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Abstract

Maps of received signal strength (RSS) from a wireless transmitter can be used

for positioning or for planning wireless infrastructure. The RSS values measured

at a single point are not always the same, but follow some distribution, which

vary from point to point. In existing approaches in the literature this variation

is neglected or its mapping requires making many measurements at every point,

which makes the measurement collection very laborious. We propose to use

Gaussian Mixtures (GMs) for modeling joint distributions of the position and

the RSS value. The proposed model is more versatile than methods found in

the literature as it models the joint distribution of RSS measurements and the

location space. This allows us to model the distributions of RSS values in every

point of space without making many measurement in every point. In addition,

GMs allow us to compute conditional probabilities and posteriors of position

in closed form. The proposed models can model any RSS attenuation pattern,

which is useful for positioning in multifloor buildings. Our tests with WLAN

signals show that positioning with the proposed algorithm provides accurate

position estimates. We conclude that the proposed algorithm can provide useful

information about distributions of RSS values for different applications.
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1. Introduction

Indoor positioning is often based on signals of existing wireless networks due

to the lack of Global Navigation Satellite System (GNSS) signals, high cost of

installing and upkeeping dedicated positioning infrastructure, and wide avail-

ability of the wireless networks [1]. However, the use of existing wireless infras-

tructure that is not designed for indoor positioning, such as Wireless Local Area

Network (WLAN) or Bluetooth, requires a map of the signal environment [2],

a so-called “radio map”. Also, consumer WLAN systems provide only received

signal strength (RSS) measurements and, for example, range [3], time-of-arrival

[4] or direction-of arrival [5] measurements, cannot be used for positioning.

Because walls attenuate and reflect electromagnetic signals and antenna radi-

ation patterns are not directionally uniform, signal strengths cannot be modeled

accurately with omnidirectional models, such as path loss in vacuum. Signal

attenuation can be modeled using analytic or numerical physics models that

take into account the location and materials of the walls [6]. An alternative to

physics based models is an empirical model based on a set of measurements of

RSS values collected at known locations in the indoor region of interest. These

measurements are commonly called Fingerprints (FPs), and there exist many

fingerprint positioning methods [7–11].

In this paper, we concentrate on situations where each FP is associated with

the location where the measurement was made and the radio map is built first

in an offline phase. The map is later used in the online phase for positioning.

In the literature, there are also algorithms that map the environment without

knowing FP locations [12–15], doing the mapping and positioning in one phase.

One approach to estimate the radio map from FPs is Weighted k Nearest

Neighbors (WkNN). Here the position is computed by comparing RSS values

with FPs in the database; the estimated position is a weighted average of lo-
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cations of the k FPs with the most similar RSS values among received Access

Points (APs) [16]. The learning phase, thus, consists of collecting the FPs.

In the positioning phase, the received RSS values are compared to FPs in the

database. In this phase, there are several variations of weighting the k nearest

points. The weighting may be based on the difference of RSS values [16] or the

rank of the RSSs [17]. The data may also be preprocessed to improve the posi-

tioning performance in a varying signal environment [18]. WkNN is commonly

used due to its simplicity, but it has two relevant shortcomings: its accuracy

can be improved, it does not provide error boundaries for its estimates, and the

database size and computational cost increases as more FPs are collected.

Kernel methods and histogram methods [16] extend the WkNN by modeling

the distribution of RSS values at calibration points. In the learning phase,

multiple measurements are made at each mapped location and the distribution

is modeled using a histogram or a kernel method. This increases the required

work in the mapping phase significantly and gives only small improvement in

the database size or accuracy.

In [19], missing measurement values in FPs are filled and then principal

component analysis is applied for dimensionality reduction. Then a Gaussian

Mixture Model (GMM) is fitted to model the reduced dimension FPs. Compared

to WkNN the computational complexity of the positioning does not increase as

the number of samples increase.

In [20], a GMM is proposed to be used to model a the distribution of RSS

values inside cells. Compared to the kernel and historgam methods this method

allows to track the dependency of RSS values from different APs. In [21] a

GMM is used to model the RSS values in the mapped area. The GMM is not

used as probabilistic model, but rather as a measurement model with an added

Gaussian noise.

Path loss (PL) models are based on a functional relation between signal

strength and the distance or path to the receiver [22, 23]. Isotropy may be as-

sumed in open space with omnidirectional antennas. But in built environments,

the walls and other structures attenuate and reflect the signals. In particular,
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the attenuation caused by concrete structures is larger than attenuation from

light indoor walls [24]. This anisotropy causes problems if a PL model is to be

used in multifloor buildings.

In proximity method the measurement is hard thresholded to provide infor-

mation whether the measurement was close to an AP [25]. Similarly coverage

area methods consider only area where an AP is received with strong enough

RSS [26].

Gaussian Process (GP) were used to model radio maps in [27–29]. Their

approach has the advantage that it can model RSS patterns of arbitrary distri-

bution in space. However, they need to assume Gaussian noise and the variance

of the noise does not depend on the measured RSS values.

Among the above presented methods, only kernel, histogram and GMM

methods in [19, 20] are able to model non-Gaussian variations of RSS values,

which is useful for quantifying measurement uncertainty in a probabilistic posi-

tioning algorithm. However, these methods can only model this characteristic

at the points or cells where multiple measurements where collected.

In this paper, we propose a model that fills the above-described gap in the

literature. The model uses a Gaussian Mixture (GM) for mapping RSS values in

buildings and the map is used for indoor positioning. Specifically we propose a

GMM for the joint distribution of RSS values and locations. The main benefit,

compared to other methods in literature, is that it models the distribution of

the RSS values for each AP in the mapped area without the need of making

multiple measurements at each FP location. The proposed model allows us to

compute location estimates and RSS distributions in closed form, which allows

to evaluate models without approximations.

Compared to GMM based algorithm in [20], the proposed algorithm has

the benefit that there is no need for collecting samples in cells as the position

dimension is considered as a continuum. Similarly [19] treats the measurement

points as separate points without using spatial information. Furthermore, the

algorithm in [21] uses the GMM only as a measurement model.
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Compared to the Gaussian process methods in [27–29], the proposed model

and GP models can model arbitrary signal attenuation patterns inside buildings,

but the proposed model can also model arbitrary distributions of RSS values

measured at any location close to the area where measurements were made,

while GP models rely on the Gaussian distribution.

One important aspect of the model is that it can be used to estimate the dis-

tribution of the attenuation and of RSS values in different parts of the building.

This is valuable information also for other applications than indoor positioning;

for example, RSS maps can help radio infrastructure planners to identify areas

that have poor data transfer rates.

The rest of this paper is organized as follows. Section 2 gives the theoretical

background of our approach. Section 3 presents the proposed model for building

an RSS map. The filtering algorithm based on the proposed model is presented

in Section 4. Section 5 presents examples of applying the proposed for WLAN

signal mapping and positioning in a four story building. Section 6 concludes

the paper.

2. Problem formulation

A Gaussian mixture is a probability density function (pdf) of form

p(x) =

k∑
i=1

wipN (x|µi, Pi), (1)

where k is the number of components, pN (x|µi, Pi) is the pdf of a multivariate

normal distribution with mean µi and covariance Pi and weights wi are positive

and sum to 1. A Gaussian mixture can approximate any pdf as accurately as

desired by increasing the number of components [30].

GMMs can be used in various ways for position estimation. They can be

used in Bayesian filters [30]. The generation of components can be automated

based on measurements [31] or a generalized form can be used to approximate

range measurements [32].
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Our objective is to infer the user state xt ∈ Rn at time step t; the state

contains horizontal position and velocity, and floor. The information available

is the estimate of the user’s previous position, the RSS measurements, and RSS

maps. For inferring the user’s position, we use Bayesian estimation, that is, the

posterior is computed from the predicted state p(xt | xt−1), which is assumed

Markovian, and measurement likelihood p(yt,Ωt | xt), where Ωt is a vector of

Boolean variables describing whether an AP was received, and yt is a vector

of RSS measurements at time index t. Ωt has value true (T ) for the APs that

where received and false (F ) that were not received. The user state posterior

can be written using Bayes’ rule:

p(xt | Ω1:t, y1:t) =
p(yt,Ωt | xt)p(xt | Ω1:t−1, y1:t−1)∫
p(yt,Ωt | xt)p(xt | Ω1:t−1, y1:t−1) dxt

, (2)

where p(xt | Ω1:t−1, y1:t−1) is the prior distribution and subscript 1 : t− 1 refers

to time steps from 1 to t− 1. The prior distribution can be obtained from the

previous posterior using a state transition model p(xt | xt−1) as

p(xt |Ω1:t−1, y1:t−1)

=

∫
p(xt | xt−1)p(xt−1 | Ω1:t−1, y1:t−1) dxt−1.

(3)

This with (2) is the Bayes filter.

If the measurements are conditionally independent, Bayes’ rule (2) can be

written in the form

p(xt | Ω1:t, y1:t) ∝ p(xt | y1:t−1,Ω1:t−1)
m∏
i=1

p(y
(i)
t ,Ω

(i)
t | xt), (4)

where Ω
(i)
t indicates whether the ith AP was received, y(i)

t refers to its RSS value

and ∝ stands for proportionality. Thus the prior can be updated by multiplying

it with the product of likelihoods p(y(i)
t ,Ω

(i)
t | xt). In reality there can be proba-

bilistic dependence between measurements, but the assumption of independence

is made to reduce the modeling effort and computational complexity, and this

assumption is commonly made in the literature, for example, in [27, 28, 32, 33].

When an AP is not received (Ω(i)
t = F) then the corresponding measured

RSS is not defined. The absence of sensor readings Ω
(i)
t = F is so called nega-
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tive information and can be used to improve the location estimate [34]; however,

we will concentrate on positioning with APs that are received, for which Ω = T.

This is a standard assumption used in the literature [27, 28, 32, 33] with compu-

tational benefits, as we do not have to process all APs. Under this assumption,

the posterior is

p(xt | Ω1:t, y1:t) ∝ p(xt | y1:t−1,Ω1:t−1)
∏

Ω
(i)
t =T

p(y
(i)
t ,Ω

(i)
t | xt). (5)

Goal: The objective of this work is to find a suitable model for the likelihood

p(y
(i)
t ,Ω

(i)
t | xt).

3. Modeling RSS maps with GMs

In this section, we explain how to model RSS maps with GMs. In Section 3.1,

we introduce the RSS model. In Section 3.2, we indicate how we can find the

parameters for the GMMs.

3.1. State update with RSS model

In order to find a model of the likelihood, we use a fingerprinting approach

to train the model. We will model the likelihood indirectly by first modeling

the joint distribution

p(a, y(i) | Ω(i) = T) (6)

of fingerprinting location a, which is in the same space as the position elements

of the state xt (R2 for positioning in one floor or R3 for multifloor positioning),

and RSS measurements y(i).

To model the joint distribution (6) of fingerprinting location, including floor

number when necessary, and the RSS value, we propose to use GMMs, which

can be written as

p(a, y(i) | Ω(i) = T) =

k∑
j=1

wjpN

(
z(i) | µ(i)

j , P
(i)
j

)
, (7)

where z(i) =
[ a
y(i)
]
, w(i)

j is a component weight, µ(i)
j is a component mean and

P
(i)
j is component covariance. By modeling the joint distribution of locations

7



and RSS values with a GMM we do not restrict the shape of the location or

RSS distribution. GMM (7) is fitted to the collected fingerprint data. We use

notation ẑ =
[ â
ŷ(i)
]
for a collected fingerprint to differentiate it from the random

variable z(i) =
[ a
y(i)
]
that is used to model the distribution of fingerprints. The

fitting of the GMM to the collected fingerprints will be explained in Section 3.2.
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Figure 1: Example of a 3-component GM fitted to one position dimension and RSSs. Each

ellipse is an equipotential curve containing 68% of the probability mass of a component.

Example 1. Figure 1 shows an illustrative example of a 3-component GM that

is fitted to data points (red crosses). The points were obtained from real mea-

surements by taking a one-dimensional slice of position dimension and the RSS

values. The attenuation is nonlinear and the variation of RSS values depends

on x. The proposed model takes this into account by using different variances on

different components in RSS dimension. Among the algorithms reviewed in the

literature, only the kernel and histogram methods are able to model this kind of

variation of RSS values, but only at discrete points where multiple measurements

have been taken.
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GMs have the property that the product of two GMs is a GM, which can

be computed in closed-form (formulas are given in Section 4.2). In this sec-

tion, we make the necessary assumptions so that the measurement likelihood

p(y
(i)
t ,Ω

(i)
t = T | xt) in (5) is a GM. Then, we can compute the posterior in

closed form using joint GMMs (6) that are constructed using FPs.

We make the following assumptions:

1. Fingerprint locations are uniformly distributed in the region of interest,

that is, p(a) = constant.

2. The likelihood for the dynamic state and the fingerprint is the same, that

is, p(y(i)
t ,Ω

(i)
t = T | xt) = p(y

(i)
t ,Ω

(i)
t = T | a) where a is the correspond-

ing position for xt.

These assumption can be (approximately) met if the FPs are collected uniformly

in the area of interest and if the signal environment does not change significantly

between FP collection and positioning.

By using Bayes’ rule, we can write

p(y(i),Ω(i) = T | a) =
p(a | y(i),Ω(i) = T)p(y(i),Ω(i) = T)

p(a)

= γ(i)p(a | y(i),Ω(i) = T),

(8)

where γ(i) = p(y(i),Ω(i)=T)
p(a) is a normalization factor that depends only on the AP

and measurement value because of our first assumption of uniformly distributed

fingerprints. Using the second assumption, the conditional likelihood is

p(a | y(i),Ω(i) = T) = p(xt | y(i),Ω(i) = T) (9)

and can be obtained from (6) with closed form formulas that are given in Sec-

tion 4.1.

Now using (5), (8), and (9), we obtain

p(xt | y1:t,Ω1:t = T ) = p(xt | y1:t−1,Ω1:t−1 = T )

×
∏

i:Ω
(i)
t =T

γ(i)p(xt | y(i)
t ,Ω

(i)
t = T),

(10)
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Algorithm 1: Fingerprinting Data preprocessing

1 Add random noise sampled from U(−0.5, 0.5) to the RSS and floor

index variables. This helps the EM algorithm to avoid singular GM

components

2 Split data randomly into:

Learning set ẑl1, . . . , ẑlnl

Validation set ẑv1 , . . . , ẑvnv

3 Compute the covariance P l of the learning set

4 Compute normalized learning set z̃lj =
√
P l
−1
zlj , where

√
P l is a matrix

square root for which
√
P l
√
P l

T
= P l

which contains only products of GMs and, thus, the posterior is also a GM. It

is not necessary to compute the product of γ(i) values as we can normalize the

final GM to have
∑
wj = 1.

3.2. GMM parameter estimation

In this section, we present an algorithm for computing a GMM for the joint

distribution (6) of fingerprint locations and RSS values. First, we must obtain

the fingerprints, which contain location and RSS information, in the area of

interest. Then we preprocess the fingerprint data and construct k initial clus-

ters using the k-means algorithm. Initial clusters are then refined using the

Expectation-Maximization (EM) algorithm. The clustering process is repeated

for different values of k to obtain a model with the optimal number of compo-

nents. Details of this preprocessing are given in the following paragraphs.

In the preprocessing, the data is split into learning and validation sets ran-

domly. The learning set is used to estimate the parameters of the GMM and

the validation set is used to decide when to stop the EM iterations. The use of a

separate validation set reduces overlearning [35]. For the initial clustering with

k-means the data is normalized to get better clustering results. Algorithm 1

presents the preprocessing steps.
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The normalized learning data is then clustered using k-means [36]. For

initialization of k-means we use the algorithm proposed in [37]. Cluster index

cj refers to the jth cluster and ncj denotes the number of samples in the jth

cluster. In the initialization, the weight of each component is proportional to

the number of FPs in it.

The EM algorithm [38] is used to fit a GM (7) to n FPs. We initialize

the EM algorithm using the mean and covariance of each cluster produced by

the k-means algorithm. The EM algorithm may produce components having

singular covariance matrix. To avoid convergence to singular components, we

add artificial noise from uniform distribution U(−0.5, 0.5) to the discrete values

of RSS and floor in the preprocessing step. Modeling the floor as a continuous

variable instead of discrete allows us to use one continuous GMM for an AP

instead of a separate GMM for each floor.

The EM algorithm selects k parameters wj , µj , and Pj of the GMM that

maximize the joint density of FP locations and RSS values. In logarithmic form,

this can be written as

log

n∏
j=1

k∑
i=1

wipN (ẑj | µi, Pi) =

n∑
j=1

log

k∑
i=1

wipN (ẑj | µi, Pi). (11)

At each iteration, the value of (11) increases [38]. We stop the EM iterations

when (11) does not improve for the validation dataset. Algorithm 2 shows the

pseudocode of the EM algorithm for GM fitting. The number of components

k is chosen by fitting a GMM with various values of k and choosing the GMM

that produces the best validation likelihood.

Because the k-means algorithm is initialized randomly, the initial clustering

and local optimum found by the EM algorithm are random. We build the

models so that we start with a single Gaussian (k = 1). Then we increment

k and build a k-component GMM at most 10 times. We move to the next

k if the validation likelihood has not increased from the last iteration and if

the validation likelihood is better than with the previous k. When we reach

a number of components such that the validation likelihood does not increase
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Algorithm 2: Fitting of k component GMM to FPs using the EM

algorithm

1 Compute initial cluster weights w−i = nci

nl , where nci is the number of

FPs in cluster i and nl is the total number of FPs in learning set

2 Compute initial cluster means µ−i =

∑
j:cj=i z

l
j

nci
, where cj refers to the

index of the cluster to which jth FP belongs

3 Compute initial cluster covariances P−i =

∑
j:cj=i(zj−µ

l
i)(zj−µ

l
i)

T

nci

4 repeat

5 µi ← µ−i , Pi ← P−i , wi ← w−i

6 E-step:

7 for each i, j do

8 γij ←
wipN (zlj |µi,Pi)∑k
l=1 wlpN (zlj |µl,Pl)

// Probability of jth sample to

belong to ith mixture component

9 end

10 M-step:

11 for i = 1 to k do

12 Ni ←
∑n
j=1 γij // Sum of sample probabilities to belong

to ith component

13 w−i ←
Ni

nl // Updated weight

14 µ−i ← 1
Ni

∑n
j=1 γij ẑ

l
j // Mean of a component

15 P−i ← 1
Ni

∑
cj=i γij(zj − µli)(ẑj − µli)T // Covariance of a

component

16 end

17 until∑n
j=1 log

∑k
i=1 wipN (ẑvj | µ

−
i , P

−
i ) ≤

∑n
j=1 log

∑k
i=1 wipN (ẑvj | µi, Pi);
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we choose the GMM having the highest validation likelihood as the resulting

model.

4. Filtering using GMs

In this section, we present the Gaussian Mixture Filter (GMF) that will be

used for the positioning. In Section 4.1, we show the formulas for computing

conditional distributions from GMMs for the GMF and the actual GMF is

presented in Section 4.2.

4.1. Computing conditional distribution from a GMM

Conditioning can provide the distribution of RSS when conditioning with a

location or the distribution of locations when conditioning on an RSS. To obtain

p(xt | y(i)
t ,Ω

(i)
t ) in (10) we need to condition on variable y(i)

t . The parameters

for the jth component of a conditioned GMM can be derived from the equations

used for the GMF in [30] and they are

µj,[x](i) | y
(i)
t = µ

(i)
j,[x] + P

(i)
j,[x,y]

(
P

(i)
j,[y,y]

)−1 (
y

(i)
t − µ

(i)
j,[y]

)
(12a)

P
(i)
j,[x,x] | y

(i)
t = P

(i)
j,[x,x] − P

(i)
j,[x,y]

(
P

(i)
j,[y,y]

)−1

P
(i)
j,[y,x] (12b)

w
(i)
j | y

(i)
t ∝ w

(i)
j pN

(
y

(i)
t

∣∣∣∣µ(i)
j,[y],

(
P

(i)
j,[y,y]

)−1
)
, (12c)

where y(i)
t refers to measurement value; index set [y] refers to the elements of

z that are measurements and [x] refers to the state components that were not

used for conditioning.

4.2. GMF for positioning

In this section, we present a GMF that uses the proposed GMMs as a mea-

surement model. We consider that the components of the state vector xt are

ordered so that the first variables describe the location. We also consider that

prior density at time 0 is a GM and linear/Gaussian dynamics with a transition

density

xt = Fxt−1 + εQ, (13)
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where εQ ∼ N(0, Q). Then the filtering density is a Gaussian mixture of the

form (1).

In the prediction a mixture component is propagated as

µi,t|t−1 = Fµi,t−1| t−1 (14a)

Pi,t|t−1 = FPi,t|t−1F
T +Q. (14b)

In the update, first the measurement GM is conditioned with the correspond-

ing RSS value. Then the parameters of the products of (10) are computed. In

computing one product of GMs we compute parameters for each pair of GM

components. Updating the ith component of the prior, whose parameters are

denoted with superscript (p) to shorten notation, with the jth component of

measurement m is done with a Kalman update [30]

H =
[
I 0

]
(15a)

S
(q)
i,j = HP

(m)
i HT + P

(p)
j (15b)

K
(q)
i,j = P

(p)
i HT

(
S

(q)
i,j

)−1

(15c)

µ
(q)
i,j = µ

(p)
i +Ki,j(µ

(p)
j −Hµ

(m)
i ) (15d)

P
(q)
i,j = Pi −Ki,jHP

(p)
i (15e)

w
(q)
i,j ∝ w

(m)
i w

(p)
j pN (0;µ

(p)
j −Hµ

(m)
i , S

(q)
i,j ), (15f)

where superscript (q) refers to the posterior. After updating the components,

the weights are normalized so that
∑
i,j wi,j = 1. This update corresponds to

the product in (10).

4.3. Component reduction

Because the number of components of the posterior of two GMs with n and

m components has nm components the total number of components increases

exponentially with time. To keep the number of components feasible, a compo-

nent reduction algorithm has to be used. A set of components in a GM can be
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collapsed to a smaller set of components in a way that preserves the mean and

covariance using the formulas [39]

µ(i) =
∑
j

w
(i)
j µ

(i)
i (16a)

P (i) =
∑
j

w
(i)
j

(
P

(i)
i + (µ(i) − µ(i)

i )(µ− µ(i)
i )T

)
(16b)

w(i) =
∑
j

w
(i)
j , (16c)

where the summations goes over the merged components. In the merging of

components some information is always lost. In WLAN positioning there may

be, for example, 30 APs available. If each of these APs were modeled with 5

components, the total number of components would be 530 ≈ 9 · 1020. In our

implementation, we use the criterion proposed by Runnalls [40] to choose which

components should be collapsed.

If the components are reduced after each measurement, the prior and first

measurement undergo 30 component reductions, each of which causes approxi-

mation errors, and the last measurement will undergo only one reduction. Be-

cause the prior contains the information from all previous measurements, we

want to have as few component reductions as possible applied to it and also

we want to subject all measurements to a similar number of component reduc-

tions that cause approximation errors. Thus, we propose to first compute the

GM updates between measurement GMFs and last update the prior with the

combined measurement GMF.

Figure 2 shows the proposed order of processing applied to GMs from 7

APs. First the APs are conditioned with the RSS measurements using (12b)–

(12c). Then these conditional GMs are merged pairwise (GM product ellipses)

using (15a)–(15f). Then components are collapsed using Runnalls’ algorithm to

reduce the number of components. The pairwise merging of APs GMMs is done

until there is only one GM left, which is finally used to update the prior GM.

Algorithm 3 gives a pseudocode of the proposed GMF including the component

reduction.
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Figure 2: Chart showing how a prior is updated with measurements from 4 APs
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Algorithm 3: Update step of the GMF for RSS map positioning

1 Input:

2 GM parameters of the predicted density of state xt at the current

time step t:

3 Prior means µ−1 , . . . , µ
−
k

4 Prior covariances P−1 , . . . , P
−
k

5 Prior weights w−1 , . . . , w
−
k

6 k RSS values yi and corresponding mixture models with parameters

wi,j , µi,j , Pi,j , where i refers to an AP and j to the jth component

of ith GM

7 Process measurements:

8 Compute conditional mixture models using (12b)-(12c) for each

measurement

9 while k>1 do

10 for i = 1 : bk2 c do

11 Compute a new ith mixture by updating component 2i− 1

with component 2i using (15a)-(15f)

12 Apply Runnall’s algorithm to the new ith mixture

13 end

14 if k is odd then

15 Set dk2 eth mixture to be kth mixture

16 end

17 Set k ← dk2 e

18 end

19 Update prior with the combined measurement mixture obtained

above using (15a)-(15f)

20 Reduce components using Runnalls’ algorithm
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5. Experimental results

In order to test the proposed algorithm we use FPs that were measured from

4 floors of a campus building at Tampere University. Data was collected by a

person who walks around the buildings and manually enters the true locations

when collecting RSS data. Data was collected with a tablet computer and the

number of fingerprints in each floor is: 1530 (Floor 1), 1583 (Floor 2), 333 (Floor

3), and 107 (Floor 4).

5.1. RSS attenuation modeling example

In this example, we aim to illustrate the RSS attenuation model proposed

in this paper. We use the data from one AP at the entrance floor of a building.

We fit a GMM to the data and then condition the GMM using different RSS

values and a floor using (12b) and (12c) with different RSS levels.

Figure 3 shows the contours of conditional probabilities for different RSS

levels. Fingerprints that were used for fitting the GM and are close to the

conditioning value (within 5 dBm) are shown with dots.

Figure shows how the high probability regions of the conditioned GMM are

located where the FP density with similar RSS values is highest, which indicates

that the proposed model can capture the distribution of the FPs at different

signal levels. We can also note that the attenuation is not isotropic and thus

isotropic models cannot model the attenuation accurately.

Now we proceed to illustrate how the variations of RSS measurements from

a single AP vary in different parts of a building. As the GMM models the joint

distribution, it also models the RSS distribution, which can be obtained for a

location by conditioning with its position using (12b) and (12c). In [41], it was

observed that the RSS histograms at different locations have different shapes.

Figure 4 shows a map with FPs that are color coded to show the RSS values.

The four red circles are the locations that are used for the bottom plots, which

show RSS density histograms of the measured RSS values within the circles with

5-meter radius and the RSS pdf computed from a GM model. The figure shows

18
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Figure 3: Conditional pdfs of the 2D positions when conditioning with RSS values and floor.

For this building we had data from 4 floors. The conditioned contours show how the probability

of the conditioned GMM is concentrated on the areas where the learning data was.
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Figure 4: Histograms of RSS values and density of RSS provided by the GMM at 4 different

fingerprint locations. These locations are shown in the top figure and numbered from 1 to

4. Histograms are plotted using all FPs that are inside the circles shown in the figure and

the densities from GMM are computed in the center of the circles. We can see that the

distributions of RSS values are different at different locations and, on the whole, the GMM

properly models the RSS measurements at these locations.
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how the distribution of the RSS values from a single AP vary in the different

parts of the building and how the proposed GM can model this variation.

5.2. Positioning example

Now, we proceed to analyze the positioning accuracy of the proposed GMF

with respect to other algorithms in the literature. The test setup and data are

the same as used in [7, 42].

Algorithms used in the comparison are two versions of WkNN [16], 1-level

Coverage Area (CA) models [43], 2-level CA models [26], PL model [33], and

Generalized Gaussian Mixture Filter (GGMF) [32]. For the WkNN, we use 5

nearest neighbors and we implemented the algorithm in two versions. The first

version (2D-WkNN) uses known floor and only FPs from that floor. The sec-

ond version (3D-WkNN) does not use floor information but uses a 3-dimensional

position in the FPs. The proposed algorithm and 3D-WkNN are the only al-

gorithms that estimate the floor. The other algorithms use separate maps for

each floor and assume known floor level.

The state transition model used is linear

xt+1 = Fxt + ε, (17)

where xt is a 5 dimensional vector whose first component is the position in east

direction in local coordinates, second component is the north direction, third

dimension is the floor, fourth is velocity in east direction, and fifth is velocity in

north direction, F is the state transition matrix, and ε is state transition noise

that has zero mean and covariance Q. The state transition matrix is defined as

F =



1 0 0 ∆t 0

0 1 0 0 ∆t

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


, (18)
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where ∆t is the time difference between two measurements in seconds. The

state transition noise Q is

Q = 0.1



∆t3

3 0 0 ∆t2

2 0

0 ∆t3

3 0 0 ∆t2

2

0 0 ∆t
100 0 0

∆t2

2 0 0 ∆t 0

0 ∆t2

2 0 0 ∆t


. (19)

The state was initialized to have correct location mean at first time step with

location variance 1002I, which was the same for all algorithms. However, the

proposed algorithm could be initialized also using the first set of measurements

using processing chart in Figure 2 by leaving the prior GM out of the process.

We tested several values for the parameters of the proposed algorithm and

empirically found that assigning 20% of the data to the validation set provided

good results. This is in line with the theoretical division rule provided in [44]

when we take into account that the number of samples of each AP varies and that

the validation set size is data dependent. The maximum number of Gaussian

components for a model was set to one tenth of the number of the FPs received

from the AP in question.

The test consists of three tracks (pedestrian trajectories) that were walked

inside the building. Table 1 shows the errors of routes estimated with different

methods in the 3 tracks. The proposed method and 3D-WKNN estimate floor,

but the errors are computed only in the horizontal plane. Other methods in the

test use only single floor models and are assumed to have access to knowledge of

which floor the user is on. Because the radio map generation uses randomness,

generated radio maps for the proposed method have variation. We ran the

positioning task 100 times and show the mean error for the proposed algorithm.

Results show that the proposed algorithm is the most accurate on average. The

standard deviation of the accuracy of the proposed algorithm was 0.4 m in the

100 test runs and the proposed algorithm was the most accurate algorithm 85
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Table 1: Mean positioning errors of various WLAN positioning methods.

Error [m]

2D-WKNN 8.2

3D-WKNN 7.9

1-level CA 10.1

2-level CA 7.7

PL 8.3

GGMF 7.8

Proposed 7.2 ± 0.4

times out of 100. Figure 5 shows the Cumulative Distribution Functions (CDFs)

of the errors of the proposed algorithm and the 3D-WKNN.

Figure 6 shows the true floors and floor estimates provided by the proposed

algorithm and 3D-WKNN (other algorithms do not estimate the floor, but it

is given for them). The figure shows how both algorithms provide correct floor

estimates most of the times. However, 3D-WKNN has fewer errors. Most

of the errors are on Track 2. Figure 7 shows the locations of the erroneous

floor estimates. It shows how the errors are clustered around two points. The

rightmost is near an elevator and a staircase, where the building has a two floor

high open space, and the leftmost is near a staircase. The signals can propagate

in staircases more freely than in locations where solid concrete separate the

floors and so the signals are more similar near staircases. In the corridors, all

the floor estimates are correct.

The proposed algorithm requires 1.16 seconds on average to make a single

update. This is suitable for real-time applications in WLAN positioning, as the

average processing time is less than making a WLAN scan, which takes a couple

of seconds. The algorithms WKNN, CA, PL, and GGMF are faster, taking less

than 0.03 s, but the proposed algorithm can tackle real time applications and is

more accurate. In addition, the proposed algorithm could be parallelized, which

would reduce the computation time.
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Figure 6: Estimates of floor computed with 3D-WKNN and the proposed algorithm.
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Figure 7: Locations of erroneous floor estimates of the proposed algorithm on Track 2.

6. Conclusions and future work

The main novelty this work is a new GMM for WLAN RSS mapping. The

new model models the 3D position and RSS values in a single augmented multi-

dimensional distribution. The use of a GMM allows to compute the conditional

pdfs in closed form. The main findings of the article are:

• Proposed GMM can model the anisotropic attenuation and varying distri-

bution of RSS values inside a building without the requirement to make

multitude of measurements at each point.

• In real world positioning tests, the proposed algorithm obtained better ac-

curacy than other WLAN positioning algorithms and was able to estimate

the floor accurately.

There are some aspects that should be studied to make the algorithm more

versatile. The current algorithm implicitly produces results where the distri-

bution of FPs in the learning phase affects the distribution of positioning. For

example, the algorithm estimates that it is more probable to be located in a

location where the FP density was high than in a location where FP density is
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low. Work is therefore needed to remove this bias and develop a method that

copes with non uniform FP sampling density.

There is also room for reducing the computational cost of the proposed

algorithm. For instance one could improve the computational efficiency of the

learning phase of the algorithm. The proposed algorithm requires processing

all FPs in a batch way and does not allow for sequential processing of the FP

database, which would be useful for a database that grows with time.

Furthermore, we have so far concentrated only on building maps for a single

receiver type even though in reality different devices have different characteris-

tics, for example giving different RSS readings at the same time and place [45].

Building the maps and testing the algorithms for data from different types of

devices is another interesting future topic for research.
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