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ABSTRACT 28 

 29 

Cranial morphology is routinely used in archaeology to identify population affinity in human 30 

skeletal remains and the shape of the external basicranial portion of the temporal bone, in 31 

particular, has been shown to have a strong phylogenetic signal. Because the morphology of 32 

this section of the temporal bone has been found to have one of the strongest phylogenetic 33 

signals in the crania, it can be effectively used to distinguish between populations on a large, 34 

often global scale. However, its applicability to the analysis of relatively closely-related 35 

groups remains largely unexplored. The retention of population signatures in the shape of 36 

this small portion of the temporal bone is particularly useful for archaeology, as the fragility 37 

of the cranium makes analysis of its shape in entirety often impossible. In addition, if the 38 

shape of the temporal bone can identify differences between relatively closely-related 39 

populations with a similar accuracy as for more distantly-related populations, this would 40 

significantly aid analyses of population history on a local scale. To test this, we initiated a 41 

study that used three-dimensional geometric morphometrics to investigate the shape 42 

variation of the temporal bone of two British archaeological populations that were separated 43 

both temporally and geographically. The results of a MANOVA found statistically significant 44 

shape differences between the two populations and a DFA found that the shape of the 45 

temporal bone can correctly classify 84.7% of individuals into their respective population. 46 

Therefore, the findings of this study suggest that the shape of the temporal bone can 47 

accurately identify differences between two relatively closely-related populations. Future 48 

research should focus on examining larger samples from a greater number of populations to 49 

determine whether this pattern is widespread.  50 

 51 

 52 

 53 

 54 



INTRODUCTION 55 

Identifying population affinity in human skeletal remains is an important endeavour in both 56 

bioarchaeology and forensic anthropology, as it can shed light on population history, human 57 

migrations, and human dispersals (Howells, 1989; Roseman, 2004; Relethford, 2004; 58 

Harvati & Weaver, 2006a,b; Gunz et al., 2009; Spradley & Jantz, 2016). In recent years 59 

there have been major advances in DNA methodology that have facilitated research into the 60 

ancestral background of human skeletons from different populations (Patterson et al., 2012; 61 

Mathieson & McVean, 2014; Novembre & Peter, 2016). However, not only are these 62 

methods expensive and sometimes difficult to perform on aDNA due to its fragility (Hoss et 63 

al., 1996), but most DNA databases are based on the genetic makeup of modern population 64 

groups (e.g. International HapMap Consortium, 2003; The 1000 Genomes Project 65 

Consortium, 2012), limiting their ability to identify ancestry in archaeological remains 66 

(Morozova et al., 2016). Alternatively, cranial shape has been suggested to have significant 67 

concordance with phylogenetic distances, making the analyses of morphological differences 68 

between populations a relatively cost-effective alternative for investigating the ancestral 69 

background of skeletal material (Roseman, 2004; Reyes-Centeno et al., 2017).  70 

 71 

Many studies have so far used either traditional linear metrics or geometric morphometrics 72 

to investigate the relationship between cranial shape variation and population affinity in a 73 

large number of modern and archaeological populations (Howells, 1973; Hennesy & 74 

Stringer, 2002; Viðarsdóttir et al., 2002; Roseman, 2004; Harvati & Weaver, 2006a,b; Perez 75 

et al., 2007; Perez & Monteiro, 2009; Smith et al., 2013). Population-specific cranial shape 76 

traits are established very early in ontogeny and these traits are accentuated throughout 77 

development (Viðarsdóttir et al., 2002: Smith et al., 2013), however the extent to which these 78 

indicators are expressed varies according to the cranial area. Many cranial elements are 79 

developmentally flexible and vulnerable to epigenetic interactions with the environment 80 

(Harvati & Weaver, 2006a). For example, the facial skeleton has been found to be 81 

considerably reflective of climatic variables (Roseman, 2004; Hubbe et al., 2009), especially 82 



in areas linked to the nasal aperture which varies dramatically according to humidity, 83 

latitude, and temperature (Carey & Steegmann,1981; Franciscus & Long, 1991). Diet, 84 

through mastication of various foods, has also been found to influence cranial shape by 85 

exerting mechanical strain on the cranium (Collard & Wood, 2007; von Cramon-Taubadel, 86 

2009). However, the shape of the cranial vault, including the temporal bone, has been found 87 

to be largely unaffected by such environmental factors, generally correlating with 88 

phylogenetics through morphological signatures of population history (Olson, 1981; Wood & 89 

Lieberman, 2001; von Cramon Taubadel 2009, 2011). 90 

 91 

The conservation of population affiliation in the morphology of the cranial vault when 92 

compared with other cranial areas, has also been confirmed through a number of geometric 93 

morphometric studies (Howells, 1989; Roseman, 2004; Harvati & Weaver, 2006b; Smith et 94 

al., 2013). For example, Harvati and Weaver (2006a) found that both the temporal bone and 95 

other bones of the cranial vault were indicative of population affinity in ten recent human 96 

populations spanning the globe. To further explore this finding, Harvati and Weaver (2006b) 97 

added three more sample populations (13 groups) and investigated the relationship between 98 

the anatomical shape of three cranial areas (face, neurocranium and basicranial portion of 99 

the temporal bone) with neutral genetic distances and climatic variables. Their findings were 100 

similar to previous studies (Carey & Steegmann,1981; Franciscus & Long, 1991) that 101 

indicated that whilst the shape of the facial skeleton mostly reflects climatic variables, the 102 

temporal bone and neurocranium significantly correlate with neutral genetic distances 103 

(Harvati & Weaver, 2006b). The findings indicated that the temporal bone was shown to be 104 

more conservative of population signatures than the shape of the complete cranium (Harvati 105 

& Weaver, 2006b). In particular, they found that the cranial vault was more effective for 106 

identifying relationships in populations that have diverged relatively recently whilst the 107 

temporal bone is indicative of considerably earlier divergences in prehistory between sub-108 

Saharan African and non-sub-Saharan African populations. 109 



  110 

Although these studies support the use of cranial shape variation to determine population 111 

affinity, there are two main issues that may limit the significance of these previous works for 112 

archaeological research. First, Harvati and Weaver (2006a,b) found that temporal and vault 113 

shape can distinguish between distantly related populations; for example, it can distinguish a 114 

population from sub-Saharan Africa from one from Northern Europe. And although 115 

important, their findings do not provide information about whether the shape of the cranial 116 

vault or temporal bone can be used to distinguish relatively closely related populations, such 117 

as two populations from the same gene pools that are separated by geography or time. 118 

Second, the use of other bones of the cranial vault to distinguish populations (Harvati and 119 

Weaver 2006; von Cramon Taubadel 2009, 2011) may have limited application to 120 

archaeological contexts, as the parietals, frontals, and occipital can be fragile and often 121 

fragmented, precluding analysis of the full cranium. For example, Ousley et al. (2009) used 122 

traditional metrics to accurately distinguish between relatively closely related populations. 123 

Specifically, they found that Northern and Southern Japanese individuals from Howells 124 

(1973) cranial dataset could be identified to 89% accuracy.  However, their measurements 125 

were based on the full cranium, which is often not possible in archaeological situations. 126 

Thus, we reason that if a smaller section of the cranium, such as the basicranial element of 127 

the temporal bone, is found to be effective at distinguishing between closely related 128 

populations, this would be more useful for archaeology and forensic anthropology. 129 

 130 

With this in mind, we initiated a study that aimed to test whether the shape of the temporal 131 

bone reflects inter-group variation between relatively closely related populations. To 132 

accomplish this, we used 3D geometric morphometrics to investigate the shape variation of 133 

the temporal bone of adult individuals from two archaeological sites, Portmahomack, an 134 

Early Medieval monastery from Scotland, and Poundbury, a Romano British site from 135 

London. The populations are both British in origin and thus relatively low amounts of shape 136 



difference are expected compared to the worldwide populations in Harvati and Weaver 137 

(2016), since population groups that share common ancestry or inhabit a similar 138 

environment should have similar morphologies (Roseman, 2004). We have selected 139 

basicranial landmarks for analyses based on those of Harvati and Weaver (2006b) in order 140 

to attempt to accurately identify morphological variation that reflects inter-group differences 141 

between phylogenetically similar archaeological populations. We hypothesize that the shape 142 

of the temporal bone will be able to distinguish between the two populations and if 143 

supported, these findings will be of importance for both archaeological research and forensic 144 

anthropology.  145 

 146 

MATERIALS AND METHODS 147 

 148 

The sample consisted of a total of 38 adult male individuals from two English archaeological 149 

populations, with 19 individuals being from Portmahomack in Scotland and 19 being from 150 

and Poundbury in Dorchester. The material from both sites date to the first millennia AD, the 151 

individuals from Portmahomack dating to between 550-800 AD and those from Poundbury to 152 

the fourth century AD. Each cranium was selected for analysis based on the overall good 153 

preservation of the basicranial portion of the temporal bone. We chose to include only male 154 

individuals to avoid morphological variation associated with sexual dimorphism. Three-155 

dimensional scans of each crania were created using photogrammetry, which involved the 156 

construction of 3D images from 2D photographs (Evin et al. 2016) The scans were created 157 

using Agisoft Photoscan© (Agisoft, 2018). 158 

 159 

Thirteen homologous anatomical points were selected as landmarks based on those used in 160 

Harvati and Weaver (2006b) (Figure 1) and the landmarks were captured on each crania 161 

using Landmark Editor© (Wiley 2006). Four individuals did not exhibit an intact mastoid 162 

process (1 from Portmahomack and 3 from Poundbury) and were therefore omitted from the 163 



main analyses. Instead, we opted to include a secondary analysis with these specimens 164 

without the mastoid process to test the strength of identifying populations without it. For 165 

clarity, the analyses on the dataset that included all 13 landmarks will be called Analysis 1 166 

and those performed on the dataset that included only 12 landmarks will be called Analysis 167 

2. A single author (LT) digitized each individual to eliminate inter-observer error. Intra-168 

observer error of landmark digitization was tested by the repeated digitization a single 169 

cranium 6 times (O’Higgins & Jones, 1998). The largest Procrustes distance between the 170 

repeated observations was compared to the smallest Procrustes distance between the non-171 

repeated observations. The distance between the repeated observations was two times 172 

smaller than that between the non-repeated observations (Neubauer et al., 2009), thus we 173 

determined that intra-observer error would be unlikely to result in misclassifying individuals 174 

into populations.  175 

 176 

Once the landmark data were acquired, they were subjected to generalised Procrustes 177 

analysis (GPA), which removed rotational, translational, and scaling variation in the 178 

landmark configurations (Webster & Sheets, 2010; Slice, 2007; Klingenberg, 2016). To test 179 

for allometry (shape differences deriving from variation in size), a regression of the 180 

Procrustes coordinates against log centroid size was performed in MorphoJ© (Klingenberg, 181 

2016). The regression found only 5.62% of the total variation in the shape data was able to 182 

be predicted by differences in size, therefore allometry was not considered to be a major 183 

factor determining temporal shape. Considering this, we opted to retain allometry in the data. 184 

 185 

 186 

The superimposed Procrustes data were then analysed using principal components analysis 187 

(PCA) to assess the morphological variance between the two populations (Bookstein, 1991). 188 

In order to reduce noise present in higher components, only the PCs that accounted for 5% 189 

or more of the total shape variance were retained for analyses (Zelditch et al., 2005; Balyac 190 

& Frieb 2005). Next, we performed discriminant function analysis (DFA) with leave-one-out 191 



cross validation to evaluate how accurately the individuals can be assigned to their 192 

population based on shape variables (Klingenberg, 2016; White & Ruttenberg, 2007). And 193 

lastly, MANOVAs were run to determine the statistical significance of the shape differences 194 

between the populations. The GPAs and PCAs were performed in MorphoJ© (Klingenberg, 195 

2016), the DFAs were performed in R (R development team 2018), and the MANOVAs were 196 

carried out in SPSS 16.0 (SPSS Inc, 2016).   197 

 198 

Table 1. Anatomical points of the landmarks based on those chosen by Harvati & Weaver (2006). 199 

Landmark 
number 

Anatomical point 

1 Asterion 

2 Base of styloid process 

3 Most medial point of the jugular fossa 

4 Most lateral point of the jugular fossa 

5 Proximal origin of the juxtamastoid crest 

6 Carotid canal 

7 Auriculare 

8 Parietal notch 

9 Tip of mastoid process 

10 Distal point on the juxtamastoid crest 

11 Deepest point of lateral margin of the articular eminence 

12 Most inferior point on the the entoglenoid process 

13 Suture between the temporal and zygomatic bones on the inferior aspect of the zygomatic 
process 



 200 
Figure 1. Landmarks used in the analysis based on Harvati & Weaver (2006). A) Lateral view of the 201 
cranium. B) Inferior view of the cranium 202 
 203 

RESULTS  204 

 205 

Analysis 1  206 

Seven PCs, accounting for 5% or more of the total shape variation, described a total of 207 

77.6% of the shape variance. The cross-validated DFA found a mean accuracy rate of 208 

84.7% of correctly classifying individuals into their population groups. Specifically, 209 

Poundbury individuals were classified with a  75% accuracy and Portmahomack individuals 210 

were classified with a 94.4% accuracy, based on the seven retained PCs. The difference in 211 

accuracy rates for each population suggests that Portmahomack individuals are more 212 

homogenous than Poundbury individuals. The results of the MANOVA found that the 213 
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differences in temporal shape between two populations was statistically significant (λ 0.116, 214 

F=28.424, p<0.0001). 215 

 216 

Figure 2 depicts the PCA scatter-plot when PC1, which accounts for 19.2% of the total 217 

shape variation, is plotted against PC2, which accounts for 15.5%. Overall, Poundbury 218 

individuals score negatively on PC1and PC2, while Portmahomack individuals score more 219 

positively. The wireframes illustrate that the main shape difference between the populations 220 

is the relative location of the asterion and projection of the mastoid process. In particular, 221 

when compared to individuals from Portmahomack, Poundbury individuals tend to exhibit 222 

relatively taller, medially translated mastoid processes, more dorsally and superiorly located 223 

asterions, and relatively longer and narrower petrous pyramids. 224 

 225 

 226 

 227 

 228 



 229 

 230 

 231 
Figure 2. A PCA scatter plot highlighting the shape differences between Portmahomack and 232 
Poundbury along PC1 and PC2. This chart accounts for 19.2% of the total variation in the 233 
sample. Wireframes at the end of each PC axis demonstrate the visible shape differences 234 
with the top image representing an inferior view of the basicranium and the bottom image 235 
representing a lateral view. 236 
 237 

 238 

Analysis 2 239 

For the analysis on only 12 landmarks, the first seven PCs were found to account for 5% or 240 

more of the total shape variance, for a combined total of 78.1%. The DFA found that 241 

individuals can be correctly classified to population with a mean accuracy of 65.7% 242 

(Poundbury = 57.8% accuracy, Portmahomack = 73.6%). The classification bias revealed in 243 

Analysis 1 is mirrored in Analysis 2, with Poundbury individuals showing more heterogeneity 244 

than Portmahomack. The MANOVA found that the differences between the populations was 245 
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statistically significant (λ 0.336, F=8.462, p<0.0001). Figure 3 illustrates the shape 246 

differences accounted for on PC1 and PC2 through wireframe deformations. The main 247 

shape differences between the two populations are similar to those identified in Figure 2, but 248 

without the differences associated with the mastoid process. Additionally, Poundbury 249 

individuals tend to have more inferiorly located styloid processes and juxtamastoid crests 250 

than those from Portmahomack.  251 

 252 

 253 

 254 

Figure 3. PC1 (x axis) and PC2 (y axis) charts the shape variance for both populations. Red 255 
circles represent Poundbury and blue circles represent Portmahomack. This chart accounts 256 
for 36.368% of the total variance. Wireframes at the end of each PC axis demonstrate the 257 
visible shape differences with the top image representing an inferior view of the basicranium 258 
and the bottom image representing a lateral view.  259 
 260 
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DISCUSSION AND CONCLUSIONS 263 

 264 

This study aimed to test whether the shape of the basicranial portion of the temporal bone 265 

can accurately distinguish between the crania of relatively closely-related human 266 

populations. The results of our first analysis indicate that the shape of the basicranium was 267 

indeed effective in distinguishing between individuals from Portmahomack and Poundbury, 268 

as the MANOVA found statistically significant differences between the populations. 269 

Additionally, we found that the shape of the temporal bone can accurately determine 270 

population affiliation, with 84.7% of individuals being correctly classified into population. 271 

Therefore, our study not only supports the findings of Harvati and Weaver (2006b) that the 272 

shape of the temporal bone can distinguish between populations, but it also indicates that its 273 

shape can be used to even accurately identify population-level differences between 274 

relatively closely-related populations.  275 

  276 

In addition, the results of Analysis 2 are also important, as they indicate that even when the 277 

temporal bone is damaged and the mastoid process is missing, the differences between the 278 

populations are statistically significant. However, the loss of the height of the mastoid 279 

process decreased the overall accuracy of correctly classifying individuals to 65.7%. This 280 

suggests that while damaged or corroded crania can potentially be used to distinguish 281 

between closely-related populations, there will be a loss of accuracy compared to complete 282 

bones.  The differences in results between Analysis 1 to Analysis 2 indicate that the height 283 

of the mastoid process is particularly useful for identifying population differences, at least in 284 

males, and should be included in landmark configurations when possible. This result might 285 

also suggest that the shape of the temporal bone is less differentiated, and it is the inclusion 286 

of the mastoid process into the landmark configuration that is significantly influencing the 287 

results. Preservation biases and limitations in the archaeological record usually render 288 

missing landmarks unavoidable; however, if the mastoid process is well-preserved then it 289 



should be included in order to improve the accuracy of identifying population differences with 290 

the temporal bone.  291 

 292 

These findings have significance for both archaeological and forensic research, as they 293 

indicate that a small fragment of the cranium, the temporal bone, can be used to accurately 294 

determine population affinity. Therefore, the shape of the temporal bone may be particularly 295 

useful in this regard and could potentially become part of a standardized method for future 296 

archaeological and anthropological research aiming to identify morphological differences 297 

between population groups. This would be particularly useful if a large open-access 298 

database of crania from around the world is made available. 299 

 300 

Whilst the results are encouraging, there are limitations to what these results can reveal for 301 

archaeological research. First, the sample size in this study was small and included only two 302 

populations. Therefore, the results may not be representative of the populations as whole, 303 

as small sample sizes are more likely to produce classification errors (Raudys & Jain, 1991). 304 

Considering the results, it is hoped that this project provides the foundation for larger studies 305 

that incorporate more individuals from multiple populations. In addition, the current study 306 

only included males. Future research could look at both sexes to test the effect of sexual 307 

dimorphism on the accuracy of this study. Lastly, whilst this study found evidence to suggest 308 

that the temporal bone can be used to accurately distinguish between more closely-related 309 

populations than those that have diverged deep in prehistory, there is currently no 310 

independent genetic data that confirms how closely related the groups in the study are. 311 

Further research should look at replicating the results on genetically known closely-related 312 

populations. Overall, despite these limitations, the results of this project support the use of 313 

basicranial shape to identify population differences between relatively closely-related 314 

populations. 315 

 316 
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