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Trajectory PHD and CPHD filters
Ángel F. García-Fernández, Lennart Svensson

Abstract—This paper presents the probability hypothesis den-
sity filter (PHD) and the cardinality PHD (CPHD) filter for sets
of trajectories, which are referred to as the trajectory PHD
(TPHD) and trajectory CPHD (TCPHD) filters. Contrary to
the PHD/CPHD filters, the TPHD/TCPHD filters are able to
produce trajectory estimates from first principles. The TPHD
filter is derived by recursively obtaining the best Poisson multi-
trajectory density approximation to the posterior density over the
alive trajectories by minimising the Kullback-Leibler divergence.
The TCPHD is derived in the same way but propagating an
independent identically distributed (IID) cluster multitrajectory
density approximation. We also propose the Gaussian mixture
implementations of the TPHD and TCPHD recursions, the
Gaussian mixture TPHD (GMTPHD) and the Gaussian mixture
TCPHD (GMTCPHD), and the L-scan computationally efficient
implementations, which only update the density of the trajectory
states of the last L time steps.

Index Terms—Multitarget tracking, random finite sets, sets of
trajectories, PHD, CPHD.

I. INTRODUCTION

The probability hypothesis density (PHD) and cardinality
PHD (CPHD) filters are widely used random finite set (RFS)
algorithms for multitarget filtering, which aims to estimate the
state of the targets at the current time based on a sequence
of measurements [1]–[7]. These filters have been successfully
used in different applications such as multitarget tracking [1],
distributed multi-sensor fusion [8], [9], robotics [10], [11],
computer vision [12], [13], road mapping [14] and sensor
control [15].

The PHD/CPHD filters fit into the assumed density filtering
framework and propagate a certain type of multitarget density
on the current set of targets through the prediction and update
steps [16]. The PHD filter considers a Poisson multitarget den-
sity, in which the cardinality of the set is Poisson distributed
and, for each cardinality, its elements are independent and
identically distributed (IID). On the other hand, the CPHD
filter considers an IID cluster multitarget density, in which
the cardinality distribution of the set is arbitrary and, for each
cardinality, its elements are IID. If the output of either the
prediction or the update step is no longer Poisson/IID cluster,
the PHD/CPHD filters obtain the best Poisson/IID cluster
approximation by minimising the Kullback-Leibler divergence
(KLD).

The most important benefit of the PHD/CPHD filters is their
low computational burden, as they avoid the measurement-
to-target association problem. However, their main drawbacks
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are their relatively low performance in some scenarios [1],
[17] and the fact that they do not build tracks, which denote
sequences of target states that belong to the same target. The
smoother versions of these filters [1], [18], [19] do not solve
these drawbacks.

Despite the fact that the PHD/CPHD filters are unable to
provide tracks in a mathematically rigorous way, several track
building procedures have been proposed [20]–[24]. A track
building procedure for PHD/CPHD filters was proposed in [25]
by adding labels [26], [27] to the target states. Nonetheless, in
the resulting labelled Poisson and labelled IID cluster densi-
ties, there is total confusion in the label-to-target association so
they are not useful for track formation [25, Sec. III.B] [28, Sec.
II.B]. To solve this issue in [25], apart from the unique labels,
unique tags are added to the PHD components, as in [22], and
the original PHD/CPHD recursions are applied. However, in
the considered posterior density, the tags are not part of the
target state and are marginalised out. Therefore, the posterior
is still distributed as labelled Poisson or labelled IID cluster
and, theoretically, it does not have information to infer tracks.
While tagging PHD components works well in some scenarios,
each PHD component does not generally represent informa-
tion about a unique target, as the corresponding number of
targets is Poisson distributed. In fact, adding tags to the PHD
components and reporting estimates with unique tags to build
trajectories, can lead to track switches, missed detections and
false targets when there is more than one target represented
by the same tag.

In this paper, we address the intrinsic inability of stan-
dard PHD/CPHD filters to infer trajectories by developing
PHD/CPHD filters that provide tracks from first principles,
without adding labels or tags. We propose the trajectory PHD
(TPHD) and trajectory CPHD (TCPHD) filters, which follow
the same assumed density filtering scheme as the PHD/CPHD
filters [29] with a fundamental difference: instead of using a
set of targets as the state variable, they use a set of trajectories
[28], [30].

The TPHD filter propagates a Poisson multitrajectory den-
sity on the space of sets of trajectories through the prediction
and update steps, with a KLD minimisation after the update
step. A diagram of the resulting Bayesian recursion is given in
Figure 1. Similarly, the TCPHD filter propagates an IID cluster
multitrajectory density and performs a KLD minimisation after
the prediction and update steps, see Figure 2. Due to the
widespread use of PHD/CPHD filters, this paper covers an
important gap in the literature, as we show how PHD/CPHD
filtering can be endowed with the ability to infer trajectories
in a rigorous and principled way. In particular, the TPHD
and TCPHD filters are able to estimate the trajectories of
the alive targets by propagating a Poisson and an IID cluster
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Figure 1: TPHD filter diagram for estimating the present trajectories
at the current time. The TPHD filter assumes that the multitrajectory
densities involved are Poisson (on the space of sets of trajectories). The
output of Bayes’ rule is no longer Poisson but, in order to be able to
perform the Bayesian recursion, it obtains the best Poisson approximation
to the filtering density by minimising the KLD.

multitrajectory density through the filtering recursion using
KLD minimisations. The TPHD and TCPHD filters also avoid
the above-mentioned drawbacks of trajectory estimation based
on labelling/tagging the PHD. Apart from theoretically sound
track formation, the proposed filters also have the advan-
tage, compared to previous track building procedures used
in PHD/CPHD filters, that they can update the information
regarding past states of the trajectories.

In this paper, we also propose Gaussian mixture imple-
mentations of the TPHD/TCPHD filters, which follow the
spirit of the Gaussian mixture PHD/CPHD filters [3], [5]. The
resulting Gaussian mixture TPHD (GMTPHD) and TCPHD
(GMTCPHD) filters build trajectories under a Poisson or
IID cluster approximation, whose PHD is represented by
a Gaussian mixture. In this setting, a Gaussian component
of the GMTPHD/GMTCPHD filter represents information
over entire trajectories, while a Gaussian component in the
Gaussian mixture PHD/CPHD filters (tagged or not) repre-
sents information over current target states. It is therefore
straightforward to extract trajectory estimates from the GMT-
PHD/GMTCPHD filters. Additionally, we propose a version
of the GMTPHD/GMTCPHD filters with lower computational
burden called the L-scan GMTPHD/GMTCPHD filters. In
practice, these filters only update the multitrajectory density
of the trajectory states of the last L time instant leaving the
rest unaltered, which is quite efficient for implementation. The
theoretical foundation of the L-scan GMTPHD filter is also
based on the assumed density filtering framework and KLD
minimisations. Preliminary results of this paper covering the
TPHD filter were presented in [29].

The remainder of the paper is organised as follows. Sec-
tion II presents background material on sets of trajectories.
In Section III, we introduce the Poisson and IID cluster
multitrajectory densities and some of their properties. The
TPHD and TCPHD filters are derived in Sections IV and
V, respectively. Their Gaussian mixture implementations are
provided in Section VI. Simulation results are provided in
Section VII. Finally, conclusions are drawn in Section VIII.

II. BACKGROUND

In this section, we describe some background material on
multiple target tracking using sets of trajectories [28]. We
review the considered variables, the set integral and cardinality
distribution for sets of trajectories in Sections II-A, II-B and
II-C, respectively. Finally, we introduce the PHD for sets of
trajectories in Section II-D.

A. Variables

A single target state x ∈ Rnx contains information of
interest about the target, e.g., its position and velocity. A set
of single target states x belongs to F (Rnx) where F (Rnx)
denotes the set of all finite subsets of Rnx . We are interested
in estimating all target trajectories, where a trajectory consists
of a sequence of target states that can start at any time step
and end any time later on. Mathematically, a trajectory is
represented as a variable X =

(
t, x1:i

)
where t is the initial

time step of the trajectory, i is its length and x1:i =
(
x1, ..., xi

)
denotes a sequence of length i that contains the target states
at consecutive time steps of the trajectory.

We consider trajectories up to the current time step
k. As a trajectory

(
t, x1:i

)
exists from time step t to

t + i − 1, variable (t, i) belongs to the set I(k) =
{(t, i) : 0 ≤ t ≤ k and 1 ≤ i ≤ k − t+ 1}. A single trajectory
X up to time step k therefore belongs to the space T(k) =
](t,i)∈I(k) {t}×Rinx , where ] stands for disjoint union, which
is used to highlight that the sets are disjoint. Similarly to the
set x of targets, we denote a set of trajectories up to time step
k as X ∈ F

(
T(k)

)
.

Given a trajectory X =
(
t, x1:i

)
, the set τk

′
(X), which

can be empty, denotes the corresponding target state at a time
step k′. Given a set X of trajectories, the set τk

′
(X) of target

states at time k′ is τk
′
(X) =

⋃
X∈X τ

k′ (X).

B. Set integral

Given a real-valued function π (·) on the single trajectory
space T(k), its integral is [28]∫

π (X) dX =
∑

(t,i)∈I(k)

∫
π
(
t, x1:i

)
dx1:i. (1)

This integral goes through all possible start times, lengths and
target states of the trajectory. Given a real-valued function π (·)
on the space F

(
T(k)

)
of sets of trajectories, its set integral is

[28] ∫
π (X) δX =

∞∑
n=0

1

n!

∫
π ({X1, ..., Xn}) dX1:n (2)

where X1:n = (X1, ..., Xn). A function π (·) is a multitrajec-
tory density if π (·) ≥ 0 and its set integral is one.

C. Cardinality distribution

Given a multitrajectory density π (·), its cardinality distri-
bution is

ρπ (n) =
1

n!

∫
π ({X1, ..., Xn}) dX1:n, (3)

which is analogous to the case where there is a set of targets.

D. Probability hypothesis density

The PHD [1] of a multitrajectory density π (·) is

Dπ(X) =

∫
π ({X} ∪X) δX. (4)
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Figure 2: TCPHD filter diagram for estimating the present trajectories at the current time. The TCPHD filter assumes that the multitrajectory densities
involved are IID cluster. The output of the prediction and Bayes’ rule are no longer IID clusters but the TCPHD filter obtains the best IID cluster
approximation by minimising the KLD.

As in the PHD for RFS of targets, integrating the PHD in a
region A ⊆ T(k) gives us the expected number of trajectories
in this region [1, Eq. (4.76)]:

N̂A =

∫
A

Dπ(X)dX

=
∑

(t,i)∈I(k)

∫
1A
(
t, x1:i

)
Dπ(t, x1:i)dx1:i (5)

where 1A (·) is the indicator function of a subset A: 1A (z) = 1
if z ∈ A and 1A (z) = 0 otherwise. Therefore, the expected
number of trajectories up to time step k is given by substituting
A = T(k) into (5).

Example 1. Let us consider a multitrajectory density ν (·)
with PHD

Dν

(
1, x1

)
= N

(
x1; 10, 1

)
+N

(
x1; 1000, 1

)
(6)

Dν

(
1, x1:2

)
= N

(
x1:2; (10, 10.1) ,

[
1 1
1 2

])
, (7)

and Dν (X) = 0 for X 6=
(
1, x1

)
and X 6=

(
1, x1:2

)
, where

N (·;m,P ) is a Gaussian density with mean m and covariance
matrix P . The expected number of trajectories that start at time
one with length 1 is given by substituting A = {1}×Rnx into
(5) so

N̂A =

∫
Dν

(
1, x1

)
dx1 = 2.

The expected number of trajectories up to time step k = 2 is
N̂T(k)

= 3. @

III. POISSON AND IID CLUSTER TRAJECTORY RFSS

In this section, we explain the Poisson and IID cluster
trajectory RFSs.

A. Multitrajectory densities

1) Poisson RFS: For a Poisson RFS, the cardinality of the
set is Poisson distributed and, for each cardinality, its elements
are IID. A Poisson multitrajectory density ν (·) has the form

ν ({X1, ..., Xn}) = e−λνλnν

n∏
j=1

ν̆ (Xj) (8)

where ν̆ (·) is a single trajectory density, which implies∫
ν̆ (X) dX = 1, (9)

and λν ≥ 0. A Poisson multitrajectory density is characterised
by either its PHD Dν(X) = λν ν̆ (X) or by λν and ν̆ (·) [1].

As a result, using (5), the expected number of trajectories is
N̂T(k)

= λν . Further, its cardinality distribution is given by

ρν (n) =
1

n!

∫
ν ({X1, ..., Xn}) dX1:n =

1

n!
e−λνλnν . (10)

Example 2. We consider a Poisson RFS with the PHD of
Example 1. Using (10), its cardinality distribution is Poisson
with λν = 3 and, therefore, its single trajectory density is
ν̆ (X) = Dν (X) /3. @

2) IID cluster RFS: For an IID cluster RFS with multitra-
jectory density ν (·), the cardinality is distributed according to
the probability mass function ρν (·) and, for each cardinality,
its elements are IID according to a single trajectory density
ν̆ (·). The resulting multitrajectory density is

ν ({X1, ..., Xn}) = ρν (n)n!

n∏
j=1

ν̆ (Xj) . (11)

As ν̆ (·) is a single trajectory density, it meets (9). The PHD
of (11) is given by [1]

Dν (x) = ν̆ (x)

∞∑
n=0

nρν (n) (12)

where the second factor corresponds to the expected number of
trajectories. An IID cluster density can be characterised either
by ρν (·) and ν̆ (·), or by ρν (·) and Dν (·). How to draw
samples from an IID cluster trajectory RFS, which includes
the Poisson trajectory RFS as a particular case, is explained
in Appendix A in the supplementary material.

B. KLD minimisation

In this subsection, we provide two KLD minimisation
theorems for Poisson and IID cluster multitrajectory densities,
which will be used to derive the trajectory PHD/CPHD filters.

The KLD D (π ‖ν ) between multitrajectory densities π (·)
and ν (·) is given by [1]

D (π ‖ν ) =

∫
π (X) log

π (X)

ν (X)
δX. (13)

Then, the following theorems hold:

Theorem 3. Given a multitrajectory density π (·), the Poisson
multitrajectory density ν (·) that minimises the KLD D (π ‖ν )
is characterised by the PHD Dν (·) = Dπ (·).

Theorem 4. Given a multitrajectory density π (·), the IID
cluster multitrajectory density ν (·) that minimises the KLD



D (π ‖ν ) is characterised by the PHD Dν (·) = Dπ (·) and
the cardinality distribution ρν (·) = ρπ (·).

Theorem 3 is proved in Appendix A in [29]. The analogous
theorem for sets of targets was proved in [31]. Theorem 4
is proved in Appendix B in the supplementary material. The
analogous theorem for sets of targets was proved in [16], [32].
It should be noted that, as a Poisson RFS is a special type of
IID cluster RFS, the best fitting IID cluster RFS always has a
lower or equal KLD than the best fitting Poisson RFS.

C. Inference only on alive trajectories

In this section, we explain why the TPHD and TCPHD
filters are mainly useful to approximate the posterior multi-
trajectory density over alive trajectories, but not the posterior
over all trajectories, which also include dead trajectories. This
serves as a motivation to present the TPHD and TCPHD filters
for tracking only the alive trajectories in the next sections.

Let us first explain why the TPHD filter, which considers a
Poisson approximation, is only useful for the alive trajectories
[29, Sec. V.B], though it was derived in [29] for dead and
alive trajectories. In the prediction step, the part of the PHD
that represents a trajectory that dies at the current time step is
multiplied by the probability of death (one minus the proba-
bility of survival) [29, Thm. 5], which is usually low. As time
goes on, the part of the PHD that represents dead trajectories
never changes. As a result, even if a trajectory exists with a
very high probability at some point in time, once it dies, the
TPHD filter over all trajectories indicates that it existed with
a very low probability. Therefore, the TPHD does not contain
accurate information about dead trajectories, though it does
contain useful information about alive trajectories.

In the following, we argue with an example why the TCPHD
filter, which considers an IID cluster approximation, should
only consider alive trajectories, as the TPHD filter.

Example 5. Let us consider that the posterior πk (·) over the
set of trajectories at time k has m trajectories with probability
1 so ρπk (m) = 1. In addition, πk (·) indicates that there
are md dead trajectories with independent (single trajectory)
densities d̆1 (·) , ..., d̆md (·) , and ma alive trajectories with
independent densities ă1 (·) , ..., ăma (·), where md+ma = m.
Note that we can obtain this kind of true posterior, without
TPHD/TCPHD approximations, if the probability of detection
is one, there is no clutter, targets are born independently and
they are far from each other at all time steps. In Appendix C
(see supplementary material), we compute the best IID cluster
density approximation νk (·) to πk (·) using Theorem 4 and
show that the cardinality distribution of the alive targets in
νk (·) is

ρa (n) =

(
m
n

)(ma

m

)n (
1− ma

m

)m−n
, (14)

where n ∈ {0, 1, ...,m}. As the filtering recursion continues,
the total number m of trajectories can only increase. On
the contrary, ma does not necessarily increase so after a
sufficiently long time ma

m may become very small. Then, using
the Poisson limit theorem, the cardinality distribution of the

alive targets can be approximated as Poisson with parameter
ma [33]. Therefore, even in this simple example in which the
cardinality of the alive targets is known, the best IID cluster
approximation of the whole trajectory posterior approximates
the cardinality of the alive targets as a Poisson distribution. @

The conclusion of the previous example is that, in the long
run, an IID cluster RFS is not necessarily better than a Poisson
RFS, both considered over all trajectories, to approximate the
cardinality distribution of the alive targets. In most applica-
tions, the cardinality of the alive trajectories is considerably
more important than the cardinality of the total number of
trajectories. In this paper, we therefore focus on an IID cluster
approximation of the alive trajectories to develop the TCPHD
filter. This implies that the TCPHD filter has an arbitrary
cardinality distribution for the alive targets, as the CPHD filter.

IV. TRAJECTORY PHD FILTER

In this section, we derive the TPHD filter for tracking the
alive targets. The TPHD propagates the multitrajectory density
of a Poisson RFS through the filtering recursion. In the update
step, the TPHD filter uses Bayes’ rule followed by a KLD
minimisation to approximate the posterior as Poisson, see
Figure 1. In Section IV-A, we present the Bayesian filtering
recursion for sets of trajectories. The prediction and update
steps of the TPHD filter are given in Sections IV-B and IV-C,
respectively.

A. Bayesian filtering recursion

The posterior multitrajectory density πk (·) at time k, which
denotes the density of set of trajectories present at time k given
all measurements up to time k, is calculated via the prediction
and update steps:

ωk (X) =

∫
f (X |Y )πk−1 (Y) δY (15)

πk (X) =
`k
(
zk|τk (X)

)
ωk (X)

`k (zk)
(16)

where f (· |· ) is the transition density, ωk (·) is the predicted
density at time k, zk is the set of measurements at time k,
`k
(
·|τk (X)

)
is the density of the measurements given the

current RFS of targets and

`k
(
zk
)

=

∫
`k
(
zk|τk (X)

)
ωk (X) δX

is the density of the measurements given the predicted density
ωk (·). The predicted density at time k is the density of the set
of trajectories present at time step k given the measurements
up to time step k − 1. As we only take into account the
present trajectories, the only term that changes in (15)-(16)
with respect to considering all trajectories is f (· |· ), see [34,
Sec. IV.A] for a detailed explanation. The description of these
models will be given in Sections IV-B and IV-C.



B. Prediction

We make the following assumptions in the prediction step:
• P1 Given the current set x of targets, each target x ∈ x

survives with probability pS (x) and moves to a new state
with a transition density g (· |x ), or dies with probability
1− pS (x).

• P2 The multitarget state at the next time step is the union
of the surviving targets and new targets, which are born
independently with a Poisson multitarget density βτ (·).

• P3 The multitrajectory density πk−1 (·) of the trajectories
present at time k − 1 represents a Poisson RFS.

Note that we use subindex τ in densities on RFS of targets,
as in βτ (·). Let Nk = {1, ..., k}. Then, the relation between
predicted PHD at time k and the PHD of the posterior at time
k − 1 is given by the following theorem.

Theorem 6 (TPHD filter prediction). Under Assumptions P1-
P3, the predicted PHD Dωk (·) of the trajectories present at
time k is

Dωk (X) = Dξk (X) +Dβk (X) (17)

where

Dβk
(
t, x1:i

)
= Dβτ

(
x1
)

1{k} (t)

Dξk
(
t, x1:i

)
= pS

(
xi−1

)
g
(
xi
∣∣xi−1

)
×Dπk−1

(
t, x1:i−1

)
1Nk−1

(t)

if t+ i− 1 = k or zero otherwise.

This theorem is proved in [29] for a more general case
in which dead trajectories are considered. As mentioned in
Section III-C, in this paper, we only present the results for
alive trajectories, as the results are mainly useful in this case.
The predicted PHD is the sum of the PHD Dβk (·) of the
trajectories born at time step k and the PHD Dξk (·) of the
surviving trajectories. The end time of trajectory

(
t, x1:i

)
is t + i − 1 so Dωk

(
t, x1:i

)
is zero if t + i − 1 6= k.

For the surviving trajectories, we multiply the PHD by the
transition density and the survival probability. Note that the
provided PHD characterises the Poisson RFS that represents
the predicted density.

C. Update

We make the following assumptions in the update step:
• U1 For a given multi-target state x at time k, each target

state x ∈ x is either detected with probability pD (x)
and generates one measurement with density l (·|x), or
missed with probability 1− pD (x).

• U2 The measurement zk is the union of the target-
generated measurements and Poisson clutter with density
c (·).

• U3 The multitrajectory density ωk (·) represents a Pois-
son RFS.

Let Ξn,nz denote the set that contains all the vectors σ =
(σ1, ..., σn) that indicate associations of nz measurements to
n targets, which can be either detected or undetected. If σ ∈
Ξn,nz , σi = j ∈ {1, ..., nz} indicates that measurement j is
associated with target i and σi = 0 indicates that target i

has not been detected. Under Assumptions U1 and U2, which
define the standard measurement model, the density of the
measurement given the state is [1, Eq. (7.21)]

`k ({z1, ..., znz} |{x1, ..., xn} )

= e−λc

[
nz∏
i=1

λcc̆ (zi)

][
n∏
i=1

(1− pD (xi))

]

×
∑

σ∈Ξn,nz

∏
i:σi>0

pD (xi) l (zσi |xi)
(1− pD (xi))λcc̆ (zσi)

. (18)

where λc and c̆ (·) characterise c (·), see (8).
Let Lzk (·) denote the PHD filter pseudolikelihood function,

which is given by [1, Sec. 8.4.3]

Lzk (x) = 1− pD (x) + pD (x)

×
∑
z∈zk

l (z|x)

λcc̆ (z) +
∫
pD (y) l (z|y)Dωkτ

(y) dy

with Dωkτ
(·) representing the PHD of the targets at time k of

density ωk (·), which is given by [29]

Dωkτ
(y) =

k∑
t=1

∫
Dωk

(
t, x1:k−t, y

)
dx1:k−t. (19)

Then, the TPHD filter update step is given by the following
theorem:

Theorem 7 (TPHD filter update). Under Assumptions U1-U3,
the updated PHD Dπk (·) at time k is

Dπk
(
t, x1:i

)
= Dωk

(
t, x1:i

)
Lzk

(
xi
)

if t+ i− 1 = k or zero, otherwise.

This theorem is proved in [29] for a more general case
in which dead trajectories are included. It should be noted
that Bayes’ update (16) uses a likelihood (18) that involves
a summation over all target-to-measurement associations in
the multitarget space. In contrast, the TPHD filter update is
similar to the PHD filter update in the sense that it uses
a pseudolikelihood function Lzk (·) which is defined on the
single target space and only involves associations between a
single target and the measurements.

V. TRAJECTORY CPHD FILTER

In this section we present the trajectory CPHD (TCPHD)
filter for tracking the alive targets. The TCPHD propagates
the multitrajectory density of an IID cluster RFS through the
filtering recursion. In the prediction and update steps, the
TCPHD filter makes use of a KLD minimisation to obtain
an IID cluster approximation, see Figure 2.

Prior to deriving the TCPHD filter, we provide some nota-
tion. Given two sequences a (n) and b (n), n ∈ N ∪ {0}, we
denote

〈a, b〉 =

∞∑
n=0

a (n) b (n) .



Given a set z, the elementary symmetric function of order j
is [5]

ej (z) =
∑

s⊆z,|S|=j

∏
ζ∈s

ζ

 (20)

with e0 (Z) = 1 by convention. We also use \ to denote set
subtraction.

A. Prediction

The TCPHD filter prediction is obtained under Assumptions
P1 and the additional assumptions
• P4 The multitarget state at the next time step is the

union of the surviving targets and new targets, which
are born independently with an IID cluster multitarget
density βτ (·).

• P5 The multitrajectory density πk−1 (·) represents an IID
cluster RFS.

Under Assumption P4, the set of new born trajectories at time
k has cardinality ρβk (·) = ρβτ (·) and PHD

Dβk
(
t, x1:i

)
=

{
Dβτ

(
x1
)

t = k, i = 1

0 otherwise.

The TCPHD filter prediction consists of applying the usual
prediction step plus a KLD minimisation, which is performed
by calculating the cardinality distribution and PHD of the
predicted density, see Figure 2. The result is given in the
following theorem.

Theorem 8 (TCPHD filter prediction). Under Assumptions
P1, P4 and P5, the PHD of the predicted density is the same as
in the PHD filter, see Theorem 6. The cardinality distribution
of the predicted density is

ρωk (m) =

m∑
j=0

ρβk (m− j)
∞∑
n=j

(
n
j

)
ρπk−1 (n)

×

[∫
(1− pS(x))Dπk−1

τ
(x)dx

]n−j
[∫

Dπk−1
τ

(x)dx
]n

×
[∫

pS (x)Dπk−1
τ

(x)dx

]j
(21)

where Dπk−1
τ

(·) is the PHD of the targets at time k − 1

according to πk−1 (·), which is calculated as in (19).

Theorem 8 is proved in Appendix E (see supplementary
material). The TCPHD filter prediction updates the cardinality
distribution as the CPHD filter. The TCPHD does not integrate
out past states of the trajectories in the PHD to keep trajectory
information, while the CPHD filter does.

B. Update

The TCPHD filter update is derived under Assumption U1
and the additional assumptions
• U4 The measurement zk is the union of the target-

generated measurements and IID cluster clutter with
density c (·).

• U5 The multitrajectory density ωk (·) represents an IID
cluster RFS.

As indicated in Figure 2, the TCPHD update consists of
applying Bayes’ rule, see (16), followed by a KLD minimisa-
tion, which is performed as indicated by Theorem 4. We first
consider the distribution of the present targets at the current
time. Under Assumption U5, it is direct to obtain that the
distribution of the targets present at time k is also an IID
cluster with cardinality distribution ρωk (·) and PHD (19).
The resulting TCPHD filter update is given in the following
theorem.

Theorem 9 (TCPHD filter update). Under Assumptions U1,
U4 and U5, the cardinality distribution and the PHD of the
posterior at time k are

ρπk (n) =
Υ0
[
Dωkτ

, zk
]

(n) ρωk (n)〈
Υ0
[
Dωkτ

, zk
]
, ρωk

〉 (22)

Dπk
(
t, x1:i

)
=

〈
Υ1
[
Dωkτ

, zk
]
, ρωk

〉〈
Υ0
[
Dωkτ

, zk
]
, ρωk

〉
×
(
1− pD

(
xi
))
Dωk

(
t, x1:i

)
+
∑
z∈zk

〈
Υ1
[
Dωkτ

, zk \ {z}
]
, ρωk

〉〈
Υ0
[
Dωkτ

, zk
]
, ρωk

〉
×
l
(
z|xi

)
c̆ (z)

pD
(
xi
)
Dωk(t, x1:i) (23)

if t+ i− 1 = k or Dπk
(
t, x1:i

)
= 0, otherwise, and

Υu
[
Dωkτ

, zk
]

(n) =

min(|zk|,n−u)∑
j=0

(∣∣zk∣∣− j)!ρc (∣∣zk∣∣− j)
×
[∫

(1− pD(x))Dωkτ
(x)dx

]n−(j+u)[∫
Dωkτ

(x)dx
]n

× n!

(n− j − u)!
ej
(
Ξ
(
Dωkτ

, zk
))

(24)

Ξ
(
Dωkτ

, zk
)

=

{∫
l (z|x)

c̆ (z)
pD (x)Dωkτ

(x)dx : z ∈ zk
}
.

Theorem 9 is proved in Appendix D (see supplementary
material). The update step of the TCPHD filter is equivalent
to the CPHD filter, with the main difference that the updated
PHD contains information about previous states of the trajec-
tories.

VI. GAUSSIAN MIXTURE IMPLEMENTATIONS

In this section, we present the Gaussian mixture implemen-
tations of the TPHD and TCPHD filters. We use the notation

N
(
t, x1:i; tk,mk, P k

)
=

{
N
(
x1:i;mk, P k

)
t = tk, i = ik

0 otherwise

(25)

where ik = dim
(
mk
)
/nx. Equation (25) represents a single

trajectory Gaussian density with start time tk, duration ik,
mean mk ∈ Riknx and covariance matrix P k ∈ Riknx×iknx
evaluated at

(
t, x1:i

)
. We use ⊗ to indicate the Kronecker

product and 0m,n is the m× n zero matrix.



We make the additional assumptions
• A1 The probabilities pS and pD are constants.
• A2 g

(
xi
∣∣xi−1

)
= N

(
xi;Fxi−1, Q

)
.

• A3 l (z|x) = N (z;Hx,R).
• A4 The PHD of the birth density βk (·) is

Dβk (X) =

Jkβ∑
j=1

wkβ,jN
(
X; k,mk

β,j , P
k
β,j

)
(26)

where Jkβ ∈ N is the number of components, wkβ,j is the
weight of the jth component, mk

β,j ∈ Rnx its mean and
P kβ,j ∈ Rnx×nx its covariance matrix.

It should be noted that F ∈ Rnx×nx is the single-target
transition matrix, Q ∈ Rnx×nx is the covariance matrix of
the single-target process noise, H ∈ Rnz×nx is the single-
measurement matrix and R ∈ Rnz×nz is the covariance matrix
of the single-measurement noise. In addition, the models
provided by A1-A4 could be time varying but time is omitted
for notational convenience. In the rest of this section, we
present the Gaussian mixture implementations of the TPHD
and TCPHD filters in Sections VI-A and VI-B, respectively.
The L-scan versions of the filters and trajectory estimation are
addressed in Sections VI-C and VI-D. Finally, a discussion is
provided in Section VI-E.

A. Gaussian mixture TPHD filter

Under Assumptions A1-A4, P1-P3 and U1-U3, we can
calculate the TPHD filter in closed form giving rise to the
GMTPHD filter, whose prediction and update steps are pro-
vided in the following propositions.

Proposition 10 (GMTPHD filter prediction). Assume πk−1 (·)
has a PHD

Dπk−1 (X) =

Jk−1∑
j=1

wk−1
j N

(
X; tk−1

j ,mk−1
j , P k−1

j

)
where tk−1

j + ik−1
j −1 = k−1 with ik−1

j = dim
(
mk−1
j

)
/nx.

Then, the PHD of ωk (·) is

Dωk (X) = Dβk (X) + pS

Jk−1∑
j=1

wk−1
j N

(
X; tk−1

j ,mk
ω,j , P

k
ω,j

)
(27)

where

mk
ω,j =

[(
mk−1
j

)T
,
(
Ḟjm

k−1
j

)T]T
,

Ḟj =
[
01,ik−1

j −1, 1
]
⊗ F,

P kω,j =

[
P k−1
j P k−1

j ḞTj
ḞjP

k−1
j ḞjP

k−1
j ḞTj +Q

]
.

Proposition 10 is a consequence of Theorem 6 and con-
ventional properties of Gaussian densities. Compared to the
GMPHD filter prediction, the main difference is that previous
states are not integrated out.

Proposition 11 (GMTPHD filter update). Assume ωk (·) has
a PHD

Dωk (X) =

Jkω∑
j=1

wkω,jN
(
X; tkω,j ,m

k
ω,j , P

k
ω,j

)
. (28)

Then, the PHD of πk (·) is

Dπk (X) = (1− pD)Dωk (X)

+
∑
z∈zk

Jk∑
j=1

wj (z)N
(
X; tkω,j ,m

k
j (z) , P kj

)
(29)

where

wj (z) =
pDw

k
ω,jqj (z)

λcc̆ (z) + pD
∑Jkω
l=1 w

k
ω,lql (z)

zj = Ḣjm
k
ω,j , Sj = ḢjP

k
ω,jḢ

T
j +R

Ḣj =
[
01,ikω,j−1, 1

]
⊗H

qj (z) = N (z; zj , Sj)

mk
j (z) = mk

ω,j + P kω,jḢ
TS−1

j (z − zj)
P kj = P kω,j − P kω,jḢTS−1

j ḢP kω,j .

and ikω,j = dim
(
mk
ω,j

)
/nx

Proposition 11 is a consequence of Theorem 7 and the
Kalman filter update equations [35]. Also, the GMTPHD
filter update is similar to the GMPHD filter update. The
main differences is that the GMTPHD updates the whole
trajectories.

B. Gaussian mixture TCPHD filter

The GMTCPHD filtering recursion requires Assumptions
A1-A4, P1, P4, P5, U1, U4 and U5, and is given by the
following propositions.

Proposition 12 (GMTCPHD filter prediction). Assume the
posterior πk−1 (·) has a cardinality distribution ρπk−1 (·) and
a PHD

Dπk−1 (X) =

Jk−1∑
j=1

wk−1
j N

(
X; tk−1

j ,mk−1
j , P k−1

j

)
. (30)

Then, the TCPHD filter prediction yields

ρωk (m) =

m∑
j=0

ρβk (m− j)

×
∞∑
n=j

(
n
j

)
ρπk−1 (n) (1− pS)

n−j
pjS

Dωk (X) = Dβk (X) + pS

Jk−1∑
j=1

wk−1
j N

(
X; tk−1

j ,mk
ω,j , P

k
ω,j

)
where mk

ω,j and P kω,j are given in Proposition 10.

Proposition 12 is a consequence of Theorem 8. The main
difference with the GMCPHD filter is that the GMTCPHD
filter does not integrate out previous states in the PHD. It
should also be noted that the GMTPHD and the GMTCPHD



propagate the PHD in the same way. The difference is that the
GMTCPHD also considers the cardinality of ωk (·).

Proposition 13 (GMTCPHD filter update). Assume the prior
ωk (·) has a cardinality distribution ρωk (·) and a PHD

Dωk (X) =

Jkω∑
j=1

wkω,jN
(
X; tkω,j ,m

k
ω,j , P

k
ω,j

)
. (31)

Then, the TCPHD filter update yields

ρπk (n) =
Ψ0
[
wkω, z

k
]

(n) ρωk (n)

〈Ψ0 [wkω, z
k] , ρωk〉

Dπk (X) =

〈
Ψ1
[
wkω, z

k
]
, ρωk

〉
〈Ψ0 [wkω, z

k] , ρωk〉
(1− pD)Dωk (X)

+
∑
z∈zk

Jkω∑
j=1

wj (z)N
(
X; tkω,j ,m

k
j (z) , P kj

)
where

Ψu
[
wkω, z

k
]

(n) =

min(|zk|,n−u)∑
j=0

(∣∣zk∣∣− j)!ρc (∣∣zk∣∣− j)
× (1− pD)

n−(j+u)

〈1, wkω〉
j+u

n!

(n− j − u)!

× ej
(
Λ
(
wkω, z

k
))

Λ
(
wkω, z

k
)

=

{
pD
c̆ (z)

(
wkω
)T
q (z) : z ∈ zk

}
wkω =

[
wkω,1, ..., w

k
ω,Jkω

]T
q (z) =

[
q1 (z) , ..., qJkω (z)

]T
wj (z) =

pDw
k
ω,jqj (z)

〈
Ψ1
[
wkω, z

k \ {z}
]
, ρωk

〉
c̆ (z) 〈Ψ0 [wkω, z

k] , ρωk〉

and qj (z), mk
j (z) and P kj are given in Proposition 11.

Proposition 13 is a consequence of Theorem 9 and the
Kalman filter update [35]. The GMTCPHD filter update is
analogous to the GMCPHD filter [5], with the difference that
previous states of the target trajectories are also included.

C. L-scan implementations

In this section, we propose the use of pruning and absorption
to limit the number of components in the Gaussian mixture and
a computationally efficient implementation of the Gaussian
mixture filters: the L-scan GMTPHD and GMTCPHD filters.

The PHD of the GMTPHD/GMTCPHD filters has an in-
creasing number of components as time progresses and, to
limit complexity, we need to bound the number of components.
We use the following techniques: pruning with threshold
Γp, setting a maximum number Jmax of components and
absorption [29]. Absorption consists of removing components
of the PHD whose distribution of the current target state is
close to the distribution of the current target state of another
component with a higher weight, and adding the weights of the
removed components to the weight of the component that has
not been removed. Absorption is motivated by the fact that

if two components have a very similar distribution over the
current target state, based on a Mahalanobis distance criterion,
future measurements will affect both component weights and
future states in a similar way. Therefore, without absorption,
we would have two components with practically the same
Gaussian densities for the trajectory states corresponding to
recent time steps, for which we would be repeating the same
calculations. It should also be noted that single trajectory
densities can be quite different in the past even if they are
similar for the current target state. Therefore, a direct use
of merging [36] for single trajectory densities, which would
use moment matching at all time steps, can provide poor
results and absorption is preferred. The steps of the prun-
ing and absorption algorithms for the GMTPHD/GMTCPHD
filters are given in Algorithm 1, where we use the notation
Φkj =

(
wkj , t

k
j ,m

k
j , P

k
j

)
.

Algorithm 1 Pruning and absorption for the GMTPHD and
GMTCPHD filters

Input: Posterior PHD parameters
{

Φkj
}Jk
j=1

, pruning threshold Γp,
absorption threshold Γa, maximum number of terms Jmax.
Output: Pruned posterior PHD parameters

{
Φko,j

}Ĵk
j=1

- Set l = 0 and I =
{
j ∈

{
1, ..., Jk

}
: wkj > Γp

}
.

while I 6= ∅ do
- Set l← l + 1.
- j = arg max

i∈I
wki .

- L =

{
i ∈ I :

(
m̂k
i − m̂k

j

)T (
P̂ kj

)−1 (
m̂k
i − m̂k

j

)
≤ Γa

}
with m̂k

j ∈ Rnx and P̂ kj ∈ Rnx×nx denoting the mean and
covariance matrix of the state at the current time step of the PHD
component indexed by j.

- Φko,l = Φkj with weight wko,l =
∑
i∈L w

k
i .

- I ← I \ L.
end while
- If l > Jmax, only keep the Jmax components with highest
weight.

In addition, as time progresses, the lengths of the trajectories
increase so, eventually, it is not computationally feasible to
implement the proposed filters directly. In order to address
this problem, we propose the L-scan implementations that
propagate the joint density of the states of the last L time
steps and independent densities for the previous states for each
component of the PHD. This approach has a Kullback-Leibler
divergence interpretation [29] and is motivated by the fact that
measurements at the current time step only have a significant
impact on the trajectory state estimates for recent time steps.

The L-scan GMTPHD/GMTCPHD filters are implemented
as the GMTPHD/GMTCPHD with a minor modification in the
prediction step, where we discard the correlations of states that
happened L time steps before the current time step. Given the
predicted PHD Dωk (·) in Gaussian mixture form, see (27),
its L-scan version is given by approximating the covariance
matrices P kω,j as

P kω,j ≈ diag

(
P̃
tkω,j
j , P̃

tkω,j+1

j , ..., P̃ k−Lj , P̃ k−L+1:k
j

)
(32)

where matrix P̃ k−L+1:k
j ∈ RL·nx×L·nx represents the joint

covariance of the L last time instants, obtained from P kω,j ,



and P̃ kj ∈ Rnx×nx represents the covariance matrix of the
target state at time k, obtained from P kω,j . Therefore, we
have independent Gaussian densities to represent the states
outside the L-scan window, and a joint Gaussian density for
the states in the L-scan window, as in [37]. The steps of the
L-scan GMTPHD and GMTCPHD filters are summarised in
Algorithm 2. It should be noted that the cardinality distribution
is not affected by the choice of L in both filters.

Algorithm 2 L-scan Gaussian mixture TPHD/TCPHD filter
steps

- Initialisation:
- For TPHD: Dπ0 (·) = 0.
- For TCPHD: Dπ0 (·) = 0, ρπ0 (0) = 1.

for k = 1 to final time step do
- Prediction:

- For TPHD: use Proposition 10.
- For TCPHD: use Proposition 12.
- Approximate P kω,j using (32), which discards correlations

outside the L-scan window.
- Update:

- For TPHD: use Proposition 11.
- For TCPHD: use Proposition 13.

- Perform pruning/absorption using Algorithm 1.
- Estimate the alive trajectories, see Section VI-D.

end for

D. Estimation

In this section, we adapt two commonly used estimators
of the GMPHD and GMCPHD filters to the GMTPHD and
GMTCPHD filters. We have observed via simulations that
better performance is obtained if these estimators are applied
after the pruning/absorption step, as indicated in Algorithm 2.

1) GMTPHD: We adapt the estimator for the GMPHD filter
described in [1, Sec. 9.5.4.4] for sets of trajectories. First, the
number of trajectories is estimated as

N̂k = round

 Jk∑
j=1

wkj

 . (33)

Then, the estimated set of trajectories corresponds to{(
tkl1 ,m

k
l1

)
, ...,

(
tkl
N̂k
,mk

l
N̂k

)}
where

{
l1, ..., lN̂k

}
are the

indices of the PHD components with highest weights.
2) GMTCPHD: We adapt the estimator for the GMCPHD

filter described in [1, Sec. 9.5.5.4] for sets of trajectories. The
estimated cardinality at time step k is obtained as

N̂k = arg max
n∈N∪{0}

ρπk (n) . (34)

Then, the estimated set of trajectories are given by{(
tkl1 ,m

k
l1

)
, ...,

(
tkl
N̂k
,mk

l
N̂k

)}
where

{
l1, ..., lN̂k

}
are the

indices of the PHD components with highest weights.

E. Discussion

In this section, we discuss some of the prominent aspects of
the proposed filters. The TPHD/TCPHD filters have a similar
structure as the PHD/CPHD filters, with the additional benefit
of providing trajectory estimates for the alive targets. That is,
at each time step, these filters can estimate the trajectories

of each of the targets, including its time of birth. The main
difference between the trajectory PHD/CPHD filters and their
target counterparts is that the trajectory filters do not integrate
out previous states of the trajectories.

The L-scan GMTPHD/GMTCPHD filters are computation-
ally efficient implementations, which allow the propagation
of the posterior for long time sequences. In fact, the 1-scan
versions (L = 1) of the GMTPHD/GMTCPHD filters perform
the same computations as the GMPHD/GMCPHD, the only
difference being that the trajectory versions store the mean
and covariance of the trajectory state at each time instant for
each component of the PHD.

It should be noted that the computations of the cardinality
probability mass functions and elementary symmetric func-
tions are the same as in the GMCPHD filter. To calculate the
elementary symmetric functions, we use the recursive formula
in [38, Eq. (2.3)]. We would also like to note that we have
presented the filters considering linear and Gaussian models
for ease of exposition. Nevertheless, we can still apply the
GMTPHD and GMTCPHD filters for nonlinear measurement
and dynamic models by first linearising the system and then
applying the prediction and update steps with the linearised
model. This is the usual procedure in nonlinear Gaussian
filtering, for example, as in the extended Kalman filter, the
unscented Kalman filter or the iterated posterior linearisation
filter [35], [39].

VII. SIMULATIONS

We proceed to assess the performance of the two proposed
filters in comparison with the previous track building pro-
cedures for PHD/CPHD filters based on tagging each PHD
component [22]. In this track building approach, we estimate
the number n̂k of targets as indicated in Section VI-D and
take the n̂k highest components of the PHD with different tags.
These estimates are then appended to the estimated trajectories
with the same tag at the previous time step. We refer to
these algorithms as tagged PHD/CPHD filters. All units of the
quantities in this section are given in the international system.

We consider a target state x = [px, ṗx, py, ṗy]
T , which

contains position and velocity. The parameters of the single-
target dynamic process are

F = I2 ⊗
(

1 τ
0 1

)
, Q = qI2 ⊗

(
τ3/3 τ2/2
τ2/2 τ

)
where τ = 0.5 is the sampling time and q = 3.24 is a
parameter. We also set pS = 0.99. The parameters of the
measurement model are

H =

(
1 0 0 0
0 0 1 0

)
, R = σ2I2,

where σ2 = 4, and pD = 0.9. The clutter intensity is
Dc (z) = λc · uA (z) where uA (z) is a uniform density
in region A = [0, 2000] × [0, 2000] and λc = 50 is
the average number of clutter measurements per scan. The
birth process is Poisson with a PHD that is represented
by a Gaussian mixture with parameters: Jkβ = 3, wkβ,j =

0.1, P kβ,j = diag ([225, 100, 225, 100]) for j ∈ {1, 2, 3},
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Figure 3: Exemplar outputs of the TPHD filter (top) and tagged PHD filter
(bottom) at time steps 50 (left) and 70 (right), shown in a subregion of
the surveillance area. The dashed blue lines represent the true trajectories.
The blue squares and the numbers next to them denote the starting
positions and starting times of different trajectories. There are four
trajectories, two start at time step 1, close to each other, and end at
time step 79. The other two start at time steps 5 and 10 and end at
time steps 69 and 94, respectively. Black circles represent the current
measurements. The TPHD filter is able to estimate the alive trajectories
at each time step. The tagged PHD filter does not work well, as the
estimator selects the highest peaks with distinct tags and there are two
targets born from the same PHD component at the same time, which
leads to track switching, false and missed targets. At time step 50, the
tagged PHD filter estimates four trajectories, with one of length one in
the birth location [85, 140]T . The tagged PHD filter at time step 70
estimates three trajectories, though one of them is no longer alive.

mk
β,1 = [85, 0, 140, 0]

T , mk
β,2 = [−5, 0, 220, 0]

T and mk
β,3 =

[7, 0, 50, 0]
T .

We have implemented the L-scan GMTPHD and
GMTCPHD filters with L ∈ {1, 2, 5} in a scenario
with Ns = 100 time steps. We use a pruning threshold
Γp = 10−4, absorption threshold Γa = 4 and limit the
number of components to 30. An exemplar output of the
1-scan TPHD filter, the tagged PHD filter and the considered
ground truth are shown in Figure 3. At each time step, TPHD
and TCPHD filters provide an estimate of the set of present
trajectories at the current time. The tagged PHD filter shows
considerably worse performance as two targets are born at
the same time step from the same PHD component. The start
and end times of an estimated trajectory do not depend on
the choice of L so the output for any other L has the same
start time and duration, but with a different error.

In the following, we evaluate the performance of the filters
by Monte Carlo simulation with Nmc = 500 runs. At each
time step k, we measure the error between the set Xk

a of alive
trajectories and its estimate X̂k

a. In order to do so, we use the
metric for sets of trajectories based on linear programming
in [40] with parameters p = 2, c = 10 and γ = 1,
which we denote here as d (·, ·). In this case, d2 (·, ·) can be
decomposed into the square costs: c2m (·, ·) for missed targets,

c2f (·, ·) for false targets, c2l (·, ·) for the localisation error of
properly detected targets, and c2t (·, ·) for track switches, as in
performance evaluation in traditional multitarget tracking [41,
Sec. 13.6]. That is, we have

d2
(
Xk
a, X̂

k
a

)
= c2l

(
Xk
a, X̂

k
a

)
+ c2m

(
Xk
a, X̂

k
a

)
+ c2f

(
Xk
a, X̂

k
a

)
+ c2t

(
Xk
a, X̂

k
a

)
. (35)

This decomposition is useful to analyse the performances of
the filters, as done in this section. In our results, we only use
the position elements to compute the error and normalise the
error by the considered time window such that the squared
error at time k is d2

(
Xk
a, X̂

k
a

)
/k. The root mean square

(RMS) error at a given time step is calculated as

d (k) =

√√√√ 1

Nmck

Nmc∑
i=1

d2
(
Xk
a, X̂

k
a,i

)
, (36)

where X̂k
a,i is the estimate of the alive trajectories at time k

in the ith Monte Carlo run. In this scenario, the TPHD and
TCPHD filters estimates do not have track switches and the
resulting errors using d

(
Xk
a, X̂

k
a,i

)
are the same as the errors

computed by the sum of the generalised optimal sub-pattern
assignment (GOSPA) metric (α = 2) [42] between the true
targets and their estimates across all time steps. The tagged
PHD and CPHD filters show track switches and therefore, the
trajectory metric and GOSPA provide different errors.

The RMS trajectory errors for the algorithms are plotted in
Figure 4. As expected, for the TPHD and TCPHD, increasing
L improves estimation performance and lowers the error. The
TCPHD filter shows lower errors than the TPHD filter, except
when targets disappear. The TCPHD filter also estimates the
cardinality more accurately than the TPHD filter, except just
after a target disappears, as can be seen in Figure 5. The tagged
PHD and CPHD filters provide a considerably higher error, as
track estimation is done in a manner that does not work well
if two targets are born from the same PHD component at the
same time.

In order to analyse the results more thoroughly, we make
use of the metric decomposition indicated in (35). We compute
the RMS costs in (35) at each time step normalised by k,
as in (36). The results are shown in Figure 6. Tagged PHD
and CPHD filters have a higher cost for missed targets and
track switches than TPHD and TCPHD filters, as there are
two targets born from the same PHD component and tagging
does not work well in this case. We can see that increasing L
does not change the costs for missed and false targets and track
switches for the trajectory algorithms, it mainly improves the
localisation costs. We can see that the main advantage of using
the TCPHD filter over the TPHD filter is the reduction of the
number of missed targets. Both filters behave quite similarly in
terms of localisation costs, missed targets and track switches.
We can also see that the TCPHD filter has a higher cost for
false targets than the PHD filter at time steps 70, 80 and 95,
just after a target disappears.

The running times of our Matlab implementations of the
filters in a computer with a 3.5 GHz Intel Xeon E5 processor
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Figure 4: RMS trajectory metric error (36) of the alive trajectories for
the TPHD/TCPHD filter and tagged PHD/CPHD filters. Filters based on
sets of trajectories have a much higher performance than tagged filters.
Increasing L lowers the error.
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Figure 5: Estimated cardinality against time for the filters. CPHD-based
filters estimate the cardinality more accurately except just after a target
disappears.

are shown in Table I. The running times of the TCPHD filter
are roughly 1 second longer than the TPHD for all values of
L. For visualisation clarity, we have only shown performance
results for L ∈ {1, 2, 5} in Figures 4 and 6. For any L ∈
{10, 20, 30}, performance is similar and slightly better than
for L = 5. In particular, the RMS error (36) considering all
time steps

dT =

√√√√1/Ns ·
Ns∑
k=1

d2 (k) (37)

using the trajectory metric is decreased from 4.68 (TPHD)
and 3.90 (TCPHD) with L = 5 to 4.66 (TPHD) and 3.87
(TCPHD) with L ∈ {10, 20, 30}. Tagged filters have a higher
computational burden than TPHD and TCPHD with low L,
due to the estimation process that links the current target state
estimates with the previously estimated trajectories using the
tags.

We also show the RMS error (37) for other simulation
parameters in Table II. In this table, we also include results
where d (·, ·) is the sum of the OSPA error [43], [44], with
the same p and c, between target states and their estimates
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Figure 6: RMS costs for localisation errors for properly detected targets,
missed targets, false targets and track switches for the alive trajectories
at every time step. The scale of the y axis changes in the figure for the
switching cost. The RMS costs for missed targets and false targets do
not change with the considered value of L. Increasing L, decreases the
localisation cost for trajectory-based algorithms. TCPHD misses fewer
targets than TPHD. Switching cost is negligible for TPHD/TCPHD filters.
The tagged PHD and CPHD filters have a high cost for missed targets
and show track switching.

Table I: Running times of the algorithms in seconds

L 1 2 5 10 20 30
TPHD 1.1 1.1 1.2 1.7 3.4 6.0
TCPHD 2.0 2.0 2.1 2.6 4.3 6.9
Tagged PHD 2.2
Tagged CPHD 3.2



at each time step. The trajectory metric and GOSPA return
the same errors for TPHD/TCPHD filters, for all simulation
parameters considered, which implies that the cost of track
switches is negligible. Tagged filters show track switches so
the trajectory metric and GOSPA do not coincide. GOSPA
errors are not shown due to space constraints, but they are
generally 0.02 lower than the trajectory metric error for the
tagged filters. According to all the metrics and all scenarios,
the TCPHD filter is the best performing filter, followed by
the TPHD filter. For both filters, all metrics and scenarios,
the error decreases as L increases. The errors of the tagged
filters are, in general, considerably higher than for the set of
trajectories filters. As expected, performance improves for all
filters if the probability of detection increases, clutter intensity
decreases and the measurement noise variance decreases. We
have also shown results with a different probability of survival
and birth intensity to show that the results are consistent with
different simulation parameters.

VIII. CONCLUSIONS

In this paper we have developed the trajectory PHD and
CPHD filters based on KLD minimisations and sets of tra-
jectories. The TPHD and TCPHD filters propagate a Pois-
son multitrajectory density and an IID cluster multitrajectory
density through the filtering recursion to make inference on
the set of alive trajectories. The theory presented in this
paper endows the PHD/CPHD filters with the capability of
estimating trajectories from first principles, which can span
their already widespread use to more applications where tracks
are required.

We have also proposed a Gaussian mixture implementation
of the filters. In particular, the parameter L of the L-scan
versions governs the accuracy of the estimation of past states
of the trajectories. We have analysed the proposed filters in
terms of localisation errors, missed targets, false targets and
track switches, and also based on OSPA. Increasing L mainly
improves the localisation error of past states of the trajectory
for both filters. In general, the TCPHD filter outperforms the
TPHD filter, and both provide better trajectory estimates than
the ones provided by tagging the PHD and CPHD filters.
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Supplementary material of
“Trajectory PHD and CPHD filters”

APPENDIX A

In this appendix, we indicate how to draw samples from
an IID cluster trajectory RFS, which includes the Poisson
trajectory RFS as a particular case. Given a single trajectory
density ν̆ (·), the probability that the trajectory starts at time
t and has duration i is

Pν̆ (t, i) =

∫
ν̆
(
t, x1:i

)
dx1:i. (38)

Given the start time t and duration i, the density of the target
states of the trajectory is

ν̆
(
x1:i|t, i

)
=
ν̆
(
t, x1:i

)
Pν̆ (t, i)

. (39)

Therefore, we can draw samples from an IID cluster trajectory
RFS using (38) and (39), as indicated in Algorithm 3.

Algorithm 3 Sampling from an IID cluster multitrajectory
density
Input: IID cluster multitrajectory density ν (·).
Output: Sample X ∼ ν (·).

- Set X = ∅ and sample n ∼ ρν (·).
for j = 1 to n do

- Sample (t, i) ∼ Pν̆ (·) and x1:i ∼ ν̆ (·|t, i), see (38) and (39).
- Set X ← X ∪

{(
t, x1:i

)}
.

end for

APPENDIX B

In this appendix we prove Theorem 4. A multitrajectory
density π (·) can be written as [31]

π ({X1, ..., Xn}) = ρπ (n)n!πn (X1, ..., Xn) (40)

where πn (·) is a permutation invariant ordered trajectory
density such that∫

πn (X1, ..., Xn) dX1:n = 1.

The marginal density of this density is written as

π̃n (X) =

∫
πn (X,X2..., Xn) dX2:n

=
1

ρπ (n)n!

∫
π ({X,X2, ..., Xn}) dX2:n.

Substituting (11) and (40) into (13), we get

D (π ‖ν ) =

∞∑
n=0

ρπ (n) log
ρπ (n)

ρν (n)

+

∞∑
n=0

ρπ (n)

∫
πn (X1, ..., Xn)

× log
πn (X1, ..., Xn)∏n

j=1 ν̆ (Xj)
dX1:n. (41)

The objective is to find ρν (·) and ν̆ (·) that minimise D (π ‖ν ).
From KLD minimisation over discrete variables, ρν (·) =

ρπ (·) minimises the KLD. Minimizing D (π ‖ν ) w.r.t. ν̆ (·)
is equivalent to minimising the functional

L [ν̆] = −
∫ ∞∑

n=0

ρπ (n)nπ̃n (X) log ν̆ (X) dX.

which is minimised by [29]

ν̆ (X) =
Dπ (X)∑∞
n=0 ρπ (n)n

,

or equivalently, Dν (·) = Dπ (·).

APPENDIX C

In this appendix, we prove (14). The IID cluster multitra-
jectory density νk (·) that minimises the KLD has the same
cardinality distribution and PHD as πk (·). The cardinality
distribution of πk (·) is such that ρπk (m) = 1, so we compute
its PHD. The posterior can be written as [45, Eq. (12.91)]

πk ({X1, ..., Xm}) =
∑
σ∈Ξm

[
ma∏
i=1

ăi (Xσi)

][
md∏
i=1

d̆i
(
Xσi+ma

)]
(42)

where Ξm is the set that contains all permutations of (1, ...,m)
and σi is the ith component of σ.

Substituting (42) into (4), the PHD of the posterior is

Dπk(X) =

∞∑
n=0

1

n!

∫
πk ({X,X1, ..., Xn}) dX1:n

=

ma∑
i=1

ăi (X) +

md∑
i=1

d̆i (X) ,

which is equal to Dνk(X). Then, using (12), we have that the
single trajectory density ν̆k (·) is

ν̆k (X) =
Dνk(X)

m

=

∑ma
i=1 ăi (X) +

∑md
i=1 d̆i (X)

m
.

A single trajectory with this density exists at the current time
k with probability ma/m. As we have m IID trajectories with
this distribution, the number of alive trajectories follows the
binomial distribution in (14).

APPENDIX D

In this appendix, we prove Theorem 9 (TCPHD update).
The proof is quite similar to the CPHD update [16].

A. Density of the measurement

As the current set of targets is an IID cluster with cardinality
ρωk (·) and PHD DωkT

(·), the density of the measurements,
under Assumptions U1, U4 and U5, is the same as in the
CPHD filter [16, Eq. (32)].

`k
(
zk
)

=
〈
ρωk ,Υ

0
[
Dωkτ

, zk
]〉 ∏
z∈zk

c̆ (z) . (43)



B. Cardinality of the posterior

As the set of trajectories present at the current time has the
same cardinality as the set of targets at the current time, the
updated cardinality distribution is the same in both cases so
the TCPHD cardinality update is the same as the CPHD filter
cardinality update, which is given in (22).

C. PHD of the posterior

The PHD of the posterior is

Dπk(X)

=

∫
πk ({X} ∪X) δX

=
1

`k (zk)

∫
`k
(
zk
∣∣τk ({X} ∪X)

)
ωk ({X} ∪X) δX

=
1

`k (zk)

∞∑
n=0

(n+ 1)

∫
`k
(
zk|τk ({X,X1, ..., Xn})

)
× ρωk (n+ 1) ω̆k (X)

 n∏
j=1

ω̆k (Xj)

 dX1:n.

We apply the decomposition [16, Eq. (14)]

`k
(
zk
∣∣τk ({X}) ∪ τk (X)

)
=
(
1− pD

(
τk ({X})

))
`k
(
zk
∣∣τk (X)

)
+ pD

(
τk ({X})

) ∑
z∈zk

l
(
z|τk ({X})

)
`k
(
zk \ {z}

∣∣τk (X)
)

and obtain Dπk(t, x1:i)

=

(
1− pD

(
xi
))
ω̆k
(
t, x1:i

)
`k (zk)

∞∑
n=0

(n+ 1) ρωk (n+ 1)

×
∫
`k
(
zk|τk ({X1, ..., Xn})

) n∏
j=1

ω̆k (Xj)

 dX1:n

+
pD
(
xi
)
ω̆k
(
t, x1:i

)
`k (zk)

∑
z∈zk

l
(
z|xi

) ∞∑
n=0

(n+ 1) ρωk (n+ 1)

×
∫
`k
(
zk \ {z}

∣∣τk ({X1, ..., Xn})
) n∏

j=1

ω̆k (Xj)

 dX1:n

=

(
1− pD

(
xi
))
ω̆k
(
t, x1:i

)
`k (zk)

∞∑
n=0

(n+ 1) ρωk (n+ 1)

×
∫
`k
(
zk| {x1, ..., xn}

) n∏
j=1

ω̆kτ (xj)

 dx1:n

+
pD
(
xi
)
ω̆k
(
t, x1:i

)
`k (zk)

∑
z∈zk

l
(
z|xi

) ∞∑
n=0

(n+ 1) ρωk (n+ 1)

×
∫
`k
(
zk \ {z} |{x1, ..., xn}

) n∏
j=1

ω̆kτ (xj)

 dx1:n.

(44)

From [16, Eq. (39)], we know that
∞∑
n=0

(n+ 1) ρωk (n+ 1)

×
∫
`k
(
zk| {x1, ..., xn}

) n∏
j=1

ω̆kτ (xj)

 dx1:n

=

∫
Dωkτ

(x)dx
〈
ρωk ,Υ

1
[
Dωkτ

, zk
]〉 ∏
z∈zk

c̆ (z) . (45)

Substituting (43) and (45) into the first and second term of
(44) completes the proof of (23).

APPENDIX E

In this appendix, we prove Theorem 8 (TCPHD prediction).
We proceed to calculate the cardinality and PHD of the
predicted multitrajectory density. As in the CPHD filter, the
assumptions of the TCPHD filter prediction (P1, P4, P5) are
similar to the TCPHD filter update (U1, U4, U5) so the proof
of the TCPHD filter update, which is given in Appendix D, is
useful for the TCPHD filter prediction, as in the CPHD filter
[16].

A. Cardinality

The cardinality distribution of the predicted multitrajectory
density for alive targets is analogous to the cardinality distri-
bution ρ`k (·) of the measurement, which can be calculated
from (43) in the same way as in [16, Sec. V.C]. The result is

ρ`k (m) =

m∑
j=0

ρc (m− j)
∞∑
n=j

(
n
j

)
ρωk (n)

×
[∫

(1− pD(x))Dωkτ
(x)dx

]n−j[∫
Dωkτ

(x)dx
]n

×
[∫

pD (x)Dωkτ
(x)dx

]j
.

By changing ρc (·), pD (·) and ωk (·) for ρβk (·), pS (·) and
πk (·), respectively, we obtain (21).

B. PHD

The result for the PHD of the TCPHD prediction, which
is the same as for the TPHD prediction, see (17), can be
established directly based on thinning, displacement and su-
perposition of point processes, as in the CPHD filter for targets
[16]. Nevertheless, for completeness, we provide more details
regarding its calculation here.

We have a multitrajectory density πk−1 (·) with a PHD
Dπk−1

(·) and we want to compute the PHD of the multi-
trajectory density ωk (·), which is Dωk (·). We first compute
the PHD of ξk (·), which represents the multitrajectory density
of the surviving trajectories and is given by

ξk (X) =

∫
fs (X|Y)πk−1 (Y) δY (46)

where fs (·|·) is the transition multitrajectory density for
surviving trajectories. We proceed to explain a decomposition
of fs (·|·), which will be useful for the proof.



We first write the probability of survival and single tra-
jectory transition density for alive trajectories at time k as a
function of trajectories. These correspond to

p′S
(
t, x1:i

)
= pS

(
xi
)

(47)

g′
(
t, x1:i|t′, z1:i′

)
= δ [t− t′] g

(
xi|zi

′
)
δ
(
x1:i−1 − z1:i′

)
(48)

where t+ i− 1 = k and t′ + i′ − 1 = k− 1, otherwise, p′S (·)
and g′ (·|·) are zero. Also, δ [·] and δ (·) denote Kronecker and
Dirac delta, respectively.

We use the following decomposition for the transition
density of surviving trajectories

fs ({X} ∪X|Y) =
∑
Y ∈Y

g′ (X|Y ) p′S (Y ) fs (X|Y \ {Y }) .

Note that this decomposition results from the fact that given
the surviving trajectories {X} ∪ X, trajectory X must have
survived from a trajectory Y that belongs to Y and the rest
of the surviving trajectories X have survived from the rest of
the trajectories at the previous time step Y \ {Y }.

The PHD of the surviving trajectories is obtained by sub-
stituting (46) into (4)

Dξk (X) =

∫
ξk (X ∪ {X}) δX

=

∫ [∫
fs ({X} ∪X|Y) δX

]
πk−1 (Y) δY.

(49)

We simplify the inner integral in (49) as∫
fs ({X} ∪X|Y) δX

=

∫ ∑
Y ∈Y

g′ (X|Y ) p′S (Y ) fs (X|Y \ {Y }) δX

=
∑
Y ∈Y

g′ (X|Y ) p′S (Y ) .

Substituting this equation into (49) and applying Campbell’s
theorem [1, Sec. 4.2.12]

Dξk (X) =

∫ (∑
Y ∈Y

g′ (X|Y ) p′S (Y )

)
πk−1 (Y) δY

=

∫
g′ (X|Y ) p′S (Y )Dπk−1 (Y ) dY. (50)

Substituting (47) and (48) into (50) yields Dξk (·) in (17). By
the superposition theorem of point processes [46], the PHD of
ωk (·) is the sum of the PHDs of the surviving trajectories,
which is given by Dξk (·), and the PHD of the new born
trajectories, which is given by Dβk (·). Therefore, the TCPHD
prediction equation for the PHD is the same as for the TPHD
filter, see (17).


