
it – Information Technology 2018; 60(3): 173–177

Distinguished Dissertations

Sebastian Wild*

Dual-pivot and beyond: The potential of multiway
partitioning in quicksort
https://doi.org/10.1515/itit-2018-0012
Received February 27, 2018; accepted February 27, 2018

Abstract: Since 2011 the Java runtime library uses a Quick-
sort variant with two pivot elements. For reasons that re-
mained unclear for years it is faster than the previous
Quicksort implementation by more than 10%; this is not
only surprising because the previous code was highly-
tuned and is used inmany programming libraries, but also
since earlier theoretical investigations suggested that us-
ing several pivots in Quicksort is not helpful.

In my dissertation I proved by a comprehensive math-
ematical analysis of all sensible Quicksort partitioning
variants that (a) indeed there is hardly any advantage to be
gained frommultiway partitioning in terms of the number
of comparisons (andmore generally in termsof CPUcosts),
but (b)multiway partitioning does significantly reduce the
amount of data to be moved between CPU andmain mem-
ory. Moreover, this more efficient use of the memory hier-
archy is not achieved by any of the other well-known opti-
mizations of Quicksort, but only through the use of several
pivots.

Keywords:Quicksort, multiway partitioning, average-case
analysis, cache misses, external-memory model

ACMCCS:Theory of computation→Design and analysis of
algorithms→ Data structures design and analysis→ Sort-
ing and searching

1 Introduction

Sorting is one of the basic stepping stones for solvingmore
interesting tasks, and thus used in some form or another

Article note: The dissertation of Dr. SebastianWild has been awarded
by the GI Dissertation Award 2016. It has been recommended by the
TU Kaiserslautern.

*Corresponding author: Sebastian Wild, University of Waterloo,
David R. Cheriton School of Computer Science, DC 2332, University
Avenue 200 East, Waterloo, ON N2L 3G1, Canada, e-mail:
wild@uwaterloo.ca

in any software application. How to sort most efficiently
might be the most well-studied and best-understood al-
gorithmic problem and programmers can rely on robust
and efficient implementations in programming libraries
for sorting an array of elements in main memory. Yet, a
silent revolution took place in the practical side of this
well-understood problem: All sorting methods in Oracle’s
Java runtime library have been rewritten entirely within
the last ten years [10, 11]! As this code forms the base of
the Android runtime library, these new sorting methods
might easily be among the most executed algorithms in
existence. (Estimates speak of 2 billion active Android de-
vices (2016 worldwide) [2].)

For suchwidely used libraries, new trends are adopted
very conservatively; any change has the potential to affect
existing use cases. Indeed – until ten years ago – all ma-
jor programming libraries used a sortingmethod based on
the Quicksort Implementation developed by Jon Bentley
and Douglas McIlroy in the early 1990s for the C standard
library [6]. Nevertheless, the running time improvements
by the new methods Dual-Pivot Quicksort and Timsort (a
Mergesort variant used for stable sorting) eventually be-
came too big to ignore.

Remarkably, this dual-pivot Quicksort was not pro-
posed by an algorithms expert; quite the contrary:
young Russian software developer and puzzle enthusi-
ast Vladimir Yaroslavskiy, at the time working for Sun
Microsystems, played with faster sorts in his free time
and discovered the potential of multiway partitioning.
Later joined by Jon Bentley and Java expert Joshua Bloch,
Yaroslavskiy developed the implementation now used in
the Java library. It contains a handful of clever mecha-
nisms for robust performance on all kinds of input distri-
butions; for random permutations of distinct elements the
Java code is essentially equivalent to the pseudocode in
Figure 1.

Arguably, using two pivots is a natural generalization
of Quicksort and Figure 1 is a quite straight-forward im-
plementation of that idea. How could its potential have
escaped the eyes of so many researchers worldwide? And
more importantly: if two pivots are good, could more piv-
ots be even better?

Brought to you by | University of Waterloo
Authenticated | wild@uwaterloo.ca author's copy

Download Date | 6/29/18 6:29 PM

https://doi.org/10.1515/itit-2018-0012
mailto:wild@uwaterloo.ca


174 | S.Wild, Dual-pivot and beyond: The potential of multiway partitioning in quicksort

DualPivotQuicksort(A, left, right) // Sorts A[left..right]
1 if right − left ≥ 1
2 P = min {A[left],A[right]} // Pivot 1
3 Q = max{A[left],A[right]} // Pivot 2
4 k = left + 1; ℓ = k; g = right − 1
5 while k ≤ g
6 if A[k] < P
7 Swap A[k] and A[ℓ]; ℓ = ℓ + 1
8 else if A[k] ≥ Q
9 while A[g] > Q and k < g
10 g = g − 1
11 end while
12 Swap A[k] and A[g]; g = g − 1
13 if A[k] < P
14 Swap A[k] and A[ℓ]; ℓ = ℓ + 1
15 end if
16 end if
17 k = k + 1
18 end while
19 ℓ = ℓ − 1; g = g + 1
20 A[left] = A[ℓ]; A[ℓ] = P
21 A[right] = A[g]; A[g] = Q
22 DualPivotQuicksort(A, left , ℓ − 1)
23 DualPivotQuicksort(A, ℓ + 1, g − 1)
24 DualPivotQuicksort(A, g + 1, right)
25 end if

Figure 1: The algorithmic core of dual-pivot Quicksort as used in
Java 7. Figure 3 shows the state of the array after line 18.

These questions were the starting point of my re-
search. Before we can analyze in how far more pivots help
or harm, we have to understand why dual-pivot Quicksort
is faster than the “classic” single-pivot version. We can
now give a plausible explanation for that: The assump-
tions of traditionalmodels of running time are not fulfilled
on modern computers to the extend they were fulfilled 20
years ago, when Bentley and McIlroy designed their clas-
sic Quicksort implementation [6]. Dual-pivot Quicksort is
not a new idea, but when it was studied in the past [16, 8],
it was correctly found to not save comparisons and it was –
for themachines of the time adequately – concluded to not
improve Quicksort’s running time. So the idea ofmultiway
partitioning is not new; thenews is that it nowadaysmakes
Quicksort faster. And the reason for that is a continuing
trend in computer hardware design, that now also affects
sorting in internal memory.

2 The “memory wall”
Moore’s Law predicts the number of transistors per area in
integrated circuits to double roughly every two years. Al-
though details and the sustainability of this growth rate

Figure 2: Development of machine balance over the last 25 years.
Each point is a result of the STEAM benchmark: x is time, y is quo-
tient of CPU peak performance (MFLOPS) divided by net memory
bandwith (MWps in “triad” benchmark) on logarithmic scale. The
line is the regression line of all points. (Further details on the data
are given in [17, Fig. 1].)

are certainly debatable, it reflects past improvements of
CPU peak performance to within a reasonable accuracy.
To profit from that applications also need to get their data
faster; but access times of mainmemory and (net) transfer
speeds of the connecting bus systems could by far not keep
upwith this rate of growth:According to thehistorical data
of John McCalpin’s STEAM benchmark [13], CPU peak per-
formance grew by 46% per year over the last 25 years,
whereas the observable memory bandwidth (the amount
of data transferable between CPU and RAM in one time
unit) grewonly by an annual 37%– the imbalance is grow-
ing exponentially! Figure 2 shows the quotient of CPUpeak
performance and memory bandwidth, the “machine bal-
ance”, for all reported benchmark results: (These numbers
average over various types of machines and timestamps
are not uniform, but the qualitative trend is undeniable.)

Improving processing power and memory capacity
does not speed up a program if it has to wait for data
to be transfered. Hierarchies of faster caches and auto-
matic prefetching alleviate the problem only partially –
if the (net) bus bandwidth itself becomes the limiting
factor, they do not help either. John Backus recognized
this issue already in 1977; he called it the von-Neumann-
Bottleneck [4]; in 1995, William Wulf und Sally McKee [19]
coined the more drastic phrase to “hit a memory wall”
when a system’s overall performance is dominated by
memory speed. This extreme state is certainly not (yet?)
reached for most applications, but the balance is shifting:
in 1993, when Bentley and McIlroy published their Quick-
sort implementation, a typical imbalance of CPU speed vs.
bandwidth was 7:1. Today it is rather 30:1.

Brought to you by | University of Waterloo
Authenticated | wild@uwaterloo.ca author's copy

Download Date | 6/29/18 6:29 PM



S. Wild, Dual-pivot and beyond: The potential of multiway partitioning in quicksort | 175

3 Quicksort and memory
bandwidth

What does it mean for sorting methods that memory ac-
cesses became more expensive in relation to CPU time?
This is depends on details of the algorithms, so let us have
a closer look at Quicksort. Its core idea is to determine the
rank of an (arbitrary) pivot element by comparing it with
all others. That determines the position of the pivot in the
sorted array and we can deal recursively with the smaller
resp. larger elements. While determining the rank, we si-
multaneously partition the array into segments: smaller el-
ements left and larger elements right.

The most-used partitioning
strategy is illustrated to the right. It
is due to C. A. R.Hoare [9] andRobert
Sedgewick [15] and was used up to
version 6 of the Java runtime library
(and in many other libraries). The
method works in place and uses se-
quential scans that guarantee maxi-
mal locality of reference for caches.
Indeed all practically relevant par-
titioning strategies do that. By mov-
ing outside-in, the scanning indices
k and g together scan the whole ar-
ray exactly once. Simpler codes like
Lumoto’s method [5, 7] do not have
this property.

To analyze and compare band-
width consumption we need a pre-
cisely defined model for the costs of
an execution. The model I propose
for that purpose allows access to the
array only via iterators. An iterator
points to a certain array position and
allows to read and write the value
there. Unlike general pointers, we
can only move iterators to neighbor-
ing positions. In the illustration to
the right, iterators are shown as rect-
angles with a “window”; note that
we have 2 active iterators here.

The cost of an execution is the number of scanned el-
ements: the number of visited elements summed over all
iterators, or equivalently, the overall number of iterator
movements. This counts areas twice if they are scanned
twice. Thenumber of scanned elementswas demonstrated
to be roughly proportional to the number of (Level 1) Cache
Misses [14, 3]. For each active iterator, we need one cache

line and only every B movements, a cache miss occurs
(for B the cache’s block size). Different iterators cause
cachemisses independently unless very close in spaceand
time. Our model is similar to the classic external-memory
model [1], but Iwant to avoid the latter’s terminology tonot
suggest that data movements are the only important oper-
ation; indeed, CPU time and scanned elements need to be
balanced.

4 Dual-pivot partitioning

The classicHoare-Sedgewickpartitioningneedsn scanned
elements since iterators k and g together visit eachelement
once; this coincides with the number of key comparisons
used in the process. The known results for comparisons in
classic Quicksort (e. g., [16]) thus also give the scanned ele-
ments. For Yaroslavskiy-Bentley-Bloch (YBB) partitioning
(Figure 1), the average number of scanned elements is 4

3n
as illustrated in Figure 3. In contrast, the average number
of comparisons is 19

12n [18].

Figure 3: State after YBB partitioning. k and g together scan n ele-
ments, ℓ on average the first third a second time.

We can obtain the same subdivision into three seg-
ments by two rounds of classic partitioning, see Figure 4.
Compared to YBB, we now scan the middle segment twice
and need 5

3n scanned elements instead of 4
3n – YBB gets

the sameworkdonewith less overall bandwidth consump-
tion!

Comparing multiway Quicksort to a simulation by
classic partitioning is an insightful point of view, but one
has to account for the pivot distributions (for more com-
plex measures of costs). Assuming all input permutations

Figure 4: Simulating 3-way by
2-way partitioning: first all el-
ements around Q, then the left
segment around P.

Brought to you by | University of Waterloo
Authenticated | wild@uwaterloo.ca author's copy

Download Date | 6/29/18 6:29 PM



176 | S.Wild, Dual-pivot and beyond: The potential of multiway partitioning in quicksort

to be equally likely, the rank of the pivot in classic Quick-
sort is uniformly distributed. In the simulation above this
is no longer true: the larger pivot Q is the maximum of two
elements, so its ranks tend tobe larger. Effectively,wedraw
Q as an order statistic of a sample (max of 2). P in the sec-
ond step happens to be uniform in its range, though.

5 Dual-pivot and beyond

To assess the potential ofmultiwaypartitioning in general,
my dissertation extends the above ideas in several ways.
I describe a parametric template algorithm for partition-
ing with any given number of pivots that generalizes all
practically relevant partitioning methods, and I analyze
this generic method in differentmodels of costs (including
scanned elements and key comparisons). The typical opti-
mizations used in fast implementations are also taken into
account, in particular the choice of the pivots from a small
sample (e. g.,median-of-3 for classic Quicksort). All results
are precise asymptotic approximations including constant
factors. Apart from those results themselves, my disserta-
tion also surveysmany techniques for the analysis of algo-
rithms that help to better understand Quicksort’s behav-
ior.

The result of the analysis allows to predict the costs
(in different cost models) for any given Quicksort variant.
Interesting is also the influence of the algorithmic parame-
ters, in particular s, the number of segments (correspond-
ing to s − 1 pivots). If we consider the number of com-
parisons, the traditional cost model, a larger s seems to
save comparisons, but most of this improvement is actu-
ally spurious: it is due to better pivots that we get automat-
ically from sorting the s − 1 pivots. (A three-pivot method
must sort its pivots, but the cost of that is not reflected in
the leading-term approximation. We thereby give it an un-
fair advantage over Quicksort with one pivot.) If we com-
pare s-way partitioning and its simulation by classic bi-
nary partitioning, the number of comparisons is almost
the same. Multiway partitioning does not reduce the num-
ber of comparisons significantly.

When we consider the number of scanned elements,
however, multiway partitioning leads to a significant re-
duction (20% in the case of YBB partitioning as shown
above). If we do not allow pivots to be chosen from a sam-
ple, the optimal number of pivots with respect to scanned
elements is 5 (leading to s = 6 segments), closely fol-
lowed by 3 pivots (supporting the partitioning method of
Kushagra et al. [12]). In the case of choosing pivots from a
large sample (using appropriate order statistics), there is

no finite optimal s: any further pivot improves the leading-
term approximation of costs and the number of scanned
elements converge to n log3(n). These theoretically opti-
mal variants have limited use for realistic input sizes,
but are an important benchmark for practical parameter
choices.

6 Summary

Quicksort had a lively youthwith new variants and tweaks
being proposed regularly. Robert Sedgewick studiedmany
of them in his Ph. D. thesis [16] and bymeans ofmathemat-
ical analysis reduced the pool of options to a fewgenuinely
helpful optimizations, the most effective ones being pivot
sampling and a cutoff to Insertionsort for small subprob-
lems. Multiway partitioning was not among them.

I showed that – similar to multiway Mergesort – mul-
tiway partitioning has genuine potential to save memory
transfers, and it is indeed the only optimization of Quick-
sort that does so. My dissertations gives a reassessment
of the relative merits of various Quicksort variants in the
spirit of Sedgewick’s thesis, but taking the increasing rel-
ative costs of memory bandwidth into account, and thus
guiding the search for 21st century library sorting meth-
ods.

References
1. Alok Aggarwal and Jeffrey S. Vitter. The input/output complexity

of sorting and related problems. Communications of the ACM,
31(9):1116–1127, August 1988.

2. Tomi T. Ahonen. Smartphone bloodbath market share update
q1: All the top 10 brands plus os shares plus installed base.
http://communities-dominate.blogs.com/brands/2016/05/
smartphone-bloodbath-market-share-update-q1-all-the-top-10-
brands-plus-os-shares-plus-installed-base.html, 2016.

3. Martin Aumüller, Martin Dietzfelbinger, and Pascal Klaue. How
good is multi-pivot quicksort? ACM Transactions on Algorithms,
13(1):1–47, 2016.

4. John Backus. Can programming be liberated from the
von Neumann style? A functional style and its algebra of
programs. Communications of the ACM, 21(8):613–641, August
1978.

5. Jon Bentley. Programming pearls: how to sort. Communications
of the ACM, 27(4):287–291, April 1984.

6. Jon L. Bentley and M. Douglas McIlroy. Engineering a sort
function. Software: Practice and Experience, 23(11):1249–1265,
1993.

7. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein. Introduction to Algorithms. MIT Press,
3rd edition, 2009.

Brought to you by | University of Waterloo
Authenticated | wild@uwaterloo.ca author's copy

Download Date | 6/29/18 6:29 PM

http://communities-dominate.blogs.com/brands/2016/05/smartphone-bloodbath-market-share-update-q1-all-the-top-10-brands-plus-os-shares-plus-installed-base.html
http://communities-dominate.blogs.com/brands/2016/05/smartphone-bloodbath-market-share-update-q1-all-the-top-10-brands-plus-os-shares-plus-installed-base.html
http://communities-dominate.blogs.com/brands/2016/05/smartphone-bloodbath-market-share-update-q1-all-the-top-10-brands-plus-os-shares-plus-installed-base.html


S. Wild, Dual-pivot and beyond: The potential of multiway partitioning in quicksort | 177

8. Pascal Hennequin. Analyse en moyenne d’algorithmes : tri
rapide et arbres de recherche. Thèse (Ph. D. Thesis), Ecole
Politechnique, Palaiseau, 1991.

9. C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10–16,
January 1962.

10. Java Core Library Development Mailing List. Replacement of
quicksort in java.util.arrays with new dual-pivot quicksort,
2009.

11. JDK Bug System. Replace modified mergesort in
java.util.arrays.sort with timsort. https://bugs.openjdk.java.
net/browse/JDK-6804124, 2009.

12. Shrinu Kushagra, Alejandro López-Ortiz, Aurick Qiao, and J.
Ian Munro. Multi-pivot Quicksort: Theory and experiments. In
Meeting on Algorithm Engineering and Experiments (ALENEX),
pages 47–60. SIAM, 2014.

13. John D. McCalpin. Sustainable memory bandwidth in high
performance computers. Technical report, University of Virginia,
Charlottesville, Virginia, 1991–2007, continually updated
technical report.

14. Markus E. Nebel, Sebastian Wild, and Conrado Martínez.
Analysis of pivot sampling in dual-pivot Quicksort.
Algorithmica, 75(4):632–683, August 2016.

15. Robert Sedgewick. Implementing Quicksort programs.
Communications of the ACM, 21(10):847–857, 1978.

16. Robert Sedgewick. Quicksort. Reprint of the author’s Ph. D.
thesis, Garland Publishing, 1980.

17. Sebastian Wild. Dual-Pivot Quicksort and Beyond: Analysis of
Multiway Partitioning and Its Practical Potential. Doktorarbeit
(Ph. D. thesis), Technische Universität Kaiserslautern, 2016.
ISBN 978-3-00-054669-3.

18. Sebastian Wild and Markus E. Nebel. Average case analysis
of Java 7’s dual pivot Quicksort. In Leah Epstein and Paolo
Ferragina, editors, European Symposium on Algorithms (ESA),
volume 7501 of LNCS, pages 825–836. Springer, 2012.

19. William Allen Wulf and Sally A. McKee. Hitting the memory
wall: Implications of the obvious. ACM SIGARCH Computer
Architecture News, 23(1):20–24, March 1995.

Bionotes
Dr. Sebastian Wild
University of Waterloo, David R. Cheriton
School of Computer Science, DC 2332,
University Avenue 200 East, Waterloo, ON
N2L 3G1, Canada
wild@uwaterloo.ca

Dr. Sebastian Wild studied computer science at Technische Uni-
versität Kaiserslautern on a scholarship by Studienstiftung des
deutschen Volkes and graduated in 2012 with a Master of Science.
After that he did his Ph. D. as wissenschaftlicher Mitarbeiter (em-
ployed doctoral candidate with teaching duties) in the research
group of Prof. Dr. Markus Nebel. His findings in the field of analysis
of algorithms soon led to publications and international collabora-
tions, including a Best Paper Award [18] at the European Symposium
on Algorithms 2012. Sebastian was continually involved in teach-
ing. During his studies he was a student tutor and during his Ph. D.
years, he was responsible for organizing tutorials and involved in
the development of new courses. Sebastian is married and father of
three children.

Brought to you by | University of Waterloo
Authenticated | wild@uwaterloo.ca author's copy

Download Date | 6/29/18 6:29 PM

https://bugs.openjdk.java.net/browse/JDK-6804124
https://bugs.openjdk.java.net/browse/JDK-6804124

	Dual-pivot and beyond: The potential of multiway partitioning in quicksort
	1 Introduction
	2 The memory wall
	3 Quicksort and memory bandwidth
	4 Dual-pivot partitioning
	5 Dual-pivot and beyond
	6 Summary
	References


