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depressive disorder identified by model-
based clustering and validated by clinical
prediction models
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Abstract
The identification of generalizable treatment response classes (TRC[s]) in major depressive disorder (MDD) would
facilitate comparisons across studies and the development of treatment prediction algorithms. Here, we investigated
whether such stable TRCs can be identified and predicted by clinical baseline items. We analyzed data from an
observational MDD cohort (Munich Antidepressant Response Signature [MARS] study, N= 1017), treated individually
by psychopharmacological and psychotherapeutic means, and a multicenter, partially randomized clinical/
pharmacogenomic study (Genome-based Therapeutic Drugs for Depression [GENDEP], N= 809). Symptoms were
evaluated up to week 16 (or discharge) in MARS and week 12 in GENDEP. Clustering was performed on 809 MARS
patients (discovery sample) using a mixed model with the integrated completed likelihood criterion for the
assessment of cluster stability, and validated through a distinct MARS validation sample and GENDEP. A random forest
algorithm was used to identify prediction patterns based on 50 clinical baseline items. From the clustering of the
MARS discovery sample, seven TRCs emerged ranging from fast and complete response (average 4.9 weeks until
discharge, 94% remitted patients) to slow and incomplete response (10% remitted patients at week 16). These proved
stable representations of treatment response dynamics in both the MARS and the GENDEP validation sample. TRCs
were strongly associated with established response markers, particularly the rate of remitted patients at discharge.
TRCs were predictable from clinical items, particularly personality items, life events, episode duration, and specific
psychopathological features. Prediction accuracy improved significantly when cluster-derived slopes were modelled
instead of individual slopes. In conclusion, model-based clustering identified distinct and clinically meaningful
treatment response classes in MDD that proved robust with regard to capturing response profiles of differently
designed studies. Response classes were predictable from clinical baseline characteristics. Conceptually, model-based
clustering is translatable to any outcome measure and could advance the large-scale integration of studies on
treatment efficacy or the neurobiology of treatment response.

Introduction
Developing a major depressive disorder (MDD) and

recovering from it is a dynamic process. While consensus
definitions of MDD include core symptoms such as
anhedonia and a depressed mood1, multiple additional
symptoms may co-occur during an episode, each with
individual patterns and variability throughout the

© The Author(s) 2019
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Bertram Müller-Myhsok (bmm@psych.mpg.de) or
Philipp G. Sämann (saemann@psych.mpg.de)
1Max Planck Institute of Psychiatry, Munich, Germany
2Department of Neurology, Klinikum Rechts der Isar, School of Medicine,
Technical University of Munich, Munich, Germany
Full list of author information is available at the end of the article.
These authors contributed equally: Bertram Müller-Myhsok, Marcus Ising,
Philipp G. Sämann

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

http://orcid.org/0000-0002-2917-5889
http://orcid.org/0000-0002-2917-5889
http://orcid.org/0000-0002-2917-5889
http://orcid.org/0000-0002-2917-5889
http://orcid.org/0000-0002-2917-5889
http://orcid.org/0000-0001-7381-904X
http://orcid.org/0000-0001-7381-904X
http://orcid.org/0000-0001-7381-904X
http://orcid.org/0000-0001-7381-904X
http://orcid.org/0000-0001-7381-904X
http://orcid.org/0000-0002-8249-8476
http://orcid.org/0000-0002-8249-8476
http://orcid.org/0000-0002-8249-8476
http://orcid.org/0000-0002-8249-8476
http://orcid.org/0000-0002-8249-8476
http://creativecommons.org/licenses/by/4.0/
mailto:bmm@psych.mpg.de
mailto:saemann@psych.mpg.de


episode2,3. During the development of a MDD, patients
may go through sub-clinical phases with areas of preserved
functioning in daily life, yet already show impaired psy-
chosocial stress tolerance4,5. Strong inter-individual dif-
ferences in the sensitivity towards psychosocial stress—a
major risk factor for MDD6—may underlie such symptom
plurality. Similarly, the regression of symptoms under
treatment shows strong inter-individual differences.
However, it is hypothesized that stable subgroups7–9 and
predictive clinical patterns8–13 exist.
The latter is important for the successful clinical man-

agement of MDD. Treatment should ideally lead to full
remission, as the persistence of residual symptoms
increases the likelihood of a relapse14. Accordingly, delays
of treatment intensifications or a switch of medication
further increases the risk of treatment resistance and
chronification15. Early treatment response (e.g., within
2 weeks) is particularly predictive of the longer course16—
an established finding that also applies to outpatients and
patients receiving a first-time antidepressant treatment17.
Similarly, distinct psychopathological profiles reflect dif-
ferences in the sensitivity of functional domains to stress
and may be predictive of response patterns. For example,
a patient suffering from severe anhedonia as a core
symptom may respond particularly well to a treatment
that addresses the dopaminergic system 18.
Due the heterogeneous symptomatology of depression,

treatment response classes are typically based on com-
pound scores on which relative change criteria or absolute
thresholds are then applied (e.g., depression severity
below a certain threshold over a defined time period).
Different multivariate statistical techniques have been
employed to identify predictive patterns for such con-
ventional treatment response classes10,12,13. Chekroud
et al.10 used an elastic net to identify 25 out of 164
patient-reportable variables of the Sequenced Treatment
Alternatives to Relieve Depression (STAR*D) study that
predicted response to citalopram. These variables were
used to train a machine learning model, which could be
validated with significant, yet low accuracy (59.7%) in an
external sample. Nie et al.12, using data from the STAR*D
study, trained five different machine learning algorithms
on the full (700) or differently reduced (30 and 22,
respectively) sets of clinical features to predict treatment
resistance and non-resistance in STAR*D (at week 12)
and an independent study (at week 6). Predictions were
carried by early response markers and reached moderate
accuracy. Wardenar et al.13 reported that the effect of
information on comorbidities significantly improved the
prediction of depression persistence and severity. Yet,
while the here predicted response classes are mostly
rooted in the long-known importance of early response
and full remission, they are not data-based and may thus
not represent all patterns contained in the data. Here,

clustering analysis may be useful to dissect the dataspace
into subspaces based on features that are shared within a
subgroup and distinct between subgroups19. Clustering
analysis has so far mainly been applied towards cross
sectional markers to identify subgroups based on clinical
symptom profiles20–23, cognitive markers24, or functional
imaging markers25, assuming that clusters could indirectly
reflect distinct pathophysiological components. Here, we
attempt to cluster the treatment response space based on
(total) symptom severity trajectories, i.e., the patients’
clinical development over a defined observation period.
Longitudinal latent class analysis has reported five26 or
nine such prototypical trajectories27 based on 12 weeks of
observation. More specifically, the first study26 demon-
strated rather limited prediction from ~13 clinical base-
line items and polygenic scores formed from five
literature-based, treatment associated genetic variants.
The second study27 reported weak associations of
response trajectories with the type of medication, yet
investigated no clinical predictors. Another study revealed
seven trajectories based on 1 year of observation28, yet, no
prediction models were tested. One limitation of these
studies, however, is their narrow generalizability as data
from single centers studies were used.
In order to understand whether treatment response

classes (TRC[s]) are specific to a study site-specific patient
selection and treatment approach or whether they
represent a generalizable dynamical fingerprint, we
included two types of cohort studies in our work: First,
the Munich Antidepressant Response Signature (MARS)
study, a prospective, open, observational trial performed
at the MPI of Psychiatry, Munich, and collaborating
hospitals29. Second, the Genome-based Therapeutic
Drugs for Depression (GENDEP) study, a partially
randomized, multicenter clinical and pharmacogenomic
study30. In both studies, the Hamilton Depression Rating
Scale (HAM-D), which achieves good test-retest and
interrater reliabilities31 was used to assess current
symptom levels, covering most domains that define
MDD such as depressed mood, suicidality, anhedonia,
lack of drive, circadian symptom changes, and autono-
mous nervous system disturbances.
The aims of this study were (i) to establish TRCs in a

data-driven fashion, based on serial depression ratings as
acquired during studies with naturalistic or partially
randomized treatment, and (ii) to assess the general-
izability and clinical validity of the resulting TRCs. For
this purpose, we applied a mixed model-based, non-linear
longitudinal clustering technique to detect TRCs (also
referred to as clusters) in MDD in our discovery sample, a
subsample of the MARS cohort. The core feature of this
clustering technique is to assigns individuals to a cluster
(here: a TRC) by while borrowing information from all
other individuals and hereby improving cluster stability,
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which often is critical for generalizability and clinical
applications. For the second aim, we assessed cluster
generalizability empirically in a second subsample of
MARS (MARS validation sample) and in the GENDEP
sample, and employed random forest analyses to explore
if clinical characteristics at baseline can predict the TRCs
in the MARS discovery and validation sample.

Methods and materials
General study samples characterization
Both the MARS and the GENDEP study protocol were

approved by the respective local ethics committees. All
participants gave their written informed consent before
participation. MARS patients were admitted to the hospital
of the MPIP, Munich, Germany, or collaborating hospitals
in southern Bavaria and Switzerland for the treatment of
different depressive disorders. Started in 2000, the study
aimed at generating a large database of longitudinal
observations with weekly ratings along with socio-
demographic, psychopathological, and biological data from
in-patients with all types of depressive disorders including
MDD, bipolar depression, and schizoaffective disorder29.
Diagnoses according to ICD1032 were obtained from
trained psychiatrists using patient interviews and clinical
documentation29. Of 1286 available patients, only patients
with either a single episode of MDD (ICD-10 F32, N= 373)
or a recurrent (unipolar) depressive episode (ICD-10 F33,
N= 698) were eligible. Patients with bipolar depression
(N= 175), chronic depression (ICD-10 F34, N= 3), or
patients with a baseline HAM-D score <14 (N= 37) were
excluded. Of the remaining 1071 datasets suitable for this
study, 834 patients (recruited 2002–2011) formed the dis-
covery sample and 236 patients (recruited 2012–2016) the
MARS validation sample. The split point represented an
organizational intercept related to genotyping activity
unrelated to this study. The age range was 18–87 years (see
Table 1 for demographic and clinical details). Patients were
treated psychopharmacologically according to the attend-
ing doctor’s choice and received therapeutic drug mon-
itoring to optimize plasma medication levels. Depression
symptoms were evaluated weekly using the 21-item version
of the HAM-D until week 6 and, after that, bi-weekly until
discharge or, if not discharged, until week 16 as the latest
assessment. During the first six weeks, 7.1% of the HAM-D
scores were accidentally missing due to organizational
reasons. Accidentally missing HAM-D scores of the first
6 weeks and bi-weekly skipped HAM-D scores between
week 6 and 16 were linearly interpolated from the previous
and subsequent scores to obtain complete time series.
Eighty-eight percent of patients of the discovery and 99% of
the MARS validation samples were discharged before week
16 and thus provided HAM-D time series with fewer than
17 data points.

The GENDEP study represents a partially randomized,
multicenter clinical, and pharmacogenomic study on
depression33 into which 826 subjects were enrolled
between July 2004 and December 2007. The main inclu-
sion criterion was the diagnosis of a major depressive
episode of at least moderate severity as defined by DSM-
V1 and ICD-10 criteria32 and as established by the Sche-
dules for Clinical Assessment in Neuropsychiatry (SCAN,
version 2.1)34. Exclusion criteria were a first-degree rela-
tive with bipolar affective disorder or schizophrenia, a
history of a hypomanic or manic episode, mood incon-
gruent psychotic symptoms, primary substance misuse,
primary organic disease, current treatment with an anti-
psychotic or a mood stabilizer, and pregnancy or lacta-
tion. Patients eligible for both antidepressants were
randomly allocated to receive either nortriptyline
(50–150mg/day) or escitalopram (10–30mg/day) for
12 weeks with clinically informed dose titration. Patients
with a history of adverse effects, non-response or con-
traindications to one of these drugs were non-randomly
allocated to the other drug. Patients who could not tol-
erate the initially allocated medication or who did not
experience sufficient improvement with adequate dosage
within 8 weeks were offered the other antidepressant.
Depression symptoms were evaluated weekly until week
12 by psychiatrists or psychologists using the 17-item
version of the HAM-D score35. The age range of all
subjects was between 18 and 72 years, all patients were of
European ethnicity. A total of 15 subjects who had
missing data on all three suicidality items at baseline were
excluded, as were patients with a baseline HAM-D score
<14, leaving 809 patients for analysis35. Demographic data
are given in Supplementary Table S1. Different biological
aspects of treatment response36,37 and psychopathological
predictor schemes have been reported from this study 27.

Clustering algorithm
A mixed model approach was used to describe the

course of the individual HAM-D score time series, after
(natural-) logarithm (ln) transformation (ln of [HAM-D
scores +0.5]), considering information not only from the
individual trajectory, but combining trajectories of several
patients to identify TRCs. For a first organization of
HAM-D responses into TRCs, we applied the FlexMix38,39

clustering algorithm in R (version 3.3) on the HAM-D
trajectories of the MARS discovery sample. FlexMix
provides an infrastructure for the flexible fitting of finite
mixture models using the expectation-maximization
algorithm to cluster individual trajectories. The algo-
rithm iterates between computing the expectation of the
log-likelihood and maximizing it to find the parameters of
the TRCs. To achieve a stable cluster solution, we ran the
clustering model with 200 repetitions and determined the
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optimal number of TRCs based on the Integrated Com-
pleted Likelihood (ICL) criterion generated by the model.
To validate the stability and generalizability of the

clustering solution, the coefficients of the model of the
discovery sample were projected onto a second, later
acquired subsample of the same cohort, referred to as
MARS validation sample (N= 236). Here, the hypothesis
was that the patients are classifiable into the defined TRCs
with approximately equal proportions and similar cluster-
wise median HAM-D courses as had been observed for
the discovery sample. In addition, we projected the same
clustering model onto 12-week HAM-D courses of the
GENDEP sample, hypothesizing similar median HAM-D
courses per class, yet, not necessarily similar cluster
proportions due to differences in the patient population
and the study design. For both projection experiments,
resulting proportions of classes were compared with the
original distribution of the discovery sample using a χ2

test. In order to assess suitability of the clustering solution
for the validation samples, posterior likelihood values,
classification log-likelihoods and eventually ICL values for
were calculated on the basis of the clustering model of the
discovery sample.
To assess the applicability of the original clustering

coefficients to samples with a shorter observation interval,
we systematically lowered the number of applied coeffi-
cients down to 1 and, for each observation interval report,
compared this classification with the classification based
on all coefficients (i.e., the full observation interval). The
true distance (or dis-correlation) between the two solu-
tions was calculated by Pearson correlation between
model-based slope values of the respective TRC.

Multivariate prediction analyses
We then conducted a multivariate analysis using a

random forest algorithm as implemented in the R package
Ranger40 to detect associations between clinical variables
and the previously obtained TRCs in the MARS sample.

Clinical predictors
All 72 clinical variables are explained in Table 1. Their

selection was based on two rationales: First, availability in
both MARS subsamples and, second, preference of such
variables that are based on broadly available measurement
instruments. The main model (model 0) comprised 50
clinical variables strictly from the baseline assessment,
covering the domains of sociodemographic data, clinical
diagnosis, history of the MDD, the current episode, psy-
chiatric family history, basic laboratory data, life events,
the current psychopathology (Symptom Checklist [SCL-
90R])41, and personality questionnaires (Eysenck Person-
ality Questionnaire [EPQ]42, Tridimensional Personality
Questionnaire [TPQ]43). As random forest models require
complete datasets, missing data were filled by the

respective median of the total sample (for details see
Supplementary Table S2). Extended models were: Model
1, which is model 0 expanded by 21 baseline HAM-D
single items to investigate the effect of unfolding the
baseline psychopathology; model 2, which is model 0
expanded by the partial response at week 2 to investigate
the influence of early longitudinal observations; model 3,
the combination of both expansions (Supplementary Fig.
S1).

Random forest-based prediction models
The basic algorithm used in the Ranger package is a fast

implementation of random forests for high dimensional
data. In a random forest, each node is split using the best
among a subset of predictors randomly chosen at that
node44. Two parameters were used to control this process:
the number of prediction trees (bagging) and the number
of features to search across to find the best feature (mtry).
Mtry is the square root of D, which is the number of
independent predictors used for classification. Predictions
were obtained by aggregating the prediction trees (i.e., the
majority votes for classification and the average for
regression models). We calculated adjusted coefficients of
multiple correlation R2 (to quantify the explained variance
and predictive quality of the entire model) and corre-
sponding p-values. To characterize feature importance, a
permutation based method that exploits the distribution
of measured importance for each variable in a non-
informative setting was applied45 (10000 permutations);
predictors with p < 0.05 are reported in more detail.
Further, differences in R2 between competing models
were compared after Fisher’s Z-transformation of the
respective r values.
Prediction models were estimated on the pooled dis-

covery and validation MARS sample. For each set of
predictors, two ways of modeling the HAM-D time series
were considered: first, the patient’s individual treatment
response slope, a simple linear regression on ln-
transformed HAM-D values, and, second, the slope
derived from the clustering model. The rationale for this
comparison was to determine the quality of the clustering
method to generate meaningful and generalizable out-
come classes. Further, class specific classification accuracy
values (i.e., [true positives+ true negatives]/[true posi-
tives+ false positives+ true negatives+ false negatives]),
were calculated on the basis of respective confusion
matrices in which the class of interest was defined as true
class, and the remaining six other classes as false class.

Results
Clustering of HAM-D time courses
When applied to the HAM-D time courses of the dis-

covery sample, the FlexMix clustering algorithm did not
converge for any number of clusters k < 4 or k > 10. We
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therefore assessed cluster stability in more detail for k ≥ 4
and k ≤ 10, using 200 repetitions of the algorithm for each
k. The lowest value of the ICL criterion, representing an
optimal model fit, was found for seven clusters (Supple-
mentary Fig. S2A). Figure 1 shows the resulting TRCs (C1
to C7), sorted by their model-derived slope. C1 showed
the fastest symptom improvement, whereas C2 and C3
were characterized by improvements at slower rates.
Cluster C4 reflected a more volatile symptom develop-
ment, while C5, C6, and C7 were characterized by low
improvement rates, with C7 showing practically no
improvement over at least 16 weeks. Mean baseline
HAM-D scores differed slightly between clusters
(ANOVA, p= 0.009); mean average HAM-D scores of the
episode differed strongly (ANOVA, p= 4.022 × 10−116).
Cluster-derived slopes correlated weakly with baseline
HAM-D (r= 0.09, p= 0.002) and strongly with average
HAM-D scores of the episode (r= 0.57, p= 8.270 ×
10−76) (Supplementary Table S3).
To examine whether the TRCs represent stable and

generalizable entities, we assigned the patients of the two
MARS- and GENDEP-based validation samples to clus-
ters, using the coefficients of the model estimated in the
discovery sample. Figure 1 compares the individual tra-
jectories across the three samples and shows the respec-
tive cluster-specific median time courses along with
boundaries that include 95% of values of the discovery
sample. Supplementary Fig. S2B shows ICL values for
both validation samples, separately and combined. All
samples showed an ICL minimum for seven clusters
except for the MARS validation sample. The latter
showed a flat ICL profile with a relative minimum at five
clusters, most likely due to the relatively small sample size
of about 30% compared with the MARS discovery and the
GENDEP validation sample. For the MARS validation
sample we observed that median HAM-D courses were
highly similar to the discovery sample and cluster pro-
portions were not different (Χ2= 6.157, p= 0.40). The
GENDEP validation sample exhibited very similar median
HAM-D courses compared with the discovery sample,
except for C4, which had lower median values compared
with MARS, caused by several patients with high volatility
between week 4 and ~10 and HAM-D values below the
95% threshold. Compared with the MARS discovery
sample, GENDEP clusters had different proportions
(Χ2= 177.13, p= 1.38 × 10−35), showing fewer fast
responders (e.g., in C1, average 4.9 weeks to discharge)
and more slow responders (e.g., in C7 average 20.8 weeks
to discharge).
Next, we analyzed to what degree a lower number of

sequential observations would suffice to predict the TRCs
instead of using the full observation interval. Here, we
detected an almost linear increase of the correlation
coefficient between the reduced and full solutions from

week 0–4. Correlations were already high at week 8 for
the MARS validation and the combined MARS sample
(0.96–0.98) (Fig. 2). For GENDEP, as fully independent
sample, the slope was generally lower, reaching 0.77 at
week 8 and remaining linear until its maximum.
Strong correlations between the TRCs and established

response markers (weeks until discharge, response [50%
relative symptom decrease at discharge] and remission
[HAM-D < 10 at discharge]) were confirmed (Supple-
mentary Table S4). These differences were significant
between ~80% of neighboring clusters, particularly for
remission as a conservative criterion (Supplementary
Table S5), highlighting an ecological importance of the
cluster differences. Clusters also differed regarding the
psychopharmacological treatment administered through-
out the episode for three of nine medication classes
(benzodiazepines, tricyclic antidepressant, and anti-
psychotics) (Supplementary Table S4).

Predicting TRCs from clinical characteristics
We assessed whether the attribution of patients to the

TRCs can be predicted from clinical characteristics. While
explorative, the analysis served mainly as general cluster
validation step by probing if the TRCs associate with
clinically plausible and previously reported prediction
patterns. To this end, we analyzed four models with a
focus on model 0 that comprised 50 clinical baseline
items. Model 1 comprised additional baseline HAM-D
single items, model 2 contained the early partial response
at week 2, and model 3 combined models 1 and 2. All four
models predicted treatment response in the combined
MARS sample for both alternatives of modelling the slope
(individual and cluster-derived) (both p < 2.17 × 10−21,
Table 2). Overall, two performance levels (A and B) were
observed for models using the cluster-derived slope: (A)
Model 0 and 1 both explained 13% of the variance, which
means that no gain was achieved by inclusion of the
baseline HAM-D single items. (B) Model 2 and 3
explained 20% and 21% of the variance, respectively, with
the improvement over (A) induced by the early partial
response item; as observed in the first comparison (A), no
added effect of the baseline HAM-D single items was seen
for model 3. Predictions were also significant for all four
models when analyzing the two MARS subsamples (p <
1.30 × 10−17 and p < 8.71 × 10−5 for the discovery and
validation sample, respectively). It is worth mentioning
that for the MARS validation sample the prediction ana-
lysis was entirely independent from the clustering pro-
cedure. Across all models, using the cluster-derived slope
explained significantly more of the variance than using the
individual slopes (Table 2). Classification accuracies as
calculated from cluster-specific confusion matrices ran-
ged between 75.0% and 95.2% (Supplementary Table S6
for details).
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Table 3 lists 10 (out of 50) predictors of model 0 that
gained significance based on a multivariate comparison of
the respective single item against all other competing
items45. We also analyzed univariate associations of these

items with the TRCs (likelihood ratio test on a generalized
linear model). Concordantly, both types of comparison
revealed strongest effects for the personality items neu-
roticism, extraversion, and harm avoidance. Furthermore,
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Fig. 1 Resulting cluster shape characteristics and underlying natural logarithm-transformed HAM-D courses for the discovery sample and
both validation samples. X-axis: observation time in weeks; Y-axis: natural logarithm-transformed HAM-D values (purple: raw values, black: cluster-
specific median, pink: model-based linear fit). Slope and intercept values of all clusters are given on the right. Clusters are sorted from C1 to C7
according to the cluster-specific slope. Absolute and relative cluster sizes in all samples are given within the subplots. Green borders represent the
limits in which 95% of HAM-D values of the discovery sample were contained. These were transferred to columns 2 and 3 to allow for comparison
with the validation samples. S slope, I intercept, ln natural logarithm-transformed
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we investigated the cluster-specific averages of each
clinical item, comparing them to the 95% confidence
interval (CI) of the entire sample (Table 3): Clusters with
fast improvement (C1 and C2) showed below-average
values of all predictors except for the personality trait of
extraversion. By contrast, the treatment resistance cluster
C7 showed above-average values of all items except for
the personality items extraversion and psychoticism. More
generally, except for extraversion, there was a tendency
that lower clinical scores (i.e., a shorter duration of the
current episode, less SCL-90R symptoms, fewer stress-
weighted life events, and lower scores for the personality
items neuroticism and harm avoidance) were found in
clusters with good treatment response, and higher scores
in clusters C6 or C7. Deviations from this pattern, mostly
in the intermediate clusters C3–C5 (see, for example, the
stress-weighted life events) may point towards non-linear
relationships or complex interactions. No demographic
variables were selected by the random forest algorithm.
Still, to not overlook demographic variables that could
have driven the clustering, we compared these between

the clusters, particularly of the MARS discovery sample,
finding no relevant differences (Supplementary Table S7).
Supplementary Table S8 summarizes significant pre-

dictors of the three extended models. In brief, model 1,
compared to model 0, was characterized by prioritizing
three baseline HAM-D single items; model 2 identified, as
expected, early partial response as a strong predictor,
along with minor other shifts; model 3 produced a com-
bined pattern with baseline HAM-D single items, early
partial response, and current psychotic symptoms as
additional predictors over model 0.

Discussion
We employed model-based non-linear clustering38,39 on

symptom courses of 834 in-patients treated for MDD and
identified seven TRCs. These classes were already distinct
at the visual level and ranged from fast, unambiguous
response to severe treatment resistance. The average
HAM-D decrease differed strongly between classes, and
classes were strongly associated with established response
markers, highlighting that they represent clinically

Fig. 2 Prediction accuracy for reduced observation intervals. Correlation of prediction result achieved from reduced observation intervals
ranging from one observation (baseline HAM-D) to the full set of either 17 HAM-D values (baseline through week 16, for MARS derived samples) or 13
HAM-D values (baseline through week 12, for GENDEP sample). Pearson correlations were calculated between clusters predicted using the reduced
and predicted with the full observation interval, using the model-based HAM-D slope of the respective cluster. Note that a positive linear correlation
of ≈0.50 was reached at week 2 and a correlation of ≈0.96 (for the MARS samples) and ≈0.77 (for GENDEP) was reached at week 8
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meaningful entities. Baseline severity was only weakly
correlated with the response slope over a small HAM-D
range, contradicting the intuitive expectation that a high
initial disease severity is closely coupled to a steep symp-
tom decline. Classification of 236 patients of the MARS
validation sample and 809 patients of the GENDEP vali-
dation sample demonstrated that the patients’ response
dynamics can be captured by these clusters, yet study-
specific differences in the response profiles are also
reflected.

Construct validity of the clustering solution
Similar cluster sizes and shape characteristics emerged

when the discovery sample coefficients were applied to
the validation samples (Fig. 1). The consistency observed
in this validation is superior to previous latent variables
analyses not using machine learning, which did not pro-
duce stable, symptom-based subtypes of depression3. Still,
a major difference that limits the comparability is that the
mentioned analyses (factor analyses, principal component
analyses, latent class analyses) built their grouping on
cross sectional symptom spectrum and not on trajectories
of symptom changes.
Here, we applied a machine learning strategy to identify

MDD subtypes based on longitudinal data collected over
up to 16 weeks. Our results indicate that significant latent
subtypes for MDD indeed exist in the MARS cohort. One
advantage of our approach may have been the identifi-
cation of the best model through the ICL criterion that

appears more robust to the violation of some of the
mixture model assumptions compared with the com-
monly used Bayesian Information Criterion. Therefore,
the use of the ICL may have led to a more optimal choice
for the number of clusters and, accordingly, to a more
sensible data partitioning 46,47.
Within each model, the use of slopes derived from the

linear mixed model characterizing each TRC led to higher
R2 coefficients than the use of individual slopes, particu-
larly in the validation sample (Table 2). This observation
strengthens the validity of the classes and highlights that
the individual information of the HAM-D time courses
was indeed assessed by the clustering algorithm. More-
over, this emphasizes that the average slope of the class is
a good approximation of the response behavior, helping to
denoise individual observations.

Clustering independent patient groups and simulating
reduced observation intervals
To facilitate the translation of our clustering scheme to

other cohorts and to understand the degree of general-
izability of our clustering solution, we analyzed two
aspects:
First, we projected the clustering coefficients to an

independent MARS subsample and found that these
patients were assigned to classes with similarly shaped
group plots and median HAM-D courses as observed for
the discovery sample. The observation that the classes
formed from the MARS validation sample were also

Table 2 Prediction characteristics of model 0 and the extended models 1–3

Model Sample Explained variance

(Adjusted R2)a
Overall model significance Significance of the R2 difference (p-value)b

Individual Cluster-derived Individual Cluster-derived

Model 0 All 0.08 0.13 2.17 × 10−21 1.53 × 10−33 0.019

Model 0 Discovery 0.08 0.12 3.76 × 10−18 1.54 × 10−24 0.106

Model 0 Validation 0.06 0.19 8.71 × 10−5 1.72 × 10−12 0.009

Model 1 All 0.08 0.13 4.35 × 10−22 1.49 × 10−34 0.025

Model 1 Discovery 0.08 0.12 1.30 × 10−17 2.06 × 10−24 0.097

Model 1 Validation 0.10 0.20 7.35 × 10−7 4.09 × 10−14 0.047

Model 2 All 0.13 0.20 1.52 × 10−34 3.42 × 10−54 0.008

Model 2 Discovery 0.14 0.21 6.78 × 10−30 8.43 × 10−45 0.026

Model 2 Validation 0.07 0.20 3.64 × 10−5 8.68 × 10−14 0.008

Model 3 All 0.13 0.21 2.95 × 10−34 1.53 × 10−57 0.004

Model 3 Discovery 0.13 0.21 2.42 × 10−28 1.71 × 10−46 0.012

Model 3 Validation 0.11 0.21 2.76 × 10−7 9.93 × 10−15 0.050

aAdjusted R2 coefficients indicate the explained variance and p-values indicate the overall model significance.
bBased on Fisher’s Z’-transformed r values
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equally proportioned as in the discovery sample con-
firmed that, within the MARS cohort, a stable solution
had been gained. The additional projection onto the
GENDEP sample was also informative: Here, patients
could be captured equally well by the seven TRCs except
for a small proportion of patients that exceeded the lower
boundary of one (discovery) cluster due to volatile courses
between week 4 and ~10. More relevant, however, sig-
nificantly different cluster proportions emerged compared
with MARS. We speculate that the limited options to
intensify treatment in the GENDEP study with defined
treatments—or generally different patient characteristics
—could underlie the proportional shift towards clusters
that represent a slower treatment response. The combi-
nation these two observations led us to conclude that
indeed generalizable response patterns seem to be
described by the seven TRCs. Though, different cluster
stability criteria may lead to different solutions, as for
example pointed out by a longitudinal latent class analysis
that used Bayesian Information Criterion and detected
nine clusters in GENDEP27. Comparability with our
solution, though, is hampered by the use of a different
depression rating scale (Montgomery-Åsberg Depression
Rating Scale).
Second, in a simulation, we reduced the observation

interval to probe whether studies with shorter observation
windows could also benefit from the current clustering
solution. We found that a correlation of r ≈ 0.96 was
reached after eight weeks of HAM-D measurements in
the MARS-based samples and r ≈ 0.77 in the independent
GENDEP sample (Fig. 2). Of note, the remaining increase
of prediction accuracy between weeks 8 and 12 was
stronger in GENDEP, indicating that observation win-
dows of 8 weeks generally seem sufficient, but that,
expectedly, differences in study characteristics play a role,
rendering more observations advisable. One such differ-
ence that could explain the difference at week 8 might
have been the higher flexibility in the MARS study to
adjust the treatment to the individual patient. Overall, the
generalizability of our clustering solution could be higher
for observational than for controlled studies.

Prediction of TRCs from clinical baseline features
We next investigated the clinical usefulness of the TRCs

by testing whether these can be predicted from clinical
baseline characteristics in a multivariate model (random
forest algorithm)40. Rather than as a separate study we
conceptualized this analysis as additional clinical valida-
tion of the clusters that primarily represent statistical
constructs. Several machine learning techniques have
before been used to predict treatment outcome in
MDD48–50, yet, their models were directed towards clas-
sical categories of remission, non-remission10, treatment
resistance12, or persistence-severity13. In brief, we foundTa
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that 50 clinical baseline variables, obtained through
interviews, symptom self-reports, and standard physical
or laboratory tests, predicted about 13% of the variance of
the TRCs. While seemingly low, this is actually in the
range of previous multivariate analyses that focused on
the prediction of two outcome categories, reporting low
to medium accuracy values from receiver operating
characteristic analyses10,12,13. In contrary to using pre-
defined cutoff thresholds for these categories, clustering
as exemplified here for the HAM-D measure can reveal
more fine-grained, yet still sparse and data-driven classi-
fication systems. Of our clinical predictors, nine carried
significantly more weight than the others: (i) the duration
of the index episode, (ii–iv) symptom checklist-based
scores for psychosocial self-assuredness, psychoticism,
and phobic anxiety, (v–viii) the personality traits neuro-
ticism, extraversion, psychoticism, and harm avoidance,
and, (ix), sum scores for life events (weighted for their
straining impact). Although all items support the overall
prediction, a review of these nine items strengthened the
clinical validity in several ways:
A longer duration of time in depression before initiation

of antidepressant treatment has before been identified as a
negative predictor of treatment outcome51. In contrary,
no consistent predictive value was found for the total
duration of the current episode including periods with
and without treatment52,53. As the period without treat-
ment was not quantified in our sample, we speculate that
our current episode duration marker incorporated the
untreated period, and significance was gained through the
large statistical power. Furthermore, baseline symptom
profiles made a relevant contribution to the model. Sev-
eral reports emphasized that strong anxiety symptoms
during a depressive episode increase the risk for non-
remission54. Of the predictive symptom items (phobic
anxiety, psychosocial self-assuredness, and psychoticism)
at least two reflect aspects of anxiety, corroborating that
high anxiety levels in MDD impede treatment response.
Of note, in an analysis on a MARS subsample, patients
with high anxiety levels showed structural brain differ-
ences in areas involved in the processing of social cues55,
critically overlapping with areas that predict treatment
response over six weeks 56.
While the symptom checklist covers state-related items,

personality questionnaires target more stable character-
istics of a person. Here, harm avoidance and neuroticism
—which both represent similar concepts of developing
feelings of anxiety and avoidance behavior in the face of
challenges—were confirmed as predictors. Such an asso-
ciation has been reported before57,58, which constitutes an
indirect validation of the TRCs. Extraversion has so far
mainly been found to protect against developing clinical
symptoms in the face of chronic stress59. We report a
clearer direct impact on treatment response, a finding

possibly facilitated by the random forest approach that
integrates multiple interaction effects. Eventually, weigh-
ted life events emerged as a negative predictor, as repor-
ted60,61. Life events, particularly early adverse events,
represent episodes of prolonged adaptation, stress, and
liability that increase the risk for MDD, but that also
influence recovery chances51–53,62,63. Information on early
childhood adversity was only available in a subsample
(≈35%), disqualifying it for the full model. We speculate
that the inclusion of additional details on the type and
timing of life events could improve the model.
In an earlier representative MARS sample29, previous

treatment resistance—usually defined by at least two
unsuccessful trials with different antidepressants in ade-
quate dosages for at least six weeks64—has been identified
as a strong univariate predictor of non-remission. In this
study, treatment resistance was encoded by the Anti-
depressant Treatment Response Questionnaire (ATRQ)
that showed no significant importance p-value (yet a
significant univariate association [data not shown]).
Results based on the ATRQ may differ because this
measure tends to underreport failed trials65. Similarly, the
BMI, previously reported to be associated with remission
rates29 and treatment response66, was not associated with
the TRCs in our study. One explanation is the use of a
binary cutoff (25 kg/m2) in the positive report66, which
may point to a non-linear relationship. Of note, the
number of previous depressive episodes—a lifetime dis-
ease burden marker—did not emerge as a predictor,
confirming other negative reports64. Similarly, age at
onset (AAO), which is often inversely correlated with the
number of episodes, was not predictive. Concerning this
marker, reports are mixed, some finding no correla-
tion67,68 and some reporting an influence on remission
speed69 or treatment resistance70. Hidden interactions of
AAO with subgroups (as reported for comorbid alcohol
dependency)71 or non-linear relationships may explain
this variability. Baseline cortisol as a simple HPA axis
marker was also not predictive; stimulation tests, parti-
cularly when obtained longitudinally, are most likely more
sensitive72. TRCs also differed by the type of psycho-
pharmacological treatment (Supplementary Table S2),
yet, due to the observational study design, this likely
reflects either disease acuity (anxiolytic medication),
treatment escalation following non-response (e.g., tri-
cyclic antidepressants), or episode severity (antipsychotic
medication for psychotic depression). Similar confound-
ing co-correlations between medication variables and
disease severity have been reported for biological markers,
e.g., in meta-analyses of brain structure 73,74.
We explored two different strategies for improving our

base model 0 (Table 1), by either adding single baseline
HAM-D items or by adding information on the partial
early response after 2 weeks. Interestingly, the inclusion of

Paul et al. Translational Psychiatry           (2019) 9:187 Page 12 of 15



single baseline HAM-D items did not improve the model
(Table 2), possibly because the current symptomatology
was already reflected in the symptom checklist items. This
does not imply that primary clustering of single item
trajectories would not result in additional clusters. While
representing an important follow-up question and adding
clinical elaborateness, this conceptual modification would
increase the number of observations per case and could
lead to model instability. Eventually, including the partial
early response increased the model fit markedly, con-
firming similar reports from both observational and
controlled studies12,16,48–50,62,63. Notably, personality
items were among the strongest predictors in all models
(Table 3).

Limitations
Our study has several limitations. First, due to a

necessary tradeoff between higher statistical power
through a large sample size and the use of powerful,
specific single predictors, clinical variables like neuro-
cognitive results, complex endocrine tests, or neuroima-
ging markers were not included, despite reports on them
being potentially useful72,75. Second, while psycho-
pharmacological treatments are well-documented in
MARS, no formalized assessment of previous non-
pharmacological treatments, including psychotherapy,
was available, preventing an inclusion of these factors.
Third, the MARS discovery and validation samples sig-
nificantly differed in six clinical baseline items, which may
explain minor differences of the prediction results.
However, these six items showed no overlap with the
most informative predictors of model 0 or predictors
emerging from the other models.

Conclusions
By employing model-based non-linear clustering to

clinical ratings of a large cohort of MDD patients, we
detected seven distinct treatment response classes that
proved stable in two validation samples. In a multivariate
prediction analysis, these classes could be predicted from
50 clinical baseline variables, with personality items, life
events, duration of the episode, and psychopathological
baseline characteristics carrying particular weight. Over-
all, the construct and clinical validity of these treatment
response classes in MDD encourages an exploration of
their neurobiological underpinnings and, more generally,
effectively describes response patterns across multiple
clinical cohorts.
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