
 Agent-based (BDI) modeling for automation of

penetration testing

Ge Chu

Department of Computer Science

University of Liverpool

Liverpool, UK

gechu@liverpool.ac.uk

Alexei Lisitsa

Department of Computer Science

University of Liverpool

Liverpool, UK

lisitsa@liverpool.ac.uk

Abstract—Penetration testing (or pentesting) is one of the

widely used and important methodologies to assess the security of

computer systems and networks. Traditional pentesting relies on

the domain expert knowledge and requires considerable human

effort all of which incurs a high cost. The automation can

significantly improve the efficiency, availability and lower the

cost of penetration testing. Existing approaches to the automation

include those which map vulnerability scanner results to the

corresponding exploit tools, and those addressing the pentesting

as a planning problem expressed in terms of attack graphs. Due

to mainly non-interactive processing, such solutions can deal

effectively only with static and simple targets. In this paper, we

propose an automated penetration testing approach based on the

belief-desire-intention (BDI) agent model, which is central in the

research on agent-based processing in that it deals interactively

with dynamic, uncertain and complex environments. Penetration

testing actions are defined as a series of BDI plans and the BDI

reasoning cycle is used to represent the penetration testing

process. The model is extensible and new plans can be added,

once they have been elicited from the human experts. We report

on the results of testing of proof of concept BDI-based

penetration testing tool in the simulated environment.

Keywords—Automated penetration testing; agent-based; belief-

desire-intention(BDI) model;

I. INTRODUCTION

 In recent years, malicious network attacks have become an

increasingly serious threat to individuals, businesses and even

national information security. Penetration testing [1] is a

methodology which simulates real attacks with the aim to

assess the security of computer systems and networks. The

main distinction between an attacker and penetration testing

depends on the legality. In other words, penetration testing

aims to improve the security of the system rather than destroy

or access information illegally and it does not affect the

availability of target systems. The process of penetration

testing is normally done manually, and the test cycle is

relatively long. Moreover, the test results are highly dependent

on the level of skill and experience of a tester or penetration

team. To improve the efficiency, automated penetration testing

methods and tools are needed. The automation can

significantly reduce the time, cost and human involvement in

the process of information gathering, analysis and

exploitation.

 Existing approaches to the automation include those

mapping vulnerability scanners results to the corresponding

exploitation tools, and those addressing the pentesting as a

planning problem expressed in terms of attack graphs. Due to

mainly non-interactive processing, such solutions can deal

effectively only with static and simple targets. However, the

target environment of penetration testing is normally dynamic,

uncertain and complex. The human penetration tester needs to

interact with the environment or target and choose the best

action to compromise the target system based on the feedback

and their interpretation. In order to deal with these issues, we

propose to use an agent-based architecture for the automation

of pentesting. An agent [2] can interact with the environment

by perception, decision making and action. Moreover, the

behavior of an agent can be flexible and can be generally

characterized as autonomous, reactive, proactive and social.

Currently, agent-based technologies are considered as

promising for the applications in various areas. There are three

main kinds of agent architectures considered in the literature,

these are Reactive, Cognitive and Hybrid [3]. The BDI agents

(Belief-Desire-Intention) is one of the classical and most

representative models of Cognitive architecture which is

proposed by Bradman [4]. The BDI model enables agents to

have cognitive abilities to deal with dynamic, uncertain and

complex environments by allowing for mental states,

characteristics/attitudes such as belief, desire and intention.

 In this paper, we propose an agent-based BDI model with

the aim to improve the efficiency and probability of success

for automated penetration testing. Penetration testing actions

are defined as a series of BDI plans and the BDI reasoning

cycle is used to represent the penetration testing process. To

validate this model, we implement a prototype system and

have simulated real world penetration testing scenarios using

agent-based programming language Jason [5]. The rest of this

paper is organized as follows: Section II introduces the related

work on automated penetration testing. In section III, we

propose the agent-based BDI model for penetration testing. In

section IV, we present an implementation of a prototype of our

BDI model. In section V, we present the experiment and

validate our model. Finally, we close this paper with a

conclusion and further work in section VI.

II. RELATED WORK

 Xue Qiu et al. [6] proposed an automated method of

penetration testing named AEPT (automata model of

penetration testing) based on a four-stage model of penetration

testing. They defined testing time, target, scheme, plan, the

collection of scanning information in addition to the analysis

of exploiting vulnerabilities. This model was then

subsequently used to generate the penetration testing scheme

automatically. Finally, they proposed the automatic executing

method of penetration testing scheme by calling the

exploitation module. However, AEPT only tries to exploit all

vulnerabilities of the target after receiving the scanning report

as an input and fails to take into account the dynamic and

uncertain nature of a situation in a real-world penetration

testing scenario. In addition, a real penetration tester often

attempts to compromise a target via multi-step attacks using a

series of exploitation tools, in particular to recover from failed

attempts. AEPT is unable to deal with such attack chain

situations.

 The majority of approaches to date address automated

penetration testing as a planning problem for an attack graph.

Cynthia and Swiler [7] presented a graph-based flexible

approach to perform system vulnerability analyses. This

analysis system broken database of common attack into

atomic steps, specific network configuration, topology

information and attacker profile. Nodes and arcs in the attack

graph represent the stage of an attack. The probabilities of

success will be assigned to the arcs and various graph

algorithms was applied to identify the attack paths with the

highest probability of success. Kyle et al. [8] created a

NetSPA attack graph system which allows network defenders

to evaluate threats and choose corresponding countermeasures.

NetSPA is able to analyze numerous targets within a few

minutes by using firewall rules and vulnerability scans.

Moreover, asset values are assigned to each target in order to

measure the purpose or mission. Xue Qiu et al. [9] proposed

an automatic generation algorithm of penetration graph that

makes use of CVSS (Common Vulnerability Scoring System)

to increase the reliability of attack paths, which ultimately

optimizes the network topology. This algorithm probes and

represents the network topology by matrix and searches the

path to the target, which can generate the attack graph from

the vulnerability scanner result. However, the limitation of the

aforementioned graph-based methods is that they can only

output the action sequence to deal with stationary

environment. This is turn can only provide the steps or

guidelines for penetration testing therefore they are still unable

to perform interactively within real world penetration testing

scenarios.

 There have been numerous applications of agent-based

models in the real world such as in agriculture, air traffic

control, economics, emergency evacuation, healthcare and

social behavior [10]. The penetration testing scenarios

mentioned above are similar because of the dynamics, the

uncertainty, interactivity and complexity of the environment.

There is not, as of yet, an approach which would able to deal

with the above characteristics in automated penetration testing

scenarios. Therefore, we propose an agent-based BDI model

to achieve automated penetration testing with high efficiency

and a higher probability of success.

III. AGENT-BASED BDI MODEL FOR PENETRATION TESTING

 In penetration testing, humans need to create the goals and

plans to obtain a successful result. Agent-based BDI is a

natural candidate to model this problem because it can interact

with the target and performs various types of attacks. In this

section, we discuss how to model penetration testing problems

using an agent-based BDI model.

In the process of penetration testing, the BDI agent

interacts with the target by perceiving information and in

response it outputs actions to change it. In our model, we only

consider the single agent situation, but the number of targets is

unlimited. The agent world consists of the network

environment such as the Internet or the local area network and

we assume that the agent can interact with targets via different

kinds of connections either wired or wireless. In the action

space, we pre-define different types of actions to be performed

throughout the whole penetration testing process from the

information gathering stage to the report stage. Whereas some

scanners or penetration testing tools provide a degree of

automation, our model can execute external tools directly as

part of the action space in order to make this model more

extensible. Moreover, to compare with other approaches or

tools, our model can perform various types of attacks such as

buffer overflow attack, SQL injection attack, password attack,

sniffer attack and social engineering attack.

The BDI model defines the process of an agent choosing

actions according to target information in penetration testing.

The basic logic components of a BDI agent are belief, desire

and intention. In our model we follow the conventions adopted

in the Jason Interpreter, which in turn are based on PRS

(Procedural Reasoning System) [5].

BDI agent is defined as a tuple <Ag, B, D, I, P, A, S>,

where Ag is an agent name, B is a belief set, D is a desire set, I

is an intention set, P is a plan set, A is an action set and S is a

Perception set. Now we explain all components of this

definition.

Belief set B represents the set of information about the target

and it will be updated after executing actions. In the context of

pentesting, this kind of information typically comprises OS

type, open port, DNS, service name or version, vulnerability,

configuration, network topology and privilege, etc. New

beliefs will be generated based on current belief and perceived

information.

B = f1(B×S) (1)

Desire set D represents all the options or possible candidate

plans of penetration testing for the agent that might like to

accomplish. In real time penetration testing, multiple kinds of

attack methods can be carried in response to specific target

information. For example, SQL injection attack, password

attack or buffer overflow attack can be carried out when the

target port 80 is opened and human penetration testers would

need to choose one type of attack according to their

experience/preferences. The desire is determined based on

beliefs and intentions.

D = f2(B×I) (2)

Intention set I represents the agent goals or which plan the

agent decides to carry out. In penetration testing, the agent

needs to choose one plan to carry out from the possible

candidate plans. Namely, the plan becomes intention after

being selected.

I = f3(B×D× I) (3)

Plan set P consists of available plans, each giving the

information about how to achieve the goals. A plan comprises

three parts: trigger event, context and body. The trigger event

is an event that the plan can handle such as beliefs or goals.

The structure of the plan is shown in Figure 3: The context

defines the prerequisites under which the plan can be used.

The body defines a series of actions to be carried out if the

plan is chosen. In our model, we pre-define various types of

information gathering actions and attack methods.

Trigger Event: context <- body.

The BDI agent reasoning cycle for penetration testing is

described below:

1. Initial beliefs and intentions will be set up by the

penetration tester and normally represents information

regarding the target such as the domain or IP address and

the privilege which the penetration testing must achieve,

respectively.

2. The BDI agent perceives the target information by

performing various information gathering actions. For

example, Nmap can collect OS type and ports opened at

the target.

3. After perceiving the feedback, current beliefs will be

updated. At this time, the BDI agent should hold the

current information about the target.

4. According to the new current belief, all relevant action

plans will be found. For example, if port 80 of the target

is opened, then password attack, buffer overflow attack,

SQL injection attack are all become candidate options for

the human penetration tester.

5. The BDI agent chooses one plan from the candidate

action plans to become the intention and waits to be

executed according to the context of the plan and the

human knowledge database which chooses the plan

based on human penetration testing experience in the real

world. We pre-define the priority of the chosen actions in

the human knowledge database.

6. The BDI agent executes the chosen plan. If the plan fails,

then the agent chooses another plan.

7. The BDI agent checks whether the initial goal is

achieved or not and decides either (1) to output the report

which records the process of the whole penetration

testing or (2) to return back to the new reasoning cycle.

Figure 3 The BDI agent reasoning cycle for penetration testing

IV. IMPLEMENTATION OF BDI FOR PENETRATION TESTING

Our model is implemented in AgentSpeak Jason which is

a multi-agent system programming language based on belief-

desire-intention paradigm (BDI). The reason we implemented

our model in Jason is that Jason is one of the best known and

well-established agent-based development languages for

cognitive agents. Jason takes it origins from the Procedural

Reasoning System (PRS) developed at SRI in late 1980s [5].

What is more, Jason is implemented in Java (running in multi-

platform) and provides interfaces to call Java code, which

enables our model to use external tools. We pre-define various

actions to cover whole the penetration testing stage from

information gathering to report.

A. Information gathering:

The first stage of penetration testing is information

gathering. In our model, the scanner or the various information

gathering tools are used to probe the target and update the

belief. We use Nmap to collect OS type, IP address, port open,

services information from the target. Openvas and Nessus are

mainly used to probe the OS vulnerability such as bufferflow,

configuration, and information leakage. The Harvester is used

to collect email addresses to perform social engineering

attacks.

B. Buffer overflow attack

After the information gathering stage, the buffer overflow

attack will be exploited as the preference if there are remote

buffer overflow vulnerabilities found and updated in the belief

set. We make use of metasploit which is the most critically

acclaimed and widely used penetration testing framework to

perform buffer overflow attack in our model due to it having

the ability to collect thousands of exploit codes to attack

various OS.

C. Sql injection attack

If the target is running a web server, our model will try to

perform an Sql injection attack. After the information

gathering stage, the Sql injection vulnerabilities will be listed

in the scanner. In our model, we make use of W3af and

SQLmap to probe and perform the SQL injection attack. After

the SQL injection attack, the web privilege is obtained and the

model will perform further actions to improve privilege.

D. Password attack

 The Password attack will be performed if there are

services allowing users to log in remotely such as ssh, ftp,

Telnet and SQL database, etc. The dictionary will be

generated according to information about the target and will

perform an attack by Hydra. We will obtain access privilege if

this type of attack is successful. Nevertheless, the successful

rate is nominally low and a time-consuming activity.

E. Sniffer attack

 Aforementioned attacks are not successful if there is any

vulnerability in the well protected target. In these situations,

human experienced penetration tester would normally attempt

to break into another system which is under the same

subnetwork with the original target and perform the sniffer

attack or Man in the Middle attack to obtain access privilege

on it. In our model, the Arpspoof and Ettercap will perform

these types of attacks respectively.

F. Social engineering attack

 Setoolkit used to accomplish social engineering attacks

such as spear phishing attack, web forge attack and powershell

attack. These kinds of attacks are normal to humans such as

administrator or target system staff which have weak security

awareness by sending deliberately structured emails to the

target administrator or staff to obtain access privilege directly.

G. Report generation

 Our model will record the attack action name and path to

show the process of the whole penetration testing and output it

as report if a plan is executed successfully. We use the internal

action of Jason to achieve this function.

Figure 4 A part of Jason code for penetration testing

 Figure 4 shows a part of the Jason code based on the BDI

model for penetration testing. Firstly, we set up the initial

belief and initial goal of our BDI agent as ip address and root

privilege. Then we pre-define the basic information gathering

plan to probe the target Opened port, OS type and application

services information by Nmap. After the basic information

gathering stage, we perform the vulnerability information

gathering by openvas and perform the buffer overflow attack

using metasploit or an SQL Injection attack by SQLmap if the

per-conditional is satisfied. Each of these actions will be

recorded by Jason’s internal action named print function.

V. EXPERIMENT

Figure 5 The interaction between BDI agent and Target

 Our model runs on a PC with an Intel I7 CPU at 2.0 GHz

and 4GB of RAM. As we can see in figure 5, The simulation

experiment consists of two agents to represent the BDI agent

and the target. In order to simplify the process of penetration

testing in the virtual environment, we use the internal

communication actions in Jason to simulate the interaction

between the BDI model and the target agent.

A. Target agent

OS Port Services Vulnerability Password
Linux 80,

22,
3306

Nginx,

SSH, MySQL

CVE-remote

CVE-local

SSH:456

Table II Target information

 We set up basic information regarding the target including

the system type, opened port, service, vulnerability and the

SSH password in the initial belief set to simulate a target

server as shown in Table II. To make the scenario uncertain,

we use randomization and set 0.8 as the threshold to determine

if the SSH password attack is successful by generating a

random number and comparing it with the threshold. In terms

of the remote or local buffer overflow attack successful rate,

we set thresholds as 0.5 and 0.3, respectively (this is based on

personal penetration testing experience of the first author)

B. BDI agent

 In BDI agent, we set up the value of privilege as none

initially and the initial goal is root privilege. We pre-define

information gathering plans to probe OS type, opened port,

service and vulnerability information from the target agent. To

simplify the process of penetration testing by the BDI agent,

we pre-define the password attack and buffer overflow attack

to target.

C. Reasoning process between BDI agent and target agent

 We carry out two simulations to show how our BDI agent

can perform in different circumstances in below:

1) Simulation 1

Figure 6 BDI agent result in simulation 1

 We can see from the output of the processes of the BDI

agent in Figure 6, the BDI agent probed all information about

the target in the belief set but failed to perform the password

attack because the rate of the password attack has not reached

the specified 0.8 threshold. Hence, the BDI agent cannot

perform local the buffer overflow attack as well since we

define the prerequisite of it as successful password attack.

However, the remote buffer overflow attack was successful

and the current privilege has changed to root. We can check

the validity of the process in Figure 7.

Future 7 BDI agent Belief set in simulation1

2) Simulation 2

 In this simulation, the BDI agent probed all the information

of the target and successfully broke the SSH password because

the rate of the SSH password attack was set to 0.9 which is

greater than the 0.8 threshold. Moreover, the BDI agent

performed successfully in both the local and the remote buffer

overflow attacks. We can see the privilege change from none

to the user then reached to root in Figure 8.

 Figure 6 BDI agent result in simulation 2

VI. CONCLUSION

 This paper presents an agent-based Belief-Desire-

Intention(BDI) modelling for the automation of penetration

testing, which enables interaction between dynamic and

uncertain targets. Penetration testing actions are defined as a

series of BDI plans and the BDI reasoning cycle is used to

represent the penetration testing process. Two simulations

show the BDI agent behavior and reasoning process to

validate the modelling. Our current and future research aims

to extend the model with more types of actions to deal with

complex real-world pentesting scenarios and to experiment

with real (non-simulated) environments.

VII. REFERENCES

[1] S. Shah and B. M. Mehtre, “An overview of

vulnerability assessment and penetration testing

techniques,” J. Comput. Virol. Hacking Tech., vol. 11,

no. 1, 2015.

[2] C. M. Macal and M. J. North, “Agent-based modeling

and simulation,” Proc. 2009 Winter Simul. Conf., pp.

86–98, 2009.

[3] K. On Chin, K. S. Gan, R. Alfred, P. Anthony, and D.

Lukose, “Agent Architecture: An Overview,” Trans.

Sci. Technol., vol. 1, no. 1, pp. 18–35, 2014.

[4] A. S. Rao and M. P. Georgeff, “BDI Agents: From

Theory to Practice,” Proc. First Int. Conf. Multiagent

Syst., vol. 95, pp. 312–319, 1995.

[5] R. H. Bordini, J. F. Hübner, and M. Wooldridge,

Programming Multi-Agent Systems in AgentSpeak

using Jason. 2007.

[6] Xue Qiu, Shuguang Wang, Qiong Jia, Chunhe Xia,

and Qingxin Xia, “An automated method of

penetration testing,” 2014 IEEE Comput. Commun. IT

Appl. Conf., pp. 211–216, 2014.

[7] C. Phillips and L. P. Swiler, “A Graph-based System

for Network-vulnerability Analysis,” Proc. 1998

Work. New Secur. Paradig., pp. 71–79, 1998.

[8] K. Ingols, M. Chu, R. Lippmann, S. Webster, and S.

Boyer, “Modeling modern network attacks and

countermeasures using attack graphs,” Proc. - Annu.

Comput. Secur. Appl. Conf. ACSAC, pp. 117–126,

2009.

[9] X. Qiu, Q. Jia, S. Wang, C. Xia, and L. S. Lv,

“Automatic generation algorithm of penetration graph

in penetration testing,” Proc. - 2014 9th Int. Conf.

P2P, Parallel, Grid, Cloud Internet Comput. 3PGCIC

2014, pp. 531–537, 2014.

[10] C. W. Weimer, J. O. Miller, and R. R. Hill, “AGENT-

BASED MODELING: AN INTRODUCTION AND

PRIMER,” pp. 65–79, 2016.

