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Abstract 

Oxytocin and vasopressin are potent stimulants of uterine contractions. The importance of 

these hormones, particularly oxytocin, in pregnancy and labour, has been extensively 

studied and has paved the way for many important discoveries focused on the management 

of uterine contractions in labour.   This includes development of therapies modelled on their 

structure or drug-delivery strategies targeting their receptors. This review will summarise 

our current knowledge of oxytocin and vasopressin signalling in myometrium and describe 

recent advances which have shed light on their roles in parturition, including novel roles for 

oxytocin as an inflammatory mediator and a regulator of gene transcription. How this 

information may impact the development and delivery of new oxytocin receptor-focussed 

therapies for preterm birth and dysfunctional labour will be discussed. Issues that warrant 
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further investigation and which are necessary for expanding the therapeutic potential of 

these important signalling molecules are also highlighted. 
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1. Introduction 

 

Oxytocin (OT) and arginine vasopressin (vasopressin, AVP) are two structurally similar 

neuropeptide hormones. They function via G protein-coupled receptor (GPCR)-mediated 

signal transduction and have both central and peripheral actions, with roles in many 

physiological and pathophysiological processes. In myometrium, the most noted roles for 

the OT-OT receptor (OTR) system include the initiation and stimulation of myometrial 

contractions during labour. Evidence for this comes from the significant OTR upregulation 

which is seen in both rats and humans during labour onset[1-3] (which increases myometrial 

sensitivity to OT) and that OT can be used to induce or augment labour, whilst OTR 

antagonists (OTR-As) can inhibit uterine contractions in late gestation and parturition[4].  

Whilst the main physiological roles for arginine vasopressin (AVP) in the body are the 

control of osmolarity and blood pressure, AVP is also a strong uterotonic[5]. Hence, AVP’s 

role in myometrium has also been studied. However, its role in parturition is less clear. 

Despite it being a potent inducer of contractions, circulating levels of AVP do not change 

with pregnancy or labour and there are only a few studies suggesting expression of AVP 

receptors is increased in late gestation and preterm labour[6,7].  

This review will summarise our current knowledge of signalling by these neuropeptides, 

particularly oxytocin, in myometrium and highlight recent advances in our understanding of 

their role in parturition.  Clinical considerations for their use as therapeutics to manage 

labour contractions will also be discussed well as important issues that warrant further 

investigation. 

 

2. Classical signalling by the OT-OTR system in myometrium 

The OTR is a Class 1 GPCR. As with all GPCRs, their activation leads to coupling of 

heterotrimeric G proteins, Gα, Gβ and Gγ, to stimulate a number of signalling pathways and 

regulate diverse cellular processes.  In heterologous cell systems, OTRs have been shown to 

recruit and activate Gq, Gi (Gi1 Gi2 and Gi3) and the Go (GoA, GoB) families of Gα proteins but 

Jo
ur

na
l P

re
-p

ro
of



not Gs[8].   To date in myometrium, the OTR has been shown to couple to Gαq/11, Gαi and 

potentially Gα12/13, however, there is a lack of knowledge around the exact role of these and 

other Gα subunits in human myometrium. Figure 1 details the currently known mechanisms 

leading to contraction in myometrium following oxytocin stimulation. OTRs couple to Gαq/11 

proteins to activate phospholipase Cβ (PLC-β) which controls the hydrolysis of 

phosphatidylinositol-4, 5-bisphosphate (PIP2) into inositol-1, 4, 5-trisphosphate (IP3) and 

diacylglyerol (DAG).  These in turn control the mobilisation of Ca from the sarcoplasmic 

reticulum (SR) and the activation of protein kinase C (PKC) respectively. The increase in 

intracellular Ca ([Ca]i) brings about contraction via stimulation of Ca-dependent calmodulin 

and activation of myosin light chain kinase (MLCK).  MLCK phosphorylates Ser19 on the 

regulatory light chains of myosin enabling acto-myosin cross bridge cycling and myometrial 

contraction[4]. OT can also raise [Ca]i and hence contraction, through Ca entry. Candidate 

mechanisms include opening of L-type voltage-gated Ca channels[9], or store-operated Ca 

entry (SOCE)[10,11]. 

Calcium entry involving L-type Ca channels requires a change in membrane potential, but 

until recently, how OTR activation causes this depolarization was largely unknown.  Santi’s 

and England’s groups elegantly showed that OT inhibits the sodium-activated, high-

conductance, potassium leak channel, SLO2.1. This was via Gαq-protein signalling and 

activation of PKC.  Inhibition of SLO2.1 reduces outward K+ current and leads to membrane 

depolarization[12]. Voltage-dependent calcium channels are then activated, resulting in 

calcium influx. Oxytocin’s inhibition of SLO2.1 therefore provides a novel mechanism 

through which OT can induce Ca entry. 

Oxytocin may also maintain [Ca]i by inhibiting Ca extrusion mechanisms such as the plasma 

membrane Ca2+ ATPase (PMCA)[13-15]. Mechanistic data on this is limiting but a recent 

study shows that exposure of human myometrial strips to OT, induces phosphorylation of 

PMCA[16].  

Oxytocin signalling may also alter the interaction between myosin and actin independently 

of changes in [Ca]I via Ca sensitisation[17]. This occurs via activation of Rho proteins (likely 

via Gα12/13 proteins) which in turn leads to the activation of Rho kinase (ROCK) and 

subsequent phosphorylation and inhibition of MLCP[18]. Recently, the regulatory subunit of 

MLCP (PPP1R12B) was found to be phosphorylated during OT stimulation in human 
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myometrium[16]. Additionally, DAG –mediated production of PKC following OTR activation, 

can lead to inhibition of MLCP via the action of CPI-17[19]. 

Termination of OTR signalling is predominantly via G protein-independent, G protein-

coupled kinase (GRK) mechanisms. Following OTR stimulation, GRK phosphorylates the C- 

terminal tail of OTR and β-arrestin proteins are recruited to the receptor which sterically 

hinders further G-protein coupling, facilitates OTR internalization and receptor 

desensitisation[20,21].  Post-internalisation and agonist removal however, OTRs have been 

shown to efficiently recycle to the cell surface, re-sensitise and restore the full receptor 

response within 4 hours [22]. In myometrium β-arrestin recruitment is dependent on GRK6 

as GRK6 loss-of-function mice exhibit enhanced uterine contraction with an associated 

higher rate of stillbirth[23]. Thus, desensitisation of the receptor is important to prevent 

over-stimulation of the uterus in labour. β-arrestins can also act as scaffolding proteins for 

additional signalling pathways. In myometrium OT-induced β-arrestin recruitment has been 

linked to activation of MAPK and cell proliferation[24].  

 

3. Emerging roles for the OT-OTR system in parturition 

Recent studies suggest that oxytocin also acts as an inflammatory mediator, playing a 

central role in the inflammatory cascade leading to labour onset [25](Figure 2). In cultured 

myometrial and amnion cells, Kim et al., showed that OT activates mitogen-activated 

protein kinase (MAPK) and/or Nuclear factor kappa B (NFκB) pathways and this results in 

increased expression of prolabour genes such as cyclo-oxygenase 2 (COX-2), prostaglandins 

(PGs) and the pro-inflammatory cytokines and chemokines, IL-8, IL-6 and CCL5[26].  

Oxytocin also causes PG (PGE2 and PGF2α) production in other gestational tissues via 

upregulation of COX-2[27,28]. This local release of PGs, particularly PGF2α, will feedback to 

facilitate uterine contractions via similar mechanisms to OT (Figure 2). Prostaglandins also 

facilitate cervical ripening and dilation as well as fetal membrane rupture.  Oxytocin can 

therefore be considered as both a stimulator of uterine contractions and an activator of 

inflammatory pathways in gestational tissues including myometrium. It is therefore 

important that this dual role is considered when developing new treatments targeting the 

OTR in labour. 
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Oxytocin may mediate some of these changes in gene expression through regulation of 

micro RNAs (miRNAs) within the myometrium. Micro RNAs have been shown to be post-

transcriptional regulators of key gene expression pathways involved in parturition[29], 

including the OTR[30]. More recently, OT itself has been shown to affect the miRNA profile 

of human myometrium at term[31]. Gene targets for these miRNAs included NFκB, NFκB-

regulated genes such as IL-8, IL-6 and MMP9 and α-smooth muscle actin. Down-regulation 

of these miRNAs would favour a pro-inflammatory and pro-contractile phenotype and 

hence, promote labour onset. This also further supports OT as an inflammatory mediator in 

myometrium. Further work is required to define gene targets of other miRNAs in 

myometrium, as well as clarify the biological significance of these changes in relation to 

parturition. 

 

4. The AVP/AVPR system in myometrium  

Similar to OT, AVP is a nonapeptide. Its sequence differs to OT by just two amino acids 

(Figure 3A). AVP also signals through GPCRs, V1aR, V1bR and V2R, (AVPRs) which display high 

homology with the OTR. In contrast to the OT/OTR system however, much less is known 

about AVP signalling in myometrium and its role in parturition. To date, only the Va1R and 

V1bR have been found in myometrium [5,32], although some recent data suggests V2R is also 

expressed in human myometrium (S Arrowsmith et al., abstract in Acta Physiol 2016, 217 

(Suppl. 708), 3–158). Because of the high homology with OTRs, there is significant crosstalk 

between the receptor families and their ligands (Figure 3B and C). AVPRs may be important 

in mediating the response to OT (and vice versa).   

Differences in the affinity of OT and AVP for the different receptor families between species 

however, has hampered our understanding of the role of AVPRs in myometrium. For 

example in rodents, AVP-induced contractions are solely mediated by OTRs although this is 

not the same for human myometrium[33,34]. AVP’s uterotonic effect is thought to involve 

IP3-mediated store-Ca release with potential actions at both the V1aRs and the OTR[7]. 

However, the model systems and the selectivity of the peptides and antagonists used to test 

this are likely to confound data.  Deciphering the involvement and relative importance of 

AVP and AVPRs in human myometrium will require highly selective human receptor-subtype 
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agonists (e.g. see [35]) and antagonists as well as good models to test them[36].  New 

peptides displaying selectivity for the human V1aR and V1bR have been shown to augment 

human myometrial contractions indicating that the receptors are functional in myometrium 

(S Arrowsmith et al., abstract in Acta Physiol 2016, 217 (Suppl. 708), 3–158). Associations 

between OTRs and some AVPRs with potential important functional consequences have also 

been reported and are discussed later. 

 

5. Clinical considerations 

5.1. Targeting the OTR (or AVPRs) to relax or stimulate the myometrium 

Due to its prominence in myometrial contraction, the OTR has long been a major target for 

therapies aimed at modulating uterine contractions in labour. OTR antagonists represent 

the only drugs used specifically for the management of preterm labour and atosiban is the 

only currently approved OTR-A used for this purpose. Interestingly, atosiban is primarily a 

V1aR antagonist and displays a lower affinity for the OTR[37]. Which receptor/s it 

antagonises to bring about inhibition of contraction has therefore been questioned and 

atosiban’s activity at the V1aRs in other tissues such as blood vessels may inadvertently 

cause unwanted side effects.   In addition to inhibition of Gαq signalling in myometrium, 

atosiban has also been shown to activate Gαi signalling and inflammatory pathways in 

amnion[38] which is counterintuitive and undesirable for a tocolytic. Hence, understanding 

the contribution of signalling from the different G protein subunits which are coupled to 

OTR will be essential to aid the development of effective therapeutics. 

Other more-selective OTR-As include barusiban, retosiban and nolasiban which have shown 

some promise in early in vitro studies[39-41]. However, despite a >300-fold selectivity for 

the OTR, barusiban was no more effective than placebo in stopping preterm labour in 

pregnant women[42]. Retosiban, a >1400-fold selective OTR inverse agonist, showed a 

favorable efficacy and safety profile in a phase 2 proof-of-concept study for the treatment 

of spontaneous preterm labour[43]. Interestingly, data from Smith’s group suggest 

retosiban may prevent stretch-induced uterine contractions and that OTR may also act as a 

mechanosensor in which myometrial stretch increases contractions via agoinst-free 

activation of the OTR[44].   Retosiban may be suited to delaying or preventing preterm 
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labour in multiple pregnancy. Clinical trials to test this are needed. In addition to Gαq 

signalling, nolasiban, unlike atosiban, also inhibits Gαi signalling from the OTR and therefore 

may be beneficial in that it also inhibit OT’s inflammatory action in gestational tissues[45].  

Considerations for the use of oxytocins to exogenously manage dysfunctional labour and 

postpartum haemorrhage (PPH) include dosing and delivery strategies.  Oxytocin’s release 

from the pituitary is thought to be pulsatile which compensates for its relative short half-life 

(3-4 min)[46]  and the rapid desensitisation of its receptor. However trials have shown that 

pulsatile infusion of oxytocin confers no clinical benefit for induction and is not 

recommended for augmentation[47].  

To overcome the limits of endogenous OT, a number of OT analogues have been developed 

[48,49]. The newest which has been tested in clinical trials is carbetocin. It was developed to 

be a long-lasting (80-100 min half-life), potent, selective agonist of the OTR[50].  It has 

shown a favourable side-effect profile compared to OT in trials for the prevention of PPH 

and has some desirable effects including some reduced blood loss[51] but more trial data is 

needed to confirm this.   Its longer half-life however, makes it unsuitable for use in labour 

induction[52].  Interestingly, carbetocin was found to display ‘functional selectivity’ in that, 

unlike OT, it only activates the OTR/Gαq pathway. In addition, carbetocin promotes OTR 

internalisation via a novel and yet unidentified β‐arrestin‐independent pathway. It was also 

shown to negatively influence OTR recycling to the plasma membrane[53].  

 

5.2.  Drug-delivery systems 

Using a drug delivery system which targets the uterus has the potential to minimise toxicity 

from unwanted side effects in maternal and/or fetal organs and increase drug efficacy. The 

OTR is one such attractive target. So far, liposomes conjugated to antibodies against the 

extracellular domain of OTR have been used to successfully deliver tocolytics or uterotonics 

to human myometrial tissues in vitro and modify contraction. In vivo studies in pregnant 

mice also demonstrated that the liposomes predominantly localised to uterine tissues[54]. 

Others have used the OTR-A, atosiban as their targeting element to deliver indomethacin to 

the uterus[55]. Whilst no significant change on rates of induced preterm birth in mice was 

observed, they were able deliver double the concentration of indomethacin whilst 
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importantly, decreasing fetal levels. These promising approaches open new horizons for 

drug development in obstetrics that could greatly impact the management of preterm birth 

and dysfunctional labour without multi-organ side effects.  

 

5.3. Cross talk with other receptors 

In addition to receptor cross-talk by the neuropeptides (discussed above), OTRs can also 

form homodimers (and oligomers) as well as heterodimers with other GPCRs[56]. Examples 

include V1aR/OTR, V2R/OTR, β2-adrenergic receptor (β2-AR)/OTR and PG receptor/OTR. The 

relevance of these dimers is not known, but it is easy to imagine how heterodimers 

involving GPCRs which both mediate pro-contractile effects in the myometrium (e.g. V1aR, 

FP) could have functional roles in the onset of labour. Indeed, low dose PGF2α was shown to 

improve myometrial responses to OT[57]  whilst FP receptor antagonists can suppress OT-

induced myometrial contraction[58]. Similarly, OTR antagonism has recently been shown to 

affect PGF2α-induced contractions[41]. OTR and β2-AR however, have opposing roles in 

myometrium. Despite this, they have been shown to physically interact[59,60], and β2-AR 

signalling can also affect OTR signalling in myometrium[61].  Further studies are required to 

determine the biological significance of these and other potential dimers involving OTRs. 

Importantly they must be examined in native human tissues to make their interactions and 

function physiologically relevant.   

Additionally, understanding OTR dimerization and crosstalk with other receptors may also 

open up the opportunity for the development of more effective combination treatments. In 

ex vivo studies of human contractions, the potency of a number of tocolytics is significantly 

reduced in the presence of low dose oxytocin (0.5nM)[62,63]. Hence combination tocolytics 

involving OTR-As warrants further investigation.  

 

5.4. Genetic variants in the OT/OTR system  

Single nucleotide polymorphisms (SNPs) in the OTR gene have been reported in neurologic 

disorders but the relevance of OTR SNPs in parturition remains largely unknown. Studies 

suggest that genetic variants of the OTR may alter oxytocin dose requirement for labour 
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induction[64,65] and increase the risk for preterm birth[66,67]. Variants in OTR have been 

observed in both coding and non-coding regions of the receptor, including in domains 

involved in agonist binding (which results in reduced OT binding and IP3 production), and 

truncation of the receptor[64,66].  SNPs in genes related to the process of OTR 

internalisation and desensitisation (e.g. GRK6), and the enzyme responsible for degradation 

and inactivation of OT, have also been identified[65,67]. Together these data suggest that 

there could also be a genetic factor in determining maternal sensitivity to OT which needs to 

be considered. But, before these genetic differences can be translated into therapeutic 

strategies, further studies to investigate the impact of these genetic variations on 

downstream signalling and their functional consequences are needed. 

 

Interestingly mutations in OTR transmembrane residues also changes the binding of AVP at 

the OTR from partial to full agonist[68].  Hence, these residues are critical in determining 

OTR’s response to any agonist (or antagonist) modelled on the structure of OT or AVP. They 

therefore have important consequences for the design of new therapies to modulate OTR 

function. Given AVP’s uterotonic action, this also warrants further investigation. 

 

 

6. Conclusions and future directions 

The emerging roles for oxytocin in parturition are exciting, however they highlight the 

complexity of this system. As our understanding of GPCR signalling expands, so too will our 

understanding of neuropeptide signalling in the myometrium.  We have been close to 

achieving safer, more effective tocolytics and uterotonics with preferred routes of 

administration for many years but we are not quite there yet.  A lot still remains to be done 

and several important questions remain unanswered, particularly around receptor 

dimerization and whether receptor crosstalk affects function.   Determining which G 

proteins are essential for signal transduction and hence, which we should ‘turn on’ or ‘off’ 

to regulate contractions will, in turn, determine whether functional selectivity of ligands is 

an important factor for therapy. Identification of receptor SNPs which are crucial for 

receptor function should help identify patient subpopulations who are likely to benefit from 

treatment as well as inform receptor targeting and drug-delivery strategies. Other factors 
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which have not been discussed here include how receptor expression is regulated. For this 

readers are directed to an earlier review[4].   

As with all studies, the system in which we use to test our questions is important. The OT-

OTR and AVP-AVPR systems are no exception. To obtain clinically and physiologically 

relevant data, we need studies in human myometrial tissues.   Together with further 

advances in our understanding of neuropeptide signalling in myometrium, it is exciting to 

think that, we may soon be able to provide a personalized medicine approach for the 

management of labour and treatment of preterm birth. 

 

Funding 

SA is supported by a Harris-Wellbeing Preterm Birth Research Centre grant administered by 

Wellbeing of Women, UK. 

Conflict of Interest 

None 

 

References 

 

1. Fuchs AR, Fuchs F, Husslein P, Soloff MS, Fernstrom MJ: Oxytocin receptors and human 
parturition: a dual role for oxytocin in the initiation of labor. Science 1982, 215:1396-1398. 

2. Soloff MS, Alexandrova M, Fernstrom MJ: Oxytocin receptors: triggers for parturition and 
lactation? Science 1979, 204:1313-1315. 

3. Arthur P, Taggart MJ, Zielnik B, Wong S, Mitchell BF: Relationship between gene expression and 
function of uterotonic systems in the rat during gestation, uterine activation and both 
term and preterm labour. J Physiol 2008, 586:6063-6076. 

4. Arrowsmith S, Wray S: Oxytocin: its mechanism of action and receptor signalling in the 
myometrium. J Neuroendocrinol 2014, 26:356-369. 

5. Maggi M, Del Carlo P, Fantoni G, Giannini S, Torrisi C, Casparis D, Massi G, Serio M: Human 
myometrium during pregnancy contains and responds to V1 vasopressin receptors as well 
as oxytocin receptors. J Clin Endocrinol Metab 1990, 70:1142-1154. 

6. Fuchs AR, Behrens O, Maschek H, Kupsch E, Einspanier A: Oxytocin and vasopressin receptors in 
human and uterine myomas during menstrual cycle and early pregnancy. Hum Reprod 
Update 1998, 4:594-604. 

7. Bossmar T, Akerlund M, Fantoni G, Szamatowicz J, Melin P, Maggi M: Receptors for and 
myometrial responses to oxytocin and vasopressin in preterm and term human pregnancy: 
effects of the oxytocin antagonist atosiban. Am J Obstet Gynecol 1994, 171:1634-1642. 

Jo
ur

na
l P

re
-p

ro
of



8. Busnelli M, Sauliere A, Manning M, Bouvier M, Gales C, Chini B: Functional selective oxytocin-
derived agonists discriminate between individual G protein family subtypes. J Biol Chem 
2012, 287:3617-3629. 

9. Mironneau J: Effects of oxytocin on ionic currents underlying rhythmic activity and contraction 
in uterine smooth muscle. Pflugers Arch 1976, 363:113-118. 

10. Monga M, Campbell DF, Sanborn BM: Oxytocin-stimulated capacitative calcium entry in human 
myometrial cells. Am J Obstet Gynecol 1999, 181:424-429. 

11. Noble D, Borysova L, Wray S, Burdyga T: Store-operated Ca2+ entry and depolarization explain 
the anomalous behaviour of myometrial SR: Effects of SERCA inhibition on electrical 
activity, Ca2+ and force. Cell Calcium 2014, 56:188-194. 

12. Ferreira JJ, Butler A, Stewart R, Gonzalez-Cota AL, Lybaert P, Amazu C, Reinl EL, Wakle-
Prabagaran M, Salkoff L, England SK, et al.: Oxytocin can regulate myometrial smooth 
muscle excitability by inhibiting the Na(+) -activated K(+) channel, Slo2.1. J Physiol 2019, 
597:137-149. 

13. Popescu LM, Nutu O, Panoiu C: Oxytocin contracts the human uterus at term by inhibiting the 
myometrial Ca2+-extrusion pump. Biosci Rep 1985, 5:21-28. 

14. Soloff MS, Sweet P: Oxytocin inhibition of (Ca2+ + Mg2+)-ATPase activity in rat myometrial 
plasma membranes. J Biol Chem 1982, 257:10687-10693. 

15. Akerman KE, Wikstrom MK: (Ca2+ + Mg2+)-stimulated ATPase activity of rabbit myometrium 
plasma membrane is blocked by oxytocin. FEBS Lett 1979, 97:283-287. 

16. Hudson CA, Lopez Bernal A: Phosphorylation of proteins during human myometrial 
contractions: A phosphoproteomic approach. Biochem Biophys Res Commun 2017, 
482:1393-1399. 

17. Somlyo AP, Wu X, Walker LA, Somlyo AV: Pharmacomechanical coupling: the role of calcium, G-
proteins, kinases and phosphatases. Rev Physiol Biochem Pharmacol 1999, 134:201-234. 

18. Lartey J, Lopez Bernal A: RHO protein regulation of contraction in the human uterus. 
Reproduction 2009, 138:407-424. 

19. Ozaki H, Yasuda K, Kim YS, Egawa M, Kanzaki H, Nakazawa H, Hori M, Seto M, Karaki H: Possible 
role of the protein kinase C/CPI-17 pathway in the augmented contraction of human 
myometrium after gestation. Br J Pharmacol 2003, 140:1303-1312. 

20. Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ: beta-Arrestin: a protein that regulates 
beta-adrenergic receptor function. Science 1990, 248:1547-1550. 

21. Pitcher JA, Freedman NJ, Lefkowitz RJ: G protein-coupled receptor kinases. Annu Rev Biochem 
1998, 67:653-692. 

22. Conti F, Sertic S, Reversi A, Chini B: Intracellular trafficking of the human oxytocin receptor: 
evidence of receptor recycling via a Rab4/Rab5 "short cycle". Am J Physiol Endocrinol 
Metab 2009, 296:E532-542. 

23. Grotegut CA, Mao L, Pierce SL, Swamy GK, Heine RP, Murtha AP: Enhanced Uterine Contractility 
and Stillbirth in Mice Lacking G Protein-Coupled Receptor Kinase 6 (GRK6): Implications for 
Oxytocin Receptor Desensitization. Mol Endocrinol 2016, 30:455-468. 

24. Grotegut CA, Feng L, Mao L, Heine RP, Murtha AP, Rockman HA: beta-Arrestin mediates 
oxytocin receptor signaling, which regulates uterine contractility and cellular migration. 
Am J Physiol Endocrinol Metab 2011, 300:E468-477. 

25. Kim SH, Bennett PR, Terzidou V: Advances in the role of oxytocin receptors in human 
parturition. Mol Cell Endocrinol 2017, 449:56-63. 

26. Kim SH, MacIntyre DA, Firmino Da Silva M, Blanks AM, Lee YS, Thornton S, Bennett PR, Terzidou 
V: Oxytocin activates NF-kappaB-mediated inflammatory pathways in human gestational 
tissues. Mol Cell Endocrinol 2015, 403:64-77. 

27. Terzidou V, Blanks AM, Kim SH, Thornton S, Bennett PR: Labor and inflammation increase the 
expression of oxytocin receptor in human amnion. Biol Reprod 2011, 84:546-552. 

Jo
ur

na
l P

re
-p

ro
of



28. Wilson T, Liggins GC, Whittaker DJ: Oxytocin stimulates the release of arachidonic acid and 
prostaglandin F2 alpha from human decidual cells. Prostaglandins 1988, 35:771-780. 

29. Renthal NE, Williams KC, Mendelson CR: MicroRNAs--mediators of myometrial contractility 
during pregnancy and labour. Nat Rev Endocrinol 2013, 9:391-401. 

30. Renthal NE, Chen CC, Williams KC, Gerard RD, Prange-Kiel J, Mendelson CR: miR-200 family and 
targets, ZEB1 and ZEB2, modulate uterine quiescence and contractility during pregnancy 
and labor. Proc Natl Acad Sci U S A 2010, 107:20828-20833. 

31. Cook JR, MacIntyre DA, Samara E, Kim SH, Singh N, Johnson MR, Bennett PR, Terzidou V: 
Exogenous oxytocin modulates human myometrial microRNAs. Am J Obstet Gynecol 2015, 
213:65 e61-65 e69. 

32. Lolait SJ, O'Carroll AM, Mahan LC, Felder CC, Button DC, Young WS, Mezey E, Brownstein MJ: 
Extrapituitary expression of the rat V1b vasopressin receptor gene. Proc Natl Acad Sci U S A 
1995, 92:6783-6787. 

33. Kawamata M, Mitsui-Saito M, Kimura T, Takayanagi Y, Yanagisawa T, Nishimori K: Vasopressin-
induced contraction of uterus is mediated solely by the oxytocin receptor in mice, but not 
in humans. Eur J Pharmacol 2003, 472:229-234. 

34. Chan WY, Wo NC, Manning M: The role of oxytocin receptors and vasopressin V1a receptors in 
uterine contractions in rats: implications for tocolytic therapy with oxytocin antagonists. 
Am J Obstet Gynecol 1996, 175:1331-1335. 

35. Muttenthaler M, Andersson A, Vetter I, Menon R, Busnelli M, Ragnarsson L, Bergmayr C, 
Arrowsmith S, Deuis JR, Chiu HS, et al.: Subtle modifications to oxytocin produce ligands 
that retain potency and improved selectivity across species. Sci Signal 2017, 10. 

36. Arrowsmith S, Keov P, Muttenthaler M, Gruber CW: Contractility Measurements of Human 
Uterine Smooth Muscle to Aid Drug Development. J Vis Exp 2018. 

37. Akerlund M, Bossmar T, Brouard R, Kostrzewska A, Laudanski T, Lemancewicz A, Serradeil-Le Gal 
C, Steinwall M: Receptor binding of oxytocin and vasopressin antagonists and inhibitory 
effects on isolated myometrium from preterm and term pregnant women. Br J Obstet 
Gynaecol 1999, 106:1047-1053. 

38. Kim SH, MacIntyre DA, Hanyaloglu AC, Blanks AM, Thornton S, Bennett PR, Terzidou V: The 
oxytocin receptor antagonist, Atosiban, activates pro-inflammatory pathways in human 
amnion via G(alphai) signalling. Mol Cell Endocrinol 2016, 420:11-23. 

39. Reinheimer TM, Chellman GJ, Resendez JC, Meyer JK, Bee WH: Barusiban, an effective long-term 
treatment of oxytocin-induced preterm labor in nonhuman primates. Biol Reprod 2006, 
75:809-814. 

40. Moraitis AA, Cordeaux Y, Charnock-Jones DS, Smith GC: The Effect of an Oxytocin Receptor 
Antagonist (Retosiban, GSK221149A) on the Response of Human Myometrial Explants to 
Prolonged Mechanical Stretch. Endocrinology 2015, 156:3511-3516. 

41. Kim SH, Riaposova L, Ahmed H, Pohl O, Chollet A, Gotteland JP, Hanyaloglu A, Bennett PR, 
Terzidou V: Oxytocin Receptor Antagonists, Atosiban and Nolasiban, Inhibit Prostaglandin 
F2alpha-induced Contractions and Inflammatory Responses in Human Myometrium. Sci 
Rep 2019, 9:5792. 

42. Thornton S, Goodwin TM, Greisen G, Hedegaard M, Arce JC: The effect of barusiban, a selective 
oxytocin antagonist, in threatened preterm labor at late gestational age: a randomized, 
double-blind, placebo-controlled trial. Am J Obstet Gynecol 2009, 200:627 e621-610. 

43. Thornton S, Miller H, Valenzuela G, Snidow J, Stier B, Fossler MJ, Montague TH, Powell M, Beach 
KJ: Treatment of spontaneous preterm labour with retosiban: a phase 2 proof-of-concept 
study. Br J Clin Pharmacol 2015, 80:740-749. 

44. Aye I, Moraitis AA, Stanislaus D, Charnock-Jones DS, Smith GCS: Retosiban Prevents Stretch-
Induced Human Myometrial Contractility and Delays Labor in Cynomolgus Monkeys. J Clin 
Endocrinol Metab 2018, 103:1056-1067. 

Jo
ur

na
l P

re
-p

ro
of



45. Kim SH, Pohl O, Chollet A, Gotteland JP, Fairhurst AD, Bennett PR, Terzidou V: Differential Effects 
of Oxytocin Receptor Antagonists, Atosiban and Nolasiban, on Oxytocin Receptor-
Mediated Signaling in Human Amnion and Myometrium. Mol Pharmacol 2017, 91:403-415. 

46. Gazis D: Plasma half-lives of vasopressin and oxytocin analogs after iv injection in rats. Proc Soc 
Exp Biol Med 1978, 158:663-665. 

47. Tribe RM, Crawshaw SE, Seed P, Shennan AH, Baker PN: Pulsatile versus continuous 
administration of oxytocin for induction and augmentation of labor: two randomized 
controlled trials. Am J Obstet Gynecol 2012, 206:230.e231-238. 

48. Manning M, Misicka A, Olma A, Bankowski K, Stoev S, Chini B, Durroux T, Mouillac B, Corbani M, 
Guillon G: Oxytocin and vasopressin agonists and antagonists as research tools and 
potential therapeutics. J Neuroendocrinol 2012, 24:609-628. 

49. Wisniewski K: Design of Oxytocin Analogs. Methods Mol Biol 2019, 2001:235-271. 
50. Cort N, Einarsson S, Schams D, Vilhardt H: Blood concentrations of oxytocin equivalents after 

single injections of deamino-1-monocarba-[2-O-methyltyrosine]-oxytocin in lactating 
sows. Am J Vet Res 1981, 42:1804-1806. 

51. Gallos ID, Papadopoulou A, Man R, Athanasopoulos N, Tobias A, Price MJ, Williams MJ, Diaz V, 
Pasquale J, Chamillard M, et al.: Uterotonic agents for preventing postpartum 
haemorrhage: a network meta-analysis. Cochrane Database Syst Rev 2018, 12:CD011689. 

52. Armbruster D, Burke T, Weeks A: Heat-Stable Carbetocin to Prevent Postpartum Hemorrhage. N 
Engl J Med 2018, 379:2380-2381. 

53. Passoni I, Leonzino M, Gigliucci V, Chini B, Busnelli M: Carbetocin is a Functional Selective Gq 
Agonist That Does Not Promote Oxytocin Receptor Recycling After Inducing beta-Arrestin-
Independent Internalisation. J Neuroendocrinol 2016, 28. 

54. Paul JW, Hua S, Ilicic M, Tolosa JM, Butler T, Robertson S, Smith R: Drug delivery to the human 
and mouse uterus using immunoliposomes targeted to the oxytocin receptor. Am J Obstet 
Gynecol 2017, 216:283 e281-283 e214. 

55. Refuerzo JS, Leonard F, Bulayeva N, Gorenstein D, Chiossi G, Ontiveros A, Longo M, Godin B: 
Uterus-targeted liposomes for preterm labor management: studies in pregnant mice. Sci 
Rep 2016, 6:34710. 

56. Cottet M, Albizu L, Perkovska S, Jean-Alphonse F, Rahmeh R, Orcel H, Mejean C, Granier S, 
Mendre C, Mouillac B, et al.: Past, present and future of vasopressin and oxytocin receptor 
oligomers, prototypical GPCR models to study dimerization processes. Curr Opin Pharmacol 
2010, 10:59-66. 

57. Baxi LV, Petrie RH, Caritis SN: Induction of labor with low-dose prostaglandin F2 alpha and 
oxytocin. Am J Obstet Gynecol 1980, 136:28-31. 

58. Friel AM, O'Reilly MW, Sexton DJ, Morrison JJ: Specific PGF(2alpha) receptor (FP) antagonism 
and human uterine contractility in vitro. BJOG 2005, 112:1034-1042. 

59. Wrzal PK, Devost D, Petrin D, Goupil E, Iorio-Morin C, Laporte SA, Zingg HH, Hebert TE: Allosteric 
interactions between the oxytocin receptor and the beta2-adrenergic receptor in the 
modulation of ERK1/2 activation are mediated by heterodimerization. Cell Signal 2012, 
24:342-350. 

60. Wrzal PK, Goupil E, Laporte SA, Hebert TE, Zingg HH: Functional interactions between the 
oxytocin receptor and the beta2-adrenergic receptor: implications for ERK1/2 activation in 
human myometrial cells. Cell Signal 2012, 24:333-341. 

61. Engstrom T, Bratholm P, Vilhardt H, Christensen NJ: Effect of oxytocin receptor and beta2-
adrenoceptor blockade on myometrial oxytocin receptors in parturient rats. Biol Reprod 
1999, 60:322-329. 

62. Arrowsmith S, Neilson J, Bricker L, Wray S: Differing In Vitro Potencies of Tocolytics and 
Progesterone in Myometrium From Singleton and Twin Pregnancies. Reprod Sci 2016, 
23:98-111. 

Jo
ur

na
l P

re
-p

ro
of



63. Arrowsmith S, Neilson J, Wray S: The combination tocolytic effect of magnesium sulfate and an 
oxytocin receptor antagonist in myometrium from singleton and twin pregnancies. Am J 
Obstet Gynecol 2016, 215:789 e781-789 e789. 

64. Reinl EL, Goodwin ZA, Raghuraman N, Lee GY, Jo EY, Gezahegn BM, Pillai MK, Cahill AG, de 
Guzman Strong C, England SK: Novel oxytocin receptor variants in laboring women 
requiring high doses of oxytocin. Am J Obstet Gynecol 2017, 217:214 e211-214 e218. 

65. Grotegut CA, Ngan E, Garrett ME, Miranda ML, Ashley-Koch AE, Swamy GK: The association of 
single-nucleotide polymorphisms in the oxytocin receptor and G protein-coupled receptor 
kinase 6 (GRK6) genes with oxytocin dosing requirements and labor outcomes. Am J Obstet 
Gynecol 2017, 217:367 e361-367 e369. 

66. Kim J, Stirling KJ, Cooper ME, Ascoli M, Momany AM, McDonald EL, Ryckman KK, Rhea L, Schaa 
KL, Cosentino V, et al.: Sequence variants in oxytocin pathway genes and preterm birth: a 
candidate gene association study. BMC Med Genet 2013, 14:77. 

67. Kuessel L, Grimm C, Knofler M, Haslinger P, Leipold H, Heinze G, Egarter C, Schmid M: Common 
oxytocin receptor gene polymorphisms and the risk for preterm birth. Dis Markers 2013, 
34:51-56. 

68. Chini B, Mouillac B, Balestre MN, Trumpp-Kallmeyer S, Hoflack J, Hibert M, Andriolo M, Pupier S, 
Jard S, Barberis C: Two aromatic residues regulate the response of the human oxytocin 
receptor to the partial agonist arginine vasopressin. FEBS Lett 1996, 397:201-206. 

 

 

Annotated References  

The following references have been selected as papers of special interest (*) or outstanding 

interest (**). 

(12**) Ferreira JJ, Butler A, Stewart R, Gonzalez-Cota AL, Lybaert P, Amazu C, Reinl EL, 

Wakle-Prabagaran M, Salkoff L, England SK, et al.: Oxytocin can regulate myometrial smooth 

muscle excitability by inhibiting the Na(+) -activated K(+) channel, Slo2.1. J Physiol 2019, 

597:137-149. 

This is the first paper in a number of years to detail a mechanism of how oxytocin receptor 

activation can lead to depolarisation of the membrane. It also documents a novel K+ 

channel (SLO 2.1) in myometrium which is linked to enhanced contractility at term. 

 

(16*) Hudson CA, Lopez Bernal A: Phosphorylation of proteins during human myometrial 

contractions: A phosphoproteomic approach. Biochem Biophys Res Commun 2017, 

482:1393-1399 

Using a global phosphproteomics approach, the authors identify proteins which are 

phosphorylated during spontaneous contractions and in response to oxytocin stimulation. 

These phosphorylation events may shed light on mechanisms responsible for altered 

contraction in response to oxytocin. Examples include (as discussed above) 

phosphorylation of PMCA and PPP1R12B, the regulatory subunit of MLCP.  
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(25**) Kim SH, MacIntyre DA, Firmino Da Silva M, Blanks AM, Lee YS, Thornton S, Bennett 

PR, Terzidou V: Oxytocin activates NF-kappaB-mediated inflammatory pathways in human 

gestational tissues. Mol Cell Endocrinol 2015, 403:64-77. 

This paper provides insight into novel roles for oxytocin as an inflammatory mediator in 

facilitating labour onset.  

 

(34*) Muttenthaler M, Andersson A, Vetter I, Menon R, Busnelli M, Ragnarsson L, Bergmayr 

C, Arrowsmith S, Deuis JR, Chiu HS, et al.: Subtle modifications to oxytocin produce ligands 

that retain potency and improved selectivity across species. Sci Signal 2017, 10. 

The authors detail how minor modifications to oxytocin’s phamacophore can generate 

oxytocin analogues with different receptor selectivity profiles.  The analogue described 

showed selectivity for the OTR and importantly, this selectivity was retained across both 

mouse and human species. It will be a useful peptide in determining the relative 

importance of OTRs compared to other GPCRs (e.g. V1aRs) in many systems including 

myometrium. 

  

(40*) Kim SH, Riaposova L, Ahmed H, Pohl O, Chollet A, Gotteland JP, Hanyaloglu A, Bennett 

PR, Terzidou V: Oxytocin Receptor Antagonists, Atosiban and Nolasiban, Inhibit 

Prostaglandin F2alpha-induced Contractions and Inflammatory Responses in Human 

Myometrium. Sci Rep 2019, 9:5792 

This paper shows that OTR-As can inhibit signalling by other GPCR hormones such as 

Prostaglandin F2α. It therefore provides evidence to suggest that there may be a 

functional cross talk between OTR and FP receptors in myometrium.  

 

(43*) Aye I, Moraitis AA, Stanislaus D, Charnock-Jones DS, Smith GCS: Retosiban Prevents 

Stretch-Induced Human Myometrial Contractility and Delays Labor in Cynomolgus Monkeys. 

J Clin Endocrinol Metab 2018, 103:1056-1067 

The authors describe the effects of a new OTR-A (inverse agonist), retosiban, on 

myometrial contractions under stretch. Interestingly, a new role for oxytocin receptor as 

mechanosensors is proposed. 

 

(53**) Paul JW, Hua S, Ilicic M, Tolosa JM, Butler T, Robertson S, Smith R: Drug delivery to 

the human and mouse uterus using immunoliposomes targeted to the oxytocin receptor. 

Am J Obstet Gynecol 2017, 216:283 e281-283 e214 

This paper describes a novel approach to delivering therapies to the uterus using OTR –

targeted immunoliposomes as a platform for drug delivery.  
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Figure Legends 

Figure 1. Oxytocin receptor signalling in the myometrium leading to contraction.  

Binding of oxytocin to its receptor activates Gαq/11 which activates PLC-β, which in turn 

hydrolyses PIP2 to IP3 and DAG. IP3 causes release of Ca from the sarcoplasmic reticulum 

(SR) and DAG activates PKC.  Activation of PKC leads to the inhibition of the SLO2.1 

potassium leak channel, reducing K+ efflux and depolarises the membrane. In turn, this 

opens voltage-operated (L-type) Ca channels (VOCCs) and Ca2+ enters the cell. Inhibition of 

the Ca-ATPase pump inhibits Ca exit from the cell, thus promoting elevated [Ca]i. The 

reduction in lumenal SR [Ca] is thought to trigger store-operated Ca entry (SOCE) which is a 

process whereby depletion of luminal SR Ca stores (such as following agonist mediated SR 

Ca release or inhibition of SR/ER –ATPase ‘SERCA’) is coupled to Ca entry. That OT releases 

and thereby lowers SR Ca, is thought to trigger SOCE in myometrium. SOCE will lead to 

depolarisation and trigger the opening of L-type calcium channels and is therefore is also 

likely to contribute to Ca influx during OT stimulation.  Stim and Orai and transient potential 

superfamily of protein (Trp) homologues which mediate SOCE in other cells, are expressed 

in myometrium and hence may be involved.   The combined elevation in [Ca]i  leads to 

formation of the Ca-calmodulin (Ca-CAM) complex  which then activates MLCK,  resulting in 

acto-myosin crossbridge cycling and myometrial contraction.   

In addition, DAG-activated PKC also signals for phosphorylation of CPI-17 whilst oxytocin 

binding to OTR also activates Rho-A via (Gα12/13) which in turn activates ROCK.  Both 

phosphorylated CPI-17 and ROCK inhibit MLCP leading to increased myosin phosphorylation 

and this is the proposed mechanism of Ca sensitisation in the myometrium.   

OTR: oxytocin receptor, VOCC: voltage operated Ca channel, SLO2.1 sodium-activated, high-

conductance, potassium leak channel, TRP: Transient receptor potential channel: PLC-β: 

phospholipase C-β, PIP2: phosphatidylinositol 4,5-bisphosphate, IP3: inositol 1,4,5- 

triphosphate, DAG: diacylglycerol, PKC: protein kinase type C, CPI-17: C-kinase-activated 

protein phosphatase-1 (PP1) inhibitor 17kDa, Ca-CAM: Ca-calmodulin complex, MLCK: 

myosin light-chain kinase, MLCP: myosin light chain phosphatase, ROCK: RhoA-associated 

protein kinase, SOCE: store-operated Ca entry.  

Red pathways indicate signalling pathways with direct influences on [Ca]i whilst purple lines 

indicate Ca-independent pathways to contraction including Ca sensitisation. Dotted lines 

indicate where mechanisms are not yet fully elucidated.  

Figure modified with updates from Arrowsmith and Wray 2014., J Neuroendocrinol 2014, 
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Figure 2. Oxytocin as an inflammatory signal in myometrium and other gestational tissues. 

In addition to stimulating contractions, activation of the OTR leads to the concurrent 

activation of inflammatory pathways in myometrium and other gestational tissues such as 

amnion. In myometrium this is via activation of MAPKs, ERK1/2 and p38 kinase and NFκB 

p65/p50 subunits (shown as NFκB for simplicity). In amnion cells, OT signalling (via Gαi 

coupling) leads to ERK1/2 and p38 converging on NFκB p65 homodimers. NFκB dimers 

translocate to the nucleus where they induce expression of pro-labour genes including COX-

2, PGs and inflammatory cytokines and chemokines.   

Diacylglycerol (DAG)-induced activation of PKC and MAPK signalling also stimulates an 

increase in cytoplasmic phospholipase A2 (cPLA2) and COX-2 expression in human 

myometrial and amnion cells. In turn, this further increases PG synthesis including (PGE2 and 

PGF2α). PGs can feedback to promote myometrial contractility as well as drive cervical 

ripening and dilatation.  

OTR: oxytocin receptor, PLC-β: phospholipase C-β, PIP2: phosphatidylinositol 4,5-

bisphosphate, IP3: inositol 1,4,5- triphosphate, DAG: diacylglycerol, PKC: protein kinase type 

C, cPLA2: cytoplasmic phospholipase A2, COX-2: cyclo-oxygenase 2, PGF2α: prostaglandin F2α, 

PGE2: prostaglandin E2,  FP: PGF2α receptor, NFκB: nuclear factor kappa-light-chain-enhancer 

of activated B cells, MAPK: mitogen-activated protein kinase, ERK1/2: extracellular signal–

regulated kinases, p38: p38 mitogen-activated protein kinase. 

Red pathways indicate signalling pathways which will bring about contraction in 

myometrium whilst blue lines indicate pathways leading to activation of inflammation. 

Dotted lines indicate where sequences have been shortened for simplicity. 
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Figure 3: Significant cross-talk between OTRs and AVPRs  

A) Oxytocin and Vasopressin peptides are structurally very similar. Both are nonapeptides 

(they contain 9 amino acids) with a disulphide bridge between two cysteines.  This results in 

a 6 amino acid residue ring and a 3 amino acid residue tail. They differ by just 2 residues in 

positions 3 and 8. 

B) The high structural similarity between the hormones and the high extracellular sequence 

homology between the 4 receptor subtypes (85% between OTR and V1aR) allows for 

significant crosstalk between the receptors and their ligands (depicted by arrows).  

C) The table indicates the selectivity of human oxytocin receptors (hOTR) and arginine-

vasopressin (AVP) receptors, hV1aR, hV1bR and hV2R, to AVP and OT. Values denote affinity in 

Ki (nM).  The lower the Ki, the greater affinity of that hormone for the receptor. *defined as 

selective as compared with the other receptors of that species by the selectivity criterion of 

having a two orders of magnitude lower Ki. Table modified from Manning et al., 2012 J 
Neuroendocrinol 2012, 24:609-628. 
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