
1	Introduction
Dynamic	analysis	including	modal	analysis	and	transient	analysis	is	one	of	the	major	issues	in	structural	analysis,	since	engineering	structures	often	service	under	dynamic	loadings	[1,2].	Multiple	cracks	existing	in	structures

have	a	large	influence	on	the	structural	dynamic	characteristics,	which	may	lead	to	the	final	failure	of	the	structures	with	cracks.	Therefore,	it	is	worthwhile	to	develop	an	effective	numerical	method	to	analyze	the	dynamic	behavior	of

the	structures	with	multiple	cracks.

In	the	field	of	fracture	mechanics,	the	finite	element	method	(FEM),	due	to	its	considerably	high	efficiency,	is	the	most	commonly	used	approach	for	dynamic	analysis	of	the	crack	problems	[3–5].	However,	in	order	to	capture

the	crack	singular	behaviour,	the	finite	element	meshes	need	to	be	refined	near	the	crack	tip.	For	dynamic	analysis	of	the	multi-crack	problem,	the	crack	tips	become	more	difficult	to	handle,	so	that	the	increase	of	degrees	of	freedom

makes	the	solution	very	time-consuming.	The	extended	finite	element	method	(XFEM),	as	an	improved	FEM,	introduces	additional	degrees	of	freedom	to	simulate	the	crack	tips	and	has	been	applied	to	dealing	with	the	dynamic	crack

problems	[6–8].	However,	dense	meshes	around	crack	tips	are	still	necessary	for	obtaining	accurate	solutions,	which	causes	high	computational	costs.

As	 an	 alternative	method	 to	 FEM,	 the	 boundary	 element	method	 (BEM)	 has	 been	 successfully	 applied	 to	 the	 dynamic	 crack	 problems.	 Compared	with	 FEM,	 it	 only	 requires	 boundary	 discretizating	 rather	 than	 domain

discretizating.	 The	BEM	has	been	 successfully	 used	 to	 solve	 the	dynamic	 crack	problems	 in	 the	Laplace	domain	 [9,10],	 in	 the	 time	domain	based	on	 the	 transient	 fundamental	 solutions	 [11,12]	 and	 in	 the	 time	domain	with	 the

combination	of	the	dual	reciprocity	techniques	[13–15].	The	first	method	increases	the	computational	effort	because	of	its	complicated	arithmetical	operations.	The	second	method	needs	analytical	fundamental	solutions	within	the	time
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domain	which	are	not	given	for	every	problem.	To	overcome	these	deficiencies,	the	dual	reciprocity	techniques	are	introduced	into	the	BEM	formulation	so	that	the	elastostatic	fundamental	solutions	can	be	used	for	dynamic	analysis.

However,	these	BEM	literatures	mentioned	above	are	all	based	on	the	non-crack	fundamental	solutions.	Here,	special	elements,	e.g.	the	isoparametric	singular	elements	[16,17],	need	to	be	developed	at	the	crack	tips	so	as	to	capture

the	crack	singular	behaviour	and	also,	the	stress	intensity	factor	(SIF)	needs	to	be	calculated	using	extra	treatments	(e.g.	the	extrapolation	techniques	and	J-integral).

Different	 from	the	non-crack	elasticity	 fundamental	solutions,	 the	Erdogan	fundamental	solutions	 [18,19]	derived	analytically	 from	a	single	cracked	 infinite	plane	can	be	used	directly	 in	the	BEM	formulation	for	the	crack

problem	[20].	Due	to	the	use	of	these	fundamental	solutions,	the	singular	behaviour	at	the	crack	tip	can	be	naturally	reflected	and	the	stress	boundary	conditions	along	the	crack	surface	can	be	automatically	satisfied.	What	is	more,

SIFs	can	be	calculated	from	the	closed-form	formulation	using	these	fundamental	solutions.	In	order	to	avoid	the	singular	integral	of	the	Erdogan	fundamental	solutions	in	terms	of	complex	functions	in	the	direct	BEM,	a	non-singular

BEM,	i.e.	the	spline	fictitious	boundary	element	method	(SFBEM)	based	on	the	Erdogan	fundamental	solutions,	was	proposed	and	used	to	solve	the	probabilistic	single	crack	problem	[21]	and	further	extended	to	solve	the	static	multi-

crack	problem	[22]	with	the	combination	of	the	multi-domain	coupling	technique	[23–25].

In	this	research,	the	multi-domain	SFBEM	based	on	the	Erdogan	fundamental	solutions	is	extended	to	analyse	the	multi-crack	dynamic	problem.	The	Erdogan	fundamental	solutions	for	static	analysis	of	an	infinite	cracked	plate

are	first	introduced	in	this	paper.	Then,	with	the	help	of	the	multi-domain	coupling	technique,	the	multi-cracked	domain	is	divided	into	several	single	cracked	domains.	After	that,	the	Erdogan	fundamental	solutions	are	adopted	to

present	 the	mathematical	 formulation	 and	 computational	 implementation	 of	SFBEM	 for	modal	 analysis	 and	 transient	 analysis,	 respectively.	Numerical	 results	 of	 the	 angular	 frequencies,	 the	mode	 shapes	 and	 the	dynamic	 stress

intensity	factors	(DSIFs)	of	the	multi-cracked	plates	are	calculated	to	demonstrate	the	accuracy	of	the	proposed	method	compared	with	the	finite	element	method.

2	Erdogan	fundamental	solutions	of	plane	crack	problems
The	Erdogan	fundamental	solutions	for	an	infinite	single	cracked	plane	are	introduced	here.	Then,	the	closed-form	expressions	of	the	strains	for	these	fundamental	solutions	are	further	derived.

The	fundamental	solutions	for	a	pair	of	concentrated	forces	in	an	infinite	plane	with	a	crack	are	used	in	this	paper	for	the	SFBEM	formulations,	which	were	formulated	by	Erdogan	[18]	for	a	linear,	isotropic	and	homogeneous

material.	These	solutions	are	presented	below	with	the	closed-form	expressions	of	the	displacements	given	in	literature	[22]	recently.

Consider	an	infinite	plane	with	a	crack	subjected	to	the	concentrated	forces	Q	and	P	at	an	arbitrary	point	z0=x0+iy0,	as	shown	in	Fig.	1.	The	stresses	and	displacements	at	an	arbitrary	point	z = x+i ("i"	should	not	be	Italic)y	and

the	stress	intensity	factors	(SIFs)	at	crack	tips	can	be	expressed	as

where

(1)

(2)

(3)



where	 means	the	conjugate	complex	number	of	(•	).

Moreover,	with	the	consideration	of	the	relationship	between	the	stresses	and	the	strains,	the	closed-form	expressions	of	the	strains	for	the	Erdogan	fundamental	solutions	are	given	as	follows:

(4)

("Planestrain"	and	"Planestress"	should	be	"Plane	strain"	and	"Plane	stress",	respectively.	)

	 	

Fig.	1	Infinite	plane	with	a	crack.

alt-text:	Fig	1



In	the	above	equations,	a	is	the	half	crack	length.	μ	and	ν	are	the	shear	modulus	and	the	Poisson's	ratio	of	the	material,	respectively.	For	the	concentrated	forces	Q	and	P	applied	at	an	arbitrary	point	z0=x0+iy0,	σx,	σy	and	τxy	are

the	stresses	at	an	arbitrary	point	z = x+iy ("i"	should	not	be	Italic.);	u	and	v	are	the	displacements	at	an	arbitrary	point	z = x+iy ("i"	should	not	be	Italic.);	εx,	εy	and	εxy	are	the	strains	at	an	arbitrary	point	z = x+iy ("i"	should	not	be	Italic.);	KI
and	KII	are	SIFs	at	crack	tips.	Evidently,	if	we	let	P = 0,	Q = 1	or	P = 1,	Q = 0	in	Eqs.	(1)	to	–(5),	the	Erdogan	fundamental	solutions	become	the	fundamental	solutions	for	plane	crack	problems.

A	non-singular	indirect	boundary	element	method,	SFBEM,	based	on	the	Erdogan	fundamental	solutions	was	applied	to	solving	the	probabilistic	single	crack	problem	[21]	and	the	static	multi-crack	problem	[22].	Because	of	the

use	of	these	fundamental	solutions,	the	singularity	at	the	crack	tip	can	be	naturally	reflected	and	the	stress	boundary	conditions	along	the	crack	surface	can	be	automatically	satisfied.	In	this	research,	the	multi-domain	SFBEM	based

on	the	Erdogan	fundamental	solutions	is	further	extended	to	solve	the	dynamic	multi-crack	problem.

3	Modal	analysis	of	multi-crack	problems
3.1	Derivation	of	non-singular	integral	equations

Without	loss	of	generality,	consider	an	elastic	double	cracked	plane	domain	Ω	subjected	to	body	forces,	as	shown	in	Fig.	2.

The	double	cracked	plane	domain	is	divided	into	a	single	inner	cracked	subdomain	and	a	single	edge	cracked	subdomain,	each	of	which	is	of	uniform	property	and	thickness.	As	shown	in	Fig.	3,	point	O1	and	point	O2	are	the

midpoints	of	crack	AB	and	crack	CJ,	respectively.	The	common	boundary	of	two	subdomains	is	assumed	to	be	Г,	and	the	boundary	of	the	ith	subdomain	Ωi	is	assumed	to	be	L ("L"	should	not	be	Italic.)i	(i = 1,	2),	without	including	the	crack

surface.	Let	the	lengths	of	the	inner	crack	and	the	edge	crack	be	2a1	and	a2,	respectively.	Assume	the	body	forces	to	be	the	inertia	forces	Fil	(ll =	= 1,	2)	at	an	arbitrary	points	Q0i	within	subdomain	Ωi,	expressed	as	follows:

where	ρi(Q0i)	is	the	volume	density	at	an	arbitrary	point	Q0i	within	the	ith	subdomain	Ωi.

(5)

Fig.	2	The	double	cracked	plane	domain.

alt-text:	Fig	2

(6)



Firstly,	each	subdomain	is	embedded	into	an	infinite	single	cracked	plane	with	the	crack	length	2ai.	Apply	unknown	fictitious	loads	Xil	(ll =	= 1,	2)	along	the	fictitious	boundary	Si	outside	Ωi,	whose	shape	is	similar	to	that	of	the

real	boundary	Li ("L"	should	not	be	Italic.),	as	shown	in	Fig.	3.	Then,	under	the	combined	action	of	the	fictitious	loads	Xil	and	the	inertia	forces	Fil	and	by	using	the	Erdogan	fundamental	solutions,	the	components	of	displacements	and	stresses	at

an	arbitrary	point	P0	within	the	infinite	domain	corresponding	to	Ωi	are	as	follows:

where	Qi∈Si,	Q0i∈Ωi;	and	ul,	vl,	σlx,	σly	and	τlxy	are	the	Erdogan	fundamental	solutions	shown	in	Section	2.

Due	to	the	use	of	the	Erdogan	fundamental	solutions,	not	only	the	governing	differential	equations	within	Ωi,	but	also	the	stress	boundary	conditions	on	the	crack	surface	are	satisfied	automatically	with	Eq.	(7).	Therefore,	only

the	boundary	conditions	and	the	continuity	and	equilibrium	conditions	along	the	contour	of	Ωi	need	to	be	considered.

Substituting	Eq.	(7)	into	the	boundary	conditions	[26]	along	Li,	one	has

Fig.	3	Two	subdomains	embedded	in	an	infinite	domain—(a)	the	first	subdomain	with	an	inner	crack,	(b)	the	second	subdomain	with	an	edge	crack.

alt-text:	Fig	3

(7)

(8)



where	Pi∈L ("L"	should	not	be	Italic.)i,	and	k = 1,	2	denotes	the	two	boundary	conditions	along	boundary	Li ("L"	should	not	be	Italic.)	for	plane	problems;	and	Gikl	are	the	kernel	functions	consisting	of	the	Erdogan	fundamental	solutions.

In	addition	to	 the	boundary	conditions	along	Li ("L"	 should	 not	 be	 Italic.),	 the	displacement	continuity	conditions	and	stress	equilibrium	conditions	along	the	common	boundary	Г	 should	also	be	satisfied.	Substituting	Eq.	(7)	 into	 the

continuity	and	equilibrium	conditions	[26]	along	the	common	boundary	Г,	one	has

where	P∈Г, ("L"	 should	 not	 be	 Italic.)	 k = 1,2,3,4	 donates	 the	 two	 displacement	 continuity	 conditions	 and	 two	 stress	 equilibrium	 conditions	 along	 Г ("Γ"	 should	 not	 be	 Italic.);	 and	Gikl	 are	 the	 kernel	 functions	 consisting	 of	 the	 Erdogan

fundamental	solutions.

3.2	Numerical	methods
As	the	source	points	will	never	coincide	with	the	field	points	in	the	kernel	functions,	Eqs.	(8)	and	(9)	are	both	non-singular	fictitious	boundary	integral	equations.	Generally,	analytical	solutions	for	Eqs.	(8)	and	 (9)	cannot	be

obtained	directly,	and	a	numerical	measure	must	be	used	to	solve	the	integral	equations.

The	fictitious	boundary	Si	 is	divided	into	Ni	divisions	and	Ni	+1	nodes	are	obtained,	and	 the	element	between	 two	adjacent	spline	nodes	 is	 termed	as	a	 fictitious	boundary	element.	Then	 the	unknown	 fictitious	Xil(s,	t)	 are

expressed	in	terms	of	a	set	of	B-spline	functions	as	follows	[23]:

where	s	is	the	local	coordinate	along	Si;	xlin	are	the	unknown	spline	node	parameters;	and	ϕn(s)	are	B-spline	functions	of	the	third	order	[27].

Annotations:

A1. 	"="should	be	added	between	two	expressions.	

The	boundary	Li	and	the	common	boundary	Г	are	divided	into	a	sufficient	number	of	segments.	At	the	same	time,	the	subdomain	Ωi	is	divided	into	Ni	cells	and	the	inertia	forces	Fil	are	assumed	to	concentrate	at	the	central

points	of	the	n-th	cell	(n = 1,2,	…,	Ni)	within	the	ith	subdomain,	which	can	be	written	as

where	ΔAni	is	the	area	of	the	n-th	cell	within	the	ith	subdomain;	and	Qni	is	the	coordinate	of	the	central	point	of	the	n-th	cell	within	the	ith	subdomain.

Substituting	Eqs.	(10)	and	(11)	into	Eqs.	(8)	and	(9)	and	let	the	integrations	of	the	residues	along	each	segment	along	the	boundary	Li	and	the	common	boundary	Γ	be	zero,	one	can	obtain

where	{Xi(t)}	denotes	 the	 column	matrix	 consisting	of	 the	unknown	spline	node	parameters	of	 the	 fictitious	 loads	along	Si;	[Gi]	and	 [gi]	 denote	 the	 influence	matrices	 of	 {Xi(t)}	 corresponding	 to	 the	 boundary	 conditions	 and	 the

common	conditions,	respectively;	[Bi]	and	[bi]	denote	the	influence	matrices	of	the	inertia	forces	corresponding	to	the	boundary	conditions	and	the	common	boundary	conditions,	respectively;	and	[Mi]	denotes	the	mass	matrix	and	

denotes	the	column	matrix	of	acceleration	components	within	Ωi.

Eqs.	(12)	and	(13)	can	be	combined	into	one	overall	equation	as	follows:

(9)

(10)

(11)

(12)

(13)

	

A1



where	the	overall	matrices	in	the	equation	are	dependent	on	the	corresponding	matrices	in	Eqs.	(12)	and	(13).

To	further	establish	the	Eq.	(14),	the	supplementary	equation	is	required.	Discretizing	the	fictitious	loads	and	the	inertia	forces	from	the	first	two	equations	of	Eq.	(7)	with	the	same	treatment,	the	displacement	column	matrix

{D(t)}	of	two	subdomains	can	be	obtained	as

where	 and	 denote	the	influence	matrices	of	{X(t)}	and	the	inertia	forces	according	to	the	displacement	column	matrix	{D(t)},	respectively.

With	the	consideration	of	Eqs.	(14)	and	(15),	{X(t)}	can	be	solved	as

Substituting	Eq.	(16)	into	Eq.	(15),	one	has

where

Eq.	(17)	is	the	equation	for	modal	analysis	of	the	elastic	plane	crack	problems,	and	[δ]	is	the	flexibility	matrix.

3.3	Analysis	of	the	angular	frequencies	and	displacement	modes
Eq.	(18)	is	the	homogeneous	linear	equation	with	constant	coefficients	and	thus,	the	solutions	can	be	expressed	as

where	ω	denotes	the	angular	frequency	and	{D0}	denotes	the	column	matrix	of	the	displacement	mode	related	to	ω.

Annotations:

A1. 	"sin"	should	not	be	Italic.	

Substituting	Eq.	(19)	into	Eq.	(17),	there	is

where	[I]	is	the	unit	matrix.	Eq.	(20)	can	be	converted	into	a	standard	eigenvalue	problem	as	follows:

where	λ	=	1	/	ω2.	The	eigenvalue	λ	and	the	corresponding	displacement	mode	column	matrix	{D0}	can	be	obtained	by	solving	Eq.	(21).

The	angular	frequency	can	be	obtained	as	follows:

It	 should	 be	 noted	 that,	 in	 the	 above	 formulations	 for	modal	 analysis	 of	 crack	 plane	 structures,	 the	 contact	 condition	 of	 crack	 surfaces	 is	 not	 taken	 into	 consideration.	 Actually,	 the	mode	 shapes	 and	 the	 corresponding

frequencies	obtained	from	modal	analysis	of	a	cracked	structure	are	used	to	solve	the	transient	dynamic	problem	with	the	mode	superposition	method,	in	which	the	cracked	structure	is	assumed	to	be	subjected	to	dynamic	tensions

without	contact	of	the	crack	surfaces.	This	means	that,	in	the	process	of	transient	vibration,	the	cracked	structure	will	behave	linearly	with	a	constant	stiffness	matrix.	Therefore,	modal	analysis	of	cracked	structures	are	generally

conducted	without	consideration	of	the	contact	of	crack	surfaces,	which	can	be	shown	in	References.	[28]	and	[,29].

(14)

(15)

		 	 		 	

(16)

(17)

(18)

(19)

(20)

(21)

(22)
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3.4	Analysis	of	the	strain	modes
Similar	to	Eq.	(7),	under	the	combined	action	of	the	fictitious	loads	Xil	and	the	inertia	forces	Fil	(ll =	= 1,	2),	the	components	of	the	strains	at	an	arbitrary	point	P0	in	the	infinite	domain	corresponding	to	Ωi	are	as	follows:

where	εlx,	εly	and	γlxy	are	the	closed-form	expressions	of	the	strains	given	in	the	Erdogan	fundamental	solutions	shown	in	Section	2.

After	the	discretization	of	the	strains,	the	fictitious	loads	and	the	inertia	forces,	the	strain	column	matrix	{εi(t)}	of	the	ith	subdomain	can	be	obtained	by	Eq.	(23)	as	follows:

where	 and	 denote	the	influence	matrices	of	{Xi(t)}	and	the	inertia	forces	 corresponding	to	the	strain	column	matrix	{εi(t)},	respectively.

With	the	consideration	of	the	strains	for	all	the	subdomains,	Eq.	(24)	can	be	written	as

Substituting	Eq.	(16)	into	Eq.	(25),	one	has

where

{ε(t)}	can	be	expressed	as

where	ω	denotes	the	angular	frequency	and	{ε0}	denotes	the	column	matrix	of	the	strain	mode	corresponding	to	ω.

Substituting	Eqs.	(28)	and	(19)	into	Eq.	(26),	one	has

It	can	be	seen	that	once	the	displacement	mode	column	matrix	{D0}	is	obtained,	the	strain	mode	column	matrix	{ε0}	can	be	obtained	by	using	Eq.	(29).

4	Transient	analysis	of	multi-crack	problems
For	transient	analysis	of	multi-crack	problems,	the	elastic	cracked	plane	domain	Ω	is	generally	not	only	affected	by	the	inertial	forces,	but	also	by	the	damping	loads	and	the	external	body	loads.	Therefore,	Eq.	(6)	is	modified	as

where	ci(Q0i)	is	the	damping	coefficient	within	the	ith	subdomain;	and	 are	external	body	loads	in	either	x	or	y	direction	within	the	ith	subdomain.

(23)

(24)

		 	 		 	 		 	

(25)

(26)

(27)

(28)

(29)

(30)

		 	



Considering	the	boundary	conditions,	as	shown	in	Fig.	4,	not	be	zero,	the	non-singular	integral	Eq.	(8)	is	modified	as

where	Hik	denote	the	known	boundary	functions	along	Li.

After	these	modifications,	Eq.	(9)	 for	 the	common	boundary	conditions	can	still	be	used	 in	transient	analysis.	The	subdomain	Ωi	 is	divided	into	Ni	cells,	and	the	body	 forces	 in	Eq.	 (30)	 are	 assumed	 to

concentrate	at	the	central	points	of	the	n-th	cell	(n = 1,2,	…,	Ni).	The	concentrated	forces	can	be	expressed	as

where	ΔAni	is	the	area	of	the	n-th	cell	in	the	ith	subdomain;	and	Qni	is	the	coordinate	of	the	central	point	of	the	n-th	cell	within	the	ith	subdomain.

With	the	same	treatments	as	those	used	in	modal	analysis,	the	algebraic	equation	can	be	obtained	as

where	{X(t)},	[G],	 [M]	 and	 are	 the	 same	with	 the	 corresponding	matrices	 in	Eq.	 (14);	 {f(t)}	 denotes	 the	 column	matrix	 discretized	 by	 the	 external	 loads;	 [C]	 denotes	 the	 damping	matrix	 determined	 using	 the	Rayleigh

damping	assumption;	 denotes	the	column	matrix	of	velocity	components;	and	{H(t)}	denotes	the	known	column	matrix	depending	on	the	boundary	conditions.

In	addition,	the	supplementary	Eq.	(15)	should	be	modified	as

Eliminating	{X(t)}	from	Eqs.	(33)	and	(34),	one	has

Eq.	(35)	is	the	equation	of	motion	and	can	be	solved	by	using	either	the	mode	superposition	method	or	the	Newmark-β	method	[30]	to	obtain	 ,	 and	{D(t)}.	Then,	{X(t)}	can	be	calculated	with	the	consideration	of

Eq.	(33)	as	follows:

Once	the	spline	node	parameter	{X(t)}	is	determined,	the	mode-I	and	mode-II	SIFs	of	the	jth	crack	within	the	ith	subdomain	can	be	calculated	using	the	following	equation:

(31)

Fig.	4	The	double	cracked	plane	domain	with	non	zero	boundary	conditions.

alt-text:	Fig	4
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where	 are	the	fundamental	solutions	of	SIFs	corresponding	to	Ωi.

5	Numerical	examples
Numerical	 examples	 for	 three	 linear-elastic	 plane	 stress	 multi-crack	 problems	 are	 presented	 in	 this	 section.	 For	 all	 three	 examples,	 the	 modulus	 of	 elasticity	 and	 the	 Poisson's	 ratio	 of	 the	 material	 are	 assumed	 to	 be

EE =	= 200 GPa	and	ν = 0.3,	respectively.	The	mass	density	and	the	plate	thickness	are	taken	to	be	ρ = 7800 kg/m3	and	tt =	= 1 mm,	respectively.	The	time	step	is	set	to	be	Δt = 0.3 	µs	in	the	Newmark-β	integral	scheme.	The	weighting

factors	γ	and	β	in	the	Newmark-	β	method	are	assumed	to	be	γ = 0.5	and	β = 0.25,	respectively.	The	Rayleigh	damping	model	is	used	for	the	plate	with	the	damping	ratio	being	taken	to	be	ζ = 0.05.

5.1	A	square	plate	with	two	inner	cracks
A	double	inner	cracked	square	plate,	as	shown	in	Fig.	5,	is	analyzed.	Point	O1	and	point	O2	are	the	midpoints	of	the	left	and	right	cracks,	respectively.	As	shown	in	Fig.	5,	two	cracks	with	four	crack	tips,	namely	A,	B,	C	and	D,	are

distributed	in	the	plate,	and	the	lengths	of	the	left	crack	and	the	right	crack	are	2a1	and	2a2,	respectively.

SFBEM	based	on	the	Erdogan	fundamental	solutions	is	used	to	calculate	the	DSIF	values	of	four	crack	tips.	As	shown	in	Fig.	6,	the	plate	is	divided	into	two	single	inner	cracked	subdomains.	In	each	subdomain,	the	number	of

the	fictitious	boundary	element	is	taken	to	be	Ns	and	the	number	of	boundary	segments	is	taken	to	be	2Ns.	The	distance	between	the	real	boundary	and	the	fictitious	boundary	in	each	subdomain	is	taken	as	the	length	of	the	boundary

segment	[23].	The	plate	is	discretized	into	Nc	cells,	with	the	inertia	loads	concentrating	at	the	center	of	each	cell.

(37)

		 	

Fig.	5	A	square	plate	with	two	inner	cracks. (Figures	and	Tables	in	the	numerical	examples	should	be	placed	following	the	related	numercial	examples.	However,	in	the	PageProof,	those	Figures	and	Tables	are	too	far	from	the	related	numerical	examples.	Please	adjust	the	positions	of	Figures	and	Tables	in	the
PageProof.)

alt-text:	Fig	5



A	convergence	study	for	SFBEM	is	performed.	Let	the	lengths	of	two	cracks	and	the	angle	of	the	right	crack	be	2a1 = 2a2	=10 mm	and	θ = 45°,	respectively.	For	all	numerical	integrations	along	the	boundary,	5	Gauss	points	are

used.	Firstly,	for	the	convergence	study	for	the	number	of	fictitious	boundary	elements,	the	number	of	cells	within	the	domain	is	fixed	as	380,	and	the	numbers	of	fictitious	boundary	elements	in	each	subdomain	are	taken	to	be	18,	30,

60	and	120,	respectively.	Then,	for	the	convergence	study	of	number	of	cells	within	the	domain,	the	number	of	fictitious	boundary	elements	is	fixed	as	30,	and	the	numbers	of	cells	are	taken	to	be	110,	203	and	380,	respectively.	The

results	from	the	finite	element	method	(FEM)	with	2021	elements	which	are	fine	enough	are	used	as	the	reference	solutions.	The	angular	frequencies	of	the	first	six	orders	with	different	numbers	of	fictitious	boundary	elements	and	these

with	different	numbers	of	cells	are	shown	in	Tables	1	and	2,	respectively.

Table	1	The	frequencies	of	the	first	six	orders	with	different	numbers	of	fictitious	boundary	elements	(rad/s).

alt-text:	Table	1

Order FEM SFBEM

Ns = 18 Relative	Error Ns = 30 Relative	Error Ns = 60 Relative	Error Ns = 120 Relative	Error

1 78972.0 79310.5 0.43% 79056.5 0.11% 78848.3 0.16% 78809.3 0.21%

2 182846.0 179022.4 2.09% 183715.5 0.48% 183658.7 0.44% 183643.9 0.44%

3 216480.0 214854.2 0.75% 217147.8 0.31% 217148.1 0.31% 217121.7 0.30%

4 348817.0 343362.5 1.56% 349637.0 0.24% 349682.9 0.25% 349631.5 0.23%

5 353931.0 351960.5 0.56% 354796.7 0.24% 354261.6 0.09% 353964.3 0.01%

6 399838.0 394743.5 1.27% 397297.1 0.64% 396869.5 0.74% 396717.5 0.78%

Table	2	The	frequencies	of	the	first	six	orders	of	with	different	numbers	of	cells	(rad/s).

alt-text:	Table	2

Order FEM SFBEM

Nc = 110 RelativeError Nc = 203 RelativeError Nc = 380 RelativeError

1 78972.0 79054.6 0.10% 79090.7 0.15% 79056.5 0.11%

Fig.	6	Computational	models	for	the	two	inner	cracked	subdomains.

alt-text:	Fig	6



2 182846.0 182364.4 0.26% 183626.3 0.43% 183715.5 0.48%

3 216480.0 215540.9 0.43% 216907.3 0.20% 217147.8 0.31%

4 348817.0 343071.9 1.65% 347851.4 0.28% 349637.0 0.24%

5 353931.0 345256.2 2.45% 352396.7 0.43% 354796.7 0.24%

6 399838.0 384528.1 3.83% 393095.9 1.69% 397297.1 0.64%

Table	1	shows	that	the	results	of	SFBEM	agree	well	with	those	of	FEM,	which	indicates	that	high	accuracy	can	be	achieved	with	fewer	numbers	of	the	fictitious	boundary	elements.	When	the	number	of	fictitious	boundary

elements	is	larger	than	30,	the	errors	of	all	the	six	orders’	frequencies	predicted	by	SFBEM	in	comparison	to	those	obtained	from	FEM	are	lower	than	1%.	Table	2	shows	that	the	relative	errors	of	high-order	frequencies	decrease

obviously	as	the	number	of	cells	increases,	indicating	that	the	accuracy	of	frequencies	increases	with	the	increase	of	the	number	of	cells.

Then,	modal	analysis	for	the	plate	is	further	studied.	Let	the	lengths	of	two	cracks	and	the	angle	of	the	right	crack	be	2a1 = 2a2	=4 mm	and	θ = 30°,	respectively.	For	each	subdomain,	30	fictitious	boundary	elements	and	360

cells	are	used	in	SFBEM.	The	results	calculated	by	FEM	with	2122	finite	elements	are	also	shown	as	the	reference	solutions.	The	angular	frequencies	of	the	first	six	orders	are	listed	in	Table	3.	The	horizontal	displacement	results	ux	of

the	1st,	3rd	and	5th	orders	of	partial	points	on	x = −1	are	shown	in	Fig.	7.	The	strain	mode	of	the	first	order	are	shown	in	Fig.	8.

Table	3	Frequencies	of	the	first	six	orders	(rad/s).

alt-text:	Table	3

Order FEM SFBEM Relative	Error

1 82715.0 82727.8 0.02%

2 197843.0 197325.1 0.26%

3 223330.0 222811.0 0.23%

4 355424.0 353665.3 0.49%

5 380555.0 376718.2 1.01%

6 405122.0 401230.6 0.96%



Fig.	7	The	horizontal	displacement	modes	ux	of	the	first	five	orders	of	partial	points	on	x = −1.

alt-text:	Fig	7



It	can	be	seen	from	Table	3,	Figs.	7	and	8	that	the	results	of	SFBEM	agree	well	with	those	of	FEM,	which	indicates	high	accuracy	of	the	present	method.	The	results	in	Fig.	8	show	that	the	appearance	of	cracks	greatly	affects	the

distribution	of	strain	modes,	as	significant	strain	concentrations	occur	near	the	crack	tips.

Finally,	transient	analysis	for	the	plate	is	studied.	A	suddenly	imposed	uniform	tensile	load	σ(t)	is	shown	in	Fig.	9.	The	length	of	the	left	crack	is	fixed	as	2a1 = 10 mm.	DSIF	values	with	different	length	2a2	and	angle	θ	of	crack	tip

D	are	calculated.	When	consider	varying	the	length	2a2,	the	angle	θ	of	the	right	crack	is	fixed	as	45°,	while	length	2a2	of	the	right	crack	are	4,	6,	8	and	10 mm,	respectively.	When	consider	varying	the	angle	θ,	the	length	2a2	of	the	right

crack	is	fixed	as	10	mm,	while	the	angle	θ	of	the	right	crack	is	30°,	45°	and	60°,	respectively.	In	SFBEM,	for	all	cases,	30	fictitious	boundary	elements	and	60	boundary	segments	are	adopted	in	each	subdomain,	and	the	distance

between	the	fictitious	boundary	and	the	real	boundary	in	each	subdomain	is	taken	to	be	2 mm.	The	number	of	cells	in	SFBEM	and	the	number	of	finite	elements	in	FEM	under	different	cases	are	listed	in	Tables	4	and	5,	respectively.

Fig.	8	The	strain	modes	of	the	first	order.

alt-text:	Fig	8



DSIFs	KI	and	KII	of	crack	tip	D	obtained	with	different	crack	lengths	by	SFBEM	and	FEM	are	presented	in	Figs.	10	and	11,	while	those	obtained	with	different	crack	angles	by	SFBEM	and	FEM	are	presented	in	Figs.	12	and	13.

Table	4	The	number	of	cells	in	SFBEM	under	different	cases.

alt-text:	Table	4

Method Number	of	cells

θ=45° 2a=10mm

2a2=4	mm 2a2=6	mm 2a2=8	mm θ=30° θ=45° θ=60°

SFBEM 380 380 380 360 380 400

Table	5	The	number	of	finite	elements	in	FEM	under	different	cases.

alt-text:	Table	5

Method Number	of	finite	elements

θ=45° 2a=10mm

2a2=4	mm 2a2=6	mm 2a2=8	mm θ=30° θ=45° θ=60°

FEM 2145 2100 2210 2020 2021 2071

Fig.	9	The	load	function.

alt-text:	Fig	9

Fig.	10	 (Shrink	the	figure	so	as	to	fit	one	colunm	in	the	PageProof.)KI	of	crack	tip	D	obtained	with	different	crack	lengths.

alt-text:	Fig	10



It	can	be	seen	from	Figs.	10	to	13	that	DSIF	results	of	SFBEM	agree	well	with	those	of	FEM,	which	again	indicates	high	accuracy	of	the	present	method.	Figs.	10	and	11	show	that	the	shapes	of	curves	under	different	crack

Fig.	11 (Shrink	the	figure	so	as	to	fit	one	colunm	in	the	PageProof.)	KII	of	crack	tip	D	obtained	with	different	crack	lengths.

alt-text:	Fig	11

Fig.	12	 (Shrink	the	figure	so	as	to	fit	one	colunm	in	the	PageProof.)KI	of	crack	tip	D	obtained	with	different	crack	angles.

alt-text:	Fig	12

Fig.	13 (Shrink	the	figure	so	as	to	fit	one	colunm	in	the	PageProof.)	KII	of	crack	tip	D	obtained	with	different	crack	angles.

alt-text:	Fig	13



lengths	are	similar,	but	the	peak	values	of	KI	and	KII	increase	with	the	increase	of	the	crack	length.	It	indicates	that	the	longer	the	crack	length	is,	the	more	likely	the	plate	is	damaged,	which	is	consistent	with	the	actual	situation.	Fig.

12	shows	that	the	slope	of	curves	increases	with	the	increase	of	the	crack	angles.	However,	from	Fig.	13,	it	can	be	seen	that	the	values	of	KII	reach	the	maximum	when	the	crack	angle	is	45°.

5.2	A	rectangular	plate	with	two	edge	cracks
A	double	edge	cracked	rectangular	plate,	as	shown	in	Fig.	14,	is	analyzed.	A	suddenly	imposed	uniform	tensile	load	σ(t)=[20sin(60000πt) + 200]	MPa,	as	shown	in	Fig.	15,	is	applied	at	the	top	surface	of	the	plate.	The	size	of

plate	is	20 mm × 60 mm.	The	lengths	of	two	horizontal	edge	cracks	are	taken	to	be	‘a’.	The	crack	length	a	varies	from	1 mm	to	3 mm.

The	strain	modes	and	DSIFs	are	calculated	by	SFBEM	with	the	computational	models	in	Fig.	16.	It	should	be	noted	that	since	the	stress	distribution	at	the	boundary	near	the	edge	crack	is	complicated,	more	fictitious	boundary

elements	and	boundary	segments	are	needed.	The	plate	is	divided	into	two	single	edge	cracked	subdomains,	in	each	of	which	226	fictitious	boundary	elements	and	452	boundary	segments	are	adopted,	and	the	distance	between	the

fictitious	boundary	and	the	real	boundary	is	taken	to	be	1 mm.	5	Gauss	points	are	used.	200	cells	are	used	for	all	SFBEM	computations.	The	well-established	finite	element	analysis	is	used	for	the	comparison.	The	rectangular	plate	is

divided	 into	1528,	1504	and	1406	elements	for	1 mm,	2 mm	and	3 mm	of	‘a’,	 respectively.	The	 frequencies	of	 the	 first	six	orders	with	different	crack	 lengths	are	shown	 in	Fig.	17.	The	strain	mode	shapes	εyy	of	 the	 first	order	with

different	crack	lengths	are	shown	in	Fig.	18.	KI	of	the	crack	tip	A	with	different	crack	lengths	are	shown	in	Fig.	19.

Fig.	14	A	rectangular	plate	with	two	edge	cracks.

alt-text:	Fig	14

Fig.	15	The	load	function.

alt-text:	Fig	15



Fig.	16	Computational	models	for	the	two	edge	cracked	subdomains.

alt-text:	Fig	16

Fig.	17	The	frequencies	of	the	first	three	orders	with	different	crack	lengths.

alt-text:	Fig	17



Fig.	18	The	strain	mode	shapes	εyy	of	the	first	order.

alt-text:	Fig	18



It	can	be	seen	from	Fig.	17	that	the	frequencies	of	first	three	orders	obtained	by	SFBEM	agree	well	with	those	by	FEM.	As	the	crack	length	increases,	the	1st	order	frequency	decreases	slightly,	while	those	of	2nd	and	3rd

orders	decrease	more	greatly.

From	Fig.	18,	we	can	see	that	the	strain	mode	εyy	related	to	the	first	order	frequency	calculated	using	SFBEM	are	also	in	a	good	agreement	with	those	from	FEM.	The	strain	concentrations	can	be	observed	at	the	crack	tips	and

the	position	of	these	concentrations	changes	as	the	crack	length	increases.

It	can	be	seen	from	Fig.	19	that	the	tendency	of	DSIFs	for	different	crack	lengths	calculated	by	SFBEM	are	the	same	as	those	calculated	by	FEM	with	acceptable	deflections.	As	shown	in	Fig.	19,	it	is	evident	that	DSIFs	increase

significantly	with	the	increase	of	crack	lengths.

5.3	A	rectangular	plate	with	three	inner	cracks
Fig.	 20	 shows	 a	 triple	 inner	 cracked	 rectangular	 plate.	 A	 suddenly	 imposed	 uniform	 tensile	 load	 σ(t)	 is	 applied	 at	 the	 top	 surface	 of	 the	 plate.	 The	 load	 function	 is	 the	 same	 as	 that	 in	 Example	 1.	 The	 size	 of	 plate	 is

20 mm × 40 mm.	As	shown	in	Fig.	20,	a	central	horizontal	crack	CD	with	a	length	of	10 mm	and	two	inclined	cracks	AB	and	EF	with	lengths	of	2a	are	distributed	in	the	plate.

The	frequencies	and	DSIFs	with	different	crack	lengths	and	crack	angles	are	calculated.	The	vertical	distance	and	the	horizontal	distance	from	the	midpoints	of	two	inclined	cracks	to	the	midpoint	of	the	horizontal	crack,	as

shown	in	Fig.	20,	are	fixed	as	dd =	= 10 mm	and	ee =	= 0 mm,	respectively.	Firstly,	crack	length	2a	is	taken	to	be	10 mm	and	the	crack	angle	θ	varies	from	15°	to	45°.	Then,	the	crack	angle	is	fixed	as	45°	and	the	crack	length	varies	from

4 mm	to	8 mm.

SFBEM	based	on	the	Erdogan	fundamental	solutions	is	used	to	calculate	DSIF	values.	The	plate	is	divided	into	three	single	inner	cracked	subdomains.	In	subdomains	Ω1	and	Ω3,	36	fictitious	boundary	elements	and	72	boundary

segments	are	adopted,	and	the	distance	between	the	fictitious	boundary	and	the	real	boundary	is	taken	to	be	1 mm.	Besides,	in	subdomain	Ω2,	28	fictitious	boundary	elements	and	56	boundary	segments	are	adopted,	and	the	distance

Fig.	19	 (Shrink	the	figure	so	as	to	fit	one	colunm	in	the	PageProof.)KI	of	crack	tip	A	obtained	with	different	crack	lengths.

alt-text:	Fig	19

Fig.	20	A	rectangular	plate	with	three	inner	cracks.

alt-text:	Fig	20



between	the	fictitious	boundary	and	the	real	boundary	is	also	taken	to	be	1 mm,	as	shown	in	Fig.	21.	The	cell	numbers	of	204,	218	and	228	are	used	for	15°,	30°	and	45°	of	θ,	respectively,	whilst	228,	228	and	228	cells	are	used	for	4 mm,

6 mm	and	8 mm	of	2a,	respectively.	For	all	numerical	integrations	along	the	boundary,	5	Gauss	points	are	used.	The	frequencies	of	the	first	six	orders	with	different	crack	angles	and	crack	lengths	are	shown	in	Table	6.	KI	and	KII	of	crack

tip	B	obtained	with	different	crack	angles	and	crack	lengths	are	present	in	Figs.	22	and	23,	while	KI	of	crack	tip	D	obtained	with	different	crack	angles	and	crack	lengths	are	present	in	Figs.	24	and	25.

Table	6	The	frequencies	of	the	first	six	orders	with	different	crack	angles	and	crack	lengths	(rad/s).

alt-text:	Table	6

Order 2a=10	mm θ=45°
θ=15° θ=30° θ=45° 2a=4	mm 2a=6	mm 2a=8	mm

1 49815.5 50709.5 51946.1 52423.0 52109.2 51954.9

2 157681.7 160958.2 168333.1 176006.8 174359.2 171931.8

3 192459.4 192834.9 193823.4 205937.2 202843.9 198698.2

4 399985.5 398913.9 395044.5 402325.7 401603.8 399517.7

5 421906.6 431148.5 435026.6 501857.2 495184.3 476882.1

6 475126.3 459816.5 469106.8 531681.3 507724.0 481073.9

Fig.	21	Computational	models	for	the	triple	inner	cracked	subdomain.

alt-text:	Fig	21



Fig.	22 (Shrink	the	figure	so	as	to	fit	one	colunm	in	the	PageProof.)	KI	and	KII	of	the	crack	tip	B	obtained	with	different	crack	angles.

alt-text:	Fig	22

Fig.	23 (Shrink	the	figure	so	as	to	fit	one	colunm	in	the	PageProof.)	KI	and	KII	of	the	crack	tip	B	obtained	with	different	crack	lengths.

alt-text:	Fig	23

Fig.	24 (Shrink	the	figure	so	as	to	fit	one	colunm	in	the	PageProof.)	KI	of	the	crack	tip	D	obtained	with	different	crack	angles.

alt-text:	Fig	24



From	Table	6,	it	can	be	seen	that	the	values	of	frequencies	with	the	crack	length	of	10 mm	are	significantly	smaller	than	those	with	the	crack	length	of	4 mm,	indicating	that	the	appearance	of	cracks	reduces	the	stiffness	of	the

plate.

The	results	in	Fig.	22	show	that	the	values	of	KI	decrease	with	the	increase	of	crack	angle,	and	the	curve	associated	with	the	crack	angle	of	15°	has	the	largest	fluctuation.	Meanwhile,	the	values	of	KII	increase	with	the	increase

of	crack	angles.	The	results	in	Fig.	23	show	that	the	values	of	KI	and	KII	increase	with	the	increase	of	crack	lengths.	It	is	worth	mentioning	that	the	results	in	both	figures	indicate	that	there	is	no	obvious	correlation	between	the	KI	curve

and	the	KII	curve.	It	can	be	seen	from	Figs.	24	and	25	that	the	KI	values	of	the	central	crack	CD	decrease	with	the	decrease	of	crack	angle	and	the	increase	of	crack	length.	This	is	due	to	the	shielding	effect	[22]	of	the	lower	and	upper

cracks.

The	influence	of	the	position	of	two	inclined	cracks	is	further	investigated.	Let	the	crack	angle	and	crack	length	be	θ=0°	and	2a=8 mm,	respectively.	Firstly,	the	vertical	distance	d	is	fixed	as	8 mm	and	the	horizontal	distance	e

varies	from	−2 mm	to	2 mm.	Then,	the	horizontal	distance	e	is	fixed	as	4 mm	and	the	vertical	distance	d	varies	from	6 mm	to	14 mm.	KI	values	of	crack	tip	D	obtained	under	different	horizontal	distances	are	present	in	Fig.	26,	while	KI

values	of	the	crack	tip	D	obtained	under	different	vertical	distances	are	present	in	Fig.	27.

Fig.	25 (Shrink	the	figure	so	as	to	fit	one	colunm	in	the	PageProof.)	KI	of	the	crack	tip	D	obtained	with	different	crack	lengths.

alt-text:	Fig	25

Fig.	26 (Shrink	the	figure	so	as	to	fit	one	colunm	in	the	PageProof.)	KI	of	the	crack	tip	D	obtained	under	different	horizontal	distances.

alt-text:	Fig	26



From	Fig.	26,	it	can	be	seen	that	when	the	upper	and	lower	cracks	move	from	the	left	side	to	the	right	side,	i.e.	close	to	the	crack	tip	D,	the	values	of	KI	decrease	clearly.	From	Fig.	27,	one	can	see	that	when	the	vertical	distance

d	decreases,	i.e.	close	to	the	crack	tip	D,	the	values	of	KI	also	show	a	large	decrease,	and	the	closer	the	crack	is,	the	more	obvious	the	decrease	trend	is.	This	indicates	that	the	shielding	effect	[22]	becomes	larger	with	the	decrease	of

the	horizontal	distance	and	the	vertical	distance.

6	Conclusions
The	multi-domain	SFBEM	based	on	 the	Erdogan	 fundamental	 solutions	 is	 extended	 to	dynamic	analysis	 of	multi-crack	problems	 in	 this	paper.	Because	of	 the	use	of	 the	multi-domain	 coupling	 technique,	 the	 single	 crack

Erdogan	 fundamental	 solutions	have	been	shown	to	be	applicable	 to	 the	 formulation	of	SFBEM	for	modal	and	 transient	analysis	of	 the	multi-crack	problems.	Moreover,	 the	closed-form	expressions	of	 the	strains	are	given	 in	 this

research,	so	that	 the	strain	modes	can	be	obtained	directly	and	analytically.	The	 fusion	of	 the	multi-domain	SFBEM	and	the	Erdogan	fundamental	solutions	 is	computationally	efficient,	which	provides	a	powerful	 tool	 for	dynamic

analysis	of	multi-crack	problems.	Numerical	examples	 including	the	double	 inner	crack,	double	edge	crack	and	triple	crack	problems	are	analyzed	 in	 terms	of	 the	angular	 frequencies,	 the	modal	shapes	and	DSIFs	by	the	present

method.	The	convergence	and	accuracy	of	the	proposed	approach	are	studied	in	the	first	example	for	cracks	with	different	inclined	angles	and	lengths.	In	the	second	example,	the	plate	with	two	edge	cracks	and	subjected	to	the	sine

external	loads	is	used	to	demonstrate	the	feasibility	of	the	proposed	approach.	In	the	third	example,	the	proposed	method	is	used	to	study	the	interaction	of	three	cracks	on	the	dynamics	characteristics	of	the	plate.
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