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Abstract 

Delineating host-pathogen interaction of pathogenic Leptospira spp.- 
Intan Noor Aina Kamaruzaman 

 
Leptospirosis is a highly infectious, global, zoonotic disease affecting the majority of the 
mammalian species. Leptospirosis is caused by pathogenic bacteria, Leptospira spp., with 
more than >250 serovars identified. Cattle are one of the most susceptible hosts where the 
infection is commonly caused by serovar Hardjobovis. Bovine leptospirosis (BL) causes severe 
reproductive disorders and is a significant public health risk. 
 
Commercially available BL vaccines are typically bacterin and considered limited as they are 
serovar-specific and confer temporary protection. Bacterial outer membrane proteins 
(OMPs) are extensively studied as potential vaccine candidates for infectious diseases due to 
their ability to stimulate robust immune responses and induce cross-protective immunity. 
Here, seven novels OMPs from L. borgpetersenii serovar Hardjobovis L550 were identified 
using a reverse vaccinology approach. Four OMP genes were successfully cloned, expressed 
and purified as recombinant proteins. Subsequent functional in vitro binding assays showed 
that these OMPs could adhere to various host components and two OMPs of 37 and 49 kDa 
with significant binding results were re-assigned as ‘Leptospiral adhesin’ (Lsa) together with 
molecular weights as Lsa37 and Lsa49. Immunological evaluation of antibody titres against 
the OMPs in cattle bulk milk suggests these proteins are expressed by the bacteria and 
interact with the host immune system with two OMPs, OmpL1 and rLBL0375 exhibiting better 
discrimination with disease status. 
 
Several leptospiral OMPs exhibit molecular diversity through comparative sequence analysis. 
Here, two groups of OMP variants, OmpL1 and Lsa49 across five pathogenic genomospecies 
were selected via phylogenetic analysis to evaluate their functional binding diversities 
towards various host components. OmpL1 exhibited significant binding variation against 
various host components, compared to Lsa49. The diversity is strongly correlated with 
variations on predicted OmpL1 surface-exposed loops contributing to functional loss and gain 
via molecular evolution, which resulted in binding preferential towards specific host 
molecules. Immunological evaluation of cattle sera showed that these OMPs are expressed 
and exposed to the host immune system, and had a strong association against one another. 
This suggests that these OMPs may have similar structural epitopes that allow antibody 
binding, and indicates conserved immunogenicity across species. In a final study, we 
investigated whether the ruminant gastrointestinal (GI) tract was a carriage site for 
Leptospira. Through PCR surveys of ruminant gingival and rectal tissues, the presence of 
leptospires was identified as extremely low, thus indicating the GI tract does not appear to 
be an important leptospire carriage site. 
 
In conclusion, here we have identified several novel bovine leptospire OMPs, which may be 
useful vaccine or diagnostic components for bovine leptospirosis in the future. Additionally, 
the functional diversity between leptospiral OMP variants identifies OMP genetic evolution 
resulting in addition or loss of binding function, highlighting the complex host-pathogen 
interaction of leptospirosis. Lastly, this study does not suggest a role for the ruminant GI tract 
in leptospire carriage, indicating disease transmission through this route is unlikely. 
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Chapter 1: Introduction 

 

1.1 The discovery of Leptospira and leptospirosis: Historical aspects 

The first recorded case of leptospirosis in man can be traced back in 1886 by a German 

physician, Adolf Weil (Adolf, 1886) who first reported two clinical cases of similar symptoms 

and clinical signs which include splenomegaly, jaundice, renal dysfunction, nervous 

symptoms and rapid recovery after a short duration of severe illness. This unknown disease 

was then referred to as Weil’s disease, which often associated with anyone contacting with 

natural water sources. In 1907, a public report in the United States was published by an 

assistant surgeon, M. Stimson (1907). He described the organism as black, curved with hook-

like extremities at both ends and was restricted to the kidney’s tubules. He suggested the 

organism as Spirochaeta interrogans due to the shape of the organism that resembles a 

question mark.  

Seven years later, a group of Japanese scientists made a breakthrough discovery of the 

causative agent of Weil’s disease following inoculation of the blood from an infected human 

patient to a guinea pig. The guinea pig developed similar symptoms and died shortly after 

showing signs of jaundice. This was repeated, and in latter investigations, they successfully 

detected spirochetes in liver tissue of a guinea pig inoculated with infected human blood and 

described the distribution of leptospires (formerly Spirochaeta interrogans) in the liver, 

adrenal glands, kidneys, spleen, bone marrow and lymph glands. They concluded that this 

spirochete was the cause of Weil’s disease. In the same report from 1916, they obtained a 

pure Leptospira strain designated as Spirochaeta icterohaemorrhagiae, by isolation and 

cultivation in vitro for the first time (Inada et al., 1916). Ever since the discovery of Leptospira 

spp., as the causative agent for Weil’s disease, further work has been carried out in the early 

20th century including to identify the sources of infection, strain isolations and studies on its 

morphology and the possible pathogenesis in humans (Ido et al., 1917; Kaneko and Okuda, 

1917; Noguchi, 1917, 1918a, 1918b). Weil’s disease is now referred to as leptospirosis, 

although this term is still used to describe the severe manifestation of leptospirosis in man. 

Before leptospirosis was recognised, it was thought that the disease had existed for many 

centuries and was associated with farming activity and migration. In the 17th century, it was 

thought leptospirosis caused the death of many Native Indians of North America who 

contracted the disease from the early English pilgrims arriving southeastern coast of the New 
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World (present-day Massachusetts) (Marr and Cathey, 2010). A  similar leptospirosis 

syndrome was described as ‘rice-field jaundice’ relating to disease contracted during rice 

farming in ancient China (Adler, 2015a). Although, there was no scientific evidence to support 

these claims as the description of the symptoms could be complicated with other febrile 

illnesses, however, rats were constantly identified as the main source of infection for these 

outbreaks. 

The modern human outbreaks are mainly related to occupations, especially to agricultural 

and livestock farming activities, which serve as the primary risk factors. As leptospirosis was 

found worldwide, the disease was formerly known by different local names depending on 

the types of occupation of those affected, places and apparent symptoms associated with 

the disease. The list of perceived leptospirosis names across the world is shown in Table 1.1. 

 
Table 1.1: List of former names of leptospirosis associated with countries. 

Former name Country of origina Disease associationb References 

Field/ harvest/mild 

fever 

 

Cane cutter’s disease 

Worldwide 

 

 

Strawberry farming 

Rice farming 

Cane farming 

 

(Desai et al., 2009) 

(Izurieta, Galwankar and 

Clem, 2008) 

Seven 

days/Nanukayami 

fever 

 

 

Japan 

 

Rice farming 

 

- 

Rat catchers yellow 

 

Worldwide  

Rat/Dogs 

 

 

(Rosenberg, 1951) 

 

Canicola fever Denmark 

USA 

 

Fort Bragg or 

Pretibial fever 

 

Mud fever 

 

USA 

 

 

France 

 

 

Military 

(Daniels and Grennan, 

1943) 

(Fraser et al., 1973) 

(Tatlock, 1982) 

(Buckland and Stuart, 

1945) 

 

Swineherd fever 

Dairy farm fever 

 

 

New Zealand 

 

Livestock farming 

(Kirschner, Miller and 

Garlick, 1952) 

(Christman et al., 1974) 

a Country of origin that uses a local term to describe the disease 
b Activity with which the disease was observed and where names originated 
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Next sections will describe comprehensive details about leptospirosis, Leptospira spp., and 

impact of disease in both human and animals. 

 

1.2 General overview of leptospirosis 

Leptospirosis is considered an emerging and potentially fatal zoonotic disease occurring 

worldwide with a significant number of human and animal cases reported in most continents, 

particularly in tropical and subtropical regions (Lau et al., 2010a). Recently, Torgerson et al. 

(2015) estimated that more than one million human leptospirosis cases were reported each 

year with cumulative death index of nearly 60,000 worldwide. These statistics appeared to 

be higher in temperate countries, where the disease is linked to tropical climates such as 

flooding after heavy rain and typhoons (Lau et al., 2010b; Mohd Radi et al., 2018). Although 

the disease poses a global threat, leptospirosis is categorised as one of the neglected 

infectious diseases of which the term ‘neglected’ is referring to the disease that has an impact 

on deprived and marginalised populations in urban settings (WHO, 2019). 

The disease is caused by pathogenic Leptospira spp., a Gram-negative spirochete which 

belongs to the family of Leptospiraceae. Leptospirosis is zoonotic as it can be transmitted 

from animals to man through both direct and indirect transmission. Human incidence and 

outbreaks are often reported following rainy season, lack of sanitation, occupational 

exposure and recreational activities involving a natural water source (Pappas et al., 2008). 

Although mortality is not common in human, the disease causes higher morbidity in infected 

patients (Weeratunga et al., 2015) and fatal outcome is higher when the victims are co-

infected with other febrile illnesses (Wongsrichanalai et al., 2003; Sharp et al., 2012; Nhan et 

al., 2016). Although the disease is treatable, leptospirosis generally presented with 

undistinguished clinical signs that are similar to other febrile illnesses and is often 

misdiagnosed (Bruce et al., 2005).  

 

1.3 Leptospira spp.: Taxonomy, classification and features  

1.3.1 Taxonomy and classification 

The classification of Leptospira spp. has been subjected to long-standing discussions among 

microbiologists due to complicated serotyping classification. Historically, Leptospira was 

classified into two species, L. icterohaemorrhagiae (for all pathogenic species) and L. biflexa 

(for all non-pathogenic species) (Johnson and Faine, 1984). In the 1950s, a serological 
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classification was introduced to further classify Leptospira strains into serotypes. Under the 

new characterisation method, serotype or serovar is defined as “Two strains are considered 

to belong to different serotypes if, after cross-absorption with heterologous antigen, 10% or 

more of the homologous titre regularly remains in each of the two antisera in repeated tests” 

(Wolff and Turner, 1963). A large number of serovars may arise from a single Leptospira 

species, a group of serovars that react to a common antigen are grouped into serogroups 

(Wolff and Broom 1954). However, serogroups have no taxonomic status but may be useful 

for epidemiology investigations (Levett, 2001). Distribution of serogroups in different 

Leptospira species is shown in Table 1.2.  

Under modern genotypic classification based on DNA-DNA relatedness and by 16S rRNA 

sequence, the species were further expanded and consist of 15 named species and five new 

genomospecies namely (Genomospecies 1: Leptospira alstonii, Genomospecies 2: Leptospira 

alexanderi, Genomospecies 3: Leptospira vanthielii, Genomospecies 4: Leptospira terpstrae 

and Genomospecies 5: Leptospira yanagawae) (Brenner et al., 1999; Smythe et al., 2013). 

Under the phylogenetic classification of Leptospiraceae based on 16S rRNA, the species of 

Leptospira are clustered into three groups of phylogenetic classification which comprising 

pathogenic, intermediate and non-pathogenic group (Figure 1.3) (Levett, 2015). Formerly, 

there are about 21 recognised species of Leptospira and their associated serogroups are 

known, and recently, a group of 12 novel leptospires of with all pathogenicity classification 

was discovered in New Caledonia soil by Thibeaux et al. (2017, 2018) which adds further to 

the growing list of Leptospira species.   

1.3.2 Morphological features 

Genus Leptospira and two monospecies genera, Leptonema illini and Turneriella parva also 

comprise in the Leptospiraceae family under the Order of Spirochaetales. Leptospires are 

normally thin, long, and highly coiled cells with a size of 0.1 µm in diameter and 6-12 µm in 

length (Carleton et al., 1979) (Figure 1.2). Leptospires are Gram-negative, however, due to 

its small diameter, the unstained cells are not visible by bright-field microscopy, therefore 

dark-field or phase-contrast microscopy is needed to visualised unstained cells (Zuerner, 

2010). A flagellum is inserted sub terminally at both ends in the periplasm between the 

peptidoglycan layer and the outer membrane envelope (Goldstein et al., 1996) and enables 

high motility with movement enhanced by the right-handed helical structure of the cells 

(Carleton et al., 1979). 
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1.3.3 Cell envelope 

Like typical Gram-negative bacteria, leptospire structure is made up of distinct double 

membranes; outer membrane (OM) and inner membrane (IM). The OM serves as a selective 

barrier that regulates the movement of molecules outside the cell in exchange for nutrients 

and harbours various functions including cell adhesion, cell signalling and transport of waste, 

whereas the IM is involved in the transport chain during protein synthetisation (Rollauer et 

al., 2015). Leptospiral outer membrane components however, are somewhat different than 

its closer relatives such as Treponema or Borrelia outer membrane, which lack 

lipopolysaccharides (LPS) and which serves as a serovar identifier (de La Peña-Moctezuma, 

Bulach and Adler, 2001) and is one of the main virulence factors (Werts et al., 2001; Murray 

et al., 2010).  

The periplasm makes up the second layer of cell envelope, which consists of peptidoglycan, 

similar to other Gram-negative bacteria. The function of this layer is to provide structural 

integrity and shape of the bacteria and also supports bacterial motility, which is a unique 

feature of spirochetes. Their corkscrew motility is generated by endoflagella (Figure 1.1) 

which adhere within the periplasm (Charon and Goldstein, 2002).  
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Figure 1.1: Transmission electron microscopy of negatively stained Leptospira interrogans. 
The periplasmic endoflagella (PE) is highlighted in the image. Image adapted from Catroxo 
and Martins (2015). 

 

 

 

 

 

 
Figure 1.2: The schematic diagram of Leptospira structure. Image reproduced from Wong-
ekkabut et al. (2009). 
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1.3.4 Leptospira metabolism 

Leptospira acquire their energy and carbon through beta-oxidation of long fatty acids 

(Nascimento et al., 2004) or from a glucose source. However, Leptospira do not utilise 

glucose in a normal metabolic pathway, instead, they possess a unique glycolysis pathway in 

which glucose molecules are broken down by a substitute enzyme (pyrophosphate-fructose-

6-phosphate 1-phosphotransferase) instead of glucokinase (Nascimento et al., 2004; 

Picardeau et al., 2008; Zhang et al., 2011). Metabolism of Leptospira spp. also differs between 

pathogenic and non-pathogenic species. For instance, Johnson and Rogers (1964) observed 

reduced growth of L. interrogans when the leptospires cells were cultivated with the addition 

of 8-azaguanine. In contrast to non-pathogenic species, the growth of this species was 

unaffected.  

Leptospires can grow under aerobic conditions and survive depending on the temperature. 

Pathogenic leptospires are likely to survive at 28-30°C, whereas the non-pathogenic 

leptospires can also survive and grow in lower temperatures (11-13°C). Fresh isolated 

pathogenic Leptospira strains take longer to grow in vitro compared to non-pathogenic 

strains (Cameron, 2015). Altogether, most pathogenic leptospires can survive inside the host 

and extensively in the environment with favourable climates and humidity level. The 

exception to Leptospira borgpetersenii strains of which have undergone a reduction in 

genome level thus was believed to have host restriction transmission (Bulach et al., 2006).  
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Figure 1.3: Leptospiraceae classification by 16S rRNA phylogenetic analysis. 
 
The maximum-likelihood tree shows a relationship between each Leptospirocae representative 
species including novel species (shown with arrows), with the exception of L. saintgironsiae (belongs 
to intermediate group) (Thibeaux et al., 2018) based on ~1450 aligned based pairs constructed using 
MEGA7 (Tamura et al., 2013). Bootstrapping was performed 1000 times, and all positions 
containing gaps and missing data were eliminated. 
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Table 1.2: Distribution of serogroups in different Leptospira species. Table adapted from 
Zuerner, (2010) plus recent updates. 

Species Serogroup 

L. interrogans Australis, Autumnalis, Bataviae, Canicola, Djasiman, Grippotyphosa, 

Hedbomadis, Icterohemorrhagiae, Lousiana, Mini, Pomona, 

Pyrogenes, Ranarum, Sarmin, Sehgali, Sejroe 

L. alexanderi 

(Genomospecies 2) 

Hedbomadis, Javanica, Manhoa, Mini 

L. biflexa Semaranga 

L. borgpetersenii Australis, Autumnalis, Ballum, Bataviae, Celledoni, Hedbomadis, 

Javanica, Mini, Pyrogenes, Sejroe, Tarassovi 

L. broomi Undesignated 

L. fainei Hurstbridge 

L. kirschneri Australis, Autumnalis, Bataviae, Canicola, Cynopteri, Djasiman, 

Grippotyphosa, 

L. licerasiae Iquitos 

L. meyeri Javanica, Mini, Ranarum, Sejroe, Semaranga, 

L. noguchi Australis, Autumnalis, Bataviae, Djasiman, Lousiana, Panama, 

Pomona, Pyrogenes, Shermani, Tarassovi 

L. santarosai Autumnalis, Bataviae, Cynopteri, Grippotyphosa, Hedbomadis, 

Icterohemorrhagiae, Javanica, Mini, Pomona, Pyrogenes, Sarmin, 

Sejroe, Tarassovi 

L. weilii Celledoni, Hedbomadis, Icterohemorrhagiae, Javanica, Manhoa, Mini, 

Pyrogenes, Sarmin, Sejroe, Tarassovi 

L. wolbachii Codice 

L. wolfii Undesignated 

L. alstonii 

(Genomospecies 1) 

Ranarum 

L. vanthielii 

(Genomospecies 3) 

Holland 

L. terpstrae 

(Genomospecies 4) 

Icterohemorrhagiae 

L. yanagawae  

(Genomospecies 5) 

Semaranga 

L. adleri* 

L. brantonii* 

L. ellisii* 

L. perolatii* 

L. neocaledonia* 

L. saintgironsiae* 

L. haakeii* 

L. hartskeerlii* 

L. harrisiae* 

L. levetii* 

L. brenneri* 

L. macculloughii* 

 

 

 

 

Undesignated 

*Novel Leptospira species recently discovered  (Thibeaux et al., 2018) 
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1.4 Human leptospirosis 

Transmission of Leptospira to man can be achieved by both direct and indirect ways; direct 

transmission is associated with direct contact of bodily fluids from carrier animals such as 

urine and vaginal fluid via cuts, and mucosal membranes (Director et al., 2014; Loureiro et 

al., 2017). Indirect transmission is via exposure to contaminated water and soil such as lakes, 

rivers, sewage and mud, which are favourable for leptospires survival (Fraga et al., 2014). 

Human infection is primarily derived from the exposure of urine of the carrier animals or via 

urine-contaminated soil (Figure 1.4). Livestock farming is one route for contracting the 

disease directly from animals to humans and leptospirosis is primarily an occupational 

disease (Bharti et al., 2003; Miyama et al., 2018). Human-to-human transmission is possible 

but rare, although bacterial transmission via human milk and urine have been reported in the 

past (Bolin and Koellner, 1988; Chow et al., 2012). 

Human infection with pathogenic Leptospira may result in mild, self-limiting to a severe, life-

threatening outcome. Man is an accidental host which does not maintain the bacteria in the 

body but may succumb to infection. When exposed, Leptospira rapidly disseminates in the 

blood within a few days and colonises multiple organs, such as liver, kidneys and lungs 

(Kishimoto et al., 2004; Medeiros et al., 2010; Tunjungputri et al., 2017). The clinical features 

depend on the stage of infection, ranging from influenza-like symptoms characterised with 

sudden onset of fever, chills, headache and muscle pain (Ríos DI and Chaparro HM, 2015) 

followed by skin rashes (Iragorri and Tullus, 2009). The acute presentation is often confused 

with other febrile diseases that produce similar clinical signs such as dengue fever, malaria 

and influenza, which often causes misdiagnosis on the early stage of infection (Noor Rafizah 

et al., 2012). The severe form of leptospirosis is known as Severe Pulmonary Haemorrhagic 

Syndrome (SPHS), is the fatal outcome of leptospirosis with a mortality rate of more than 

50% (Gouveia et al., 2008; Haake and Levett, 2015). Presently, human cases were reported 

across the world, notably in tropical countries (Figure 1.5). Cases have been reported in most 

of the tropical countries with highest rainfall, such as Thailand (Suwanpakdee et al., 2015), 

the Philippines (Amilasan et al., 2012) and Malaysia (Benacer et al., 2016; Thayaparan et al., 

2013). These countries suffer major flood events as a result of severe rainfall with 

leptospirosis outbreaks ensuing from unavoidable human contact with leptospire 

contaminated water. For example, a spatial analysis carried out on pre-flood, during flood 

and post-flood events in north-eastern Malaysia between September 2014 to January 2015, 

resulted in 1229 human leptospirosis reported cases and highest cases were seen during the 

post flooding event (Mohd Radi et al., 2018). High-density populations in an urban setting 
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promote Leptospira exposure especially in rat-infested areas lacking sanitary hygiene and/or 

poor drainage systems (Maciel et al., 2008; Koizumi et al., 2009a; Felzemburgh et al., 2014). 

Human factors such as migration and travelling, enhance leptospirosis global spread 

(Bandara et al., 2014). Another important human risk factor is water-based recreations, such 

as triathlons or open water swimming (Sejvar et al., 2003; Brockmann et al., 2010). 

Diagnosis of leptospirosis is rather challenging, even though several diagnostic tools have 

been developed to enable detection in the early phase of infection (Budihal and Perwez, 

2014). However, diagnosis is further complicated by concurrent illnesses with similar signs 

such as dengue fever (Bruce et al., 2005; LaRocque et al., 2005). Treatment of leptospirosis 

is effective with combinations of antimicrobial and symptomatic therapy during the acute 

and chronic stage (Kobayashi, 2005). Several licensed human vaccines are currently available 

(Xu and Ye, 2018) however, the majority of vaccines are derived from inactivated whole-cell 

leptospires, and therefore the protection is likely to be partial, with a lack of cross-protective 

immunity against heterologous serovars. Furthermore, these vaccines are manufactured in 

certain countries and may not work in a global setting due to different circulating Leptospira 

species/serovars. 

Despite interest in leptospirosis growing significantly over the years, there is limited 

information on its pathogenesis, and this hampers efforts to control the disease. 
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Figure 1.4: Transmission cycle showing leptospires can be transmitted from rodent carriers 
directly to the environment and indirectly to man with associated risk factors and animal hosts.  
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Figure 1.5: A world map showing the burden of human leptospirosis based on cases reported each year. Note that the majority of cases occur in tropical zone compared 
to subtropical zones. Figure regenerated and modified based on Torgerson et al. (2015).
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1.5 Animal leptospirosis 

Animals are the important hosts for Leptospira. Rats are the principal reservoir of Leptospira, 

and can carry and shed the bacteria throughout their lives (Ido et al., 1917; Athanazio et al., 

2008; Costa et al., 2015). Apart from rats, many animal species, including some marine 

mammals (Cameron et al., 2008; Norman et al., 2008) may also harbour the bacteria in their 

kidneys and spread them through renal excretion. While acting as both reservoir and carrier, 

vulnerable animals may also succumb to infection, especially when infected with non-native 

Leptospira species. Interaction between environment, maintenance hosts and Leptospira are 

pivotal for successful disease transmission. Numerous domestic species such as cattle, pigs, 

dogs, horses (Burriel et al., 2003; Rocha et al., 2004) and wild animals such as bats (Cox et al., 

2005) and wild boar (Koizumi, et al., 2009b) are known to maintain several pathogenic 

leptospires serovars which can potentially spread to other animals and man (Table 1.1).  

 

 
Table 1.3: Various animal hosts associated with Leptospira serovars. 

Animal host Serovars 

Cattle Hardjo, Pomona, Kennewicki, Icterohaemorrhagiae*, Canicola*, 

Hebdomadis*, Sejroe*, Pyrogenes*, Autumnalis*, Australis*, 

Javanica*, Tarassovi*, Grippotyphosa* 

Pigs Australis, Pomona, Tarassovi, Icterohaemorrhagiae*, 

Grippotyphosa* Canicola* 

Dogs Canicola, Icterohaemorrhagiae, Grippotyphosa* Canicola* 

Sheep Hardjo, Icterohaemorrhagiae*, Australis*, Grippotyphosa*, Sejroe* 

Horses and donkeys Bratislava, Kennewicki, Grippotyphosa* Autumnalis*, Sejroe*, 

Canicola*, Ballum* 

Rats Icterohaemorrhagiae, Copenhageni 

Mice Ballum, Arborea, Bim 

Raccoon Grippotyphosa 

Marsupials Grippotyphosa 

Bats Cynopteri, Wolfii 

Sea lion Pomona 

*Indicates accidental infection with non-native serovars. Table adapted from (Bharti et al., 2003; 

Ellis, 2015). 
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Animals are likely to be exposed to Leptospira from birth, either from their mothers or 

directly acquired infection from other animals. Even so, animals are generally tolerant of 

leptospirosis due to their ability to harbour the bacteria in the kidneys. As with man, the 

transmission of disease between animal hosts may also occur through contact with a 

contaminated environment. Additionally, contact with infected wild animals and rats may 

result in incidental infection as is commonly seen in farm animals (Webster et al., 1995; 

Burriel et al., 2003). Even though wild mammals can be Leptospira carriers, leptospirosis may 

not have a detrimental effect on their health. Another potential leptospiral transmission 

route is oral (Luzzi et al., 1987; Asoh et al., 2014), although this route has not been widely 

studied. More details on this route can be found in Chapter 7 in this thesis. The interaction 

between man, animals and environment is associated with leptospirosis, and the disease 

possesses a significant public threat, especially in an endemic area where the disease is 

prevalent.  

1.5.1 Impact of leptospirosis in animals 

Leptospirosis is a significant disease primarily affecting the productivity and reproduction of 

livestock and causes substantial losses worldwide (Grooms, 2006). Reproduction losses such 

as low milk yield, abortion, reduced fertility, stillborn calves and the birth of weak 

calves/piglets are commonly reported following outbreaks. On the other hand, infection in 

companion animals such as dogs results in similar clinical outcomes to human cases 

(Goldstein et al., 2006; Goldstein, 2010). 

In this study, we will focus more on bovine leptospirosis as part of the research theme of the 

thesis. Bovine leptospirosis, including the economic impacts, pathogenesis, diagnosis, and 

treatment, will be described in more details in the following sections. 

 

1.6 Introduction to bovine leptospirosis 

Bovine leptospirosis (BL) is one of the leading causes of reproductive failures and milk drop 

syndrome in cattle herds (Ellis, 1984; Grooms, 2006). Cattle are known to maintain serovar 

Hardjo, which is pathogenic to both cattle and man. Studies on bovine leptospirosis have 

grown significantly over the years due to the awareness of public health relating to a human-

cattle relationship (Agampodi et al., 2010; Swai and Schoonman, 2012; Ndengu et al., 2017). 

BL has a worldwide distribution, with substantial morbidity in tropical countries. However, 

the disease is very much underestimated due to subclinical signs that are difficult to 
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interpret, leading to misdiagnosis and making it one of the most neglected cattle diseases. 

Depending on the infective Leptospira serovars, BL causes moderate to severe reproductive 

losses, including reduced milk yield, abortion, premature birth of the weak calves and 

infertility (Ellis et al., 1986). Although the economic loss is difficult to be determined, it has 

been reported that the estimated cost of output losses, treatment and prevention for bovine 

leptospirosis was £22.3 million in the UK (Bennett et al., 1999) and USD $ 150,000 loss for 

calves mortality, vaccination and treatment in Argentina following an outbreak (Draghi et al., 

2011). 

As previously described, several Leptospira serovars are known to be native to cattle, 

although other non-native serovars also may be able to cause incidental infection (Ellis, 2015) 

(Table 1.3). Transmission of bovine leptospirosis in cattle may be preceded by the presence 

of rodents on farm, contact with wild and other domestic animals known to be carriers for 

Leptospira such as dogs, pigs, horses and foxes and direct contact with a contaminated 

environment (Petrakovsky et al., 2014; Fávero et al., 2017). Other associated risk factors of 

BL including co-grazing with other ruminants, increase herd size, movement of cattle, access 

to contaminated water sources and poor biosecurity practices have previously identified as 

the primary source of infection in the herd-level (Table 1.4). The recent study by Yatbantoong 

and Chaiyarat (2019) highlighted farm management practice, such as keeping older cattle in 

the farm contributes to longer Leptospira exposure.  

Leptospira serovars have been isolated from the urine and kidney from naturally infected 

cattle, indicating that cattle are a natural host (Prescott et al., 1987; Pinna et al., 2018). These 

serovars are maintained in the kidneys of the cattle and escape through the kidney tubules 

until eventually passed in the urine, contaminating the environment and exposing the naive 

herd or humans to leptospirosis (Table 1.4). Although no evidence exists as to whether 

leptospires can be sexually transmitted between cattle, this has been demonstrated in small 

ruminants (Director et al., 2014). Moreover, recent reports highlighted that Leptospira could 

survive in milk. Therefore, the disease could be transmitted to the host via ingestion (Fratini 

et al., 2016; Oliveira et al., 2016).  
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Table 1.4: List of common risk factors of BL transmission in cattle farms. 

Risk factor References 

Co-grazing with other species or contacts with 

other animals including rats 

(Schoonman and Swai, 2010) 

(Gamage et al., 2011) 

(Lilenbaum and Souza, 2003) 

(Subharat et al., 2012) 

Increase in herd size (Leonard et al., 2004) 

(O’Doherty, Sayers and O’Grady, 2013) 

(Ryan et al., 2012) 

(Campos et al., 2017)  

(Miyama et al., 2018) 

Access to contaminated water sources (Campos et al., 2017) 

Age of cattle (Schoonman and Swai, 2010) 

(Yatbantoong and Chaiyarat, 2019) 

(Suwancharoen et al., 2013) 

Natural calving  (Salgado et al., 2014) 

Movement of cattle 

Poor biosecurity 

(van Schaik et al., 2002) 

Contact of adult animals with calves/grazing 

with calves 

 

(O’ Doherty et al., 2014) 

Other possible risk factors: 

Natural events (flooding) 

 

Infrequent vet visit to the farms 

Lack of control programs 

 

(Chadsuthi et al., 2018) 

(Ijaz et al., 2018) 

(Lilenbaum and Souza, 2003) 

(Swai and Schoonman, 2012) 

 

 

1.6.1 BL risk factors to human 

As previously described, BL possesses a significant threat to humans, especially farmers. 

Serological studies on cattle farmers confirmed that humans are likely to be exposed to 

Leptospira serovars acquired during farming and butchering activities (Esmaeili et al., 2016; 

Chadsuthi et al., 2017; Daud et al., 2018). Human infections derived from cattle have 

previously been reported, but not frequently (Davidson, 1971; Bolin and Koellner, 1988; 

Mclean et al., 2014; Benschop et al., 2017). This is because the mild infection is usually self-

limiting, thus the symptoms are potentially overlooked. Additionally, the type of infective 

serovars may also influence Leptospira virulence that will determine the disease outcome. 

For instance, serovar Hardjo has been detected in several human cases (Mclean et al., 2014; 

Benschop et al., 2017). Human factors are also contributing to successful Leptospira 

transmission. Benschop et al. (2009) stated that Leptospira direct transmission could be 

enhanced through human contact with cattle, cuts on the body and contact with animal 
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effluents. Other human risk factors including immunosuppressive disease, poor hygiene, an 

unhygienic condition in an abattoir and lack of communication between human health 

inspector and veterinary services (Swai and Schoonman, 2012). 

 

1.6.2 Epidemiology of bovine leptospirosis 

Over the years, bovine leptospirosis has become a significant worldwide disease and a 

leading cause of reproductive failures in cattle. Several reports on leptospirosis epidemiology 

have been published to determine the disease prevalence of cattle and local abundance of 

Leptospira serovars in several countries (Table 1.5). Global prevalence varies depending on 

the area of study, types of cattle rearing and circulating leptospiral strains in the country. 

While higher BL seroprevalence is reported elsewhere across the world, the titre is relatively 

low in Scandivanian regions (Lindahl et al., 2011) reflecting that the disease is probably not a 

major threat to local cattle herds. 

In the UK, the prevalence of leptospirosis is thought to be higher in dairy cattle than beef 

cattle. Although the disease is not commonly encountered, seroprevalence studies showed 

the prevalence of serovar Hardjo infection in UK dairy cattle was more than 70% at the herd 

level (Bishop, Erkelens and Van Winden, 2010; Williams and Winden, 2014). Studies of BL in 

UK beef farms are limited, possibly due to lack of obvious clinical signs (e.g. abortion) seen 

by the farmers. The UK Animal and Plant Health Agency recorded 23 cases of cattle abortion 

in the UK from 2012-2018 related to leptospirosis (APHA, 2018). Additionally, a serological 

survey conducted by MSD Animal Health from 2013-2015 showed that 58% (dairy) and 33% 

(beef) farms tested positive for leptospirosis (Figure 1.6). These studies show that while BL is 

perceived as low risk in UK cattle farms, the serological evidence showed that these animals 

might have been exposed to the disease and need further investigations. 

Despite recent available data, studies on BL epidemiology remain scarce, resulting in a poor 

understanding of disease dynamics and difficulties in disease control and in applying 

preventive actions. Most published studies are based on serological data, which has several 

limitations. The difficulty of isolating Leptospira strains is another pitfall in determining the 

actual disease prevalence. 

1.6.3 Clinical manifestation of bovine leptospirosis 

Infected cattle may show clinical signs which might be considered ranging from mild to severe 

manifestations. The clinical outcomes of the disease are largely dependent on the degree of 
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herd immunity, the physiological state of the animals and circulating serovars (Grooms, 

2014). The chronic form is usually acquired from adapted serovars such as Hardjobovis, 

where animals may have been infected from a young age. Clinical signs associated with the 

chronic manifestation are mainly related to reproductive failure and likely present when the 

animal is pregnant.  Infected animals may abort, or give birth to stillbirth or premature and 

weak infected calves (Bolin, 2005). Chronically infected animals tend to pass the disease to 

the surviving calves and remain infected throughout their entire life (Grooms, 2014). 

The severe manifestation of leptospirosis in cattle is uncommon and is normally due to non-

native serovars such as serovar Bratislava, Pomona, Grippotyphosa and Icterohaemorrhagiae 

infecting young animals (Ellis, 2015). These serovars normally originate from other carrier 

animals nearby the cattle farm. In dairy cattle, the severe and acute form presents as a 

marked drop in milk production or milk drop syndrome accompanied by fever, which lasts 

for two to ten days. The appearance of the milk is thick, yellow-stained and sometimes blood-

tinged and the udder soft (Symington, 1957). Milk abnormalities and reduced milk yield have 

been similarly observed when serovar Hardjo infection presents acutely, and the animals 

typically recover after a few days without need for treatment (Higgins et al., 1980). Acute 

infection also may cause immediate abortion in pregnant cows. 

The subacute form of the disease causes similar clinical manifestations as in the acute form, 

only with milder symptoms. In this form, abortion is observed a couple of weeks after the 

infection. Very rarely, the severe acute form of leptospirosis in infected calves manifests as 

high fever, lethargy, haemoglobinuria, jaundice and death within a few days (Sutherland et 

al., 1949; Guerra, 2009; Ellis, 2015). 
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Table 1.5: Prevalence studies of BL worldwide from 1998-2018. 

Country Region Prevalence rate (%) Samples Method of 

diagnosisa 

Dominant serogroups or 

serovarsb 

References 

Asia 

India Multiple region 70.5 (95% CI 65.0-75.0) Serum MAT Hardjo, Pyrogenes* (Balamurugan et al., 2018) 

 Konkan 35.5 (95% CI 37.0-45.2) Serum MAT Australis, Hardjo* (Balamurugan, 2016) 

 Cauvery valley 87.0 Serum MAT Javanica, Autumnalis* (Natarajaseenivasan et al., 2011) 

 Bihar 9.11 (95% CI 27.5-42.2) Serum ELISA Hardjo** (Pandian et al., 2015) 

 Odisha 42.5 (95% CI 34.0-51.4) Serum MAT Australis, Hardjo* (Balamurugan et al., 2013) 

 Gujarat 12.8 Serum MAT Pomona, Hardjo* (Patel et al., 2014) 

Iran Kerman 17.4 Serum MAT Pomona (Khalili et al., 2014) 

 Shahrekord 18.8 Serum MAT Canicola, Grippotyphosa (Ebrahimi et al., 2004) 

Japan Hokkaido 12.8 Serum MAT/ELISA Hardjo (Koizumi and Yasutomi, 2011) 

Laos Multiple region 3.0 (95% CI 1.9-4.2) Serum ELISA N/D (Vongxay et al., 2012) 

Malaysia Kelantan 81.7 (95% CI 63.5-80.1) Serum MAT Sarawak, Patoc* (Daud et al., 2018) 

Mongolia Multiple region 80.4, 28.0, 23.5 (three 

regions) 

Serum MAT/ELISA Hardjo, Ruparupae* (Odontsetseg et al., 2005) 

Pakistan Punjab 56.3 Serum ELISA N/D (Ijaz et al., 2018) 

Philippines Luzon 7.80 Urine PCR L. borgpetersenii/L. kirschneri (Villanueva et al., 2016) 

Sri Lanka Gampaha 9.00 Urine RT-PCR N/D (Denipitiya et al., 2017) 

 Kandy 38.8 (Urine), 20.3 

(Serum) 

Serum, Urine MAT, PCR Wolfii, Hebdomandis* (Gamage et al., 2011) 

 Colombo 12.2 Kidney PCR L. borgpetersenii (Gamage et al., 2014) 

Thailand Multiple region 28.1 (95% CI 26.7-29.6) Serum MAT Ranarum, Shermani* (Chadsuthi et al., 2017) 

 Multiple region 9.9 (95% CI 9.3-10.5) Serum MAT Ranarum, Sejroe* (Suwancharoen et al., 2013) 

 Kanchanaburi 92.2 Serum MAT Tarassovi, Ranarum* (Yatbantoong and Chaiyarat, 2019) 

Turkey Marmara 3.40 Serum MAT Hardjo (Kocabiyik and Cetin, 2004) 

Africa 

Cameroon Adamawa 35.0 (95% CI 27.6-33.2) Serum ELISA Hardjo** (Scolamacchia et al., 2010) 
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Morocco El-Gharb 9.10 Serum MAT, ELISA Hardjo, Pomona** (Lucchese et al., 2016) 

 Multiple region 15.0 Serum MAT Ballum, Sejroe* (Benkirane et al., 2016) 

Nigeria Kaduna 3.50 Serum ELISA Hardjo (Ngbede et al., 2012) 

South Africa KwaZulu-Natal 19.4 (95% CI 14.8-24.1) Serum MAT Pomona, Tarassovi* (Hesterberg et al., 2008) 

Tunisia Mateur 75.0 Serum MAT Pomona, Autumnalis* (Khbou et al., 2017) 

Tanzania Tanga 51.0 (95% CI 44.1-57.9) Serum MAT Hardjo, Tarassovi (Swai and Schoonman, 2012) 

 Tanga 58.5 (95% CI 9.5–67.1) Serum MAT Hardjo, Tarassovi (Schoonman and Swai, 2010) 

Uganda Kole, Mbale 19.3 (95% CI 14.9-24.5) Serum MAT Pomona, Kenya* (Dreyfus et al., 2017) 

 Southwest 27.1 (95% CI 26.1-28.3) Serum ELISA Hardjo** (Atherstone et al., 2014) 

Europe 

Greece Multiple region 16.2 Serum MAT Bratislava, Copenhageni (Burriel et al., 2003) 

Ireland Multiple region 91.0 Serum ELISA Hardjo** (Barrett et al., 2018) 

 Multiple region 41.8 (95% CI 41.0-41.3) Milk ELISA Hardjo** (Ryan et al., 2012) 

Italy Multiple region 46.9 Serum MAT Sejroe, Bratislava* (Tagliabue et al., 2016) 

Poland Southwest 3.20 Milk ELISA Hardjo** (Rypula et al., 2014) 

Portugal Multiple region 15.3 Serum MAT Hardjo, Sejroe* (Rocha, 1998) 

Spain Galicia 18.3 Serum MAT Bratislava, Grippotyphosa* (Guitián et al., 2001) 

 Asturias 10.4 Serum MAT Pomona, Grippotyphosa* (Espi et al., 2000) 

Sweden Multiple region <1.0 Serum MAT Sejroe (Mouse 2A) (Lindahl et al., 2011) 

UK Multiple region 71.9 Milk ELISA Hardjo** (Williams and Winden, 2014) 

 Multiple region 47.0 (95% CI 34.0-60.0) Milk ELISA Hardjo** (Velasova et al., 2017) 

 Wales 76.0 Milk ELISA Hardjo** (Bishop et al., 2010) 

Americas 

Brazil Teresina 50.1 (95% CI 49.5-61.6) Serum MAT Hardjo, Icterohaemorrhagiae* (Campos et al., 2017) 

 Santa Catarina 6.44 Serum MAT Pomona, Sejroe (serogroup) (Fávero et al., 2017) 

 Rio de Janeiro 38.3 Serum MAT Sejroe (serogroup) (Martins and Lilenbaum, 2013) 

 Garanhuns 47.6 Serum MAT Hardjo, Bratislava* (Oliveira et al., 2001) 

Canada Multiple region 2.3e Serum MAT Pomona, Grippotyphosa* (Van De Weyer et al., 2011) 

Chile De Los Ríos 75.0 Serum MAT Hardjo, Pomona* (Salgado et al., 2014) 
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Columbia Córdoba 74.5 Serum MAT Hardjo, Saxkoebing* (Ensuncho-Hoyos et al., 2017) 

Mexico Toluca valley 10.3 Serum MAT Hardjo, Canicola* (Leon et al., 2008) 

 Yucatan 62.8 Serum MAT Hardjo, Tarassovi* (Segura-Correa et al., 2003) 

Trinidad Multiple region 21.5 Serum MAT Icterohaemorrhagiae, 

Mankarso* 

(Suepaul et al., 2011) 

Uruguay Multiple region 77.0 Serum/Urine MAT/PCR Kennewicki, Hardjo (Zarantonelli et al., 2018) 

USA Texas 35.0 Urine PCR Pomona, Hardjo* (Talpada et al., 2003) 

West Indies 

Saint Kitts Saint Kitts 78.9 (95% CI 71.9–87.7) Serum/kidney MAT/PCR Mankarso, Djasiman (Shiokawa et al., 2019) 

Oceania 

Australia Queensland 53.7 Serum MAT Hardjo, Tarassovi* (Black et al., 2001) 

New Caledonia New Caledonia 43.0 Serum MAT Hardjo, Copenhageni* (Roqueplo et al., 2013) 

New Zealand Multiple region 21 (95% CI 15.0–28.0) Kidney  PCR N/D (Fang et al., 2015) 

 Multiple region 73 (95% CI 59.0 –83.0) Serum MAT Hardjo, Pomona 

 Multiple region 53.7 (95% CI 51.4-56.0) Serum MAT Hardjo, Pomona (Dreyfus et al., 2018) 

aMethod of diagnosis to determine BL prevalence. Abbreviations: ELISA; Enzyme-linked immunosorbent assay, MAT; Microscopic agglutination test, PCR: Polymerase chain 
reaction (See Section 1.8 for details) 
b Positive antibodies detected to agglutinating Leptospira serogroups/serovars. N/D; Not determined 
*Positive antibodies detected to more than five Leptospira serovars using MAT 
**Positive antibodies detected to serovar Hardjo using commercial ELISA test kit 
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Figure 1.6: A map showing the percentage of positive BL in the UK from 
October 2013-2015.  
 
Data and figure source from BeefCheck and DairyCheck data, MSD Animal 
Health (2018). 

 

1.7 Pathogenesis of leptospirosis 

The disease onset and progression are well-described in a clinical manner in both humans 

and animals. However, little is known about the mechanisms involved at both the cellular 

and molecular levels, and therefore, the pathophysiology of leptospirosis remains poorly 

understood. The main reason for this is due to the lack of advance genetic tools available to 

manipulate the genes (e.g. mutagenesis), which have been largely available in other bacterial 

species (Adler et al., 2011; Adler, 2014). However, considerable recent progress has been 

made towards understanding the molecular pathogenesis aspects, prompting the discovery 

of various Leptospira virulence factors which may contribute to the disease mechanism such 

as LPS, hemolysins, OMPs and other surface proteins and adhesion molecules.  

 

Leptospirosis pathogenesis involves several stages. The first stage is bacterial entry and 

dissemination. The entry of pathogenic Leptospira into the host proceeds through motility 

and chemotaxis. One theory is the attraction of Leptospira towards haemoglobin (Yuri et al., 
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1993), which suggests that leptospires are attracted to sites of tissue injury. In the second 

stage, leptospires rapidly disseminate into the bloodstream and travel to adjacent organs. In 

order to establish a successful infection, leptospires must be able to adhere to host tissues 

to begin host colonisation. There is now a broad list of known leptospira surface adhesins 

that exhibit in vitro attachment to a range of host extracellular matrix (ECM) components 

(Table 1.6, Section 1.11).  

 

Binding to host plasminogen and fibrinogen may result in disruption of haemostasis and 

wound repair. The binding to plasma proteins would facilitate inhibiting fibrin formation, 

causing degradations of ECM and fibrin clot leading to dissemination throughout the host 

(Vieira et al., 2009; Oliveira et al., 2013). As previously described, homeostatic imbalance in 

the infected host is clinically characterised by thrombocytopenia and haemorrhage, 

especially in the severe form of the disease (Edwards et al., 1982). Moreover, adherence to 

plasminogen may interfere with the host complement system, therefore reducing 

opsonisation for phagocytosis and subsequently affecting the complement cascade at the 

cell surface by both the alternative and classical pathways (Vieira et al., 2011).  

 

The next stage is immune persistence. One important strategy for this stage is the ability to 

evade host immune response, and Leptospira possesses several known virulence factors that 

may enable them to escape host immune responses. Leptospires may interfere with the host 

complement cascade by binding to host regulatory proteins, such as factor H and C4 binding 

protein (C4BP) (Meri et al., 2005; Barbosa et al., 2009) in the serum and deactivate the 

complement pathways. Another important strategy is to evade from host phagocytic cells. 

Additonally, Leptospires may induce macrophage apoptosis (Merien et al., 1997; Jin et al. 

2009) and prevent the release of neutrophil phagosomes during cellular phagocytosis via 

inhibition of neutrophil myeloperoxidase that interferes with the innate immune response 

(Vieira et al. 2018). Collectively, both host immune reactions and leptospires responses can 

lead to damage to host tissues. As a result, the vulnerable host may progress to systemic 

inflammation, vascular damage, multiple organ failures and haemorrhage. In cattle, 

septicaemia may cause haemoglobinuria as a result of extensive intravascular haemolysis 

(Adugna, 2016). Surviving animals may progress to renal colonisation and persistence, which 

is vital for leptospires survival as the environment in the renal tubules is favourable for 

bacterial attachment and multiplication, and eventually, they will be passed into the urine to 

begin Leptospira transmission.
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1.8 Diagnosis of bovine leptospirosis: Common techniques 

Currently, there are no effective and ideal laboratory tests that can rapidly detect the 

organism during the early onset of disease despite a range of diagnostic tests being available 

(Musso and La Scola, 2013; Picardeau, 2013; Rajapakse et al., 2015). The gold standard for 

leptospirosis diagnosis is the microscopic agglutination test (MAT) developed in France 

almost a hundred years ago (Martin and Pettit, 1918), which has since become the method 

of choice to determine leptospirosis seroprevalence in cattle worldwide (Table 1.5) and to 

identify Leptospira serovars. MAT is performed by incubating patient serum at various 

dilutions mixed with a large panel of live leptospires of various serovars in microtitre plates 

and the results are read under dark field microscopy. Observation of an agglutination 

reaction between a serovar and patient serum is indicated to be the infective 

serovar/serogroup (Chirathaworn et al., 2014; Goris and Hartskeerl, 2014). 

Even though MAT is highly specific towards Leptospira serogroups, the use of MAT is not 

always convenient because it requires locally circulating serovars or serovars belonging to all 

serogroups to be used as live targets to avoid false negative results (Turner, 1968). These 

serovars need to be maintained regularly in the laboratory, which is labour intensive and 

time-consuming. MAT also cannot be standardised because it uses live antigens and can only 

be performed in the laboratory with experienced laboratory personnel. Another 

disadvantage of MAT is that it cannot differentiate between post vaccination and natural 

infection (Smith et al., 1994; Rajapakse et al., 2015). Nevertheless, the use of a ELISA test was 

developed (Adler et al., 1980) and applied in bovine studies (Adler et al., 1982; Cousins, 

Robertson and Hustas, 1985; Bercovich et al., 1990). The ELISA test is considered more 

sensitive and specific, and relatively rapid and easy to interpret compared to MAT. In a clinical 

setting where MAT is not available, ELISA is usually used and is mostly useful for acute 

infection, especially in human leptospirosis (Winslow et al., 1997; Niloofa et al., 2015).  

The use of ELISA in cattle is unlikely to detect antibody in acute infection but can determine 

whether animals have been exposed to Leptospira. This is because the animal may have 

retained infection since it was young (e.g. chronically infected) and therefore the 

commercially available ELISA kits for cattle are based on IgG detection in either blood and/or 

milk (Yan et al., 1999). However, like MAT, ELISA cannot differentiate antibody titer between 

infection and vaccinated animals (Smith et al., 1994). When compared to MAT, ELISA has 

proven more sensitive for the diagnosis of BL (Cousins et al., 1985; Sakhaee et al., 2010). 
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Another advantage of using ELISA over MAT is that no live antigens are required and 

therefore, it is relatively safe to use in the laboratory.  

Polymerase chain reaction (PCR) is another highly sensitive method to detect Leptospira in 

clinical samples and particularly in urine, tissues from aborted foetus and kidneys 

(Richtzenhain et al., 2002; Director et al., 2014; Shiokawa et al., 2019) and is also useful to 

identify the carrier status of an animal (Pinna et al., 2018). The most common PCR application 

in leptospirosis is the detection of Leptospira genes such as 16S rRNA (Shekatkar et al., 2010), 

LipL32 (Stoddard, 2013) and OmpL1 (Reitstetter, 2006). However, PCR also has several 

limitations. For example, the target genes LipL32 and OmpL1 are only present in pathogenic 

leptospires (Haake et al., 1993; Haake, 2001) not in non-pathogenic leptospires.  

Lastly, isolation of the spirochetes by culturing is one of the conventional techniques but is 

not routinely carried out in the laboratory. Furthermore, the culture work is not always 

reliable as the bacteria may not be present if the animals were in a chronic state and were 

previously treated with antibiotics. The cultivation method is also often subjected to 

contamination, time-consuming, low sensitivity and requires serovar identification by 

reference laboratories (Smith et al., 1994; OIE, 2008).  

 

1.9 Treatment and prevention of bovine leptospirosis 

For food-producing animals, leptospirosis has a major impact on cattle’s health and 

productivity. The impact of cattle disease has a wide range of productivity losses affecting 

milk production and reproduction. In most tropical countries where BL is endemic, it is nearly 

impossible to eradicate the disease in the environment, especially during the wet season, 

and the animals are at the higher risk of contracting the infection. Therefore, controlling the 

infection becomes the main focus to minimise the transmission, reproduction losses and 

consequently, economic loses. In the case of acute leptospirosis, the use of antibiotics with 

supportive therapy is the treatment of choice (Mazzonelli, 1984). However, the owner needs 

to consider the withdrawal period of the antimicrobials and the cost of milk withdrawn 

during the period (Ellis, 2015). Due to this concern, treatment is not always reliable for bovine 

leptospirosis even though several studies have demonstrated the effectiveness of antibiotics 

for the elimination of Leptospira in the urine of infected animals (Alt et al., 2001; Cortese et 

al., 2007; Yupiana et al., 2019). Therefore, disease prevention plays a significant role to 

combat infection at the herd level.  
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Vaccination is considered as a useful tool for controlling leptospirosis in many developed 

countries (Faine, 1982). Vaccines successfully limit the transmission of the bacteria by 

reducing the urinary shedding and urogenital tract colonisation and producing a strong 

antibody titre for longer immune protection (Zimmerman et al., 2013; Balakrishnan and Roy, 

2014). Very often, commercial cattle vaccines are formulated to contain more than one 

locally prevalent serovar or with the combination with chemically altered live strains of other 

pathogens causing reproductive failures in cattle. For example, Leptavoid®-H (MSD, Animal 

Health) containing two local strains (L. interrogans Hardjo and L. borgpetersenii Hardjo) is 

registered for use in the UK and Australia. Ultravac® 7 in 1, a combined 5 in 1/ Lepto Vaccine 

for Cattle (Pfizer, Australia) has been approved to be used for the prevention of clostridiosis 

and leptospirosis in cattle. However, as in man, vaccination in cattle has several limitations.  

 

1.10 Limitation of cattle vaccines 

In many developed countries where bovine leptospirosis is prevalent, access to vaccines is 

limited due to the cost and lack of knowledge of locally prevalent serovars. The commercially 

available cattle vaccines are generally prepared from the whole-killed cell so that the 

immunity is serovar-dependent and unable to confer protection against other pathogenic 

serovars which could be present in the herd. The majority of commercial cattle vaccines are 

short-lived and often require a booster to maintain the antibody titres (Balakrishnan and Roy, 

2014). Most vaccines do not give full herd protection as minimal cross-protection occurs and 

some vaccinated animals can still shed the bacteria through urine (Bolin and Alt, 2001; Dib et 

al., 2014). Consequently, there is a real need for universal, safer and generally longer 

protective cattle Leptospira vaccines to replace the early vaccines.  

1.10.1 Bacterin vaccines 

Generally, the immune response induced by bacterin (whole-killed) vaccine is serovar specific 

and humoral mediated, except in bovine species. In cattle, the type of immune reaction 

confered post-vaccination using a bacterin vaccine (containing serovar Hardjo) is primarily 

cell-mediated (CMI) (Naiman et al., 2001) and generates good immunity compared to naïve 

animals. However, the problem with bacterin vaccines is the lack of efficacy spectrum of 

which it may confer protection against vaccine serovars and their closely related serovars 

(Levett, 2001; Adler, 2015b). Thus, given the lack of cross-protection between infecting 

Leptospira serovars, a good knowledge of circulating serovars is needed within a region and 
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formulating multivalent vaccines containing locally prevalent serovars. Additionally, the 

duration of immunity protection is another issue using these vaccines. Several authors have 

demonstrated that both monovalent and multi-valent bacterin vaccines only confer short 

term protection (<12 months) in calves and require additional boosters (Bolin, Zuerner and 

Trueba, 1989; Bolin and Alt, 2001; Zuerner et al., 2011).  

Furthermore, different vaccine formulations can affect the outcome of the immune 

response. For example, the pentavalent bacterin vaccine containing L. interrogans serovar 

Hardjopritno (LHP) failed to protect cattle infected with L. interrogans serovar Hardjobovis 

(LHB). Theoretically, LHP vaccine should be able to confer protection against LHB as they are 

serologically identical (Bolin, Zuerner and Trueba, 1989). A subsequent study by Rinehart et 

al. (2012) showed that a monovalent vaccine containing LHP was able to protect cattle 

challenged with LHB as well as prevention of renal colonisation and urinary shedding. This 

may be possible that serovars differences and vaccine formulation (such as types of adjuvant) 

used during preparation will affect the ability of the vaccine to induce a protective immune 

response. 

1.10.2 Live (attenuated) and LPS-based vaccines 

The variable immune responses and claimed efficacies of bacterin vaccines are a real issue, 

and it would be better if alternative vaccines could be identified. There are several reasons 

for this conclusion. One concern is the quality control of the immunogenicity of the strains. 

For example, the continuous passage of standard strains which may reduce the 

immunogenicity of strains (Hartskeerl and Smythe, 2015). Ultimately, other types of vaccines 

have been proposed as alternatives to bacterin vaccines such as live and LPS-based vaccines. 

An attenuated leptospiral live vaccine showed protection in animals (Stalheim, 1968) and 

storage of live vaccine containing serovar Pomona in liquid nitrogen could last up to six 

months (Stalheim, 1971). However, concerns about safety and method of attenuation were 

raised. Additionally, limited information on the leptospiral pathogenesis, lack of knowledge 

of serovars distribution and lack of genetic tools for gene manipulations have hampered the 

effort to develop such live vaccines; consequently, no live vaccines have been licensed for 

general use (Murray, 2015; Picardeau, 2015b; Bashiru and Bahaman, 2018).  

An LPS-based vaccine was shown to induce protective immunity in animal models (Jost et al., 

1986; Schoone et al., 1989); however, it was unsuccessful in cattle, and they are still 

vulnerable to serovar Hardjo infection (Bolin et al., 1989). As the LPS-derived immunity is 

exclusively humoral, therefore it is possible that it may not elicit a protective immune 
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response in cattle via CMI activation. Furthermore, the LPS vaccines are allegedly serovar-

specific, as similar to bacterin vaccines, and therefore may not be able to confer protection 

against heterologous challenge (Wang, Jin and Wegrzyn, 2007; Bashiru and Bahaman, 2018).  

 

 1.11 Outer membrane proteins as vaccine candidates 

The outer membrane serves a vital role in the interaction of Leptospira and host tissues by 

enabling invasion and subsequent disease. As described earlier, the leptospiral outer 

membrane is generally similar to that of most spirochetes, composed of two main 

components which are the OMPs and an additional lipid component (LPS) (Cullen et al., 2002; 

Kelesidis, 2014). Surfaced-exposed OMP plays an essential role for pathogenesis of 

Leptospira by mediating adherence to the host tissues (Matsunaga et al., 2006) and 

pathogenic Leptospira species have relatively more LPS molecules which are also typically 

longer than the equivalent molecule in non-pathogenic species, thus making LPS an 

important putative virulent factor in this species. As previously mentioned, LPS was 

previously studied as a vaccine candidate. However, it was found that the antibody derived 

from LPS fractions is serovar-dependant and unable to induce protective immunity against 

strains from different serovars (Sonrier et al., 2001). 

Leptospiral OMPs are highly specialised proteins divided into three components; lipoproteins 

(attach lipid component on either side of the membrane), transmembrane protein (span 

across the membrane) and peripheral proteins (Cullen et al., 2004) (Figure 1.7). To date, it is 

believed that there are more than 300 combined lipoprotein and transmembrane proteins 

waiting to be discovered and characterised in Leptospira (Haake and Matsunaga, 2010). 

Important examples of these proteins are provided in the following sections. 

1.11.1 Lipoprotein OMPs 

Some components of lipoproteins were identified as target vaccines candidates due to their 

ability to be expressed during natural infection and relative structural conservation among 

pathogenic species. One classic example is lipoprotein-32 kDa (denoted as LipL32), the most 

abundant lipoprotein on the bacterial surface, restricted to pathogenic Leptospira species, 

and extensively studied as a potential vaccine candidate (Cullen et al., 2005; Vivian et al., 

2009; Murray, 2013). LipL32 is one of the dominant OMPs recognised by the immune system 

during the acute and chronic phase of leptospirosis in man (Guerreiro et al., 2001), indicating 

that the protein is expressed during infection. As the LipL32 gene is highly conserved, and 
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the encoding receptor binds various ECM proteins (Hauk et al., 2008; Hoke et al., 2008; Tung 

et al., 2010), it may play an essential role during pathogenesis and thus be an ideal vaccine 

candidate. However, the immunogenicity trials of recombinant LipL32 vaccine failed to 

confer sufficient protection in challenged animals and was only able to limit renal 

colonisation (Humphryes et al., 2014). Furthermore, mutant LipL32 (by gene deletion) does 

not have any effect on leptospiral virulence, implying that it is not essential for infection 

(Murray et al., 2009). Interestingly, when vaccinating with various recombinant LipL32 

protein truncations in cattle, these proteins stimulated interferon gamma (IFN-γ) responses, 

a marker of cell-mediated immune responses (Lucas et al., 2014). However, pentavalent 

vaccines containing five different pathogenic serovars, which all had LipL32, failed to confer 

protection against serovar Hardjobovis (Bolin et al., 1989). Therefore, the role of LipL32 in 

protective immunity cattle is unproven. 

Recently, multiple leptospiral lipoproteins (Table 1.6) were expressed and characterised as 

potential antigens, but no definitive vaccine trials have been reported (Adler, 2015b). Genetic 

diversity also influences lipoproteins protective capacity. For example, the Leptospiral 

immunoglobulin-like proteins (Ligs) are the major lipoproteins of the Leptospira surface and 

can induce a strong protective immunity in an animal model (Evangelista et al., 2017). 

However, comparative genome analysis confirmed that the Ligs (LigA, LigB and LigC) are 

present in only a few pathogenic species and therefore would be poor vaccine candidates 

against various pathogenic species (Fouts et al., 2016).  

Another important consideration of leptospiral lipoproteins is the location of the proteins 

within the membrane. Lipoproteins are scattered everywhere within the cellular OM to one 

or more of four cellular compartments; the periplasmic leaflet of the inner membrane, the 

periplasmic or external leaflets of the outer membrane, and beyond the outer membrane in 

the surrounding cell (Haake, 2000; Cullen et al., 2004). Although bioinformatic algorithm 

predictions such as LipoP (Juncker et al., 2003) and SpLip (Setubal et al., 2006) can identify 

lipoproteins, they are unable to determine their cellular localisation. Therefore, expressed 

lipoproteins may not be surface-exposed or involved during Leptospira-host interaction. 

Hence, more characterisation studies are needed to determine their usefulness as promising 

target antigens. 

1.11.2 Transmembrane OMPs 

Unlike lipoproteins, leptospiral transmembrane OMPs are integral proteins that span the 

entire lipid bilayer of the OM. They have significant roles for structural integrity and vital 
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physiological functions such as nutrient transport into the cell, adherence to host molecules 

for bacterial colonisation and removal of exogenous products, e.g. toxic waste/bactericidal 

properties (Patti and Höök, 1994; Pizarro-Cerdá and Cossart, 2006; Raja and 

Natarajaseenivasan, 2015). Similar to many Gram-negative bacteria, the classical structure 

of OMPs consists of 8-22 of densely packed antiparallel β-strands (Hong et al., 2006; Misra, 

2012). An example of a transmembrane OMP is provided in Figure 1.8. Leptospiral OMPs 

have been of great interest to many researchers as potential vaccinogens due to their 

surface-exposed loops that could stimulate host protective immune responses. One major 

leptospiral OMP is leptospiral ‘porin’ outer membrane protein (31 kDa), denoted as OmpL1, 

a transmembrane protein only present in pathogenic Leptospira spp., which is thought to be 

a potential vaccine candidate as it is expressed naturally in mammalian infections (Barnett et 

al., 1999) and is antigenically conserved among species (Dong et al., 2008; Dezhbord et al., 

2014), and can induce cross-protection in heterologous infection (Maneewatch et al., 2007). 

OmpL1 binds host molecules such as laminin, fibronectin, fibrinogen and plasminogen  (Vieira 

et al., 2010; Fernandes et al., 2012) which indicates the involvement of the protein in host 

invasion. Interestingly, while OmpL1 gene is highly conserved (~90% identity), however, its 

genetic diversity indicated that 20% of serovars possess mosaic OmpL1 genes on the major 

surface loops derived from horizontal DNA transfer and genetic recombination events (Haake 

et al., 2004). Despite being well-characterised, its efficacy as a vaccine has never been 

published, although it was proven useful as a diagnostic antigen in man and animals 

(Subathra, Senthilkumar and Ramadass, 2013; Hernández-Rodríguez et al., 2014). 

A comparative genomic analysis by Nascimento et al. (2004) revealed 41% of the predicted 

Leptospira spp. proteins have at least one transmembrane OMP, relatively similar to those 

found in Treponema pallidum and Borrelia burgdorferi. This indicates that many more 

transmembrane OMPs are yet to be discovered. Previous methods of identifying leptospiral 

OMPs was through subcellular fractionation, detergent-phase partitioning and the isolation 

of OM vesicles. These methods were able to discriminate between OM from inner membrane 

lipoproteins, but not the transmembrane OMP (Haake et al., 1991; Zuerner et al., 1991; 

Haake and Matsunaga, 2002; Nally et al., 2005).  
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Figure 1.7: Schematic diagram of pathogenic Leptospira membrane architecture.  

 

The inner membrane (IM) is closely associated with the peptidoglycan (PG) cell wall, which is 

overlaid by the outer membrane (OM). Surface-exposed lipoproteins (LipL32, LigA, LigB and 

Loa22), the transmembrane outer membrane protein porin (OmpL1), and lipopolysaccharide are 

among the main components of the outer membrane. Figure adapted and regenerated from 

(Fraga et al., 2011). 

 

 

 

Figure 1.8: An example of leptospiral transmembrane OMP (porin OmpL1) topology expressed on 
the leptospiral outer membrane with other surface-exposed proteins (Lsa23, LipL32, TylC, LigA 
and LigB) including LPS. Porin β-strands are arranged in an anti-parallel fashion, resembling a 
barrel-like shape. 
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Leptospiral transmembrane OMPs can now be identified by screening a Leptospira whole 

genome by in silico analysis. Several transmembrane OMPs were identified (Pinne and Haake, 

2009), and their functions subsequently defined. By combining both conventional and 

modern techniques, to date, several leptospiral transmembrane OMPs have been identified, 

and their functions are defined. The majority of OMPs were characterised in a single 

Leptospira species that is from a human/rats/dogs reference strain (L. interrogans serovar 

Copenhageni Fiocruz L1-130) (Table 1.6). There is a relative lack of studies investigating OMPs 

of other pathogenic Leptospira species. One species of interest, L. borgpetersenii serovar 

Hardjobovis is an important pathogen in cattle which shares about ~2708 genes with L. 

interrogans, but has more than 300 unique genes (Picardeau et al., 2008; Adler et al., 2011). 

On this basis, the cattle Leptospira strains (L. borgpetersenii serovar Hardjobovis L550 and 

JB197) were selected to screen for potential transmembrane OMPs, which will be further 

characterised for their novel functions. The identification of OMPs and their expressions will 

be carried on in line with reverse vaccinology methodology, using a genome-based approach 

which will be described in the following section.
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Table 1.6: Characterised OMPs from L. interrogans serovar Copenhageni L1-130 with their functions. 

Leptospiral OMP Size 

(kDa) 

Knockout 

virulencea 

Putative functionb Other related information References 

Lipoprotein OM 

LenA (LfhA/Lsa24) 30.0 N/D Binds to factor H (and its related 

proteins), fibronectin, plasminogen 

and laminin 

Membrane-bound protein, may have 

functional redundancy  

(Verma et al., 2006, 2010) 

LipL21 21.0 N/D Inhibit neutrophil myeloperoxidase Surface-exposed, elicit immune 

protection in guinea pigs against LipL21 

DNA vaccine 

(Cullen et al., 2003; He et al., 2008; 

Vieira et al., 2018) 

LipL32 (Hap 1) 32.0 Yes Bind to laminin, collagen I, IV, 

plasminogen  

Surface-exposed, not required during 

infection 

(Hauk et al., 2008; Hoke et al., 

2008; Murray et al., 2009; Vieira et 

al., 2010) 

LipL36 36.0 N/D - Not surface-exposed, located at the 

inner membrane of OM 

(Haake et al., 1998) 

LipL41 41.0 Yes Binds to hemin Surface-exposed, requires small 

chaperone protein for stable expression 

and exhibit synergistic 

immunoprotection with OmpL1 

(Haake et al., 1999; Asuthkar et al., 

2007; King et al., 2013) 

LipL46 46.0 N/D - Surface-exposed OMP (Matsunaga et al., 2006) 

Ligs (A and B) 130-200 Yes Binds to fibronectin, fibrinogen, 

collagen I, collagen IV and calcium 

Surface-exposed, only present in several 

pathogenic Leptospira species 

(Choy et al., 2007; McBride et al., 

2009; Lucas et al., 2011) 

Loa22 22.0 Yes Binds to peptidoglycan Surface-exposed, confer partial 

immunoprotection in animal models 

(Ristow et al., 2007; Zhang et al., 

2010; Wu et al., 2011) 

Transmembrane OM 

BamA 113 N/D OMP biogenesis Involved in the folding, assembly and 

insertion of transmembrane 

OMPs in the OM 

(Tommassen, 2007; Haake and 

Zückert, 2015) 
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CirA 92.0 N/D Import channel Siderophore receptor for iron uptake (Haake and Zückert, 2015) 

FecA 93.0 Yes Import channel TonB DR for ferric iron dicitrate (Haake and Zückert, 2015) 

FadL 52.0 N/D Import channel Fatty acid transporter (Haake and Zückert, 2015) 

GspD 113 N/D Export channel Type 2 secretion: Sec-dependent (Haake and Zückert, 2015) 

HbpA 80.0 Yes TonB DR for hemin Iron uptake (Oke et al., 2004; Marcsisin et al., 

2013) 

OmpA (Lsa66) 68.0 N/D Binds to laminin and plasma 

fibronectin 

Partial inhibition on leptospiral 

adherence to immobilised extracellular 

matrix and plasminogen 

(Oliveira et al., 2011) 

OmpL1 33.0 N/D Binds to laminin, fibrinogen, 

fibronectin 

Porin, immunoprotective antigen, 

recognised by host immune system  

(Haake et al., 1993; Shang et al., 

1995; Haake et al., 1999; 

Fernandes et al., 2012) 

OmpL36 36.0 N/D - Recognised by host immune system (Eshghi et al., 2009; Pinne and 

Haake, 2009) 

OmpL37 37.0 N/D Binds to human elastin Present in pathogenic species, 

recognised by host immune system 

(Pinne and Haake, 2009; Pinne et 

al., 2010) 

OmpL47 47.0 Yes Binds to Collagen III, IV, laminin 

fibronectin 

Not recognised by host immune system  (Pinne and Haake, 2009; Pinne et 

al., 2010) 

OmpL54 54.0 N/D - - (Pinne and Haake, 2009) 

OstA 113 Yes LPS assembly and transport Translocating LPS to OM (Sampson, Misra and Benson, 

1989; Ruiz et al., 2009; Sperandeo 

et al., 2009) 

TolC 60.0 N/D Export channel Type 1 secretion: Sec-independent (Haake and Zückert, 2015) 

TylC 50.4 N/D Binds to fibronectin, laminin and 

collagen IV 

Haemolysin-like protein but does not 

present haemolysin activity  

(Carvalho et al., 2009) 

a The knockout virulence to assess of OMP virulence in the host. Abbreviation: N/D; Not determined 
b The primary function of an OMP. Abbreviation: TonB DR; TonB-dependent receptor 
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 1.12 Application of reverse vaccinology 

Conventional vaccines have been developed over four centuries following the discovery of a 

small-pox vaccine, which was pioneered by Edward Jenner in the late 18th century (Plotkin, 

2009). These vaccines were generally formulated using two methods; by attenuation of 

pathogens by continuous passage in the laboratory and secondly by the identification and 

purification of protective antigens to be used as potential vaccine candidates (Heinson, et al., 

2015). These approaches, however, are only useful for cultivable microorganisms, are time-

consuming and only allow identification of the most abundant antigens to be purified in 

larger quantities for vaccine testing (Mora et al., 2003). Furthermore, antigens that are not 

expressed in vitro cannot be identified (Rappuoli, 2000) and therefore, cannot be subjected 

to further characterisation. Although successful in many cases, conventional approaches take 

a long time to yield vaccines and are unable to provide a solution for those pathogens that 

do not have prominent immunodominant protective antigens (Rappuoli, 2000). 

The arrival of the genomic era in the 21st century has led to substantial discoveries in both 

human and animal medicine. Ever since the first complete bacterial genome was sequenced, 

a barrage of emerging technologies has led to the ever more rapid sequencing of entire 

prokaryote genomes which has now become standard practice (Fleischmann et al., 1995; 

Bambini and Rappuoli, 2009). The availability of the genome sequences of many pathogens 

allows discovery of more novel antigens that could be alternative vaccinogens to improve 

the present vaccines. The information present in the genome could be considered as a 

starting point for the identification of potential protein antigens. This approach, known as 

‘Reverse Vaccinology’ (RV) utilises the genome sequence of the pathogen and identifies 

those antigens that are most likely to be candidates (Rappuoli, 2000). These antigens are 

identified by in silico analysis by screening the entire bacterial genome using various 

bioinformatics tools, and the selected candidates then undergo cloning and screening for 

expression in a heterologous system. After the purification of the recombinant proteins, the 

purified proteins are subjected to immunogenicity testing in an animal model to confirm the 

surface localisation and to analyse their ability to elicit an immune response (Mora et al., 

2003; Heinson et al., 2015).  

Moreover, the application of RV is not just to discover novel antigens, but this will lead to  

better understanding of pathogenesis on how these pathogens cause diseases to the host 

(Delany, Rappuoli and Seib, 2013). The first successful RV project targeted the serogroup B 

meningococcus (MenB) of Neisseria meningitidis (Pizza et al., 2000). RV identified three main 
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antigens of MenB that are involved in meningococcal virulence and subsequently formulated 

the world’s first subunit 4CMenB vaccine (Bexero) from these proteins (Heinson et al., 2015. 

Since then, reverse vaccinology have been applied to a wide range of human and animal 

diseases, ranging from bacterial pathogens (Song et al., 2009; Delany et al., 2013), viruses 

(Bruno et al., 2015) and to a lesser extent, parasitic pathogens (Lew-Tabor and Rodriguez 

Valle, 2016; Goodswen et al., 2017).  

Ever since the MenB vaccine was successfully developed and commercialised , RV was quickly 

adapted in vaccinology studies against many bacterial diseases, including spirochetal 

diseases such as bovine digital dermatitis (caused by Treponema spp.) (Staton, 2018), Lyme 

disease (Borreliosis) (Small et al., 2016), and swine dysentery (caused by Brachyspira 

hyodysenteriae) (Song et al., 2009). A similar approach was followed in several leptospirosis 

studies, although most of these studies only used in silico analysis (Maneewatch et al., 2007; 

Pinne and Haake, 2009) to identify a small group of proteins rather than complete RV process. 

Some of these protein antigens showed significant protection in an experimental animal 

model, which reflect the possibility of protecting the host in a heterologous challenge. This 

shows that RV is one of the promising approaches to evaluate these candidates for future 

vaccine development. Furthermore, the lack of understanding on how identified antigens 

cause infection in the host triggered our interest to characterise their potential functions and 

to study their interaction with the host immune system to further comprehend their complex 

pathogenesis. 

The availability of genome sequences for many of leptospiral strains on public databases 

provides an opportunity for the discovery of novel proteins with unknown functions. Despite 

the advancement in algorithms for assigning functions in unknown protein annotations, 

there is still a long list of leptospiral proteins with potential roles in pathogenicity and host 

adaptations that have not been previously studied and characterised (Dellagostin et al., 

2017). Therefore, RV is a promising approach to discover potential leptospiral antigens to 

study their functional and immunological properties to further understanding host-pathogen 

interaction and to be translated into competent vaccine candidates. 
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 1.13 Aim and objectives 

In this study, we aimed to identify novel putative surface-exposed outer membrane proteins 

from bovine leptospiral strains not previously identified using RV approach and to 

characterise these proteins function to further understand the interaction of these proteins 

with host molecules. Such studies should provide evidence towards their use in the 

development of vaccines and future diagnostic strategy. Furthermore, we also aimed to 

investigate the infection reservoirs and population biology of both pathogenic and non-

pathogenic leptospires within dairy cattle and their environment in the United Kingdom 

farms. The objectives of this study are divided into five main themes; 

 

(A) To identify novel leptospiral surface-exposed proteins from bovine leptospiral 

reference strains using a RV approach 

- Analyse the entire Leptospira borgpetersenii serovar Hardjobovis L550 and 

JB197 genome for transmembrane OMPs using various bioinformatics 

prediction programs.  

- Select unique L550/JB197 OMP encoding genes and compare with Leptospira 

interrogans orthologues. 

 

(B) To clone, express and purify relevant surface-exposed leptospiral OMP in a 

heterologous expression system 

- Clone and express selected OMP genes using Escherichia coli expression system 

as recombinant inclusion bodies. 

- Isolate and solubilise the inclusion bodies from Escherichia coli. 

- Refold and purify the recombinant proteins and determine their secondary 

structure through circular dichroism.  

 

(C) To characterise the function of novel bovine leptospiral OMPs by assessing binding 

affinity to host molecules and the host immune response 

- Analyse binding ability of each recombinant OMP to various host (ligand) 

molecules. 

- Analyse the antibody titre association against recombinant leptospiral OMPs in 

cattle bulk milk. 

 



Chapter 1   Introduction 

39 
 

(D) To investigate functional diversity of leptospiral OMP variants across pathogenic 

species 

- Express and purify the selected OMP variants as recombinant proteins. 

- Analyse binding ability of OMP variants to various host ligand. 

- Evaluate the host immune response towards recombinant OMP variants using 

leptospires exposed cattle sera. 

 

(E) To characterise Leptospira diversity in ruminant samples in United Kingdom farms 

through clinical/molecular detection. 

- Detect leptospiral DNA in gastrointestinal samples (rectal and gingiva tissues) of 

ruminants through PCR detection assay. 

- Identify the Leptospira species corresponding to any positive PCR samples and 

assess whether novel carriage sites have been identified.
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Chapter 2: Materials and methods 

 

This chapter describes the general materials and methods used throughout this thesis. 

2.1 Bacterial strains 

2.1.1 Leptospira spp. strains 

The following Leptospira strains were used for cultivation, cloning and sequence of the 

primer design. All strains were obtained from Leptospirosis Reference Centre, Academic 

Medical Centre (AMC), Department of Medical Microbiology, the University of Amsterdam, 

Netherlands. 

 
 

Table 2.1: List of Leptospira strains used in this thesis. 

 Code Species Serovar Serogroup Strain 

KIT0215 

 

L. interrogans Copenhageni Icterohaemorrhagiae Fiocruz L1-130 

KIT0243 L. borgpetersenii Hardjobovis Sejroe JB197 

 

KIT0242 L. brogpetersenii Hardjobovis Sejroe L550 

 

KIT0164 L. biflexa Patoc Semaranga Patoc I 

 

 

2.1.2 Escherichia coli strains 

The following chemically competent Escherichia coli strains were used for cloning, 

transformation and expression in this project. All strains were obtained from Invitrogen™, 

Carlsbad, California, USA. Their genotypes are given below.
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Table 2.2: List of E. coli strains used for cloning, transformation and expression in this thesis. 

Strains Purpose Genotypes 

One Shot™ 

TOP10 

 

Cloning and 

transformation 

F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 

ΔlacΧ74 recA1 araD139 Δ(ara-leu)7697 galU galK 

rpsL (StrR) endA1 nupG 

BL21-AI™ Large scale expression F- ompT hsdSB (rB-mB-) gal dcm araB: T7RNAPtetA 

 

One Shot™ 

BL21(DE3) pLysS  

 

Large scale expression F- ompT hsdSB (rB-mB-) gal dcm (DE3) pLysS (CamR) 

 

2.2 Media and supplements for bacterial cultivation 

Liquid medium was used to culture and to maintain leptospires weekly, while solid and liquid 

media were used to grow E. coli strains for cloning and expression purposes. Both media 

were supplemented with necessary chemical reagents to enhance bacterial growth. The list 

of media and supplements used throughout this thesis are listed in Table 2.3, along with their 

method of preparation.  

 

 
Table 2.3: Media and supplement used for both leptospires and E. coli cultures. 

Media/Supplement Preparation 

Ampicillin (10 mg/ml) 0.1 g of Ampicillin sodium salt (Sigma-Aldrich, Dorset, UK) 

was dissolved into distilled water and filter sterilised using 

0.22 µm pore syringe filter (Appleton woods, Birmingham, 

UK) and stored at 4°C for up to one week. Ampicillin stock 

solution was freshly prepared before LB broth preparation, 

and LB solid media with ampicillin addition was kept at 4°C 

for up to one week. 

 

Fluorouracil (5-FU) (10 mg/ml) 0.1 g of 5-FU was dissolved in 10 ml of dimethyl sulfoxide 

(DMSO) (Sigma-Aldrich, Dorset, UK), filter sterilised using a 

0.22 µm pore syringe filter and stored in 500 µl aliquots at -

20°C up to four months. 

 

Growth medium for E. coli strains  

 

For liquid and solid media: 

Lauria Broth Base (Miller's LB Broth Base)™ (Invitrogen™, 

Carlsbad, California, USA) was prepared according to the 

manufacturer’s instruction (Final pH 7.5 ± 2). 

Formulation per one litre: Bacto tryptone 10 g 

                                                Bacto yeast extract 5 g 

                                                Sodium Chloride (NaCL) 10 g 
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Media were prepared using distilled water and sterile by 

autoclaving at 121°C (15 psi) for 20 minutes. For solid media, 

16 g/litre of Select Agar™ (Invitrogen™, Carlsbad, California, 

USA) was added. Molten agar was cooled at 55°C before 

antibiotic addition. ~25 ml of molten agar was plated in a 

sterile 90 mm triple vent petri dish (Appleton woods, 

Birmingham, UK). Media preparation was carried out in a 

laminar flow under standard aseptic conditions. 

 

Liquid medium for Leptospiral 

strains (Ellinghausen, McCullough, 

Johnson and Harris- EMJH) 

 

(Johnson and Harris, 1967; 

Wuthiekanun et al., 2014) 

 

For EMJH medium base preparation:  

 

2.3 g of Difco™ Leptospira Medium Base EMJH (Becton- 

Dickinson, Detroit, USA) was dissolved in 900 mL of distilled 

water and sterile autoclaved at 121°C (15 psi) for 15 minutes. 

The EMJH medium base solution was kept in room 

temperature, and 4.5 ml of medium was aliquoted into sterile 

15 ml culture tubes and kept at 4°C prior cultivation (final pH 

7.5 ± 2). 

 

Approximate formula per litre:  

              Disodium Phosphate 1.0 g 

              Monopotassium Phosphate 0.3 g 

              Sodium Chloride 0.25 g 

              Ammonium Chloride 0.005 g 

              Thiamine 0.005 g 

 

For Leptospira culture:  

 

10% (v/v) of Difco™ Leptospira Enrichment EMJH (Becton- 

Dickinson, Detroit, USA) containing a solution of albumin, 

polysorbate 80 and additional growth factors for Leptospira 

was added into EMJH liquid medium base prior Leptospira 

inoculation. Media preparation was carried out in a laminar 

flow under standard aseptic conditions. 

 

Sodium pyruvate (10 mg/ml) 

 

0.1 g of sodium pyruvate (Sigma-Aldrich, Dorset, UK) was 

dissolved into 10 ml distilled water, filter sterilised using a 

0.22 µm pore syringe filter and stored in 500 µl aliquots at -

20°C. 
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2.3 Buffer and reagents  

Standard buffers and reagents used throughout the project are listed in Table 2.4, along with 

their preparation. 

 
Table 2.4: Buffers and reagents used in various studies in this thesis. 

Buffer/reagents Preparation 

Ampicillin (10 mg/ml) See details in Table 2.3 

Acrylamide solution 30% (w/w) A 30% (w/w) Acrylamide solution was obtained from 

Severn Biotech Limited, Kidderminster, United 

Kingdom. 

 

Agarose gel 1% (w/v) 1.0 g of agarose powder (Bio-Rad, Hemel Hempstead, 

UK) was dissolved in 100 ml of 1X TAE buffer by heating 

and allowed to set. Agarose gel preparation was carried 

out in a fume chamber. 

 

Ammonium persulphate 10% (w/v) 

(APS) 

1.0 g of APS (Sigma-Aldrich, Dorset, UK) was dissolved in 

10 ml of distilled water and stored at 4°C. APS stock was 

replenished every 2-3 weeks as APS will decay slowly in 

the solution. 

 

Chelex-100 resin 5% (w/v) 5.0 g of Chelex-resin (Bio-Rad, Hemel Hempstead, UK) 

was dissolved in 10 ml distilled water and stored in at 

4°C. 

 

Cell lysozyme buffer 0.0025% (w/v) 

 

0.05 g of chicken lysozyme powder was mixed with 2.5 

ml of Tris-HCl (0.5M, pH 7.9) buffer and distilled water 

was added up to 20 ml and stored at 4°C. 

 

Colour prestained protein marker Colour prestained protein standard (0.2 mg/ml), broad 

range 11-245 kDa were obtained from NEB, 

Hertfordshire, UK. 

 

Clonase II enzyme  

 

Clonase II enzyme mix (20 reactions) was obtained from 

Invitrogen™, Carlsbad, California, USA. 

 

dNTPs 5.0 mM of dATP, dTTP, dCTP and dGTP (in 20 mM stock) 

were obtained from Thermo Fisher Scientific (Hemel 

Hempstead, UK) and stored in 100 µl aliquots at -20°C. 

 

Dialysis buffer 

 

Protein dialysis buffer preparation (1 litre); 

 

50 ml of 5.0 M NaCl 

40 ml of 0.5 M Tris HCL pH 7.9 (see details) 

3.3 ml 0.01% (v/v) of LDAO (see details) 

Distilled water up to 1 litre 
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Protein dialysis buffer preparation (6 litre); 

 

86.7 g NaCl (250 mM)  

300 ml of 0.5 M Tris HCL pH 7.9 (see details) 

20 ml of 0.1% (v/v) of LDAO (see details) 

Distilled water up to 6 litre 

 

These buffers were prepared fresh prior use. 

 

Dithiothreitol (DTT) 

 

1 M DTT (Sigma-Aldrich, Dorset, UK) was prepared by 

dissolving 3.09 g of DTT in 20 ml distilled water, and 

filter sterilised using 0.22 µm pore syringe filter and 

stored at -20°C in 1.0 ml aliquots. 

 

Ethidium Bromide (EtBr) 

 

10 mg/ml of EtBr in ethanol was obtained from Bio-Rad, 

Hemel Hempstead, UK.  

 

Glycerol 

 

10 ml aliquots of glycerol (BDH, Dorset, UK) was 

sterilised by autoclaving. 

 

Imidazole stock solution (4M) 17 g of imidazole powder (Sigma-Aldrich, Dorset, UK) 

was dissolved in 50 ml distilled water. 

 

Isopropyl β-D-1-thiogalactopyranoside 

(IPTG) 100 mM 

 

100 mM of IPTG (Sigma-Aldrich, Dorset, UK) was 

prepared by dissolving 0.238 g of IPTG in 10 ml distilled 

water and filter sterilised using 0.22 µm pore syringe 

filter and stored at -20°C. 

 

Isobutanol Isobutanol (2-propanol) was obtained from Biorad, 

Hemel Hempstead, UK. 

 

Kanamycin (10 mg/ml) 

 

Kanamycin sulphate solution (10 mg/ml) was obtained 

from Invitrogen™, Carlsbad, California, USA. 

 

Skimmed milk 2% (w/v) 5.0 g of dried skimmed milk (Marvel, Chivers, Dublin, 

Republic of Ireland) mixed in 100 PBST and freshly 

prepared before plate coating. 

 

L-arabinose 0.1-0.2% (w/v) 

 

1.0-2.0 g of L-arabinose (Sigma-Aldrich, Dorset, UK) was 

dissolved in 10 ml distilled water to give a concentration 

of 0.1 -0.2% (w/v) respectively, and filter sterilised using 

0.22 µm pore syringe filter and stored at room 

temperature. 

 

N, N-Dimethyldodecylamine N-oxide 

(LDAO) 33% (v/v) 

 

LDAO solution was obtained from (Sigma-Aldrich, 

Dorset, UK) and concentration provided at 33% (v/v). 
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Nickel agarose beads (Ni-NTA) 

 

Ni-NTA agarose beads (50% slurry in 30% ethanol) were 

purchased from Thermo Fisher Scientific, Hemel 

Hempstead, UK. 

 

PageBlue protein staining solution PageBlue™ Protein staining solution was obtained from 

Thermo Fisher Scientific, Hemel Hempstead, UK. 

 

Phosphate buffered saline with Tween® 

20 (PBST) pH 7.4 

Preparation of phosphate buffered saline (PBS) per litre: 

 

Five tablets (200 mg/ml) of PBS (Sigma-Aldrich, Dorset, 

UK) was dissolved in 1.0 litre of distilled water and 

autoclaved at 121°C (15 psi) for 20 minutes. PBS was 

stored at room temperature. 

 

Preparation of 0.05% (v/v) PBST per litre:  

 

500 µl of Tween® 20 (Sigma-Aldrich, Dorset, UK) 

solution was dissolved in 1.0 litre of prepared PBS and 

stored at room temperature. 

 

Protein blank solution Protein blank preparation (10 ml)  

 

5.0 ml of 5 M NaCl 

4.0 ml of 0.5 M Tris HCL pH 7.9 (see details) 

33 µl 0.01% (v/v) of LDAO (see details) 

Distilled water up to 10 ml 

 

Proteinase K solution 20 mg/ml 

 

Proteinase K solution containing 50 mM Tris, pH 8.3 mM 

CaCl2, 50% (v/v) Glycerol (stock of 20 mg/ml) was 

obtained from Invitrogen™, Carlsbad, California, USA. 

 

Protein standard molecular-weight 

maker 

SigmaMarker™, wide range 6.5-200 kDa (Sigma-Aldrich, 

Dorset, UK) was dissolved in distilled water and stored 

at -20°C in 10 µl aliquots. 

 

Protein solubilisation buffer 

 

Recipe of protein solubilisation buffer (50 ml): 

28.5 g Guanidine HCL (Sigma-Aldrich, Dorset, UK) 

2.5 ml Tris HCl (0.5 M, pH 7.9) 

100 µl EDTA (Sigma-Aldrich, Dorset, UK) 

Distilled water up to 50 ml 

 

Ponceau S, acid red 

 

Ponceau S solution 0.1% (v/v) was obtained from Sigma-

Aldrich, Dorset, UK. The solution was stored at room 

temperature. 

 

Refolding buffer  

 

Protein refolding buffer preparation (250 ml) 

 

25 ml of 0.5 M Tris HCL pH 7.9 (50 mM) 

12.5 ml 5.0 M NaCl (250 mM) 
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41.7 ml LDAO 5.0% (v/v)  

Distilled water up to 250 ml 

 

Sample buffer (Loading buffer) Preparation of 1X sample buffer (10 ml): 

 

50 mM Tris HCL pH 6.8 (see details below) 

SDS 2% (v/v) (see details below) 

Glycerol 10% (v/v)  

50 mM DTT 

Bromophenol blue 0.02% (v/w)  

Distilled water up to 10 ml 

 

Preparation of 5X sample buffer (10 mL): 

 

250 mM Tris HCL pH 6.8 (see details below) 

SDS 10% (v/v) (see details below) 

Glycerol 50% (v/v) 

50 Mm DTT 

Bromophenol blue 0.25% (v/w)  

Distilled water up to 10 ml 

 

Sample buffer was prepared fresh due to DTT 

degradation after one week and stored at room 

temperature. 

 

Super optimal broth (S.O.C) medium S.O.C medium containing 2% tryptone, 0.5% yeast 

extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM 

MgSO4, and 20 mM glucose was obtained from 

Invitrogen™, Carlsbad, California, USA. 

 

Sodium chloride (NaCl) 5 M solution 

 

146.1 g of NaCl (Sigma-Aldrich, Dorset, UK) was 

dissolved in 500 ml of distilled water and stored in room 

temperature. 

 

Sodium dodecyl sulfate (SDS) 10% (w/v) 

stock solution 

 

10 g of SDS (Sigma-Aldrich, Dorset, UK) was dissolved in 

80 ml of distilled water and heated for few seconds and 

added more distilled water up to 100 ml. SDS solution 

was stored at room temperature and dissolved by 

heating prior usage.  

 

Stopping solution 25 ml of concentrated hydrochloric acid (analytical 

grade (36.46 g/mol) Sigma-Aldrich, Dorset, UK) was 

added to 475 ml distilled water and stored at room 

temperature. 

 

Tergitol solution 4% (v/v) Tergitol solution was obtained from Sigma-Aldrich, 

Dorset, UK. 
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Tris-acetate-EDTA- TAE (1X) 

electrophoresis buffer 

 

100 ml of TAE (40X) molecular grade (Sigma-Aldrich, 

Dorset, UK) was added to 3900 ml of distilled water to 

give a working solution of 1X TAE. TAE buffer was 

continuously used until the change of colour is noticed. 

 

Tris-glycine sodium dodecyl sulfate-

polyacrylamide gel electrophoresis 

(SDS-PAGE) resolving gel 12% (v/v) 

 

Preparation of SDS-PAGE resolving gel (10 ml): 

 

3.3 ml distilled water 

4.0 ml 30% (w/w) acrylamide mix 

2.5 ml Tris HCL (1.5 M, pH 8.8) 

100 µl SDS 10% (v/w)  

100 µl APS 10% (v/w)  

4.0 µl TEMED ~99% (v/v)  

 

The gel solution was mixed thoroughly and pipetted 

carefully into the 2/3 Mini- Protean® (Bio-Rad, Hemel 

Hempstead, UK) SDS-PAGE casting plates. 100 µl of 

absolute 2-propanol was added onto the remaining 1/4 

space to remove air bubbles. After resolving gels were 

set, the excess 2-propanol was rinsed off using distilled 

water. 

 

SDS-PAGE resolving gels were kept at 4°C up to one 

week. Distilled water was used to prevent dehydration 

of the gels. 

 

Tris-glycine sodium dodecyl sulfate–

polyacrylamide gel electrophoresis (SDS 

page) stacking gel 4% (v/v) 

 

Preparation of SDS-PAGE stacking gel (4 ml) 

 

2.7 ml distilled water  

670 µl 30% acrylamide mix 

500 µl Tris-HCL (1.5 M, pH 8.8) 

40 µl SDS 10% (v/w) 

40 µl APS 10% (v/w)  

4.0 µl TEMED ~99% (v/v) 

 

The gel solution was mixed thoroughly and pipetted 

carefully on the top of the set resolving gels. 10 or 15 

Mini- Protean® combs (Bio-Rad, Hemel Hempstead, UK) 

was used to make the wells. After stacking gels were 

properly set, the combs were removed slowly, and 

excess gel solution was rinsed off using distilled water. 

 

SDS-PAGE stacking gels were kept at 4°C up to one 

week. Distilled water was used to prevent dehydration 

of the gels. 

 

Tetramethylethylenediamine (TEMED) TEMED (electrophoresis grade) was obtained from 

Sigma-Aldrich, Dorset, UK and stored at 4°C. The 

concentration provided is ~99% (v/v). 
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Transfer buffer Transfer buffer recipe (1 litre): 

 

3.03 g Trizma base (Sigma-Aldrich, Dorset, UK) 

14.4 g Glycine (Sigma-Aldrich, Dorset, UK) 

200 ml Methanol (analytical grade) (Thermo Scientific, 

Hemel Hempstead, UK) 

Distilled water up to 1.0 litre 

 

The transfer buffer solution was kept refrigerated at 4°C 

prior use. 

 

Tris HCL (1.0 M, pH 6.8), (1.5 M, pH 8.8) 

and (0.5 M pH 7.9) 

 

To prepare a 1 M solution, 121 g of Tris base was 

dissolved in 800 ml of distilled water. The pH was 

adjusted to the desired value by adding concentrated 

HCl. The volume of the solution was adjusted to 1 or 2 

litre with distilled water and stored at room 

temperature. 

 

Tris-glycine electrophoresis SDS running 

buffer (1X)  

1X SDS running buffer recipe (500 ml): 

 

1.51 g of Trizma base  

9.4 g Glycine  

5.0 ml of SDS 10% (w/v)  

Distilled water up to 500 ml. 

 

1x running buffer was stored at room temperature. 

 

 

 

2.4 Vectors selection for cloning and transformation 

The following vectors are selected for cloning and transformation of Leptospira genes of 

interest into E. coli TOP10 strain.  
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Table 2.5: List of vectors used throughout this thesis. 

Vectors Purpose Bacterial 

resistance 

Fusion tag Size (kb) 

pENTR (Invitrogen™) Entry vector (cloning) Kanamycin - 2580 

pDEST17 (Invitrogen™) Destination vector 

(transformation) 

Ampicillin N-terminal 6354 

pET_21a+ (EMD 

Bioscience) 

Destination vector 

(transformation) 

Ampicillin N-terminal 5443 

     

 

2.5 Bacterial culture 

2.5.1 Leptospira spp. culture 

Leptospira culture method and maintenance of strains were applied according to a standard 

laboratory protocol for both pathogenic and saprophytic leptospires (Johnson and Harris, 

1967; Zuerner, 2005) with a slight modification. 

Pathogenic Leptospira cultures (L. borgpetersenii serovar Hardjobovis strain L550 and JB197, 

and L. interrrogans serovar Copenhageni strain Fiocruz L1-130) from a reference lab were 

provided in 500 µl semi-solid EMJH media. From the stock cultures, a stab culture was 

performed by perforating a sterile plastic loop into the stock culture semi-solid medium and 

was slightly twisted to collect some medium on the loop. The loopful medium was then 

transferred to a fresh 4.5 ml of EMJH liquid medium containing EMJH base medium and 10% 

(v/v) of Difco™ Leptospira Enrichment EMJH supplemented with 45 µl of sodium pyruvate 

solution for bacterial enhancement (Johnson et al., 1973; Wuthiekanun et al., 2013). The 

primary Leptospira cultures were incubated at 30°C for 2-3 weeks and weekly checked under 

a phase-contrast microscope (Leitz Diaplan, Leica Microsystems, Wetzlar, Germany) for 

observation of growth. In the other hand, a saprophytic Leptospira strain (Leptospira biflexa 

serovar Patoc 1) which originally arrived in liquid EMJH stock culture was cultured using a 

similar manner as described above. All procedures were carried out in a category 2 biosafety 

cabinet (Thermo Fisher Scientific, Horsham, UK) under aseptic condition. 

2.5.2 Escherichia coli culture 

All E. coli strains were grown on solid LB media supplemented with kanamycin (50 µg/ml) 

and ampicillin (100 µg/ml) for cloning and transformation purposes, respectively. For the 

growth of E. coli in LB liquid cultures, Erlenmeyer flasks were incubated in an orbital shaking 
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incubator at 225 rpm. For working cultures of E. coli, plates were sealed with parafilm to 

prevent evaporation and stored at 4°C. For maintenance of E. coli, strains were grown at 30°C 

overnight in 5.0 ml LB liquid supplemented with described antibiotics, and 100 µl of the 

culture of each strain was inoculated in 10% (v/v) sterile glycerol aliquots and stored at -80°C. 

2.5.3 Leptospires observation under a phase-contrast microscope 

To observe leptospiral growth, two drops of EMJH liquid medium were put on a clean 

microscope glass slide (thickness 0.95 -1.05 mm) (VWR, Leicestershire, UK) and covered with 

22 mm coverslip (VWR, Leicestershire, UK). The slide was viewed under a phase-contrast 

microscope on the area of a higher power at x100 magnification with focus adjustment. 

Leptospiral growth were score based on an arbitrary scale; 0 = no growth; ++++ = growth 

(Vogel, 1961). The score given was in accordance with Table 2.6 below; 

 
Table 2.6: An arbitrary scale used to describe leptospires growth under the phase-contrast 
microscope at 100x magnification. 

Growth assessment Arbitrary scale 

  

No growth 0 

Presence of 1 leptospire per view + 

Presence of leptospires covering 25% per view ++ 

Presence of leptospires covering 50% per view +++ 

Presence of Leptospires covering 75% or more per view ++++ 

  

 

2.6 Maintenance and storage of Leptospira 

The maintenance of both pathogenic and saprophytic Leptospira strains was maintained on 

EMJH liquid cultures weekly as previously described. When contamination was detected, 5-

FU antibiotic (50-250 µg/ml) was added into the medium to minimise bacterial 

contamination. 5-FU, which is an analogue of uracil, was selected as an ideal antimicrobial 

agent, which can be used as a standalone compound or combination with other 

antimicrobials in many of past leptospiral isolation and growth studies (Johnson and Rogers, 

1964; Chakraborty et al., 2011; Saito et al., 2013). Although all leptospires strains can 5-FU it 

indirectly inhibits contaminants growth, this may also suppress leptospires growth. 

Therefore 5-FU dosage was adjusted from 50-250 µg/ml depending on the growth 

assessment as shown in Table 2.6. 
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For storage, 1.0 ml of the cultures from the EMJH liquid medium was inoculated and mixed 

thoroughly with 10% (v/v) sterile glycerol stock and were stored at -80°C. Glycerol is a 

cryoprotective agent which is able to protect cells in the phase of freezing and thawing, and 

10% (v/v) stock was thought to be an ideal concentration for the leptospires recovery after 

thawing (Alexander et al., 1972). Leptospires viability in glycerol stock was assessed monthly 

by re-inoculating 500 µl of the leptospires glycerol stock into a fresh EMJH liquid medium and 

incubate at 30°C for 14-28 days. Additionally, some of the Leptospira glycerol stocks were 

kept in liquid nitrogen freezing for long-term preservation (Rossetti and Auteri, 2008). 

 

2.7 Leptospira DNA extraction 

DNA extraction from bacterial culture was performed according to a protocol by de 

Lamballerie et al. (1992), which was adapted from the extraction of human DNA from clinical 

samples for PCR amplification with some modification (Walsh, Metzger and Higuchi, 1991). 

0.5 g of Chelex® 100 resin was weighed and suspended in 10 ml distilled water and vortexed 

for 10 seconds to make 0.05% (w/v) stock solution. 250 µl of Chelex® 100 solution were 

pipetted carefully to mix the resins and transferred to 1.5 ml locked Eppendorf 

microcentrifuge tubes (Starlab, Milton Keynes, UK). 250 µl of fresh leptospires of each strain 

were mixed with the solution by pipetting up and down. The mixed solution was then boiled 

in hot water for 10 minutes. Chelex® 100 works by preventing DNA nucleases from degrading 

DNA/RNA, which was subsequently released after cell rupture during boiling (Walsh, Metzger 

and Higuchi, 1991). After boiling, the mixed solution was centrifuged at 13,000 g using a 

benchtop microcentrifuge (Prism™, Labnet, USA) for 10 minutes. The centrifugation force will 

separate the beads that are bound to metal ions and other potential impurities and retain 

pure DNA in the supernatant solution. A supernatant solution containing pure Leptospira 

DNA was carefully pipetted and transferred to 1.5 ml microcentrifuge tubes whilst residual 

Chelex® 100 resin was discarded. Leptospiral genomic DNA solutions were stored at -20°C for 

downstream application.  

2.8 Designing PCR primers for cloning 

For selected OMP genes (Chapter 3), the forward and reverse primers were designed for PCR 

prior entry cloning. All primers were designed (using PCR Primer Design Tool, an online 

software by Eurofins Genomic, Germany) containing the following characteristics; 1) an 

overhang sequence (CACC) at the beginning (5’) of a forward primer. 2) a sequence contains 
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18-22 nucleotides in length. 3) preferably not contain more than 4 or more of one base or 

dinucleotides repeats in a sequence. 4) should have guanine-cytosine (GC) content between 

40-55%. 5) preferably contain GC clamp in the last five bases at the 3’ end of the primer and 

6) Average melting temperature (Tm °C) should be around 50°C and 65°C (Lorenz, 2012). All 

primers were synthesised by Eurofins Genomic. The primers for each of OMP gene is shown 

in Table 4.1. 

The PCR forward primer was designed by inserting the sequence, CACC, at the end 5’ end of 

the primer to enable directional cloning. These nucleotides will be paired with the overhang 

sequence, GTGG, which is present in the entry vector.  The PCR reverse primer was based on 

reverse complement 3’ sequence end from each gene. The list of primers can be found in 

Table 2.7. All primers were synthesised commercially by Eurofins Genomic (Ebersberg, 

Germany) and provided in lyophilised form. Primers were re-suspended with nuclease-free 

water to make a stock concentration of 100 pmol, diluted to 1:100 and kept in 50 µl aliquots 

in -20°C for downstream applications.
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Table 2.7: List of designed primers used in this study. 

Gene Primers sequence (Forward/Reverse) Size 
(kb) 

Melting 
temperature 

Tm (°C) 

GC 
content 

(%) 

LBL_2618 F: 5’ caccGAAAGGATCAGTATCGATGC 3’ 

 

R: 3’ TCAGAGATCATCACTGACG 5’ 

1.35 F: 55.2 

R: 54.5 

F: 50.0 

R: 47.4 

LBL_2510 F: 5’ caccAAATCATACGCAATTGTAGGA 3’ 

 

R: 3’ TTAGAGTTCGTATTTATAGCCA 5’ 

0.89 F: 52.0 

R: 52.8 

F: 40.0 

R: 31.8 

LBL_2925 F: 5’ caccGCTGAAAAAAAAGAGGAATCTGC 3’ 

 

R: 3’ TTATTGTTGTGGAGCGGAAG 5’ 

0.59 F: 57.1 

R: 55.2 

F: 44.4 

R: 45.0 

LBL_1054 

 

F: 5’ caccGAACAAGTTGTAACCACGAAA 3’ 

 

R: 3’ TTAAAACTCTATTGTGGTTCTC 5’ 

1.39 F: 54.0 

R: 52.8 

F: 44.0 

R: 31.8 

LBL_1341 F: 5’ caccCAACTTTGGACGCCGC 3’ 

 

R: 3’ TTAAAAACTTAAACCGCCCGA 5’ 

1.57 F: 54.3 

R: 54.0 

F: 65.0 

R: 38.1 

LBL_0972 F: 5’ caccAACGATGGAAACGAAAATTCTTC 3’ 

 

R: 3’ TTACGGGTTACAAGGCGC  5’ 

1.03 F: 55.5 

R: 56.0 

F: 40.7 

R: 55.6 

LBL_0375 F: 5’ caccCAAGAAGATTTGGATGAAAATCC 3’ 

 

R: 3’ TTATTTCTTGGCTGGAGGAG 5’ 

1.02 F: 55.3 

R: 55.2 

 

F: 45.0 

R: 45.0 

LIC_10973 F:5’ caccAAAACATATGCAATTGTAGGATTTG 3’ 

 

R: 3’ TTAGAGTTCGTGTTTATAACCG 5’ 

0.89 F: 54.8 

R: 54.7 

F: 34.5 

R: 36.4 

The cacc short overhang sequence was added at the beginning of 5’ sequence to pair with the 

overhang sequence gtgg in the cloning entry vector (section 4.0.1). GC: Guanine-cytosine 

 

2.9 Polymerase chain reaction (PCR)  

There two types of PCR carried out in this thesis, which is PCR used for cloning (Chapter 4), 

and PCR used as assays for the diagnostic purposes (Chapter 7). Details on both PCR methods 

are as described in Section 2.9.1 and 2.9.2. 

2.9.1 PCR amplification of leptospiral DNA using Phusion High-fidelity DNA polymerase for 

cloning 

Leptospiral DNA from each strain was subjected to PCR to amplify genes of interest ready for 

cloning purposes (see details in Chapter 4). PCR was performed using High-Fidelity DNA 

polymerases (Thermo Fisher Scientific, Horsham, UK), which entails DNA amplification with 

minimal error in the newly synthesised DNA strand through extremely low misincorporation 
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of base pairs together with proofreading activity. The PCR master mix was performed 

according to the following protocol in Table 2.8 

 
Table 2.8: The PCR master mix components for Phusion High-fidelity DNA polymerase reaction. 

PCR component 20 µl reaction Final concentration 

5x Phusion high-fidelity buffer 5.0 µl 1X 

10 mM dNTPs 0.4 µl 200 µM each 

Forward primer 0.2 µl 0.5 µM 

Reverse primer 0.2 µl 0.5 µM 

DMSO 0.6 µl 3% 

Phusion High-fidelity DNA Polymerase 0.2 µl 0.02 U/ µl 

Leptospiral DNA 1.0 µl - 

Nuclease-free water Up to 20 µl - 

   

 

The master mix was equally distributed, consisting of 19 µl in each 200 µl PCR domed-shaped 

tubes (Starlab, Milton Keynes, UK), the PCR was set up in a thermocycler (Biometra, TRIO 

thermocycler, Glasgow, UK) to run for 35 cycles using the 3-step protocol as instructed by 

manufacture in Table 2.9. 
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Table 2.9: The 3-step protocol PCR cycle condition for Phusion High-fidelity DNA polymerase 
reaction for leptospiral DNA amplification. 

Cycle step (3-step protocol) Temperature Time (s) Cycles 

Initial denaturation 98 °C 30  1x 

Denaturation 98 °C 10   

35x Annealing* X °C 30  

Extension 72 °C 30  

Final extension 72 °C  600 1x 

*The annealing temperature is based on the calculated temperature gradient for both forward and 

reverse primers.  

 

2.9.2 Diagnostic PCR assay 

Standard PCR protocols for diagnostic PCR assays used Taq polymerase for 25 µl reactions as 

follows (Table 2.10): 

 
Table 2.10: The PCR master mix components for diagnostic PCR using DNA Taq polymerase 
reaction.  

PCR component 25 µl reaction Final concentration 

10x reaction buffer 5.0 µl 1X 

Q-solution  5.0 µl  

1.5 mM MgCl2 1.5 µl  

10 mM dNTPs 0.4 µl 200 µM each 

Leptospira forward primer* 1.0 µl 0.5 µM 

Leptospira reverse primer* 1.0 µl 0.5 µM 

Taq DNA Polymerase 0.25 µl 0.02 U/ µl 

Sample DNA  1.0 µl - 

Nuclease-free water Up to 25 µl - 

*Leptospira forward and reverse primers are based on various studies. Refer to Section 7.2 (Chapter 

7) for details. 

 

Leptospira genomic DNA (Section 2.7) was used as a positive control, and deionised water 

was included as a negative control for each PCR master mix. PCR cycling condition and 

annealing temperature were optimised according to standard protocols from various studies 

(Section 7.2). For each optimal diagnostic PCR assay, condition cycle consisted of the steps 

described in Table 2.11. PCR products were analysed by agarose gel electrophoresis (Section 

2.10). 
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Table 2.11: 3-step protocol PCR cycle condition for Taq DNA polymerase reaction for leptospiral 
DNA amplification. 

Cycle step Temperature Time (s) Cycles 

Initial denaturation 98 °C 30  1x 

Denaturation 98 °C 10   

35x Annealing* X °C 30  

Extension 72 °C 30  

Final extension 72 °C 600 1x 

*Based on annealing optimisations in this study. Refer to Section 7.2 (Chapter 7) for details. 

 

2.10 Agarose gel electrophoresis  

PCR products from various PCR methods (Section 2.9.1 and 2.9.2) were subjected to agarose 

gel electrophoresis to visualise the correct size of DNA fragments corresponding to the DNA 

ladders. A 1% (w/v) agarose gel was immersed in 1X TAE electrophoresis buffer in a geneflow 

electrophoresis tank (GeneFlow Ltd, Staffordshire, UK). 5.0 µl of 1 kb and 100 bp 6X DNA 

ladders (Thermo Fisher Scientific, Hemel Hempstead, UK) were loaded at the opposite ends 

of each well of the gel and 5.0 µl of PCR product was mixed with 6X Orange DNA loading dye 

(Thermo Fisher Scientific, Hemel Hempstead, UK) in 5:1 ratio and loaded into each well, 

between the two ladders. The loaded gel was run at 120 V using Bio-Rad PowerPac 300 (Bio-

rad, Watford, UK). DNA fragments/bands on the gel were visualised using ultraviolet light via 

gel imaging system Geldoc gel documentation instrument, (Bio-Rad, Hemel Hempstead, UK). 

 

2.11 DNA purification  

DNA purification was carried out using the QIAquick PCR Purification Kit (Qiagen, Hilden, 

Germany), and the procedure was according to the manufacturer instructions. PCR product 

was added with buffer PB in 1:5 ratio and mixed well. The solution was transferred to the 

provided 2 ml collection tube and centrifuged at 13,000 g at RT for 1 minute (with this speed, 

temperature used in subsequent steps). The flow-through was discarded, and 750 µl of buffer 

PE was added to the column and centrifuged for a further 1 minute to wash the DNA product. 

The tube was re-centrifuged for an additional 1 minute to completely remove the ethanol 

residual from Buffer PE. DNA was eluted with adding 50 µl Buffer EB (10 mM Tris.Cl pH 8.5) 

to the column and left to stand for 5 minutes before centrifuged to collect purified DNA in a 

clean Eppendorf microcentrifuge tube. Purified DNA was stored at -20°C for future 

downstream application. 
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2.12 pENTR directional TOPO cloning of leptospiral genes 

Directional TOPO cloning is a simple and popular cloning choice. When a blunt end DNA 

fragment (of interest) is added into the reaction containing pENTR™/D-TOPO®, the enzyme 

specifically recognises the nucleotides at 5’-(CACC---)3’ that are specifically designed at one 

end of the DNA fragment and anneals to the overhang GTCC on the 5’ end and a blunt end 

on the 3’ end of the vector (Figure 2.1). TOPO I will then ligate the DNA in the correct 

orientation. Advantages of using directional TOPO cloning include fast reaction, efficient 

recombinant cloning results and able to obtain high-level expression.  

 

 
Figure 2.1: The schematic diagram on how directional TOPO cloning reaction works using 
blunt-end of a DNA fragment. Figure adapted from Directional TOPO Cloning, 2018. 

 
PCR products which had been produced as described in Section 2.9.1 were cloned into a 

pENTR™/D-TOPO® vector according to manufacturer’s instruction using a total volume 6.0 µl 

reaction mix as according to manufacturer’s instruction. The reaction was mixed gently by 

pipetting up and down and incubated for 5 minutes at room temperature. The reaction was 

placed on ice, and 2.0 µl of the reaction was used to transform the E. coli TOP10 cells, as 

described in Section 2.13. 

 

2.13 Transformation of E. coli TOP10 cells with an entry clone 

A vial of 50 µl of One Shot® TOP10 Chemically Competent E. coli cells was thawed on ice for 

10 minutes. 2.0 µl of the TOPO cloning reaction was added to the cells and mixed gently by 

pipetting up and down, and the solution was incubated in ice for 30 minutes. Cells were heat-

shocked for 30 seconds in a 42°C and immediately transferred to the ice for 2 minutes. 250 

µl of S.O.C medium was added to the solution and cells incubated at 37°C in a shaking 

incubator (225 rpm) for one hour. The transformation mixture was spread on prewarmed LB 

agar plates containing 50 µg/ml of kanamycin and incubated overnight at 37°C. 
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2.13.1 Analysing transformed E. coli colonies containing entry clones via colony PCR  

E. coli colonies were screened to analyse positive transformation from the cloning procedure 

as described in Section 2.12. Five to ten colonies were randomly selected as a DNA template 

for PCR. The master mix PCR for 25 µl reaction was performed according to the description 

in Table 2.12. 

 
Table 2.12: The PCR master mix components for analysing the 
positive transformation of E. coli. 

PCR component 25 µl reaction 

10x reaction buffer 5.0 µl 

10 mM dNTPs 1.0 µl 

Forward primer (0.5 µM) (M13 within 

plasmid) 

1.0 µl 

Reverse primer (0.5 µM) (within OMP 

genes) 

1.0 µl 

E. coli colony - 

Phusion Taq polymerase (2 U/µL) 0.25 µl 

Nuclease-free water Up to 25 µl 

  

 

The master mix reaction was equally distributed in PCR tubes, and each E. coli transformation 

colony were picked up by stabbing at the edge of the colony and using the tip and mixed with 

individual PCR components. The reaction mix was incubated in a thermocycler for 40 cycles. 

The cycling condition was programmed as described in Table 2.13.  
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Table 2.13: Cycling condition for colony PCR for analysing the positive transformation of E. coli. 

Cycle step Temperature Time Cycles 

Initial denaturation 98 °C 30 s 1x 

Denaturation 98 °C 10 s  

40x Annealing* X °C 30 s 

Extension 72 °C 30 s 

Final extension 72 °C 10 min 1x 

*The annealing temperature is based on the calculated temperature gradient for both forward and 

reverse primers.  

 

For each set of primers, Phusion Taq PCR was performed using the cycling method described 

in Section 2.9.1. The appropriate annealing temperature for colony PCR for each leptospiral 

gene was calculated using the online Thermofisher Tm calculator (Thermo Fisher Scientific) 

which uses the modified Allawi and Santa Lucia's thermodynamics method (Allawi and 

Santalucia, 1997). All annealing temperatures of each gene are shown in Table 2.14. 

 
Table 2.14: Phusion Taq annealing temperatures for leptospiral OMP 
genes in this study. 

Leptospiral OMP gene Phusion Taq annealing temperature 
(°C) 

 

LBL_2618 57.8 
LBL_2510 58.6 
LBL_2925 63.0 
LBL_1054 57.9 
LBL_1034 64.4 
LBL_0972 64.0 
LBL_0375 52.1 
LIC_10973 61.0 

 

The PCR product from each randomly selected colony was run on 1% (w/v) agarose gel in an 

electrophoresis tank (Section 2.10) to visualised DNA bands under a gel reader to confirm the 

presence of the each OMP gene within the E.coli TOP 10 cells which indicates successful 

transformation.  

2.13.2 Plasmid DNA purification from E. coli cells 

Five colonies from successfully transformed E. coli cells (Section 2.13.1) were inoculated 

individually in 5.0 ml LB liquid medium containing 50 µg/ml kanamycin and incubated 

overnight at 30°C in an orbital shaker incubator (200 rpm). E. coli cultures from each colony 

were transferred into a 15 ml falcon tube and the cells were centrifuged at 5000 rpm for 10 

minutes at 10°C. The supernatant was discarded, and the pellet was subjected to plasmid 
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DNA purification using a QIAprep Spin Miniprep Kit (Qiagen, Hilden, Germany) according to 

the manufacturer’s instructions. Plasmid DNA was obtained by adding 50 µl of EB buffer to 

the centre of the column, the column was left standing for 5 minutes and centrifuged for 1 

minute at 13,000 rpm to elute the plasmid DNA. The purified DNA containing entry clones 

were stored at -20°C for future downstream applications. 

2.13.3 Analysing transformation of entry clones by restriction enzyme  

The purified DNA plasmid was subjected to restriction enzyme analysis to determine whether 

the plasmid contains the correct sized gene by adding a specific restriction enzyme, which 

recognises specific nucleotides sequence and cuts DNA molecules at their recognition site.  

The procedure was carried out using Thermo Scientific™ Fast digest EcoRV (Eco321)* 

(Thermo Fisher Scientific, Hemel Hempstead, UK). Two 200 µl of PCR dome-shaped tubes 

were prepared, and each was labelled ‘cut’ and ‘uncut’ respectively. 12.0 µl of nuclease-free 

water was added into both tubes, and 2.0 µl of 10X FastDigest Green buffer (Thermo Fisher 

Scientific, Hemel Hempstead, UK) mixed into both tubes. 5.0 µl of purified plasmid DNA was 

transferred into two tubes, and 1.0 µl of EcoRV (Eco321) enzyme was added into the cut-

labelled tube and mixed gently, while the uncut tube was left without enzyme addition. Both 

sample solutions were incubated at 37°C for 10 minutes into a heat block, and the products 

were run side by side (cut/uncut) on 1% (w/v) and visualised the band size in a gel-doc reader. 

The plasmid sizes were then compared with the size estimated calculated using pENTR-D-

TOPO selection within the Clone Manager 7 (Sci-ED Central, Denver, USA) to validate the 

actual band size(s) after enzyme cleavage.  

2.13.4 Sequencing of entry clones 

After the entry clone’s sizes were correctly determined, the entry DNA plasmid was sent for 

sequencing to confirm that the insert genes are cloned in the correct orientation and to 

ensure no mutation occured within the nucleotide sequence. A reverse primer (Table 4.1, 

Chapter 4), of each gene were sent alongside the plasmid DNA to Source Bioscience 

(Cambridge, UK) that sequenced both DNA strands using the primer we supplied and M13 

primer. The outcome of the entry clone sequences was analysed using ChromasPro version 

2.1.8 software (Technelysium Pty Ltd, South Brisbane, Australia) to check that the gene was 

inserted in the correct orientation and was complete and without error. 
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2.13.5 The attL and attR (LR) recombination reaction of entry clones 

After confirming the gene of interest was inserted in the correct orientation within the entry 

vector by sequencing, the LR recombination reaction was performed to transfer each 

leptospire gene from the entry vector (Section 2.13.2) into a destination vector to generate 

an expression clone. The LR recombinant reaction was performed according to the Gateway® 

Technology with Clonase® II protocol, and 7.0 µl of an entry clone plasmid was mixed with 

1.0 µl of pDEST17 destination vector.2.0 µl of LR Clonase® II Enzyme Mix, which was briefly 

thawed on ice for 2 minutes, was added into the sample and mixed well by pipetting up and 

down. The reactions were incubated at 25°C for an hour. 1.0 µl of Proteinase K was added 

into the sample to stop the reaction, and the sample was further incubated for 10 minutes 

at 37°C. 

 

2.14 Transformation of E. coli TOP10 cells from the LR recombination reaction 

A vial of 50 µl of One Shot® TOP10 Chemically Competent E. coli cells was thawed on ice for 

10 minutes. 2.0 µl of the LR recombinant reactions (Section 2.13.5) was added to the cells 

and mixed gently by pipetting up and down, and the solution was incubated on ice for 30 

minutes. The cells were heat-shocked for 30 seconds in a 42°C and immediately transferred 

to the ice for 2 minutes. 250 µl of S.O.C medium cells were added to the solution and cells 

incubated at 37°C in an orbital shaking incubator (200 rpm) for one hour. The transformation 

mixture was spread on prewarmed LB agar plates containing 100 µg/ml of ampicillin solution 

and incubated overnight at 37°C. Plasmid DNA purification containing destination clones 

were obtained as described in Section 2.13.2. 

2.14.1 Analysing transformation of E. coli colonies containing destination clones via colony 

PCR, restriction enzyme analysis and sequencing 

The following procedures to analyse transformation containing destination clones are as 

described in Section 2.13 of this thesis except for a few exceptions. Here, for analysing 

transformation via colony PCR, the forward primer was with the T7 primer (again supplied by 

the sequencing service), and the annealing temperature was calculated accordingly (Table 

2.15) while the cycling condition was maintained (Table 2.13). For analysing E. coli TOP10 

transformation by restriction enzyme analysis, the ecoRV enzyme was changed to ecoR1 

enzyme and the predicted band size was calculated using the pDEST17 selection within the 
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Clone Manager 7 to estimate the size after enzyme cleavage. The sequencing results of 

destination clones were analysed similarly, as described in Section 2.13.4.  

 
Table 2.15: The annealing temperature of each leptospiral gene PCR when used in colony-based 
Taq polymerase PCR with the respective OMP primer and either M13 forward primer (pENTR) or 
T7 reverse primer (pDEST17). 

Leptospiral OMP gene Annealing temperature (°C) for 
pENTR PCR(M13)a 

Annealing temperature (°C) for 
pDEST17 PCR (T7)b 

LBL_2618 55.8 55.8 
LBL_2510 55.0 55.0 
LBL_2925 55.8 43.2 
LBL_1054 43.5 43.2 
LBL_1034 47.1 43.2 
LBL_0972 47.1 44.0 
LBL_0375 43.2 43.2 
LIC_10973 55.0 43.2 

a Annealing temperatures of PCR assay used for analysing pENTR transformation  
b Annealing temperatures of PCR assay used for analysing pDEST17 transformation  

 

2.14.2 Transformation of E. coli BL21-AI/ BL21 (DE3) pLysS cells 

A vial of 50 µl of competent BL21-AI or BL21 (DE3) pLysS E. coli cells were thawed on ice. 5.0 

µl of purified DNA plasmid containing a cloned gene was added to the cells and pipetted up 

and down, and the cell solution was kept in ice for 30 minutes. The cells were then heat-

shocked in a 42°C water bath for 30 seconds and immediately transferred on ice for 2 

minutes. 250 µl of S.O.C medium was added to the cells and the mixture incubated in an 

orbital shaker incubator at 37°C for an hour (200 rpm). The transformation mixture (50 µl 

and 80 µl) was spread onto the LB agar plates containing 100 µg/ml ampicillin solution and 

incubated overnight at 37°C.  

 

2.15 Pilot expression of recombinant leptospiral OMP genes  

The following protein expression protocol was adapted from Staton, (2018) with relevant 

optimisation. A single colony from a transformation agar plate (Section 2.14.2) was 

inoculated in 20 ml LB liquid medium containing 100 µg/ml and grown overnight at 30°C in 

an orbital shaker (200 rpm). 20 ml of LB liquid medium containing 100 µg/ml ampicillin was 

inoculated with 100 µl of the overnight culture and grown for 1.5 hours in an orbital shaker 

incubator (200 rpm) at 37°C until the optical density reaches mid-log phase OD600 0.6 

measured using Ultrospec 2000 UV-Visible Spectrophotometer (Pharmacia Biotech Inc, USA) 

at 600nm absorbance. 
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500 µl of the culture was collected as uninduced culture, and 0.1% (w/v) of L-arabinose (for 

BL21-AI strain) and 1 mM of IPTG (for BL21 (DE3) pLysS strain was added into the remaining 

cultures for induction and the cells were further grown for 4 hours. 500 µl of induced culture 

was collected, and the previous collected uninduced culture was centrifuged for 1 minute at 

13, 000 g at 4°C and the supernatant was discarded. Pellets from both uninduced and induced 

cultures were stored in -20°C. To observed expression, both pellets were re-suspended with 

50 µl of 1x SDS-PAGE sample buffer, heated in a heat block at 100°C for 10 minutes and 

analysed by SDS-PAGE as described in Section 2.17.  

 

2.16 Large-scale expression of leptospiral recombinant OMP genes 

The large-scale expression was subsequently carried out after the identification of a protein 

expression band of the correct size was observed using the SDS-PAGE analysis of the pilot 

expression. A single colony from a transformation agar plate (Section 2.14.2) was inoculated 

in 5.0 ml of LB liquid medium containing 100 µg/ml ampicillin solution and grown overnight 

in an orbital shaker incubator (200 rpm) at 30°C. 500 ml of prewarmed LB liquid medium 

containing 100 µg/ml ampicillin solution was inoculated with 5.0 ml of overnight culture and 

grown for 2 hours. The OD was checked after 2 hours and the cells were continued to grow 

until it reaches OD600 between 0.6-0.8. 1.0 ml of culture (labelled as uninduced) was taken, 

centrifuged at 13,000 g to remove the supernatant, and the pellet was kept at -20°C. The 

remaining cells were induced using 0.1% (w/v) of L-arabinose, or 1.0 mM of IPTG (depending 

on selected expression strains) was added to the cells and allowed to grow for 4 hours. 1.0 

ml of culture (labelled as induced) was taken, centrifuged at 13,000 g to remove the 

supernatant, and the pellet was kept at -20°C. The cells were then centrifuged at 5,000 rpm 

for 30 minutes. The supernatant was removed, and the pellet was kept at -20°C. Both 

uninduced and induced pellets were re-suspended with 50 µl and 100 µl of 1x SDS-PAGE 

sample buffer, heated in a heat block at 100°C for 10 minutes and analysed by SDS-PAGE as 

described in Section 2.17.  
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2.17 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis  

Protein electrophoresis was carried out based on the original described method (Laemmli, 

1970). The method employed for protein visualisation is as described in the later chapter of 

the thesis. For this purpose, a 12% (v/v) SDS-polyacrylamide resolving gel and 4% (v/v) of 

SDS-polyacrylamide stacking gel were used, and solutions for making these gels are in Table 

2.4. Before gel preparation, a gel cast was set-up in a mini-gel system (Mini-Protean 

electrophoresis system, Biorad, Hemel Hempstead, UK) using gel cassettes and glass plates 

(0.75 mm short plates and spacer plates) (Biorad, Hemel Hempstead, UK). Acrylamide 

resolving gel solution was dispensed carefully using a pipette in between the glass plates to 

fill ¾ of the space and overlaid carefully with absolute ethanol to remove bubbles and allows 

equal distribution of the gel. After the polymerisation was complete for about 25 minutes, 

the overlay was washed off several times with distilled water to remove any unpolymerised 

acrylamide. SDS-polyacrylamide stacking gel solution was added on top of polyacrylamide 

resolving gels, and 15 lane Teflon combs (mini protean combs 0.75 mm) (Biorad, Hemel 

Hempstead, UK) were placed immediately to produce the wells of the gel. After the 

polymerisation was complete for about 25 minutes, Teflon combs were removed gently as 

not to cause damage to the wells, and the wells were washed with distilled water to remove 

any unpolymerised acrylamide.  

The set gels were transferred to a gel gasket and inserted into a vertical electrophoresis tank. 

Gel gasket was then immersed in 500 ml Tris-glycine electrophoresis running buffer covering 

the tank. Protein samples were re-suspended either in 1x of 5x SDS gel-loading sample buffer 

(Table 2.4) and denatured by heating at 100°C for 5 minutes using a heat block prior loading 

into wells. 10 µl of protein standard molecular-weight maker was added on the first well, and 

20 µl of each protein samples were added across remaining wells. The electrophoresis tank 

containing the loaded SDS-PAGE gels was run at 180 V for 50 minutes using a Biorad 

Powerpac 300 (Biorad, Hemel Hempstead, UK). The gels were then removed carefully from 

the plates and transferred to a heat-durable plastic box containing 100 ml of distilled water 

and then heated for 40 seconds using high power. The distilled water was discarded, and the 

step was repeated three times. The PageBlue protein staining solution was used to stain the 

SDS-PAGE gels, and this was added to the gels and heated again for another 30 seconds. The 

stained gels were placed on a rocking platform (ProBlot 35 deluxe rocking platform) 

(Appleton Woods, Birmingham, UK) for 10 minutes. The gel was rinsed with water three 

times to remove the stain and then placed back to the rocking platform for another 10 

minutes for further de-stain before assessment of protein bands. The application of heat 
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post-gel run in stain, and de-stain protocol is aim to achieve better protein resolution, 

therefore increasing the sensitivity for protein which helps for visualisation while indirectly 

reduces the staining and de-staining time (Kurien and Scofield, 2012). 

 

2.18 Far-western blotting 

The far-western blot was used to detect bacterial OMP-ligand interaction in vitro.  

A litre of transfer buffer (Table 2.4) was prepared and pre-chilled at 4°C for 1 to 2 hours 

before the procedure. 100 µg/ml of selected ECM protein host ligand (1.0 mg/ml stock) was 

diluted in 350 µl of 1x SDS-PAGE loading buffer with the addition of 200 mM of DTT. The 

solution was mixed by 5-second vortex and briefly heated in a heat block at 100°C for 5 

minutes. Samples were loaded into wells of a 4-20% precast polyacrylamide gel, 8.6 x 6.7 cm 

Mini-PROTEAN® TGX™ Precast Protein Gel (Bio-Rad, Hemel Hempstead, UK) and 10 µl of 

Color Prestained Protein Standard, broad range 11-245 kDa was used as a protein marker. 

Gel was run in the electrophoresis tank with 1x SDS-PAGE running buffer as described 

(Section 2.17) to resolve the protein. Far-western blot apparatus were prepared by soaking 

sponges, filter papers, and a 0.2 µm nitrocellulose membrane sheet (NCS) (Bio-Rad, Hemel 

Hempstead, UK) in pre-chilled transfer buffer temporarily. These components were cut 

resembling the gradient gel dimension (8.6 x 6.7 cm).  After the gel migration was complete, 

the gel was electrophoretically transferred to the nitrocellulose membrane sheet by carefully 

removing the stacking part of the gel. A straight line was drawn using a pen on the top of the 

membrane to mark the upright position of the protein marker on the membrane. A Mini 

Trans-Blot Module transfer cassette was used to hold the components. Components were 

arranged by the following order; 

 The black side of transfer cassette 

 A sponge 

 2x Filter paper  

 4-20% Protein Gel 

 NCS membrane sheet 

 2x Filter paper 

 A sponge 

 White of the transfer cassette 
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A pipette was used to roll in between layers to remove air bubbles. Once layered, the cassette 

was locked and placed in the transfer holder (black side of the cassette against the black side 

of the holder). Another transfer cassette with components (without protein gel and 

membrane) was placed in the same transfer holder side-to-side with gel-clad cassette and 

tank with an ice pack. A magnetic flea was added, and the tank was placed on a magnetic 

stirrer. Transfer buffer was added into the tank covering the holder. The transfers were run 

at 110 V, 240 mA for 2 hours.  

The transferred membranes were removed and washed three times in PBST for 5 minutes on 

a rocking platform, and then were stained with 10 ml Ponceau S solution and placed on the 

rocking platform for 5 minutes to allow membrane staining. Membranes were cut into strips, 

and all strips washed three times for 5 minutes in PBST. Next, membranes were blocked 

overnight in 5% (w/v) dried-skimmed milk in PBST and incubated at 4°C on a rocking platform. 

After incubation, membrane strips were washed three times for 5 minutes on a rocking 

platform. Strips were placed in individual 15 ml falcon tube and 30 micrograms of 

recombinant OMP solution was added on each strip and incubated at room temperature for 

90 minutes. After washing with PBST, strips were incubated in monoclonal anti-his tag 

antibody (Sigma-Aldrich, Dorset, UK) (dilution factor 1:2000 in PBST) and shaken gently on a 

rocking platform at room temperature for 1 hour. One strip served as a negative control; 

therefore, it was incubated only in PBST. 

Membrane strips were washed three times for 5 minutes in PBST to remove unbound anti-

his antibody. Conjugate antibody (Anti-mouse polyvalent immunoglobulins) was added to 

the strips (dilution factor 1:10,000) and incubated at room temperature for 1 hour with 

rocking and membrane strips further washed three times in PBST with rocking. All strips were 

placed in clear, white plastic and 2.0 ml of TMB blotting solution (3, 3', 5, 5'-

tetramethylbenzidine and hydrogen peroxide) (Uptima-Interchim, Montlucon, France) was 

added into each strip, and their top was covered using another a clear, white plastic. Strips 

were incubated in a dark room for 5-15 minutes and checked occasionally for a change, 

denoted by presence of bands on the membrane. Lastly, strips were dried, and photos of all 

strips taken using white light in a gel-documentation system. 

 

2.19 Inclusion body extraction of leptospiral OMP 

After obtaining E. coli pellets from Section 2.16, cells were subjected to inclusion body 

preparation for recombinant protein extraction. The pellets were homogenised with 0.25 % 
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(w/v) lysozyme buffer (Table 2.4), and the solution was incubated on ice for 30 minutes to 

detach the cell wall. To release the protein component of the cell wall, the cell suspension 

was subjected to sonication using a cell sonicator (Bendelin, Berlin, Germany) and the pulse 

mode was set for 5 minutes operation (burst cycle; 20 seconds off, 10 seconds off) (20-50 

kHz). After sonication, the cell suspension was centrifuged at 13,000 g at 4°C for 20 minutes, 

and the supernatant was discarded. The insoluble pellet was re-suspended with 4% (v/v) 

tergitol solution (Table 2.4), and the mixed solution was stirred continuously for ~2 hours to 

remove any protein contaminant originated from broken E. coli cell wall and other outer 

membrane components in the inclusion body pellet.  

The inclusion body solution was then centrifuged at 13,000 g for 20 minutes, and the 

supernatant discarded. The pellet was re-suspended in 50 mM Tris HCl pH 7.9 washing buffer 

and again centrifuged in a similar manner to remove the contaminants and excess tergitol 

solution. The step was repeated for 2-3 times until a pure white inclusion body pellet was 

obtained. After the last wash, 1.0 ml of inclusion body suspension was collected, centrifuged 

at 13,000 rpm for 1 minute to remove the supernatant and run on the SDS-PAGE gel as 

described in Section 2.17 to observe the inclusion body contents. Clean inclusion bodies 

pellets were kept in -20°C until use. 

 

2.20 Preparation of protein refolding  

A protein refolding protocol was adapted from Staton, (2018) and the principle of the method 

is described further in Chapter 4. Clean and white inclusion bodies (Section 2.19) containing 

misfolded protein was solubilised in 50 ml solubilisation buffer containing a high 

concentration of guanidine hydrochloride (GnHCL) (Table 2.4), and the mixed solution was 

placed on a rocking platform at room temperature for one hour. To separate the insoluble 

materials, the solution was centrifuged at 13,000 g for 30 minutes at 4°C. Solubilised protein 

was transferred into a clean 50 ml falcon tube and slowly dripped into refolding buffer (Table 

2.4) under normal gravity. The refolding buffer containing drip fed solubilised protein 

solution was rapidly stirred using a magnetic flea for 4 hours to prevent protein-protein 

stickiness that would affect protein refolding to their native state. 
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2.21 Overnight dialysis of refolded recombinant OMPs 

Refolded protein solution was subjected to overnight dialysis for removal of excess detergent 

and contaminants that may present in the refolding solution by selective and passive 

diffusion through a semi-permeable membrane. Refolded protein solution (Section 2.10) was 

transferred to 40 cm dialysis tubing cellulose membrane (average flat width 10 mm) with 

capacity to retain proteins of molecular weight at least 12 kDa (Sigma-Aldrich, Dorset, UK) 

and tied at both ends. The tube was immersed overnight in a six-litre dialysis buffer (Table 

2.4) and placed in a cold room (4°C). 

 

2.22 Protein affinity purification 

The following method describes the purification of recombinant protein in a native state.  

Here, 2.5 ml of nickel agarose beads (Qiagen, Hilden, Germany) was transferred to an Econo-

Pac® chromatography column (1.5 x 12 cm, polypropylene columns, 14 cm, 20 ml bed 

volume) (Biorad, Hemel Hempstead, UK), held upright using a clamp stand. Dialysed protein 

was mixed with slurry beads (20 ml at a time), and the solution passed through the beads 

under gravitational force. The step was repeated until all dialysed proteins had passage 

through the column (Figure 2.2). The flow-through was discharged, and the column was 

washed with 50 ml wash buffer (Table 2.4). The flow-through from wash buffer was collected, 

the column was rewashed with four fractions (5 ml each) of elution buffer (Table 2.4) into 

five separate tubes (labelled E1-E4).  
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Figure 2.2: Schematic image showing the example of His-tagged protein purification protein 
workflow using an affinity chromatography column.  

 

Recombinant protein purification using an affinity chromatography column involves four stages; 1 

Equilibrate (loading of nickel-charged affinity resin into the column until the equilibrium level is 

achieved), 2) Loading of protein solution, 3) Washing of resin using washing buffer, 4) Loading of 

elution buffer per 5.0 ml fractions as described in Section 2.22.  

 

Samples from each fraction including wash buffer were analysed on the 1D SDS-PAGE 

(Section 2.17) by mixing 16 µl of protein samples with 4.0 µl of 5X SDS-PAGE loading buffer 

(Table 2.4) with additional of a reducing agent (DTT/2ME) (see detail in Chapter 4) and heated 

on a heat block for 5 minutes before loading them into the gel wells. One fraction from E1 

was duplicated and unheated. All protein fractions were run in the electrophoresis tank, and 

the gel was washed and stained as described in Section 2.17. 

 

2.23 Overnight dialysis of concentrated protein solution 

E1 fraction from Section 2.22, which contains the highest protein portion was subjected to 

overnight dialysis to remove imidazole and other possible impurities. Protein fraction was 

transferred to 10 cm dialysis tubing cellulose membrane (average flat width 10 mm) (Sigma-

Aldrich, Dorset, UK) and both ends were tied. The tube was immersed in 1.0 ml dialysis buffer 

overnight at 4°C. After dialysis, the protein fraction was transferred to a sterile tube, and the 

concentration was quantified using NanoDrop™ 2000/2000c Spectrophotometer (Thermo 

Fisher Scientific, Massachusettes, USA). Using this instrument, the purified proteins were 
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measured by using direct UV absorbance at 280 nm (A280), and the protein concentration is 

automatically calculated using the Beer-Lambert equation A280 = c * ε * b where ε is the 

wavelength-dependent protein extinction coefficient, b is the pathlength. The concentration 

of each protein is shown using two units, mg/ml or µg/ml.  

2.24 Amicon concentration 

Protein samples were further concentrated using Amicon Ultra centrifugal filter units MWCO 

30 kDa (Sigma-Alrich, Dorset, UK) when the concentration from nanodrop was below 200 

µg/ml. Samples were transferred to the device and concentrated by centrifuging at 3000 g 

for 3-5 minutes, and the supernatant was collected, and its concentration was re-analysed 

using the nanodrop. 

 

2.25 Circular dichroism spectroscopy 

Circular dichroism (CD) spectroscopy was performed to determine the secondary structure 

of the expressed recombinant OMPs. This procedure was carried out using a Jasco-1100 

spectropolarimeter equipped with a Peltier unit for temperature control (Jasco, Easton, MD). 

The purified recombinant proteins were dialysed against a blank buffer containing 40 mM 

Tris-HCl, 50 mol NaCl and 0.05% (v/v) LDAO. The spectra reading was taken an average of 

three times, from 180 to 260 nm. Spectrum data were analysed with BeStSel 

(http://bestsel.elte.hu/index.php) and CAPITO (http://capito.nmr.leibniz-fli.de/plot.py) to 

obtain secondary-structure data. 

 

2.26 Enzyme-linked immunosorbent assay (ELISA) 

An ELISA method was employed for functional assays and binding saturation studies of 

leptospiral recombinant OMPs (Chapter 5 and 6), and detection of anti-leptospiral antibody 

in milk and serology immunological assays in two chapters of this thesis.  

2.26.1 Functional assays and binding saturation studies  

For host molecules and protein-binding saturation studies, non-activated, 96-well microtitre 

ELISA plates (Microplate Immunlon 2HB 96 well 128 mm x 86 mm- 0.330 ml well volume 2.37 

cm2 per well) (Thermo Fisher Scientific, Horsham, UK) were coated with 5.0 µg/ml of ECM 

proteins with bovine serum albumin (BSA) as a control, which was diluted in 1X PBS, pH 7.2. 
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Plates were incubated for 1 hour at 37°C and overnight at 4°C. Unbound protein was rinsed 

off by washing the plates three times (5 minutes apart) with PBST. Next, 0.1 % (w/v) of BSA 

(Sigma-Aldrich, Dorset, UK) was applied to the wells, to serve as a blocking buffer to prevent 

non-specific binding of antigens to the microtitre well (Hornbeck, 1991). Leptospiral 

recombinant OMPs were diluted according to the concentration as described (Chapter 5 and 

6) and 100 µl was added into ELISA plate wells in duplicate.  

Plates were then incubated for 1.5 hours at 37°C and subsequently washed six times with 5 

minutes apart with PBST. Monoclonal anti-his tag antibody (Sigma-Aldrich, Dorset, UK) was 

diluted (1:2000) with PBST, and 100 µl of the diluted solution was added to plate wells. Plates 

were incubated for 1 hour at 37°C, and subsequently washed three times with 5 minutes 

apart with PBST. Anti-mouse polyvalent immunoglobulins (Sigma-Aldrich, Dorset, UK) served 

as a conjugate antibody for binding with anti-his antibody was diluted (1:10,000) with PBST 

and 100 µl of this solution was added to plate wells. Plates were incubated for 1 hour at 37°C 

and subsequently washed three times with 5 minutes apart with PBST. 100 µl of 3,3’,5,5’-

tetramethylbenzidine dihydrochloride (TMB) liquid substrate was added across plate wells, 

and the antibody-conjugated reaction (measurement by the blue appearance of the wells) 

was visualised by incubating the plates in a dark room at room temperature for 15 minutes.  

The reaction was stopped by adding a stopping solution (Table 2.4), which produces a colour 

reaction from blue to yellow. The colour absorbance of each well was measured by a 

microtitre (Multiskan EX) plate reader (Thermo Fisher Scientific, Delaware, USA) using a 

standard 450 nm filter. Each plate was measured three times, and the mean values were 

averaged as a representative for further analysis. Both functional and binding saturation 

ELISA assays were repeated as three independent experiments, and the results are averaged 

for statistical analysis. Figure 2.3 and Figure 2.4show the ELISA plate layout used for both 

functional assays and binding saturation studies. 

2.26.2 Serology and milk immunological ELISA 

For the serology and milk immunological assay, the ELISA protocol was implemented 

differently. Figure 2.5 and Figure 2.6 show the ELISA layout for milk and serum samples, 

respectively.  

ELISA plates were coated with 5.0 µg/ml of leptospiral recombinant OMP as antigen and 

incubated at 37°C for 1 hour and overnight at 4°C. Plates were washed three times with 5 

minutes apart to remove access unbound antigens. For bulk milk samples, 100 µl of 0.2% 
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(w/v) of milk powder (2.0 g in 100 ml PBST) was added into each well as a blocking agent and 

plates were incubated at 37°C for 1 hour. For serology ELISA, no blocking agent was used. 

After washing three times with 5 minutes apart, 100 µl of bulk milk samples with fat layer 

initially removed by centrifugation (preparation details in Chapter 5) was added to the wells 

in duplicate and plates were incubated at 37°C for 1 hour. For serology, individual serum 

sample was diluted (1:100) in PSBT and 100 µl was added to the wells (except milk blank 

wells-replaced with 100 µl PBST) and plates were incubated at 37°C for 1 hour. 100 µl of 

positive, weak positive and negative sera (supplemented in Priocheck™ L. Hardjo Ab Strip Kit) 

(Thermo Fisher Scientific, Horsham, UK), diluted 1: 200 in PBST were included in the study as 

sera controls.  

Plates (containing milk/serum samples) were washed three times to remove unbound 

antibodies. 100 µl of Mouse Anti-Bovine Immunoglobulin class G subclass 1 (IgG1) or 100 µl 

of Mouse Anti-Bovine Immunoglobulin class G subclass 1 (IgG2) (Biorad, Hemel Hempstead, 

UK) was added to each well at a 1: 1000 dilution in PBST. 100 µl of diluted monoclonal anti-

his tag antibody was added to His-tag wells which served as an antibody control. 

Plates were incubated again at 37°C for 1 hour, and after washing, the conjugate antibody, 

substrate and stopping solution was added according to Section 2.26.1. Conjugate and 

substrate solution were not added to the control wells, and these wells were covered with 

100 µl of PBST. Similarly, ELISA plates were analysed in a microtitre plate reader using a 

standard 450 nm filter the results were read three times, and the mean absorbance was 

averaged. Milk and serology ELISA assays were repeated as two independent experiments, 

and the results were averaged for statistical analysis.   
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Figure 2.3: ELISA plate layout for functional study (host molecules screening) of leptospiral 
recombinant OMPs.  
 

Binding of an OMP against a library of host molecules (including BSA as a control) is analysed in 
duplicate using two OMP concentrations, 0 µg/ml and 10.0 µg/ml. Each ELISA plate may analyse up 
to three OMPs separately (discriminated by colour separation as shown). 
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Figure 2.4: ELISA plate layout for binding saturation assay. From host molecules screening results, 
ECM with significant binding affinity was subjected to ligand-saturation assay.  

 

Binding of an OMP against selected host molecules (including BSA as a control) was analysed in 

duplicate in its parallel column using concentrations ranging from 0.0 µM-6.0 µM. 
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 1 2 3 4 5 6 7 8 9 10 11 12 

A 1 1 9 9 17 17 25 25 33 33 MB MB 

B 2 2 10 10 18 18 26 26 34 34 MB MB 

C 3 3 11 11 19 19 27 27 35 35 CB CB 

D 4 4 12 12 20 20 28 28 36 36 CB CB 

E 5 5 13 13 21 21 29 29 37 37 SB SB 

F 6 6 14 14 22 22 30 30 38 38 SB SB 

G 7 7 15 15 23 23 31 31 39 39 HIS HIS 

H 8 8 16 16 24 24 32 32 40 40 HIS HIS 

Figure 2.6: Milk ELISA plate layout. Each bulk milk sample is analysed in duplicate shown by the 
duplication of each number in its parallel column. 
 

Abbreviations: MB (Milk blank), CB (conjugate blank), SB (substrate blanks), HIS (His-tag blank) 

 

2.27 Ethical approval and project licensing 

All experiments were approved by the University of Liverpool ethical review board which 

includes Leptospira related project (Application number: VREC578).  

 

 1 2 3 4 5 6 7 8 9 10 11 12 

A 1 1 9 9 17 17 25 25 33 33 CB CB 

B 2 2 10 10 18 18 26 26 34 34 CB CB 

C 3 3 11 11 19 19 27 27 35 35 SB SB 

D 4 4 12 12 20 20 28 28   SB SB 

E 5 5 13 13 21 21 29 29     

F 6 6 14 14 22 22 30 30 ++ ++   

G 7 7 15 15 23 23 31 31 + + HIS HIS 

H 8 8 16 16 24 24 32 32 - - HIS HIS 

Figure 2.5: Serology ELISA plate layout. Each serum sample is analysed in duplicate shown by the 
duplication of each number in its parallel column. 
 

Abbreviations: CB (conjugate blank), SB (substrate blanks), HIS (His-tag blank). (++) indicates strong 

positive serum control, (+) indicates weak serum control and (-) indicates negative serum control 
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2.28 Statistical analysis 

2.28.1 Non-parametric statistical test 

Non-parametric statistical tests were used to determine possible significant different(s) 

between one or more groups. These tests were selected throughout the project due to two 

reasons; 1) Unknown distribution of a population data, and 2) Small-sample size. Non-

parametrical statistical tests used in this thesis are explained below. 

 

2.28.1.1 Comparison of data between two groups 

 

Mann-Whitney U-test (non-parametric-unpaired t-test) was used to determine 

possible significant differences between the means of two groups of the same 

population (sample).  

Mann-Whitney U-test is designated as U and the formula used is given as: 

 

Whereby: 

   U = Mann-Whitney calculation for sample X 

   n1 = Sample size of group 1 

   n2 = Sample size of group 2 

   T1 = Sum of ranks of group 1 

 

Mann-Whitney test was calculated as a two-tailed test and performed using 

GraphPad version 7.02 (GraphPad Software, California, USA). A P-value less than 

(≤0.05) was considered statistically significant, which indicates there is a difference 

between the means; thus, the significant difference enables rejection of the null 

hypothesis. 

 

2.28.1.2. Comparison of data between several groups 

 

Dunnett’s multiple comparison test was selected to compare the variation of means 

of three or more groups in a sample using a single negative control, performed by 

Graphpad version 7.02. A P-value less than (≤0.05) was considered statistically 

significant, and therefore, the null hypothesis can be rejected. 



Chapter 3  Identification of Leptospira OMP 

77 
 

2.28.2 Regression analysis 

Regression analysis was used for estimating the relationships between a dependent 

(target) and independent variable (predictor). The types of regression analysis 

chosen in this thesis are explained below. 

 

2.28.2.1 Linear regression 

Linear regression was selected to study the relationship between the dependent 

variable and one or more independent variable using regression (a best fit straight 

line). The analysis is represented by an equation which is able to predict the value of 

the target variable based on a given predictor variable. The linear equation is given 

by; Y= a+b*Y + e where a is intercept, b is the slope of the line and e is error term. To 

get the best fit straight line, the line was calculated using the least square method 

for fitting a regression line. The coefficient of determination of the data points 

scattered around the fitted regression line is calculated by R-squared (R2).  

 

R2 is the percentage (from 0% to 100%) of the dependent variable that linear model 

given by; 

 

The larger R2, the better regression model the fit the observation. Linear regression 

analysis was modelled using GraphPad (Prism) version 7.02. 

 

2.28.2.2 Nonlinear regression  

 

Nonlinear regression was used to measure the interaction between a host ligand 

binding to another protein to determine its binding affinity. Using ELISA data, the 

strength of binding interaction between protein-ligand binding is measured by the 

equilibrium dissociation constant (Kd) based on a method described by Lin et al., 

(2009) which using the following equation; 
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where [A] is the absorbance at a given protein concentration, [Amax] is the maximum 

absorbance for the ELISA plate reader (OD 450 nm), [protein] is the protein 

concentration and Kd is the equilibrium dissociation constant for a given protein 

concentration. The Kd is calculated at micromolar unit (µM), which corresponds to 

ligand concentration of which half of the proteins are bound at equilibrium. This also 

refers to the concentration of reactant protein to achieve a half-maximum binding 

at equilibrium. Thus, the lower the value of Kd, the stronger the binding reaction 

given by its unit, Moles per litre (M) (Pollard, 2010). Equilibrium binding assays for 

protein-protein interaction graph were plotted, and the Kd values were calculated 

using a curve fit, nonlinear regression (one-site total) equation performed by 

GraphPad (Prism) version 7.0. 
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Chapter 3: Identification of putative outer membrane proteins 

from pathogenic bovine Leptospira  

 

3.1 Introduction 

3.1.1 Leptospira outer membrane components 

Spirochetal outer membranes are considered to have the same structure as other Gram-

negative bacteria. The outer membrane has several essential functions for the bacterial cell, 

and these roles are regulated by highly specialised groups of proteins. As briefly described in 

Chapter 1, the Leptospira outer membrane consists of two major protein components, which 

are located within the lipid bilayer with the exterior facing lipid layer consisting of both lipid 

and carbohydrate O-antigens described as Lip-O-polysaccharides (LPS). LPS is the major outer 

membrane component and localised abundantly on the surface of the outer cell membrane 

and serves as a determinant of Leptospira serovars (Bulach et al., 2000).  

In most other Gram-negative bacteria, LPS is an endotoxin source, and the toxin can be 

associated with septicaemia caused by the gradual release of this cell molecule after cell 

death (Leeson et al., 1994). This same principle was considered to apply to leptospiral LPS, 

however, reports have shown that LPS toxin extracted from Leptospira is less potent 

compared with other Gram-negative bacteria (Isogai et al., 1986; Shimizu et al., 1987) and 

their roles in pathogenicity are considered more secondary. Host immune responses elicited 

towards leptospiral LPS are specific, and thus, this results in selective pressure for genetic 

change to produce O variations. Such variations result in the hundreds of leptospiral serovars 

that have been differentiated based on distinctive reactivity with antibodies or antisera in 

the microscopic agglutination test (MAT) (Haake and Zückert, 2015) (Table 1.2, Chapter 1). 

The two major protein components within the OM are outer membrane lipoproteins and 

integral/transmembrane OMPs. As previously mentioned in Chapter 1 of the thesis, several 

lipoproteins have been studied as potential vaccine candidates, however, their roles in 

pathogenesis remain undisclosed, and their lack of immune efficacies against heterologous 

infections require further evaluations. Our interest here is directed towards the 

transmembrane OMPs due to their surface-exposed loops that are likely in contact with the 

host cell’s receptors, which represent a potential target of a protective immune response.  
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3.1.2 Leptospira transmembrane outer membrane proteins 

The transmembrane OMPs are made up of eight to 24 antiparallel β-sheet strands as 

observed in most of the Gram-negative bacterial species (Fairman et al., 2011) with the larger 

transmembrane OMPs in other bacteria acting as autotransporters or adhesins. The first 

transmembrane OMP from Leptospira to be characterised was identified as forming a porin 

channel (Shang et al., 1995) and determined as only being present in pathogenic species. 

Such porin channels exhibit the shape of a cylinder or barrels as a result of transmembrane 

β-strands that continuously thread their way back and forth across the lipid bilayer, thus the 

formed proteins are called “beta-barrels” (Haake and Zückert, 2015).  

As previously noted, OmpL1 was the first transmembrane OMP that was discovered for 

Leptospira with a series of porin-like transmembrane using surface immunoprecipitation 

method (Haake et al., 1991; Haake and Champion, et al., 1993). Further work on this 

demonstrated that OmpL1 not only form a porin channel but also possess other typical porin 

characteristics such as heat-modifiable electrophoretic mobility, cross-linkable trimers and 

ability to form a channel in bilayer assay (Shang et al., 1995). After successfully identifying 

the first Leptospira transmembrane OMP, investigators have successfully identified several 

other OMPs from the most widely studied genomospecies L. interrogans. However, little has 

been done in other pathogenic genomospecies, such as L. borgpetersenii which may have 

diverse OMPs that are different from L. interrogans. Hence, the following work was primarily 

directed towards exploring other potential leptospiral OMPs specifically focusing on those 

considered unique to L. borgpetersenii and used a mixture of advanced bioinformatics tools, 

which will be discussed in the next section.  

3.1.3 Identification of surface-exposed proteins through in silico analysis 

The first goal towards identifying the potential vaccine candidates as part of a reverse 

vaccinology approach is to identify all surface-exposed proteins encoded in the bacterial 

genome via bioinformatics analysis. The initial screening is aimed to reduce the number of 

targets genes from thousands to hundreds, and screening using specific in vitro analyses will 

further reduce the number of vaccine candidates that will undergo laboratory testing 

(Grassmann et al., 2017).  

For vaccine target such as transmembrane OMPs, the first step to identify such encoded 

proteins in a bacterial genome is to determine the presence of amino-terminal signal 

peptides by sequence analysis. This short string of amino acids containing 20-25 amino acid 

residues is synthesized from an mRNA-ribosome complex together with the proteins of which 
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after they are later released and facilitate the directing of these newly synthesised proteins 

to their destination, mainly within the cellular membrane. The transmembrane OMPs are 

transported across the inner membrane to the periplasm by the Sec translocase complex 

where the signal peptides will be cleaved off by signal peptidase I. The remaining mature 

protein are then shuttled across the periplasm to the OM by chaperone SurA (Sklar et al., 

2007). The importance of the ability to recognise signal peptides has prompted the 

development of several computational methods for identifying and differentiating signal 

peptides from non-signal peptides and for determining the signal cleavage sites. These 

programs were designed based on protein annotations from public databases and had a 

range of accuracies (Zhang and Henzel, 2009).  

After the genes with signal peptides are identified, the second step is to further identify and 

clarify the locations of where the proteins (encoded from these genes) would be delivered. 

Gram-negative bacteria possess five different major subcellular localisation sites which 

include the cytoplasm, the inner membrane, the outer membrane, the periplasm and the 

extracellular space. By predicting the location of these proteins, it may provide an insight into 

their biological roles within the membrane (Jensen et al., 2002). A number of bacterial 

subcellular localisation programs (BSL) have been developed for this purpose, such as 

Subcellular Localisation Prediction Tool (PSORTb) (Gardy et al., 2005), and Subcellular 

Localisation Predictive System (CELLO) (Yu et al., 2004) which will be explained further in 

discussion section.  

The use of BSL tools, however, have typically been somewhat limited as they only predict the 

possible location of genes within the membrane, but cannot predict the protein topology 

(Gardy et al., 2005). Therefore, to increase a chance of finding the transmembrane OMPs 

within the membrane, it is crucial to expand the search by including algorithms that 

specifically predict for β-barrel proteins. Multiple algorithm servers are available online and 

have been developed and improvised over time for maximum performance. Some of the 

popular β-barrel tools with high accuracy of prediction have been suggested in the literature 

across Gram-negative bacteria including β-barrel Outer Membrane protein Predictor 

(BOMP), Prediction of Transmembrane Beta-Barrel Proteins (PRED-TMBB) (Bagos et al., 

2004b), Markov Chain Model for Beta Barrels (MCMBB) (Bagos et al., 2004b; Bagos et al., 

2004c; Berven et al., 2004) which will be discussed in detail in both methodology and 

discussion sections.  



Chapter 3  Identification of Leptospira OMP 

82 
 

Domain identification prediction is a useful method to gain information with regards to 

protein’s family/domain and annotations (Mulder and Apweiler, 2007; Punta et al., 2012) 

and is recommended to be used alongside other protein prediction tools. Tools such as Pfam 

(Finn et al., 2016) and Interpro (Finn et al., 2017) are two of the most popular search engines 

for the prediction of protein family and structural domains for this purpose. Moreover, 

adding this method as a part bioinformatics framework in reverse vaccinology pipeline will 

not only provide valuable information on the protein’s function, this also will increase 

confidence that the selected genes could probably be the true targets as vaccine candidates. 

For a past decade, bioinformatics is a useful platform for identifying and selecting desired 

antigens from whole genomes based on a reverse vaccinology approach in leptospirosis 

research (Yang et al., 2006; Dellagostin et al., 2017). Antigen selection strategy is based on 

the multiple user-friendly web tools, publicly available to predict a specific signature of 

genome sequences. With the increasing number of prediction tools available, one can do 

multiple analyses and compare the outcomes from one tool to one another, and therefore 

may increase confidence to select the most likely genes of interest based on desired criteria. 

Given the dearth of available information on L. borgpetersenii OMPs, here we attempt to 

carry out the first stage of a reverse vaccinology pathway, by which to identify unique β-

barrel encoding genes from entire genomes for subsequent analyses.  
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3.2 Materials and Method 

3.2.1 Selection criteria for L. borgpetersenii OMP encoding genes to be used in expression 

studies 

The selection for L. borgpetersenii OMP candidate genes was based on the several criteria of 

L. interrogans transmembrane OMP in a study by Pinne and Haake, (2009). The selected 

criteria including; 1) Presence of signal peptides cleavage sites in protein without lipoprotein 

signal peptidase, 2) Absence of inner membrane α-helices, 3) Prediction of at least six 

membrane-spanning β-strands using the β-barrel prediction tools. Additionally, 4) The 

prediction of cellular localisation sites of selected OMP encoding genes were added into the 

list of criteria to further verifying the protein location on the leptospires outer membrane. 

3.2.2 Identification of genes encoding putative β-barrel of L. borgpetersenii L550 

Two complete L. borgpetersenii serovar Hardjobovis strain L550 (with accession numbers 

chromosome 1 (NC_008508) and chromosome 2 (NC_0085509) and JB197 genomes with 

accession numbers chromosome 1 (NC_008510) and chromosome 2: (NC_008511) were 

extracted from National Center for Biotechnology Information (NCBI) database (Bulach et al., 

2006). Genome annotations of each strain were submitted to Rapid Annotation using 

Subsystem Technology (RAST) available online (http://rast.nmpdr.org/rast.cgi) (Aziz et al., 

2008).  

 

The following algorithm programs were employed to predict the genes within the outer 

membrane; SignalP version 3.0 to discriminate between signal peptides of secretory proteins 

and transmembrane regions (Petersen et al., 2011), TMHMM version 2.0 for the prediction 

of transmembrane helices (Krogh et al., 2001),  PSORTb version 3.0 and CELLO version 2.5 for 

the prediction of subcellular localisation (Yu et al., 2006, 2010). The probable β-barrel 

proteins were predicted by using three β-barrel prediction programs: PRED-TMBB (Bagos et 

al., 2004c), BOMP (Berven et al., 2004) and MCMBB (Bagos et al., 2004b). Lastly, Pfam, 

Interpro and BLASTp were used to identify the putative function of protein’s domain (Altschul 

et al., 1990; Finn et al., 2016, 2017). The list of selected bioinformatics tools is shown in Table 

3.1 and summary of reverse vaccinology-based bioinformatics workflow for the identification 

of novel OMP is shown in Figure 3.1.



Chapter 3  Identification of Leptospira OMP 

84 
 

Table 3.1 : List of algorithm programs used for the selection of L. borgpetersenii transmembrane OMP candidates. 

In silico predictor Server URL References 

Signal peptide prediction 
 

SignalP v 3.0                   
 

http://www.cbs.dtu.dk/services/SignalP3.0/ (Petersen et al., 2011) 

Prediction of bacterial protein  
subcellular localisation 

PSORTb v 3.0 
CELLO v 2.5 

http://www.psort.org/psortb 
http://cello.life.nctu.edu.tw/ 
 

(Yu  et al., 2004; Yu et al., 2010) 
 

Prediction of transmembrane  
Helices 
 

TMHMM v 2.0 http://www.cbs.dtu.dk/services/TMHMM/ (Krogh et al., 2001) 

β- barrel OMP prediction 
 
 

PRED-TMBB 
BOMP 
MCMBB 
 

http://bioinformatics.biol.uoa.gr/PREDTMBB/ 
http://services.cbu.uib.no/tools/bomp  
http://athina.biol.uoa.gr/bioinformatics/mcmbb/ 
 

(Bagos et al., 2004b; Bagos  et al., 2004c; Berven et 
al., 2004) 

 

Domain identification 
 

Pfam 
Interpro 
BLASTp 

https://pfam.xfam.org/ 
https://www.ebi.ac.uk/interpro/  
https://blast.ncbi.nlm.nih.gov 
 

(Altschul et al., 1990; Finn et al., 2016, 2017) 
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Figure 3.1: Summary of reverse vaccinology-based bioinformatics workflow for the identification of novel 
Leptospira borgpetersenii serovar Hardjobovis L550 OMPs in this study. 
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3.3 Results 

3.3.1 Leptospira genome annotation 

A downloaded version of Artemis genome browser and annotation tool (Wellcome Trust 

Sanger Institute, Hinxton, UK) was used for visualising, browsing and analysing Leptospira 

sequence data directly from the GeneBank. Each strain consists of two chromosomes; large 

chromosomes (CI) of about ~3.6 kbp and one small chromosome (CII) of about 0.3 kbp. Based 

on RAST annotation outcomes, both strains appear to have similar number coding regions on 

their genomes that codes for proteins. Interestingly, when comparing with other Leptospira 

pathogenic reference strain, L. interrogans serovar Copenhageni strain Fiocruz L1-130 

(Accession numbers: NC_005823 and NC_005824) and non-pathogenic species, L. biflexa 

serovar Patoc strain Patoc 1 (Ames) (Accession numbers CP_000777 and CP_000778), L. 

borgpetersenii has a genetic size reduction of about ~700 kb than that of L. interrogans 

species as reported by Murray et al. (2013). The coding sequence (CDS) of both L. 

borgpetersenii strains have also reduced by 5-7% compared with the pathogenic interrogans 

species. The features of various Leptospira species are tabulated in Table 3.2. 

3.3.2 Outcomes from the prediction tools 

Through bioinformatics analysis as described in the methodology section, from whole L. 

borgpetersenii serovar Hardjobovis (L550 and JB197) genomes, 104 genes were predicted to 

have signal peptide cleavage sites (signal peptidase I), and these genes were screened for all 

OMP criteria with relevant prediction tools as described in Section 3.2.1 and 3.2.2. Due to 

close identical genetic content of both L. borgpetersenii strains, only the L550 genome was 

selected in this study and subsequently throughout this thesis. The list of L550 genes with 

predicted signal peptide cleavage site I and OMP features can be found in Appendix A of the 

thesis. Overall, 94 genes were predicted without inner membrane α-helices via TMHMM. The 

total of 45, eight and five genes were predicted as β-barrel OMP from PRED-TMBB, BOMP 

and MCMBB respectively. A total of 48 and 33 genes were predicted as proteins located at 

the cellular membrane by PSORTb and CELLO, respectively.  
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From the list of genes outputted, 17 genes were identified as present in L. borgpetersenii and 

absent from L. interrogans (Table 3.3). A total of five genes, were specifically selected as a 

final choice based on;1) Having predicted β-barrels by at least one of the three β-barrel 

predictor programs, 2) Encoding a calculated protein molecular weight between 20-65 kDa, 

and 3) Containing an OMP domain that has not yet been characterised. As OmpL1 from L. 

interrogans species was known to be recognised by the respective hosts (human and canine) 

immune systems (Guerreiro et al., 2001; Dong et al., 2008; Fernandes et al., 2012; Subathra 

et al., 2013), here we included the OmpL1 gene from L. borgpetersenii L550, to evaluate any 

relevant host immune response in cattle milk and serum samples (Chapter 5 and 6). 

Additionally, OmpL1 (LIC_10973) from L. interrogans serovar Copenhageni Fioncruz strain L1-

130 was selected as an OMP positive control for biochemical function in this study (Shang et 

al., 1995; Fernandes et al., 2012). The final L550 genome selection with their prediction 

outcome is shown in Table 3.4. 

 

Table 3.2: The features of several leptospiral strains from RAST annotation outcomes. 

Strain 
 

Genebank 
accession 

Size (bp) GC content (%) No of 
CDS 

L. borgpetersenii serovar 

Hardjobovis strain L550 

L550 (CI) 

L550 (CII) 

 

 

NC_008508 

NC_008509 

 

 

3,614,446 

317,336 

 

 

40.2 

40.2 

 

 

3966 

362 

L. borgpetersenii serovar 

Hardjobovis strain JB197 

JB197 (CI) 

JB197 (CII) 

 

 

NC_008510 

NC_008511 

 

 

3,576,473 

299,762 

 

 

40.2 

40.4 

 

 

3905 

335 

L. interrogans serovar 

Copenhageni Fiocruz strain L1-

130 

L1-130 (CI) 

L1-130 (CII) 

 

 

 

NC_005823 

NC_005824 

 

 

 

 

4,277,185 

350,081 

 

 

 

35.0 

35.0 

 

 

 

4117 

329 

L. biflexa serovar Patoc strain 

Patoc 1 (Ames) 

Patoc 1 (CI) 

Patoc 1 (CII) 

 

 

CP_000777 

CP_000778 

 

 

3,603,977 

277,995 

 

 

38.9 

39.3 

 

 

 

3556 

284 

CI and CII: Chromosomes I and Chromosomes II; CDS: Coding sequence; GC: Guanine-cytosine 

content (%)                   
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Table 3.3: List of unique L. borgpetersenii serovar Hardjobovis L550 genes and their domain annotations comparing to L. interrogans. 

Locus Tag Mol Size Pfam InterProScan BLAST Characterised? 

Homologues to L. 

interrogansa 

LBL_0238 29.5 None Predicted None Predicted Hypothetical protein No - 

LBL_0353 20.0 None Predicted None Predicted Hypothetical protein No - 

LBL_0375 39.1 None Predicted None Predicted Hypothetical protein No  

LBL_0972 37.5 DUF Pectin lyase fold Hypothetical protein No - 

LBL_0976 37.3 Phenol-MetA MetA-pathway phenol degradation Hypothetical protein No - 

LBL_1054 54.3 None Predicted None Predicted Hypothetical protein No  

LBL_1341 63.0 None Predicted None Predicted Hypothetical protein No - 

LBL_1344 31.9 None Predicted None Predicted Hypothetical protein No - 

LBL_1930 58.4 Bacterial surface Bacterial surface Peptide binding protein Yes - 

LBL_2155 26.9 OMP lolA-like OMP lolA-like OMP (L. interrogans) No - 

LBL_2510 33.7 Porin OmpL1 Porin OmpL1 OMPL1 Yes LIC_10973* 

LBL_2618 51.6 DUF None Predicted Hypothetical protein No - 

LBL_2800 13.0 

Fibronectin-binding 

protein 

None Predicted Fibronectin-binding 

protein 

Yes - 

LBL_2925 20.7 OMPA OMP A Family Protein OMP A Family Protein No - 

 

Selected genes are highlighted in the table. (-) denotes as not known 

Abbreviations: Pfam: Protein families, InterProScan:  Protein sequence analysis and classification, BLAST:  Basic local alignment search tool, DUF: Domain of an unknown 

function, OMP: Outer membrane protein 
aProteins shared the same homologues with L. interrogans but included in the research 

 *Positive control included in the study  
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Table 3.4: List of selected L550 OMP encoding genes in respect to desired molecular weight, presence of signal peptides, β-barrel prediction scores and number of 
predicted α-helices within the genes. 

 
 
Locus Tag 
 
 
 

 
Molecular 
weight 

 

Signal 
peptide 

 

β-barrel prediction score 

 

 

 

Number of predicted α-helices 
(TMH) 

 
Size (kDa) 

 
Cleavage site 

 
BOMPa 

PRED-TMBBb (Yes/No) with 
scores 

MCMBBc TMHMMd 

LBL_2510 (OmpL1) 31 LSA-KS 0 Yes 2.91 0.024 0 

LBL_1341 61 IQA-QL 1 Yes 2.94 0.015 1 

LBL_0972 36 AGA-ND 0 Yes 2.88 0.024 0 

LBL_1054 50 THA-EQ 0 Yes 2.95 0.025 0 

LBL_2618 49 SQA-ER 0 No 3.02 0.008 0 

LBL_2925 20 SSA-EK 0 Yes 2.94 0.00 0 

LBL_0375 37 LVA-QE 0 Yes 2.92 0.016 0 

LIC_10973* (OmpL1) 31 LSA-KT 1 Yes 2.90 0.024 1 
        
a BOMP: The output format for proteins predicted to be integral OMPs are classified 0 to 5 where 0 means that the predictor did not find the protein to be an integral OMP 

whilst 1 to 5 is for proteins predicted to be integral outer membrane proteins, where 1 is the least reliable prediction, and 5 is the most reliable. 
b PRED-TMBB: The output format for proteins predicted to be transmembrane OMPs are based on the threshold level. Threshold level below than 3.00 indicates that the 

protein is likely to be β-barrel. 
c MCMBB: The output format is based on a 1st order Markov Chain model, which captures the alternating pattern of hydrophilic-hydrophobic residues occurring in the 

membrane-spanning β-strands of β-barrel OMPs. A score higher than 0, indicates that the protein is more likely to be a beta-barrel OMP, whereas a score lower than 0, 

indicates that the protein is probably not a β-barrel.  
d TMHMM: The format output predicted the number of transmembrane helices (TMH) within a protein sequence 

* Positive control used in this study.  
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LBL_2618, which scored higher than a fixed score threshold of 2.965, indicating that the 

sequence does not belong to an outer membrane protein (Bagos et al., 2004c). However, 

BOMP predictor did not identify the majority of selected sequences to be being integral outer 

membrane proteins except two proteins, LBL_1341 and LBL_1054. MCMBB predictor showed 

all but one of the proteins have a score of at least 0, indicating the proteins are most likely to 

be β-barrels. Only two proteins (LBL_1341 and LIC_10973) contain a THM are included in the 

list of selected sequences due to a strong correlation of being outer membrane proteins as 

predicted on β-barrel programs. 

BLS tools further validate the localisation site of each protein (Table 3.5). CELLO predicted 

that most of the proteins are located either extracellular or on the outer membrane with the 

respective scores. PSORTb however, was unable to predict four proteins (LBL_2510, 

LBL_2925, LBL_0375 and LIC_10973), although other proteins share similar predictions as 

CELLO. The unknown prediction is due to the multiple localisation sites share the same 

distribution scores, or two sites have about similar high scores indicating a particular protein 

may have multiple localisation sites within the bacterial cell membrane (Gardy et al., 2005). 

Each protein was then submitted to domain identification tools (Pfam, Interproscan, and 

BLAST) to further identify the domain of their functional annotations. Based on the findings, 

three proteins are predicted to be OMPs or have an OMP domain. Most of the proteins are 

hypotheticals and not characterised, and some proteins are classified in the domain of the 

unknown function (DUF). The finding from each protein domain is listed in Table 3.6. 

Table 3.5: Outcomes from CELLO and PSORTb 3.0 predicting protein’s localisation site from 
selected proteins in this study. 

 
Locus tag 

CELLO PSORTb v 3.0 

Localisation site Score Localisation site Score 

LBL_2510 Extracellular 2.640 Unknown - 

LBL_1341 Outer membrane 3.933 Outer membrane 9.49 

LBL_0972 Extracellular 4.557 Extracellular 9.65 

LBL_1054 Outer membrane 4.633 Outer membrane 9.49 

LBL_2618 Extracellular 3.774 Extracellular 9.64 

LBL_2925 Periplasmic 3.606 Unknown - 

LBL_0375  Extracellular 2.732 Unknown - 

LIC_10973* Extracellular 2.759 Unknown - 

* Positive control used in this study, (-) denotes as no score 

Each localisation site shows the highest score from multiple membrane component, thus indicating 
the most probable position within the leptospiral cell membrane.  
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Table 3.6: Domain identification results from selected L550 OMP genes. 

 

Locus tag 

 

Pfam 

 

Interproscan 

 

Blast-p 

 

Nearest functional Leptospira 

homologues 

 

References 

           Identity (%) E-value 

LBL_2510  

(OmpL1) 

Porin Porin OmpL1 OmpL1 100 0.0 (Haake and Matsunaga, 2002) 

LBL_1341 NP NP HP 97 0.0 - 

LBL_0972 DUF 1565 Pectin lyase fold HP 96 0.0 (Jenkins, Mayans and Pickersgill, 1998) 

LBL_1054 NP NP HP 94 0.0 - 

LBL_2618 DUF 1566 NP Adhesin 77 0.0 Unpublished 

LBL_2925 OmpA OmpA Family Protein OmpA Family 

Protein 

100 5e-139 (Mot et al., 1992) 

LBL_0375 NP Immunoglobulin-like fold HP 99 0.0 (Potapov et al., 2004) 

LIC_10973* 

(OmpL1) 

Porin  Porin OmpL1 OmpL1 100 0.0 (Haake and Matsunaga, 2002) 

*Positive control used in this study  

 

The identity percentage is the measurement of the similarity between L550 and other Leptospira homologues on BLAST. Expect (E) value is a BLAST parameter that describes 

the number of hits that can be expected when searching a database of a particular size. DUF: Domain of unknown function, HP: Hypothetical protein, NP: None predicted, 

OMP: Outer membrane protein (-) denotes as not known 
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3.4 Discussion 

Before the arrival of the genomic era, the outer membrane proteins were identified through 

subcellular fractionation. The process was highly complex, involving several steps to separate 

the largely insoluble components of the outer membrane (Smither et al., 2007). Subcellular 

fractionation has successfully discriminated several proteins of the OM from the IM for many 

Gram-negative bacteria including some leptospiral studies (Zuerner et al., 1991; Haake and 

Matsunaga, 2002; Nally et al., 2005). However, such fractionation of whole cell bacteria has 

been reported to ineffectively recognise the fraction of leptospiral transmembrane OMPs 

such as the channel-forming porin and therefore is not a comprehensive suitable method for 

the studies of spirochete OMPs (Pinne and Haake, 2009). Such limitations could explain why 

many other leptospiral OMPs were overlooked and therefore unreported, likely due to their 

poor solubility, low abundance and inability to be easily analysed and visualised by SDS-PAGE. 

The genomic era began in the early 2000s where whole genome sequencing finally became 

available for the identification of vaccine candidates using the reverse vaccinology strategy. 

The presence of available sequence data in the public databases has driven the focus towards 

in silico antigen predictions. In silico prediction of antigens for vaccine candidates is 

determined by screening against various bioinformatics tools that can identify specific 

signatures of the genes associated with surface-exposed or secreted proteins. The method is 

broadly applied to a wide range of pathogens and indirectly discovering novel antigens that 

were not characterised previously (Talukdar et al., 2014; Meunier et al., 2016). A similar 

method had been applied to many L. interrogans studies (Gamberini et al., 2005; Pinne and 

Haake, 2009; Murray et al., 2013) and which has led to the discovery of several new OMPs 

for further functional and immunological evaluations. 

In this study, we applied in silico identification methods to determine putative OMPs in a 

bovine species Leptospira borgpetersenii serovar Hardjobovis L550. The first step towards 

the identification of OMPs is to identify the signal peptide that is targeted to the secretory 

pathway in prokaryote cells and identify their corresponding cleavage sites. There are many 

computational signal peptide prediction algorithms available to identify these, such as 

PrediSi (Jahn et al., 2004), Phobius (Käll et al., 2004), SPEPlip (Fariselli et al., 2003) and SignalP 

which have reported different prediction performances. We chose SignalP version 3.0 as 

recommended by Petersen et al. (2011), which has been reported as the best performing 

method compared with similar algorithms of discriminatory function. SignalP version 3.0 is a 
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web-based tool based on an artificial neural network method, and the output scores are 

determined within the position in the input sequence; raw cleavage site score (C-score), 

signal peptide score (S-score) and combined cleavage site score (Y-score). The overall 

discrimination score between signal peptides and non-signal peptides is calculated by a 

weighted average of the mean S and maximal Y score, and this will determine the most likely 

cleavage site within an amino acid sequence. The outcome of each sequence is 

supplemented in a graphical form. Figure 3.2 shows the three different scores (C, S and Y) for 

each position in the sequence.   

 

Figure 3.2: SignalP version 3.0 prediction output. 
 

Signal peptide prediction output by the neural network method is determined by the 

discrimination scores of raw cleavage site score (C-score), signal peptide (S-score) and 

combined cleavage site score (Y-score). The final discrimination score (Average mean S 

and maximal Y score) will determine the most likely cleavage site position within an 

amino acid. 
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PRED-TMBB is a web-server based on a Hidden Markov Model method that is capable of 

predicting the topology and discriminating beta-barrel OMPs from alpha-helical proteins 

(Bagos et al., 2004a,c). The program is trained to maximise the probability of the correct 

prediction of transmembrane proteins using 16 of known OMP’s that were previously 

characterised. The program consists of several states connected using the transition 

probabilities. The decoding method gives the prediction of the transmembrane strands in 

both statistical and 2D graphical output. The example of PRED-TMBB output is shown in 

Figure 3.3. In this study, we generated a list of potential OMPs genes with more than eight 

transmembrane strands and comparing these genes using other beta-barrel prediction 

programs. Using this collection of software, we selected 45 out of 104 proteins from L. 

borgpetersenii serovar Hardjobovis L550 with a signal peptide that demonstrates at least 

eight strands within the outer membrane. PRED-TMBB has been shown as a useful tool to 

predict the beta-barrel OMPs across the Gram-negative bacteria including spirochetes such 

as Treponema spp. (Desrosiers et al., 2012; Staton, 2018) and Borrelia spp. (Dyer et al., 2015).  

The BOMP program allows prediction of integral β-barrel OMP from a polypeptide sequence 

from Gram-negative bacteria. This method is based on two independent methods; C-terminal 

recognition on the last ten amino acids and the second method is based on the integral β-

barrel score calculated from the abundance of amino acids that highly match the membrane-

spanning arrangement of transmembrane β-strands. The outcome of BOMP is classified from 

number 1 to 5 category, and higher category indicates the probability that the query 

sequences are being β-barrel proteins (Berven et al., 2004). The accuracy of the prediction 

was 80% with a recall of 88% when tested in Escherichia coli K 12 and Salmonella 

Typhimurium (Berven et al., 2004). BOMP has been widely applied in many of reverse 

vaccinology studies, including in some Leptospira studies (Grassmann et al., 2017; Zeng et al., 

2017). In our observation, BOMP showed a direct hit of 8 out of 104 of proteins in L550 

genome with the presence of a signal peptide in the preliminary list of OMP candidates.   
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Figure 3.3 : The 2D representative hydrophobic models of two target genes.  
 

A: LBL_2510, B: LBL_2618 of the putative leptospiral OMPs incorporated within the lipid bilayer 
predicted by PRED-TMBB. 

 

MCMBB is a simple, readily available online algorithm which is able to discriminate β-barrel 

OMPs from globular protein and alpha-helical membrane proteins. The prediction is based 

on a 1st order Markov Chain model, which acquires the differences of hydrophilic-

hydrophobic residues in the transmembrane β-strands of the outer membrane (Bagos et al., 

2004b). The outcome of MCMBB prediction is provided by Markov Chain calculation which is 

simplified by an overall score where greater than 0 indicates the probability that a protein in 

an OMP. MCMBB predicted 16 proteins across L550 genome which scored 0 or higher, to be 

included in our list of probable OMP. 

To our knowledge, MCMBB is not widely used in spirochetes studies. However, it has been 

used in several OMPs studies in other Gram-negative bacteria with higher accuracy up to 90% 

for β-barrel proteins prediction (E-komon et al., 2012; Samaniego-Barrón et al., 2016). In a 

recent study, MCMBB was employed to identify leptospiral vaccine candidate and led to 26 

new potential vaccine candidates in L. interrogans serovar Copenhageni Fiocruz L1-130 

(Grassmann et al., 2017). Thus, MCMBB appears practically useful as an OMP search tool and 

reverse vaccinology pipeline for spirochete studies. 

A B 
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In addition to this, we applied a transmembrane α-helix (THM) predictor to exclude proteins 

with α-helix topology. This step is crucial as to discriminate between the transmembrane and 

inner membrane protein location’s as proteins with transmembrane α-helix tend to be 

localised to the inner membrane and potentially not surface-exposed. TMHMM software 

uses a Hidden Markov Model (HMM) to differentiate between soluble and membrane 

proteins with a high degree of accuracy (Krogh et al., 2001). Using this software, we predicted 

94 genes that contain at least a THM, and therefore, they are unlikely to be β-barrel proteins. 

We selected the remaining genes that are not predicted by TMHMM as to assume they 

contain β-barrels topology and compared with the rest of transmembrane β-barrel 

predictors. 

The localisation of a protein within a bacteria gives essential information to understanding 

its possible interaction, function and help to identify drug and vaccine targets (Imai et al., 

2013). There is a selection of bacterial subcellular localisation prediction software that 

applies to Gram-negative bacteria such as PSORTb (Gardy et al., 2003), CELLO (Yu et al., 

2004), SubcellPredict and HensBC (Bulashevska and Eils, 2006) and SLP-Local (Matsuda et al., 

2005). Among all of the software, we selected two programs based on the higher accuracy 

localisation prediction and are available as an online server.  

We selected PSORTb and CELLO software to validate the localisation site of our selected OMP 

proteins, and we referred both programs to discriminate between the proteins located within 

the inner or outer membrane layer. The PSORT program utilises different computation 

techniques as initiated by Nakai and Kanehisa (1991) by analysing several sequence features 

to influence its location within the Gram-negative bacteria. The PSORTb works by combining 

six different analytical algorithm programs to generate an overall prediction of localisation 

site following an amino acid sequence. A score for each possible localisation sites is 

calculated, and a higher score indicates high confidence that the query protein is located in 

the subcellular location (Gardy et al., 2003). During the study, we used the updated version 

of PSORTb (PSROTb version 3.0) with additional computational features to give a more 

precise prediction of about 80-95% on protein’s specific localisation sites of most bacterial 

proteomes (Yu et al., 2010). 

Concurrently, we applied CELLO to compare the results with PSORTb. CELLO works by using 

support vector machines (SVM), and the coding scheme is determined based on the n-

peptide composition of amino acid sequences to predict the protein’s classification. The 

predictive performance is measured using Matthew’s correlation coefficient (MCC), and the 
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perfect prediction is donated with a score of one and zero for a variable protein’s prediction 

(Yu et al., 2004; Yu et al., 2006). The accurate prediction of CELLO is topped at 95%-97% in 

both Gram-positive and Gram-negative bacteria comparing to other bacterial subcellular 

localisation prediction software (Yu et al., 2010).  

Based on results in Table 3.5, CELLO and PSORTb shared similar predictions on the 

localisation sites of almost all the selected proteins and this show that both programs are 

reliable to use concurrently. Moreover, the likelihood of getting a similar prediction is higher 

and therefore, may increase confidence in the true identification of relevant outer 

membrane protein candidates of Gram-negative bacteria. 

We improved our bioinformatics network by adding domain identification tools to analyse 

the uncharacterised and novel OMP sequences predicted from β-barrel and SCL tools. Pfam 

is a database source that contains a large collection of protein families database available via 

an online server (Finn et al., 2014). Each Pfam family (referred to as Pfam-A) is generated 

from a seed alignment derived from a subset of matching sequences, and this will be used to 

construct a HMM profile. The HMM profile is then used to generate a full alignment that 

contains protein sequences belonging to the family that aligned to profile HMM from the 

primary sequence database (Finn et al., 2016).  

Interpro database is another useful source of protein domain identification software. The 

program provides protein classification with an annotation describing the domain/family 

(known as signatures) by integrating multiple protein databases in order to add information 

on the biological annotation and cross-references to diverse data sources (Mulder and 

Apweiler, 2007). The outcome allows the user to gain a better overview of the protein’s 

putative function (Jones et al., 2014; Finn et al., 2017).  

In addition to domain identification tools, we also analysed all our predicted OMP sequences 

using BLAST® search. Similar to both Pfam and Interpro, BLAST is a powerful bioinformatics 

search tool that enables comparison of any protein against a sequence library database, 

therefore, identifies sequences that resemble the query sequence (Altschul et al., 1990). It 

also provides information on protein’s annotation, locating known domains that exist in a 

large library database and identify if the query protein sequence has been previously 

characterised. Using these domain tools, several selected genes (LBL_2510, LBL_2925 and 

LIC_10973, LBL_0972 and LBL2618) belong to at least one protein domain, whereas two 

genes (LBL_1341 and LBL_1054) do not belong to any of the known protein domains.  
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Using both protein domain tools and BLAST search, we further narrowed down the list of 

selected probable OMPs into eight final candidates based on three criteria; i) Genes with 

uncharacterised function, ii) Has an OMP domain and iii) ‘None predicted’ domain but appear 

in at least in one of the BSL and β-barrel search tools. 

Identification of OMP genes through in silico analysis has numerous advantages as it saves 

time and laboratory resources. While most studies thus far identifying Leptospira OMPs 

through this route are leaning toward L. interrogans (Gamberini et al., 2005; Yang et al., 2006; 

Yan et al., 2010), less attention has been given to other pathogenic species. Given the 

abundance of genomic data now available, it is now possible to explore the potential 

virulence factors in other Leptospira species which can be identified using various 

bioinformatics tools based on RV. Furthermore, many Leptospira genome annotations have 

no known orthologues, prompting RV as a promising approach for the identification of novel 

immunogens that lead to the development of leptospire recombinant vaccines. 

3.5 Conclusion 

In silico analysis is the first and crucial step in reverse vaccinology pipeline in identifying 

potential genes from a genome. This method allows the discovery of both previously 

identified proteins and those uncharacterised genes with the aid of various bioinformatics 

tools. Identification of such targets may enable new targets for vaccine development or 

diagnostic components.  

Using a whole genome sequence from a bovine strain reference L. borgpetersenii serovar 

Hardjobovis L550, 104 out of ~4000 genes were predicted to have signal peptide cleavage 

site, and the list was narrowed down using several prediction tools for identifying genes with 

desirable transmembrane β-barrel criteria and also the protein most likely localisation site 

within the bacterial outer membrane. A total of 14 genes were initially chosen using this 

process and finally, seven unique and uncharacterised L550 OMP genes selected (including 

two OmpL1 positive controls) that meet the designated criteria of this study. These genes are 

the key focus of this thesis. Next, the candidate genes will be subjected to cloning, expression 

and purification and further characterised to explore their function(s) and immunological 

roles.
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Chapter 4: Overexpression, refolding and purification of 

putative leptospiral outer membrane proteins 

 

4.1 Introduction 

Recent advances in genomics, coupled with established molecular biology methods have 

enabled substantial protein characterisation studies, especially the analysis of structure and 

function. Using these complementary disciplines, it is now possible to easily generate large 

quantities of pure proteins as recombinants, which are a useful resource for such functional 

studies. The availability of pathogenic leptospire genomes deposited in sequence 

repositories enabled the selection of genes encoding unique L. borgpetersenii serovar 

Hardjobovis L550 OMPs in Chapter 3 which here, together with access to the respective 

culture collection reference strain, enables cloning, overexpression, refolding and 

purification of these proteins ready for characterisation. 

4.1.1 Directional topoisomerase I cloning for protein expression 

In order to study the encoded protein from a DNA sequence of interest, the first step is to 

apply a cloning method where the DNA sequence of interest from an organism is combined 

into an entry vector, which is genetically designed to propagate genes into high-number of 

identical copies from a single recombinant vector. Molecular cloning was first introduced in 

the early 1970s following the discovery of restriction enzymes that cuts DNA molecules at 

specific sites (Jackson et al., 1972; Cohen et al., 1973) and has since become a standard 

protocol for DNA manipulation to further understanding of gene function in a particular 

organism. Traditional cloning methods involve four basic steps; 1) Isolation of a target DNA 

fragment (insert), 2) Ligation of the insert into an appropriate cloning vector (plasmid), 3) 

Transformation of recombinant plasmids into a competent host for propagation and 4) 

Screening of hosts containing the positive recombinant gene. Whilst the restriction enzyme-

based cloning has successfully enabled the cloning of many genes, it is laborious due to the 

selection of restriction sites and commercial enzyme availability (Chee and Chin, 2015).  



Chapter 4  Recombinant OMP expression 

100 
 

Modern recombinant cloning technologies offer flexible, straightforward methods, in which 

the gene cloning can be done in as short as 5 minutes without the use of DNA ligases. 

Directional topoisomerase I (TOPO I) cloning (Appendix B Figure B.1), a recent cloning 

technique developed by Invitrogen (Thermo Fisher Scientific, Massachusetts, USA) utilises 

DNA topoisomerase I derived from Vaccinia virus, which serves dual functions; as restriction 

and ligase.  

4.1.2 Bacterial transformation of recombinant gene 

After an entry clone containing the recombinant gene is generated, the next step is to 

transform this clone into a competent cell in order to enable propagation of the clone/gene 

prior to creating an expression clone. Bacterial strains are the most common host used for 

this purpose due to their ability to take up exogenous DNA for replication using their DNA 

replication machinery. Several genetically modified, competent E. coli strains (commercially 

available) are used for this purpose. One Shot™ TOP10 Chemically Competent E. coli (Thermo 

Fisher Scientific, Massachusetts, USA) was selected to carry out the transformation steps in 

this study due to its stability in replication of high-copy number plasmids and higher 

transformation efficiency (1 x 109 cfu/µg) plasmid DNA, which are ideal for both maximum 

cloning efficiency and plasmid propagation (Ganoza et al., 2006; Evangelista et al., 2014).  The 

entry of plasmid containing cloned DNA into the cell is facilitated via chemical transformation 

or electroporation in which the cell membrane is compromised by reduced membrane 

potential and formation of pores on the cell surface as a result of lipid detachment (Panja et 

al., 2006, 2008).  

The transformed cells are cultured in antibiotic-free medium for a short period to allow 

expression of antibiotic resistance genes acquired from the inserted plasmid. Plasmids are 

purified and ready to be shuttled to a destination vector to create an expression clone. 

4.1.3 Gene reassembly by LR recombination reaction 

For the gene of interest to be translated into protein, the gene needs to be subcloned into a 

destination vector that has all the necessary elements for expression. The process is 

catalysed using a specific enzyme that integrates the attL site from the entry clone and attR 

of the destination vector. This reaction will generate an expression vector, which will undergo 

another bacterial transformation (in E. coli TOP10 cells) similar to Section 4.1.2, to propagate 

more plasmid copies before being used for protein expression. Ideal destination vector for 

protein overexpression should contain the following elements; a replicon, a (T7) promoter, a 
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suitable selection (antibiotic) marker and an affinity tag for purification (Rosano and 

Ceccarelli, 2014). Gateway™ pDEST™17, is an expression vector available from Gateway 

Technologies (Thermo Fisher Scientific, Massachusetts, USA) was selected to express the 

leptospiral OMP genes in this study. The pDEST17 plasmid (Appendix B Figure B.2) includes a 

T7 promoter and N-terminal 6xHis-tag and is derived from pBR322, a low-copy plasmid which 

is able to maintain the stability of the plasmid and enables expression of toxic proteins (Lin-

Chao and Bremer, 1986; Howe, 2007). 

4.1.4 Recombinant protein expression using an Escherichia coli expression system 

After an expression clone is created and purified, the construct is ready to be expressed in a 

compatible host carrying T7 RNA polymerase gene (tRNAs), which is controlled by a lac 

promoter. E. coli strains are the most widely used host for large scale protein expression 

owing to their rapid growth, ease of culture and low cost. The E. coli BL21 strain and its 

derivatives are the most popular choice of host and been routinely used in the laboratory for 

high-level expression and both T7 and non-T7 expression (Jeong et al., 2015).  

E. coli strain BL21-AI is a T7-based expression host that is designed to express toxic proteins 

under the control of the araBAD (arabinose) promoter. This has been shown to have low 

basal levels of expression enabling toxic protein expression and to promote strong expression 

of heterologous genes (Chen et al., 2009; Yao et al., 2009).  

4.1.5 Inclusion bodies, refolding and protein purification 

High-level expression of E. coli carrying heterologous genes often leads to protein 

aggregation, also known as inclusion bodies. When protein molecules aggregate as inclusion 

bodies, they are not biologically active. Hence, to restore their biological functions, several 

strategies are required to revert the protein aggregates to their native conformation form by 

solubilisation, refolding and purification. Solubilisation of inclusion bodies requires a high 

concentration of denaturants and chaotropic salts, such as guanidine HCl or urea which 

results in complete denaturation of protein structure and therefore increase the solubility of 

hydrophobic molecules (Robinson and Jencks, 1965). Furthermore, reducing agents such as 

DTT or 2-ME are often added into the solubilisation buffer for proteins containing cysteines 

residues (Cleland, 1964; Stevens et al., 1983). Cysteines may form incorrect disulphide bonds 

due to random oxidation, which can interrupt the correct refolding formation and cause the 

protein to be misfolded (Burgess, 2009).   
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After solubilisation is completed, the next step is to refold the solubilised proteins to their 

native-like state using several methods, such as dialysis (Sørensen et al., 2003), reverse 

dialysis (Vinogradov et al., 2003), rapid and slow dilution (Tsumoto et al., 2003). To refold 

membrane proteins, the refolding buffer is usually added with the presence of detergent to 

mimic the hydrophobic condition of the protein for the refolding process. Several classes of 

detergent are widely used for membrane protein extractions and LDAO (a zwitterionic 

detergent) was chosen as a detergent of choice in this research due to the relatively small 

size micelle size, able to maintain the protein neutral charge and low cost. Furthermore, 

LDAO was successfully used in some  OMP crystallisation studies (Pautsch et al., 1999; 

Pautsch and Schulz, 2000) including in spirochetal OMPs studies (Dyer, 2013; Staton, 2018). 

A drip (rapid) dilution refolding technique was applied as it was used in many OMP studies 

(Ye et al., 2013; Gessmann et al., 2014; Staton, 2018). The advantage of the drip refold 

technique is it minimises protein misfolding and precipitation (Cabrita et al., 2004). 

Dialysis is used after the refolding step to remove denaturants. A standard protocol for 

refolded protein dialysis is between 16-24 hours and recommended dialysate buffer is 100:1 

to samples volume ratio (Graewert, 2016) and should enable a clean protein solution before 

final purification step. 

Affinity chromatography purification is the process by which a protein of interest (typically 

fused to a protein tag) is separated from other proteins (without the tag) based on their 

affinity for specific molecules, which the column matrix is consists of, and results in the 

protein being retained by the column. Commonly used fused protein tags for recombinant 

proteins are polyhistidine (His) and glutathione-S-transferase (GST) containing peptide 

sequences. In this study, pDEST17 expression vector was selected, which consists of six 

histidine residues (6XHis) that allows purification of recombinant tagged protein using a 

nickel-chelating resin such as Ni-NTA in denaturing conditions. This pre-charged resin is able 

to bind up to 50 mg of recombinant protein per 1 ml of resin slurry. Immobilised metal ion 

affinity chromatography (IMAC) is a purification method for His-tagged recombinant protein, 

which separates chelating compounds on a column to trap metal ions to which the target 

protein is adsorbed. Following adsorption, the bound proteins are released by the action of 

protonation, ligand exchange or extraction of the metal ions using a strong chelating agent 

such as EDTA or proton pump effect by imidazole (Gaberc-porekar and Menart, 2001). The 

eluted protein solution should contain highly purified protein and can be visualised by SDS-

PAGE and western blotting and can now be subjected to a range of characterisations.  
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4.1.6 Determination of the secondary structure of the recombinant OMP 

Circular dichroism (CD) spectroscopy is a routine method for determining the folding, 

conformational changes and the secondary structure of proteins (Kelly, Jess and Price, 2005). 

CD spectroscopy has been used for many years firstly on soluble proteins and later was 

subsequently refined to analyse membrane proteins as well (Wallace and Mao, 1984; 

Sreerama and Woody, 2004). This method measures differences in absorption of left-handed 

circularly polarised light (L-CPL) and right-handed (R-CPL) polarised light by molecules which 

contain a chiral centre or have a three-dimensional structure that provides a chiral 

background (Miles and Wallace, 2016). In this study, the protein secondary structure 

information was derived from CD signals in the far ultraviolet (UV) wavelength region 

between ~260 to 190 nm which can be used to predict the percentage of each structural 

element in the membrane proteins structures. CD spec has been widely used to analyse 

bacterial OMP secondary structures, and the spectra can be processed using analysis online 

software such as Beta Structure Selection (BeStSel) and CD analysis and Plotting Tool 

(CAPITO) (Wiedemann et al., 2013; Micsonai et al., 2018).  

In this chapter, we aim to clone the genes identified as encoding putative leptospiral outer 

membrane proteins from Chapter 3 of this thesis and subsequently overexpress, refold, 

purify the encoded proteins which together with preliminary structural analyses enable 

subsequent studies to dissect their role in disease pathogenesis.  
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4.2 Materials and methods 

Full description for gene cloning, expression and protein purification including determination 

of protein secondary structure are detailed in Chapter 2 (Section 2.12-2.25).  

 

4.3 Results 

4.3.1 Validation of PCR primers for leptospiral OMP genes  

The designed PCR primers for all selected leptospiral OMP genes were shown to be successful 

(Figure 4.1) in that bands of predicted size resulted.  

 

 
Figure 4.1: PCR amplification product bands on 1 % (w/v) agarose gels viewed under the UV light. 
 

The Phusion Taq PCR of each of the leptospiral OMP gene and positive control (LIC_10973) and 

their expectant sizes repeated in five replicates are denoted from A-H. The marker (M) sizes are 

500, 750, 1000, 1500 bp upwards.  
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4.3.2 Cloning, transformation and restriction analysis of the OMP gene in the entry vector 

All genes were successfully cloned in the pENTR vector and transformed into E. coli Top10 

cells. Several E. coli colonies (from 2-50 colonies per plate) were analysed via Taq polymerase 

PCR using M13 forward primer to determine the cloning efficiency, with genes smaller than 

1 kb exhibiting better cloning efficiency than larger size genes. Restriction analysis by enzyme 

digestion showed that nearly all DNA sequences contained recognition sites (Not I and Not 

II) as the ecoRV enzyme cuts the fragments in single or multiple sizes. Sequencing results 

further confirmed that the inserts were in-frame with the construct entry vector and no 

mutations detected. Results of the cloning, transformation and restriction analysis of pENTR 

are shown in Table 4.1. 

 
Table 4.1: Cloning, transformation, restriction analysis and sequencing results of all the 
leptospiral candidate genes in pENTR with the positive control (LIC_10973). 

Gene Colonies per plate 
(pENTR 

transformation) 

Colony 
PCR size 

(kbp) 

Fragment sizes cut by 
EcoRV (kbp) 

Mutation 
detection? 

LBL_2510 >50 0.8 3.43 No 
LBL_2618 ~20 1.35 3.89 No 
LBL_0972 >50 1.03 3.58 No 
LBL_0375 ~15 1.02 3.60 No 
LBL_2925 <15 0.59 0.50, 2.56 No 
LBL_1341 >30 1.57 0.20, 0.54, 2.97 No 
LBL_1054 ~10 1.39 3.90 No 
LIC_10973 >50 0.8 3.50 No 

Note that the smaller the gene size, the better cloning/transformation efficiency as observed in the 

number of colonies per plate. 

4.3.3 Subcloning of leptospiral genes from entry vector into destination vector (pDEST17) 

From a total of eight genes, only six genes were successfully subcloned in pDEST17 (via 

clonase reaction), transformed into E. coli TOP10 cells and subjected to restriction analysis 

by EcoR1 enzyme and followed by expression trial. Subcloning and transformation of the two 

unsuccessful genes were repeated twice; however, this repeatedly failed, and these genes 

were excluded from this experiment. Sequencing results for the remaining six proteins 

confirmed that the inserts had correct orientation within the destination vector and no 

mutations observed. Results of the cloning, transformation and restriction analysis of 

pDEST17 are shown in Table 4.2. 
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Table 4.2: Subcloning, transformation, restriction analysis and sequencing results of all the 
leptospiral candidate genes in pDEST17. 

Gene Colonies per plate 
(pDEST17 

transformation) 

Colony PCR 
size (kbp) 

Fragment sizes 
cuts by EcoR1 

(kbp) 

Mutation detection? 

LBL_2510 ~10 0.8 7.24 No 
LBL_2618 <10 1.35 0.11, 1.19. 4.93 No 
LBL_0972 ~30 1.03 0.21, 0.72, 5.07 No 
LBL_0375 >100 1.02 6.00 No 
LBL_2925 ~20 0.59 6.30 No 

LBL_1341* - 1.57 - - 
LBL_1054* - 1.39 - - 
LIC_10973 >50 0.8 5.87 No 

*Two genes (LBL_1341 and LBL_1054) failed to be subcloned and transformed into the E. coli TOP10 

cells, therefore excluded from this further experiment. 

 

4.3.4 E. coli BL21-AI strain transformation, protein expression, refolding and purification 

All transformed genes were successfully transformed in E. coli BL21-AI and subjected to both 

pilot and large-scale expression, protein refolding and purification. All were successfully 

expressed as insoluble proteins, except LBL_2925 which failed to form inclusion bodies, most 

probably due to gene toxicity that killed the E. coli cells during expression. Therefore, this 

protein was excluded from further investigation. An example of an expression result of a 

protein is shown in Figure 4.2. In total, five proteins were successfully purified as 

recombinant proteins and were subjected to further investigations (Figure 4.3). 

 

Due to the presence of an additional band shift of a different molecular size (~25 kDa) on 

both OmpL1s (Figure 4.3 A and E), an experiment was performed to see whether this protein 

is heat-modifiable and its ability to withstand vigorous treatments for denaturation as 

described previously by Shang et al. (1995) with a minor modification. Both recombinant 

OmpL1s samples were subjected to five different treatment; 1) unheated sample at 25°C, 2) 

heated samples at 100°C for 10 minutes with 10 mM DTT, 3) heated samples at 100°C (10 

minutes) with 10 mM DTT and 8 M urea, 4) heated samples at 100°C (40 minutes) with 10 

mM and lastly, 5) heated samples at 100°C (40 minutes) with 10 mM DTT and 8 M urea. An 

example of OmpL1 denaturation result is shown in Figure 4.4. 
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Figure 4.2: Example of a success expression of a leptospiral recombinant OMP (rLBL_2510) view 
on a 12% (v/v) SDS-PAGE gel.  
 

Lane 1 marked as uninduced protein and lane 2 marked as expressed protein with a present of a 

clear, visible protein band of expected size (pointed by an arrow) which indicates successfully 

expression after induction with 0.1% (w/v) L-arabinose or 100 mM IPTG.  
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Figure 4.3 (A-E): Leptospiral recombinant OMPs purification (A-E) analysed on 12% (v/v) SDS-
PAGE gel under denaturing conditions. 
 

Samples from each eluted protein fraction (A: rLBL2510, B: rLBL2618, C: rLBL0972, D: rLBL0375 and 

E: rLIC10973) were heated at 100°C for 5 minutes and an addition one sample from first protein 

fraction (1x) before loading on the gel. M: 6.5-200 kDa protein marker Lane 1x: Unheated protein 

sample from first elution fraction. Lane 1: Protein sample from first eluted fraction, Lane 2: Protein 

sample from second eluted fraction, Lane 3: Protein sample from third eluted fraction, Lane 4: 

Protein sample from fourth eluted fraction, WB: Wash buffer fraction.  
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4.3.5 Assessment on the effect of heat, reduction and urea on OmpL1 denaturation 

Treatment with heat, DTT and urea on OmpL1 showed that the lower band of 25 kDa 

migrated to its denatured form at 31 kDa at 100°C boiling temperature as the time increases 

and with the addition of the denaturing agent (8 M urea). Boiling at 10 and 40 minutes with 

only DTT did not affect the electrophoretic mobility of the undenatured OmpL1 form (Figure 

4.4 no 2 and 4). However, with additional of 8 M urea in 10 minutes boiling time caused a 

partial denaturation (Figure 4.4 no 3) and almost complete denaturation is achieved when 

the heated samples were left boiling at 40 minutes with both DTT and urea (Figure 4.4 no 5). 

This showed that OmpL1 is a heat resistant protein and further treatment with both reducing 

and denaturing agents resulted in unfolded form and allowed to migrate to its predicted 

molecular mass. 

 

 

 
Figure 4.4: The effect of heat, DTT and urea on a recombinant OmpL1 (rLIC10973) in this study. 

 

Both denatured and undenatured molecular mass is 31 kDa and 25 kDa, respectively. The OmpL1 

samples were subjected to five different treatment; Lane 1: Unheated sample at 25°C, Lane 2: 

Heated samples at 100°C for 10 minutes with 10 mM DTT, Lane 3: heated samples at 100°C (10 

minutes) with 10 mM DTT and 8 M urea, Lane 4: heated samples at 100°C (40 minutes) with 10 mM 

DTT and Lane 5: heated samples at 100°C (40 minutes) with 10 mM DTT and 8 M urea. M: 6.5-200 

kDa protein marker. 
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4.3.6 Secondary structure determination of recombinant OMPs by circular dichroism  

Far-UV CD spectra data of all the purified recombinant OMPs demonstrated that four out of 

five proteins had predominantly β-barrel spectra in their secondary structure, as shown 

inFigure 4.5. The range of spectra was taken between 180-260 nm, with spectra exhibiting a 

minima trough at about 215 nm and the maximum peak at approximately ~195 nm, which is 

distinctive structure of the β-strand secondary structure. Only one recombinant protein, 

rLBL_0375 demonstrated a different spectrum (minimum trough at ~208 nm, and positive 

maximum at 260 nm), which suggested that this protein protein contains a mixture of α-

helical and β-barrel structure. Results of both programs are shown in Table 4.3 and Figure 

4.5. 
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Table 4.3: Analysis of the circular dichroism spectra using two online servers; BeStSel and CAPITO show components of each recombinant OMP by their secondary 
structure. 

Protein 
 

Helix Anti-
parallel  

Parallel  Turn Others Helix 1 
(Regular) 

Helix 2 
(distorted) 

Anti 1 (Left-
twisted) 

Anti 2 
(relaxed) 

Anti 3 
(Right 
twisted)  

Conc 
(mg/ml) 

Molar 
conc 
(µM) 

Predominant 
spectra by 
BeStSel 

Predominant 
spectra by 
CAPITO 

rLBL2510 0.0 44.6 0.0 13.6 41.8 0.0 0.0 3.8 21.2 16.6 2.3 72.7 β-sheet β-sheet 

rLBL2618 0.0 43.8 0.0 13.7 42.5 0.0 0.0 4.6 19.5 19.6 0.3 6.12 β-sheet β-sheet 

rLBL0375 69.0 31.0 0.0 0.0 0.0 69.0 0.0 0.0 0.0 31.0 1.3 35.1 α-helix Irregular 

rLBL0972 0.0 42.8 0.0 14.1 43.1 0.0 0.0 4.1 19.6 19.1 0.7 19.4 β-sheet β-sheet 

rLIC10973 0.0 44.8 0.0 13.8 41.4 0.0 0.0 4.1 21.3 19.4 1.3 41.9 β-sheet β-sheet 

The overall score of α-helix and β-sheet are defined as ‘Helix’ and ‘Anti-parallel’, respectively. The α-helix scores are based on a regular part of the helix (regular); The middle 
part of α-helices and the Helix 2 (distorted ends); 2-2 residues at the ends of α-helices. The β-sheet scores are based on antiparallel β-sheets which are divided into three 
subclasses: Anti 1; Left-handed twisted, Anti 2; relaxed (slightly right-handed twisted) and Anti 3; right-hand twisted. The definition of ‘Turn’ is the turn and bend segment 
longer than one residue. ‘Others’ are described any additional features present within a protein such as 33,,-helix, π-helix, β-bridge, bend, loop/irregular and invisible region 
of the structure. Most proteins show β-barrel structures denoted by predominance anti-parallel score, except for rLBL0375. The secondary structure determination of most 
recombinant OMPs is in agreement with the β-barrel prediction made using bioinformatics. 
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Figure 4.5 (A-E): Circular dichroism (CD) spectra of recombinant OMPs depicting the predominance 
of β-sheets in secondary structure. 
 

Majority of recombinant OMPs are showing a β-sheet spectrum of a minima band between 210 nm – 

215 nm and a maxima band between 195 nm – 200 nm (A, B, C, and E). Recombinant protein rLBL0375 

(Figure D) is showing an ambiguous result of neither a random or mixed spectrum which has a 

minimum band around ~200 nm and 208 nm. The CD spectrum is presented as an average of three 

scans recorded from 190 to 260 nm. All graphs were plotted using CAPITO software. 
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4.4 Summary of success of overexpression, refolding and purification of selected leptospiral recombinant OMP 

An overall summary of recombinant protein expression, refolding, and purification methodology can be found in Appendix B Figure B.3 and B.4 of 

the thesis.  The summary of each leptospiral OMP gene cloning, expression, refolding, and purification with secondary structure determinant is 

tabulated in Table 4.4. 

 

 
 

Table 4.4:  Overview of overexpression, refolding and purification of selected leptospiral recombinant protein in this chapter.   

Gene Cloning to 
pENTR 

Transformation to 
pDEST17 

 

Expression 
 

Inclusion body 
formation 

Refolding 
 

Purification 
 

CD Spectra 

LBL_2510 ✔ ✔ ✔ ✔ ✔ ✔ β-barrel 

LBL_2618 ✔ ✔ ✔ ✔ ✔ ✔ β-barrel 

LBL_0972 ✔ ✔ ✔ ✔ ✔ ✔ β-barrel 

LBL_0375 ✔ ✔ ✔ ✔ ✔ ✔ Mixed/Irregular 

LBL_2925 ✔ ✔ ✘ ✘ ✘ ✘ - 

LBL_1341 ✔ ✘ ✘ ✘ ✘ ✘ - 

LBL_1054 ✔ ✘ ✘ ✘ ✘ ✘ - 

LIC_10973 ✔ ✔ ✔ ✔ ✔ ✔ β-barrel 

✔ Indicates success and ✘ indicates failure, (-) denotes unsuccessful expression. 
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4.5 Discussion 

An E. coli expression system is a convenient method to produce a large amount of target 

proteins for further characterisation studies. Although more advanced expression methods 

have been developed over the recent years, E. coli expression is still a method of choice as it 

is relatively inexpensive, easy to work with, and able to generate high protein yields. Protein 

solubility can be a major issue when using this system as over-expression of many 

recombinant proteins may lead to protein aggregations, commonly known as inclusion 

bodies, which may require additional solubilisation, refolding and purifying steps to recover 

the protein in its native state. Strategies to recover inclusion bodies are continuously being 

optimised and improved, making E. coli the most popular bacterial expression system still 

today (Wingfield et al., 2001; Palmer and Wingfield, 2004; Simpson, 2010; Mohammadian et 

al., 2018). 

 

Recombinant cloning of the gene of interest is the first step towards gene expression. 

Choosing an appropriate cloning vector is crucial to ensure it is stable to carrying and 

propagating the gene of interest without harming the bacterial host. The efficacy of gene 

cloning can be justified by the successful transformation of an entry vector containing the 

gene of interest into competent cells, growing them under a laboratory condition and 

subsequently analysing the number colonies that are successfully carrying the gene. Here, 

we successfully cloned all the candidate leptospiral genes into the entry vector, although the 

efficacy of cloning is generally better with target inserts with sizes less than 1.0 kb. Three 

leptospiral genes (LBL_1054, LBL_1341 and LBL_2618) with sizes more than 1kb were poorly 

transformed into E. coli TOP10 cells. Many recombinant cloning techniques demonstrate 

better cloning efficiency using smaller DNA fragments to insert into the vector as 

demonstrated in studies by several authors (Gibson, 2011; Zhang et al., 2012; Koskela and 

Frey, 2015).  

 

On the other hand, inefficient cloning and transformation could also be due to the 

inappropriate insert-to-vector molar ratio during cloning reaction, for example, a higher 

concentration of DNA insert comparing to TOPO® vector. We used a ratio of 1:1 for this 

purpose; however, due to the large size (> 1kb) of several DNA inserts, it is recommended to 

use 2:1 instead. This theory is supported by a transformation efficacy study using E. coli DH5α 

strain which suggested that a lower insert DNA concentration compared to vector 

concentration yields a better transformation effect (Kostylev et al., 2015). Sanger sequencing 
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of DNA in successfully transformed colonies confirmed the correct coding sequences without 

the presence of any gene mutations. This shows that using high-fidelity Phusion Taq DNA 

polymerase had successfully generated accurate DNA template replication, which is key to 

enabling subsequent effective cloning and expression of complete recombinant proteins 

without premature stop codons or changes to the protein primary structure.  

 

Although all genes were successfully cloned into the primary TOPO vector, subcloning these 

genes into the destination vector, pDEST17 was not as successful. Two genes (LBL_1054 and 

LBL_1341), with sizes more than 1 kb, failed to incorporate into pDEST17 via the LR clonase 

reaction. This could be due to a lower clonase reaction against these entry clones. Future 

studies might improve the effectiveness of the recombinant reaction by increasing the 

volume of clonase II or using a more efficient transformation technique such as ultrahigh 

competent cells or electroporation to successfully sub-clone these genes (Reece-Hoyes and 

Walhout, 2018).  

 

From the six successfully transformed genes in pDEST17, only five were successfully 

expressed and isolated as recombinant proteins in 500 ml culture volumes. Initially, the E. 

coli BL21-DE3 strain was used for expression, however, the expression yields were poor, and 

we moved to E. coli BL21-AI for tighter expression, and the yield was significantly improved. 

One gene (LBL_2925) failed to be expressed in both E. coli strain BL21-DE3 and BL21-AI. 

Expression failure is defined by the inability to achieve optimum growth (measured by optical 

density at OD600) after induction and the absence of the correct size expression band in SDS-

PAGE. The reason for the failure of expression of this gene in all expression strains is not fully 

understood, and several factors might link to the outer membrane expression problem such 

as toxicity due to limited capacity of translocon protein complexes to cross membranes and 

cellular metabolic stress and changes of pH homeostasis during protein overexpression 

(Wagner et al., 2007; Gubellini et al., 2011). 

 

Additionally, we attempted transformation of this gene into another toxic-friendly 

expression strain, E. coli strain BL21-DE3 (pLysS), as this strain is recommended for the 

expression of toxic proteins (Montigny et al., 2004; Rosano and Ceccarelli, 2014) because the 

pLysS plasmid can reduce basal level expression of the toxic gene that may result in tolerance 

of toxic proteins. However, we failed to achieve protein expression using this strain. Due to 

the difficulty in expressing this gene following several unsuccessful expression trials, we 

decided to exclude this gene from this study. Whilst beyond the remit of the current study, 
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future attempts might achieve greater success by using different expression strategies such 

as using other toxic-tolerant strains such as Walker strains C41 (DE3), C43 (DE3) and other 

BL21 (DE3) derived expression strains that may improve expression of toxic membrane 

proteins (Miroux and Walker, 1996; Wagner et al., 2008; Meuskens et al., 2017).  

 

All successful genes were expressed as insoluble proteins in this experiment and formed 

inclusion bodies due to protein aggregation. Protein aggregation normally occurs as a result 

of signal peptides removal, and the gene overexpression causes newly synthesised proteins 

to be accumulated in the cytoplasmic space leading to protein aggregation. Inclusion bodies 

are typically colourless insoluble masses separated by low centrifugation force from cell 

lysate and here were washed with detergent to remove the contaminants originating from 

protein components of the E. coli outer membrane and cell wall materials during 

overexpression (Palmer and Wingfield, 2004). Inclusion bodies can be solubilised using a high 

concentration of guanidine HCl or urea as strong chaotropic denaturants which resulted in 

complete denaturation of secondary structures preventing aggregation of protein molecules 

during the refolding process (Singh et al., 2015). Guanidine HCl was used here in the protein 

solubilisation step instead of urea due to; 1) urea may potentially be contaminated by 

cyanate ions that may cause carbamylation of the amino groups blocking the N-terminus of 

a protein (Cole and Mecham, 1966) and 2) and a high concentration of urea in nonionic or 

zwitterionic detergent solution may form inclusion compounds that are less soluble and 

cause precipitation (Rabilloud, 2009). On the other hand, the use of guanidine HCL is 

recommended as it was reportedly exhibiting 1.5 to 2.5 times stronger per mole than urea 

(Pace, 1986). 

 

As in many protein solubilisation techniques, sulfhydryl reagent or reducing agents such as 

DTT or 2-Mercaptoethanol (2-ME) are usually added within the solubilisation buffer to 

maintain cysteine residues in the reduced state and prevent disulphide bond formation 

(Wingfield, 2016). In our experiments, we selected DTT to extract inclusion bodies during the 

solubilisation step, mainly because of the toxicity risk of 2-ME. Additionally, we added a 

chemical chelating agent, 0.5 M EDTA to prevent metal-catalysed air oxidation of cysteines 

(Singh and Panda, 2005). 

 

The solubilised protein solution, which now contains denatured proteins, will undergo in vitro 

refolding procedure to restore its biological activity. Several refolding strategies have been 

developed to recover inclusion bodies to refold at their native (active) state (Basu, Li and 
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Leong, 2011; Yamaguchi and Miyazaki, 2014). Our refolding strategy is based on a dilution 

method by Burgess, (2009) which uses a low concentration of zwitterionic detergent, LDAO 

in the refolding buffer. However, in some cases, protein aggregation may form during the 

refolding process which may significantly reduce protein yield especially if the protein 

concentration is high (Song et al., 2011). Application of rapid/flash dilution method is 

considered simple and may have the tendency to lower the formation of protein aggregation 

(Harrison et al., 2015). Overnight protein dialysis was performed after refolding step to 

remove excess guanidine HCL and possible unwanted macromolecules or contaminant 

compounds, leaving only the recombinant proteins in a clear, colourless solution. 

Temperature also plays a significant factor contributing to the dialysis performance. 

Generally, the rate of diffusion is faster when protein being dialysed at room temperature. 

However, this may also tend to cause rapid precipitation due to protein instability (Pohl, 

1990). Therefore, due to this reason, all our proteins were dialysed at 4°C overnight to 

minimise precipitation and to reducing the concentration of small contaminants within 

protein solutions before purification. 

 

Protein purification of all expressed recombinant proteins in this study was a success, and 

the protein concentrations were varied from 0.3-2.0 mg/ml. Proteins with molecular weight 

less than 35 kDa produced high protein concentration (~1.0 mg/ml). Most of the proteins 

remained stable in the solution and did not precipitate. However, one protein, rLBL_2618 (49 

kDa) yielded less than ~0.5 mg/ml and this protein also precipitated easily when kept at -

80°C. Multiple factors interplay with protein stability, such as temperature, pH, salt 

concentration and buffer types (Pesarrodona et al., 2015) could cause precipitation and the 

most relevant explanation to the precipitation problem in our study is that the protein has a 

higher degree of hydrophobicity and high salt concentration decreases the protein’s 

solubility, therefore causing precipitation (Duong-Ly and Gabelli, 2015). To mitigate this 

problem, we reduced the salt concentration to 300 mM in dialysis buffer and 20 mM in 

protein elution buffer to minimise precipitation in the solution. Another suggested method, 

which we did not attempt in this study is to store purified proteins with the addition of 5-

10% (v/v) glycerol in the buffer because glycerol helps to limit protein precipitation for longer 

storage (Bondos and Bicknell, 2003; Vagenende et al., 2009). 

 

Protein analysis on SDS-PAGE showed that all proteins migrated in accordance with their 

respective sizes. We demonstrated two recombinant OmpL1 proteins (rLBL_2510 and 

rLIC_10973) which each appears to have a secondary band which is identified as an 
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undenatured form of OmpL1 (~25 kDa) (Figure 4.3 A and E). We tested one recombinant 

OmpL1 sample (rLIC_10973), by treating it with a reducing agent, heat and urea to observe 

if these factors help to denature the protein on the SDS-PAGE gel. Our result showed that 

boiling of OmpL1 samples at 100°C for 40 minutes with the addition of 10 mM DTT and 8 M 

urea resulted in further loss of the secondary structure (~25 kDa) and increased band 

intensity of the 31 kDa form (Figure 4.4). This confirms that OmpL1 is a heat-modifiable 

protein, and their compact structure needs intensive treatment to completely unfold the 

protein to allow migration at their original molecular mass (Shang et al., 1995). In doing so, 

we successfully demonstrated that our predicted gene (LBL_2510) is an OMP that is heat 

stable and possibly forming a porin channel on the leptospiral outer membrane. To further 

investigate whether this lower band is specific to OmpL1, we performed a western blot. We 

found two bands of similar molecular weights reacted against anti-his antibody, and thus we 

confirmed that the lower molecular band specifically belongs to OmpL1, as they are 

recognised by the anti-his antibody probing (Results not shown). 

 

Interestingly, another recombinant protein (rLBL_0375) did not migrate following its 

expected molecular weight (~40 kDa) and appeared to be slightly larger ~55 kDa (Figure 4.4 

D). This anomaly, often observed in membrane proteins, is referred as ‘gel-shifting’ and the 

occurrence is thought due to the alteration of detergent binding and protein helical 

conformation of the protein causing reduce gel mobility (Rath et al., 2009). The remaining 

two proteins (rLBL0972 and rLBL2618) did not show heat modification or reduced mobility. 

 

As shown in Figure 4.5, most of the recombinant proteins show a predominantly β-barrel 

secondary structure when analysed by far-UV CD spectrophotometer. However, the 

percentage proportion between α-helix, β-sheet (or anti-parallel) and mixed structure vary 

among the recombinant proteins. One recombinant protein (rLBL_0375) was originally 

predicted to be a β-barrel OMP, and the result of the spectra suggested that this protein may 

have a mixture of α-helices. Even though the result on BeStSel predicted the likelihood of this 

protein to be a β-barrel based on the given spectra of two different peaks at 205 nm and 215 

nm respectively (Results not shown). We speculated that this protein contains a mix of α-

helix and β-sheet. However, CD spectra could not provide more details about the structure 

of a protein and further investigations are warranted in the future to investigate the protein’s 

structure closely using crystallography or nuclear magnetic resonance (NMR) method (Corrêa 

and Ramos, 2009). Whilst the rLBL0375 result shows ambiguity, we decided to further 

analyse this protein to determine its possible binding and interactions with host cells 
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(Chapter 5). The CD analysis of the remaining recombinant proteins (except rLBL_0375) 

predicted high percentages of mixed structures and these refolded proteins have been 

shown to have acquired a secondary structure which is consistent with previous studies of 

OmpL1 (Fernandes et al., 2012, 2017), and their stability in solution further evidence that 

these proteins likely have refolded close to their native structure. 

 

4.6 Conclusion 

In this study, we applied both cloning and expression methods using Gateway™ Technologies 

to selected unique leptospiral predicted genes. Although most genes were successfully 

cloned, expressed as recombinant proteins and subsequently purified, some genes failed to 

progress at key steps and were excluded from this study. Several recommendations and 

suggestions are discussed in detail to further improve cloning and expression efficiency of 

these genes for future studies. Generally, most purified target proteins produced good yields, 

although the yield reduces with increasing protein molecular weight. The SDS-PAGE profiles 

of the recombinant Leptospira OMPs showed that some but not all proteins were heat-

modifiable, which is in line with reports that some but not all β-barrel proteins are heat-

modifiable (Verhoeven et al., 2009). CD spec analysis identified that the majority of the target 

proteins adopted predominantly β-sheet secondary structures, which increases our 

confidence that these proteins may have correctly refolded close to their native structure. 

Overall, we successfully produced five recombinant OMP proteins out of seven predicted 

genes using a heterologous (E. coli) expression system and these proteins will be further 

investigated for their functional and immunological evaluations in subsequent chapters.
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Chapter 5: Functional and immunological studies of Leptospira 

recombinant OMPs 

 

5.1 Introduction 

5.1.1 Bacterial invasion and colonisation to the host cell: General pathophysiology 

In order to establish successful colonisation of a host, all pathogens must first overcome the 

innate immunity of a host. The innate immunity system is divided into two subclasses; 1) First 

line of defence which consists of physical and chemical barriers such as intact skin, mucous 

membrane and their secretions, microbial bacteria living in the gastrointestinal system and 

antibacterial enzymes such as those in tears and saliva. 2) Second line of defence is the non-

specific interaction between a pathogen and the host immunity system after the first defence 

is compromised. Before the second line of innate immunity is triggered, the pathogen must 

first be able to adhere to the surface of the host cell. Adherence of the pathogen to the host’s 

cell is the first step towards invading their immune system to establish infection (Paulsson 

and Riesbeck, 2018). Generally, bacterial adhesion to the cells involves several strategies 

which depend on the types of bacteria (e.g. Gram-positive versus Gram-negative, 

intracellular versus extracellular). The diversity of mechanisms is reviewed by Pizarro-Cerdá 

and Cossart (2006), and in this thesis, we will focus specifically on Leptospira adherence to 

host cells. 

5.1.2 The Leptospira OMP 

Like other Gram-negative bacteria, spirochetal bacteria possess an outer membrane which 

serves as biointerface between the cell and its external environment. As previously described 

in Chapter 1, the outer membrane of spirochetes is made up of several components that vary 

from one species to one another. Unlike Treponema and Borrelia genera, Leptospira outer 

membrane consists largely of LPS, which is important for serovar identification and antigenic 

properties, roles that are similar to typical Gram-negative bacteria, such as Salmonella and 

Pasteurella (Harper et al., 2012; Ryan et al., 2017). This LPS, as well as being the major outer 

membrane component of leptospires, also covers the entire cell surface (Cullen et al., 2004). 

It was generally thought that leptospiral LPS is a key virulence factor during host colonisation 

and bacterial dissemination; however, some studies have suggested that leptospiral LPS has 

no apparent pathological effect on host tissues (Murray et al., 2010; Srikram et al., 2011). 

Furthermore, their endotoxic activity is lower than that of typical Gram-negative bacteria, 
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owing to the unique structure of their Lipid A component (Que-gewirth et al., 2004). LPS 

appears to have no direct attachment to the host cell surface, where they would expect to 

be recognised by the host Toll-like receptors such as TLR2 and TLR4 (Werts et al., 2001; 

Nahori et al., 2005). LPS has been widely studied both as a potential vaccine candidate 

(Section 1.10.1, Chapter 1) and biomarker for diagnosis; however, due to their inability to 

confer cross-protection against multiple serovars, vaccine formulation based on the whole-

cell or LPS derivatives are considered limited. 

 

Leptospiral cell-surface OMPs have become a subject of interest to study how these proteins 

interact with the host cells. The OMPs are classified into three types; 1) lipoproteins, which 

adhere to the side of the membrane, 2) transmembrane proteins/integral OMPs and 3) the 

peripheral proteins (Cullen et al., 2004). While a small number of proteins have a defined 

purpose such as cell maintenance (e.g. OMP biogenesis and import/export channels) (Section 

1.11, Chapter 1), the majority of leptospiral cell-surface OMP roles are still elusive. However, 

in vitro studies showed that most of these proteins are likely to have adhesin function 

adhering directly to host cells, although this role needed further investigation. Several 

leptospiral OMPs have shown to be expressed and recognised in host immune cells during 

infection, further highlighting their possible roles in leptospirosis pathogenesis.  

5.1.3 Adherence to host molecules 

The ECM comprises non-cellular macromolecules made up from proteoglycans and fibrous 

proteins and is present within many tissues and organs. The ECM provides mechanical 

support to cells and also regulates numerous essential biochemical and biomechanical 

cellular functions such as tissue morphogenesis, homeostasis and differentiation (Frantz et 

al., 2010). Major common ECM components include collagen, proteoglycans, laminin and 

fibronectin and elastin. These proteins have multiple binding sites for cell surface receptors 

that mediate ECM-bacterial interactions. Bacterial adhesion of ECM components is mediated 

by a group of adhesive proteins known as microbial surface components recognising 

adhesive matrix molecules or MSCRAMM. These proteins are secreted at the cell surface of 

a bacterial cell and initiate binding towards the ECM components (Patti and Höök, 1994). 

Several leptospiral cell surface proteins are thought to be MSCRAMM, due to their ability to 

adhere to the ECM components in vitro and might be linked in pathogenicity, although the 

role of each MSCRAMM may not be essential in natural infection due to frequent functional 

redundancy across OMPs. 
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Further assessment of protein functions can be determined by assays of biochemical 

properties. A conventional method to analyse the protein-protein binding interaction is by 

an adherence assay, a modified-ELISA based technique where an OMP of a known 

concentration is allowed to bind to immobilised host proteins, and the binding background 

is measured by ELISA. The binding of antigen-host proteins will then be compared to same 

antigen binding to a negative control using a host protein that is known not to bind to any 

antigen (e.g. BSA, gelatin, fetuin). The method had successfully demonstrated in many 

spirochetes recombinant antigens, including Leptospira proteins (Cameron, 2003; Barbosa et 

al., 2006; Verma et al., 2009). 

Additionally, once the OMP binding to the host is established, the next step is to determine 

the strength of the OMP adherence in a dose-dependent manner. The process is rather 

similar to the modified-ELISA described previously, except the protein host ligand interaction 

is tested with increasing antigen concentration until saturation binding is achieved, fulfilling 

a specific interaction of a typical receptor-ligand interaction through inhibitory effect 

(Fernandes et al., 2012). The outcome from the study is crucial to determine a possible 

interaction between Leptospira and host ligand in natural infection which to demonstrate 

the role of of particular leptospiral antigens as adhesins for cellular attachment. For example, 

several leptospiral transmembrane and surface-exposed recombinant OMPs such as LigA and 

LigB (Choy et al., 2007), OmpL1 (Fernandes et al., 2012), OmpL37 (Pinne, Choy and Haake, 

2010) along with multiple leptospiral adhesins (Lsa20, Lsa25 and Lsa33) (Mendes et al., 2011; 

Domingos et al., 2012) previously showed specific attachment of various host ligand 

molecules in vitro, that indicates that these proteins may be expressed to carry out binding 

functions during leptospirosis pathogenesis. 

Such binding diversities of various leptospiral recombinant proteins with multiple host 

ligands prompted the present study to determine binding interactions of novel leptospiral 

recombinant proteins (Chapter 4) towards various ECM molecules. 

5.1.4 Leptospiral OMPs as potential diagnostic antigens 

Historically, the MAT has been widely used in sero-epidemiological studies to screen for 

leptospirosis in both human and animals to determine infective serovars/serogroup, also 

considered as the Leptospira gold standard diagnostic method. However, this method is not 

reliable to detect acute infection and requires a panel of live antigens representative to all 

serogroups that are geographically prevalent in a given area. Moreover, MAT is rather 
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difficult to interpret, and interlaboratory variation is high; therefore, it needs skilled users to 

interpret (Bharti et al., 2003).  

Alternatively, ELISA emerges as a popular choice for screening of leptospirosis in both human 

and animal studies. Besides being rapid, easy to use and relatively inexpensive, this method 

has a higher sensitivity and has been widely applied in many leptospirosis seroprevalence 

studies worldwide. Principally, ELISA works by detecting anti-leptospiral antibodies using 

different antigen preparations, assay protocols and assay platforms (OIE, 2008). Most 

commercially available leptospiral test kits antigen targets are derived from whole-cell 

preparations, which are specific to certain serovars and may give non-specific cross-reactivity 

between different serovars. Moreover, there are several reports highlighting the lack of 

specificity of some commercial Leptospira kits (Reller et al., 2011; Rao et al., 2019), which 

need definitive confirmation by MAT.  

Recently, recombinant antigens have been considered as an alternative to replace whole cell 

preparations as potential antigens. Studies on recombinant leptospiral proteins such as 

LipL21, LipL32, LipL41 and Loa22 demonstrated significant immunoreactivity when tested 

against positive human serum samples (Chalayon et al., 2011). Another potential 

recombinant protein, OmpL1, has also been demonstrated to react with antibodies (IgG 

present in canine serum samples, and reported to have 100% sensitivity when compared to 

MAT (Subathra et al., 2013). Both studies showed that leptospiral recombinant OMPs could 

be utilised as potential tools for the serodiagnosis of both human and canine leptospirosis 

using ELISA-based methods. Apart from serology findings, bulk milk screening using ELISA-

based kits is routinely applied to dairy cattle samples and has been used to in several 

leptospirosis prevalence studies in a dairy herd (Tabatabaeizadeh et al., 2011; Ryan et al., 

2012). Similar to serology studies, these kits are also developed using whole-cell lysate, which 

may be only restricted to certain leptospiral serovars, which eventually reduces the kit’s 

specificity and may give rise to false negative results. Hence, leptospiral recombinant OMPs 

may be an improvement as an alternative antigen for this problem. However, there are no 

studies to support this hypothesis, and therefore, the present study was designed to; 1) 

Identify and characterise novel adhesins (produced in Chapter 4), and 2) To determine the 

interaction of the OMPs with the host immune system to underpin future vaccine and 

diagnostic development.   
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5.2 Materials and Methods 

5.2.1 Host ligand target molecules 

For the screening of leptospiral recombinant protein binding with selected host molecules, 

eight different ECM macromolecules were purchased from Sigma-Aldrich, Dorset, UK. 

Fibronectin (Cat no: F1141) derived from bovine plasma, collagen I (Cat no: C9879) from 

bovine skin, heparin sulphate sodium salt (Cat no: H7640) isolated from bovine kidney, 

laminin (Cat no: L2020) from Engelbreth Holm-Swarm murine sarcoma basement membrane, 

elastin (Cat no: E6527G) isolated from bovine neck ligament, fibrinogen (Cat no: F8630) 

derived from bovine plasma and chondroitin sulphate sodium salt (Cat no: 6737) was from 

bovine cartilage. Bovine serum albumin (Cat no: A9418) was used as a control. All 

macromolecules were prepared in PBS as a 1 mg/ml stock and were further diluted to 5.0 

µg/ml to coat ELISA microtitre plates. 

5.2.2 Recombinant leptospiral OMP preparations 

For host molecule binding surveys, all leptospiral recombinant OMPs were prepared as 

described in the previous chapter. The OmpL1 (rLIC10973) from L. interrogans serovar 

Copenhageni Fiocruz L1-130 was prepared for use as a positive control for several 

experiments based on a study demonstrating its ability to bind to multiple host ligands 

(Fernandes et al., 2012). All recombinant OMPs were diluted in PBS to 10 µg/ml as testing 

concentration, and PBS was used as a control. For binding saturation assay analysis, the OMPs 

were analysed using various micromolar concentration from zero to 6.0 µM against selected 

host molecules with statistically significant binding rated as P <0.05. BSA was used as a 

control. 

5.2.3 Cattle bulk milk preparation 

A total of 30 bulk milk samples (of variable volumes) from dairy cattle consisting of Leptospira 

antibody positive and negative samples were kindly supplied from Cattle Information System 

(CIS, UK). Milk samples were preserved with sodium azide tablets prior to transportation. The 

Leptospira status of milk samples was pre-determined from the routine Leptospira test 

(Linnodee Leptospira Hardjo ELISA KitTM) from the collection centre which can be found in 

Appendix C (Figure C.1). The test kit utilises LPS fractions from serovar Hardjo from L. 

interrogans and L. borgpetersenii species as coating antigens, and has been previously used 

to determine leptospirosis status in cattle milk samples (Yan et al., 1999; Lewis et al., 2009; 

Ryan et al., 2012). Milk samples were centrifuged at 1000 g for 20 minutes, and the 
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supernatant fat layer was removed. Samples were immediately tested upon arrival, and the 

remaining amounts were kept at -80°C for future use.  

5.2.4 Binding of leptospiral recombinant OMPs to host ligand molecules 

Screening of leptospiral recombinant OMPs to individual host molecules were carried out 

according to described ELISA protocols (Barbosa et al., 2006; Staton, 2018), which can be 

found in Section 2.26.1. Statistical analysis was performed to compare the binding of the 

recombinant proteins to host molecules with negative control (BSA) using Dunnett’s multiple 

comparisons test by GraphPad (Prism) version 7.02. Each experiment was repeated three 

times, and the means of optical density were averaged for statistical analysis. 

5.2.5 Binding saturation curve of leptospiral recombinant OMPs to selected host ligand 

molecules 

Host molecules with significant binding from Section 5.2.4 were selected to determine the 

strength of recombinant OMP binding to the host molecules. Each microplate was coated 

with the selected host molecules, and BSA as a negative control (Section 2.26.1). Each 

recombinant protein (0.0-5.0 µM/ml in 100 µl PBS tween) were added to the specific host 

molecules coated wells. The ELISA method was as described in Section 2.26.1. Statistical 

analysis using nonlinear regression was performed to measure the equilibrium dissociation 

constant (Kd) as previously described by (Lin et al., 2009). Each experiment was repeated 

three times, and the means of optical density were averaged for statistical analysis.  

5.2.6 Determination of fibrinogen-binding proteins by a far-western blot 

Recombinant OMPs with significant binding affinities with fibrinogen from Section 5.2.5 were 

subjected to far-western blot to confirm the protein-protein interactions and identify specific 

binding sites for the interaction between the OMP and fibrinogen’s chain structures. A 

standard far-western blot using 4–20% Mini-PROTEAN® TGX™ Precast Protein Gels, (15-

track) was employed to separate fibrinogen protein components as described (Staton, 2018) 

and his-tagged OMPs were used to a probe and detect target proteins on the membrane. 

The procedure was carried out according to Section 2.18. 

5.2.7 Host immune response against leptospiral recombinant OMPs in cattle milk  

Detection of specific anti-leptospiral antibodies against leptospiral recombinant OMP as 

antigens in cattle milk was carried out based on the original serology ELISA method with slight 

modification (Yan et al., 1999) as described in Section 2.26.2. Statistical analysis between 
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positive and negative titres was calculated using Mann-Whitney U test, and linear regression 

tests determined the association between IgG1 and IgG2 titres for each recombinant protein 

in GraphPad (Prism) version 7.02. Each experiment was repeated twice, and the means of 

optical density were averaged for statistical analysis. 

Additionally, both results from the test kit (milk reference) and IgG1 and IgG2 binding to 

leptospiral recombinant OMPs in this study were compared to determine the association 

between two assays as to whether both assays are related. 

 

5.3 Results 

5.3.1 Binding of leptospiral recombinant OMPs to host ligand molecules  

All leptospiral recombinant OMPs were tested against selected host molecules using an ELISA 

based method as described in Section 5.2.4. The results are shown in Figure 5.2 and Table 

5.1, respectively. Significant binding of the recombinant OMPs to host ligand molecules was 

observed for fibrinogen, laminin and fibronectin, in comparison with BSA control, whereas 

no statistical adhesiveness (P-value >0.05) was observed against chondroitin, heparan 

sulphate, and collagen. 

5.3.2 Binding saturation curve of leptospiral recombinant OMPs to selected host molecules 

All the host molecules that showed significant binding during the ligand screen were 

subjected to a dose-dependent (binding saturation curve) experiment. Binding affinity was 

measured by an equilibrium dissociation constant (Kd) using one site-total binding equation 

(Qiu et al., 1996; Pathirana et al., 2006; Lin et al., 2009) as previously described in Chapter 2. 

Most recombinant OMPs showed binding saturation for fibrinogen, fibronectin, and laminin 

(Figure 5.3). However, rLBL0375 failed to achieve binding saturation to both BSA and 

fibrinogen (Figure 5.3 D). Therefore, this ligand binding interactions for this protein is 

considered non-specific. Additionally, rLBL2618 showed non-specific high OD binding to BSA 

at increasing concentration from 0.0 µM to 1.0 µM and gradually decreased at the highest 

concentration (Figure 5.3 B). The same phenomenon was also observed in rLBL0972 binding 

to fibronectin (Figure 5.3 C). Table 5.2 show the binding affinity results of each OMPs to 

selected ECM molecules.  
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5.3.3 Recombinant leptospiral OMP binding to fibrinogen components (far-western 

blotting) 

Further investigation of fibrinogen binding to OMPs were carried out to identify specific 

fibrinogen binding sites. From the result in Figure 5.1, all proteins bound to at least to one 

fibrinogen protein chains (β-chain) and stronger binding was observed based on the bright 

intensity of the visible band rLBL2618> rLBL0972> rLIC10973 and lastly rLBL0375. All three 

chains () were bound to rLBL2618 and rLBL0972, respectively, and weaker band 

intensity was observed in rLIC10973 (bound to both β and γ chains), and lastly, rLBL0375 was 

only bound to β chain. 

 

Figure 5.1 (A-D): Far-western blot to detect binding of His-tagged OMPs to α-, β- and γ-chains of 
fibrinogen. 

 

The molecular weight of each fibrinogen chain is α (64 kDa), β (59 kDa) and γ (48 kDa), respectively 

(McDonagh et al., 1971).  
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Figure 5.2 (A-D): Binding of novel leptospiral recombinant OMPs and positive control (OmpL1 of L. 
interrogans serovar Copenhageni L1-130) (A) to host ligand molecules.  

 

Data represent the mean absorbance at 450 nm ± the standard error and the mean (SEM) of three 

independent experiments. The binding of leptospiral recombinant OMPs to host ligand molecules was 

compared to their binding to BSA by Dunnett’s multiple comparison test (*** P <0.001, ** P <0.01, * P 

<0.05).  
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Table 5.1: Binding of leptospiral OMPs to various host ligand molecules.  

 

Recombinant OMP 

Binding to host ligand molecules 

Fibrinogen Fibronectin Heparan sulphate Laminin Chondroitin Collagen  Elastin 

        

rLBL2618 Yes *** Yes *** NS Yes*** NS NS NS 

rLBL0972 Yes *** Yes * NS NS NS NS NS 

rLBL0375 Yes * NS NS NS NS NS NS 

rLIC10973 (OmpL1) Yes *** Yes *** NS Yes * Yes * NS NS 

        

Binding significance is denoted with asterisk sign * (P <0.05), ** (P <0.01) and *** (P <0.001) 
Abbreviations: BSA: Bovine serum albumin NS: Not significant 

 

 

Table 5.2: The apparent Kd (estimated at micromolar concentration) for saturating binding with 95% confident interval was calculated as the mean 
concentration of recombinant OMP at the half –maximal binding ± standard deviation. 

 

Recombinant OMP 

 

Host ligand molecules [Mean Kd (µM) ± SEM] 

Fibronectin Laminin Heparan sulphate Chondroitin Fibrinogen Collagen  Elastin  

        

rLBL2618 0.10 ± 0.02 0.14 ± 0.01 ND ND 0.05 ± 0.01 ND ND 

rLBL0972 0.44 ± 0.21 ND ND ND 0.20 ± 0.06 ND ND 

rLBL0375 ND ND ND ND NS ND ND 

rLIC10973 (OmpL1) 0.81 ± 1.30 1.46 ± 5.44 ND NS 0.92 ± 1.38 ND ND 

        

Abbreviations: ND: Not determined, NS: Not saturated 
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Figure 5.3 (A-D): Binding saturation curves of recombinant leptospiral OMPs to selected host ligand molecules. 
 

Data represent the mean absorbance at 450 nm ± the standard error of the mean (SEM) of three independent experiments. The binding of leptospiral recombinant proteins to 

host ligand molecules was compared to their binding to BSA by non-linear regression. The equilibrium dissociation constant (Kd) of each protein was estimated at half-maximal 

binding (see Table 5.2).
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5.3.4 Detection of anti-leptospiral immunoglobulins in cattle bulk milk samples 

The leptospirosis status (positive or negative) of cattle bulk milk (n= 30) was previously 

determined by Cattle Information System (CIS, UK) by using a commercial Leptospira 

antibody test kit Linnodee Leptospira Hardjo ELISA Kit® (Linnodee Animal Care, Ballyclare, 

Northern Ireland). The test kit has a sensitivity and specificity of 94.1% and 94.8%, 

respectively. These samples were then tested by IgG-based ELISA against all of the leptospiral 

recombinant OMPs for the presence of specific bovine IgG antibodies (subclass IgG1 and 

IgG2) within the samples (Figure 5.4). From the results, significant titres were observed for 

IgG1, compared to IgG2, against all OMPs. However, only rOmpL1 (LBL_2510) of L. 

borgpetersenii serovar Hardjobovis L550 and rLBL_0375 showed statistically significant of 

IgG1 titres (P <0.05, P <0.001) between positive and control bulk milk samples. The results of 

the OMP antibody titre were used to study the titres association which was determined using 

Pearson’s coefficient correlation measured by simple linear regression to compare the 

relationship between the optical densities produced by the two assay systems. From the 

results obtained in Figure 5.5, no correlation was observed in the antibody responses to the 

individual OMPs compared to the test kit.  

In addition to this, the IgG1 titres between OMPs were compared to determine their 

association. Overall, the results showed the majority of OMPs showed a moderate to very 

strong, positive correlation between one another (r values ranging from +0.35-0.80, P <0.001, 

P <0.0001), which indicates the two variables are related. However, no linear association (r = 

0.00, P >0.05) was found when comparing between OMPs titres against both OmpL1. 

Conversely, titres of both OmpL1 showed a strong, positive correlation against one another 

(r = 0.41, P <0.0001). Figure 5.6 and Table 5.3 are showing the results of IgG1 association of 

recombinant OMPs against one another. 
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Figure 5.4 (A-D): Host immune response assessment to Leptospira OMPs in cattle bulk milk samples 
represented in scatter dot-plot graphs.  
 

Data represent the mean absorbance of secondary antibody concentration (mouse anti-bovine IgG1 

and IgG2) at 450 nm ± the standard error of the mean (SEM) of two independent experiments. The 

antibody titre against each OMP was compared between Leptospira positive and negative samples by 

Mann-Whitney U test (*** P <0.001, * P <0.05). 



Chapter 5  Characterisation studies of Leptospira OMPs 

133 
 

 

Figure 5.5 (A-E): The association between milk reference obtained from Leptospira Hardjo (Linnodee) 
test kit anti-leptospiral antibodies and antibodies (IgG1 and IgG2) binding to leptospiral 
recombinant OMPs including OmpL1● positive control from L. interrogans serovar Copenhageni L1-
130 tested in cattle bulk milk samples. 
 

The trend line represents the correlation coefficient, denoted as (r values), which estimates the 

relationship between the OD (450 nm) of both results. P-values determine the significant level of 

association between two assays of which P-value of at least <0.05 is considered significant.   
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Figure 5.6 (A-J): The association of IgG1 titres of recombinant proteins against each other 
represented including OmpL1● positive control from L. interrogans serovar Copenhageni L1-130 
using Pearson's correlation coefficient measured by the linear correlation between optical densities 
of tested proteins. 
 
The trend line represents the correlation coefficient denoted as (r values), which estimates the 

relationship between the OD (450 nm) of both results. P-values determine the significant level of 

association between two assays of which P-value of at least <0.05 is considered significant.  
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Table 5.3: The summary matrix of r values of IgG1 titres of all recombinant OMPs against 
one another with their corresponding P values. 

Recombinant 

OMPs/r values 

rLBL2510 rLBL2618 rLBL0972 rLBL0375 rLIC10973 

rLBL2510 

(OmpL1) 

 r = 0.01 

NS 

r = 0.01 

NS 

r = 0.02 

NS 

r = 0.41 

(P <0.0001) 

rLBL2618   r = 0.80 

(P <0.0001) 

r = 0.35 

(P <0.001) 

r = 0.004 

NS 

rLBL0972    r = 0.50 

(P <0.0001) 

r = 0.02 

NS 

rLBL0375     r = 0.04 

NS 

rLIC10973 

(OmpL1●) 

     

 
●The OmpL1 (L. interrogans serovar Copenhageni L1-130) used as a positive control in this 
study. 
NS: Not significant. 

 

5.4 Discussion 

5.4.1 Leptospiral OMPs binding to host ligand molecules  

Adherence of pathogens to the host cells and tissues is a critical step to establish successful 

infection through colonisation and dissemination. Like most bacteria, the leptospiral cell 

surface plays an important role in this infection process. For instance, LPS is a major cell wall 

structure in Gram-negative bacteria that responsible for bacterial attachment, aggregation 

and biofilm formation in host ECM. Another important biochemical property for adherence 

to the host cell is the special group of proteins known as MSCRAMM (or adhesins), which are 

secreted at the cell surface to interact with host cells and proteins that lead to bacterial 

accumulation and aggregation.  

 

In this study, we studied the binding ability of four leptospiral OMPs, plus a positive control 

from L. interrogans serovar Copenhageni L1-130 (rLIC10973/OmpL1) that were previously 

identified by bioinformatics as potential adhesins towards several host ligands (Chapter 3) 

and produced as recombinant proteins (Chapter 4). From the host ligand screening binding, 

it was found that all proteins bound significantly to host fibrinogen. This finding is 

unsurprising because several known L. interrogans proteins have been characterised to bind 

with fibrinogen demonstrated in vitro experiments (Murray, 2015). Fibrinogen is a plasma 

protein that is essential for haemostasis and wound repair. Binding of a bacterial cell to 

fibrinogen may lead to disruption of blood coagulation, causing haemorrhage, which a 

common feature of severe leptospirosis manifestation in man (Dall’Antonia et al., 2008). 
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Several known surface-exposed proteins of L. interrogans demonstrate fibrinogen-binding 

function including OmpL1 (Oliveira et al., 2013), LigA and LigB (Stevenson et al., 2007; 

Castiblanco-Valencia et al., 2012) and several surface adhesins such as Lsa25, Lsa30 and 

Lsa33 (Oliveira et al., 2013). As well as bacterial surface proteins binding to fibrinogen in 

Leptospira, the same fibrinogen-binding phenomena are observed by proteins found in other 

spirochetes, such as in Treponema recombinant OMPs (Staton, 2018). Interestingly, there are 

a limited number of studies linked to fibrinogen-binding by Borrelia proteins, although one 

Borrelia protein (BBA70) is able to degrade fibrinogen by activation of plasmin via 

plasminogen binding (Koenigs et al., 2013). In this study, one of the tested Leptospira 

proteins rLBL0375 showed ambiguous dose-dependent binding to fibrinogen, and therefore, 

the binding is considered as non-specific.  

 

Far-western blot is a routine molecular technique to assess protein-protein interaction (Wu, 

Li and Chen, 2007) and the method was employed in this study to assess the interaction 

between fibrinogen and recombinant Leptospira proteins. Interestingly, all proteins bound 

to β-chains, and two proteins (rLBL2618 and rLBL0972) showed binding to all fibrinogen 

chains. Attachment of proteins to either α and β chains (which make up the thrombin binding 

site) inhibit thrombin cleavage from releasing fibrinopeptides A and B, a component essential 

for fibrin formation during blood clotting (Madrazo et al., 2001). Binding to the fibrinogen γ 

chain may also have effects in haemostasis and other blood-related mechanisms (de Willige 

et al., 2009). These findings show that our recombinant proteins may be able to cause the 

haemorrhagic syndrome, a role that needs to be translated into an animal host for future 

investigations. 

 

Fibronectin is an ECM component which is found as insoluble cellular fibronectin and also 

exists in the soluble form (soluble plasma fibronectin). Both forms play important roles for 

cellular attachment, growth, migration and differentiation, as well as in wound repair and 

embryonic development. In this study, most of the tested proteins exhibited significant 

binding to cellular fibronectin. The finding parallels that of more than 30 leptospiral proteins 

that were previously characterised (Murray, 2015). Fibronectin-binding proteins are also an 

important feature of Treponema pallidum (Tp0155 and Tp0483) and Borrelia burgdorferi 

(RevA and RevB) in allowing pathogen colonisation of the host (Cameron et al., 2004; 

Brissette et al., 2009). Additionally, our fibronectin-binding proteins exhibited stronger 

affinity binding at lower protein concentrations (rLBL_2618: Kd 0.10 ± 0.02 and rLBL0972: Kd 

0.43 ± 0.20) compared to rLIC10973 (OmpL1) (Kd 0.81 ± 1.30) and saturated at an increasing 
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concentration in dose-dependent saturation studies reflecting the strong fibronectin binding 

function and eliminating the possibility of non-specific protein-ligand interaction.  

 

Laminin is a protein component of ECM found abundantly on the surface of endothelium, 

mesothelium and endothelium layers of most cells and organs. Attachment of pathogens to 

laminin enhances invasion and dissemination to organs. Binding to host laminin is a crucial 

function for spirochetes to begin bacterial colonisation of the host and is mediated by several 

identified adhesins such as Tp0751 and BmpA (Cameron, 2003; Verma et al., 2009). 

Interaction of L. interrogans  proteins with laminin has been reported, and it was shown that 

a large number of leptospiral proteins had been found to manifest this function in vitro assays 

(Murray, 2015). In this study, positive control OmpL1 of L. interrogans (rLIC10973) showed  

significant binding to laminin (P <0.01), which is supported by the previous finding by 

Fernandes et al. (2012). Interestingly, we found that one OMP of L. borgpetersenii (rLBL2618) 

had statistically significant binding (P <0.001) to host laminin compared to BSA. The finding 

is interesting because it shows that laminin-binding function is not only restricted to a 

particular protein family domain (e.g. OmpL1, OmpL37 and OmpL47) within a particular 

species (L. interrogans) (Pinne et al., 2010; Fernandes et al., 2012), the result suggest that L. 

borgpetersenii acquire the laminin-binding gene through genetic expansion resulting in 

several surface-exposed proteins have the similar ability to interact with host laminin. 

 

Based on our findings, it is quite clear that two these bovine OMPs, rLBL2618 and rLBL0972 

(but not rLBL0375) are considered novel adhesins, therefore, we designate them as 

‘Leptospiral adhesin’ (denoted by an abbreviation ‘Lsa’) followed by their respective 

molecular sizes; rLBL2618 (49 kDa) as Lsa49 and rLBL0972 (37 kDa) as Lsa37. The term will 

be used throughout the thesis otherwise stated. However, it is difficult to interpret the non-

specific high titre of Lsa49 binding saturation curve to BSA and Lsa37 to fibronectin. One 

possible reason is due to the prozone (or hook) effect due to competitive binding between 

both antibody (his-tagged) and conjugate antibody against antigen (OMP) and preventing the 

sandwich formation (Roy et al., 2017). As a result, antigen bound with conjugate antibody 

will be rinsed off and giving a false ‘low’ signal which will be picked up by ELISA plate reader. 

This will create a formation of a ‘hook’like effect when ELISA data is plotted as OD versus 

antigen concentration. 

 

The overall binding results suggest that these proteins possess a high degree of functional 

redundancy. This is not surprising as many leptospiral proteins have paralogs which overlap 
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in functional binding to various host ECM as a result of genomic expansion through genetic 

duplication (Murray, 2015). The emphasis of functional redundancy is intricate as the 

proteins may work in different stages, either during different infection stages, or different 

tissues or may even work simultaneously. It may be possible that the loss of one putative 

function of one protein is covered with another protein of similar function (Adler et al., 2011). 

5.4.2 Reactivity of leptospiral recombinant proteins in cattle bulk milk samples 

The ELISA-based method was performed to analyse the immune reaction of cattle IgGs to 

novel recombinant leptospira OMPs in cattle bulk milk, of which the leptospirosis status was 

pre-determined using the commercial Leptospira test kit. IgG is the dominant antibody in 

cattle milk and mediates pathogen opsonisation, which promotes their destruction via 

phagocytosis by polymorphonuclear cells (PMNs). In this study, OmpL1 (rLBL2510) of L. 

borgpetersenii serovar Hardjobovis L550 and Lsa37 showed a statistically significant immune 

IgG1 titre between positive and negative samples. The finding is interesting because OmpL1 

was previously demonstrated as a serological antigen for the diagnosis of human and canine 

leptospirosis (Flannery et al., 2001; Okuda et al., 2005; AiHua et al., 2011) and has never been 

tested in cattle milk samples. In contrast to this, OmpL1 (rLBL10973) of L. interrogans serovar 

Copenhageni Fiocruz L1-130 in this study did not have a significant immune reactivity titre. 

The differences between these two OmpL1s are clear given there is only 85% of amino acids 

shared and substantial diversity in predicted loop regions (Haake et al., 2004). We considered 

these differences meant that specific Leptospira antibodies produced in cattle might not 

recognise Leptospira proteins from non-bovine Leptospira strains. Thus, further investigation 

is warranted to determine whether OmpL1 obtained from various Leptospira strains can be 

recognised in cattle milk samples.  

 

Additionally, Lsa37 was recognised by cattle humoral immune system, demonstrated by a 

high IgG1 titre in Leptospira positive samples, although this protein has no apparent binding 

functions as previously described in the result section. This suggested that this protein is 

likely to be expressed in cow’s milk during infection, however, may not be required in actual 

infection. We suggest that based on our data that this protein does not act as an adhesin or 

that it is likely to have another function apart from binding to host molecules which we have 

not tested for. The finding is similar to one leptospiral OMP (LipL41) that has no binding 

function, but largely recognised by host immunity during convalescent-phase and not 

necessary for Leptospira virulence (Guerreiro et al., 2001; King et al., 2013). Additionally, a 

high antibody titre detected in this study using Lsa37 suggests that this protein is recognised 
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by the immune system and can be considered as a potential diagnostic assay to detect 

specific anti-leptospiral immunoglobulin presence in cow’s milk. No significant reaction was 

observed against IgG2 to all tested OMPs. This is likely due to the low concentration of IgG2 

comparing to IgG1 in cattle milk caused by preferential uptake of IgG2 back to the 

extracellular fluid, and not passed on the alveolar lumen and into the mammary secretion 

(Butler, 1969; Hurley and Theil, 2013). Due to this reason, the IgG2 titres in milk samples are 

expected to be low and concurred with the findings in this study. 

 

The investigation to determine any association between a standard Leptospira diagnostic 

assay and recombinant OMPs in cattle bulk milk in this study showed no correlation. This was 

probably due to different antigens in ELISA assays used e.g. LPS versus OMP. It is known that 

LPS (contained within the Linnodee L. Hardjo ELISA test kit) is an immunodominant antigen 

and demonstrates high sensitively to both infection and vaccination (Chapman et al., 1988; 

Gitton et al., 1994). This is most likely due to the ability of LPS to activate polyclonal B cells, 

causing cell proliferation and generates mounted antibodies against LPS, contributed to a 

high anti-LPS immune response (Parekh et al., 2003). Additionally, lack of correlation 

observed between OMP and LPS in this study indicates that the antibody induced by the 

OMPs may be lesser in quantity due to poor surface exposure, low expression or temporal 

expression limited to an infection phase that does not stimulate a large immune response. 

For example, LPS is also termed endotoxin because it is a toxin released on bacterial death 

where the host might produce a large antibody and inflammatory response against the LPS 

(Sweet and Hume, 1996). In contrast, the OMPs may interact with the immune system early 

during infection during the colonisation phase using their adhesin functions reported here 

and not be expressed during cell death. 

 

When comparing the immune titres between each OMPs, Lsa37, Lsa49 and rLBL0375 were 

positively correlated to one another but not to OmpL1. Conversely, OmpL1 from both species 

(rLBL2510 and rLIC10973) demonstrated a strong correlation to one another. The finding is 

interesting, because this may indicate that these OMPs could be expressed in the milk and 

recognised by the cattle immune system. A moderate to strong correlation represented in 

positive linear regression (r values between +0.35-0.80, P <0.0001) between OMPs, except 

to both OmpL1s in this study indicates that these proteins are likely to have similar immune 

responses. It may be possible Lsa49, Lsa37 and rLBL0375 shared similar antigenic epitopes 

that are identical and equally recognised by host immunity, resulting in strong titre compared 

to OmpL1. Additionally, these OMPs may have a large surface-exposed structure that 
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potentially allows more antibody binding reflecting the significant immune response. A 

strong correlation between the two OmpL1s (r = + 0.4, P <0.0001) suggests conserved 

immunogenicity given they are the same OMP from different pathogenic Leptospira species 

as previously reported (Dong et al., 2008; Dezhbord et al., 2014; Muthiah et al., 2015) 

especially given there is >85% amino acids conserved regions between L. interrogans serovar 

Copenhageni Fiocruz L1-130 and L. borgpetersenii. Furthermore, Leptospira was previously 

demonstrated in mammary tissues of both human and animal host (Bolin and Koellner, 1988; 

Oliveira et al., 2016) that leads to vertical transmission, therefore, it may be possible that 

OmpL1 may be directly involved in Leptospira interaction in the host mammary tissues for 

colonisation. However, it is difficult to intricate the lack of correlation between OmpL1 and 

all OMPs seen in this study. We suggest that this is could be due to OMP structural diversity 

and evidence of reciprocal expression. The structural difference of OmpL1 and other OMPs 

in this study could affect the outcome of the host immune response. As previously noted, 

OmpL1 may not share similar antigenic epitopes compared with the rest of OMPs, and 

therefore, this may trigger a distinct host immune response to produce different between 

antibody titres measured between two types of OMPs. This is interesting findings; therefore, 

a further study is warranted to identify the epitope structures of each OMPs and compare to 

one another to determine the conserved amino acid regions that allow antibody binding.  

 

Secondly, the difference in antibody titres also could be due to reciprocal expression during 

stages of infection. As seen in other pathogenic spirochetes (e.g. Borrelia burgdorferi) the 

expression of Borrelia outer surface proteins occurs in different infection stages between tick 

reservoir and definitive host. For instance, expression of outer surface protein A (ospA) is 

induced by an unfed tick and the expression maintained until tick feeds on mammal blood, 

marking the transmission of bacteria to the host (Schwan et al., 1995). At this stage (host 

invasion), ospA expression is greatly reduced and switched to outer surface protein C (ospC) 

expression which is essential for bacterial survival in the bloodstream of the host (Tilly et al., 

2006; Caine and Coburna, 2015). In this study, it may be possible that Lsa37, Lsa49 and 

rLBL0375 are likely to be expressed in milk at certain disease stage, whilst OmpL1 expression 

is not prominent during this time. It should be noted that anti-OmpL1 is consistently detected 

in the serum of infected patients during from both acute and convalescent phase (Guerreiro 

et al., 2001; Fernandes et al., 2012) reflecting that OmpL1 expression may be more significant 

in the blood rather than in milk. 
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5.4.3 Limitations of the study 

Several limitations were noted in this study. For instance, BSA was used as a sole negative 

protein control in binding studies, which may give non-specific binding interactions with host 

ligands and therefore reduce the statistical significance of comparator ligands in turn. 

Although BSA is widely used as a sole negative control in host-ligand studies, future studies 

might include other negative controls such, as fetuin or gelatine in parallel to BSA in a single 

experiment (Pinne et al., 2010; Siqueira et al., 2013). Moreover, our in vitro-characterised 

proteins require further investigation in animal models, and that any artefactual findings 

need to be identified and eliminated. Nevertheless, our findings provide useful information 

on the possible pathophysiology interactions of these novel antigens during infection. 

Additionally, several considerations need to be taken into an account when interpreting the 

results in this study. As we do not know the true infection status of the animal (e.g. by using 

experimentally infected cattle), it is not clear if the expression of these OMPs is reflective of 

true disease progression. These OMPs may be expressed and detected by the host immune 

system as a result of leptospires, but this may not necessarily be due to acute disease and 

could reflect subclinical infection with little clinical signs. Therefore, the antibody titres 

measured by ELISA in this study may represent a chronic or recovered phase of the disease, 

as frequently seen in the longitudinal antibody responses exhibited during human infection 

(Picardeau et al., 2014).  

5.5 Conclusion  

The present study has opened up a broad perspective towards understanding the L. 

borgpetersenii -host interactions. More studies are warranted to further characterise the role 

of these leptospiral OMPs as potential virulence factors in Leptospira pathogenesis, which 

may possibly be identified via future mutagenesis and in vivo analyses. In this study, we have 

characterised novel bovine Leptospira OMPs from L. borgpetersenii serovar Hardjobovis L550 

through binding studies using various host ligands and evaluated the cattle’s immune 

response in bulk milk samples using these recombinant proteins as test antigens. Two OMPs 

showed an adhesive property towards several host components and therefore, they are 

designated as Lsa49 and Lsa37 according to their function and molecular sizes. Taken 

together, we consider that these proteins might have a significant role during the leptospiral 

invasion of the host.



Chapter 6  Leptospira OMP diversity 

143 
 

Chapter 6: Functional and immunological characteristics of 

OMP variants from different pathogenic Leptospira species 

 

6.1 Introduction 

6.1.1 The genetic evolution of Leptospira species 

The Leptospira genus is one of the most genetically diverse organisms due to their ability to 

infect a large spectrum of mammalian hosts. The phylogenetic comparative analysis of 16S 

rRNA sequences showed the Leptospiracae emerged from the deepest branch of their 

phylogenetic tree, which diverged into L. biflexa (saprophytic) and L. interrogans 

(pathogenic), which resulted from a single evolutional event (Schwan et al., 1991). To date, 

there are more than 250 recognised pathogenic serovars, of which 24 of them are 

antigenically defined as serogroups (Cerqueira and Picardeau, 2009; Adler and de la Peña 

Moctezuma, 2010). The classification of leptospires is further complicated as there are now 

32 genomospecies recognised during more recent taxonomic reassignment and reappraisal 

of the genus (Figure 1.3, Chapter 1). 

The diversity of Leptospiracae is attributed to both reduction and addition of genes, as well 

as the variation of genetic determinants that may contribute to their ability to infect 

mammalian hosts and survive in host or environment. The availability of genome sequence 

allows the study of the evolution of a pathogen and can provide insights into how the gene 

encoding a particular function evolved, and associated outcomes. For example, a detailed 

genomic study on a non-pathogenic strain of L. biflexa (which has 2/3 of orthologue genes in 

both L. interrogans and L. borgpetersenii strains) revealed that survival of L. biflexa  within 

the environment is due to the presence of tertiary circular replicon (p74) that is not present 

in all pathogenic species (Picardeau et al., 2008). Other genetic determinants are also 

thought to influence the ability of L. biflexa to survive to the environment with an abundant 

number of signal transduction and exopolysaccharide genes compared to pathogenic 

species, which helps to enhanced metabolic capability, contributing to fast growth rate and 

ability to form a biofilm reflecting their ability to survive in aquatic environment (Picardeau 

et al., 2008).  

Additionally, differences in genome size appear to contribute to the ability of Leptospira to 

survive within the host. Genome reduction, observed in L. borgpetersenii and L. biflexa 

compared to L. interrogans, is thought to limit  survival of the microbe to either the host or 
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environment, respectively. For example, there are 16% of genes absent in L. borgpetersenii 

serovar Hardjobovis strains L550 and JB197, in comparison to L. interrogans. This difference 

is attributed to a process of insertion sequence (IS) mediated genome reduction resulting in 

host-to-host transmission restriction due to loss of several genes essential for broad survival 

(Bulach et al., 2006). However, the same study revealed that 31% of L. borgpetersenii genes 

encode predicted OMPs and lipoproteins that includes the transmembrane porin (OmpL1) 

and TonB/TonC related proteins similar to L. interrogans genomes. Identification of 

leptospiral OMPs is essential for the functional and immunological studies that lead to 

potential vaccine development, and therefore, it is important to evaluate the variability of 

these proteins at the molecular level and identify any functional differences. 

6.1.2 Outer membrane protein variation in pathogenic Leptospira species 

Comparative sequence analysis of OMP genes can provide information on molecular 

evolution in pathogenic bacteria. An excellent example of this is the variation of leptospiral 

OMP genes as reported by Haake et al. (2004) for several leptospiral antigenic OMPs (OmpL1, 

LipL41 and LipL32). This study revealed highly variable DNA and amino acid sequences for 

OmpL1 followed by LipL41, whilst LipL32 and 16S rRNA genes were the most conserved. The 

evolutionary mechanism for this diversity was both horizontal DNA transfer across Leptospira 

species as well as single-nucleotide mutation. For OmpL1, when multiple Leptospira species 

were compared, there was evidence of both positive selection, as well as a gene segment 

being identified as undergoing genetic recombination including the acquisition of sequence 

from a peregrine allele of unknown origin (Haake et al., 2004). Historically, several Gram-

negative bacterial OMPs have undergone similar genetic recombination, including WSP of 

Wolbachia spp. (Baldo et al., 2005; Desjardins et al., 2010), PorA and PorB of Neisseria 

meningitis (Feavers et al., 1992; Bash et al., 1995; Dyet and Martin, 2005) and OspA and OspC 

of Borrelia spp. (Marconi et al., 1994; Jauris-Heipke et al., 1995).  

The molecular evolution of OMPs within species and exchange of genetic materials between 

species raise a critical question; Does interspecies gene variation of OMPs affect functional 

capability? Vedhagiri et al. (2009) suggested variability of leptospiral OMP genes acquired 

through a slow evolutionary process may have affected the antigenicity and pathogenic 

characteristics of serovar-specific strains. Nevertheless, a study on OmpL1 immunogenicity 

across pathogenic species revealed that variations in OmpL1 sequences did not affect the 

protein’s immunogenicity, although optimal vaccine protection rates were only observed 

when the OmpL1 vaccine allele matched the allele within the infecting leptospire from the 
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challenge model (Dong et al., 2008). Little is known about whether variation in individual 

genetic loci affects the functional ability of Leptospira to infect host tissues. Therefore, the 

present study aimed to determine whether the variation of two key OMPs across pathogenic 

Leptospira genomospecies, resulted in any phenotypic divergence, namely in host molecule 

adhesion and immunogenicity. 

 

6.2 Materials and methods 

6.2.1 Identification of OmpL1 and Lsa49 variants across Leptospira pathogenic species 

A BLAST protein search (BLASTp) was carried out to identify OMP variants across all 

leptospiral pathogenic genomospecies for OmpL1  and Lsa49 using query gene sequences 

from L. borgpetersenii. The resulting output list of sequences was compiled into a sequence 

alignment using Bioedit and was filtered by carefully removing duplications of identical 

genomospecies sequences and  examining the locus tags for correct annotation and analysing 

sequence identity matrix. Based on available annotated OmpL1 sequences, all sequences 

shared at least >85% amino acid sequence identity in line with a previous study (Haake et al., 

2004). As Lsa49 was not already annotated on line, we included all Leptospira genes 

containing DUF1566 across genomospecies, which resulted in minimum >65% amino acid 

sequence identity. A phylogenetic tree of each OMP variants collection was constructed using 

the maximum-likelihood method (Tamura et al., 2013). The tree, together with a generated 

sequence identity matrix was analysed for both proteins, so that a total of five sequences for 

each OMP (and including the original L. borgpetersenii serovar Hardjobovis L550 sequence) 

were selected from different separated deep branches.  

6.2.2 Construction of expression vector 

Signal peptides from each selected amino acid sequence were removed using the prediction 

from SignalP 3.0 as previously described (Chapter 3), and all sequences were submitted to 

GeneMill (University of Liverpool, UK) to synthesise expression constructs containing DNA of 

interest within the pET system via modular cloning. The synthesised plasmids were 

propagated in E. coli Top10 cells and were grown on LB plates containing 100 µg/ml ampicillin 

overnight. Five to ten colonies were selected and grown in LB broth containing 100 µg/ml of 

ampicillin solution overnight, and plasmids were harvested using the QIAprep 

Spin Miniprep Kit (Qiagen, Hilden, Germany). Plasmid preps were stored at -20°C for further 

downstream applications.  
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6.2.3 Protein expression and purification of Leptospira recombinant OMP variants 

All recombinant protein expression was performed according to Chapter 2 and 4, with minor 

modifications. In large scale expression, the transformed E. coli BL21-AI cultures were 

induced using a combination of 0.2% (w/v) L-arabinose and 1 mM IPTG at a final 

concentration as recommended by the manufacturer. Inclusion body extraction and protein 

purification were carried out as described in Section 2.19-2.22, and purified proteins were 

concentrated when the yield was below 200 µg/ml. All proteins were stored at -80°C for 

further application. 

6.2.4 Circular dichroism spectroscopy of Leptospira recombinant OMP variants 

Circular dichroism (CD) spectrometry measurements were performed on all recombinant 

OMP variants by using a Jasco-1100 spectropolarimeter equipped with a Peltier unit for 

temperature control (Jasco, Easton, MD). Far-UV CD spectra were measured in a 0.1-mm-

path-length cell at 0.5 nm intervals. The spectra reading was taken as an average of three 

readings  from 190 to 260 nm. Spectrum data were analysed similarly as described in Section 

4.2.5. 

6.2.5 Screening and binding saturation evaluation of Leptospira recombinant OMP variants 

to host molecules 

Binding of leptospiral recombinant OMP variants to multiple host molecules via an ELISA-

assay was performed similarly to Chapter 5 (Section 5.2.5), and ligands with statistical 

significance were selected for dose-response saturation binding to determine the binding 

affinity of each OMPs similar as described in Section 5.2.6 in this thesis.  

6.2.6 Immunological evaluation of leptospiral OMP variants in cattle’s sera 

Thirty cattle sera were collected from a national diagnostic lab (Scottish Rural College, UK). 

Leptospirosis status of each serum was determined in the lab using a commercial Leptospira 

detection kit PrioCHECK™ L. hardjo Ab Strip Kit (Bercovich et al., 1990). The kit utilises whole-

killed cells from L. interrogans serovar Hardjo as a coating antigen, and the procedure was 

carried out according to manufacturer’s instruction which can be found in Appendix C (Figure 

C.2). Sera were kept at -20°C in 100 µl aliquots and diluted as required. Detection of anti-

leptospiral antibodies against leptospiral recombinant OMPs in serum samples was carried 

out based on the ELISA method as described in Section 2.26.2. 
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6.3 Results 

6.3.1 Selection of OmpL1 and Lsa49 across pathogenic genomospecies 

Five of each OmpL1 and Lsa49 representing the diversity across all pathogenic Leptospira 

genomospecies were selected from different deep branches of the phylogenic tree Figure 6.1 

and Figure 6.2) and included OmpL1 (LBL2510) and Lsa49 (LBL2618) previously described in 

Chapter 3. The sequence analysis matrix determined the shared amino acid sequence 

identity of these sequences is at least 85% (for OmpL1) and 65% (for Lsa49) (Results not 

shown). Lsa49 protein was identified by using the presence of the Domain of Unknown 

Function 1566 (DUF1566) protein group or belonging to family protein 07603 (FP07603), of 

which can be found in L. interrogans, has previously been hypothesised as playing a role in 

host-pathogen interactions (Atzingen et al., 2012; Domingos et al., 2012). The DUF1566 is 

located in two different locations within Lsa49 amino acid sequence of all genomospecies, 

which are between 176-305 and 320-345 of the mature peptide, respectively (Figure 6.14). 

Table 6.1 shows the selected OmpL1 and Lsa49 variants across genomospecies in this study. 

 
Table 6.1: Selection of OMP variants from phylogenetic analysis. 

NCBI Accession 

No./ Locus tag 

Leptospira species Protein domaina Identity to 

OmpL1 or Lsa49b  

Expession 

vectorc 

LIC_10973* L. interrogans svr 

Copenhageni L1-130 

OmpL1 100% - 

LBL_2510* L. borgpetersenii svr 

Hardjobovis L550 

OmpL1 87% - 

WP_061249915.1 L. alstonii OmpL1 86% pGM176_8 

WP_046692058.1 L. santarosai OmpL1 94% pGM176_7 

WP_004450512.1 L. noguchii OmpL1 88% pGM176_3 

AAT_48513.1 L. interrogans svr 

Pyrogenes 

OmpL1 86% pGM176_1 

LBL_2618* L. borgpetersenii svr 

Hardjobovis L550 

DUF1566/Lsa49 100% - 

WP_061250085.1 L. alstonii DUF1566/Lsa49 69% pGM176_9 

WP_036069232.1 L. noguchii DUF1566/Lsa49 65% pGM176_6 

WP_020778757.1 L. kirschnerii DUF1566/Lsa49 65% pGM176_5 

WP_004492537.1 L. santarosai DUF1566/Lsa49 77% pGM176_4 

a The protein domain for each OMP were identified by a database of protein families (Pfam) (Finn, 

2006). 
b The amino acid identity of each OMP versus OmpL1 or Lsa49 (DUF1566) were determined through 

sequence identity matrix aligned in Bioedit. DUF; Domain of unknown function. 
c The expression vector code for each OMP variants.  

*OMP included from the previous studies (Chapter 3-5). 
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Figure 6.1: The phylogenetic analysis of the amino acid sequence of OmpL1 across various 
pathogenic Leptospira genomospecies and serovars by maximum likelihood method.  
 

Six OmpL1 genes; L. interrogans serovar Hardjobovis L550 (LBL_2510), L. interrogans serovar 

Copenhageni L1-130, L. interrogans serovar Pyrogenes (ATT_48513.1), L. santarosai 

(WP_046692058.1), L. alstonii (WP_061249915.1) and L. noguchii (WP_004450512.1) from the each 

deepest branch (indicates by arrows) were selected for functional and immunological evaluation in this 

study (Table 6.1).  
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Figure 6.2: The phylogenetic analysis of Lsa49 amino acid sequences across pathogenic Leptospira 

genomospecies by maximum likelihood method and rooted by a distantly related 49 kDa protein 

(Lp49) from L. interrogans (denoted by a circle) (Giuseppe et al., 2008). 

 

Five Lsa49 genes, indicated by arrows; L. borgpetersenii serovar Hardjobovis L550 (LBL2618), L. 

kirshneri (WP_020778757.1), L. santarosai (WP_004492537.1), L. alstonii (WP_061250085.1) and L. 

noguchii (WP_036069232.1) were randomly selected for functional evaluation in this study (Table 6.1).   
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6.3.2 Protein overexpression and purification of selected OMP genes 

The majority of selected OMP genes were successfully expressed in E. coli and purified with 

the concentration of each protein varying from 0.2-1.7 mg/ml. However, only one OMP 

(Lsa49 of L. santarosai) had poor expression despite several expression attempts and was 

excluded from this study. Additionally, all Lsa49 variants required centricon concentration 

due to poor yield. All expressed proteins were analysed on 12% (v/v) SDS-PAGE gels. 

6.3.3 Secondary structures of OMP variant recombinant proteins 

Far-UV CD spectra data of all purified recombinant OMPs demonstrated all OmpL1 

preparations had predominantly β-sheet spectra in their secondary structure, which agrees 

with the OmpL1 data in this study (Chapter 4) and from the previous study (Fernandes et al., 

2012). All Lsa49 protein also manifested a similar spectrum, which is indicative of β-sheet 

secondary structure, with some additional protein features as previously discussed in 

Chapter 5. The CD spectrum of all recombinant OMP variants was analysed using online tools; 

BestSel and CAPITO as described previously. Spectra results of all OMP variants are shown in 

Figure 6.3 and Figure 6.4, and the detailed analysis of each OMP can be found be Appendix 

C (Table C.4 and C.5).  
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Figure 6.3 (A-F): Circular dichroism (CD) spectra of OmpL1 variants across selected genomospecies. 

 

All OmpL1 variants are showing a β-sheet profile with a minima between 210 nm – 215 nm and a 

maxima between 195 nm – 200 nm. The CD spectrum is presented as an average of three scans 

recorded from 190 to 260 nm. All graphs were plotted using CAPITO software.  



Chapter 6  Leptospira OMP diversity 

152 
 

 

Figure 6.4 (A-D): Circular dichroism (CD) spectra of Lsa49 variants across selected Leptospira 

genemospecies.  

 

All Lsa49 variants are showing a β-sheet profile with a minima between 210 nm – 215 nm and a 

maxima between 195 nm – 200 nm. The CD spectrum is presented as an average of three scans 

recorded from 190 to 260 nm. All graphs were plotted using CAPITO software.
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6.3.4 Binding of leptospiral OMP variants to host molecules  

All recombinant OMP variants were subjected to functional host molecules binding by an 

ELISA-based assay as described briefly in Section 6.2.5. For OmpL1, binding variation was 

observed between L. borgspetersenii serovar Hadjo L550 and L. santarosai both bound 

significantly to fibrinogen (P <0.001), and interestingly L. borgpetersenii serovar Hadjo L550 

and L. santarosai showed remarkable adherence towards bovine elastin (P <0.001). The 

OmpL1 of L. santarosai also bound to laminin (P <0.001) and chondroitin (P <0.05). The 

OmpL1 from both L. interrogans also showed significant host molecule binding variation; L. 

interrogans serovar Copenhageni L1-130 has additional binding preference to fibronectin (P 

<0.001) and laminin (P <0.001) and also chondroitin (P <0.05) compared to L. interrogans 

serovar Pyrogenes that bound only to fibrinogen (P <0.001). Furthermore, no significant 

binding was observed to collagen and heparan sulphate for all OmpL1s (Figure 6.5).  

Due to the significant elastin (bovine skin) binding of OmpL1 observed in L. borgpetersenii 

serovar Hadjo L550 and L. santarosai, an additional elastin binding study was carried out 

using human skin and aorta elastin based on the previous experiment by Pinne, Choy and 

Haake (2010). Interestingly, OmpL1 of L. borgpetersenii showed a statistically significant level 

of adherence to both aorta and skin elastin (P <0.001), whereas OmpL1 from L. santarosai 

showed binding preference to only aorta elastin (P <0.01) (Figure 6.9). 

For Lsa49 variants, there was also some variation in host ligand binding between species. In 

general, all Lsa49 proteins bound to fibrinogen (with P <0.001, to P <0.05). Only L. alstonii 

and L. borgpetersenii serovar Hardjobovis L550 exhibited additional bindings to laminin and 

fibronectin (P >0.001) (Figure 6.6). Additionally, no significant binding was observed to 

heparan sulphate, chondroitin, collagen, and elastin, respectively. Table 6.2 shows the 

binding results of all recombinant OMP variants.  
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Figure 6.5 (A-F): Binding to host components including bovine elastin (denoted by subscript b) of 
leptospiral recombinant OmpL1 variants across various Leptospira pathogenic genomospecies.  
 

Data represent the mean absorbance at 450 nm ± the standard error and the mean (SEM) of three 

independent experiments. The binding of recombinant proteins to tissue components was compared 

to their binding to BSA by Dunnett’s multiple comparison test (*** P <0.001, ** P <0.01, * P <0.05). 
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Figure 6.6 (A-D): Binding to host components including bovine elastin (denoted by subscript b) of 
recombinant Lsa49 variants across various Leptospira pathogenic genomospecies. 
 

Data represent the mean absorbance at 450 nm ± the standard error and the mean (SEM) of three 

independent experiments. The binding of recombinant proteins to tissue components was compared 

to their binding to BSA by Dunnett’s multiple comparison test (*** P <0.001, ** P <0.01, * P <0.05).  
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6.3.5 Binding saturation curves of leptospiral recombinant OMP variants to selected host 

molecules 

All host molecules for which significant OMP binding occurred were selected for dose-

dependent experiment binding using a ELISA-based assay similarly as described in Section 

6.2.5. For OmpL1, all species showed a nearly saturated curve for fibrinogen, and the strong 

binding association was observed equally for both L. santarosai and L. alstonii with Kd of 0.29 

± 0.08 µM and 0.21 ± 0.12 µM, respectively. The OmpL1 from L. borgpetersenii serovar 

Hardjobovis L550 showed a stronger affinity to bovine elastin (Kd 0.83 ± 0.42 µM) compared 

with L. santarosai (Kd 1.83 ± 1.27 µM) (Figure 6.7). Additionally, binding saturation of OmpL1 

of L. borgpetersenii was achieved to both human aorta (Kd 0.75 ± 0.22 µM) and skin elastin 

(Kd 2.28 ± 1.07 µM), respectively (Figure 6.10). However, the binding saturation of OmpL1 of 

L. santarosai to aorta elastin was not determined due to limited protein stock.   

Binding affinities of both fibronectin and laminin for OmpL1 of L. santarosai, L. borgpetersenii 

and L. interrogans serovar Copenhageni L1-130 were weak as the Kd micromolar 

concentration showed saturation at high concentration (~1.0 µM). Binding saturation to 

chondroitin by both L. santarosai and L. interrogans serovar Copenhageni L1-130 was not 

achieved, therefore the binding interactions were considered non-specific (Results not 

shown). For all Lsa49 variants, binding variations were observed among species, with L. 

borgpetersenii serovar Hardjobovis L550 and L. alstonii sharing a similar binding profile to 

several host molecules (fibrinogen, laminin and fibronectin, P <0.001). Most genomospecies 

achieved binding saturation curve to the tested host molecules with significant adherence 

selected from a binding profile (Figure 6.8). Interestingly, all Lsa49 variants demonstrated a 

hook-like effect to the BSA control suggesting for binding interference. The comparison of 

apparent Kd of multiple OmpL1 and Lsa49 proteins are shown in Table 6.3. 
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Figure 6.7 (A-F): Binding saturation curves of recombinant OmpL1 variants across pathogenic 
genomospecies to selected host components.   
 

Data represent the mean absorbance at 450 nm ± the standard error of the mean (SEM) of three 

independent experiments. The equilibrium association constant (Kd) of each protein was estimated at 

half-maximal binding (see Table 6.3). 
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Figure 6.8 (A-D): Binding saturation curves to selected host components of recombinant Lsa49 
variants across pathogenic genomospecies. 

 

Data represent the mean absorbance at 450 nm ± the standard error of the mean (SEM) of three 

independent experiments. The equilibrium association constant (Kd) of each protein was estimated at 

half-maximal binding (see Table 6.3). 
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Figure 6.9 (A and B): Binding of OmpL1 of L. borgpetersenii serovar Hardjobovis L550 (OmpL1b) and 
OmpL1 of L. santarosai (OmpL1s) to both human aorta (A) and skin (B).  
 
Data represent the mean absorbance at 450 nm ± the standard error of the mean of three independent 

experiments. The binding of OmpL1 to both elastin was compared to their binding to BSA by Dunnett’s 

multiple comparison test (*** P <0.001, ** P <0.01). 

 

 

 
Figure 6.10 (A and B): Dose-dependent binding of recombinant OmpL1 of L. borgpetersenii serovar 

Hardjobovis L550 (rOmpL1b) to human aorta elastin (A) and aorta (B) elastin, indicates by subscript 

‘h’. Recombinant rLBL0375 from the previous chapter (Chapter 5) was included as a negative control 

for this experiment. 

 

Data represent the mean absorbance at 450 nm ± the standard error of the mean (SEM) of three 

independent experiments. 
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Table 6.2: The binding of leptospiral OMP variants to various host molecules, including BSA as a negative control. 

 

Leptospira species 

Binding to host molecules 

Annotation Fibronectin Laminin Heparan 

sulphate 

Chondroitin Fibrinogen Collagen  Elastinb Aorta 

elastinh 

Skin 

elastinh 

L. interrogans svr Pyrogenes OmpL1 NS NS NS NS Yes *** NS NS NS NS 

L. noguchii OmpL1 NS NS NS NS Yes ** NS NS NS NS 

L. santarosai OmpL1 Yes *** Yes * NS Yes * Yes *** NS Yes *** Yes *** NS 

L. alstonii OmpL1 Yes *** Yes *** NS NS Yes *** NS NS NS NS 

L. borgpetersenii L550 OmpL1 Yes * NS NS NS Yes *** NS Yes *** Yes *** Yes *** 

L. interrogans svr Copenhageni L1-130 OmpL1 Yes *** Yes *** NS Yes * Yes *** NS NS NS NS 

L. kirschneri Lsa49 NS NS NS NS Yes * NS NS NS NS 

L. noguchii Lsa49 NS NS NS NS Yes ** NS NS NS NS 

L. alstonii Lsa49 Yes *** Yes *** NS NS Yes *** NS NS NS NS 

L. borgpetersenii svr Hardjobovis L550 Lsa49 Yes *** Yes *** NS NS Yes *** NS NS NS NS 
b Bovine elastin, h Human elastin 

Significant binding is denoted with asterisk sign * (P <0.05), ** (P <0.01) and *** (P <0.001).  

Abbreviation: NS: Not significant. 
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Table 6.3: The apparent Kd (estimated at micromolar concentration) for saturating binding with 95% confidence interval was calculated at half-maximal binding. 

Leptospira species Binding to host molecules (Kd) (µM) 

Annotation Fibronectin Laminin Fibrinogen Elastinb Aorta elastinh Skin elastinh 

L. interrogans svr Pyrogenes OmpL1 ND ND 0.92 ± 0.27 ND ND ND 

L. noguchii OmpL1 ND ND 0.88 ± 0.21 ND ND ND 

L. santarosai OmpL1 1.79 ± 2.21 ND 0.29 ± 0.08 1.83 ± 1.27 S-ND ND 

L. alstonii OmpL1 0.21 ± 0.12 0.54 ± 0.37 0.14 ± 0.08 ND ND ND 

L. borgpetersenii svr L550 OmpL1 2.60 ± 2.46 NS 0.43 ± 0.11 0.82 ± 0.42 0.75 ± 0.22 0.69 ± 0.01 

L. interrogans svr Copenhageni L1-130 OmpL1 0.81 ± 1.30 1.46 ± 5.44 0.92 ± 1.38 NS NS NS 

L. kirschneri Lsa49 ND ND 0.01 ± 0.00 ND ND ND 

L. noguchii Lsa49 ND ND 0.04 ± 0.02  ND ND ND 

L. alstonii Lsa49 0.06 ± 0.03 0.05 ± 0.02 0.02 ± 0.01 ND ND ND 

L. borgpetersenii svr Hardjobovis L550 Lsa49 0.10 ± 0.02 0.14 ± 0.02 0.05 ± 0.01 ND ND ND 

b Bovine elastin, h Human elastin 

Abbreviation: ND: Not determined, S-ND: Significant, but not determined. 
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6.3.6 Identification of the amino acid binding site of OmpL1 and Lsa49 variants 

As both OmpL1 and Lsa49 showed variable host ligand-binding profiles across respective 

variants, a comparative amino acid analysis was performed to determine the amino acid 

binding sites that are most likely to adhere to the corresponding host molecules. For OmpL1, 

the analysis was made based on the conserved amino acid sites of both transmembrane 

segments and surface-loop regions of both proteins (Figure 6.11-6.13). Leucine located on 

surface-loop region (SL 4, amino acid site 249) corresponding to fibronectin binding and for 

L. interrogans serovar Copenhageni L1-130, L. borgpetersenii serovar Hardjobovis L550, L. 

alstonii and L. santarosai, whereas leucine located on surface-loop region (SL 1, amino acid 

site 88) appears associated with laminin-binding in L. interrogans Copenhageni, L. alstonii 

and L. santarosai respectively. Additionally, several amino acids groups were identified in 

both transmembrane and surface-exposed loops corresponding to elastin-binding for both L. 

borgpetersenii L550 and L. santarosai, respectively (Table 6.4). However, the specific 

fibrinogen-binding site of OmpL1 could not be identified as all alleles encode protein variants 

that bind to this molecule.  

For the Lsa49 amino acid sequences, the predicted topology protein model by I-TASSER 

(Figure 6.14) exhibited 20 beta-barrel strand, of which the amino acids variability appears to 

be both across strands and loop regions. Similarly, in this analysis, we could not determine a 

specific binding site for fibrinogen, as all Lsa49 variants bound to this molecule. However, 

from the same analysis, we found a large number of multiple conserved amino acid sites 

responsible for laminin and fibronectin-binding, and a list of all Lsa49 binding sites can be 

found in Appendix C (Table C.3).   
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Figure 6.11: OmpL1 topology model. The transmembrane contains 10 segments (TS 1-10) containing an alternating hydrophobic amino acid pattern and five surface-
exposed loops (SL 1-5). The figure was reconstructed based on the original model proposed by Haake et al. (1993). 
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Figure 6.12: Amino acid sequence alignments of OmpL1 in six Leptospira genomospecies split into five surface-exposed loops (SL 1-5) based a topological model by Haake 
et al. (2004) shown in Figure 6.11. Locations of variable amino acids are indicated by red boxes and are numbered starting from mature peptide, and small arrows indicate 
amino acid differences between Leptospira species exhibiting specific host-binding properties (Table 6.4).
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Figure 6.13: Amino acid sequence alignments of transmembrane OmpL1 which are divided into ten segments (TS 1-10) divided by a longitudinal dash line into six Leptospira 
genomospecies based on a topological model by Haake et al. (2004) shown in Figure 6.11. Location of variable amino acids are indicated by red boxes are numbered 
starting from mature peptide, and small arrows indicate amino acid differences between Leptospira species which exhibited specific host molecules binding properties 
(Table 6.4). 
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Figure 6.14: Predicted topology of Lsa49 variant generated from I-TASSER software represented in amino acid sequence alignment (Yang and Zhang, 2015). The asterisk 
sign indicates the predicted strand region and location of variable amino acids are indicated by red boxes. Sequence are numbered starting from mature peptide. The 
location of DUF1566 (between site 176-319 and site 325-452) is marked by square brackets above sequences, and small arrows indicate amino acid differences between 
Leptospira genomospecies which exhibited specific host molecules binding properties (Appendix C.3).
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Table 6.4: The predicted site of conserved amino acids corresponding to host molecules binding that is present in OmpL1’s variable regions 
of both transmembrane segments and surface-loop regions of selected Leptospira species in this study. 

Host molecules  Leptospira species bind to 

corresponding host molecules  

The conserved amino acid in OmpL1 

transmembrane segment (TS) 

The conserved amino acid in OmpL1 

surface-exposed loop region (SL) 

 

 

Fibronectin 

L. interrogans svr Copenhageni L1-130 

L. borgpetersenii svr Hardjobovis L550 

L. alstonii 

L. santarosai 

 

 

- 

 

 

 

SL4: 249 L  

Elastin L. borgpetersenii svr Hardjobovis L550 

L. santarosai 

TS1: 2 S 

TS7: 202 V, 203 T 

TS8: 222 I 

 

SL1: 67 G, 68 T, 70 R, 73 A 

SL4: 267 I, 271 S, 272 T, 274 A, 278 T 

 

 

Laminin 

L. interrogans svr Copenhageni L1-130 

L. alstonii 

L. santarosai 

 

 

- 

 

SL1: 88 L 

Abbreviations:  A: alanine, G: guanine, I: isoleucine, L: leucine, S: serine, R: arginine, T: threonine, V: valine,  
 
The transmembrane is divided into ten segments (TS1-10) and surface-exposed loop region consists of four major regions (SL1-4) (Figure 6.13). 
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6.3.8 Detection of anti-leptospiral antibodies in cattle sera 

Results from PrioCHECK™ L. hardjo kit was used as a reference to determine the Leptospira 

status from each serum sample. The test kit for sera gives three categories for sample 

interpretations; positive (percentage positivity >45%), negative (percentage positivity <20%) 

and inconclusive (percentage positivity between 20%-45%) (Appendix C.2). For this study, it 

was recommended to include the inconclusive category within the positive group, as it was 

recommended by Lewis et al. (2009) for a practical statistical analysis, which previously used 

in  disease prevention investigation. From 30 individual cattle serum, 21 animals were tested 

positive, and nine were negative, respectively.  

6.3.9 Antibodies to OMP variants in cattle serum samples 

The IgG-based ELISA assay was employed to investigate the presence of specific bovine 

immunoglobulin subclass IgG1 and IgG2 present in the cattle sera and determined that these 

classes of antibodies did bind to all recombinant OMP variants surveyed in this study. From 

the results shown in Figure 6.15, only OmpL1 of L. borgpetersenii serovar Hardjobovis L550 

demonstrated a significant IgG1 titre (P <0.05) with the Leptospira positive and negative 

samples (as determined by the commercial test kit). No significant results were identified for 

any of the Lsa49 variants (Figure 6.16). Additionally, no significant results for IgG2 were 

observed against all OMPs variants.  

6.3.10 Comparison of IgG1 titres in cattle sera against recombinant OMPs variants. 

Linear regression was performed to determine the association of bovine IgG1 titres against 

each variant of similar OMP annotation (OmpL1 vs OmpL1; Lsa49 vs Lsa49). Moderate to 

strong IgG1 antibody response correlations were observed between OmpL1 titres and Lsa49 

titres across Leptospira species with R values ranging from +0.2 to +0.8 with an associated 

probability (P- value) of <0.05 was considered significant (Figure 6.17). However, the 

correlation of OmpL1 of the majority of the species (except L. borgpeterseni serovar 

Hardjobovis L550) was reduced to non-significant when comparing with L. interrogans 

serovar Copenhageni. For Lsa49, though the IgG1 responses were strongly correlated across 

species, no significant correlation was observed between L. alstonii and L. borgpetersenii 

serovar Hardjobovis L550 (rLBL2618) (Figure 6.18). Additionally, a linear regression 

comparison of bovine IgG1 titres of all OMP variants with PrioCHECK™ L. hardjo kit was 

performed, however, no significant correlations with OMP responses were observed. The 

results can be found in Appendix C (Figure C.3).  
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Figure 6.15 (A-F): Cattle sera antibody responses to all OmpL1 variants across selected Leptospira 
genomospecies represented in scatter dot-plot graphs.  
 

Data represent the mean absorbance of secondary antibody concentration (mouse anti-bovine IgG1 

and IgG2) at 450 nm ± the standard error of the mean (SEM) of two independent experiments. of two 

independent experiments. Both IgG1 and IgG2 titres were compared between positive and negative 

samples by Mann-Whitney U test with a P-value of < 0.05 was considered significant.



Chapter 6  Leptospira OMP diversity 

170 
 

 

Figure 6.16 (A-D): Cattle sera antibody responses to all Lsa49 variants across selected Leptospira 
genomospecies represented in scatter dot-plot graphs.  
 

Data represent the mean absorbance of secondary antibody concentration (mouse anti-bovine IgG1 

and IgG2) at 450 nm ± the standard error of the mean (SEM) of two independent experiments. Both 

IgG1 and IgG2 titres were compared between positive and negative samples by Mann-Whitney U test 

with a P-value of < 0.05 was considered significant.
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Figure 6.17 (A-O): The association between cattle sera IgG1 antibody titres to different recombinant 
OmpL1 variants across selected Leptospira genomospecies represented in scatter plot linear 
regression analysis.  
 

The trend line represents the correlation coefficient, denoted as (r), which estimates the relationship 

between the OD of both results. The r values are ranging from -1.0 to +1.0 and the closer r is to +1 or -

1, the more closely the two variables are related (+ integer; positively correlated, -integer; negatively 

correlated). P-values determine the significant level of association between two assays of which P-

value of at least <0.05 was considered significant.  
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Figure 6.18: (A-F): The association between cattle sera IgG1 antibody titres to different recombinant 
Lsa49 variants across selected Leptospira genomospecies represented in scatter plot linear 
regression analysis.  
 

The trend line represents the correlation coefficient, denoted as (r), which estimates the relationship 

between the OD of both results. The r values are ranging from -1.0 to +1.0 and the closer r is to +1 or -

1, the more closely the two variables are related (+ integer; positively correlated, -integer; negatively 

correlated). P-values determine the significant level of association between two assays of which P-

value of at least <0.05 was considered significant.
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Table 6.5: The summary matrix of r values of IgG1 of OmpL1 against one another with their corresponding P values and comparison of amino acid identity (%). 

Species L. interrogans 

svr Pyrogenes 

L. noguchii L. santarosai L. alstonii L. borgpetersenii serovar 

Hardjobovis L550 

L. interrogans serovar 

Copenhageni L1-130 

L. interrogans serovar 

Pyrogenes 

 r = 0.78 

(P <0.0001) 

ID: 90% 

r = 0.56 

(P <0.0001) 

ID: 84% 

r = 0.70 

(P <0.0001) 

ID: 84% 

r = 0.18 

(P <0.05) 

ID: 84% 

r = 0.11 

NS 

ID: 84% 

L. noguchii   r = 0.58 

(P <0.0001) 

ID: 86% 

r = 0.67 

(P <0.0001) 

ID: 89% 

r = 0.30 

(P <0.001) 

ID: 86% 

r = 0.17 

(P <0.01) 

ID: 95% 

L. santarosai    r = 0.73 

(P <0.0001) 

ID: 85% 

r = 0.29 

(P <0.01) 

ID: 94% 

r = 0.17 

NS 

ID: 87% 

L. alstonii     r = 0.18 

(P <0.05) 

ID: 85% 

r = 0.01 

NS 

ID: 88% 

L. borgpetersenii svr 

Hardjobovis L550 

     r = 0.54 

(P <0.0001) 

ID: 86% 

L. interrogans serovar 

Copenhageni L1-130 

      

 

 

Abbreviations: NS: Not significant (P-values >0.05), ID: Amino acid identity between two genomospecies 
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Table 6.6: The summary matrix of r values of IgG1 of Lsa49 variants against one another with 
their corresponding P values and comparison of amino acid identity (%). 

Species L. kirschneri L. noguchii L. alstonii L. borgpetersenii 

serovar Hardjobovis 

L550 

L. kirschneri  r = 0.48 

(P <0.0001) 

ID: 73% 

r = 0.24 

(P <0.001) 

ID: 71% 

r = 0.16 

(P <0.05) 

ID: 65% 

L. noguchii   r = 0.17 

(P <0.05) 

ID: 73% 

r = 0.33 

(P <0.001) 

ID: 66% 

L. alstonii    r = 0.02 

NS 

ID: 69% 

L. borgpetersenii 

serovar Hardjobovis 

L550 

    

 

Abbreviations: NS: Not significant (P-values >0.05), ID: Amino acid identity between two 

genomospecies 

 

6.4 Discussion 

6.4.1 Phylogenetic analysis of OMP variants 

Leptospiral OMPs have been widely studied due to their location within the membrane and 

their potential antigenic interaction with the host. However, information on functional and 

immunological diversities based on OMP molecular evolution is extremely limited, although 

it is known that the leptospiral genomes are greatly influenced by recombination events 

(Zuerner et al., 1993). For example, comparative sequence analysis of several characterised 

leptospiral surface proteins; OmpL1, LipL41 and LipL32 revealed that OmpL1 genes and 

amino acids are more variable than the others, and these variations are thought to be due to 

positive selection or genetic reassortment including acquisition of a segment of sequence 

from an unknown allele source (Haake et al., 2004). A rather similar observation was seen in 

Treponema pallidum subspecies pallidum OMP, where selection pressure has resulted in 

OMP diversity, and genetic recombination in OMP loci, which was hypothesised could 

potentially alter the protein’s function, driving treponemal evolution (Kumar et al., 2018).  

In this study, we have selected several OMP variants based on the phylogenic analysis of 

OmpL1 and Lsa49 across Leptospira pathogenic genomospecies. The leptospiral OmpL1, the 

porin protein found only in pathogenic species, was previously characterised through its 
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binding properties and immunological evaluations (Dong et al., 2008; Fernandes et al., 2012), 

however, functional diversity between OmpL1 across several Leptospira species has never 

been studied before. Additionally, the newly-discovered adhesin (Lsa49) is another OMP of 

interest that belongs to the family protein containing the domain of unknown function 

(DUF1566/FP07603) that are found in L. interrogans (Atzingen et al., 2012). This novel protein 

was discovered through the application of a reverse vaccinology approach in this thesis 

(Chapter 3) and was successfully expressed and characterised as a novel leptospiral adhesin 

(Lsa49) (Chapter 4 and 5), and again diversity of function across genomospecies had not been 

studied . 

6.4.2 Expression, purification and determination of structural integrity of OMP variants 

Majority of OMP alleles were successfully expressed as recombinant proteins via modular 

cloning, with exceptional of Lsa49 of L. santarosai. Protein analysis on SDS-PAGE confirmed 

recombinant OmpL1 band migration at 31 kDa (denatured) and 25 kDa by Shang et al. (1995). 

Similarly, SDS-PAGE analysis of recombinant Lsa49 proteins across Leptospira species showed 

a migratory band at ~49 kDa again indicative of β-barrel. The secondary structure of all OMP 

variants by CD analysis showed predominantly β-sheets, and these findings are consistent 

with OmpL1 and Lsa49 of L. borgpetersenii serovar Hardjobovis L550 produced in Chapter 4. 

6.4.3 Adhesion of OMP variants to host molecules 

From screening binding analysis, we successfully determined the binding profile of each OMP 

from a range of genomospecies against various host components. In the case of OmpL1, all 

selected Leptospira species bound significantly to fibrinogen, and other host molecules 

binding variations were observed in three species; L. borgpetersenii serover Hardjobovis 

L550, L. santarosai and L. interrogans serovar Copenhageni L1-130, whilst no significant 

adhesiveness of other host molecules were seen in L. interrogans serovar Pyrogenes and L. 

noguchii. 

Two OmpL1 from L. santarosai and L. alstonii showed laminin-binding similarly to the positive 

control L. interrogans serovar Copenhageni L1-130 (rLIC10973). However, only OmpL1 from 

L. alstonii demonstrated binding saturation for laminin with a Kd value of 0.54 ± 0.37. 

Surprisingly, both OmpL1 from L. borgpetersenii serovar Hardjobovis L550 and L. santarosai 

showed binding preference to many host molecules, including elastin. To our knowledge, this 

is the first study that demonstrates significant adherence to elastin, which contradicted with 

the previous finding by Fernandes et al. (2012). A subsequent binding analysis using human 
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elastin (skin and aorta) revealed that OmpL1 L. borgpetersenii serovar Hardjobovis L550 

bound to both types of human elastin and binding saturation was achieved, thus fulfilling a 

specific interaction of a typical receptor-ligand interaction. Additionally, OmpL1 of L. 

santarosai can also adhere selectively to human (aorta) elastin. However, the binding 

saturation studies were not performed due to limited protein solution stock, which is 

recommended for the future studies to study the possible interaction of OmpL1 and host 

elastin that enables Leptospira transmission as previously demonstrated by other Leptospira 

transmembrane OMP, such as Omp37 (Pinne et al., 2010). 

In order to determine the differences in an amino acid site that may responsible for a specific 

host molecule binding, comparative analysis of OmpL1 and Lsa49 amino acid sequences in all 

species used in this study was performed. Analysis of the OmpL1 amino acid sequence on the 

surface-exposed loops (Figure 6.12) revealed that the OmpL1s from L. borgpetersenii and L. 

santarosai have the most conserved variable regions compared to OmpL1 in other species, 

thus suggesting both strains may originally derive from the same source and therefore retain 

similar binding preferentially to selected host molecules. 

The comparison of the amino acid sequence of OmpL1 surface loops and transmembrane 

regions based on topology by Haake et al. (1993) in many species prompted the interesting 

hypothesis that sequence alignment taken together with adherence phenotype may allow 

for one or several amino acids responsible for binding to host molecules to be identified. In 

this analysis, we found that leucine on the surface loops (SL 1: site 88; SL 4: site 249) is present 

in all species that bind to laminin and fibronectin, respectively. It is known that pathogenic, 

Leptospira strains have an extension of genes containing Leucine-Rich Repeat (LRR) sections 

which are not seen in non-pathogenic strains, which may be involved in host invasion 

(Picardeau et al., 2008). Moreover, LLR sections are also present in other spirochetes (e.g. 

Treponema denticola) protein (LrrA), which previously exhibited binding and host tissues 

penetration (Ikegami et al., 2004). Additionally, several studies have identified the roles of 

LRR binding to fibronectin, which suggested a possible mechanism for host colonisation 

(Sharma et al., 1998; Davis et al., 2006).  

Using the same topology map Figure 6.12 and Figure 6.13, we also identified several groups 

of amino acids in 13 variable regions (VR) of both surface-loops regions (SL 1: site 67-guanine, 

68-threonine, 70-arginine, 73-alanine ; SL 4: 267-isoleucine, 271-serine, 272-threonine,274-

alanine, 278-threonine) and multiple transmembrane segments (TS 1: site 2-serine ; TS 7: site 

202-valine, 203-threonine ; TS 8: site 222-isoleucine) correspond to elastin-binding profiles 
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present in L. borgpetersenii and L. santarosai but absent in other species. This finding may 

possibly explain why OmpL1 of L. borgpetersenii L550 and L. santarosai can bind to elastin, 

but not L. interrogans Copenhageni L1-130. This further supports the concept that through 

the evolution of Leptospira, both species acquired an additional binding function possibly 

through intragenic recombination of OmpL1 DNA. However, we could not stipulate the origin 

of the genes that are responsible for the elastin-binding property. Moreover, it is not possible 

to discriminate the binding sites responsible for fibrinogen binding, assuming all sites may 

potentially bind to this molecule.  

The differences of host molecules binding between two interrogans serovars are an 

interesting finding. From the homology analysis of OmpL1 DNA sequences (Figure 6.19), this 

revealed that the L. interrogans group is divided into two sub-clusters. The first sub-cluster 

(of which includes serovar Copenhageni) appears to be highly conserved and the second 

interrogans cluster further diverges into two deeper branches (one branch contains serovar 

Pyrogenes). From this analysis, deeper branch tends to lose one of more host-binding 

functions (depicted by the loss of laminin and fibronectin-binding of serovar Pyrogenes 

compared to serovar Copenhageni). Additionally, it may be possible that the separation of 

two major groups between L. interrogans and L. noguchii is probably due to limited binding 

functions (as depicted by L. noguchii binding to only fibrinogen) compared to L. interrogans 

Copenhageni. 

Through the same analysis, we found that both OmpL1 of L. borgpetersenii and L. santarosai 

belong to a major cluster which has an additional binding function to elastin. As seen in Figure 

6.19, L. alstonii belongs in a major group together with L. santarosai and L. borpetersenii 

Hardjobovis serovar L550.  However, this species splits forming its own subgroup. This may 

explain that L. alstonii appears to lose elastin-binding function while retaining several binding 

preferences similar to both L. borgpetersenii and L. santarosai species. 

We consider that the differences in binding function in different Leptospira species and 

serovar could be the key to their adaptation or survival in the hosts. For instance, serovar 

Copenhageni can infect a wide range of hosts including dogs, rats and man (Faria et al., 2008; 

Zwijnenberg et al., 2008; Koizumi et al., 2009a) whereas serovar Pyrogenes is commonly 

found in cattle reservoirs (Feresu et al., 2009). It should be noted that distribution of 

pathogenic Leptospira serovars maintained by an animal host is often geographically unique; 

such as serovar Sokoine in African cattle and serovar Sarawak in Malaysian cattle (Mgode et 

al., 2015; Daud et al., 2018). This may be possible because OmpL1 is an important leptospiral 
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adhesin contributing to host binding preference as they are one of the few proteins that can 

be only found in pathogenic species (Fouts et al., 2016). Therefore, future studies are 

warranted to highlight the range of OmpL1 binding across various pathogenic species that 

are locally present in endemic leptospirosis area that may provide more information on 

Leptospira species/serovar evolution and their adaptations in a particular mammalian host. 

In comparison to OmpL1, the binding functions of the other protein’s studies are likely 

conserved in each species. All Lsa49 proteins bound to fibrinogen and the majority are bound 

to laminin and fibronectin, respectively. The homology analysis of Lsa49 protein sequence of 

each species concurs with the 16S rRNA sequences indicating that both sequences are 

conserved and are likely to retain similar binding function (Results not shown). Additionally, 

the comparative amino acid analysis of Lsa49 in all species revealed high variabiality of amino 

acids in both strand and loop regions (Figure 6.14) and multiple variable sites were predicted 

for laminin and fibronectin binding for L. borgpetersenii serovar Hardjobovis L550 and L. 

alstonii (Appendix C.6). Interestingly, we found that both OmpL1 and Lsa49 of L. noguchii was 

only bound to fibrinogen. It is not known whether the limited binding to host molecules may 

have an effect the transmission of the bacteria to other hosts (e.g. host restriction), or it could 

be the species is restricted to certain host’s tissues (e.g. kidney tubules). 

6.4.4 Immunological evaluation of OMP variants in cattle sera 

The OMP variants were used as antigens to screen for specific bovine leptospiral antibodies 

that may be present in cattle serum samples via Ig based-ELISA. In this study, IgG1 is the 

predominant antibody and was detected in all samples, with lesser amounts of IgG2. This 

further supports that both OmpL1 and novel adhesin Lsa49 are expressed by Leptospira, and 

also detected by the host immune system and therefore these OMPs are likely to be surface-

exposed.  
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Figure 6.19: The homology tree of OmpL1 amino acid sequences of several representative 

pathogenic genomospecies and serovars.  

 

L. interrogans separates from L. noguchii and forming two distinct groups, each representing at least 

one species/serovar in this study, indicated by arrows as shown. The difference in each group is 

corresponding to adherence to host components observed in this study; both L. interrogans serovar 

Pyrogens and L. noguchii bound to only fibrinogen, and L. interrogans L1-130 bound to laminin, 

fibronectin and fibrinogen. Both L. borgpetersenii and L. santarosai are grouped in the same subset, 

formally diverged from L. interrogans main cluster which showed binding variety towards fibrinogen, 

fibronectin, laminin and elastin (Table 6.4). 
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However, there is no discrimination between the Leptospira positive and negative serum 

samples (pre-determined by commercial leptospira kit) against all proteins and only OmpL1 

(rLBL2510) from L. borgpetersenii serovar Hardjobovis L550 shown statistically significant 

differences between positive and negative sera. This result is similar to the finding in cattle 

milk (Chapter 5), where the OmpL1 from L. borgpetersenii serovar Hardjobovis L550 (bovine 

strain) showed a significant difference between positive and negative bulk milk samples. The 

test kit to determine infected and naïve animals in this chapter, utilised inactivated L. 

interrogans serovar Hardjobovis L550 as the sole crude antigen (Appendix C, Figure C.2) for 

the detection of leptospiral antibodies in cattle serum samples (Bercovich et al., 1990). The 

true status of disease could be more complicated since tested cattle may be infected with 

other Leptospira spp. which could explain some differences in agreement between OMPs and 

diagnostic test kit ELISA. 

In addition to this finding, IgG1 response towards our OMP antigens suggests that these 

proteins do likely to trigger host immune responses. It is thought that both IgG isotypes are 

present during active infection (Adler et al., 1982). However, in this study, bovine IgG2 was 

poorly detected or detected at low levels in all samples. The reason for this is not clear; one 

possible explanation for this is due to the antigen proteins that selectively bind to B cell 

membrane IgG1 rather than IgG2, even though IgG2 is mainly present in cattle serum 

(Wallner et al., 1987). A study of papillomatous digital dermatitis (PDD)-associated 

spirochetes cattle by Elliott and Alt (2009) concluded that robust bovine IgG1 responses 

compared to IgG2 of cattle experimentally infected with treponemes is due to the binding 

preference, which resulted in the lower level of antigen-specific bovine IgG2 detected in the 

serum. Moreover, a study by (Naiman et al., 2002) demonstrated that IgG2 response in 

vaccinated cattle showed a two-fold increase upon Leptospira challenged, compared to naïve 

cattle. The cattle in this study were unlikely to be vaccinated, therefore, this agrees with  low 

IgG2 titres that were measured. A limitation of this study is that the true infection status of 

the cattle in this study is not known, as it was only determined using a commercial test kit 

and lacks corresponding epidemiological data. Therefore, further longitudinal outbreak study 

is warranted in the future to ascertain the status of leptospirosis via a serological method to 

compare the immune response of infected versus uninfected herd by ELISA method. The lack 

of association via linear regression between antibody titres (IgG1) from the Leptospira test 

kit (PrioCHECK™ L. hardjo kit/whole-cell antigen) and all recombinant OMPs is noted in this 

study (results not shown). We suggest that this could be due to the different antigen-

antibody interactions between whole-cell and the recombinant proteins. This indicates that 
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the antibodies detected by OMPs were not interacting with the whole-cell antigen contained 

in this kit. Interestingly, when comparing the OMPs, the majority of OmpL1s across the 

species (except L. interrogans serovar Copenhageni L1-130) demonstrated moderate to 

strong correlations of IgG1 titres to one another (r values +0.20-0.80, P-values <0.001, 

<0.0001). A similar observation is seen among the majority of Lsa49 proteins where all 

species (except L. borgpetersenii serovar Hardjobovis L550 versus L. alstonii) exhibited 

positive association (r values +0.20-0.70 P-values <0.001, <0.0001). These findings suggest 

that the immunogenicity responses towards both OMPs are conserved among species and 

are likely to share identical epitopes that are recognised by host immune system. Moreover, 

a previous study showed that different OmpL1 are able to cross-agglutinate with OmpL1 

antisera indicating evidence of conserved immunogenicity (Dong et al., 2008).  

Furthermore, a positive correlation of antibody titres in the majority of OMPs indicates that 

differences in OMP binding function may not affect the immunogenicity of the proteins as 

antigens, despite a large degree of amino acid diversity (Table 6.5 and Table 6.6). However, 

it is difficult to interpret the lack of correlation of OmpL1 of L. interrogans serovar 

Copenhageni L1-130 and with the rest of species (except to L. borgpetersenii serovar 

Hardjobovis L550). The reason for this is not clear, although the OmpL1 sequence identity 

matrix of amino acids sequences among tested species showed all species are highly identical 

(>85%) to one another. A similar observation was seen in two of Lsa49 proteins of L. 

borgpetersenii serovar Hardjobovis L550 versus L.alstonii where the correlation was reduced 

to non-significant, although Lsa49 shared moderately high identity of amino acid (>65%). 

Whilst there are variabilities seen in amino acids of OMPs, this does not appear to agree with 

the changes of epitopes that antibody binds, based on there being no similarity between 

linear corrleation of antibody serotitres and protein simlarity scores. Further study such as 

epitope mapping, which has been used for other spirochete vaccine candidates (Livey et al., 

2011; Arnaboldi and Dattwyler, 2015) may be useful to evaluate the protein’s structure to 

determine why amino acid variation and seroreactivity may not agree. 

6.4.5 Limitation of the study 

The use of a diagnostic kit to determine leptospirosis status in this study is a limitation. Tested 

animals in this study may have already been exposed to Leptospira strains previously, ideally 

a longitudinal serological study which includes detailed clinical signs of leptospirosis should 

be undertaken. Secondly, although our study is likely to suggest that these proteins are likely 

to be expressed on the Leptospira membrane which carries essential gene for host 
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interaction, more studies (e.g. membrane expression studies) (Grisshammer, 2006; Jensen et 

al., 2017) are warranted to confirm that these proteins can demonstrate similar functional 

and immunological profile as seen in this study. Lastly, as our study only includes OMPs from 

several representative Leptospira genomospecies, more studies are needed to include a large 

number of alleles from other species (pathogenic/intermediate) to fully understand the 

functional and immunological diversity and better disect host-pathogen interactions. 

 

6.5 Conclusion 

In the present study, we have successfully expressed and purified two groups of leptospiral 

OMP alleles across five pathogenic genomospecies; OmpL1 and Lsa49 (previously known as 

DUF1566-49kDa) as recombinant proteins. Interestingly, these proteins showed binding 

variations towards different host components, which may be due to genetic recombination 

or through positive selection from different Leptospira pathogenic species. To our 

knowledge, this is the first study to demonstrate leptospiral OMP functional diversity across 

genomospecies. Furthermore, our findings on OmpL1 binding diversity provide insight into 

potential mechanisms of bacterial tropism for mammalian hosts, worthy of future 

investigation. Interestingly, in addition to functional diversity, the immunological 

assessments indicate that the immunological reaction to these proteins among Leptospira 

species is relatively conserved, despite the functional variation, suggesting these OMPs need 

future consideration as candidates for a universal leptospirosis vaccine. Therefore, these may 

be useful as recombinant vaccine candidates and as diagnostic tools for the serodiagnosis of 

leptospirosis. More studies are needed to; 1) study the leptospiricidal activity of these 

antigens and 2) implement these antigens for immunogenicity trial in cattle host as the next 

step towards engineering the new line of bovine leptospirosis vaccines and diagnostic 

purposes.  

In summary, this study elucidates the molecular evolution of leptospiral OMPs across 

pathogenic species, and how the changes influence the functional and immunological 

behaviour toward the host. These findings could be useful information to further explore 

Leptospira species adaptation or survival in multiple animal species, and also may help 

researchers to understand their ability to bind to several host components to establish 

infection in the host.  
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Chapter 7: Survey of UK ruminants for Leptospira  

 

7.1 Introduction 

7.1.1 Ruminant leptospirosis  

As previously noted, Leptospira can infect a wide range of species and ruminants are one of 

the most susceptible hosts. Cattle can be infected and may also serve as a maintenance host 

depending on the group of serovars geographically circulating within the area. Bovine 

leptospirosis (BL) has a global distribution (Table 1.5, Chapter 1), and the disease can cause 

a profound effect on cattle productivity. The majority of infection is commonly caused by 

serovar Hardjo from two distinct pathogenic species (L. interrogans and L. borgpetersenii), 

although other associated serovars (e.g. serovar Kennewicki, Sarawak) may be associated 

with cattle infection but are geographically restricted within particular regions worldwide 

(Daud et al., 2018; Zarantonelli et al., 2018). The global prevalence of cattle leptospirosis is 

unknown due to the lack of data and many unreported cases, possibly due to asymptomatic 

infection. Despite such data limitations, seroprevalence studies across the world have shown 

a high prevalence of Leptospira infected animals when reported. For instance, recent studies 

among unvaccinated cattle in northeastern Malaysia and the Republic of Ireland reported 

the overall prevalence of BL of 81.7% and 91.0%, respectively (Barrett et al., 2018; Daud et 

al., 2018). Other reported BL prevalence studies from across  the world have been based on 

various screening methods accompanied by isolation of circulating strains and are indicative 

of an endemic presence in these tropical regions including India (Natarajaseenivasan et al., 

2011), Uganda (Zarantonelli et al., 2018) and Brazil (Pinna et al., 2018). Regardless of the 

increasing prevalence of BL globally, the prevalence of BL on UK cattle farms, especially in 

beef cattle remain elusive. Surveys on UK dairy herds estimated a farm prevalence of 

between 47-72% in unvaccinated farms (Williams and Winden, 2014; Velasova et al., 2017). 

Additionally, a recent national survey on several farms across the country in 2015 recorded 

55% of dairy cattle farms and 33% of beef cattle farms tested positive (MSD Animal Health, 

2015). Data from the GB Cattle Disease Surveillance Dashboard from 2012-2018 confirmed 

23 abortion cases and 11 cases of milk drop syndrome were reported across the country due 

to leptospirosis (APHA Data, 2019). However, these surveys failed to provide comprehensive 

detail about strain identity, as they are only reported through blood or milk ELISA for a single 

serovar (Hardjo), with no further characterisation through laboratory isolation or molecular 
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typing. It is known that BL in the UK is commonly caused by serovar Hardjo from L. 

interrogans or L. borgpetersenii although several other serovars (e.g. serovar Pomona, 

Grippotyphosa and Icterohaermorrhagiae) may also be present (Roberts, 2009; Ellis, 2015; 

Arent et al., 2017). 

Besides cattle, small ruminants such as sheep and goats can also be infected with 

leptospirosis. It was thought that sheep are relatively resistant to the infection as indicated 

by low seroprevalence and the small number of associated serovars, such as serovar Pomona, 

Grippotyphosa, Icterohaemorrhagiae, Australis, Sejroe and Canicola (Leon-Vizcaino et al., 

1987; Vermunt et al., 1994; Ellis, 2015). These infections caused reproductive failure in adult 

animals and other related signs such as haematuria, jaundice, haemoglobinuria and death in 

lambs. Despite the lack of studies surrounding leptospirosis in sheep and goats, Leptospira 

spp. are present globally, and animal exposure to various pathogenic serovars is indicated by 

global serological surveys (Martins and Lilenbaum, 2014).  

7.1.2 The gastrointestinal (GI) tract as a potential infection reservoir of Leptospira 

In many pathogens, the transmission to the host is enhanced through colonisation of the 

host’s specific anatomical passage where they can co-exist as normal flora within the host. 

For example, Neisseria meningitidis (meningococcus) is a Gram-negative bacterium that can 

cause bacterial meningitis, leading to life-threatening sepsis in human, especially in children 

(Rouphael and Stephens, 2012). The bacteria commonly reside in the nasopharynx tract of 

humans in the form of non-pathogen. It has been reported between 10-35% of healthy adults 

carry the bacteria on their upper respiratory tract, of which the bacteria can be easily spread 

through respiratory secretions and saliva (Cartwright et al., 1987; Orr et al., 2003). It appears 

that these bacteria exclusively inhabit a specific anatomical area of a host and become a 

carriage site to transmit the bacteria to another vulnerable host. Furthermore, it is 

considered that bacterial invasion is through the nasopharynx also. For this microbe, the 

point of invasion is also considered as the point of carriage. 

Thus far, pathogenic Leptospira are only able to be carried in the kidneys or urogenital tract 

of maintenance host particularly ruminants. Infected animals tend to shed the 

microorganism through renal excretion or uterine discharges/aborted foetuses to 

contaminate the environment (Farina et al., 1996; Lilenbaum et al., 2008; Director et al., 

2014; Adugna, 2016). However, it is not known if the bacteria are able to be carried to any 

other anatomical site of the host, especially as there has been a dearth of molecular surveys 

reported. The GI tract is another potential leptospires reservoir due to its anatomical 
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structure, which consists of an extensive mucosal lining from the mouth to the anus that 

enables leptospires to penetrate and colonise the region (Inada et al., 1916). Furthermore, 

due to the close proximity to the urinary tract, leptospires may be able to invade to the 

adjacent recto-anal junction and colonise and survive within the region. However, this site 

was potentially overlooked, although there has been a report of swine GI tract epithelia 

containing leptospires (Fossi et al., 2005). This shows that the mid-GI tract too may 

potentially be reservoirs for leptospires. 

One of the important Leptospira transmission routes is the ingestion of infected material and 

invasion of the mucous membranes. Several reports have described transmission via this 

route. For instance, the first study on GI transmission was reported by Inada et al. (1916) who 

observed exposure of pathogenic leptospires in an experimental animal model through a oral 

or anal route resulted in death. The oral cavity was also suggested as the main Leptospira 

entry point as several human leptospirosis outbreaks related to contaminated water 

consumption (Cacciapuoti et al., 1987; Corwin et al., 1990; Levett, 2001). There have been 

no studies into the oral or rectal tissues as leptospires carriage site in animals despite them 

considered points of invasion.  

Ruminants such as cattle and sheep are continuously exposed to leptospires that may 

present in the slurry. Farm slurry is a mixture of faeces and urine, and therefore, is an external 

reservoir of Leptospira infection for ruminants. Leptospira can survive in diverse 

environments and may persist alive for several days outside of the host which can allow 

transmission of the bacteria from one susceptible animal to one another. A previous study 

showed that a large number of leptospires were isolated from cattle slurry, indicating slurry 

is a convenient transit for leptospires to survive outside the host (Jones and Matthews, 1975). 

Furthermore, recent studies demonstrated that the environment serves as a temporary 

infection reservoir, and the presence of even low pathogenic leptospire concentrations may 

allow the transmission of disease (Casanovas-Massana et al., 2018; Schneider et al., 2018). 

Ruminants are frequently being exposed to leptospires via slurry contamination to water and 

feed sources, especially in housing condition which may lead to possible oral cavity invasion.  

Given Leptospira spp. may invade the upper and lower GI tract, this current study investigates 

whether there is a continued leptospires presence/carriage at these sites of pathogenic (or 

non-pathogenic) leptospires. The identification of such additional carriage sites could 

underpin future control methods. 
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7.2 Materials and methods 

7.2.1 Animal sample collection 

Samples from both dairy and beef cattle, and sheep from farms across England and Wales 

were obtained from previous studies carried out in this laboratory by Bell, (2017) and Sullivan 

et al., (2015). These comprised of tissues samples from rectal-anal junctions and gingiva. The 

previous workers had already extracted the DNA and stored it at -80°C (Table 7.1).  

Table 7.1 : Origin of samples from cattle and sheep used in this study. 

Samples Region No of samples Reference in this study 

Sheep   

(Sullivan et al., 2015) 

(Sullivan et al., 2015) 

Rectum England/Wales, UK 36 

Gingiva England/Wales, UK 39 

Total  75  

Cattle  

(Sullivan et al., 2015) 

(Sullivan et al., 2015) 

(Bell, 2017) 

(Bell, 2017) 

Beef rectum England/Wales, UK 35 

Beef gingiva England/Wales, UK 34 

Dairy cattle rectum England, UK 115 

Dairy cattle gingiva England, UK 114 

Total  298 

 

7.2.2 PCR optimisation assay for the detection of Leptospira spp. 

Three leptospiral PCR primer pairs that specifically detect pathogenic and/or saprophytic 

Leptospira spp. were obtained from previous studies (Table 7.2). These primers were used to 

detect leptospires using PCR in various biological human samples such as urine, blood and 

cerebrospinal fluid, including direct detection using pure culture collections. 

These primers were synthesised and purchased directly from Eurofins, UK. Leptospiral PCR 

assays were performed using Taq polymerase according to manufacturer’s instructions and 

PCR conditions initially revalidated using a range of annealing temperatures. Upon verifying 

the annealing temperature and also magnesium chloride (MgCl2) concentration, the 

specificity of each assay was determined using relevant control material including L. 

interrogans serovar Copenhageni L1-130, L. borgpetersenii serovar Hardjobovis L550, L. 

biflexa serovar Patoc 1, Treponema phagedenis T320A and Treponema pedis T3552B 

respectively. All PCR assays were performed in triplicates.   
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Table 7.2: The list of diagnostic leptospiral PCR primer pairs used in this study. 

Primer Target 

gene 

Sequence Size 

(bp) 

Specificity Reference 

in this 

study 

Lep F 

Lep R 

16S 

rRNA 

5-’GGC GGC GCG TCT TAA ACA TG- 3’ 

5’–TCC CCC CAT TGA GCA AGA TT- 3’ 

 

330 Leptospira spp. 

(Universal) 

(Merien et 

al., 1992) 

 

F1 

Ri 

23S 

rRNA 

5’-GAA CTG AAA CAT CTA AGT A- 3’ 

5’- CAG CGA ATT AGA TCT G- 3’ 

115 Pathogenic 

leptospires 

(e.g. L. 

interrogans) 

(Woo et 

al., 1997) 

 

F1 

Rb 

23S 

rRNA 

 

5’-GAA CTG AAA CAT CTA AGT A- 3’ 

5’- TTC GCC TTC GAG ATT C-3’ 

523 Non-pathogenic 

leptospires 

(e.g. L. biflexa) 

(Woo et 

al., 1997) 

 

7.2.3 PCR assays for the detection of Leptospira spp. 

All extracted DNA samples (n= 373) were subjected to the three leptospiral PCR assays that 

had been optimised (Table 7.3) to detect both pathogenic and/or saprophytic Leptospira spp. 

in infected animals. The PCR products were then analysed on 1% (w/v) agarose gel (Section 

2.10).  

7.2.4 Direct sequencing of PCR products 

Positive samples from repeated PCR assays were purified (Section 2.11). The purified PCR 

products were then sequenced at Source Bioscience (Cambridge, UK) using the amplification 

primers. The outcome of the DNA sequences was analysed using Staden Package software 

(Cambridge, UK) (Bonfield, Smith and Staden, 1995) and compared using BLAST search tool 

based on the 16S and 23S database to identify the Leptospira species from the positive 

samples. 

7.2.5 Phylogenetic analysis of positive Leptospira samples 

A phylogenetic tree was constructed to determine the relationship of the PCR positive 

Leptospira detected in ruminant samples and related Leptospira genomospecies using 

MEGA7 (Tamura et al., 2013) based on the maximum-likelihood statistical method. The 

phylogeny test was performed by 10,000 bootstrap replications and the final model for 

nucleotide substitution is based on Tamura-Nei model (Tamura and Nei, 1993).  
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7.3 Results 

7.3.1 PCR validation 

Using the three different Leptospira primer pairs as stated, the annealing temperature was 

verified using a range of annealing temperatures and cycling condition of each PCR assay. 

The gradient PCR of each assay and determination of cycling condition and concentration of 

MgCl2 are shown in Table 7.3.  

7.3.2 PCR detection of leptospires in sheep and cattle rectal and gingiva tissues 

From the PCR survey (Table 7.5), several samples were detected as Leptospira positive. 

Overall, 5/36 (8.33%) and 3/39 (7.70%) of sheep rectal and gingival samples were considered 

positive, respectively. No positives were found in both beef cattle gingiva and rectal samples. 

In dairy cattle samples, only two animals (1.74%) were found positive in rectal samples and 

two (1.75%) in gingiva samples. Interestingly, most of the positive samples were detected 

using the 16S rRNA PCR assay, and none were detected using 23S rRNA L. interrogans assays. 

However, only one gingiva sample from dairy cattle was detected positive using the 23S rRNA 

L. biflexa assay.  
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Table 7.3: PCR validation for the detection of Leptospira spp. in this study. 

Primer 

 

Target 

gene 

Target taxa Annealing 

temp (C) 

Extension 

time (s) 

MgCL2 

(mM) 

Annealing 

time (s) 

Cross-reactivity with relevant bacterial DNA 

L. interrogans 

L1-130 

L. biflexa 

Patoc 1 

T. pedis 

T3552B 

T. phagedenis 

T320A 

LepF/LepR 16S 

rRNA 

Leptospira spp.  60.4 60 1.5 30 + + - - 

 

F1/Ri 23S 

rRNA 

Pathogenic Leptospira 

spp. 

48.0 60 1.5 60 + + - - 

F1/Rb 23S 

rRNA 

Commensal 

Leptospira spp. 

53.0 30 1.5 60 - + ND - 

Primer cross-reaction against relevant bacterial DNA is denoted by the following symbols: (+) positive reaction, (-) negative reaction. ND: Not determined 
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Table 7.4: PCR detection results of leptospires in both sheep and cattle gastrointestinal samples.  

Source No. of samples PCR Profile 

L1 P2 S3 

Sheep  

Rectum 31 - - - 

Rectum 5 + - - 

Gingiva 36 - - - 

Gingiva 3 + - - 

Total (Sheep samples) 75 8 0 0 

Cattle 

Beef rectum 34 - - - 

Beef gingiva 34 - - - 

Dairy rectum 113 - - - 

Dairy rectum 2 + - - 

Dairy gingiva 112 - - - 

Dairy gingiva 1 + - - 

Dairy gingiva 1 - - + 

Total (Cattle samples)      298 3 0 1 

All positives samples (+) were sent for direct sequencing (Table 7.6) 
1 PCR assay detecting all Leptospira spp. 
2 PCR assay detecting pathogenic Leptospira spp. 
3 PCR assay detecting non-pathogenic Leptospira spp. 
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7.3.3 Direct DNA sequencing analysis 

Whilst PCR results suggested Leptospira DNA in twelve samples in Table 7.4, sequencing 

results were only able to confirm that two samples contained leptospires, each from sheep 

rectal (3RJE) and dairy cattle gingiva samples (476) corresponded to L. interrogans and L. 

biflexa serovar Patoc 1. Further 16S rRNA gene phylogenetic analysis (Figure 7.1) with other 

L. interrogans representative serovars revealed that the positive sheep sample shared 100% 

identity with all L. interrogans serovar representatives, including two important serovars; 

Hardjo and Canicola, which are consistent with both maintenance and bystander infections 

in sheep (Hassanpour et al., 2011; Director et al., 2014).  

The majority of positive samples from sheep and dairy cattle were demonstrated to be false 

positive results having high sequence identity with non-leptospire microorganisms (Table 

7.6). As a result in this study, the true distribution is that all tested tissues were Leptospira 

negative except for a single sheep rectal tissues (2.78%) and a single dairy cattle gingiva 

(0.88%), respectively (Table 7.5). 

 

Table 7.5: Leptospira PCR positive samples. 

Animal Positive 

gingival tissue 

Positive rectal 

tissue 

True Leptospira 

positive by gingiva 

DNA sequencing 

True Leptospira 

positive by rectal 

DNA sequencing 

Sheep 

 

3/39 (7.70%) 5/36 (8.33%) 0/36 (0.00%) 1/36 (2.78%) 

Cattle (Beef) 

 

0/34 (0.00%) 0/35 (0.00%) 0/34 (0.00%) 0/35 (0.00%) 

Cattle (Dairy) 

 

2/114 (1.75%) 2/115 (1.74%) 1/114 (0.88%) 0/115 (0.00%) 

 



Chapter 7  GI tract tissue survey 

194 
 

 

Table 7.6: DNA sequencing analysis of Leptospira PCR assay products. 

Samples PCR 

assaya 

Identical organism Origin Max 

score 

Total 

score 

Query 

cover 

E-value Percentage ID Accession No. 

Sheep 

2RJE L Collinsella intestinalis str. JCM 10643 Rectum 340 340 100% 1.00E-93 96.15% NR_113165.1 

3R L Collinsella intestinalis str. JCM 10643 Rectum 335 335 93 % 7.00E-92 92.98% NR_113165.1 

3RJE L L. interrogans str. RGA Rectum 104 104 100% 4.00E-23 100.00% NR_116542.1 

5R L Atopobium deltae str. HHRM1715 Rectum 222 222 95% 5.00E-58 84.93% NR_133972.1 

6JA L Alkalibacterium iburiense str. JCM 12662 Gingiva 69.4 69.4 100% 6.00E-13 100.00% NR_112660.1 

7JA L Collinsella intestinalis str. JCM 10643 Gingiva 503 503 98% 3.00E-142 95.25% NR_113165.1 

1839 L Collinsella aerofaciens str. JCM 10188 Rectum 436 436 99% 2.00E-122 98.01% NR_113316.1 

S7G L Collinsella aerofaciens str. JCM 10188 Gingiva 556 556 98% 2.00E-158 97.26% NR_113316.1 

S2R L Peptoniphilus coxii str. RMA 16757 Rectal 87.9 87.9 89% 5.00E-18 93.22% NR_117556.1 

Dairy cattle 

473 L Atopobium fossor str. ATCC 43386 Rectum 318 318 100% 6.00E-87 93.91% NR_044646.1 

476 S L. biflexa svr Patoc str. 'Patoc 1 (Ames)' Gingiva 340 340 100% 7.00E-90 100.00% NR_103964.1 

489 L Collinsella aerofaciens str. JCM 10188 Rectum 549 549 100% 3.00E-156 95.87% NR_113316.1 

The selection of identical organism was based on the top line of BLAST database sequence.  
a The PCR assay that corresponded with the positive detection of the tested tissue sample. L: Leptospira spp. specific, P: commensal Leptospira specific 
Max score; indicates the maximum score of single best aligned sequence, Total score; indicates the sum of scores of all aligned sequences, Query cover; indicates the 
percentage a query sequence aligned to a sequence in Genbank, E-value; indicates the expect value that the number of match hits which can be expected when searching 
a database of a particular size, Percentage ID: indicates the percent of identical match of a query sequence to closest to related organism. Samples with positive Leptospira 
PCR result are in bold 

. 
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Figure 7.1: The phylogenetic analysis of 16S rRNA gene sequence comparisons of all representative 
pathogenic Leptospira species using the maximum-likelihood method by 10,000 times bootstraps.  
 
The tree shows the relationship between a positive sample (indicated by an arrow) from sheep rectal 
tissue sample and associated Leptospira species. 

 

7.4 Discussion 

To our knowledge, this is the first study targeting the presence of leptospires in the ruminant 

gastrointestinal tract using molecular methods. The mucosal surface of the intestinal cavities 

may act as potential leptospire reservoir/carriage site with microbes eventually passed in 

faecal material to the environment potentially enabling a previously unreported faecal-oral 

transmission route. Furthermore, slurry provides a favourable environment for the survival 

of spirochetes and may potentially be an important reservoir on the farm (Tilahun, Reta and 

Simenew, 2013). For example, previous studies identified that for another spirochete, the 

digital dermatitis treponeme, that there is presence in gastrointestinal tract of ruminants 

(Evans et al., 2012; Sullivan et al., 2015) indicating the gastrointestinal tract is likely to be an 

important additional reservoir for transmission of digital dermatitis in ruminants apart from 

the foot. However, there is a lack of studies investigating the link between Leptospira 

transmission through the ruminant gastrointestinal tract, and therefore the present study is 

focusing on the involvement of digestive tract as a possible reservoir of ruminant 

leptospirosis. 
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From the PCR results obtained in this study, the percentage of positive samples using three 

different previously described PCR assays (reference the 3 assays) for both cattle and sheep 

samples were relatively low. Although several DNA samples are labelled as ‘positive’ 

Leptospira in 16S rRNA PCR and one from 23S rRNA (L. interrogans) PCR, only two samples 

were confirmed as true positive from sequencing data, identified as L. interrogans (3RJE) and 

L. biflexa (476) respectively. The results show that the 16S rRNA gene Leptospira genus-

specific PCR assay lacks specificity as it demonstrates cross-reactivity with contaminating 

enteric bacteria, which resulted in false positives, whilst the 23S rRNA L. biflexa and L. 

interrogans specific PCR assays appears specific. It has been previously reported that there 

can frequently be non-specific amplification from other DNA in stool samples using 16S rRNA 

PCR assays due to the presence of polymicrobial flora in the gut that may result in PCR cross-

reactivity and therefore decreasing the PCR specificity (McLain et al., 2009). 

 

The low detection rates of Leptospira in cattle and sheep gastrointestinal tracts suggests a 

minor or brief interaction between these bacteria and the ruminant host’s tissues surveyed. 

In man and dogs, acute leptospirosis is reported to cause gastrointestinal bleeding and 

intestinal motility disorder (Schweighauser et al., 2009; Legris et al., 2014). These 

complications are thought to be due to disrupted homeostasis or intestinal inflammation 

induced by leptospirosis infection that may alter intestinal motility and flexibility. However, 

in the ruminant host, bleeding and gastrointestinal signs caused by leptospirosis are rarely 

observed, except in young animals. Additionally, it is unlikely that the Leptospira can survive 

in the ruminant digestive tract. A study Asoh et al. (2014) by the roles of saliva as a natural 

defence against leptospires cells, although this study does not verify the effect of high pH on 

the bacteria. Ruminant saliva has high pH at approximately 8.2-9.0, which is not favourable 

for Leptospira survival. Moreover, the microenvironment condition in rumen and reticulum 

also is not conducive for Leptospira growth or survival despite having a relatively good pH 

range between pH 5.7-7.2. The anaerobic environment is only beneficial to commensal 

rumen microbes (anaerobic bacteria, protozoa and fungi) whose growth may potentially 

suppress the ability of Leptospira to replicate and survive, and extremely low pH in the 

abomasum (stomach) will further destroy the bacteria.  

 

In contrast to the gastrointestinal tract, the ruminant kidney is a favourable environment for 

Leptospira survival and multiplication in the renal tubules and is excreted via the urinary 

passage. As such, the optimal pH range for Leptospira growth is slightly alkaline (7.2-7.6) 

(Cameron, 2015), which is similar to a ruminant kidney condition. Additionally, Leptospira 
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localisation in the proximal renal tubules (Prescott, Miller and Nicholson, 1987; Skilbeck, 

Forsyth and Dohnt, 1988) and passing of microorganism via urine is the primary mode of 

transmission and may further contaminate the farm slurry. As previously noted, Leptospira 

may be able to survive in the moist environment for months (Khairani-Bejo et al., 2004), and 

therefore slurry could be an important Leptospira reservoir in ruminant farms, rather than 

the gastrointestinal tract. 

 

Although a small percentage of DNA samples were found to be true positives for Leptospira 

spp., (Table 7.5) we believe that these are chance findings. One gingival sample from dairy 

cattle was positive to L. biflexa, and we suspect the animal acquired the bacteria directly from 

the environmental sources such as from slurry/pasture or water. L. biflexa is one of the 

commensal, non-pathogenic leptospires that is commonly found in water and soil (Henry et 

al., 1971; Henry and Johnson, 1978). However, it is not easy to understand the presence of 

L. interrogans found in one of the sheep rectal tissues in this study. It may be possible that 

this animal could be actively being infected/invaded or there is maybe occasional carriage 

for the leptospires. Studies by several authors had previously isolated several Leptospira 

strains from the genital tract of sheep that indicates the persistent and potential venereal 

transmission of Leptospira (Lilenbaum et al., 2008; Arent et al., 2013; Director et al., 2014). 

Close anatomical distance between urinary tract and anus may enable possible spread of the 

bacteria from the urethra to the anus via urinary dropping, which is likely to contaminate 

around the perineal area. Future investigations are recommended to investigate whether 

leptospires are actively invading and damaging rectal tissues using immunohistopathology 

studies. Moreover, the use of an advanced genotyping technique such as Multi locus 

sequence typing (MLST) can be applied to further verify if the same isolate can be found in 

different tissues within the same animal to determine whether it is within host spread of the 

same microbe (Bell, 2017). 

 

In terms of study limitations, the specific leptospirosis status based on serology of each 

individual animal tested, and leptospire PCR detection across a period of time was not 

known. Therefore, it was not clear if these animals may have just acquired the disease or 

previously become Leptospira carriers before sampling. Secondly, Leptospira isolation using 

slurry, rectal and gingival tissues samples were not performed in this study. Therefore, it is 

not possible to give additional evidence and characterisation for the presence of leptospires 

in the ruminant gastrointestinal tract. Although the Leptospira specific PCR had previously 

shown higher sensitivity and specificity with various clinical samples in the previous studies, 
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this PCR is deemed here as not ideal to be used for Leptospira detection in gastrointestinal 

samples due to higher cross-reactivity with other GI bacteria.  

 

From the results shown in this study, more investigations are needed to rule out the 

possibility of disease transmission and infection reservoirs via the ruminant gastrointestinal 

tract and farm slurry. Further improvements could include; 1) Leptospira isolation from 

gingiva and rectal tissues, including the slurry samples from positive farms, 2) use of more 

sensitive PCR assay such as nested-PCR and/or quantitative PCR that were previously 

demonstrated in both human and cattle leptospirosis studies (Stoddard, 2013; Hernández-

Rodríguez et al., 2014; Chen et al., 2015) would improve the Leptospira detection sensitivity 

and specificity using gastrointestinal samples as well as quantify the actual leptospire burden 

within the infected animals. Lastly, 3) a longitudinal ruminant outbreak study including both 

serological analyses could be used to determine the relationship between disease burden 

and potential carriages sites to better dissect transmission routes of this important endemic 

infectious disease.  

 

7.5 Conclusion 

The low detection rates for Leptospira presence within the gastrointestinal tract of ruminants 

in this study does not suggest a possible carriage site/infection reservoir of Leptospira for 

these locations. Future studies should either concentrate on detection methods of increase 

sensitivity or investigate alternative infection reservoirs such as detection and survival of 

leptospires in contaminated pasture/slurry. 
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Chapter 8: General Discussion 

 

8.1 Leptospirosis- An insight into a complex pathogenesis 

It has been nearly one hundred years since leptospirosis was discovered and identified as a 

significant global threat to both humans and animals. Subsequently, a substantial foundation 

of research was undertaken in order to understand the pathogenesis of the disease in the 

host. Before the arrival of the genomic era, the knowledge of disease progression in 

mammalian hosts was mainly based on observed disease aspects, and as a result, the disease 

is well-described in a clinical manner (Turner, 1967; Bruce et al., 2005; Gouveia et al., 2008). 

However, details on Leptospira-host interactions, including specific mechanisms of virulence 

and host defence that leads to a disease outcome, is somewhat limited. Hence, the 

pathogenesis of leptospirosis at the cellular level is poorly understood. Lack of knowledge in 

this area has hampered efforts to identify important virulence factors that could be utilised 

as disease markers for diagnostic tools and could underpin vaccination. 

Recent advances in genomic tools provide an insight into the evolution of Leptospira and the 

pathogenesis of leptospirosis at both the cellular and molecular level. Despite the availability 

of Leptospira whole genome sequences and development of mutagenesis studies, there are 

still many virulence factors in Leptospira which are understudied when compared with other 

bacterial pathogens. This is supported by a large number of hypothetical function genes 

within L. interrogans, where 78% out of 655 unique L. interrogans and 58% out of 308 unique 

L. borgpetersenii genes have no assigned function (Adler et al., 2011). Mutagenesis studies 

have begun to enable the discovery of numerous Leptospira virulence factors as reviewed by 

Murray, (2015). However, these studies were mostly centred on L. interrogans associated 

with human leptospirosis, and there is still a huge knowledge gap for other pathogenic 

Leptospira species, which includes essential characterisation of pathogenic and host-

adaptation mechanisms worthy of investigation.  

The leptospiral surface-exposed proteins (e.g. OMP) are one of the major virulence factors 

that play a major role in bacterial interaction to the host enabling attachment and 

colonisation and also serve crucial biological purposes in maintaining the cell’s life such as 

providing structural integrity, nutrient transports and resistance against antibiotic attack. In 

recent years, several leptospiral OMPs have been successfully discovered and functionally 
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identified. However, as previously mentioned, the majority of these OMPs were identified in 

a single strain of Leptospira interrogans (Table 1.6, Chapter 1).  

One Leptospira species of interest, L. borgpetersenii is an important pathogenic species 

maintained by cattle and rats and is potentially zoonotic to humans (Benacer et al., 2013; 

Gamage et al., 2014; Chideroli et al., 2016).  From a previous study, a total of 263 predicted 

surface-exposed proteins identified in L. borgpetersenii Hardjobovis L550 were identified 

through bioinformatic analysis and 238 proteins were successfully expressed as 

recombinants and immunologically evaluated, resulted in high immune response (>70%) in 

tested animals (Murray et al., 2013). Although the study provided a useful immunological 

reference for future vaccine perspective, it did not confer information about the specific 

individual leptospiral protein interaction mechanisms within the host, and therefore it was 

not clarified how these proteins were able to underpin invasion and colonisation. Thus, the 

present study was prompted to investigate the extent of L. borgpetersenii surface-exposed 

OMPs interaction with the host.  

8.2 Reverse vaccinology - a rational direction towards leptospirosis vaccine design 

The RV approach has proven to be an advantageous method for prediction and identification 

of surface-exposed OMP. The method was previously applied in many bacterial studies, 

including in some leptospiral studies (Maneewatch et al., 2007; Pinne and Haake, 2009). 

While this study only utilised the in silico approach, it is clear that the method is practical for 

screening for target genes from the entire genome using various prediction algorithms, and 

one can quickly evaluate the several gene functions through expression and in vitro 

characterisation at once, saving time and resources. Using a similar approach focusing more 

on OMPs, we had successfully identified and characterised several novel OMPs in a bovine 

Leptospira species (L. borgpetersenii serovar Hardjobovis L550) via functional and 

immunological evaluation investigations.  

To date, the use of RV has not been extensively applied in leptospirosis field, although 

previous studies had successfully identified a broad list of potential vaccine candidates using 

either near complete RV methodology or by using the bioinformatics approach alone 

(Dellagostin et al., 2017). Moreover, the increasing availability of genomes and proteomics 

data provides the opportunity to explore more potential vaccine candidates/virulence factor 

in other pathogenic Leptospira species using the RV application. 
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8.3 Leptospira borgpetersenii Hardjobovis L550 OMP functional and immunological 

characterisation  

From the results obtained in this study, five genes encoding transmembrane surface proteins 

were successfully cloned and expressed as recombinant OMPs (Chapter 4). Through host-

ligand binding studies, we were able to identify that three of these L. borgpetersenii OMPs 

(assigned as Lsa37 and Lsa49) including OmpL1 of the same species, exhibited strong 

adherence to multiple host ligands, with an exception to the rLBL0375 OMP, which may 

tentatively have other functional roles not identified in the present study. Interestingly, the 

binding variations seen in this study suggest the involvement of functional redundancy 

between these OMPs (Chapter 5). Functional redundancy has been widely described for 

many bacterial pathogens (Antonara et al., 2011; Ghosh and O’Connor, 2017), and the 

phenomenon is also considered normal in Leptospira spp. (Adler et al., 2011). The reason for 

this is thought to be due to a process of genomic expansion among pathogenic species (e.g. 

L. interrogans) through gene duplication (Bulach et al., 2006). Surprisingly, our results 

revealed that even though L. borgpetersenii species underwent genome reduction which 

resulted in restricted host transmission (Bulach et al., 2006), this species is able to retain 

some degree of functional redundancy which exhibited by the ability of Lsa37, Lsa49 and 

OmpL1 to bind selectively to similar host molecules such as laminin, fibrinogen, fibronectin 

and elastin seen in this study. This further suggests that leptospiral OMPs possess a high level 

of functional redundancy both within and between species. This is further supported by the 

fact that pathogenic leptospires have more paralogs compared to saprophytic species which 

explain the occurrence of gene and functional redundancy are more common pathogenic 

species (Picardeau et al., 2008).  

However, despite functional redundancy seen within these bovine OMPs, there are slight 

functional variations observed. For example, Lsa49 was able to bind to laminin, whereas 

Lsa37, rLBL0375 and OmpL1 (L. borgpetersenii serovar Hardjobovis L550) do not possess this 

function. Interestingly, a study by Fernandes et al. (2012) demonstrated that OmpL1 (from L. 

interrogans) bound significantly to laminin, which suggested OmpL1 of L. interrogans differ 

in function compared to OmpL1 of L. borgpetersenii. It is not certain if the loss of binding 

function may have an effect on the pathogenicity of L. borgpetersenii species, however, we 

consider that this could be a contributor to host-restriction, other than the already reported 

genome reduction (Bulach et al., 2006). This is supported by a recent study describing the 

loss of function due to mutations in unique virulence factors identified in Salmonella enterica 
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subsp. enterica serovar Typhimurium which is likely to affect the bacteria ability to infect a 

wide host range and promote systemic infection (Larock, Chaudhary and Miller, 2015). 

Functional overlap can be limited to proteins of similar structure. For instance, a group of 

paralogue leptospiral protein such as Ligs (A and B) and Lens (ABCDEF) proteins were 

reportedly able to interact with similar range of host molecules as demonstrated in vivo 

studies (Barbosa et al., 2006; Choy et al., 2007; Stevenson et al., 2007). On the other hand, 

functional redundancy may also observe between proteins belong to different domains. For 

example, the majority of leptospiral proteins such as LipL32, LipL53, Lsa21, Lsa30, MFn6 are 

reported to bind to fibronectin (Atzingen et al., 2008; Hauk et al., 2008; Pinne, Matsunaga 

and Haake, 2012; Souza et al., 2012; Vieira et al., 2014), including several novel OMPs 

discovered in this study (Chapter 5). The redundancy feature, as seen in these proteins is 

difficult to understand as these proteins may present and operate differently in certain 

disease stage, different tissues or may operate simultaneously.  

What is lacking in the present study is further confirmation that these proteins do indeed 

demonstrate in vivo what we have identified they bind to in vitro. To do this, an animal 

disease model would need to be used, and measures put in place to try and reduce issues 

around functional redundancy need to be taken into account to enable something useful to 

be measured. Mutagenesis studies would be beneficial to determine if these proteins are 

required for virulence, which can be determined via mutagenesis and in vivo investigations 

to determine whether molecular Koch’s Postulates are fulfilled (Falkow, 2004). One classic 

example is a study of prominent surface-exposed lipoprotein with OMP-A domain (Loa22) by 

Ristow et al., (2007) who successfully proved that Loa22 is essential for leptospiral ability to 

cause disease and pathological lesions in experimental animal models. In contrast to this, 

another study using a major surface protein LipL32 revealed that despite being abundant on 

the cell-surface of pathogenic Leptospira spp., the mutagenesis study revealed that this 

protein is not essential during infection, although may be a key during leptospiral 

transmission cycle (Haake, 2001; Murray et al., 2009). 

Despite this many leptospiral adhesins or other virulence factors (mainly from L. interrogans) 

have been identified and expressed over the years, although surprisingly, there is lack of 

mutagenesis studies to support their functional roles which would be advantageous. 

Therefore, mutagenesis studies may provide useful information about OMP virulence as to 

eliminate the possibility that the in vitro binding assay characteristics for these OMPs are 
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artefacts and to further identify that the molecules do come into contact with the host and 

are responsible for pathogenesis. 

The immunological interaction of cattle milk with the novel bovine OMPs identified in this 

study revealed interesting outcomes. While all the tested OMPs can be considered to have 

previously been detected by the host immune response (depicted by high IgG1 titres), only 

OmpL1 and rLBL0375 titres agreed with the commercial test kit designation of leptospire 

infected or naïve. OmpL1 has previously been demonstrated as a promising antigen as it is 

recognised by the immune cell in the blood of infected patients during both acute and 

immune phase leptospirosis (Guerreiro et al., 2001; Fernandes et al., 2012), but has never 

been tested for in milk. Interestingly, an OMP of unknown function (rLBL0375) exhibited a 

significant titre corresponding with the test kit’s disease designations. This shows that 

although this OMP has no defined function, it may be useful as an antigen to assign disease 

status in bovine leptospirosis.  Interestingly, a strong linear regression correlation between 

OMP’s antibody titres in the study (Lsa37 vs Lsa49, Lsa37 vs rLBL0375, and Lsa49 vs rLBL0375) 

indicates that several of these OMPs (Chapter 5) may share identical epitopes and be 

antigenically related to being recognised by the immune system. Proteins (antigen) sharing 

similar specific epitopes are likely to be recognised by host antibody, thus forming antigen 

antibody complex. It would be interesting to identify the binding site of an antibody to 

individual OMPs (antigen) through epitope mapping that would further confirm if these 

OMPs are sharing identical binding site corresponding to positive correlation of antibody 

titres in this study.  

Additionally, while the majority of OMPs did not agree with the commercial Leptospira kit, 

OmpL1 (from the bovine species) exhibited significant antibody titres between positive and 

negative leptospirosis cattle milk samples. Although this appears promising, we cannot 

disregard the potential roles of other OMPs in this study as the true infection status of tested 

cattle/herd is not known and it was only determined by a commercial ELISA kit which may 

lack some specificity and is not the gold standard method (MAT) recommended by OIE (OIE, 

2008). It may be possible that these OMPs were expressed in certain stages of disease (e.g. 

acute, chronic, convalescent/immune), which are not potentially detected in cattle milk. 

Furthermore, the titre differences between OmpL1s and other bovine OMPs could be 

evidence of reciprocal expression. The mechanism, although not yet reported in Leptospira 

spp., is described in other Gram-negative bacteria such as Borrelia burgdorferi (Schwan et al., 

1995; Yang et al., 2004) and Pseudomonas aeruginosa (Ventre et al., 2006) which is essential 

for bacterial survival within the host. 
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8.4 The functional diversity of leptospiral OMP variants across genomospecies - A 

key to species survival and host adaptation 

The Leptospira genus is considered one of the most diverse, with such diversity enabling 

adaptation within mammalian hosts and enhancing survival in various ecological niches. The 

ability to sustain in disparate conditions is thought to be due to substantial genome and 

diversification enabling several new functions to be acquired through gene transfer 

associated with adaptation of Leptospira species to new hosts (Fouts et al., 2016; Xu et al., 

2016; Vincent et al., 2019). The leptospiral outer membrane is known to have antigenic 

diversity which was presumably related to the adaptation of leptospiral genomospecies 

and/or serovars to specific mammalian host due to high genetic variations seen in LPS (Haake 

and Matsunaga, 2005), which also account for serovar diversity (Zuerner et al., 2000). 

Surprisingly, leptospiral OMPs (e.g. LipL32) also display antigenic variations and are 

genetically conserved among various serogroups. Despite conservation of OMPs among 

Leptospira spp., the gene sequence variation among species may be highly variable, which 

suggests multiple evolutionary mechanisms acting on leptospiral genes encoding OMPs 

(Haake et al., 2004). The gene sequence variation mostly occurs on the surface loops of 

OMPs, which have direct interaction with the host. This diversification of amino acid 

sequences on the surface loops may tentatively affect the ability of the OMPs interaction 

with the host. 

Two leptospiral OMPs, OmpL1 that was previously identified and described in multiple 

studies (Haake et al., 1993; Shang et al., 1995; Natarajaseenivasan et al., 2005) and Lsa49 

(identified in this study-Chapter 6) were selected to study the functional diversity that may 

have an effect on the binding ability to host molecules. Genes encoding OmpL1 and Lsa49 

were selected from five different genomospecies, and the binding of these OMPs to several 

host molecules was measured. Our results showed that OmpL1 has much greater detected 

binding variation across species, compared to Lsa49. Furthermore, the comparative amino 

acid sequence indicates both surface loops and transmembrane region of OmpL1 across 

pathogenic genomospecies have either one or several amino acid sites conserved among 

species that correspond to each host molecule specificity. Surprisingly, in the comparative 

analysis of OmpL1 primary structure of L. borgptersenii and L. santarosai that belong to 

similar sister groups showed an additional host binding preference to elastin. Additionally, a 

deeper branch of L. interrogans subcluster tended to lose several binding functions 

compared to main L. interrogans groups. These findings showed that the molecular evolution 

of OmpL1 affects host-binding interactions, which likely has implications for host adaptation 
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and survival. Although Lsa49 variants have more variable regions on their amino acid 

sequences, their binding functions appear more conserved as the majority of Lsa49 proteins 

across genomospecies demonstrated similar binding preferences to several host molecules.  

The immunological evaluation of OMP variants (OmpL1 and Lsa49) across pathogenic 

genomospecies suggests these OMPs have conserved immunogenicity (demonstrated by a 

strong correlation of anti-OmpL1 vs anti-OmpL1 and anti-Lsa49 vs anti-Lsa49 titres), although 

they could still exhibit some antigenic diversity. This conservation would be a major 

advantage to overcome the problem with serovar-specificity as seen in bacterin (whole-cell) 

Leptospira vaccines, as they contain identical epitopes to allow antibody binding which is 

likely able to induce cross-reactions among species. The ability of the immune system to 

cross-react would confer broad protection against multiple species/serovars that would be 

ideal as a vaccine component. Additionally, antibody responses against leptospiral OMPs 

seen in this study highly suggested that these OMPs are indeed expressed as surface proteins 

and recognised by cattle immune system. However, it is not clear such responses were 

triggered either by humoral or cell-mediated immunity of cattle host. Previous studies by 

Naiman et al. (2001, 2002) demonstrated that immune response in induced by vaccinated 

cattle (with bacterin vaccine) upon challenged was strongly stimulated by Th1 response, 

which suggested that cattle may develop cell-mediated immunity that normally associated 

with intracellular microbial infections. Interestingly, humoral-mediated immunity which 

largely derived against LPS is equivalently important to confer protection against 

leptospirosis in humans, dogs and hamster, but failed to protect cattle (Bolin et al., 1989; 

Fraga, Barbosa and Isaac, 2011). This indicates that different types of antigen contribute to 

different types of immune response stimulated by the host. We would consider to further 

characterise the type of immune response in cattle in future studies via vaccination using 

these OMPs as testing antigens. 

The high genetic diversity observed within OmpL1 genes and encoded amino acid diversity 

of the encoded receptor, especially in regions encoding extracellular loops, suggests that 

Leptospira may also undergo positive selection. Positive selection is quantified by analysing 

nucleotide changes acting on a protein-coding region and is measured by comparing the rate 

of nonsynonymous substitutions (denoted as d/N) with synonymous substitutions (denoted 

as d/S) and is also referred to as the dN/dS ratio. This ratio measures the strength and mode 

of natural selection, where neutral selection is achieved when the ratio is equivocal/ at unity 

(dN/dS = 1), which indicates that a protein-coding region is unlikely to experience selection. 

On the other hand, if more nucleotide substitutions result in amino acid change than 
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substitutions lead to no change then the term is described as ‘positive selection’ when 

(dS/dN) ratio of a particular gene exceeds unity (>1), whereas (dS/dN) ratio less than unity 

(<1) implies that a gene undergone ‘negative (purifying) selection’ which prevents change of 

a particular protein-coding region, resulting in gene stabilisation and frequently occurs due 

to conservation of a required function (Kryazhimskiy and Plotkin, 2008; Jeffares et al., 2014).  

The mechanism of positive selection occurs within a wide range of genes of variable functions 

in a particular genome, including genes encoded for cell-surface proteins (e.g. OMPs) as they 

usually become a target for host immunity (Petersen et al., 2007). Antigenic variation may 

occur in which the pathogen has the ability to transform the surface protein that is detected 

by host immune recognition, thus producing a subpopulation with surface-protein diversities 

which may evade the host immune system, thus preventing eradication and allowing re-

infection to the host (Kotwal, 2006; Deitsch et al., 2009). For such a strategy to work, the 

pathogen must possess a tightly controlled antigenic profile and produce antigenic variants 

at regular intervals. Theoretically, antigenic variation has several mechanisms that are largely 

divided into two categories; random variation and programmed variation. Random (or 

unprogrammed) variation occurs as a result of DNA/RNA alteration produced by nucleotides 

recombination, errors in DNA/RNA replication or repair, and reassortment of gene segment 

potentially cause the transfer of stretches of DNA/RNA and entire genes to other region of 

genomes to generate variations. These mechanisms which are commonly seen in viruses (e.g 

lentivirus and influenza), may alter the level of expression of the amino acid sequence of its 

products and therefore may result in antigenic site change (shift) or formation of a new virus 

subtype (drift) (Folks, 1994; Chen and Deng, 2009).  

In contrast, the programmed variation (also referred to as phase variation/antigenic 

variation) may affect the expression of a gene encoding protein without changing its primary 

nucleotide sequence. Phase variation regulates the ON-OFF expression of a particular antigen 

(van der Wouder and Baumler, 2004). The strategy is widely applied to a family of paralogous 

genes encoding proteins with similar functions and ability to express one protein at a time, 

and generally irreversible or temporarily. One common phase variation mechanism is 

slipped-strand mispairing of repetitive DNA segments in homopolymeric tract consisting of a 

single nucleotide, or several multimetric classes of short sequences repeats (SSR). Phase 

variation may occur by altering the SSR region that is positioned either upstream of a gene 

(affecting transcription), or within the gene (altering translational reading frame) (Chandler 

and Fayet, 1993; van Belkum et al., 1998). The outcome from both events will result in ‘phase 

ON or OFF’ expression either by blocking of transcription promoter or producing premature 
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stop codon. For example, transcriptional control seen in surface-proteins of pathogenic 

bacteria such as Neisseria meningitidis and N. gonorrhoea (Opa proteins) and translational 

controls seen in E. coli (fimbriae) are essential for mediating bacterial attachment to host cell 

surface (Meyer, Gibbs and Haas, 1990; Dixon et al., 2007). 

In this study, intragenic recombination of OmpL1 amino acids sequence on the surface-

exposed loops across several Leptospira species/strains is highly suggestive for evidence of 

antigenic variation as previously described by Haake et al. (2004). However, it was noted that 

the positive selection was only observed on two amino acid sites on a single surface-loop, 

and other additional variable loops (denoted by several nonsynonymous substitutions in four 

variable regions encoding surface loops), indicates that such amino acid sequence variability 

on these regions is unlikely due to the immunological pressure. The outcome of gene 

recombinant events which involve the movement of entire genes, or a small portion of the 

gene producing a chimeric DNA may result in non-expression into pathogen expression site, 

which is commonly adapted by many bacteria to regulate antigenic variation to circumvent 

immune host. This is further supported by the fact that leptospiral colonisation in renal 

tubules in the reservoir hosts could be driven by adaptations to the specific hosts that leads 

to increase the variability of amino acid sequence to tolerate within the host environment. 

However, changes of the amino acids on OmpL1 surface-exposed loops may evidently result 

from recombinant DNA of antigenic variation, although the actual effect from this variation 

may not be significant in terms of disease outcome, apart from binding preference to host 

molecules observed in our study. 

Interestingly, the effect of recombinant DNA, causing antigenic variation was previously 

studied in other pathogenic spirochetes such as Borrelia burgdorferi and Borrelia hermsii 

which are causative agents for Lyme disease and relapsing fever, respectively. Hosts infected 

with either one spirochete (e.g. B. burgdorferi) can last from several months to years due to 

the ability of Borrelia to escape from host immune invasion, and may eventually lead to 

persistent infection (Steere et al., 2004). The key of evasion strategy adapted by B. 

burgdorferi is the gene recombination at the vls (Vmp-like sequence) locus which composed 

of an expression site (vlsE) encoding for surface lipoprotein VlsE and 15 silent cassette 

(unexpressed) located on the 28-kb linear plasmid in the organism (lp28-1) (Zhang et al., 

1997; Norris, 2006). During infection, changes at the vls locus may occur through 

recombination events and resulting in gene conversion between expression cassette and 

silent cassette. Silent cassette segment serves as a source of non-reciprocal recombinant 

events with the expression cassette which eventually express as distinct VlsE variants during 
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infection. This resulted in alteration of the surface epitope of VlsE, thus avoiding host 

immunity (Bankhead and Chaconas, 2007).  

The Leptospira genome possesses an extensive heterogeneity across species which suggest 

for large gene rearrangements due to the various types of recombinants events (Zuerner et 

al., 1993). It is possible that antigenic variation is likely to occur, although this has never been 

well-described compared to other spirochete species, possibly due to the difficulty to 

manipulate leptospiral genome (Picardeau, 2015a). We hypothesise that given the high 

antigenic diversity observed in OMPs from pathogenic Leptospira spp., it could be expected 

that they already also have specific mechanisms that would affect gene expression that 

would be key for Leptospira-host interaction and evasion from host immune response. The 

evolutionary divergence observed for OmpL1 concurs with other leptospiral proteins such as 

LipL32 and LipL41, and the Lig proteins, albeit those protein sequences, are more conserved 

(Haake et al., 2004; McBride et al., 2009; Vedhagiri et al., 2009). However, neither is required 

during infection, although all are largely recognised by host humoral immune response and 

therefore their roles during infection remain unexplained. However, the genetic variability 

observed in Lig proteins are thought to be a key factor contributing towards species 

adaptation to mammalian host for serovar-host specificity (McBride et al., 2009).  

Additionally, changes in amino acids acting on the surface-exposed loops of OmpL1 across 

pathogenic Leptospira species are driven by a strong positive selection (Haake et al., 2004), 

of which contributed to the significant binding preference shown in our study. Moreover, the 

evidence of positive selection was proven to be essential for pathogenic Leptospira spp. 

survival and adaptation in the new host during the early stage of infection in the recent study 

(Kurilung et al., 2019). However, we could not stipulate the same conclusion in the case of 

Lsa49. It is not clear if this gene could also develop similar selection pressure, which would 

be an interest. Therefore, future investigation is warranted to compare genomic data of 

Lsa49 genes to identifying the possible site(s) affected by selection pressure and to 

investigate if changes of genes may contribute to the adaptation of Leptospira in the host, or 

to avoid evasion of host immunity. 

Combining of both functional and immunological data of OMP variants in Chapter 6, we can 

assume that the genetic exchanges between Leptospira species are translated with additional 

gaining or losing of binding function to various host components without affecting their 

immunogenicity which would be ideal for vaccine development. This information is crucial to 

determine if the variation seen in a particular OMP may; 1) be involved in Leptospira 
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adaptation and survival in particular hosts such as cattle or human, 2) affect Leptospira 

virulence (self-limiting versus acute or chronic infection or ability to induce cross-protection) 

3) relate to geographical distribution (e.g. Africa versus Asia). A further recommendation is 

to study leptospiral OMP (e.g. OmpL1) in all pathogenic and intermediate genomospecies 

species through functional binding diversities and immunological evaluations to determine 

the extent of antigenic variations among species, which would reveal insight into physiology 

and pathogenesis of pathogenic Leptospira spp. Moreover, it is expected that such findings 

will help researchers to understand the mechanism(s) that possibly are involved in lieu of 

selection pressure with antigenic or phase variations as seen in other pathogenic bacteria. 

 

8.5 OmpL1- The future of vaccine development 

Among of all OMPs studied, we found that OmpL1 is undoubtedly an ideal candidate to be 

developed as a vaccine candidate and diagnostic tool which concurred with the previously 

published findings (Haake et al., 1999; Maneewatch et al., 2007; Dong et al., 2008; Subathra 

et al., 2013). Previously, there was a lack of further studies for this OMP, possibly due to the 

difficulty to express toxic OmpL1 gene as recombinant proteins resulting in low protein yield. 

Here, our recombinant protein expression protocol has proven suitable to express the 

recombinant OmpL1 gene and provide a substantial yield. Therefore this protocol should be 

further optimised for future OmpL1 studies the which including; 1) to study the OmpL1 

structure via crystallography approaches, 2) to produce mutant OmpL1 alleles across 

pathogenic species incapable of binding host ligands to verify if key amino acids responsible 

for adhesive properties to host cells, 3) to develop a complement-mediated serum 

leptospirocidal assay using OmpL1 to investigate whether they may interact with specific 

site(s) of host complement regulators for immune interference. Collectively, such studies 

may be useful for future therapeutic approaches and further understanding of the immuno-

pathogenesis of Leptospira. 

8.6 Leptospira reservoir in the ruminant gastrointestinal tract 

Our study provides important information regards the possibility of Leptospira transmission 

via the ruminant GI tract. From the literature, it was known that Leptospira could be 

transmitted directly through the oral route. However, whether the oral or rectal tissues act 

as a carriage site/infection reservoir also had never been investigated in ruminant 

leptospirosis studies. Although our findings did not support the identification of new carriage 
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sites/infection reservoirs (Chapter 7), more studies are needed to investigate how long 

leptospires may survive in farm slurry and to determine the risk of further infections from 

any GI presence. Such studies include; 1) Epidemiological/outbreak investigation of the 

ruminant herd to determine the disease association between the presence of positive 

leptospires detected in GI tract with leptospirosis status of the animal, 2) Identification and 

characterisation of leptospires in GI tissues using reliable and more sensitive detection 

methods (e.g. qPCR). Furthermore, dissecting whether the occasional positives we observed 

were active disease through immunohistopathology or evidence of occasional contamination 

from the kidney tubule urine route would seem most valid.  

One risk factor of accidental leptospirosis infection in ruminants is mixed farm practice; 

including co-grazing and direct contact of infected sheep/cattle/pigs/deer (Lilenbaum and 

Souza, 2003; Schoonman and Swai, 2010; Subharat et al., 2012). While urine is a known 

source of infection when presented as slurry, the combined urine and faecal droppings may 

result in differences in leptospire survival. Future work should study whether slurry may act 

as a potent leptospire reservoir and take into account differences in survival in this material 

at different temperatures in the future. Such studies may help to limit disease transmission 

into the farm while maintaining a good husbandry practice. 

 

8.7 Conclusion 

With this worldwide human affliction staggering at nearly 60,000 deaths and more than one 

million cases reported every year (Torgerson et al., 2015), leptospirosis is a global public 

threat, and an urgent intervention is needed to tackle the spread of infection. Addressing 

domestic animals as the main source of direct transmission of Leptospira to humans, 

vaccination is deemed necessary to prevent infection in both human and animals. While 

human vaccination has yet to be approved, major drawbacks in leptospirosis vaccination as 

observed in cattle and dogs are lack of cross-protection, inability to protect against renal 

colonisation and limited duration of protection (Dellagostin et al., 2017). These 

disadvantages call for the new lines of modern Leptospira vaccines that are preferably able 

to confer universal protection, long-lasting duration, and have zero side effect using the 

leptospiral OMPs as the next potential antigens. The availability of Leptospira genomes and 

the development of recombinant DNA technology have enabled for the identification of 

potential OMPs that would be ideal for recombinant vaccine development.  
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Using a whole genome of L. borgpetersenii serovar Hardjobovis L550 (bovine leptospiral 

strain), here we identified six novels transmembrane OMPs encoding genes with a porin 

protein (OmpL1) using RV approach of which four genes were successfully expressed as 

recombinant OMP. Three of these recombinant OMPs (including OmpL1) showed the 

significant adhesive property to various host molecules which reflect their ability to adhere 

to the host. The resulting two novels OMPs were each re-assigned as Leptospiral Adhesin 

(Lsa) protein followed by their respective molecular sizes; Lsa37 and Lsa49. Immunological 

evaluation of these OMPs highly suggestive for that they are likely expressed, exposed and 

recognised by host immunity, which in turn would be considered as diagnostic tools. Our 

study on OmpL1 across pathogenic genomospecies showed a significant immunogenic 

property which supports an extensive body of literature considering this protein as a perfect 

recombinant vaccine candidate and improvement diagnostic method. Additionally, our 

research verified that OmpL1 appears to be a thermostable antigen, which may enable the 

production of a heat-stable vaccine, which would be a major advantage especially in the 

majority of leptospirosis endemic tropical countries where the cold chain access is hardly 

accessible. 

The functional diversity of leptospiral OMPs in this study revealed an insight into the 

molecular evolution of the leptospiral genome. Through a comparative analysis of the amino 

acid sequences of both OmpL1 and Lsa49 across multiple genomospecies, we successfully 

demonstrated diversity in binding profiles assessed when expressing these OMPs as 

recombinants. This subsequently enabled identification of several binding sites 

corresponding specific host-ligand binding. Additionally, the immunological evaluation using 

these OMP variants (OmpL1 vs OmpL1 and Lsa49 vs Lsa49) revealed that the majority showed 

positive association which reflect that these OMPs are equally recognised by the host 

immune system. A high degree of variation seen in a particular short amino acid stretch or 

single amino acid on the surface-loop regions of both OMP variants suggest evidence of 

molecular evolution possibly through selection pressure causing antigenic variation and has 

eventually resulted in functional variation across genomospecies.  

The survey of ruminants for the presence of leptospires in the GI tract eliminates the 

possibility of GI as potential leptospires reservoir and carriage site that allow disease 

transmission. This highly suggests that GI tract microenvironment may not be ideal for 

Leptospira survival in the ruminant. Although slurry contains urine, this continues to act as 

an infection reservoir which needs further characterisation as to how it contributes to 

disease transmission among healthy herd and re-infection in the farm. 
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Using the outcomes obtained from this study, we hope to contribute and improve our 

understanding of Leptospira-host interactions at both the cellular and molecular levels and 

therefore, narrow the knowledge gap on the complex leptospirosis pathogenesis as well as 

further clarify leptospire transmission pathways of leptospires on ruminant farms. The 

information might serve as a valuable reference for future development in the field of 

therapeutic and prophylactic approaches in leptospirosis, which may help to eradicate the 

disease in both animals and humans worldwide. 
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Appendix A 

Supplementary material for Chapter 3 
 

List of L550 genes with predicted signal peptide cleavage sites and desirable OMP criteria 

>LBL_0012 >LBL_1344 >LBL_2896 

>LBL_0024 >LBL_1351 >LBL_2925 

>LBL_0072 >LBL_1355 >LBL_2998 

>LBL_0145 >LBL_1532 >LBL_3015 

>LBL_0150 >LBL_1552 

>LBL_0164 >LBL_1570 

>LBL_0198 >LBL_1590 

>LBL_0216 >LBL_1592 

>LBL_0238 >LBL_1695 

>LBL_0240 >LBL_1719 

>LBL_0247 >LBL_1751 

>LBL_0252 >LBL_1771 

>LBL_0303 >LBL_1773 

>LBL_0307 >LBL_1779 

>LBL_0319 >LBL_1846 

>LBL_0353 >LBL_1866 

>LBL_0375 >LBL_1874 

>LBL_0396 >LBL_1884 

>LBL_0511 >LBL_1892 

>LBL_0514 >LBL_1893 

>LBL_0543 >LBL_1898 

>LBL_0553 >LBL_1930 

>LBL_0585 >LBL_1934 

>LBL_0636 >LBL_1949 

>LBL_0707 >LBL_1981 

>LBL_0708 >LBL_1994 

>LBL_0719 >LBL_2026 

>LBL_0720 >LBL_2063 

>LBL_0726 >LBL_2133 

>LBL_0727 >LBL_2149 

>LBL_0732 >LBL_2155 

>LBL_0733 >LBL_2239 

>LBL_0765 >LBL_2273 

>LBL_0803 >LBL_2366 

>LBL_0823 >LBL_2376 

>LBL_0858 >LBL_2510 

>LBL_0885 >LBL_2559 

>LBL_0972 >LBL_2618 

>LBL_0976 >LBL_2650 

>LBL_0977 >LBL_2683 

>LBL_0997 >LBL_2697 

>LBL_1010 >LBL_2706 

>LBL_1040 >LBL_2718 

>LBL_1054 >LBL_2732 

>LBL_1104 >LBL_2757 

>LBL_1138 >LBL_2785 

>LBL_1284 >LBL_2800 

>LBL_1327 >LBL_2804 

>LBL_1330 >LBL_2831 

>LBL_1341 >LBL_2857 
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Prediction of protein 

localisation sites 
Domain 

ID Prediction of transmembrane β-barrel proteins 

PSORTb CELLO PFAMa TMHMMb MCMBB BOMP 
PRED 
TMBB 

LBL_0069 LBL_0145 LBL_0072 LBL_0012 LBL_1592 LBL_1054 LBL_1930 LBL_0072 

LBL_0121 LBL_0198 LBL_0511 LBL_0024 LBL_1695 LBL_0765 LBL_0238 LBL_0145 

LBL_0154 LBL_0216 LBL_0396 LBL_0072 LBL_1719 LBL_1341 LBL_1054 LBL_0511 

LBL_0198 LBL_0238 LBL_0319 LBL_0145 LBL_1751 LBL_2618 LBL_0072 LBL_0727 

LBL_0225 LBL_0240 LBL_0303 LBL_0150 LBL_1771 LBL_1930 LBL_0765 LBL_0765 

LBL_0279 LBL_0252 LBL_0252 LBL_0164 LBL_1773  LBL_1341 LBL_0823 

LBL_0366 LBL_0303 LBL_0216 LBL_0198 LBL_1779  LBL_0976 LBL_0885 

LBL_0398 LBL_0307 LBL_0636 LBL_0216 LBL_1866  LBL_0353 LBL _0976 

LBL_0515 LBL_0319 LBL_0707 LBL_0240 LBL_1874   LBL_1010 

LBL_0690 LBL_0511 LBL_0708  LBL_0247 LBL_1884   LBL_1054 

LBL_0692 LBL_0720 LBL_0240 LBL_0303 LBL_1893   LBL_1284 

LBL_0693 LBL_0726 LBL_0198 LBL_0307 LBL_1898   LBL_1327 

LBL_0764 LBL_0765 LBL_0727 LBL_0319 LBL_1930   LBL_1341 

LBL_0765 LBL_0885 LBL_0733 LBL_0353 LBL_1934   LBL_1570 

LBL_0809 LBL_0976 LBL_0765 LBL_0375 LBL_1949   LBL_1930 

LBL_0862 LBL_0977 LBL_0858 LBL_0396 LBL_1981   LBL_1934 

LBL_0935 LBL_0997 LBL_0976 LBL_0511 LBL_1994   LBL_1949 

LBL_0936 LBL_1054 LBL_0997 LBL_0514 LBL_2026   LBL_2239 

LBL_1002 LBL_1327 LBL_1010 LBL_0543 LBL_2063   LBL_2366 

LBL_1054 LBL_1341 LBL_1104 LBL_0553 LBL_2133   LBL_2618 

LBL_1337 LBL_1570 LBL_1138 LBL_0585 LBL_2155   LBL_2683 

LBL_1341 LBL_1695 LBL_1327 LBL_0636 LBL_2239   LBL_2718 

LBL_1432 LBL_1719 LBL_1330 LBL_0707 LBL_2273   LBL_2785 

LBL_1447 LBL_1771 LBL_1351 LBL_0708 LBL_2366   LBL_2857 

LBL_1453 LBL_1874 LBL_1590 LBL_0719 LBL_2376   LBL_2998 

LBL_1530 LBL_1930 LBL_1695 LBL_0720 LBL_2510   LBL_0150 

LBL_1575 LBL_2155 LBL_1773 LBL_0726 LBL_2559   LBL_0164 

LBL_1645 LBL_2366 LBL_1846 LBL_0727 LBL_2618   LBL_0198 

LBL_1647 LBL_2683 LBL_1866 LBL_0732 LBL_2650   LBL_0238 

LBL_1718 LBL_2697 LBL_1874 LBL_0733 LBL_2683   LBL_0247 

LBL_1773 LBL_2718 LBL_0972 LBL_0765 LBL_2697   LBL_0252 

LBL_1821 LBL_2785 LBL_1930 LBL_0803 LBL_2718   LBL_0307 

LBL_1847 LBL_2998 LBL_1949 LBL_0858 LBL_2732   LBL_0319 

LBL_1882  LBL_2063 LBL_0885 LBL_2757   LBL_0514 

LBL_1907  LBL_2155 LBL_0972 LBL_2785   LBL_0636 

LBL_1948  LBL_2239 LBL_0976 LBL_2800   LBL_0726 

LBL_2023  LBL_2366 LBL_0977 LBL_2804   LBL_1344 

LBL_2080  LBL_1898 LBL_0997 LBL_2831   LBL_1335 

LBL_2139  LBL_2706 LBL_1040 LBL_2857   LBL_1552 

LBL_2242  LBL_2697 LBL_1054 LBL_2925   LBL_1592 

LBL_2418  LBL_2618 LBL_1104 LBL_2998   LBL_1771 

LBL_2425  LBL_2376 LBL_1138 LBL_3015   LBL_1884 

LBL_2518  LBL_2510 LBL_1284    LBL_2155 

LBL_2697  LBL_2925 LBL_1327    LBL_2376 

LBL_2791  LBL_2998 LBL_1330    LBL_2804 

LBL_2806  LBL_3015 LBL_1341     

LBL_2818  LBL_2831 LBL_1344     

LBL_2998  LBL_2857 LBL_1351     

  LBL_2785 LBL_1355     

  LBL_0150 LBL_1532     

  LBL_0145 LBL_1552     

   LBL_1590     

Abbreviations: 
PSORTb: List of genes with beta-barrel prediction 
CELLO: List of genes WITH most-likely as outer membrane 
PFAM: List of genes with domains 
TMHMM: List of genes which are NOT α-helices 
MCMBB: List of genes with predicted beta-barrel with hidden markov chain model 
BOMP: List of genes with predicted beta-barrel integral outer membrane proteins  
PRED-TMBB: List of genes with predicted transmembrane beta-strands 
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Appendix B 

 
Supplementary material for Chapter 4 
 

On the next few pages are the cloning vectors used in Chapter 4, and the summary for both 

gene cloning, recombinant protein expression, refolding and purification. 

 

 

 

Figure B.1: The map of pENTR™/D-TOPO® vector and its features. 
 
The following features are described as follow. rrnB T1 (bases 268-295) and T2 (bases 427-470) 
transcription termination sequences; preventing basal expression of PCR products that is toxic to E. coli 
host. M13 forward priming site (bases 537-552); to allow sequence of the insert. attL1 (bases 569-668 
containing TOPO® recognition site 1: bases 680-684, overhang bases, GTCC 685-688) and attL2 (bases 
705-804 containing TOPO® recognition site 2: bases 689-693); Recombination sequences derived from 
bacteriophage γ-derived to allow recombination cloning of DNA insert in the entry construct with 
Gateway® destination vector (Landy, 1989). T7 promoter (bases 821-840); allows in vitro transcription 
and sequencing of the insert. M13 reverse primer priming site (bases 845-861); to allow sequence of 
the insert. Kanamycin resistance gene (bases 974-1783; allows selection of the plasmid E. coli. pUC 
origin of replication (ori) (bases 1904-2577); allows high copy replication and maintenance in E. coli 
competent host. Figure and description were adapted from clone manager software and pENTR™ 
Directional TOPO® Cloning Kits user guide (2012). Figure and descriptions were adapted from E. coli 
Expression System with Gateway® Technology User Guide (Life Technologies, Carlsberg, USA 2012). 

 

 



Appendices   

216 
 

 

 

 

 

 

Figure B.2: The map of pDEST17™ and its features. 
 
The following features are described as follow. T7 promoter (bases 21-40) allows high level expression 
of recombinant in bacterial (E. coli) expression strains expressing T7 RNA polymerase. Ribosome 
binding site (RBS) (bases 86-92) an optimum space from the initiation ATG in the N-terminal tag for 
efficient translation of DNA. N-terminal 6XHis-tag allows affinity purification fusion protein using a 
metal-chelating resin. AttR1 (bases 71-195) and attR2 (bases 1651-1775) sites; Bacteriophage λ-
derived DNA recombination sequences that allows recombination cloning of the gene of interest from 
Gateway® entry cloning. Chloramphenicol resistance gene (CmR) (bases 304-963); permits 
counterselection of the plasmid. T7 transcription termination region (bases 2466-2594); Sequence from 
bacteriophage T7 for transcription termination. Ampicillin (bla) resistance gene (base 3181-4041); 
permits expression of the ampicillin resistance gene. The pBR322 ori (bases 4186-4859); allows 
replication and maintenance in E. coli. Repression of primer, open reading frame (Rop, ORF) (bases: 
5230-5421); Interacts with the pBR322 origin to facilitate low-copy replication in E. coli. Figure and 
descriptions were adapted from E. coli Expression System with Gateway® Technology User Guide (Life 
Technologies, Carlsberg, USA 2012). 
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Figure B.3: The summary of gene cloning and transformation. 
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Figure B.4: The summary of protein overexpression, refolding and purifications. 
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Appendix C 

 
Supplementary material for Chapter 5 and 6 
 

On the next few pages are the commercial Leptospira test kits used as reference, their results 

as described in Chapter 5 and 6, including CD spectra analysis and the predicted sites of 

conserved amino acids of Lsa4 corresponding to host molecules binding. 

 

Figure C.1: Manual instructions for use of Linnodee Bovine L. Hardjo ELISA test kit®. 

 

The commercial test kit used to determine the Leptospira bulk cattle milk status in Chapter 5, 

performed by Cattle Information System (CIS, UK). 
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Figure C.2: Manual instructions for use of PrioCHECK® L. Hardjo ELISA test kit. 

 

The commercial test kit used to determine the Leptospira cattle sera status in Chapter 6. 
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Figure C.3 (A-K): The association between PrioCHECK™ test kit results and antibodies (IgG1 and IgG2) 

binding to leptospiral OMP variants tested in cattle sera (Chapter 6).  

 

The trend line represents the correlation coefficient, denoted as (r values), which estimates the 

relationship between the OD (450 nm) of both results. P-values determine the significant level of 

association between two assays of which P-value of at least <0.05 is considered significant. Note that 

no association found in all OMPs versus kit in this study. 
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Table C.1: Analysis of the CD spectra using two online servers; BestSel and CAPITO show components of OmpL1 proteins by their secondary structures. 
 

Species 

 

Helix 

 

Anti-

parallel  

 

Parallel  

 

Turn 

 

Others 

 

Helix 1 

(Regular) 

 

Helix 2 

(distorted) 

 

Anti 1 

(Left-

twisted) 

 

Anti 2 

(relaxed) 

 

Anti 3 

(Right 

twisted)  

 

Conc 

(mg/ml) 

Molar 

conc 

(µM) 

Predominant 

spectra by 

BestSel 

Predominant 

spectra by 

CAPITO 

L. interrogans 

svr Pyrogenes 

3.50 

 

 

45.4 0.00 12.5 38.7 3.50 0.00 6.30 20.2 18.8 1.20 38.7 β-sheet β-sheet 

L. noguchii 8.40 35.8 0.00 12.8 42.9 3.60 4.9 6.3 18.2 11.3 1.70 55.0 β-sheet β-sheet 

L. santarosai 5.10 28.3 7.40 15.0 44.2 5.10 0.00 4.00 9.80 14.5 0.70 23.0 β-sheet β-sheet 

L. alstonii 3.70 22.2 8.30 14.2 51.6 2.70 0.90 2.00 9.00 11.3 0.40 12.90 β-sheet β-sheet 

L. 

borgpetersenii 

svr 

Hardjobovis 

L550 

0.0 44.6 0.0 13.6 41.8 0.0 0.0 3.8 21.2 16.6 2.3 72.73 β-sheet β-sheet 

L. interrognas 

svr 

Copenhageni 

0.0 44.8 0.0 13.8 41.4 0.0 0.0 4.1 21.3 19.4 1.3 41.94 β-sheet β-sheet 

The overall score of α-helix and β-sheet are defined as ‘Helix’ and ‘Anti-parallel’, respectively. The α-helix scores are based on a regular part of the helix (regular); The middle 

part of α-helices and the Helix 2 (distorted ends); 2-2 residues at the ends of α-helices. The β-sheet scores are based on antiparallel β-sheets which are divided into three 

subclasses: Anti 1; Left-handed twisted, Anti 2; relaxed (slightly right-handed twisted) and Anti 3; right-hand twisted. The definition of ‘Turn’ is the turn and bend segment 

longer than one residue. ‘Others’ are described any additional features present within a protein such as 33,,-helix, π-helix, β-bridge, bend, loop/irregular and invisible region 

of the structure. The secondary structure determination of most recombinant OMPs is in agreement in this study (Chapter 4). 

 

  



Appendices   

225 
 

 

Table C.2: Analysis of the CD spectra using two online servers; BestSel and CAPITO show components of Lsa49 proteins by their secondary structures. 
 

Species 

 

Helix 

 

Anti-

parallel  

 

Parallel  

 

Turn 

 

Others 

 

Helix 1 

(Regular) 

 

Helix 2 

(distorted) 

 

Anti 1 

(Left-

twisted) 

 

Anti 2 

(relaxed) 

 

Anti 3 

(Right 

twisted)  

 

Conc 

(mg/ml) 

Molar 

conc 

(µM) 

Predominant 

spectra by 

BestSel 

Predominant 

spectra by 

CAPITO 

L. kirschneri 8.60 25.1 9.60 12.1 44.7 6.50 2.20 1.10 6.40 16.60 0.50 10.2 β-sheet β-sheet 

L. noguchii 22.3 45.3 0.00 9.50 22.9 22.3 0.00 0.00 17.8 27.6 0.40 8.16 β-sheet β-sheet 

L. alstonii 4.20 11.3 13.5 13.9 57.1 4.10 0.20 0.00 0.00 11.3 0.40 8.16 β-sheet β-sheet 

L. 

borgpetersenii 

svr 

Hardjobovis 

L550 

0.0 43.8 0.0 13.7 42.5 0.0 0.0 4.6 19.5 19.6 0.3 6.12 β-sheet β-sheet 

The overall score of α-helix and β-sheet are defined as ‘Helix’ and ‘Anti-parallel’, respectively. The α-helix scores are based on a regular part of the helix (regular); The middle 

part of α-helices and the Helix 2 (distorted ends); 2-2 residues at the ends of α-helices. The β-sheet scores are based on antiparallel β-sheets which are divided into three 

subclasses: Anti 1; Left-handed twisted, Anti 2; relaxed (slightly right-handed twisted) and Anti 3; right-hand twisted. The definition of ‘Turn’ is the turn and bend segment 

longer than one residue. ‘Others’ are described any additional features present within a protein such as 33,,-helix, π-helix, β-bridge, bend, loop/irregular and invisible region 

of the structure. The secondary structure determination of most recombinant OMPs is in agreement in this study (Chapter 4). 
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  Table C.3: The predicted site of conserved amino acids corresponding to host molecules binding that is present in Lsa49 variable regions of 
both transmembrane segments and surface-loop regions of selected Leptospira species in this study (Figure 6.14). 

Host molecules  Leptospira species bind to 

corresponding host molecules  

The conserved amino acid in Lsa49 

predicted strand regions 

The conserved amino acid in Lsa49 

predicted loop regions 

Fibronectin 

and laminin 

L. borgpetersenii svr Hardjobovis L550 

L. alstonii 

24L, 62I, 68T, 69V, 70Q, 85S, 103V, 

121V, 142N, 145F, 162V, 165A, 171V, 

182I, 198V, 216T, 250H, 254S, 

278S, 317R, 319F, 359S, 376G, 404S, 

405T, 419T, 426S, 428I, 

 

55T, 64G, 268G, 281T, 425A, 449V 

 

 

Abbreviations:  A: alanine, F: Phenylalanine G: guanine, H: histidine I: isoleucine, N: Asparagine, Q: Glutamine, R: arginine, S: serine, T: threonine, 
V: valine  
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