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Opportunistic Topological Interference Management
Xinping Yi, Member, IEEE and Hua Sun, Member, IEEE

Abstract—The topological interference management (TIM)
problem studies the degrees of freedom (DoF) of partially-
connected interference networks with no channel state informa-
tion (CSI) at the transmitters except the network topology (i.e.,
partial connectivity). In this paper, we consider a variant of the
TIM problem with uncertainty in network topology, where the
channel state with partial connectivity is only known to belong to
one of M states at the transmitters. In particular, the transmitter
has access to all network topological information over M states,
but is unaware of which state it falls in exactly for communication.
The receiver at any state is aware of the exact state it falls in
besides the network topologies of all states, and wish to recover as
much highly-prioritized information at current state as possible.
We formulate it as the opportunistic TIM problem with network
uncertainty modeled by M state-varying network topologies. To
adapt to network topology uncertainty and different message
decoding priority, joint encoding and opportunistic decoding are
enabled at the transmitters and receivers respectively. Specifically,
being aware of all possible network topologies, each transmitter
sends a signal jointly encoded from all messages desired over
M states, say M distinct messages, and at a certain State m,
Receiver k wishes to opportunistically decode the first πk(m) ∈
{1, 2, · · · ,M} higher-priority messages. Under this opportunistic
TIM setting, we construct a multi-state conflict graph to capture
the mutual conflict of messages over M states, and characterize
the optimal DoF region of two classes of network topologies via
polyhedral combinatorics. A remarkable fact is that, under an
additional mild monotonous condition, the optimality conditions
of orthogonal access and one-to-one interference alignment still
apply to TIM with uncertainty in network topology.

Index Terms—Degrees of freedom (DoF), Gaussian interference
network, opportunistic communications, topological interference
management (TIM).

I. INTRODUCTION

Recent years have witnessed the growth of interference
management (IM) techniques in the increasingly complex
wireless communication environment involving connected and
autonomous vehicles/drones/robots. The major challenge of
IM, however, is the difficulty of acquiring accurate and timely
channel state information (CSI) at the transmitters. A variety
of IM techniques have been proposed in the past to relax
the requirement of CSI at the transmitters (CSIT) ranging
from limited CSIT [2], to delayed CSIT [3], precision CSIT
[4], and many others (e.g., [5]–[7]). Nevertheless, it is still
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challenging to acquire such types of CSIT, especially when the
communication environment exhibits some network uncertainty,
e.g., network connectivity patterns are usually time-varying
due to the high-speed mobility of vehicles.

Recently, there is an emerging line of research to relax
CSIT requirement to some coarse and easily attainable network
topological information (i.e., binary values with 1 indicating a
stronger channel and 0 weaker ones against a predetermined
threshold). It was motivated by the observation that certain
communication links are unavoidably much weaker than others,
owing to local shadowing effects and the fact that signal (e.g.,
mmWaves) power decays fast with distance. This suggests
the use of a partially-connected bipartite graph to model,
at least approximately, the network connectivity patterns. At
first glance, such connectivity information is useless because
it completely loses channel information of magnitude and
phase. Surprisingly, in certain scenarios, such topological
CSIT is as useful as perfect CSIT [8]. Thanks to the coarse
CSI requirement and its remarkable performance, exploiting
topological information for IM has attracted a lot of attention
under the theme of topological interference management
(TIM) [8].

There is a rich body of literature on TIM. The study of
TIM was initiated by Jafar [8], in which a bridge between
the TIM and index coding problems was built, together with
the characterization of information-theoretic optimality for
some fundamental IM techniques. The relevant follow-up
works include multilevel TIM [9], TIM via time/frequency
division multiple access (TDMA/FDMA) [10], TIM with
multiple antennas [11], with alternating connectivity [12]–[14],
with transmitter cooperation [15], with receiver cooperation
[16], with reconfigurable antennas [17], and under constrained
coherence patterns [18]–[20]. Thanks to the considerably
relaxed CSIT requirement and the robustness to channel
uncertainty, the TIM setting has been increasingly applied
to practical wireless communication networks, such as caching
networks [21], [22], ultra-dense networks [23], and device-to-
device networks [24].

The aforementioned frameworks, however, are dedicated
to ‘definite’ networks in the sense that the network topology
is pre-determined at the transmitters before communication.
Due to the nature of autonomous vehicles, it is challenging
to track the vehicles’ real-time trajectory and acquire time-
varying network connectivity patterns instantaneously. A more
practical way is to take all possible connectivity patterns into
account and treat time-varying network topology as uncertainty
in network topology. The uncertainty is inherited from the
finite-state compound channel setting [6], where a specific
channel state is chosen from a finite set of allowed states, and
“its finite cardinality restricts the channel uncertainty at the
transmitter.” Similarly, the uncertainty in network topology is
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such that a specific network connectivity is chosen from a
finite set of connectivity patterns, and the cardinality of the set
indicates the level of network uncertainty. The TIM settings
with uncertainty in network topology have not ever been
formally investigated in the literature, while such uncertainty
occurs in most emerging networks that involve high-mobility
autonomous vehicles/drones.

To deal with such uncertainty in network topology, oppor-
tunistic communication is suggested to inspect the influence of
‘indefinite’ network topologies on the TIM problem. Broadly
speaking, opportunistic communication is a way to adaptively
utilize channel resources for efficient data transmission. The
early study dates back to downlink multiuser scheduling in
fast-fading wireless channels to harvest multi-user diversity
gains [25]. Similar ideas have also been explored in cognitive
radio systems for dynamic spectrum management [26], [27].
In this work, we follow the formulations of opportunistic
communications in [28]–[31], and focus on opportunistic
decoding of degraded message sets at the receivers. Oppor-
tunistic decoding can be modeled as communicating several
base and opportunistic message sets over multiple states,
where the receivers should decode the base message set (that
yields the basic communicate rate) regardless of the state,
and opportunistically decode the additional message set (that
yields the incremental communication rate) for a better channel
state. In particular, a two-user bursty interference channel was
considered in [28] where the interference is not always present,
a two-user finite-state compound interference channel was
considered in [29], and a two-user parallel interference channel
was considered in [30], none of which considers the general
K-user channels. Of most relevance is our own work [31],
which considers the K-user interference channel with treating
interference as noise at the receivers. The current work can be
seen as an extension of the uncertainty from channel coefficients
in [31] to network topology, yet the flavor of the problem is
completely changed.

Specifically, our contributions are summarized as follows.
• By modeling the uncertainty in network topology as

a sequence of bipartite graphs capturing all possible
network topologies over M states, we formulate the
opportunistic TIM problem, in which the transmitters
have no CSI available except for such graphs. Particularly,
each transmitter sends a signal jointly encoded from
all base and opportunistic messages, say M distinct
messages, depending only on those graph information,
without knowing with which graph the network is exactly
associated. Using opportunistic decoding, Receiver k at
State m is supposed to opportunistically decode the first
πk(m) ∈ {1, 2, · · · ,M} higher-priority messages. To the
best of our knowledge, this is the first formulation of the
TIM problem taking the uncertainty of network topology
into account.

• To adapt to opportunistic decoding of degraded message
sets, we consider a monotonous structure of network
topologies, where the sets of transmitters connected to
a given receiver over M states are totally ordered, i.e.,
one is a subset of another. As such, we characterize the
optimal DoF region of two classes of network topologies

under the opportunistic TIM setting: the chordal networks
as in [10] and the half-rate feasible networks as in
[8]. Polyhedral combinatorics is the key of the proofs.
Inspecting polyhedral structures (e.g., integrality and half-
integrality of the extreme points) of the DoF region
outer bounds, we design achievability schemes using
TDMA and interference alignment (IA) for such extreme
points, so as to achieve the entire region via time sharing.
Remarkably, we find that, under the totally ordered
condition, the structural properties that determine the
information-theoretic optimality in TIM are also applicable
to the opportunistic TIM problem. As a byproduct, the
symmetric DoF result in the half-rate feasible networks
in TIM [8] is also extended to DoF region, thanks to the
half-integrality property of the DoF region.

With considerably relaxed CSIT requirement in dynamic
networks and robustness to network uncertainty, opportunistic
TIM has the potential to be employed in the future autonomous
systems, e.g., vehicle-to-everything (V2X) and unmanned aerial
vehicle (UAV) networks.

Notations: For an integer N , we define [N ] , {1, 2, . . . , N}
when referring to an integer set. Nevertheless, when [m] appears
in the superscript, we specify it as the m-th state. Given n ∈
[N ], we denote by {an}n a set of N elements, i.e., {an}n ,
{a1, a2, . . . , aN}, and similarly {am,n}m,n given m ∈ [M ]
and n ∈ [N ] is a set with MN elements, i.e., {am,n}m,n ,
{a1,1, a1,2, . . . , a1,N , a2,1, . . . , aM,N}. This rule of notations
also applies to those with index sets at the superscripts or
subscripts. We also denote by a[n1:n2] a subset of {an}n with
n1 ≤ n ≤ n2, i.e., a[n1:n2] , {an1

, an1+1, . . . , an2
}.

II. SYSTEM MODEL

A. Topological Interference Management with States

Consider the K-user single-antenna partially-connected
Gaussian interference network with M states.1 The received
signal for Receiver k over the t-th channel use when the
network falls into the m-th state is given by

Y
[m]
k (t) =

∑
i∈T [m]

k

h
[m]
ki Xi(t) + Z

[m]
k (t), ∀k ∈ [K],∀m ∈ [M ]

where h[m]
ki is the complex channel coefficient from Transmitter

i to Receiver k at the m-th state, and it keeps fixed at each
state yet may be varying across states, T [m]

k is the set of
transmitters connected to Receiver k at State-m, which can
be distinct across states, capturing the uncertainty in network
topology, Xi(t) is the transmitted signal that depends only on
the network topology {T [m]

k }k,m with average power constraint∑n
t=1 E

(
‖Xi(t)‖2

)
≤ nP , and Z

[m]
k ∼ NC(0, 1) is the

normalized additive white Gaussian noise.
As a first attempt, we assume that {T [m]

k }m is a totally
ordered set for each k satisfying the properties of reflexivity,
antisymmetry, transitivity, and comparability,2 for which it

1A channel state refers to a snapshot of channel corresponding to e.g., a
specific time/frequency slot.

2For instance, the sets {1, 2}, {1, 2}, {1, 2, 3} are totally ordered, while
{1, 2}, {2, 3}, {1, 2, 3} are not because {1, 2} and {2, 3} are not comparable.
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turns out the optimality conditions in the original TIM can
be extended to the opportunistic TIM setting. In particular,
the comparability is such that, for any m1 and m2, either
T [m1]
k ⊆ T [m2]

k or T [m2]
k ⊆ T [m1]

k . As a result, for every k,
{T [m]
k }m can be totally ordered as

T [mi1
]

k ⊆ T [mi2
]

k ⊆ · · · ⊆ T [miM
]

k . (1)

Note that different users could have different total ordering.
Under the opportunistic TIM setting, it is assumed that each

transmitter is aware of the network topology over the whole
network across states (i.e., {T [m]

k }m,k), yet has no knowledge
of channel coefficients h[m]

ki or the changing pattern of network
topology. That is, the transmitters know all possible network
topologies, but does not know which one the current channel
falls into exactly. The receivers have perfect channel knowledge
including the network topology at each state.

The network topology at State m refers to a bipartite graph
G[m] with the transmitter set on one side and the receiver set on
the other side, and the edge set {(j, k) : ∀j ∈ T [m]

k }. We use
hereafter the set of bipartite graphs G to denote all the possible
network topologies across M states, in which G[m] ∈ G is a
realization of the network topology at State m.

In what follows, similarly to [31], we define encoding and
decoding functions.

Encoding: At each Transmitter i (i ∈ [K]), a set of
independent messages {W [m]

i }Mm=1, uniformly chosen from
the index set W [m]

i , {1, 2, . . . , d2nR
[m]
i e}, is jointly mapped

to the codeword {Xi(t)}nt=1 ∈ Xni , given the set of all network
topologies {G[m]}m ∈ GM . The codeword {Xi(t)}nt=1 is
transmitted over n channel uses, and is subject to the average
power constraint

∑n
t=1 E

[
|Xi(t)|2

]
≤ nP . For every i ∈ [K],

such a mapping can be described by a single encoding function

fi :
∏M
m=1W

[m]
i 7→ Xni , (2)

where the codeword {Xi(t)}t does not depend on channel
coefficients {h[m]

ki }k,i,m but on network topologies {G[m]}m.
Decoding: At the m′-th state, the received signal

{Y [m′]
k (t)}nt=1 ∈ Y

[m′]
k for Receiver k is used to estimate

the basic and opportunistic messages {W [m]
k }

πk(m
′)

m=1 , yielding
{Ŵ [m]

k }
πk(m

′)
m=1 , given the knowledge of all network topologies

and perfect channel state information over M states. The
number of the messages to be decoded by Receiver k at State
m′, πk(m′) ∈ [M ], is fixed a priori and globally known. Given
the totally ordered set {T [m]

k }m, we assume without loss of
generality

πk(m1) ≥ πk(m2), if T [m1]
k ⊆ T [m2]

k , (3)

for every k, based on the fact that a receiver at the state with
less interference can decode more messages than that with
more interference can. A natural choice of πk(m′) is such that
πk(m′) =

∣∣∣{m : T̄ [m′]
k ⊆ T̄ [m]

k

}∣∣∣ where {T̄ [m]
k }m come from

{T [m]
k }Mm=1 with repeating sets removed. Thus, the decoding

function at the m′-th state (may be distinct across states) for
Receiver k can be described by

g
[m′]
k : Y [m′]

k 7→
∏πk(m

′)
m=1 W [m]

k , ∀m′ ∈ [M ]. (4)

The average probability of error is defined as follows

P (n)
e = Pr

(
M⋃

m′=1

{(
{W [1:πk(m

′)]
k }k

)
6=
(
{Ŵ [1:πk(m

′)]
k }k

)})
.

A rate tuple ({R[m]
k }k,m) is said to be achievable if we have a

set of encoding {fi}i and decoding functions {g[m]
k }k,m such

that P (n)
e → 0 as n→∞. The capacity region C is the closure

of the set of all achievable rate tuples. The degrees of freedom
(DoF) region with respect to ({d[m]

k }k,m) is defined as follows.

D ,
{

({d[m]
k }k,m) ∈ RMK

+ : d
[m]
k = lim

P→∞

R
[m]
k

logP
,

∀k ∈ [K],m ∈ [M ], ({R[m]
k }k,m) ∈ C

}
.

B. Definitions

In what follows, some graph theoretic definitions are briefly
recalled, and more details can be found in e.g., [32]. Both
the directed graphs (digraphs) and its underlying undirected
version (graphs) will be considered. We follow the standard
notations in graph theory. The digraph D = (V,A) consists
of a vertex set V and an arc set A, where A(D) denotes the
arc set of D. An arc (u, v) ∈ A with u, v ∈ V is a directed
edge from u to v. The incoming and outgoing neighborhood
of v ∈ V is the sets of vertices N−(v) , {u : (u, v) ∈ A}
and N+(v) , {u : (v, u) ∈ A}, respectively. The underlying
undirected graph of D, usually denoted by U(D) = (V,E), is
such that (u, v) ∈ E in U(D) if and only if any of (u, v) ∈ A
and (v, u) ∈ A exists in D. The complement of a graph
G = (V,E), denoted by Ḡ = (V, Ē), has the same vertex set
V and (u, v) ∈ Ē(Ḡ) if and only if (u, v) /∈ E(G). In the
undirected graphs, a chordless cycle with length n, denoted by
Cn, is a closed loop of n vertices and edges without chord,
i.e., Cn = {(v1, v2), (v2, v3), . . . , (vn, v1)}, where a chord is
an edge that connects two non-adjacent vertices of a cycle. The
hole is the chordless cycle Cn with n > 4, and the antihole
C̄n is its complement. The odd hole is a hole Cn with odd
n = 5, 7, . . . , and the odd antihole is its complement. An
undirected graph is perfect if and only if it does not contain
odd holes or odd antiholes as induced subgraphs. The chordal
bipartite graphs are a class of bipartite graphs that does not
contain induced chordless cycles Cn with n ≥ 6. As bipartite
graphs only contain even cycles, chordal bipartite graphs either
does not contain any cycles or contain only C4.

A key step is to construct a multi-state conflict digraph D
over M states. We use G, D, and U(D) to denote respectively
network topology, its conflict digraph, and the undirected
version.

Definition 1 (Multi-state Conflict Digraph). Let D[m] =
(V [m], A[m]) be the single-state conflict digraph of the orig-
inal network topology G[m] with regard to the message set
{(W [1:πk(m)]

k )}k. The vertex v
[m]
k ∈ V [m] represents the set

of desired messages (W
[1:πk(m)]
k ) by Receiver k, and an arc

(v
[m]
i , v

[m]
j ) ∈ A[m] exists if and only if Transmitter i is

connected to Receiver j at State m with i 6= j in G[m].
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State S1 State S2 (a) (b)

Fig. 1: (Left) The network topologies G[1] and G[2] at States S1 and S2, where the blue links indicate the state-varying connectivity. (Right)
The multi-state conflict digraph D (a) over two states and its undirected version U(D) (b), where the vertices represent the desired messages
at different states and the arcs (edges) indicate the conflict of messages. For example, given that Transmitter 3 interferes Receiver 1 at State
S2, we have both arcs from Ŵ3 at State S1 and (Ŵ3,∆Ŵ3) at State S2 to Ŵ1 at State S2, i.e., (v

[1]
3 , v

[2]
1 ) ∈ A(D) and (v

[2]
3 , v

[2]
1 ) ∈ A(D).

The multi-state conflict digraph D = (V,A) for M states
is constructed from {D[m]}m such that

V = ∪Mm=1V
[m] (5)

A = ∪Mm1=1 ∪Mm2=1 A
[(m1,m2)], (6)

where for v[m1]
i ∈ V [m1] and v[m2]

j ∈ V [m2], (v
[m1]
i , v

[m2]
j ) ∈

A[(m1,m2)] holds whenever (v
[m2]
i , v

[m2]
j ) ∈ A[m2] holds.

Intuitively, if Transmitter i interferes Receiver j at one state,
then Receiver j at such state will be always interfered by
Transmitter i at any state. When m1 = m2, A[(m1,m2)] reduces
to A[m2]. Note that v[m1]

k and v
[m2]
k are not adjacent for

any m1 6= m2. For a concrete example, see Fig. 1(a). The
multi-state conflict graph U(D) = (V,E) is the underlying
undirected graph of D = (V,A) where (v

[m1]
i , v

[m2]
j ) ∈ E

if and only if (v
[m1]
i , v

[m2]
j ) ∈ A and/or (v

[m2]
j , v

[m1]
i ) ∈ A.

Similarly, the undirected conflict graph of G[m] at State m can
be denoted by U(D[m]). For a concrete example, see Fig. 1(b).

For Receiver k at two different States m1 and m2, when
T [m1]
k = T [m2]

k , we usually set πk(m1) = πk(m2), where
Receiver k is supposed to decode the same set of messages at
both States m1 and m2. In this case, the corresponding vertices
in D and U(D) can be merged for simplicity. In particular,
if two vertices v[m1]

k and v[m2]
k for Receiver k have identical

incoming neighborhood N−(v
[m1]
k ) = N−(v

[m2]
k ) in D, then

they can be merged as a single vertex. For such a vertex,
the incoming neighborhood is still N−(v

[m1]
k ), whereas the

outgoing neighborhood will be N+(v
[m1]
k ) ∪N+(v

[m2]
k ). An

example will be shown in Fig. 3.

Given such a construction, the opportunistic TIM problem
over multiple states can be studied in a unique multi-state
conflict graph, where some nice properties of single-state
conflict graphs can be inherited by the multi-state ones.

Definition 2 (Auxiliary Network Topology). The auxiliary net-
work topology G[m̃] with m̃ = (m1,m2, . . . ,mK) ∈ [M ]K

is a bipartite graph with the same transmitter and receiver sets,
and the edge set {(j, k) : ∀j ∈ T [mk]

k } for all k. Roughly
speaking, G[m̃] is comprised of {T [m1]

1 , T [m2]
2 , . . . , T [mK ]

K }.
When m1 = m2 = · · · = mK = m, it reduces to the original
network topology G[m] at State m.

State S1,1,2

State S2,1,1

State S1,2,1 State S1,2,2

State S2,2,1
State S2,1,2

Fig. 2: The auxiliary network topologies, in each of which the transmit
set of Receiver k is chosen from either T [1]

k or T [2]
k for all k,

corresponding to 6 auxiliary states. For instance, at State S1,2,1, the
transmit sets at three receivers are T [1]

1 , T [2]
2 , and T [1]

3 , respectively.

For the network topologies in Fig. 1, the auxiliary network
topologies are given in Fig. 2.

Definition 3 (All-chordal Networks). The all-chordal networks
are such that all original and auxiliary network topologies are
chordal bipartite graphs.

Definition 4 (Internal Alignment Arc). Given the multi-state
conflict digraph D, (v

[mi]
i , v

[mj ]
j ) ∈ A(D) is an internal

alignment arc if the two vertices interfere some vertex v[mk]
k ,

i.e.,

∃ k 6= i, j ∈ [K], (v
[mi]
i , v

[mk]
k ) ∈ A(D)

and (v
[mj ]
j , v

[mk]
k ) ∈ A(D). (7)

Internal alignment is an inheritable property from single-state
to multi-state conflict digraphs, in that i, j, k are distinct and
v
[mi]
i , v[mj ]

j , and v[mk]
k fall exactly into one original or auxiliary

network. Intuitively, the corresponding messages associated
with the internal alignment arc interfere one another and at the
same time should be aligned because they interfere another
message other than themselves. The existence of an internal
alignment arc in conflict digraphs is equivalence to the existence
of an internal conflict edge in alignment graphs defined in [8].
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Thus, the half-rate feasible networks in [8] are a class of
network topologies such that there does not exist any internal
alignment arc in their conflict digraphs.

Definition 5 (All-half-rate-feasible Networks). The all-half-
rate-feasible networks are such that all original and auxiliary
network topologies belong to the half-rate feasible networks.
Equivalently, they refer to a class of network topologies whose
multi-state conflict digraphs have no internal alignment arcs.

Definition 6 (Edge/Clique Inequalities). For an undirected
graph G = (V,E), the collection of all edge inequalities is

∀(i, j) ∈ E, xi + xj ≤ 1, (8)

and the collection of all clique inequality is

∀Q is a clique in G,
∑
i∈Q

xi ≤ 1, (9)

where xi ∈ [0, 1] is associated with the vertex i. The cliques
with |Q| = 1 and |Q| = 2 correspond respectively to the
vertices and the edges, so clique inequalities include individual
and edge inequalities as special cases. In addition, the non-
negative individual inequalities refer to

∀i ∈ V, 0 ≤ xi ≤ 1. (10)

III. MAIN RESULTS

In what follows, we consider the M -state K-user opportunis-
tic TIM problem with original network topologies {G[m]}m
for which {T [m]

k }m are totally ordered sets for every k. The
detailed proofs will be presented later in Sections IV and V.

Theorem 1. For the opportunistic TIM problem, the optimal
DoF region of the all-chordal networks is the collection of
all non-negative individual and clique inequalities in the
undirected multi-state conflict graph U(D). Specifically, the
optimal DoF region, which can be achieved by TDMA, includes
all DoF tuples ({d[m]

k }k,m) ∈ RMK
+ satisfying

k′∑
k=1

πik
(mik

)∑
m=1

d
[m]
ik
≤ 1, if {(v[mik

]

ik
)}k

′

k=1 forms a clique in U(D)

∀(i1, i2, . . . , ik′) ⊆ [K], ∀(mi1 ,mi2 , . . . ,mik′ ) ∈ [M ]k
′
,

(11)

where (i1, i2, . . . , ik′) is any possible subset of [K] with k′

distinct elements, [M ]k
′

is a set with cardinality Mk′ collecting
all possible k′-ary tuples, each coordinate of which is from
[M ], and πk(m) ∈ [M ] is the number of desired messages by
Receiver k at State m satisfying (3), which is globally known
a priori.

Remark 1. The DoF region in (11) is integral, such that all
extreme points of the polytope have binary-valued coordinates.

Remark 2. The DoF region in (11) can be written by collecting
the valid inequalities of the DoF regions of all MK TIM
instances with the original and auxiliary network topologies.

Example 1. Let us consider a 3-user opportunistic TIM
problem with 2 states, denoted by S1 and S2, whose network

topologies over two states are given in Fig. 1. The multi-state
conflict (di)graphs are given in Fig. 1, and the auxiliary network
topologies are given in Fig. 2. For the sake of notational
clarity, we denote by Wk and ∆Wk respectively the basic and
opportunistic messages. Thus, we let dk = d

[1]
k and ∆dk = d

[2]
k .

The receiver sets {T [m]
k }k,m over two states are as follows

T [1]
1 = {1, 2}, T [1]

2 = {1, 2, 3}, T [1]
3 = {2, 3} (12a)

T [2]
1 = {1, 2, 3}, T [2]

2 = {1, 2}, T [2]
3 = {3} (12b)

As a natural choice, we set

π1(1) = 2, π2(1) = 1, π3(1) = 1, (13a)
π1(2) = 1, π2(2) = 2, π3(2) = 2 (13b)

where π1(1) = 2 as T [1]
1 ⊂ T [2]

1 suggests that Receiver 1 at
State 1 has a superior decoding capability with fewer interfering
transmitters, and is supposed to decode more messages.

It can be checked that, all the original and auxiliary states
are chordal bipartite, so Theorem 1 follows. Thus, according
to (11), besides the non-negative individual inequalities, we
have the optimal DoF region consisting of linear inequalities

d1 + ∆d1 + d2 + ∆d2 ≤ 1 (14a)
d1 + d2 + ∆d2 + d3 ≤ 1 (14b)
d1 + d2 + d3 + ∆d3 ≤ 1. (14c)

According to Remark 2, such a DoF region can be written
by collecting all clique inequalities in each original or auxiliary
state. Here, we have

[2]3 = {(1, 1, 1),(1, 1, 2), (1, 2, 1), (1, 2, 2),

(2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)}. (15)

By exhaustively enumerating all clique inequalities in each
state:

S1 :

{
d1 + ∆d1 + d2 ≤ 1
d2 + d3 ≤ 1

(16a)

S′1,1,2 :

{
d1 + ∆d1 + d2 ≤ 1
d2 + d3 + ∆d3 ≤ 1

(16b)

S′1,2,1 :

{
d1 + ∆d1 + d2 + ∆d2 ≤ 1
d2 + ∆d2 + d3 ≤ 1

(16c)

S′1,2,2 :

{
d1 + ∆d1 + d2 + ∆d2 ≤ 1
d3 + ∆d3 ≤ 1

(16d)

S′2,1,2 : d1 + d2 + d3 + ∆d3 ≤ 1 (16e)

S′2,1,1 : d1 + d2 + d3 ≤ 1 (16f)

S′2,2,1 : d1 + d2 + ∆d2 + d3 ≤ 1 (16g)

S2 :

{
d1 + d2 + ∆d2 ≤ 1
d1 + d3 + ∆d3 ≤ 1

. (16h)

we finally have the optimal DoF region as in (14).
The achievability can be verified by checking every extreme

point. The nontrivial DoF tuples (d1, d2, d3,∆d1,∆d2,∆d3)
are the extreme points (0, 0, 0, 1, 0, 1), (0, 0, 1, 1, 0, 0), and
(0, 0, 0, 0, 1, 1). It is easy to verify the achievability using
TDMA. For instance, to achieve the DoF tuple (0, 0, 1, 1, 0, 0),
we transmit W3 and ∆W1 at Transmitters 3 and 1 simultane-
ously. At State 1, we safely recover W3 at Receiver 3 and ∆W1
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State S1 State S2

Fig. 3: The network topology with 2 states S1 and S2 (left), and
the multi-state conflict digraph D (right), where each bi-directed arc
is comprised of two arcs with opposite directions. All original and
auxiliary states are half-rate feasible because no internal alignment
arcs exist in the conflict digraph.

at Receiver 1 without any interference; At State 2, W3 can
still be recovered at Receiver 3. Note that at State 2, Receiver
1 is not required to decode any information because the rate
of the base message W1 is 0. ♦

Theorem 1 extends the optimality of TDMA for the TIM
problem to the opportunistic TIM setting with an additional
totally ordering condition. With such an additional condition,
we can also extend the optimality of interference alignment in
half-rate-feasible networks to the opportunistic TIM setting.

Theorem 2. For the opportunistic TIM problem, the optimal
DoF region of all-half-rate-feasible networks is the collection
of all non-negative individual and edge inequalities in the
undirected multi-state conflict graph. Specifically, the optimal
DoF region, which can be achieved by interference alignment,
includes all DoF tuples ({d[m]

k }k,m) ∈ RMK
+ satisfying

πk(m
′)∑

m=1

d
[m]
k ≤ 1, ∀k ∈ K, ∀m′ ∈ [M ] (17a)

πk(m1)∑
m=1

d
[m]
k +

πj(m2)∑
m=1

d
[m]
j ≤ 1, ∀(v[m1]

k , v
[m2]
j ) ∈ E,

∀m1,m2 ∈ [M ],∀k, j ∈ [K] (17b)

where E is the edge set of the multi-state conflict graph U(D).

Remark 3. The DoF region in (17) is half-integral, in the
sense that the coordinates of all extreme points of the polytope
take values from {0, 1, 12}.

Remark 4. The opporutunistic TIM reduces to the regular
TIM problem, when M = 1. As such, Theorem 2 extends the
result of symmetric DoF in [8] to the full characterization of
the DoF region for the half-rate feasible networks.

Example 2. We consider another example of a 5-user network
with two states as in Fig. 3. According to the transmit set over
two states, we set πk(1) = 1 for all k, π1(2) = π5(2) = 2,
and π2(2) = π3(2) = π4(2) = 1. There does not exist internal
alignment arc in the multi-state conflict digraph, so Theorem
2 applies, and the optimal DoF region consists of inequalities

d1 + ∆d1 + d3 ≤ 1, d1 + ∆d1 + d4 ≤ 1 (18a)
d2 + d3 ≤ 1, d2 + d4 ≤ 1, d2 + d5 ≤ 1 (18b)
d3 + d5 + ∆d5 ≤ 1, d4 + d5 + ∆d5 ≤ 1 (18c)

The nontrivial DoF tuples (d1, d2, d3, d4, d5,∆d1,∆d5) at
the extreme points of the polytope are ( 1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 , 0, 0),

(0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 , 0), (1, 1, 0, 0, 0, 0, 1), and (0, 1, 0, 0, 0, 1, 1),

and they can be achieved by carefully aligning interference. A
possible design of linear precoding matrices at the transmitters
and receivers will be given in Example 3. ♦

Remark 5. A special case of Theorem 2 is when the multi-
state conflict graph U(D) is bipartite. When U(D) is bipartite,
there does not exist any internal alignment arc in D, because
otherwise there will be a cycle C3 (i.e., a clique) in U(D). In
this case, the DoF region in (17) is integral, and TDMA is
sufficient to achieve the entire DoF region.

IV. PROOF OF THEOREM 1

For notational simplicity, we define

d
[mk]
k,sum ,

πk(mk)∑
m=1

d
[m]
k (19)

as the sum DoF with respect to the desired basic and
opportunisitc messages {W [m]

k }
πk(mk)
m=1 for Receiver k at State

mk. In general, we introduce a linear transformation from
the DoF tuple ({d[m]

k }k,m) ∈ RMK
+ to the sum DoF tuple

({d[mk]
k,sum}k,mk

) ∈ RMK
+ , i.e.,

f : ({d[m]
k }k,m) 7→ ({d[mk]

k,sum}k,mk
) (20)

where such a mapping function f is surjective yet non-
necessarily injective.

The proof of Theorem 1 is due to the following matching
converse and achievablity. The converse proof will deal with
DoF region with respect to ({d[mk]

k,sum}k,mk
), whereas the

achievability proof will be dedicated to ({d[m]
k }k,m). The

optimality will be due to the above mapping f . For ease of
notation, we denote by P∗ the DoF region defined in (11).

A. Converse

To simplify the converse proof, we cast our problem to
a set of regular TIM problems for which the optimal DoF
regions have been characterized in [10] given network topology
is chordal bipartite. In doing so, we directly collect clique
inequalities therein to form the outer bound.

Lemma 1. Any message set can be decoded in the M -state
opportunistic TIM problem with network topologies {G[m]}m
if and only if the same message set can be decoded in every
TIM instance with network topology G[m̃], for all m̃ ∈ [M ]K .

This lemma is analogous to the one for opportunistic TIN
[31, Lemma 3], and thus the proof is omitted. In short, whether
or not the messages can be decoded at a receiver is determined
by the marginal distribution associated to this receiver if there
is no receiver cooperation. Thus the same message set can be
decoded in both the M -state opportunistic TIM and the MK

regular TIM instances as the receivers in both scenarios see
the same marginal channel transition probabilities.

Lemma 2. (From [10, Theorem 1]) Consider a single state
m̃ = (m1,m2, . . . ,mK) ∈ [M ]K . If G[m̃] is chordal bipartite,
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the achievable DoF tuple ({d[mk]
k,sum}k) ∈ RK+ in such a single-

state TIM instance should satisfy

k′∑
k=1

d
[mik

]

ik,sum
≤ 1, if {v[mik

]

ik
}k

′

k=1 forms a clique in U(D[m̃])

∀(i1, i2, . . . , ik′) ⊆ [K] (21)

where U(D[m̃]) is the undirected single-state conflict graph
of the network topology G[m̃].

For each m̃ ∈ [M ]K , the single-state conflict digraph
D[m̃] = (V [m̃], A[m̃]) is the induced sub-digraphs of the multi-
state conflict digraph D = (V,A). Thus, an induced subgraph
is a clique in U(D[m]) if and only if it is a clique in U(D).
As such, the DoF region outer bound of MK regular TIM
instances can be written as follows.

Lemma 3. For the MK regular TIM instances, if for every
m̃ ∈ [M ]K , G[m̃] is chordal bipartite, the achievable DoF
tuple ({d[mk]

k,sum}k,mk
) ∈ RMK

+ should satisfy

k′∑
k=1

d
[mik

]

ik,sum
≤ 1, if {v[mik

]

ik
}k

′

k=1 forms a clique in U(D)

∀(i1, i2, . . . , ik′) ⊆ [K],

∀(mi1 ,mi2 , . . . ,mik′ ) ∈ [M ]k
′

(22)

where U(D) is the multi-state conflict graph.

Lemma 3 says, the collection of clique inequalities from
U(D[m̃]) can be directly from U(D).

By Lemmas 1 – 3, we conclude that the DoF region outer
bound of the M -state opportunistic TIM problem for the all-
chordal networks can be expressed as the collection of all
clique inequalities in (22) of MK regular TIM instances, each
of which has chordal network topology.

We hereafter denote by P ′ the DoF region outer bound in
(22), and let ({d∗[mk]

k,sum}k,mk
) denote its extreme points. Noting

that (22) and (11) are essentially identical, we have

P∗ = P ′ = conv({d∗[mk]
k,sum}k,mk

), (23)

because a polytope can be represented by convex hull of its
extreme points [33, Theorem 5.10].

B. Achievability

We first study the integrality of extreme points d∗[mk]
k,sum of

P ′ for the all-chordal networks, and then translate it to the
DoF tuples {d[m]

k }k,m according to the mapping f . TDMA-
based achievability schemes are then designed for the integral
DoF tuple {d[m]

k }k,m, and using time sharing we generate an
achievable DoF region P = f(conv({d[m]

k }k,m)). Finally, we
close the gap between the converse and the achievablility by
showing that P∗ = P ′ = P .

Lemma 4. (From [10, Lemma 2]) Given the network topology
G[m̃] (m̃ ∈ [M ]K), if it is chordal bipartite, then the single-
state conflict graph U(D[m̃]) is perfect.

This lemma is a special case of Lemma 2 in [10] with
the interference message setting. It says, if G[m̃] is chordal

State S1 State S2

Fig. 4: An example showing that the totally ordered set condition is
crucial. (Left) Two-state network with degraded message sets demands,
and (Right) the corresponding multi-state conflict digraph. All original
and auxiliary network topologies are chordal bipartite, yet the transmit
sets are not totally ordered at Receivers 1 and 3. As a result, the
multi-state conflict graph U(D) is not perfect, because there exists
an odd hole C5.

bipartite, its all-unicast message conflict graph (i.e., the square
of line graph of G[m̃]) is perfect. The single-state conflict
graph U(D[m̃]) is an induced subgraph of such an all-unicast
message conflict graph, which is induced by the interference
message set. Since the induced subgraphs of perfect graphs
are still perfect, we conclude that U(D[m̃]) is also perfect.

Lemma 5. Given the single-state conflict digraphs D[m̃] and
the multi-state one D, if

• for every k ∈ [K], {T [m]
k }m is a totally ordered set , and

• for every m̃ ∈ [M ]K , U(D[m̃]) is a perfect graph,

then the underlying undirected graph U(D) is perfect.

In this lemma, both conditions should be satisfied, otherwise
U(D) is not necessarily perfect. While the latter is straight-
forward, the former is not obvious. When the first condition
on totally ordered sets is not satisfied, an example in Fig. 4
shows that U(D) is not a perfect graph.

Lemma 6. (From [34], [36, Ch. 65]) If the multi-state conflict
graph U(D) is perfect, the polytope defined by its clique
inequalities has only binary-valued extreme points.

By Lemmas 3 and 6, we conclude that P ′ has only binary-
valued extreme points with respect to ({d[mk]

k,sum}k,mk
) ∈ RMK

+ .
The following lemma shows that such integrality can be
inherited by the corresponding DoF tuple ({d[m]

k }k,m).

Lemma 7. Given (19), if {T [m]
k }m is totally ordered, the

binary-valued sum DoF tuple ({d∗[mk]
k,sum}k,mk

) leads to the
corresponding binary-valued DoF tuple ({d[m]

k }k,m).

The following lemma shows the achievability of TDMA
w.r.t. binary-valued ({d[m]

k }k,m) ∈ RMK
+ .

Lemma 8. The binary-valued DoF tuple ({d[m]
k }k,m) ∈ RMK

+

induced by ({d∗[mk]
k,sum}k,mk

) can be achieved by TDMA.

The coordinates of the binary tuple ({d[mk]
k }k,m) indicate

if the corresponding messages are active (i.e., d[m]
k = 1)

or inactive (i.e., d[m]
k = 0), where such an on-off decision

corresponds to a TDMA link scheduling.
By time sharing among these achievable DoF tuples

({d[m]
k }k,m), any tuple in the convex hull conv({d[m]

k }k,m)
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is achievable by TDMA. As f is a linear transformation, the
DoF region

P = f(conv({d[m]
k }k,m)) (24)

is also achievable.

Lemma 9. Given the linear transformation (20), we have

P ′ = conv({d∗[mk]
k,sum}k,mk

) ⊆ f(conv({d[m]
k }k,m)) = P.

(25)

The intuition behind this lemma is that, given a mapping, the
extreme points of the image (cf. codomain) of a compact convex
set (cf. domain) are the subset of the images of extreme points
of this compact convex set, and thus the relation of their convex
hulls follows. When f is both injective and surjective, two
polytopes are identical. Given the totally ordered set condition,
the mapping f is in fact both injective and surjective.

Given the fact that P ⊆ P∗ = P ′ implied by the converse,
we conclude that P = P ′ = P∗. This completes the optimality
proof of Theorem 1.

C. Proofs of Key Lemmas

According to Definition 1 on multi-state conflict digraphs,
we have the following observations.
• O1: Given two vertices v[m1]

k and v
[m2]
j with k 6= j, if

(v
[m1]
k , v

[m2]
j ) ∈ A, then for all m ∈ [M ], there must

be (v
[m]
k , v

[m2]
j ) ∈ A. With respect to the original and

auxiliary network topologies, if Transmitter k at some
state interferes Receiver j at State-m2, then Transmitter
k at all M states will interfere Receiver j at State m2.

• O2: Given two vertices v[m1]
k and v[m2]

k , if T [m1]
k ⊆ T [m2]

k ,
then for all v[m1]

j such that (v
[m1]
j , v

[m1]
k ) ∈ A, there

must be (v
[m1]
j , v

[m2]
k ) ∈ A. Equivalently, if Transmitter

j interferes Receiver k at State-m1, it will also interfere
Receiver k at all other lower-order states that are supposed
to have more interference presented.

Due to O1 and O2, the multi-state conflict digraph has the
following useful structural property.
• Property: Given a clique Q in U(D) involving a vertex
v
[m1]
k , if T [m1]

k ⊆ T [m2]
k , then v[m2]

k ∪Q\v[m1]
k also form

a clique in U(D).

That is because, for any vertex u ∈ Q\v[m1]
k , there must be

either (u, v
[m1]
k ) ∈ A or (v

[m1]
k , u) ∈ A, or both. If (v

[m1]
k , u) ∈

A, due to O1, then (v
[m2]
k , u) ∈ A. If (u, v

[m1]
k ) ∈ A, due to

O2, then (u, v
[m2]
k ) ∈ A.

Let us proceed to prove the key lemmas in the previous
subsection.

1) Proof of Lemma 3: We first show that, for each m̃ ∈
[M ]K the single-state conflict digraph D[m̃] = (V [m̃], A[m̃])
is the induced sub-digraphs of the multi-state conflict digraph
D = (V,A).

As the vertex set V is the collection of the vertex sets V [m̃]

for all m̃ ∈ [M ]K , we only need to show that, for any two
vertices v

[mik
]

k , v
[mij

]

j ∈ V , (v
[mik

]

k , v
[mij

]

j ) ∈ A if and only
if for all m̃ subject to [m̃]k = mik and [m̃]j = mij , there

must be (v
[mik

]

k , v
[mij

]

j ) ∈ A[m̃]. In other words, it says for
any two receivers k 6= j at any two states mik and mij , the
arc connectivity maintains in all the single-state and multi-state
conflict digraphs.

To this end, we proceed in the following way. Accord-
ing to the construction of the multi-state conflict digraph,
(v

[mik
]

k , v
[mij

]

j ) ∈ A if and only if (v
[mik

]

k , v
[mij

]

j ) ∈ A
[mij

]

j ⊆
A[mij

], where we use the arc set A
[mij

]

j to specify all arcs

coming to the vertex v
[mij

]

j . Due to the fact that [m̃]j = mij ,

we have A
[mij

]

j ⊆ A[m̃]. As such, the arc connectivity in each
single-state conflict digraph maintains in multi-state conflict
graph, and thus D[m̃] is an induced sub-digraph of D.

Second, the underlying undirected graph maintains the
conflicting structure of the digraph. That is, any two vertices
v
[mik

]

k and v
[mij

]

j are conflicting if and only if they are
conflicting at some original or auxiliary state m̃ subject to
[m̃]k = mik and [m̃]j = mij . This conflict is also inherited
by the multi-state conflict graph.

Thus, we conclude a clique in U(D[m]) if and only if it is in
U(D). Thus, the clique inequalities come from all the single-
state conflict graphs U(D[m]) will be still valid to describe
the clique inequalities in U(D). This completes the proof.

2) Proof of Lemma 5: We prove this lemma by contradic-
tions, that if U(D) is not a perfect graph, then both conditions
can not be satisfied at the same time.

Suppose U(D) = (V,E) is not a perfect graph. Thus it may
contain odd holes or odd antiholes as induced subgraphs, where
U(D) is the underlying undirected graph of D = (V,A).
• Suppose U(D) contains an odd hole Cn where n =

5, 7, 9, . . . as an induced subgraph. Because U(D[m̃]) is
perfect for every m̃ ∈ [M ]K , so Cn should not be a sub-
graph of any single-state conflict graph U(D[m̃]). As such,
there exist two non-adjacent vertices v[m1]

k and v[m2]
k with

m1 6= m2 in Cn corresponding to the same receiver k at
different states m1 and m2, because otherwise Cn should
be contained in a single-state conflict graph U(D[m̃]) for
some m̃. We label the vertices of Cn by u1, u2, . . . , un, so
that Cn = {(u1, u2), (u2, u3), . . . , (un−1, un), (un, u1)}
and there are no other edges beyond these, because it is a
chordless cycle. Let us label up = v

[m1]
k and uq = v

[m2]
k .

Because of n ≥ 5, there exist at least two vertices from
up to uq in Cn clockwise or anti-clockwise. There must
exist two distinct vertices a and b chosen respectively
from {up−1, up+1} and {uq−1, uq+1} in the digraph D
such that

(a, v
[m1]
k ) ∈ A(D), (v

[m1]
k , a) /∈ A(D) (26a)

(b, v
[m2]
k ) ∈ A(D), (v

[m2]
k , b) /∈ A(D) (26b)

(a, v
[m2]
k ) /∈ A(D), (v

[m2]
k , a) /∈ A(D) (26c)

(b, v
[m1]
k ) /∈ A(D), (v

[m1]
k , b) /∈ A(D) (26d)

where the last two conditions indicate that a is not adjacent
to v[m2]

k and b is not adjacent to v[m1]
k because n ≥ 5. The

reasons are as follows. Since a is adjacent to v[m1]
k , at least

one of (a, v
[m1]
k ) and (v

[m1]
k , a) is an arc in D. Suppose
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(a) (b)

Fig. 5: (a) An odd holes in U(D) and its possible arcs in D. (b)
An odd antihole in U(D), which is represented as an odd hole in
U(D) marked in dashed red line. The possible arc connectivity with
possible vertices a and b in D is also marked using blue arrows.

(v
[m1]
k , a) ∈ A(D), we have (v

[m2]
k , a) ∈ A(D) as well

according to O1. This contradicts the fact that a and v[m2]
k

are not adjacent. So, we conclude that (a, v
[m1]
k ) ∈ A(D)

and (v
[m1]
k , a) /∈ A(D) as in (26a). The similar argument

applies to (26b) as well. The possible arc connectivity
with a possible assignment of vertices a and b is shown
in Fig. 5(i). As the in-neighborhood of a vertex v

[m]
k

in D indicates the transmit set T [m]
k , it follows from

(26) that T [m1]
k and T [m2]

k are not comparable because
T [m1]
k * T [m2]

k and T [m2]
k * T [m1]

k , which contradicts
the condition that {T [m]

k }m is a totally ordered set.
• Suppose U(D) contains an odd antihole Cn where
n = 5, 7, 9, . . . as an induced subgraph. This is equivalent
to that U(D) contains an odd hole Cn as an induced
subgraph. We label this hole as in Fig. 5(ii). There
exist two adjacent vertices ui and ui+1 belonging to
Cn in U(D), such that ui = v

[m1]
k and ui+1 = v

[m2]
k

are associated with the same receiver at different states,
because otherwise if all vertices in U(D) are from the
different receivers, then the odd hole U(D) is an induced
subgraph of some single-state conflict graph U(D[m̃]),
which contradicts the condition that every U(D[m̃]) is
perfect. Still, there exist two distinct vertices ui−1 and
ui+2 such that

(ui−1, v
[m2]
k ) ∈ A(D), (v

[m2]
k , ui−1) /∈ A(D), (27a)

(ui+2, v
[m1]
k ) ∈ A(D), (v

[m1]
k , ui+2) /∈ A(D), (27b)

(ui−1, v
[m1]
k ) /∈ A(D), (v

[m1]
k , ui−1) /∈ A(D), (27c)

(ui+2, v
[m2]
k ) /∈ A(D), (v

[m2]
k , ui+2) /∈ A(D), (27d)

where the last two conditions are due to the fact that
Cn is an antihole. Further, (v

[m2]
k , ui+2) /∈ A(D) implies

(v
[m1]
k , ui+2) /∈ A(D) and (v

[m1]
k , ui−1) /∈ A(D) implies

(v
[m2]
k , ui−1) /∈ A(D) according to O1. At the same

time, (ui−1, v
[m2]
k ) ∈ A(D) and (ui+2, v

[m1]
k ) ∈ A(D)

should hold because otherwise there will exist chords
(ui−1, v

[m2]
k ) and (ui+2, v

[m1]
k ) in U(D), which contra-

dicts the fact that Cn is chordless. The possible arc
connectivity is shown in Fig. 5(ii). This results in that
the in-neighborhood of the vertices v[m1]

k and v
[m2]
k in

D, corresponding to the transmit sets T [m1]
k and T [m2]

k

respectively, are not comparable, which contradicts the
condition that {T [m]

k }m is a totally ordered set.

By far, given that all single-state conflict graphs are perfect,
if U(D) contains odd holes or odd antiholes, the transmit
sets of a receiver across all states are not totally ordered. By
contra-position, we conclude that given all perfect single-state
conflict graphs, if the transmit sets are totally ordered, U(D)
should be also perfect. This completes the proof.

3) Proof of Lemma 7: Before presenting the proof, we first
highlight a property of the extreme points of the polyhedron,
which is imposed by the totally ordered network connectivity.

Lemma 10. Given any extreme point ({d∗[mk]
k,sum}k,mk

) of the
DoF region defined by (11), if T [m1]

k ⊆ T [m2]
k we have

d
∗[m1]
k,sum ≥ d

∗[m2]
k,sum.

Proof. The proof is due to an observation in polyhedral
combinatorics. Consider a polytope defined by a set of linear
inequalities with respect to (x, y, z). If for any linear inequality
aTx+y ≤ b with respect to y, there always exists another linear
inequality aTx+ z ≤ b with respect to z, then for any extreme
point (x∗, y∗, z∗) of the polytope we have y∗ ≥ z∗. It is
because compared to y, z may be involved in more constraints
in addition to those y involves, so that y dominates z.

The DoF region in (11) is defined by clique inequalities.
According to Property, given T [m1]

k ⊆ T [m2]
k , if there exists

a clique Q involves v[m1]
k , the vertices v[m2]

k ∪Q\v[m1]
k must

form a clique as well. Thus, for the clique inequality of Q
involving d[m1]

k,sum, ∑
j∈Q\v[m1]

k

dj + d
[m1]
k,sum ≤ 1

there always exists another clique inequality by replacing
d
[m1]
k,sum with d[m2]

k,sum, i.e.,∑
j∈Q\v[m1]

k

dj + d
[m2]
k,sum ≤ 1.

Based on the above observation, we conclude that d∗[m1]
k,sum ≥

d
∗[m2]
k,sum, which completes the proof.

Then, we proceed to prove Lemma 7. For ease of presenta-
tion, we rearrange d∗[mk]

k,sum with respect to mk according to the
order of comparability of {T [mk]

k }mk
so that both {πk(m)}m

and d∗[mk]
k,sum are in ascending orders.

According to the definition of decoding, it is natural
to restrict {πk(m)}m to be a set of consecutive positive
integers starting from 1. The repeated integers are allowed,
which implies that the same set of messages are desired by
several states. For instance, a valid set of {πk(m)}m after
rearrangement can be {1, 1, 2, 3, 4, . . . }, meaning that the same
set of messages are desired by the first two states. On the
other hand, the nonconsecutive integers are not allowed. For
example, {1, 2, 4, 5, 6, . . . } is not valid for {πk(m)}m because
it is unnecessary to request two additional messages from the
second to the third state, while the two messages can be seen
as a single one.

For ease of presentation, we assume there are M distinct
messages over M states and {πk(m)}m = [M ]. When
there are repeated integers in {πk(m)}m, we add virtual



10

messages with zero DoF. In the above example with repeated
πk(1) = πk(2) = 1, we set d[2]k = 0. Let us denote by
dk = ({d[m]

k }m)T ∈ [0, 1]M×1 and d∗k,sum = ({d∗[m]
k,sum}m)T ∈

{0, 1}M×1. From (19), we have a system of linear equations
Akdk = d∗k,sum, where Ak is a lower triangular matrix. Due
to Lemma 10, d∗k,sum is not decreasing as πk(m) increases.
If there are repeated integers in {πk(m)}m, Ak can be
constructed by removing the columns corresponding to zero
DoF in dk.

By removing the redundant equations and performing one-
step Gaussian elimination over the rows in Ak, we have
A′kdk = d′∗k,sum, where one-step Gaussian elimination over
rows is to subtract the (i − 1)-th row from the i-th row in
Ak for i = {M,M − 1, . . . , 2}. After such operations, A′k
becomes an identity matrix, and d′∗k,sum is still a binary-valued
vector as d∗k,sum is a non-decreasing binary-valued vector. So,
we have dk = d′∗k,sum which is binary-valued. This completes
the proof.

4) Proof of Lemma 8: Given a binary-valued DoF tuple
({d[m]

k }k,m), we reshape it as a K ×M binary matrix D with
[D]km = d

[m]
k , where the k-th row corresponds to Receiver

k, and the m-th column corresponds to additional messages
that can be decoded at State m. According to the multi-state
conflict graph, we have the following observations:

• Each row of D has at most one ‘1’ which means every
receiver can take at most one message at certain state
over all M states.

• In m-th column of D, the corresponding vertices of the
nonzero elements form an independent set in U(D[m])
and therefore in U(D).

• Given any m′ ∈ [M ], the non-zero elements in the first
πk(m′) columns fall into a certain auxiliary network, say
G[m̃], and the corresponding vertices form an independent
set in U(D[m̃]) and therefore in U(D).

Given a binary-valued DoF tuple ({d[m]
k }k,m), the messages

with non-zero value (i.e., d[m]
k = 1) in D will be transmitted si-

multaneously. For instance, [D]km = 1 indicates Transmitter k
only sends the message W [m]

k , and makes other messages dumb.
At the receiver side, any receiver is able to recover exactly one
desired message successfully, because no interference conflict
exists. For instance, Receiver k at State m′ aims to decode
the message W

[m]
k where m ≤ πk(m′), yielding d

[m]
k = 1.

According to the above observations, any transmitter carrying
non-zero DoF messages will be not seen by Receiver k at State
m′; Otherwise, there should exist an conflict edge between
them, which contradicts the definition of independent set. This
means it takes exactly one time slot to transmit one message,
and the desired message W [m]

k is decodable at Receiver k.

Hence, the binary-valued DoF tuple ({d[m]
k }k,m) is achiev-

able by TDMA at the receivers. This completes the proof.

5) Proof of Lemma 9: In general, the lemma holds even
for affine transformation, of which linear transformation is a
special case. Given an affine transformation f : X 7→ Y , we
need to prove conv(f(X)) ⊆ f(conv(X)).

First, without loss of generality, we assume f(x) = Ax+b.

Given xj ∈ X and {θj}j subject to
∑
j θj = 1, we have

f
(∑

j

θjxj
)

= A
∑
j

θjxj + b (28)

=
∑
j

θj(Axj + b) =
∑
j

θjf(xj) (29)

Second, given y ∈ conv(f(X)), it implies there exist {δj}j
with

∑
j δj = 1 such that y =

∑
j δjf(zj). Given any such

y, because
∑
j δjf(zj) = f(

∑
j δjzj), there must exist zj ∈

conv(X) such that y =
∑
j δjf(zj). Let zj =

∑
i θixi where∑

i θi = 1 and xi ∈ X for all i. Then, we have

y =
∑
j

δjf(zj) =
∑
j

δjf(
∑
i

θixi) (30)

∈
∑
j

δjf(conv(X)) (31)

⊆ conv(f(conv(X))) = f(conv(X)) (32)

where the last equality is due to the fact that f is affine and
thus convex.

So, for any y ∈ conv(f(X)), we always have y ∈
f(conv(X)), which yields conv(f(X)) ⊆ f(conv(X)). This
completes the proof.

V. PROOF OF THEOREM 2

The proof procedure of Theorem 2 is similar to that of
Theorem 1. We first investigate the DoF region outer bound
with respect to ({d[mk]

k,sum}k,mk
), followed by the achievability

with respect to ({d[m]
k }k,m), and finally we prove the optimality

by connecting those two. In particular, for the converse, we
replace the DoF region outer bound in Lemmas 2 and 3 by
the following one.

Lemma 11. For the MK regular TIM instances, the achievable
DoF tuple ({d[mk]

k,sum}k,mk
) ∈ RMK

+ should satisfy

d
[mk]
k,sum ≤ 1, ∀k ∈ [K], mk ∈ [M ] (33a)

d
[mk]
k,sum + d

[mj ]
j,sum ≤ 1, ∀ k, j ∈ [K], mk,mj ∈ [M ],

s.t. (v
[mk]
k , v

[mj ]
j ) ∈ E (33b)

where E is the edge set of the multi-state conflict graph U(D).

Proof. The proof of this lemma is similar to that of Lemma 3.
Every edge presented in every single-state conflict graph will be
an edge in the multi-state conflict graph. As such, the collection
of all edge inequalities from all single-state conflict graphs
{U(D[m̃]),∀m̃ ∈ [M ]K} can be collected directly from the
multi-state conflict graph U(D).

The polytope defined by the edge inequalities in (33) is
usually referred to as the fractional stable set polytope [36,
Ch. 64.5]. In particular, the DoF region outer bound in (33)
is the fractional stable set polytope of U(D) with respect
to the DoF tuple ({d[mk]

k,sum}k,mk
). Similarly, the DoF region

outer bounds in (17) and (33) are identical, and can be
represented as the convex hull of its extreme points, i.e.,
P∗ = P ′ = conv({d∗[mk]

k,sum}k,mk
), where ({d∗[mk]

k,sum}k,mk
)

denotes the extreme points.
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For the achievability, we first introduce the following result
in polyhedral combinatorics.

Lemma 12. (From [35, Proposition 2.1] [36, Theorem 64.7])
The fractional stable set polytope is half-integral, that is, the
coordinates of the extreme points can only be {0, 12 , 1}.

By the above lemma, we conclude that the extreme points
({d∗[mk]

k,sum}k,mk
) of the DoF region outer bound in (33) can only

take values from {0, 12 , 1}. Then, we proceed to an analogous
result to Lemma 7.

Lemma 13. Given (19), if {T [m]
k }m is totally ordered, the half-

integral-valued DoF tuple ({d[mk]
k,sum}k,mk

) ∈ RMK
+ leads to

the corresponding half-integral-valued ({d[m]
k }k,m) ∈ RMK

+ .

Proof. First, given any extreme point ({d∗[mk]
k,sum}k,mk

) of the
DoF region defined by (33), if T [m1]

k ⊆ T [m2]
k we have

d
∗[m1]
k,sum ≥ d

∗[m2]
k,sum. This can be proved in a similar way as

that of Lemma 10. It is still due to the Property for the multi-
state conflict graph, where the clique Q reduces an edge. As
such, if T [m1]

k ⊆ T [m2]
k , for the edge inequality involving

d
[m1]
k,sum, there must exist another edge inequality by replacing
d
[m1]
k,sum with d[m2]

k,sum.
Further, we arrange the relation between ({d∗[mk]

k,sum}mk
) and

({d[m]
k }m) in a system of linear equations, where ({d∗[mk]

k,sum}mk
)

is in an increasing order. One-step Gaussian elimination in a
predetermined order will preserve the half-integrality, because
the difference of two increasingly ordered values in half-integral
({d∗[mk]

k,sum}mk
) still falls in {0, 12 , 1}. Thus, the lemma follows.

Lemma 13 indicates that, if DoF tuples of the extreme points
({d[∗mk]

k,sum}k,mk
) are half-integral, the corresponding DoF tuples

({d[m]
k }k,m) are also half-integral. For the achievability, we

aim to prove the half-integral DoF tuples ({d[m]
k }k,m) are

achievable by interference alignment.
Before proceeding further, we introduce the linear precoding

at the transmitters and receivers as the encoding and decoding
functions respectively. Specifically, the transmitted signal at
Transmitter i over T channel uses is produced by

Xi =

M∑
m=1

V
[m]
i X

[m]
i , ∀i (34)

where the scalar symbol X [m]
i comes from the codeword

encoded from the message W [m]
i using an independent Gaus-

sian codebook,3 and all symbols are jointly superposed with
each aligned to the subspace spanned by V

[m]
i ∈ CT×1. The

precoding matrix V
[m]
i depends only on the network topologies

{G[m]}m over M states, and T will be determined by design.
The received signal at Receiver k at the m′-th state over T

channel use is thus given by

Y
[m′]
k =

∑
i∈Tk

h
[m′]
ki Xi + Z

[m′]
k (35)

3In this work, the scalar symbol of each coded message is sufficient for the
achievability proof. For simplicity, we sometime abuse the messages W

[m]
i

to represent the coded symbols X
[m]
i .

=
∑
i∈Tk

M∑
m=1

h
[m′]
ki V

[m]
i X

[m]
i + Z

[m′]
k (36)

In general, opportunistic TIM at the receiver side is a
subspace decoding rule that opportunistically extracts informa-
tion from subspace. In particular, a linear precoding matrix
U

[m′]
k ∈ Cπk(m)×T is applied to Y

[m′]
k at State m′ for Receiver

k to opportunistically decode desired basic and opportunistic
messages.4 After applying the precoding matrix U

[m′]
k at State

m′, we have

U
[m′]
k Y

[m′]
k

=
∑
i∈Tk

M∑
m=1

h
[m′]
ki U

[m′]
k V

[m]
i X

[m]
i + U

[m′]
k Z

[m′]
k (37)

=

πk(m
′)∑

m=1

h
[m′]
kk U

[m′]
k V

[m]
k X

[m]
k

+
M∑

m=πk(m′)+1

h
[m′]
kk U

[m′]
k V

[m]
k X

[m]
k

+
∑

i∈Tk\k

M∑
m=1

h
[m′]
ki U

[m′]
k V

[m]
i X

[m]
i + U

[m′]
k Z

[m′]
k (38)

and the successful decoding under the TIM setting satisfies the
following conditions:

det
( πk(m

′)∑
m=1

U
[m′]
k V

[m]
k

)
6= 0, ∀k (39a)

M∑
m=πk(m′)+1

U
[m′]
k V

[m]
k = 0, ∀k (39b)

M∑
m=1

U
[m′]
k V

[m]
i = 0, ∀i ∈ Tk\k, ∀k (39c)

where (39a) ensures that the desired messages {W [m]
k }

πk(m
′)

m=1 at
State m′ are recoverable, (39b) ensures the interference caused
by opportunistic messages desired by higher order states is
eliminated, and (39c) enforces the interference caused by other
connected transmitters is also eliminated. These conditions
yield the achievable DoF

d
[m]
k =

1

T
, ∀m ≤ πk(m′). (40)

Lemma 14. If all the original and auxiliary network topologies
are half-rate feasible, interference alignment achieves all the
half-integral extreme points.

Proof. Given a half-integral DoF tuple ({d[m]
k }k,m), we rear-

range it as a K×M matrix D with [D]km = d
[m]
k . Regarding

this matrix, we have the following observations with respect
to the multi-state conflict digraph:

4Orthogonal access (e.g., TDMA/FDMA) is a special case of such a design,
in which the precoding matrices V

[m]
i and U

[m′]
k turn to be columns of

identity matrix that indicate the on/off pattern of transmitters and receivers
over time/frequency.
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Fig. 6: The vector assignment on the multi-state conflict digraphs
(Left), and the illustration of the transmission scheme over two states
(Right) to achieve the extreme point (0, 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 0) for Example

3. The associated vector to each message is the precoding vector, and
the crossed messages are not sent for this specific extreme point.

• There should exist at most one ‘1’ or at most two ‘ 12 ’ in
each row of D. The total sum of each row, corresponding
to the sum DoF for a receiver, can only be 0, 1

2 , or 1.
• If d[m]

k = 1, there should neither exist any transmitter
carrying non-zero DoF messages interfering Receiver k,
nor any receiver interfered by Transmitter k can decode
any non-zero DoF messages. In other words, for any State
m′ such that πk(m′) ≥ m, the corresponding vertex v[m

′]
k

will not conflict with any other vertices with non-zero
DoF in U(D).

• If d[m]
k = 1

2 , for Receiver k at State m′ with m ≤ πk(m′),
there are two cases.

– There are no other non-zero DoF messages desired
at State m′: In this case, there should be at least
one incoming arc from a vertex carrying non-zero
DoF messages to v

[m′]
k . If there is more than one

interference, these vertices should belong to a single
alignment set. It is because, according to [8], if the
network is half-rate feasible, then there does not
exist any internal conflict, so that any two interfering
sources that can be aligned, should be aligned.

– There exists another m̃ ≤ πk(m′) such that d[m̃]
k = 1

2 :
In this case, Receiver k should neither be interfered by
other transmitters carrying non-zero DoF messages,
nor any receiver interfered by Transmitter k can
decode any non-zero DoF messages. Similarly, v[m

′]
k

will not conflict with other vertices with non-zero
DoF messages in U(D).

Based on the above observations, we assign a randomly
generated vectors V [m]

k ∈ C2×1 to the message W [m]
k in multi-

state conflict digraphs. For d[m]
k = 0, we set V

[m]
k = 0 if

m ≤ maxm′ πk(m′); otherwise V
[m]
k = ∅ because it is not a

valid message. The vector assignment for the non-zero DoF
messages obeys the following rules:
• If there exists m̃ such that d[m̃]

k = 1, assign two linearly
independent vectors to W [m̃]

k associated to two symbols.
• If there exist m1 6= m2 such that d[m1]

k = d
[m2]
k = 1

2 ,
assign two linearly independent vectors V

[m1]
k and V

[m2]
k

to W [m1]
k and W [m2]

k , respectively.
• If there exists exactly one m1 such that d[m1]

k = 1
2 , and

v
[m1]
k falls into the same assignment set as v[m2]

j where
d
[m2]
j = 1

2 , then assign the same vector V
[m1]
k = V

[m2]
j .

Because there does not exist any internal alignment edge
in its conflict graph U(D), such an assignment will not
introduce conflicts between the messages associated with
v
[m1]
k and v[m2]

j .
At the receiver side, we check the decodability by designing

receiver precoding matrices U
[m′]
k for Receiver k at State m′,

aiming to decode all messages with DoF 1 and 1
2 .

When d
[m̃]
k = 1 or d[m1]

k = d
[m2]
k = 1

2 , Receiver k should
not see any interference at State m′ and two symbols are
decodable. If there is only d[m1]

k = 1
2 , there are two cases.

• There is only one interference, say, from the message
W

[m̃]
j . In this case, U [m′]

k = V
[m̃]⊥
j .

• There are multiple interfering messages from a single
alignment set. In this case, these interferences should be
perfectly aligned and occupy one-dimensional subspace,
say V

[m̃]
j , leaving one-dimensional interference-free sub-

space to the desired symbol. So, we have U
[m′]
k = V

[m̃]⊥
j ,

by which one symbol is decodable within two-dimensional
subspace, yielding DoF 1

2 .

Thus, the half-integral DoF tuple ({d[m]
k }k,m) can be achieved

by carefully designing transmit and receive precoding matrices
{V [m]

k }k,m and {U [m′]
k }k,m′ .

Example 3. Let us take a possible design of Example 2
for illustration. Given the DoF region by the constraints
in (18), the nontrivial extreme points of the polytope are
( 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 0, 0), (0, 12 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 0), (1, 1, 0, 0, 0, 0, 1), and

(0, 1, 0, 0, 0, 1, 1). For instance, to achieve the extreme point
(0, 12 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 0), the transmit precoding matrices can be

designed as follows:

V
[1]
1 =

[
0
0

]
,V

[2]
1 =

[
1
1

]
, (41a)

V
[1]
2 =

[
1
0

]
,V

[2]
2 = ∅, (41b)

V
[1]
3 =

[
0
1

]
,V

[2]
3 = ∅, (41c)

V
[1]
4 =

[
0
1

]
,V

[2]
4 = ∅, (41d)

V
[1]
5 =

[
1
1

]
,V

[2]
5 =

[
0
0

]
. (41e)

where the messages {W [1]
3 ,W

[1]
4 } are aligned, so are

{W [2]
1 ,W

[1]
5 }. The vector assignment is shown in Fig. 6.

Thus, the receive precoders can be designed as below:

U
[1]
1 =

[
0
0

]T

,U
[2]
1 =

[
0 0
1 0

]
, (42a)

U
[1]
2 =

[
1
0

]T

,U
[2]
2 =

[
1
0

]T

, (42b)

U
[1]
3 =

[
1
−1

]T

,U
[2]
3 =

[
1
−1

]T

, (42c)

U
[1]
4 =

[
1
−1

]T

,U
[2]
4 =

[
1
−1

]T

, (42d)

U
[1]
5 =

[
0
1

]T

,U
[2]
5 =

[
0 1
0 0

]
. (42e)
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Fig. 7: (Left): A network topology that is not covered by Theorems 1
and 2, with a known DoF region. (Right): The multi-state side infor-
mation digraph, which is the complement of the multi-state conflict
digraph. The vectors associated to the messages are possible linear
precoding matrices {V [m]

k } to achieve the DoF tuple (0, 0, 1
2
, 1
2
, 0, 1

2
).

where for k = 2, 3, 4, U [1]
k = U

[2]
k indicates that the same

basic messages are desired over two states, and in U
[2]
1 and

U
[2]
5 , two rows are dedicated to the basic and opportunistic

messages respectively. ♦

To sum up, given the half-integrality of extreme points d∗[mk]
k,sum

of P ′, and the half-integrality of corresponding {d[m]
k }k,m, we

can design interference alignment schemes to achieve these
half-integral DoF tuples {d[m]

k }k,m. Using time sharing we
generate an achievable DoF region P = f(conv({d[m]

k }k,m)),
which is no smaller than P ′ = conv({d∗[mk]

k,sum}k,mk
), i.e., P ′ ⊆

P . Finally, the optimality follows because on the other hand
P ⊆ P∗ = P ′. This completes the proof of Theorem 2.

VI. DISCUSSION

Theorems 1 and 2 have identified the structural properties
of two classes of network topologies, for which the optimal
DoF regions for opportunistic TIM are fully characterized.
These two classes are the only known networks with full
DoF region characterized for the original TIM problem with
“definite” network topology. They present the powerfulness and
limitations of simple IM techniques under the opportunistic
TIM setting: (1) When the network topologies fall into these
two classes, TDMA and IA are the best IM techniques we can
use; (2) if better performance over TDMA and IA is expected,
we should design vehicles’ trajectory to ensure that the network
connectivity patterns characterized in these two theorems are
avoided.

In general, it is still challenging to fully characterize the
optimal DoF region for opportunistic TIM with arbitrary
network topologies, as the TIM problem itself is still open.
A typical example that does not fall into the determined
two classes of networks is shown in Fig. 7, whose optimal
DoF region can be characterized as follows. According to the
connection between TIM and index coding problems [8], the
outer bound of capacity region for the latter is also a valid
outer bound of DoF region for the former. The capacity region
of the index coding problem can be outer-bounded by the
collection of all possible maximal acyclic induced subgraph
(MAIS) bounds in the multi-state side information digraph [37].
The side information digraph D̄ = (V, Ā) is the complement
of the multi-state conflict digraph D = (D,A), with the same
set of vertices V and arcs such that (u, v) ∈ Ā if and only

if (u, v) /∈ A. The MAIS (a.k.a. maximal acyclic set) is the
induced subgraph of D̄, which is acyclic (i.e., does not contain
any directed cycles) with the maximal number of vertices. For
instance, in Fig. 7 the subdigraph induced by {v[1]1 , v

[1]
2 , v

[1]
3 }

is an MAIS. By enumerating all possible MAIS, we have the
DoF region outer bound satisfying the following inequalities

d1 + d3 + d4 ≤ 1 (43a)
d1 + d2 + ∆d2 + d3 ≤ 1 (43b)
d1 + d2 + ∆d2 + d4 ≤ 1 (43c)

d1 + ∆d1 + d2 + ∆d2 + d3 ≤ 1 (43d)

which correspond respectively to the acyclic sets in-
duced by {v[1]1 , v

[1]
3 , v

[1]
4 }, {v

[1]
1 , v

[1]
2 , v

[1]
3 }, {v

[1]
1 , v

[1]
2 , v

[1]
4 }, and

{v[2]1 , v
[1]
2 , v

[1]
3 }, respectively. This region can be shown achiev-

able by designing the achievability schemes for the extreme
points of the above polytope. For the above polytope, the non-
trivial extreme points are (0, 12 ,

1
2 ,

1
2 , 0, 0) and (0, 0, 12 ,

1
2 , 0,

1
2 ),

which are achievable by interference alignment. For instance,
to achieve the extreme point (0, 0, 12 ,

1
2 , 0,

1
2 ), the precoding

vectors can be designed as shown in Fig. 7. It is easy to verify
that the DoF value of each message is achievable over two
states, given such a design of precoding vectors. It is still
an ongoing work to identify the structural properties for the
achievability of MAIS bounds.

VII. CONCLUSION

The topological interference management (TIM) problem
with uncertainty in network topology has been formulated as
the opportunistic TIM problem, for which a basic message is
supposed to be recovered at a receiver over all states while
additional opportunistic messages are to be decoded whenever
less interference is seen. The opportunistic TIM is essentially
a multi-state TIM problem, where the uncertainty is in the
varying network topologies across states. By modeling the
state-varying network topologies as a sequence of bipartite
graphs, we construct a multi-state conflict graph to capture the
conflicting relation of the basic and opportunistic messages over
states. With the aid of polyhedral combinatorics, the optimal
DoF region of two classes of network topologies have been
characterized by collecting all clique and edge inequalities
respectively in the multi-state conflict graph. Nevertheless, this
line of research is still in its infancy. The full characterization
of the optimal DoF regions for opportunistic TIM is still
a challenging task, and a divide-and-conquer approach by
progressively inspecting broader classes of network topologies
could pave the way for the final solution. It is hoped the
current exploration in this direction with the aid of polyhedral
combinatorics could shed light on the future development.
Further, the future research as to how to translate these
theoretical insights to the design of autonomous systems
(e.g., V2X and UAV networks) is of practical interest, and is
expected to benefit the next generation mobile communications
ecosystems.
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