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Abstract.  This paper presents a rapid response system architecture for the 

distributed management of warehouses in logistics by applying the concept of 

edge computing. A tiered edge node architecture is proposed for the system to 

process computing tasks of different complexity, and a corresponding rapid 
response algorithm is introduced. A software-defined simulation is done to 

evaluate the system performances on rapidness and correctness, from which it 

can be concluded that all pre-defined emergency cases can be detected and 

responded to within a relatively short period of time. 

Keywords: edge computing, rapid response algorithm, Wireless Sensor 
Networks (WSN), distributed warehouses management, logistics. 

1   Introduction 

As a mature Internet of Things (IoT) scenario, Wireless Sensor Networks (WSN) 

have rapidly proliferated over the last decade. These diversified WSN applications are 

emerging rapidly, while the quantity of various nodes and platforms in the WSN is 

increasing exponentially. Wearable human sensor network, the smart home, 

intelligent logistics and transportation [1], as well as the smart city [2] are typical 

application scenarios for current WSNs. 

From the perspective of logistics, the warehouse is a critical scenario  for 

contemporary intelligent logistics applications. For warehouse management, sens ed 

data may  be used for two  general purposes : one is for cargo management, which 

includes goods identification (using RFID) and goods tracking (location and 

movement); the other is for safety management, which refers to the environmental 

monitoring and data security. The logistics companies who aim to conduct business 

nationwide need to consider both the centralized global control of the profes sion on 

Cloud as well as the management of distributed networks of warehouses locally. At 

this scale, the traditional WSN p lus Cloud mode may  lead  to either high bandwidth 

use or latency in undertaking emergency interventions. In short, many applications 



 
Figure 1. Edge computing-based tiered system architecture. ‘EN’ indicates edge node. A smaller 

EN-Grade number indicates the physically closer location from the edge node to the sensor nodes  

and sensing devices. 

require both WSN localizat ion and Cloud globalizat ion which cannot be satisfied by a 

simple WSN-Cloud architecture. In such case, a well-designed WSN-Edge-Cloud 

system architecture that integrates edge computing features with the WSN-Cloud 

architecture would solve these problems and improve the efficiency of the business  [3, 

4]. 

Being regarded as a relay between the data centre on the Cloud and sensor nodes in 

the WSN, edge computing nodes extend the Cloud Computing paradigm to the edge 

of the network in  a bid irect ional way. On the node-to-cloud direction, edge nodes 

revolve around local functionality for geographically closer sensing area with the 

feature of data pre-processing and rapid reaction [5]. These outcomes will be sent to 

the Cloud selectively, according to the exp licit application requirements. In the cloud-

to-node direction, edge nodes achieve distributed deployment of the broad class of 

applications under the macro control of the Cloud and perform the tasks allocated by 

the Cloud [6]. 

2   Architecture and Methodology 

2.1 Edge Computing-based Graded System Architecture 

The edge computing-based graded system arch itecture, which can be differentiated 

from trad itional WSN system arch itecture, consists of three general layers at the 

vertical d irection, which from top to bottom are the Cloud, Edge, and WSN 

infrastructure as shown in Figure 1. As a widely accepted environmental sensing 

infrastructure, sensor nodes in the WSN collect sensing data and track changes of the 

environment continuously. For better identification and management, sensor nodes in 

the WSN are logically separated into different areas.  

 The Edge computing layer is introduced into the system by considering it as the 

implementation of cloud computing close to the physical environment. The 



Algorithm 1. Rapid Response Algorithm 

Inputs:  

Bound threshold: THb  

Observe period 1: T1 

Data set: D(n)={d(n,i),n∈N,i:timestamp}  

Data status: C(d)={true,when d≥THb;false,when d<THb,d∈D} 

Node set: N={n1,n2,…,nk,k:number of nodes in the area} 

Neighbor node set: Nnb(n) 

Critical percentage: p 

Observe period 2: Tc 

Data gradient set: Grad(n)={grad(n,i),n∈N,i:timestamp}  

Data gradient: grad(n,i)=[d(n,i+Tc)-d(n,i)]/Tc,n∈N, i:timestamp 

Process on EN-1 

if d(n,i)>THb: 

   observe C(d), where d∈Dnb,Dnb={d(m,j),m∈Nnb(n),j∈(i,i+T1)} 

   if C(d)=true: 

      activate Alarm-1 

   else : 

      generate M=(n,i) 

      activate EN-2 

Process on EN-2 

observe M 

compute Grad(m), where m∈Nnb(n) 

if #{grad(m,i)>0}/#{Nnb}>p: 

    activate Alarm-2 

else : 

    if grad(n,i>0): 

        activate Alarm-3 

    else : 

        record data-error 

 

functionality of edge computing is refined into three grades of edge nodes. Grade one 

and two edge nodes are focused on the data formatting, preliminary  data processing 

for WSN data collection, as well as the execution of tasks and control commands 

allocated by the upper layer (h igher grade edge nodes or the cloud). Grade three edge 

nodes contribute to more complex data analysis, which involves data that is 

potentially useful for pred iction and control, as well as generating or relaying control 

commands from the upper layer to the lower layer.  

The cloud layer contributes to the centralized analysis of global data and 

management of the entire network. In addition, the connection between users and the 

system via the cloud realizes the remote operation and control all areas covered by the 

terminal devices. For applicat ion developers, the system can be accessed via the cloud 

or edge node for application deployment regarding the deployment requirements and 

the network condition.  

2.2 Rapid Response Algorithm 

Within a target monitoring area, there are two primary cases in which sensor nodes 

may generate abnormal sensing data: one is the sudden environmental change, the 

other is the error data caused by sensor broken or irruption. A rapid response is only 



Table 1. List of all cases for experiments 

Cases Specification Alarm type 

case 1 Abnormal of environment is observed by a group of nodes 
(Rapid Growth) 

Alarm-1 

case 2 Abnormal of environment is observed by single node, the 

abnormal is diffusion (Slow Growth-Diffusion) 

Alarm-2 

case 3 Abnormal of environment is observed by single node, the 

abnormal is non-diffusion (Slow Growth-Non-Diffusion) 

Alarm-3 

case 4 Error data on single node None 

 

expected to be triggered by the first case, which could save time fo r emergency 

interventions and reduce the potential for business losses. In contrast, a rapid response 

caused by the second case will lead to a waste of resources.  

The rapid response algorithm proposed in this paper as shown in Algorithm 1 is 

under the premise of ensuring accuracy, which  classifies the u rgent cases into three 

types: Rapid Growth, Slow Growth-Diffusion, and Slow Growth-Non-Diffusion. 

Threshold setting is one of the most popular approaches to distinguish abnormal 

data and normal data. At the Grade-1 edge nodes, the bound threshold (THb) is set for 

real-t ime comparison. Any sensing data collected by a sensor node that upload to the 

Grade-1 edge node will be compared with THb. There are two cases that may happen 

at the Grade-1 edge node by comparing real-time sensing data with THb: a) more than 

one sensor nodes are distinguished as abnormal within a short period (say T1), b) 

abnormal data appear on a single node. For case a), we consider a Rapid Growth case 

happened and generate Alarm-1 directly; while for case b), Grade-1 edge node will 

trigger Grade-2 edge node with a new generated message which includes abnormal 

sensor node ID for further computing and judgement. Once Grade-2 edge node be 

triggered by this message, it starts to analyze the trend of sensing data of both the 

abnormal node and its neighbor nodes. The trend is measured by computing the 

gradient of data in ad jacent time point. The percentage of neighbor nodes who have 

the same trend as abnormal one will decide the urgent case type: if there are more 

than p (a given percentage) neighbor nodes have the same trend, we consider a Slow 

Growth-Diffusion case happened and generate Alarm-2. Otherwise, the trend of the 

abnormal node in the coming period of t ime (say Tc) decides the urgent case type. A 

continuous change of sensing data will denote a Slow Growth-Non-Diffusion case 

happened and an Alarm-3 will be generated; while the stable sensing data indicates 

that an error has occurred and there will be no alarm message generated.  

3   Implementation 

In our simulat ions, there are four cases considered as listed in Table 1.  Case 1-3 are 

corresponding to the three urgent cases types as introduced in Section 2.2, which are 

Rapid Growth, Slow Growth-Diffusion, and Slow Growth-Non-Diffusion. Case 4 

indicates unexpected error data occurs on a single node. Each of the cases 

corresponds to an alarm type, which is generated by the edge node to distinguish the 

cases.   



Corresponding to three real-world  scenarios that produced temperature sensing 

data, which are open flame spread, high-temperature steam leakage and diffusion, as 

well as node device over temperature, we generate three sets of data by software for 

the experiments on case 1-3. The error data for case 4 is inserted into a data set 

simulated the indoor environmental change manually. All the simulated sensing data 

are sampled once per second during the experiments . 

The performances on correctness and rapidness corresponding to sub-figures (a)-(d) 

in Figure 2 are tested under four simulated environments . For each test, there are four 

nodes updated sensing data over 60 seconds to the edge node simultaneously. 

Referring to the input parameters listed in Algorithm 1, the ‘bound threshold (THb)’ is 

set to be 40 while the ‘observe period one (T1)’ is set to be 1. The ‘observe period two 

(Tc)’ is 5 and the ‘critical percentage (p)’ is 0.5 in our experiments.  

The system response time is pointed out by an arrow on each sub-figure, which 

corresponding to the timestamp 23 sec, 24 sec, 25 sec, and 13 sec. Comparing with 

the bound threshold line (labelled as BoundTh in the figure), it can be observed that 

all the emergency cases are detected and responded within an ‘observe period two’.  

4   Conclusion 

A rapid response system architecture is proposed in this paper, which involves the 

concept of edge computing in  WSN. From the perspective of distributed warehouse 

management in logistics, an algorithm for distinguishing and rapidly responding to 

emergency cases is introduced. Tested by a software-defined simulation, the 

performance on the correctness and rapidness of the Grade-1 and Grade-2 edge nodes 

in the system applying the rapid response algorithm shows that all pre-defined 

     
(a) Rapid Growth                     (b) Slow Growth-Diffusion 

     
(c) Slow Growth-Non-Diffusion                   (d) Error data 

 

Figure 2. Simulation on correctness and rapidness performance of the algorithm 



emergency cases can be detected and responded within a relat ively short period of 

time. 

To implement the entire system architecture as proposed in this paper, a clear 

direction for future research is the implementation of Grade-3 edge nodes, which 

potentially focuses on the short-time prediction. Besides the edge computing layer, 

the interaction and interoperation between the edge and the Cloud is also a valuable 

direction to extend our research. 
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