Dynamic analysis of multi-crack problems by the spline fictitious boundary element method based on Erdogan fundamental solutions
 Xu Zhi

Chen Miao ${ }^{\text {a }}$
Su Cheng ${ }^{\text {a, b, * }}$
cvchsu@scut.edu.cn
Fan Xueming ${ }^{\text {a, }}$,
Guan Zhongwei ${ }^{\text {a, }}$ c
${ }^{\text {a School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, PR China }}$
${ }^{b}$ State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, PR China
'School of Engineering, University of Liverpool, Liverpool L69 3GH, UK
${ }^{*}$ Corresponding author: School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, PR China.

Abstrac

 stress intensity factors (DSIFs) of the multi-crack problem are also obtained. Numerical examples are given to demonstrate the accuracy of the proposed method in comparison to the finite element method.

Keywords: Dynamic analysis; Fracture mechanics; Spline fictitious boundary element method; Erdogan fundamental solution

1 Introduction

 the structures with multiple cracks

 problems [6-8]. However, dense meshes around crack tips are still necessary for obtaining accurate solutions, which causes high computational costs

 the crack singular behaviour and also, the stress intensity factor (SIF) needs to be calculated using extra treatments (e.g. the extrapolation techniques and J-integral).

 crack problem [22] with the combination of the multi-domain coupling technique [23-25].

 intensity factors (DSIFs) of the multi-cracked plates are calculated to demonstrate the accuracy of the proposed method compared with the finite element method.

2 Erdogan fundamental solutions of plane crack problems

The Erdogan fundamental solutions for an infinite single cracked plane are introduced here. Then, the closed-form expressions of the strains for these fundamental solutions are further derived.
 material. These solutions are presented below with the closed-form expressions of the displacements given in literature [22] recently.
 the stress intensity factors (SIFs) at crack tips can be expressed as

$$
\begin{gathered}
\sigma_{x}+\sigma_{y}=2[\phi(z)+\overline{\phi(z)}] \\
\sigma_{y}-\sigma_{x}+2 \mathrm{i}_{x y}= \\
\begin{aligned}
2 \mu(u+\mathrm{i} v)= & -\kappa S \ln \left[\left(z-z_{0}\right)\left(\bar{z}-\bar{z}_{0}\right)\right]+\frac{\bar{S}\left(\bar{z}_{0}-z_{0}\right)}{\bar{z}-\bar{z}_{0}} \\
& +(\bar{z}-z) \overline{\left(-\frac{S}{z-z_{0}}+\phi_{0}(z)\right)}+\kappa M\left(z, z_{0}\right)-M\left(\bar{z}, z_{0}\right)
\end{aligned}
\end{gathered}
$$

$$
K \quad=\quad K_{\mathrm{I}}-\mathrm{i} K_{\mathrm{II}}=2 \sqrt{2 \pi} \lim _{z \rightarrow a}[(\sqrt{z-a}) \phi(z)]
$$

$=\frac{1}{2 \sqrt{\pi a}} \frac{1}{(1+\kappa)}\left\{(Q+\mathrm{i} P)\left[\left(\frac{a+z_{0}}{\sqrt{z_{0}^{2}-a^{2}}}-1\right)-\kappa\left(\frac{a+\bar{z}_{0}}{\sqrt{\bar{z}_{0}^{2}-a^{2}}}-1\right)\right]\right.$

$$
\begin{aligned}
& \phi(z)=-\frac{S}{z-z_{0}}+\phi_{0}(z) \\
& \boldsymbol{\Omega}(z)=\frac{\kappa S}{z-\bar{z}_{0}}+\frac{\bar{S}\left(\bar{z}_{0}-z_{0}\right)}{\left(z-\bar{z}_{0}\right)^{2}}+\phi_{0}(z) \\
& \phi_{0}(z)=\frac{1}{2 \pi \sqrt{z^{2}-a^{2}}}\left\{\frac{S}{z-z_{0}}\left[I(z)-I\left(z_{0}\right)\right]-\frac{\kappa S}{z-\bar{z}_{0}}\left[I(z)-I\left(\bar{z}_{0}\right)\right]\right. \\
& \left.-\bar{S}\left(\bar{z}_{0}-z_{0}\right)\left[\frac{I(z)-I\left(\bar{z}_{0}\right)}{\left(z-\bar{z}_{0}\right)^{2}}-\frac{J\left(\bar{z}_{0}\right)}{z-\bar{z}_{0}}\right]\right\} \\
& I(z)=\pi\left(\sqrt{z^{2}-a^{2}}-z\right) \\
& J(z)=\pi\left(\frac{z}{\sqrt{z^{2}-a^{2}}}-1\right) \\
& M\left(z, z_{0}\right)=\frac{S}{2} L\left(z, z_{0}\right)--\frac{\kappa S}{2} L\left(z, \bar{z}_{0}\right)-\frac{\bar{S}\left(\bar{z}_{0}-z_{0}\right)}{2}\left[\frac{\sqrt{\left(z^{2}-a^{2}\right)}-\sqrt{\left(\bar{z}_{0}{ }^{2}-a^{2}\right)}}{\left(z-\bar{z}_{0}\right) \sqrt{\left(\bar{z}_{0}{ }^{2}-a^{2}\right)}}\right] \\
& L\left(z, z_{0}\right)=\ln \left[\frac{\sqrt{z^{2}-a^{2}} \sqrt{z_{0}^{2}-a^{2}}+z z_{0}-a^{2}}{\left.\sqrt{z^{2}-a^{2}}+z\right)}\right] \\
& S=\frac{Q+i P}{2 \pi(1+K)} \\
& \kappa= \begin{cases}3-4 \nu & \text { (Planestrain) } \\
\frac{3-v}{1+v} & \text { (Planestress) }\end{cases}
\end{aligned}
$$

where $\overline{(\cdot)}$ means the conjugate complex number of (\cdot).

Fig. 1 Infinite plane with a crack.

alt-text: Fig 1

Moreover, with the consideration of the relationship between the stresses and the strains, the closed-form expressions of the strains for the Erdogan fundamental solutions are given as follows:

$$
\varepsilon_{x}+\varepsilon_{y}=\frac{2(1-v)}{E}[\phi(z)+\overline{\phi(z)}] \text { (Plane stress) }
$$

$\varepsilon_{x}+\varepsilon_{y}=\frac{2(1-2 v(1+\nu)}{E}[\phi(z)+\overline{\phi(z)}]$ (Plane strain)
$\left.\varepsilon_{y}-\varepsilon_{x}+\mathrm{i} \gamma_{x y}=\frac{2(1+v)}{E}\left[(\bar{z}-z) \phi^{\prime}(z)-\phi(z)+\bar{\Omega} \overline{\bar{z}}\right)\right]$

 and K_{II} are SIFs at crack tips. Evidently, if we let $F=0, Q=1$ or $F=1, Q=0$ in Eqs. (1)to_(5), the Erdogan fundamental solutions become the fundamental solutions for prane crans

 on the Erdogan fundamental solutions is further extended to solve the dynamic multi-crack problem.

3 Modal analysis of multi-crack problems

3.1 Derivation of non-singular integral equations

Without loss of generality, consider an elastic double cracked plane domain Ω subjected to body forces, as shown in Fig. 2

$\left.F_{i}^{1}\left(Q_{0 i}, t\right)=-\rho_{i}\left(Q_{0 i}\right) \frac{\partial^{2} u\left(Q_{0 i}, t\right)}{\partial t^{2}}\right)$
$\left.F_{i}^{2}\left(Q_{0 i}, t\right)=-\rho_{i}\left(Q_{0 i}\right) \frac{\partial^{2} v\left(Q_{0 i}, t\right)}{\partial t^{2}}\right)$
where $\rho_{i}\left(Q_{0 i}\right)$ is the volume density at an arbitrary point $Q_{0 i}$ within the ith subdomain Ω_{i}

(a)

(b)

Fig. 3 Two subdomains embedded in an infinite domain-(a) the first subdomain with an inner crack, (b) the second subdomain with an edge crack.
alt-text: Fig 3

 an arbitrary point P_{0} within the infinite domain corresponding to Ω_{i} are as follows:

$$
\begin{aligned}
& \left.\left.\begin{array}{l}
u\left(P_{0}, t\right)=\sum_{l=1}^{2} \int_{\mathrm{S}_{i}} u^{l}\left(P_{0} ; Q_{i}\right) X_{i}^{l}\left(Q_{i}, t\right) \mathrm{d} s+\sum_{l=1}^{2} \iint_{\Omega_{i}} u^{l}\left(P_{0} ; Q_{0 i}\right) F_{i}^{l}\left(Q_{0 i}, t\right) \mathrm{d} \Omega \\
v\left(P_{0}, t\right)=\sum_{l=1}^{2} \int_{\mathrm{S}_{i}} v^{l}\left(P_{0} ; Q_{i}\right) X_{i}^{l}\left(Q_{i}, t\right) \mathrm{d} s+\sum_{l=1}^{2} \iint_{\Omega_{i}} v^{l}\left(P_{0} ; Q_{0 i}\right) F_{i}^{l}\left(Q_{0 i}, t\right) \mathrm{d} \Omega \\
\sigma_{x}\left(P_{0}, t\right)=\sum_{l=1}^{2} \int_{\mathrm{S}_{i}} \sigma_{x}^{l}\left(P_{0} ; Q_{i}\right) X_{i}^{l}\left(Q_{i}, t\right) \mathrm{d} s+\sum_{l=1}^{2} \iint_{\Omega_{i}} \sigma_{x}^{l}\left(P_{0} ; Q_{0 i}\right) F_{i}^{l}\left(Q_{0 i}, t\right) \mathrm{d} \Omega \\
\sigma_{y}\left(P_{0}, t\right)=\sum_{l=1}^{2} \int_{\mathrm{S}_{i}} \sigma_{y}^{l}\left(P_{0} ; Q_{i}\right) X_{i}^{l}\left(Q_{i}, t\right) \mathrm{d} s+\sum_{l=1}^{2} \iint_{\Omega_{i}} \sigma_{y}^{l}\left(P_{0} ; Q_{0 i}\right) F_{i}^{l}\left(Q_{0 i}, t\right) \mathrm{d} \Omega \\
\tau_{x y}\left(P_{0}, t\right)=\sum_{l=1}^{2} \int_{\mathrm{S}_{i}} \tau_{x y}^{l}\left(P_{0} ; Q_{i}\right) X_{i}^{l}\left(Q_{i}, t\right) \mathrm{d} s+\sum_{l=1}^{2} \iint_{\Omega_{i}} \tau_{x y}^{l}\left(P_{0} ; Q_{0 i}\right) F_{i}^{l}\left(Q_{0 i}, t\right) \mathrm{d} \Omega
\end{array}\right\}, ~\right\}
\end{aligned}
$$

where $Q_{i} \in S_{i,} Q_{0 i} \in \Omega_{i j}$ and $u^{l}, v^{l}, \sigma_{x}^{l} \sigma_{y}^{l}$ and $\tau_{x y}^{l}$ are the Erdogan fundamental solutions shown in Section 2.
 the boundary conditions and the continuity and equilibrium conditions along the contour of Ω_{i} need to be considered.

Substituting Eq. (7) into the boundary conditions [26] along $L_{i j}$, one has

$$
\Sigma_{l=1}^{2} \int_{\mathrm{S}_{i}} G_{i k}^{l}\left(P_{i} ; Q_{i}\right) X_{i}^{l}\left(Q_{i}, t\right) d s
$$

$+\sum_{l=1}^{2} \iint_{\Omega_{i}} G_{i k}^{l}\left(P_{i} ; Q_{0 i}\right) F_{i}^{l}\left(Q_{0 i}, t\right) \mathrm{d} \Omega=0\{i=1,2 ; k=1,2$
\qquad
 continuity and equilibrium conditions [26] along the common boundary Γ, one has

$$
\begin{aligned}
& \sum_{l=1}^{2} \int_{\mathrm{S}_{1}} G_{1 k}^{l}\left(P ; Q_{1}\right) X_{1}^{l}\left(Q_{1}, t\right) \mathrm{d} s+\sum_{l=1}^{2} \iint_{\Omega_{1}} G_{1 k}^{l}\left(P ; Q_{01}\right) F_{i}^{l}\left(Q_{01}, t\right) \mathrm{d} \Omega \\
& =\sum_{l=1}^{2} \int_{\mathrm{S}_{2}} G_{2 k}^{l}\left(P ; Q_{2}\right) X_{2}^{l}\left(Q_{2}, t\right) \mathrm{d} s+\sum_{l=1}^{2} \int_{\Omega_{2}} G_{2 k}^{l}\left(P ; Q_{02}\right) F_{i}^{l}\left(Q_{02}, t\right) \mathrm{d} \Omega \\
& (k=1,2,3,4)
\end{aligned}
$$

 fundamental solutions.

3.2 Numerical methods

 obtained directly, and a numerical measure must be used to solve the integral equations.
 expressed in terms of a set of B-spline functions as follows [23]:

$$
X_{i}^{l}(s, t) \sum_{n=-1}^{\substack{N_{i}+1 \\ \mathbf{A 1}_{1}}} x_{i n}^{l}(t) \varphi_{n}(s) \quad(l=1,2)
$$

where s is the local coordinate along $\mathrm{S}_{i ;} ; x_{i n}^{l}$ are the unknown spline node parameters; and $\phi_{n}(s)$ are B-spline functions of the third order [27].

Annotations:

A1. "="should be added between two expressions.
 points of the n_{-}th cell $\left(n_{i}=1,2, \ldots, N_{i}\right)$ within the π th subdomain, which can be written as
$F_{i}^{1}\left(Q_{n i}, t\right)=-\Delta A_{n i} \rho_{i}\left(Q_{n i}\right) \frac{\partial^{2} u\left(Q_{n i}, t\right)}{\partial t^{2}}$
$\left.F_{i}^{2}\left(Q_{n i}, t\right)=-\Delta A_{n i} \rho_{i}\left(Q_{n i}\right) \frac{\partial^{2} v\left(Q_{n i}, t\right)}{\partial t^{2}}\right\}$
where $\Delta A_{n i}$ is the area of the n-th cell within the ith subdomain; and $Q_{n i}$ is the coordinate of the central point of the n-th cell within the i th subdomain.
Substituting Eqs. (10) and (11) into Eqs. (8) and (9) and let the integrations of the residues along each segment along the boundary L_{i} and the common boundary Γ be zero, one can obtain
$\left[G_{i}\right]\left\{X_{i}(t)\right\}+\left[B_{i}\right]\left(-\left[M_{i}\right]\left\{\ddot{D}_{i}(t)\right\}\right)=\{0\}$
$\left[g_{1}\right]\left\{X_{1}(t)\right\}+\left[b_{1}\right]\left(-\left[M_{1}\right]\left\{\ddot{D}_{1}(t)\right\}\right)=\left[g_{2}\right]\left\{X_{2}(t)\right\}+\left[b_{2}\right]\left(-\left[M_{2}\right]\left\{\ddot{D}_{2}(t)\right\}\right)$

 $\left\{\ddot{D}_{i}(t)\right\}$ denotes the column matrix of acceleration components within Ω_{i}.

Eqs. (12) and (13) can be combined into one overall equation as follows:
where the overall matrices in the equation are dependent on the corresponding matrices in Eqs. (12) and (13).
 $\{D(t)\}$ of two subdomains can be obtained as
$\{D(t)\}=[\widetilde{G}]\{X(t)\}+[\widetilde{B}](-[M]\{\ddot{D}(t)\})$
where $[\widetilde{G}]$ and $[\widetilde{B}]$ denote the influence matrices of $\{X(t)\}$ and the inertia forces according to the displacement column matrix $\{D(t)\}$, respectively.
With the consideration of Eqs. (14) and (15), $\{X(t)\}$ can be solved as
$\{X(t)\}=[G]^{-1}[B][M]\{\ddot{D}(t)\}$
Substituting Eq. (16) into Eq. (15), one has
$[\delta][M]\{\ddot{D}(t)\}+\{D(t)\}=\{0\}$
where
$[\delta]=[\widetilde{B}]-[\widetilde{G}][G]^{-1}[B]$
Eq. (17) is the equation for modal analysis of the elastic plane crack problems, and [δ] is the flexibility matrix.

3.3 Analysis of the angular frequencies and displacement modes

Eq. (18) is the homogeneous linear equation with constant coefficients and thus, the solutions can be expressed as
$\{D(t)\}=\left\{D_{0}\right\} \sin \omega t \mathbf{A} \mathbf{1}$
where ω denotes the angular frequency and $\left\{D_{0}\right\}$ denotes the column matrix of the displacement mode related to ω.

Annotations:

A1. "sin" should not be Italic.
Substituting Eq. (19) into Eq. (17), there is
$\left(-\omega^{2}[\delta][M]+[I]\right)\left\{D_{0}\right\}=\{0\}$
where [I] is the unit matrix. Eq. (20) can be converted into a standard eigenvalue problem as follows:
$\lambda\left\{D_{0}\right\}=[\delta][M]\left\{D_{0}\right\}$
where $\lambda=1 / \omega^{2}$. The eigenvalue λ and the corresponding displacement mode column matrix $\left\{D_{0}\right\}$ can be obtained by solving Eq. (21).
The angular frequency can be obtained as follows:
$\omega=\sqrt{\frac{1}{\lambda}}$

 conducted without consideration of the contact of crack surfaces, which can be shown in References』 [28łand f_{4} 29].

3.4 Analysis of the strain modes

$\varepsilon_{x}\left(P_{0}, t\right)=\sum_{l=1}^{2} \int_{\mathrm{S}_{i}} \varepsilon_{x}^{l}\left(P_{0} ; Q_{i}\right) X_{i}^{l}\left(Q_{i}, t\right) \mathrm{d} s+\sum_{l=1}^{2} \iint_{\Omega_{i}} \varepsilon_{x}^{l}\left(P_{0} ; Q_{0 i}\right) F_{i}^{l}\left(Q_{0 i}, t\right) \mathrm{d} \Omega$
$\varepsilon_{y}\left(P_{0}, t\right)=\sum_{l=1}^{2} \int_{\mathrm{s}_{i}} \varepsilon_{y}^{l}\left(P_{0} ; Q_{i}\right) X_{i}^{l}\left(Q_{i}, t\right) \mathrm{d} s+\sum_{l=1}^{2} \iint_{\Omega_{i}} \varepsilon_{y}^{l}\left(P_{0} ; Q_{0 i}\right) F_{i}^{l}\left(Q_{0 i}, t\right) \mathrm{d} \Omega$
$\gamma_{x y}\left(P_{0}, t\right)=\sum_{l=1}^{2} \int_{\mathrm{S}_{i}} \gamma_{x y}^{l}\left(P_{0} ; Q_{i}\right) X_{i}^{l}\left(Q_{i}, t\right) \mathrm{d} s+\sum_{l=1}^{2} \iint_{\Omega_{i}} \gamma_{x y}^{l}\left(P_{0} ; Q_{0 i}\right) F_{i}^{l}\left(Q_{0 i}, t\right) \mathrm{d} \Omega$
where $\varepsilon_{x^{\prime}}^{l}, \varepsilon_{y}^{l}$ and $\gamma_{x y}^{l}$ are the closed-form expressions of the strains given in the Erdogan fundamental solutions shown in Section 2 .
After the discretization of the strains, the fictitious loads and the inertia forces, the strain column matrix $\left\{\mathcal{E}_{i}(t)\right\}$ of the ti subdomain can be obtained by Eq. (23) as follows:
$\left\{\varepsilon_{i}(t)\right\}=\left[\widetilde{G}_{\varepsilon i}\right]\left\{X_{i}(t)\right\}+\left[\widetilde{B}_{\varepsilon i}\right]\left(-\left[M_{i}\right]\left\{\ddot{D}_{i}(t)\right\}\right)$
where $\left[\widetilde{G}_{\varepsilon i}\right]$ and $\left[\widetilde{B}_{\varepsilon i}\right]$ denote the influence matrices of $\left\{X_{i}(t)\right\}$ and the inertia forces $-\left[M_{i}\right]\left\{\ddot{D}_{i}(t)\right\}$ corresponding to the strain column matrix $\left\{\varepsilon_{i}(t)\right\}$, respectively.
With the consideration of the strains for all the subdomains, Eq. (24) can be written as
$\{\varepsilon(t)\}=\left[\widetilde{G}_{\varepsilon}\right]\{X(t)\}+\left[\widetilde{B}_{\varepsilon}\right](-[M]\{\ddot{D}(t)\})$
Substituting Eq. (16) into Eq. (25), one has
$\{\varepsilon(t)\}=\left[\delta_{\varepsilon}\right](-[M]\{\ddot{D}(t)\})$
where
$\left[\delta_{\varepsilon}\right]=\left[\widetilde{B}_{\varepsilon}\right]-\left[\widetilde{G}_{\varepsilon}\right][G]^{-1}[B]$
$\{\varepsilon(t)\}$ can be expressed as
$\{\varepsilon(t)\}=\left\{\varepsilon_{0}\right\} \sin \omega t$
where ω denotes the angular frequency and $\left\{\varepsilon_{0}\right\}$ denotes the column matrix of the strain mode corresponding to ω.
Substituting Eqs. (28) and (19) into Eq. (26), one has
$\left\{\varepsilon_{0}\right\}=\omega^{2}\left[\delta_{\varepsilon}\right][M]\left\{D_{0}\right\}$
It can be seen that once the displacement mode column matrix $\left\{D_{0}\right\}$ is obtained, the strain mode column matrix $\left\{\varepsilon_{0}\right\}$ can be obtained by using Eq. (29).

4 Transient analysis of multi-crack problems

$\left.\begin{array}{l}F_{i}^{1}\left(Q_{0 i}, t\right)=-\rho_{i}\left(Q_{0 i}\right) \frac{\partial^{2} u\left(Q_{0 i}, t\right)}{\partial t^{2}}-c_{i}\left(Q_{0 i}\right) \frac{\partial u\left(Q_{0 i}, t\right)}{\partial t}+f_{i}^{1}\left(Q_{0 i}, t\right) \\ F_{i}^{2}\left(Q_{0 i}, t\right)=-\rho_{i}\left(Q_{0 i}\right) \frac{\partial^{2} v\left(Q_{0 i}, t\right)}{\partial t^{2}}-c_{i}\left(Q_{0 i}\right) \frac{\partial v\left(Q_{0 i}, t\right)}{\partial t}+f_{i}^{2}\left(Q_{0 i}, t\right)\end{array}\right\}$
where $c_{i}\left(Q_{0 i}\right)$ is the damping coefficient within the ith subdomain; and $f_{i}^{d}\left(Q_{0 i}, t\right)(l=1,2)$ are external body loads in either x or y direction within the th subdomain.

Considering the boundary conditions, as shown in Fig. 4, not be zero, the non-singular integral Eq. (8) is modified as
$\sum_{l=1}^{2} \int_{\mathrm{S}_{i}} G_{i k}^{l}\left(P_{i} ; Q_{i}\right) X_{i}^{l}\left(Q_{i}, t\right) \mathrm{d} s+\sum_{l=1}^{2} \iint_{\Omega_{i}} G_{i k}^{l}\left(P_{i} ; Q_{0 i}\right) F_{i}^{l}\left(Q_{0 i}, t\right) \mathrm{d} \Omega=H_{i k}\left(P_{i}, t\right)$
where $H_{i k}$ denote the known boundary functions along Li.

Fig. 4 The double cracked plane domain with non zero boundary conditions.

alt-text: Fig 4

 concentrate at the central points of the n-th cell ($n=1,2, \ldots, N_{i}$). The concentrated forces can be expressed as
$F_{i}^{1}\left(Q_{n i}, t\right)=\Delta A_{n i}\left(-\rho_{i}\left(Q_{n i}\right) \frac{\partial^{2} u\left(Q_{n i}, t\right)}{\partial t^{2}}-c_{i}\left(Q_{n i}\right) \frac{\partial u\left(Q_{n i}, t\right)}{\partial t}+f_{i}^{1}\left(Q_{n i}, t\right)\right)$
$F_{i}^{2}\left(Q_{n i}, t\right)=\Delta A_{n i}\left(-\rho_{i}\left(Q_{n i}\right) \frac{\partial^{2} v\left(Q_{n i}, t\right)}{\partial t^{2}}-c_{i}\left(Q_{n i}\right) \frac{\partial v\left(Q_{n i}, t\right)}{\partial t}+f_{i}^{2}\left(Q_{n i}, t\right)\right)$
where $\Delta A_{n i}$ is the area of the n-th cell in the i th subdomain; and $Q_{n i}$ is the coordinate of the central point of the n-th cell within the i th subdomain
With the same treatments as those used in modal analysis, the algebraic equation can be obtained as
$[G]\{X(t)\}+[B](-[M]\{\ddot{D}(t)\}-[C]\{\dot{D}(t)\}+\{f(t)\})=\{H(t)\}$
 damping assumption; $\{\dot{D}(t)\}$ denotes the column matrix of velocity components; and $\{H(t)\}$ denotes the known column matrix depending on the boundary conditions.

In addition, the supplementary Eq. (15) should be modified as
$\{D(t)\}=[\widetilde{G}]\{X(t)\}+[\widetilde{B}](-[M]\{\ddot{D}(t)\}-[C]\{\dot{D}(t)\}+\{f(t)\})$
Eliminating $\{X(t)\}$ from Eqs. (33) and (34), one has
$[\delta][M]\{\ddot{D}(t)\}+[\delta][C]\{\dot{D}(t)\}+\{D(t)\}=[\widetilde{G}][G]^{-1}\{H(t)\}+[\delta]\{f(t)\}$
 Eq. (33) as follows:
$\{X(t)\}=[G]^{-1}(\{H(t)\}+([B][M]\{\ddot{D}(t)\}+[C]\{\dot{D}(t)\}-\{f(t)\}))$
Once the spline node parameter $\{X(t)\}$ is determined, the mode-I and mode-II SIFs of the th crack within the th subdomain can be calculated using the following equation:

$$
K_{i j}(t)=\sum_{l=1}^{2} \int_{\mathrm{S}} K_{i j}^{l}\left(P_{0} ; Q_{i}\right) X_{i}^{l}\left(Q_{i}, t\right) \mathrm{d} s+\sum_{l=1}^{2} \iint_{\Omega} K_{i j}^{l}\left(P_{0} ; Q_{0 i}\right) F_{i}^{l}\left(Q_{0 i}, t\right) \mathrm{d} \Omega
$$

where $K_{i j}^{l}(i=1,2 ; j=\mathrm{I}, \mathrm{II} ; l=1,2)$ are the fundamental solutions of SIFs corresponding to Ω_{i}.

5 Numerical examples

 factors γ and β in the Newmark $-\beta$ method are assumed to be $\gamma=0.5$ and $\beta=0.25$, respectively. The Rayleigh damping model is used for the plate with the damping ratio being taken to be $\zeta=0.05$

5.1 A square plate with two inner cracks

 distributed in the plate, and the lengths of the left crack and the right crack are $2 a_{1}$ and $2 a_{2}$, respectively.

 PageProof.)
alt-text: Fig 5

 segment [23]. The plate is discretized into N_{c} cells, with the inertia loads concentrating at the center of each cell.

Fig. 6 Computational models for the two inner cracked subdomains.

alt-text: Fig 6

 with different numbers of cells are shown in Tables 1 and 2, respectively.

Table 1 The frequencies of the first six orders with different numbers of fictitious boundary elements (rad/s).

alt-text: Table 1									
Order	FEM	SFBEM							
		$N_{\text {s }}=18$	Relative Error	$N_{\text {s }}=30$	Relative Error	$N_{\text {s }}=60$	Relative Error	$N_{\text {s }}=120$	Relative Error
1	78972.0	79310.5	0.43\%	79056.5	0.11\%	78848.3	0.16\%	78809.3	0.21\%
2	182846.0	179022.4	2.09\%	183715.5	0.48\%	183658.7	0.44\%	183643.9	0.44\%
3	216480.0	214854.2	0.75\%	217147.8	0.31\%	217148.1	0.31\%	217121.7	0.30\%
4	348817.0	343362.5	1.56\%	349637.0	0.24\%	349682.9	0.25\%	349631.5	0.23\%
5	353931.0	351960.5	0.56\%	354796.7	0.24\%	354261.6	0.09\%	353964.3	0.01\%
6	399838.0	394743.5	1.27\%	397297.1	0.64\%	396869.5	0.74\%	396717.5	0.78\%

Table 2 The frequencies of the first six orders of with different numbers of cells (rad/s).

alt-text: Table 2

2	182846.0	182364.4	0.26\%	183626.3	0.43\%	183715.5	0.48\%
3	216480.0	215540.9	0.43\%	216907.3	0.20\%	217147.8	0.31\%
4	348817.0	343071.9	1.65\%	347851.4	0.28\%	349637.0	0.24\%
5	353931.0	345256.2	2.45\%	352396.7	0.43\%	354796.7	0.24\%
6	399838.0	384528.1	3.83\%	393095.9	1.69\%	397297.1	0.64\%

 obviously as the number of cells increases, indicating that the accuracy of frequencies increases with the increase of the number of cells.

 the 1st, 3rd and 5th orders of partial points on $x=-1$ are shown in Fig. 7. The strain mode of the first order are shown in Fig. 8

Table 3 Frequencies of the first six orders (rad/s).

(b) The 3rd order

Fig. 7 The horizontal displacement modes u_{x} of the first five orders of partial points on $x=-1$ alt-text: Fig 7

(a) $\varepsilon_{x x}$

SFBEM
FEM
(b) $\varepsilon_{y y}$

SFBEM

FEM
(c) $\varepsilon_{x y}$

Fig. 8 The strain modes of the first order

alt-text: Fig 8

 distribution of strain modes, as significant strain concentrations occur near the crack tips.

Fig. 9 The load function.

alt-text: Fig 9

Table 4 The number of cells in SFBEM under different cases.
alt-text: Table 4

Method	Number of cells					
	$\theta=45^{\circ}$			$2 a=10 \mathrm{~mm}$		
	$2 a_{2}=4 \mathrm{~mm}$	$2 a_{2}=6 \mathrm{~mm}$	$2 a_{2}=8 \mathrm{~mm}$	$\theta=30^{\circ}$	$\theta=45^{\circ}$	$\theta=60^{\circ}$
SFBEM	380	380	380	360	380	400

Table 5 The number of finite elements in FEM under different cases.
alt-text: Table 5

Method	Number of finite elements					
	$\theta=45^{\circ}$			$2 a=10 \mathrm{~mm}$		
	$2 a_{2}=4 \mathrm{~mm}$	$2 a_{2}=6 \mathrm{~mm}$	$2 a_{2}=8 \mathrm{~mm}$	$\theta=30^{\circ}$	$\theta=45^{\circ}$	$\theta=60^{\circ}$
FEM	2145	2100	2210	2020	2021	2071

Fig. 10 (Shrink the figure so as to fit one colunm in the PageProof.) K_{I} of crack tip D obtained with different crack lengths.
alt-text: Fig 10

Fig. 11 (Shrink the figure so as to fit one colunm in the PageProof.) $K_{\text {II }}$ of crack tip D obtained with different crack lengths.
alt-text: Fig 11

Fig. 12 (Shrink the figure so as to fit one colunm in the PageProof.) K_{I} of crack tip D obtained with different crack angles.
alt-text: Fig 12

Fig. 13(Shrink the figure so as to fit one colunm in the PageProof.) $K_{\text {II }}$ of crack tip D obtained with different crack angles.

alt-text: Fig 13

5.2 A rectangular plate with two edge cracks

 plate is $20 \mathrm{~mm} \times 60 \mathrm{~mm}$. The lengths of two horizontal edge cracks are taken to be ' a '. The crack length a varies from 1 mm to 3 mm .

Ctitatititit	
苞	D
	,
	1
	1
	1
	1
	$\begin{array}{llll} & & \\ \mathrm{O}_{1} & & \mathrm{O}_{2}\end{array}$
気	$\square \square_{a}{ }^{-}, \square_{a}$
	1
	1
	1
	1
	- $10 \mathrm{~mm}, 10 \mathrm{~mm}$

Fig. 14 A rectangular plate with two edge cracks.
alt-text: Fig 14

Fig. 15 The load function.

alt-text: Fig 15

 different crack lengths are shown in Fig. 18. K_{I} of the crack tip A with different crack lengths are shown in Fig. 19.

(a) The first subdomain

(b) The second subdomain
Fig. 16 Computational models for the two edge cracked subdomains.

alt-text: Fig 16						
1.40	the 3rd order					
1.20						
(21.00	the 2nd order					
${ }^{-0.80}$						
$\begin{aligned} & x 0.60 \\ & \mathbf{x}_{\tilde{E}} \end{aligned}$						
	the $\underset{\square}{\text { ist order }}$					
0.00						
0.5	1.0	1.5	2.0	2.5	3.0	3.5

Fig. 17 The frequencies of the first three orders with different crack lengths. alt-text: Fig 17

Fig. 18 The strain mode shapes ε of the first order alt-text: Fig 18

 orders decrease more greatly
 the position of these concentrations changes as the crack length increases.
 significantly with the increase of crack lengths

5.3 A rectangular plate with three inner cracks

 $20 \mathrm{~mm} \times 40 \mathrm{~mm}$. As shown in Fig. 20, a central horizontal crack CD with a length of 10 mm and two inclined cracks AB and EF with lengths of 2 a are distributed in the plate.

Fig. 20 A rectangular plate with three inner cracks.

 4 mm to 8 mm .

 tip B obtained with different crack angles and crack lengths are present in Figs. 22 and 23, while K_{I} of crack tip D obtained with different crack angles and crack lengths are present in Figs. 24 and 25.

(a) The first subdomain

(b) The second subdomain

Fig. 21 Computational models for the triple inner cracked subdomain.

alt-text: Fig 21

Table 6 The frequencies of the first six orders with different crack angles and crack lengths (rad/s).
alt-text: Table 6

Order	$2 a=10 \mathrm{~mm}$			$\theta=45^{\circ}$		
	$\theta=15^{\circ}$	$\theta=30^{\circ}$	$\theta=45^{\circ}$	$2 a=4 \mathrm{~mm}$	$2 a=6 \mathrm{~mm}$	$2 a=8 \mathrm{~mm}$
1	49815.5	50709.5	51946.1	52423.0	52109.2	51954.9
2	157681.7	160958.2	168333.1	176006.8	174359.2	171931.8
3	192459.4	192834.9	193823.4	205937.2	202843.9	198698.2
4	399985.5	398913.9	395044.5	402325.7	401603.8	399517.7
5	421906.6	431148.5	435026.6	501857.2	495184.3	476882.1
6	475126.3	459816.5	469106.8	531681.3	507724.0	481073.9

Fig. 22(Shrink the figure so as to fit one colunm in the PageProof.) K_{I} and K_{II} of the crack tip B obtained with different crack angles.

Fig. 23(Shrink the figure so as to fit one colunm in the PageProof.) K_{I} and K_{II} of the crack tip B obtained with different crack lengths.
alt-text: Fig 23

Fig. 24 (Shrink the figure so as to fit one colunm in the PageProof.) K_{I} of the crack tip D obtained with different crack angles.

Fig. 25 (Shrink the figure so as to fit one colunm in the PageProof.) K_{I} of the crack tip D obtained with different crack lengths.

alt-text: Fig 25

 plate.

 cracks.

 values of the crack tip D obtained under different vertical distances are present in Fig. 27

Fig. 26(Shrink the figure so as to fit one colunm in the PageProof.) K_{I} of the crack tip D obtained under different horizontal distances. alt-text: Fig 26

Fig. 27 (Shrink the figure so as to fit one colunm in the PageProof.) K_{I} of the crack tip D obtained under different vertical distances.

alt-text: Fig 27

 the horizontal distance and the vertical distance.

6 Conclusions

Acknowledgements

The research is funded by the National Natural Science Foundation of China (51678252) and the Science and Technology Program of Guangzhou, China (201804020069).

References

[1] S.N. Atluri and T. Nishioka, Numerical studies in dynamic fracture mechanics, Int J Fract 27 (3-4), 1985, 245-261
[2] D. Gross and T. Seelig, Dynamic fracture mechanics, 2011, Springer Berlin Heidelberg; Berlin
[3] K. Kishimoto, S. Aoki and M. Sakata, Dynamic stress intensity factors using J-integral and finite element method, Eng Fract Mech 13 (2), 1980, 387-394.

[5] W.A. Yao, Z.Y. Cai and X.F. Hu, A new symplectic analytical singular element for crack problems under dynamic loading condition, Eng Fract Mech 188, 2018 , 431-447.
[6] T. Menouillard and T. Belytschko, Dynamic fracture with meshfree enriched XFEM, Acta Mech 213, 2010, 53-69.
[7] T.Q. Bui and C.Z. Zhang, Analysis of generalized dynamic intensity factors of cracked magnetoelectroelastic solids by X-FEM, Finite Elem Anal Des 69, 2013 , 19-36.

[9] P.H. Wen, M.H. Aliabadi and D.P. Rooke, Cracks in three dimensions: a dynamic dual boundary element analysis, Comput Methods Appl Mech Eng 167, 1998, 139-151.
[10] C. Zhang, A. Savaidis, G. Savaidis and H. Zhu, Transient dynamic analysis of a cracked functionally graded material by a BIEM, Comput Mater Sci 26, 2003, 167-174.
[11] A.S.M. Israil and G.F. Dargush, Dynamic fracture mechanics studies by time-domain BEM, Eng Fract Mech 39 (2), 1991, 315-328.
[12] P. Fedelinski, M.H. Aliabadi and D.P. Rooke, A single region time domain BEM for dynamic crack problems, Int J Solids Struct 32, 1995, 3555-3571.
[13] D. Nardini and C.A. Brebbia, A new approach to free vibration analysis using boundary elements, Appl Math Model 7 (3), 1983, 157-162.
[14] P.H. Wen, M.H. Aliabadi and D.P. Rooke, A mass-matrix formulation for three-dimensional dynamic fracture mechanics, Comput Methods Appl Mech Eng 173, $1999,365-374$.
[15] X.W. Gao, B.J. Zheng, K. Yang and C. Zhang, Radial integration BEM for dynamic coupled thermoelastic analysis under thermal shock loading, Comput Struct 158, 2015 , $140-147$.
[16] Y.Y. Zhang and W. Feng, Investigation in weighted function and optimization of isoparametric singular boundary elements' size in 3-D crack problem, Eng Fract Mech 26, 1987, 611-617.
[17] G.G. Luo and Y.Y. Zhang, Application of boundary element method with singular and isoparametric elements in three dimensional crack problems, Eng Fract Mech 29, 1998 , 97-106.
[18] F. Erdogan, On the stress distribution in plates with collinear cuts under arbitrary loads, In: Proceedings of the fourth US national congress of applied mechanics, $1962,547-553$.
[19] W. Tan P, S. Raju I and J. Newman, Boundary force method for analyzing two-dimensional cracked bodies, 1986, NASA Langley Research Center; Hampton.
[20] W.T. Ang, A boundary integral solution for the problem of multiple interacting cracks in an elastic material, Int J Fract 31, 1986, $259-270$.

[23] C. Su and D.J. Han, Multidomain SFBEM and its application in elastic plane problems, J Eng Mech 126, 2000, 1057-1063.
[24] C. Su, S.W. Zhao and H.T. Ma, Reliability analysis of plane elasticity problems by stochastic spline fictitious boundary element method, Eng Anal Bound Elem 36, 2012 , 118-124.
[25] C. Su and J. Xu, Reliability analysis of reissner plate bending problems by stochastic spline fictitious boundary element method, Eng Anal Bound Elem 51, 2015 , $37-43$.
[26] P.K. Banerjee and R. Butterfield, Boundary element methods in engineering science, 1981, McGraw-Hill; London.
[27] P.M. Prenter, Splines and variational methods, 2008, Courier Corporation; New York.
[28] D.Y. Zheng and N.J. Kessissoglou, Free vibration analysis of a cracked beam by finite element method, J Sound Vib 273 (3), 2004, 457-475.
[29] M. Kisa and M.A. Gurel, Modal analysis of multi-cracked beams with circular cross section, Eng Fract Mech 73 (8), 2006, 963-977.
[30] W.C. Ray and P. Joseph, Dynamics of structures, 2003, Computers \& Structures Inc.; Berkeley.

Queries and Answers

Query: Please confirm that givennames and surnames have been identified correctly.
Answer: Yes
Query: Please verify figure 8.
Answer: Yes, it is correct.

