infection. 

Salvador city is located on the northeast cost of Brazil. Pau da Lima is 

located in the centre west of Salvador. Pau da Lima, like many regions in Salvador, 

is composed of many valleys where the bottoms of the valleys were the poorest 

areas we observed. Additionally, there were open sewers present. The study was 

based in three valleys of Pau da Lima where there were protocols for collecting each 

type of data. We always worked in pairs and had a small area to cover each day. 

During the serosurvey, we walked into the houses, asked for consent to collect 

blood samples and had a socioeconomic and environmental questionnaire to ask. 
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We collected information regarding their knowledge about leptospirosis, and their 

risk perception, and collected a set of environmental characteristics from the house 

and surrounding areas. In the environmental questionnaire, we identified if the 

house had a sewer closer than 20 meters, and if there were rat signs, burrows, and 

a continues to the present day, found that elevation and household income were risk 

factors for leptospirosis infection. For that reason, the study area in Pau da Lima 

was changed to be focused on the bottom of the valleys.  

During my work in the field, we observed how the rats and people lived very 

close to each other, especially when they were living in the bottom of the valley. 

There were rat signs in the surrounding areas of many houses and near the open 

sewers. Rats were seen almost every day in those areas. During the interviews of 

the households, some residents commented that they used illegal poison to try and 

remove those animals from the surroundings of their houses but many of their pets 

died too. The Centre for Zoonosis Control (CCZ), a public organization that manage 

zoonotic diseases, define many areas in the city as endemic for leptospirosis and 

apply rodent control in order to exterminate (or at least control) the rodents. Pau da 

Lima was one such area. However, the rodent population seemed to be very 

abundant and widespread, indicating that any effect of the control measures 

seemed temporary and that rats are still present in the community. From this 

observation and the results from Costa et al (2014) that 80% of the rats were 

infected with leptospires, it can be assumed that the level of environmental 

contamination is widespread throughout the community.  

Alongside the rats’ presence, during the rainy season we observed pathways 

used by the households to connect to the main street becoming ‘rivers’ of water 

flowing down the valleys. The runoff washed through the soil and carried out many 

things down to the bottom of the valley, especially items of rubbish that were on the 

ground due lack of litter collection or overflows from collection points. Nevertheless, 
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the runoff did not stop members of the households from going out, and people were 

seen walking up the valley to go to the main street, probably to go to work or to buy 

groceries. Additionally, the bottoms of the valleys were flooded and sometimes the 

flood could reach the houses if a heavy rainfall event occurred. In order to 

counteract these flood events in the bottoms of the valleys, the community managed 

the open sewers and removed any barrier that could block the water flow such as 

rubbish and plastic bags. They also tried to create barriers to avoid the water going 

inside their houses. However, they did not have any protection to work in those open 

sewers and some households documented that they had leptospirosis. Given the 

results from Ko et al (1996) for Salvador, and many other authors around the world 

that observed seasonality in the infection during rainy season, we thought that 

hydrology can be important in the transmission of leptospirosis and should be further 

explored. 

Given the widespread presence of rats in the community and aspects of 

human behaviour described above, it seems that the level of exposure to leptospires 

in the environment is very high. The results of the studies described in this thesis 

could assist communities endemic for leptospirosis in many aspects alongside 

directing new research questions to be addressed. For example, the survival 

analysis of leptospires indicate that after rainfall, where bacteria have been 

mobilized into the soil or the sewage, the risk of infection could be considered higher 

right after rainfall and decreases as the survival of the bacteria decreases with time. 

However, this is a hypothesis that has not been tested yet. Nonetheless, assisting 

and informing the population to avoid going out right after rainfall and educating 

them in the use of protection could make a difference and reduce infections. Ideally, 

it would be very informative to know what level of rainfall would be considered 

dangerous for transmission of leptospirosis and create a transmission alert system 

for high transmissibility periods. 
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The results linking leptospirosis cases with hydrological variables indicated 

that at the district level, water that passes through less populated areas (here called 

rural areas) were associated with higher number of cases. From a public health 

perspective, identifying areas of higher and lower risk of transmission is very 

informative in terms of management interventions and controls of the disease. One 

of the main challenges in this thesis was the difficulty on linking observations made 

at a local scale with data observed at a higher scale. However, even with those 

issues to overcome, the results obtained supported our observations in Pau da 

Lima. The bottoms of the valleys were areas with lower densities of people and were 

the poorest areas. Many animals were present in the houses in the bottoms of the 

valleys, such as farm animals (chicken, pigs and cows) as well as pets (cats and 

dogs). They provide accessible food for rats, which can increase the contact with 

rats or a contaminated environment, hence, increase infection risk. Additionally, 

those ‘empty’ areas were used for rubbish deposition and as places to deposit 

construction materials, which also provide shelter and nest for rats. Therefore, the 

results captured some of the features observed at a local scale even when the 

inference was based at a regional scale (district level). These results can be taken 

to the CCZ who could update their assessment of endemic areas and intervention 

protocols can be reassessed. 

Thus, the results of this thesis will be taken to public health stakeholders to 

propose a collaboration where academic research can be directly applied, and the 

needs of public health management could also be met. 
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