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Abstract: This paper analyses the effect of a bivariate risk on the optimal expenses in health care and 

gives conditions under which any change in the bivariate risk with respect to the (𝑠1, 𝑠2) −increasing 

concave order decreases the expenses in health care. Increasing risk increases the demand for health 

care for risk-averse and prudent individuals in the multivariate sense. Positive (negative) dependence 

increases (decreases) expenses in health care. Increasing the correlation produces the same results. 

Furthermore, the uncertainty surrounding the effectiveness of medical treatments amplifies the effect of 

any change in wealth and health risks. We also present some policy implications. 
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1. Introduction 

Uncertainty affects the demand for health care (see for instance Grossman 1972; Cropper 1977; 

Dardanoni and Wagstaff 1990; Finkelstein et al. 2019; Ahangar et al. 2018). Three sources of 

uncertainty are present in the literature: wealth risk (that is the potential loss of wealth), health 

risk (that is the potential reduction in one’s health) and the risk of the effectiveness of medical 

care (that is the potential ineffectiveness of medical care).  Dardanoni and Wagstaff (1990) give 

conditions under which uncertainty surrounding health care effectiveness increases medical 

care. These conditions are expressed with partial derivatives and cross derivatives of the 

bivariate utility function of consumption and health and the cross derivatives play an important 

role (see Eeckhoudt, Rey and Schlesinger 2007).  

Palumbo (1999) shows that uncertain health expenses generate precautionary savings. Pang and 

Warshawsky (2009) demonstrate that uninsured health expenses lower non-health consumption 

at all ages and that the wealth available for consumption after deduction of health expenses 

becomes more volatile in the presence of additional background risk. The uncertainty in health 

expenses implies precautionary savings and shifts from risky assets to risk-free assets.  Edwards 

(2002) presents a theoretical model in which portfolio shares are based on health risk. Edwards 

(2008) shows that health status affects portfolio choice through different channels. Heaton and 

Lucas (2000) investigate whether risky human capital affects the demand for financial assets. 

Health status influences the level of risk aversion which in turn affects the portfolio allocation.  

Rosen and Wu (2004) show that poor health increases the proportion of financial wealth held 

in safe assets and decreases the proportion held in other asset categories. Fan and Zhao (2009) 

show that adverse health shocks motivate a safer portfolio choice. That is, health shocks shift 

investment from risky assets towards less risky assets. Meer, Miller and Rosen (2003) analyse 

the impact of wealth on health status and show that wealth-health connection is not driven by 

short run changes in wealth. However, changes in wealth have a strong correlation with changes 

in health. All the papers highlight the relationship between health status and portfolio selection 

generally with empirical studies. By considering saving decisions and health investment, 

Denuit, Eeckhoudt and Menegatti (2009) show that the optimal decision variable decreases as 

the pair of risks increases, according to bivariate increasing concave dominance rules.  To the 

best of our knowledge, these papers lack important features because they have examined only 

the action of health risk on wealth risk but not the way wealth risk acts on health risk.  



In our approach, wealth risk can play the role of a background risk. Furthermore we analyse the 

effect of the two risks taking together on the demand for health care.  According to the literature 

(Keenan, Rudow and Snow 2008; Gollier and Pratt 1996; Kimball 1993; Pratt and Zeckhauser 

1987, among others), when facing background risks, the decision-makers should bear less 

endogenous risk. In our framework, the decision-makers should increase their demand for 

health care. We put emphasis on the simultaneous effects wealth and health risks have on the 

demand for health care. We investigate the effect of wealth risk on the willingness to bear health 

risk. 

Our objective is fourfold. Firstly, we aim to analyse the effect of risky wealth on the optimal 

health care investment with a risky health status. This will shed some the light on the interaction 

between health investment and wealth situation (riskless or risky). Secondly, we aim to analyse 

the effect of an increase in both wealth and health risk on the demand for health care. Thirdly, 

we study the effect of the dependence on the health care demand between the two sources of 

risk. Fourth, we analyse how the effect of uncertainty surrounding the effectiveness of medical 

treatments affects medical care expenses. 

The paper is organised as follows. Section 2 presents the general model. In section 3 we analyse 

how an increase in the pair of risks, according to the bivariate increasing concave dominance, 

affects health care investment. Section 4 presents the modification of the health care demand 

due to the introduction of a second source of risk when facing one source of risk. Section 5 

analyses the effect of an increase in one source of risk on the demand for health care. The next 

section deals with the dependence between the two sources of risks.  In section 7 we analyse 

the demand for medical care is affected by uncertainty surrounding the effectiveness of medical 

treatments. We finally end the paper with a conclusion.  

 

2. The General Model 

We assume that the decision-maker faces a one-period model such that at time zero, he has an 

exogenous wealth 𝑦0, he knows his current health state ℎ0 and chooses the expenses in health 

care, 𝑚𝑋,𝐻, to maximise his expected utility given by: 

𝑢(𝑦0 − 𝑚𝑋,𝐻, ℎ0) + 𝐸𝑢(𝑋, 𝜓(𝑚𝑋,𝐻, 𝐻))    (1) 

We assume that the level of health, taking into account the investment in health care at the end 

of the period, is given by 𝜓(𝑚, 𝐻) with at least 
𝜕𝜓

𝜕𝐻
≥ 0,

𝜕𝜓

𝜕𝑚
≥ 0,

𝜕2𝜓

𝜕𝐻2 ≤ 0 𝑎𝑛𝑑 
𝜕2𝜓

𝜕𝑚2 ≤ 0  as in 



Dardanoni and Wagstaff (1990), with 𝜓(0, ℎ) = ℎ. For 𝜓 gives the amount of health produced 

by medical care and elements such as nutritional food with input 𝑚 in state 𝐻. 𝑋 denotes the 

final risky wealth whereas 𝐻 stands for the future risky health status. This level of health is 

risky because it is affected by changes in the climate, exposure to viruses and so on. 𝑋 can be 

viewed as a risky portfolio (assets, savings, etc.) or a risky income. 

In all what follows 𝑓(k1,k2) stands for the (𝑘1, 𝑘2)𝑡ℎ partial derivative of the bivariate 

function 𝑓 . 

The utility function is at least such that: 

 𝑢(1,0)(𝑐, ℎ) > 0, 𝑢(0,1)(𝑐, ℎ) > 0, 𝑢(2,0)(𝑐, ℎ) < 0, 𝑢(0,2)(𝑐, ℎ) < 0, 

𝑢(0,2)(𝑐, ℎ)𝑢(2,0)(𝑐, ℎ) > [𝑢(1,1)(𝑐, ℎ)]
2

. 

The first-order condition is given by: 

−𝑢(1,0)(𝑦0 − 𝑚, ℎ0) + 𝐸[𝜓(1,0)(𝑚, 𝐻)𝑢(0,1)(𝑋, 𝜓(𝑚, 𝐻))] = 0. 

The second-order condition is given by: 

𝑢(2,0)(𝑦0 − 𝑚, ℎ0) + 𝐸[𝜓(2,0)(𝑚, 𝐻) 𝑢(0,1)(𝑋, 𝜓(𝑚, 𝐻))]

+ 𝐸 [[𝜓(1,0)(𝑚, 𝐻)]
2

 𝑢(0,2)(𝑋, 𝜓(𝑚, 𝐻))] ≤ 0. 

This condition is fulfilled thanks to our hypothesis.  

In what follows, we consider two general cases concerning the health production function: an 

additive form 𝜓(𝑚, 𝐻) = 𝐻 + Ф(𝑚)  like Selden (1993) and a multiplicative form (𝑚, 𝐻) =

𝐻(1 + 𝜑(𝑚))  like Dardanoni and Wagstaff (1987). This formulation encompasses that of 

Chang (1996). 

 

3. Changes in Health and Wealth Risks  

We now introduce bivariate stochastic dominance and our main results. 

3.1 Bivariate Stochastic Dominance 



We use the concept of bivariate increasing concave dominance, to analyse how health care 

investment is affected by a change in the pair of risks (𝑋, 𝐻). We note in passing that univariate 

analysis is a popular paradigm for decision analysis as well as risk analysis. However we utilise 

bivariate analysis to explicitly understand the relationship between random variables. 

As Denuit, Lefèvre and Mesfioui (1999b) have done, let us define the class of 

(𝑠1, 𝑠2) −increasing concave functions, denoted by  𝒰𝑠1,𝑠2−𝑖𝑐𝑣 as follows: 

Definition 1: 𝑢 ∈ 𝒰𝑠1,𝑠2−𝑖𝑐𝑣
 if and only if 

(−1)𝑘1+𝑘2+1𝑢(𝑘1,𝑘2)(𝑐, ℎ) ≥ 0  ∀𝑘1 = 0, … , 𝑠1  ∀𝑘2 = 0, … , 𝑠2; 𝑘1 + 𝑘2 ≥ 1 

with 𝑢(𝑘1,𝑘2)(𝑐, ℎ) =
𝜕𝑘1+𝑘2  𝑢(𝑐,ℎ)

𝜕𝑐𝑘1𝜕ℎ𝑘2
  the (𝑘1, 𝑘2)𝑡ℎ partial derivative of the bivariate utility 

function u. 

We assume that all the partial and the cross derivatives exist up to order 𝑠1 and 𝑠2 for the first 

and second attributes respectively. The common preferences of all the decision-makers with 

(𝑠1, 𝑠2) −increasing concave utility functions generate the (𝑠1, 𝑠2) −increasing concave 

dominance rule, named the (𝑠1, 𝑠2) −increasing concave order. Denuit, Lefèvre and Mesfioui 

(1999b) give the following result concerning bivariate random variables: 

Assume that (𝑋1, 𝐻1) is dominated by (𝑋2, 𝐻2) in the (s1, s2) −increasing concave order, 

denoted by (𝑋1, 𝐻1) ≼s1,s2−icv (𝑋2, 𝐻2), then for all functions 𝑢 in 𝒰s1,s2−icv
, we have 

E𝑢(𝑋1, 𝐻1) ≤ E𝑢(𝑋2, 𝐻2). In fact (𝑋1, 𝐻1) represents an (𝑠1, 𝑠2) −increase in risk of  (𝑋2, 𝐻2). 

We note in passing that alternative decision making and economic models exist in addition to 

stochastic dominance. Consequently, alternative models and decision making methods may 

result in alternative conclusions to the ones presented in the paper, in particular the behavioural 

economics models may  lead to significantly different results.  However, stochastic dominance 

is a frequently employed decision making model in economics and with respect to the literature 

in this area, hence we apply this method to our paper. We also note in passing that alternative 

risk analysis and management methods exist to those discussed in the paper (for instance 

Markowitz portfolio theory and risk management (see Markowitz (1952)). Whilst we 

acknowledge their importance to the literature, the focus on this paper is on risk analysis and 

management in the context of a decision-maker with facing simultaneous and bivariate risk 

(namely health and wealth risk). 



 

3.2 The Main Results 

We want to point out the effect of the change in the pair of risks (health and wealth risks) on 

the demand for health care. To this end, we compare the optimal decision with two different 

vectors, namely (𝑋1, 𝐻1) and (𝑋2, 𝐻2) such that the latter dominates the former according to 

the (𝑠1, 𝑠2) −increasing concave dominance rule. Let us denote by 𝑚𝑋1,𝐻1

∗  (𝑚𝑋2,𝐻2

∗ , 

respectively) the optimal decision when the bivariate risk is given by (𝑋1, 𝐻1)  ((𝑋2, 𝐻2) 

respectively). We give conditions under which improving the bivariate risk leads to a decrease 

of the optimal investment in health care. We consider the case of multiplicative health 

production function and that of additive health production function. 

 

3.2.1 The case of a multiplicative health production function 

Firstly, let us consider the case of multiplicative health production function. The health 

production function takes the following form: 

  𝜓(𝑚, 𝐻) = 𝐻 + 𝐻𝜑(𝑚)         (3) 

with  

𝜑(𝑚) ≥ 0, 𝜑′(𝑚) ≥ 0, 𝜑′′(𝑚) ≤ 0 𝑎𝑛𝑑 𝜑(0) = 0 

We have the following result: 

Theorem 1. Assume the health production function is multiplicative. If   𝑢 ∈  𝒰𝑠1,𝑠2−𝑖𝑐𝑣
 and  

∀𝑐, ℎ      − ℎ
 𝑢(𝑘1,𝑘2+1)(𝑐, ℎ)

 𝑢(𝑘1,𝑘2)(𝑐, ℎ)
≥ 𝑘2  ∀𝑘1 = 0, … , 𝑠1  ∀𝑘2 = 0, … , 𝑠2; 𝑘1 + 𝑘2 ≥ 1 

then: (𝑋1, 𝐻1) ≼𝑠1,𝑠2−𝑖𝑐𝑣
(𝑋2, 𝐻2) ⇒ 𝑚𝑋1,𝐻1

∗ ≥ 𝑚𝑋2,𝐻2

∗ .  

Alternatively, if   𝑢 ∈  𝒰𝑠1,𝑠2−𝑖𝑐𝑣
 and  

−ℎ
 𝑢(𝑘1,𝑘2+1)(𝑐, ℎ)

 𝑢(𝑘1,𝑘2)(𝑐, ℎ)
≥ 𝑘2  ∀𝑘1 = 0, … , 𝑠1  ∀𝑘2 = 0, … , 𝑠2; 𝑘1 + 𝑘2 ≥ 1 

then: (𝑋1, 𝐻1) ≼𝑠1,𝑠2−𝑖𝑐𝑣
(𝑋2, 𝐻2) ⇒ 𝑚1

∗ ≥ 𝑚2
∗  



Proof.  𝑚2
∗ ≤ 𝑚1

∗ if and only if the first-order condition with (𝑋2, 𝐻2) expressed at 𝑚1
∗ is 

negative. That is: 

−𝑢(1,0)(𝑦0 − 𝑚1
∗ , ℎ0) + 𝐸[𝜑′(𝑚1

∗)𝐻2 𝑢
(0,1)(𝑋2, 𝐻2(1 + 𝜑(𝑚1

∗)))] ≤ 0 

⇔ 𝜑′(𝑚1
∗) 𝐸[𝐻2 𝑢(0,1)(𝑋2, 𝐻2(1 + 𝜑(𝑚1

∗)))] ≤ 𝑢(1,0)(𝑦0 − 𝑚1
∗ , ℎ0) 

⇔ 𝐸[𝐻2 𝑢(0,1)(𝑋2, 𝐻2(1 + 𝜑(𝑚1
∗)))] ≤ 𝐸[𝐻1 𝑢(0,1)(𝑋1, 𝐻1(1 + 𝜑(𝑚1

∗)))] 

due to the first-order condition concerning 𝑚1
∗. This condition holds if and only if    

−ℎ 𝑢(0,1)(𝑐, ℎ + ℎ𝜑(𝑚1
∗)) ∈  𝒰𝑠1,𝑠2−𝑖𝑐𝑣 

⇔ 𝑣(𝑐, ℎ) = −ℎ 𝑢(0,1)(𝑐, ℎ) ∈  𝒰𝑠1,𝑠2−𝑖𝑐𝑣
 

or equivalently if and only if: 

(−1)𝑘1+𝑘2+1𝑣(𝑘1,𝑘2)(𝑐, ℎ) ≥ 0   ∀𝑐, ℎ, ∀𝑘1 = 0, … , 𝑠1, ∀𝑘2 = 0, … , 𝑠2; 𝑘1 + 𝑘2 ≥ 1 

Remark that  

𝑣(𝑘1,𝑘2)(𝑐, ℎ) = −𝑘2(1 + 𝜑(𝑚1
∗))

𝑘2−1
 𝑢(𝑘1,𝑘2)(𝑐, ℎ + ℎ𝜑(𝑚1

∗))

− ℎ (1 + 𝜑(𝑚1
∗))

𝑘2
  𝑢(𝑘1,𝑘2+1)(𝑐, ℎ + ℎ𝜑(𝑚1

∗)).  

Therefore, the condition to fulfil becomes: 

(−1)𝑘1+𝑘2+1 [−𝑘2(1 + 𝜑(𝑚1
∗))

𝑘2−1
 𝑢(𝑘1,𝑘2)(𝑐, ℎ + ℎ𝜑(𝑚1

∗))

− ℎ (1 + 𝜑(𝑚1
∗))

𝑘2
  𝑢(𝑘1,𝑘2+1)(𝑐, ℎ + ℎ𝜑(𝑚1

∗)) ] ≥ 0,

∀𝑘1 = 0, … , 𝑠1  , ∀𝑘2 = 0, … , 𝑠2; 𝑘1 + 𝑘2 ≥ 1 

Equivalently: 

(−1)𝑘1+𝑘2+1 𝑢(𝑘1,𝑘2)(𝑐, ℎ

+ ℎ𝜑(𝑚1
∗))(1 + 𝜑(𝑚1

∗))
𝑘2−1

[−𝑘2

− ℎ (1 + 𝜑(𝑚1
∗))  

 𝑢(𝑘1,𝑘2+1)(𝑐, ℎ + ℎ𝜑(𝑚1
∗))

 𝑢(𝑘1,𝑘2)(𝑐, ℎ + ℎ𝜑(𝑚1
∗))

] ≥ 0 , ∀𝑘1

= 0, … , 𝑠1 , ∀𝑘2 = 0, … , 𝑠2; 𝑘1 + 𝑘2 ≥ 1 



The term before the brackets is positive and the condition holds if: 

−ℎ (1 + 𝜑(𝑚1
∗))  

 𝑢(𝑘1,𝑘2+1)(𝑐, ℎ + ℎ𝜑(𝑚1
∗))

 𝑢(𝑘1,𝑘2)(𝑐, ℎ + ℎ𝜑(𝑚1
∗))

≥ 𝑘2  ∀𝑘1 = 0, … , 𝑠1, ∀𝑘2

= 0, … , 𝑠2; 𝑘1 + 𝑘2 ≥ 1 

Q.E.D.∎ 

 

The condition involves the generalised coefficients of relative risk aversion in health defined 

as follows: 

𝑅𝑅𝑘1,𝑘2
(𝑐, ℎ) = −ℎ

𝑢(𝑘1,𝑘2+1)

𝑢(𝑘1,𝑘2)
(𝑐, ℎ). 

Also the condition states that this generalised coefficient must be greater than a benchmark 

value given by 𝑘2.  

Recall that in the univariate framework the coefficient of relative risk aversion is given by 

−ℎ
𝑣′′(ℎ)

𝑣′(ℎ)
 , whereas the coefficient of relative risk aversion of order 𝑘2 corresponds to 

−ℎ
𝑣(𝑘2)(ℎ)

𝑣(𝑘2−1)(ℎ)
 where 𝑣 is the univariate utility function of health. In fact, 𝑅𝑅𝑘1,𝑘2

(𝑐, ℎ) 

corresponds to the coefficient of relative risk aversion of order 𝑘2 of the utility function 𝑢(𝑘1,0) 

of order 𝑘2, with respect to the second attribute. Risk aversion of order two corresponds to usual 

risk aversion (introduced by Pratt 1964), risk aversion of order three corresponds to prudence 

(introduced by Kimball 1990), risk aversion of order four corresponds to temperance 

(introduced by Kimball 1993), risk aversion of order five corresponds to edginess (introduced 

by Lajeri –Chaherli 2004) and so forth. 

Eeckhoudt, Etner and Schroyen (2009) show that the respective benchmark values of relative 

risk aversion and prudence are one and two. In fact, the benchmark value for −ℎ
𝑣(𝑘2+1)(ℎ)

𝑣(𝑘2)(ℎ)
   is 

𝑘2. This last result is due to Wang and Li (2010). 

Therefore, the condition stands that for all values of 𝑘2 up to 𝑠2 the coefficients of relative risk 

aversion of 𝑢(𝑘1,0), with respect to the second attribute (the one concerned by the decision 

variable) at any order up to 𝑠2, are less than their respective order. 



The use of the multiplicative health production function implies that the conditions in Theorem 

1 are expressed in terms of relative risk aversion of higher order (relative risk aversion, relative 

prudence, relative temperance ...). For example, if we consider the special case with 𝑠1 = 1 and 

𝑠2 = 1, the conditions to be fulfilled are the following: 

−ℎ
𝑢(0,2)

𝑢(0,1)
(𝑐, ℎ) ≥ 1 ∀𝑐, ℎ ∶ Relative risk aversion of 𝑢(0,0) = 𝑢  with respect to health greater 

than one. 

−ℎ
𝑢(1,2)

𝑢(1,1)
(𝑐, ℎ) ≥ 1 ∀𝑐, ℎ: Relative risk aversion of 𝑢(1,0)  with respect to health greater than 

one . 

𝑢(1,1)(𝑐, ℎ) ≤ 0 ∀𝑐, ℎ : Pair-wise risk aversion (multivariate risk aversion) and the utility 

function is increasing with the two attributes.  

 

The condition 𝑢(1,1)(𝑐, ℎ) =
𝜕2𝑢

𝜕𝑐𝜕ℎ
 ≤ 0  corresponds to multivariate risk aversion introduced by 

Richard (1975), and named pair-wise risk aversion by Scarsini (1985), as follows: 

Definition 2: An individual is said to behave in a multivariate risk averse manner if he prefers 

the lottery 𝐿 [(𝑐1, ℎ2), (𝑐2, ℎ1);
1

2
,

1

2
] to the lottery 𝐿 [(𝑐1, ℎ1), (𝑐, ℎ2);

1

2
,

1

2
] with 𝑐1 ≤ 𝑐2  and 

ℎ1 ≤ ℎ2 .  

In the expected utility framework, this definition is equivalent to: 

𝑢(𝑐1, ℎ2) + 𝑢(𝑐2, ℎ1) ≥ 𝑢(𝑐1, ℎ1) + 𝑢(𝑐2, ℎ2)  ∀𝑐1 ≤ 𝑐2  , ℎ1 ≤ ℎ2. 

That is, the utility function is sub-modular or 2-antitone. According to Richard (1975), “The 

decision-maker prefers getting some of the ‘best’ and some of the ‘worst’ to taking a chance on 

all [of] the ‘best’ or all [of] the ‘worst’”. Or equivalently, the decision-maker prefers having 

low wealth with good health or high wealth with poor health instead of having high wealth with 

good health or low wealth with poor health. 𝑢(1,1)  ≤ 0 means that the marginal utility of wealth 

decreases with health status and vice versa. 

 

3.2.2 The case of additive health production function 



Second, let us consider the case of additive production function. The health production function 

takes the following form: 

𝜓(𝑚, 𝐻) = 𝐻 + Ф(𝑚),          (4) 

with at least 

Ф(𝑚) ≥ 0, Ф′(𝑚) ≥ 0, Ф′′(𝑚) ≤ 0 𝑎𝑛𝑑 Ф(0) = 0. 

Recall that the functional form chosen by Denuit, Eeckhoudt and Menegatti (2009) was the 

following: 

𝜓(𝑚, 𝐻) = 𝐻 + 𝑚. 

The decision maker chooses the amount 𝑚 invested in health care to maximise his expected 

utility: 

𝑢(𝑦0 − 𝑚, ℎ0) + 𝐸𝑢(𝑋, 𝐻 + Ф(𝑚)). 

The first-order condition is given by: 

−𝑢(1,0)(𝑦0 − 𝑚, ℎ0) + Ф′(𝑚)𝐸[𝑢(0,1)(𝑋, 𝐻 + Ф(𝑚))] = 0. 

The second-order condition is satisfied. Thus, the optimum is an interior optimum. 

The following result which concerns the additive production function generalises the result 

from Denuit, Eeckhoudt and Menegatti (2009): 

Theorem 2. Assume the health production function is additive. If 𝑢 ∈  𝒰𝑠1,𝑠2+1−𝑖𝑐𝑣
 then 

(𝑋1, 𝐻1) ≼𝑠1,𝑠2−𝑖𝑐𝑣
(𝑋2, 𝐻2) ⇒ 𝑚𝑋1,𝐻1

∗ ≥ 𝑚𝑋2,𝐻2

∗ . Alternatively,  if 𝑢 ∈  𝒰𝑠1,𝑠2+1−𝑖𝑐𝑣
 then 

(𝑋1, 𝐻1) ≼𝑠1,𝑠2−𝑖𝑐𝑣
(𝑋2, 𝐻2) ⇒ 𝑚1

∗ ≥ 𝑚2
∗ . 

Proof.  𝑚2
∗ ≤ 𝑚1

∗ if and only if the first-order condition with (𝑋2, 𝐻2) expressed at 𝑚1
∗ is 

negative. That is: 

−𝑢(1,0)(𝑦0 − 𝑚1
∗ , ℎ0) + 𝐸[Ф′(𝑚1

∗) 𝑢(0,1)(𝑋2, 𝐻2 + Ф(𝑚1
∗))] ≤ 0 

⇔ 𝐸[ 𝑢(0,1)(𝑋2, 𝐻2 + Ф(𝑚1
∗))] ≤ 𝐸[ 𝑢(0,1)(𝑋1, 𝐻1 + Ф(𝑚1

∗))] 

This condition holds if and only if    



− 𝑢(0,1)(𝑐, ℎ + Ф(𝑚1
∗)) ∈  𝒰𝑠1,𝑠2−𝑖𝑐𝑣

 

⇔ 𝑣(𝑐, ℎ) = − 𝑢(0,1)(𝑐, ℎ) ∈  𝒰𝑠1,𝑠2−𝑖𝑐𝑣
 

or equivalently if and only if: 

(−1)𝑘1+𝑘2+1𝑣(𝑘1,𝑘2)(𝑐, ℎ) ≥ 0   ∀𝑐, ℎ  , ∀𝑘1 = 0, … , 𝑠1 , ∀𝑘2 = 0, … , 𝑠2; 𝑘1 + 𝑘2 ≥ 1 

⇔ (−1)𝑘1+(𝑘2+1)+1𝑢(𝑘1,𝑘2+1)(𝑐, ℎ) ≥ 0   ∀𝑐, ℎ,   ∀𝑘1 = 0, … , 𝑠1 , ∀𝑘2 = 0, … , 𝑠2; 𝑘1 + 𝑘2 ≥ 1 

The condition is fulfilled when 𝑢 ∈  𝒰𝑠1,𝑠2 +1−𝑖𝑐𝑣
.  

Q.E.D.∎ 

 

For example, if we consider the particular case with 𝑠1 = 1 and 𝑠2 = 1, the conditions to be 

fulfilled in order to see a decrease in the demand for health care after an increase in the pair of 

risks according to the (1,1) −increasing concave order are the following:  

 𝑢(0,2)  ≤ 0 : Risk aversion with respect to health; 

 𝑢(1,1)  ≤ 0 : Pair-wise risk aversion; 

𝑢(1,2)  ≥ 0 : Cross-prudence with respect to health; 

 

and the utility function increases with the two attributes as usual.  

The condition 𝑢(1,2)  ≥ 0  corresponds to cross-prudence introduced by Eeckhoudt, Rey and 

Schlesinger (2007) as follows: 

Definition 3: Cross-prudence with respect to the second attribute of the utility function is 

equivalent to the preference for the 50-50 lottery [(𝑐1, ℎ2), (𝑐2 + Є̃2, ℎ2)]  over the 50-50 

lottery [(𝑐1 + Є̃2, ℎ2), (𝑐2, ℎ2)] with   𝑐1 ≤ 𝑐2, ℎ2, 𝑎𝑛𝑑  Є̃2𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡𝐸(Є̃2) = 0. 

Jokung (2011) related cross-prudence to risk apportionment of order (1,2). Risk apportionment 

means that the individual prefers to disaggregate risks across the different states of nature. In 

addition, it is supposed that the individual prefers to get some of the ‘good’ and some of the 



‘bad’, rather than taking a chance on all of the ‘good’ and all of the ‘bad’ (pair-wise risk 

aversion). 

 

4. On One Risk to Two Risks 

We start with the situation without uncertainty and we tackle two cases: first the decision-maker 

faces a health risk and we introduce a wealth risk; second, the decision-maker deals with a 

wealth risk and we add a health risk. We want to analyse the effect of the introduction of the 

risk on the demand for health care. Let 𝑚𝐸(𝑋),𝐻
∗ , 𝑚𝑋,𝐸(𝐻)

∗  and 𝑚𝐸(𝑋),𝐸(𝐻)
∗  denote the decisions 

with the riskless wealth, with the riskless health and with both riskless wealth and riskless 

health, respectively.  

 

4.1 Health Risk 

In the initial situation, without any risk, the decision-maker maximises his utility and he 

determines the optimal expenses in medical care without uncertainty. First, we introduce the 

health risk (we replace the mean of the random health status by the random health status itself), 

the decision-maker chooses the expenses in health care when facing (𝐸(𝑋), 𝐻) and the optimal 

expenses in health care are 𝑚𝐸(𝑋),𝐻
∗ . The convexity of the marginal utility with respect to health 

is sufficient to guarantee an increase in the demand for health care. We are in presence of a 

precautionary behaviour. The decision-maker increases the amount invested in health care in 

order to take into account the introduction of the uncertainty. This result is analogous to that of 

Palumbo (1999) concerning precautionary savings. The convexity of the marginal utility 

function plays an important role. Thus 𝑚𝐸(𝑋),𝐻
∗ ≥ 𝑚𝐸(𝑋),𝐸(𝐻)

∗  when 𝑢
(0,3)

≥ 0 (prudence) with 

an additive health production function. The condition becomes −ℎ
𝑢(0,3)

𝑢(0,2) ≥ 2  (relative prudence 

greater than two) with a multiplicative health production function. 

Now, our aim is to compare 𝑚𝐸(𝑋),𝐻
∗  with 𝑚𝑋,𝐻

∗  , obtained when facing(𝑋, 𝐻). Intuitively, this 

particular increase in wealth risk (for example changing a safe portfolio for a risky one) will 

have an equivalent effect as an increase in income uncertainty. In the univariate framework, as 

shown by Kimball and Weil (2009) decreasing absolute risk aversion is sufficient to ensure a 



prudent behaviour, and consequently an increase in the demand for health care. We generalise 

this result. 

Proposition 1. Assume the health production function is multiplicative. 

1. If   −ℎ
𝑢(0,3)

𝑢(0,2)
(𝑐, ℎ) ≥ 2,  then 𝑚𝐸(𝑋),𝐻

∗ ≥ 𝑚𝐸(𝑋),𝐸(𝐻)
∗ . 

2. If   𝑢 ∈  𝒰2,1,−𝑖𝑐𝑣
 and −ℎ

𝑢(0,2)

𝑢(0,1)
(𝑐, ℎ) ≥ 1; −ℎ

𝑢(1,2)

𝑢(1,1)
(𝑐, ℎ) ≥ 1; −ℎ

𝑢(2,2)

𝑢(2,1)
(𝑐, ℎ) ≥ 1   ∀𝑐, ℎ 

then 𝑚𝑋,𝐻
∗ ≥ 𝑚𝐸(𝑋),𝐻

∗ . 

Proof. The first-order condition expressed at 𝑚 = 𝑚𝐸(𝑋),𝐸(𝐻)
∗  is non-negative if and only if: 

−𝑢(1,0)(𝑦0 − 𝑚, ℎ0) + 𝜑′(𝑚)𝐸𝐻𝑢(0,1)(𝐸(𝑋), 𝐻 + 𝜑(𝑚)𝐻) ≥ 0 

⇔ 𝐸𝐻𝑢(0,1)(𝐸(𝑋), 𝐻 + 𝜑(𝑚)𝐻) ≥ 𝐸(𝐻)𝑢(0,1)(𝐸(𝑋), 𝐸(𝐻) + 𝜑(𝑚)𝐸(𝐻)). 

This is true if  ℎ 𝑢(0,1) 𝑖𝑠  𝑎 𝑐𝑜𝑛𝑣𝑒𝑥 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 ℎ𝑒𝑎𝑙𝑡ℎ. That is,  

2𝑢(0,2)(𝑐, ℎ) + ℎ𝑢(0,3)(𝑐, ℎ) ≥ 0. 

Thus the result follows. 

Concerning the second part of the proposition, remark that (𝑋, 𝐻) ≼2,1−𝑖𝑐𝑣
(𝐸(𝑋), 𝐻) and apply 

Theorem 1. 

Q.E.D.∎ 

 

The conditions to guarantee that 𝑚𝑋,𝐻
∗ ≥ 𝑚𝐸(𝑋),𝐻

∗  imply that the coefficients of relative risk 

aversion of 𝑢(0,0), 𝑢(1,0) and 𝑢(2,0)  to be greater than one but also the utility function to exhibit 

risk aversion (𝑢(0,2) ≤ 0 𝑎𝑛𝑑 𝑢(2,0) ≤ 0), pair-wise risk aversion (𝑢(1,1) ≤ 0), cross-prudence 

(𝑢(1,2) ≥ 0 𝑎𝑛𝑑 𝑢(2,1) ≥ 0), temperance (𝑢(2,2) ≤ 0). 

Proposition 1 bis. Assume the health production function is additive. 

1. If  𝑢
(0,3)

≥ 0 , then 𝑚𝐸(𝑋),𝐻
∗ ≥ 𝑚𝐸(𝑋),𝐸(𝐻)

∗ . 

2. If   𝑢 ∈  𝒰2,2,−𝑖𝑐𝑣
 then 𝑚𝑋,𝐻

∗ ≥ 𝑚𝐸(𝑋),𝐻
∗ . 

Proof. The first-order condition with the health risk expressed at 𝑚 = 𝑚𝐸(𝑋),𝐸(𝐻)
∗  is non-

negative if and only if: 



−𝑢(1,0)(𝑦0 − 𝑚, ℎ0) + Ф′(𝑚)𝐸𝑢(0,1)(𝐸(𝑋), 𝐻 + Ф(𝑚)) ≥ 0 

⇔ 𝐸𝑢(0,1)(𝐸(𝑋), 𝐻 + Ф(𝑚)) ≥ 𝑢(0,1)(𝐸(𝑋), 𝐸(𝐻) + Ф(𝑚)) 

This is true if  𝑢(0,1) 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑥 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 ℎ𝑒𝑎𝑙𝑡ℎ. That is 𝑢(0,3) ≥ 0. 

For the second part of the proposition, remark that (𝑋, 𝐻) ≼,12−𝑖𝑐𝑣
(𝑋, 𝐸(𝐻)) and apply 

Theorem 2.  

Q.E.D.∎  

 

The details concerning the conditions to be fulfilled in order to ensure that the introduction of 

the wealth risk in presence of the health risk will increase the demand for medical care are: 

- increase in both attributes; 

- concavity of the utility function with respect to both attributes; 

- pair-wise risk aversion; 

- cross-prudence with respect to both arguments; 

- temperance. 

The concept of temperance was introduced by Eeckhoudt, Rey and Schlesinger (2007) as 

follows: 

Definition 4: Temperance is equivalent to the preference for the 50-50 lottery [(𝑐 +

Є̃1, ℎ), (𝑐, ℎ + Є̃2)] over the 50-50 lottery [(𝑐 + Є̃1, ℎ + Є̃2), (𝑐, ℎ)] ∀𝑐,ℎ, and  Є̃1, Є̃2 two 

independent zero-mean random variables. 

Temperance corresponds to bivariate risk apportionment of order (2,2). That is, a type of 

preference for disaggregation of the addition of two independent zero-mean random variables 

in each attribute of the utility function. 

 

4.2 Wealth Risk 

In this section we analyse the effect of the introduction of wealth risk on the demand for health 

care. We tackle this analysis sequentially, first dealing with the case where there is no 

uncertainty about health and introduction wealth risk. We then move on to the case where there 

is uncertainty about health, before introducing wealth risk. In the first case, where there is no 



uncertainty and we introduce wealth risk, the decision-maker chooses the expenses in health 

care to maximise expected utility when facing (𝑋, 𝐸(𝐻)). The optimal expenses in health care 

are 𝑚𝑋,𝐸(𝐻)
∗ . These optimal expenses are greater than those without wealth risk if the marginal 

utility related to health is convex with respect to wealth in case of additive production function. 

This is precautionary due to saving motives (see Kimball 1990; Dreze and Modigliani 1972; 

Sandmo 1970 and Leland 1968) via the demand for health. 

Our aim is to compare 𝑚𝑋,𝐸(𝐻)
∗  with 𝑚𝑋,𝐻

∗ .  The decision-maker faces a wealth risk and we 

introduce a health risk. Therefore, the demand for health care must take into account the 

increase in global uncertainty. Our intuition is to see an increase in the demand for health care. 

We have the following results: 

Proposition 2. Assume the production function is multiplicative. 

1. If    𝑢(1,2) ≥ 0 then 𝑚𝑋,𝐸(𝐻)
∗ ≥ 𝑚𝐸(𝑋),𝐸(𝐻)

∗ . 

2. If  𝑢 ∈  𝒰1,2−𝑖𝑐𝑣
and  

−ℎ
𝑢(0,2)

𝑢(0,1)
(𝑐, ℎ) ≥ 1; −ℎ

𝑢(1,2)

𝑢(1,1)
(𝑐, ℎ) ≥ 1; −ℎ

𝑢(0,3)

𝑢(0,2)
(𝑐, ℎ) ≥ 2; −ℎ

𝑢(1,3)

𝑢(1,2)
(𝑐, ℎ) ≥ 2   ∀𝑐, ℎ,  then 

 𝑚𝑋,𝐻
∗ ≥ 𝑚𝑋,𝐸(𝐻)

∗ .  

Proof. The first-order condition expressed at 𝑚 = 𝑚𝐸(𝑋),𝐸(𝐻)
∗  is non-negative if and only if: 

−𝑢(1,0)(𝑦0 − 𝑚, ℎ0) + 𝜑′(𝑚)𝐸(𝐻)𝐸𝑢(0,1)(𝑋, 𝐸(𝐻) + 𝜑(𝑚)𝐸(𝐻)) ≥ 0 

⇔ 𝐸𝑢(0,1)(𝑋, 𝐸(𝐻) + 𝜑(𝑚)𝐸(𝐻)) ≥ 𝐸𝑢(0,1)(𝐸(𝑋), 𝐸(𝐻) + 𝜑(𝑚)𝐸(𝐻)). 

This is true if  𝑢(0,1) 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑥 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑤𝑒𝑎𝑙𝑡ℎ. That is, 𝑢(1,2) ≥ 0. 

Remark that (𝑋, 𝐻) ≼1,2−𝑖𝑐𝑣
(𝑋, 𝐸(𝐻)) and apply Theorem 1.  

Q.E.D.∎ 

 

The conditions to ensure that 𝑚𝑋,𝐻
∗ ≥ 𝑚𝑋,𝐸(𝐻)

∗  are the coefficients of relative risk aversion of 

𝑢(0,0) and 𝑢(1,0) with respect to health to be greater than one and the coefficients of relative 

prudence of 𝑢(0,0) and 𝑢(1,0)  to be greater than two. 

Proposition 2 bis. Assume the health production function is additive. 



1. If   𝑢(2,1) ≥ 0 then 𝑚𝑋,𝐸(𝐻)
∗ ≥ 𝑚𝐸(𝑋),𝐸(𝐻)

∗ . 

2. If   𝑢 ∈  𝒰1,3−𝑖𝑐𝑣
 then 𝑚𝑋,𝐻

∗ ≥ 𝑚𝑋,𝐸(𝐻)
∗ .  

Proof. The first-order condition expressed at 𝑚 = 𝑚𝐸(𝑋),𝐸(𝐻)
∗  is non-negative if and only if: 

−𝑢(1,0)(𝑦0 − 𝑚, ℎ0) + Ф′(𝑚)𝐸𝑢(0,1)(𝑋, 𝐸(𝐻) + Ф(𝑚)) ≥ 0 

⇔ 𝐸𝑢(0,1)(𝑋, 𝐸(𝐻) + Ф(𝑚)) ≥ 𝑢(0,1)(𝐸(𝑋), 𝐸(𝐻) + Ф(𝑚)) 

This is true if  𝑢(0,1) 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑥 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑤𝑒𝑎𝑙𝑡ℎ. That is, 𝑢(2,1) ≥ 0. 

Concerning the second part of the proposition, remark that (𝑋, 𝐻) ≼1,2−𝑖𝑐𝑣
(𝑋, 𝐸(𝐻)) and apply 

Theorem 2.  

Q.E.D.∎ 

 

The first part of Proposition 2 bis corresponds to the bivariate version of the precautionary 

expenses in medical care due to a prudent decision-maker. The introduction of a second source 

of risk induces an increase in the demand for health care. There is an extra positive demand for 

health care due to income risk in the first case and due to health risk in the second case. There 

is a form of hedge-health care investment, where the decision-maker uses the health care 

investment to prevent the increase in global risk, following the introduction of the second source 

of risk (wealth risk or health risk). With an additive health production function, the effect of the 

introduction of wealth risk in the absence of health risk will be of larger magnitude for those 

individuals who are cross-prudent with respect to wealth. 

 

5. Increasing Health or Wealth Risks  

In this section, we increase one of the two risks with respect to the univariate stochastic 

dominance rule. 

 

5.1 Stochastic Dominance 



In the univariate framework, consider two random variables 𝑍 and 𝑇 with respective cumulative 

distribution functions 𝐹and 𝐺 with bounded supports contained within the interval [𝑎, 𝑏]. Let 

 𝐹1 (𝑥) = 𝐹(x) and  𝐺1 (𝑥) = 𝐺(x) ,  

𝐹𝑛(𝑥) = ∫ 𝐹𝑛−1(𝑧)𝑑𝑧 and 𝐺𝑛(𝑥) = ∫ 𝐺𝑛−1(𝑧)𝑑𝑧
𝑥

𝑎
 

𝑥

𝑎
, ∀𝑛 ≥ 2. 

Definition 5.  The distribution 𝐹, or equivalently the random variable 𝑍, dominates the 

distribution 𝐺, or equivalently the random variable 𝑇, in the sense of the 𝑁𝑡ℎ-order stochastic 

dominance if and only if: 

𝐹𝑁(𝑥) ≤ 𝐺𝑁(𝑥),  ∀𝑥 ∈ [𝑎, 𝑏],   

and 𝐹𝑛(𝑏) ≤ 𝐺𝑛(𝑏), ∀𝑛 = 1, … , 𝑁 − 1. 

We write 𝐺 ≼𝑁 𝐹 to denote that 𝐹 dominates 𝐺 with respect to the 𝑁𝑡ℎ −order stochastic 

dominance. 

 𝑁 = 1, 𝑁 = 2 and 𝑁 = 3 correspond to the first-order stochastic dominance (FSD), second-

order stochastic dominance (SSD) and third-order stochastic dominance (TSD).  

 

5.2 Increasing Health Risk 

We tackle two cases, first the health risk is the unique risk (𝐻2) faced by the decision-maker. 

The decision-maker determines the optimal amount, 𝑚𝐸(𝑋),𝐻2

∗ , to maximise his expected utility 

before the increase in the health risk. After this increase, he or she determines the optimal 

amount, 𝑚𝐸(𝑋),𝐻1

∗ , to maximise his or her expected utility where 𝐻2 dominates 𝐻1 according to 

the 𝑠2
𝑡ℎ −order stochastic dominance. 

Second, the decision-maker faces health and wealth risk. The amounts to be compared are 

𝑚𝑋,𝐻2

∗  and 𝑚𝑋,𝐻1

∗ . We have the following result establishing conditions on the utility function 

such that a deterioration of the health risk according to the stochastic dominance leads to an 

increase in the demand for health care. The first part of the proposition corresponds to the case 

of one source of risk whereas the second part deals with two sources of risk. 

Proposition 3. Assume the health production function is multiplicative. 



1. If    ∀𝑐, ℎ,      − ℎ
 𝑢(0,𝑘2+1)(𝑐,ℎ)

 𝑢(0,𝑘2)(𝑐,ℎ)
≥ 𝑘2   , ∀𝑘2 = 1, … , 𝑠2 

then: 𝐻1 ≼𝑠2
𝐻2 ⇒ 𝑚𝐸(𝑋),𝐻1

∗ ≥ 𝑚𝐸(𝑋),𝐻2

∗ . 

2. If    ∀𝑐, ℎ , −ℎ
 𝑢(0,𝑘2+1)(𝑐,ℎ)

 𝑢(0,𝑘2)(𝑐,ℎ)
≥ 𝑘2,   ∀𝑘2 = 1, … , 𝑠2 𝑎𝑛𝑑  − ℎ

 𝑢(1,𝑘2+1)(𝑐,ℎ)

 𝑢(1,𝑘2)(𝑐,ℎ)
≥

𝑘2  , ∀𝑘2 = 0, … , 𝑠2 

then: 𝐻1 ≼𝑠2
𝐻2 ⇒ 𝑚𝑋,𝐻1

∗ ≥ 𝑚𝑋,𝐻2

∗  

Proof.  𝐻1 ≼𝑠2
𝐻2 implies that (𝐸(𝑋), 𝐻1) ≼0,𝑠2

(𝐸(𝑋), 𝐻2) and applying Theorem 1 gives the 

result of part 1. Notice that 𝐻1 ≼𝑠2
𝐻2 implies (𝑋, 𝐻1) ≼1,𝑠2

(𝑋, 𝐻2) and applying Theorem 1 

gives the result of the second part. 

 Q.E.D.∎ 

 

In considering a change in the health risk with only one source of risk, from 𝐻2 to 𝐻1 it is a 

pure increase in endogenous risk. Recall that the presence of the health risk generates a 

precautionary behaviour, increasing health risk will reinforce this behaviour. Thus, the 

decision-maker has incentives to increase the demand for health care. If we consider the case 

of two sources of risks, the decision-maker faces a background risk and this background risk 

increases the willingness to bear health risk. So, if in this case, we increase the endogenous risk, 

the decision-maker will intuitively react by increasing the demand for health care. We recover 

the same result when the production function is additive. 

Proposition 3 bis. Assume the health production function is additive. 

1. If   𝑢 ∈  𝒰0,𝑠2+1−𝑖𝑐𝑣
 then 𝐻1 ≼𝑠2

𝐻2 ⇒ 𝑚𝐸(𝑋),𝐻1

∗ ≥ 𝑚𝐸(𝑋),𝐻2

∗  

2. If   𝑢 ∈  𝒰1,𝑠2+1−𝑖𝑐𝑣
 then 𝐻1 ≼𝑠2

𝐻2 ⇒ 𝑚𝑋,𝐻1

∗ ≥ 𝑚𝑋,𝐻2

∗  

Proof.  The proof is the same as that of Proposition 3 except that we use Theorem 2 instead of 

Theorem 1. 

 Q.E.D.∎ 

 



The two propositions generalise the results of Eeckhoudt and Schlesinger (2008) concerning 

the effects of the changes in income and interest risks on the demand for savings. In our model, 

the demand for health care acts like the demand for savings in their approach. 

From a policy perspective, this proposition suggests that policy measures which increase the 

uncertainty surrounding the average health status will tend to result in an increase in the demand 

for health care. This result generalises that of Dardanoni and Wagstaff (1987). 

 

5.3 Increasing Wealth Risk 

First, the decision-maker faces only wealth risk and determines the optimal amount, 𝑚𝑋2,𝐸(𝐻)
∗  

to maximise his expected utility before the increase in the wealth risk. After the increase in 

wealth risk, he or she determines the optimal amount, 𝑚𝑋1,𝐸(𝐻)
∗  to maximise his or her expected 

utility, where 𝑋2 dominates 𝑋1 according to the 𝑠1
𝑡ℎ −order stochastic dominance. Second, the 

decision-maker faces health and wealth risk. The amounts to be compared are 𝑚𝑋2,𝐻
∗  and 𝑚𝑋1,𝐻

∗ . 

The first part of the next proposition corresponds to the case of one source of risk, whereas the 

second part deals with two sources of risk. 

Proposition 4. Assume the health production function is multiplicative. 

1. If     ∀𝑐, ℎ ,     − ℎ
 𝑢(𝑘1,1)(𝑐,ℎ)

 𝑢(𝑘1,0,)(𝑐,ℎ)
≥ 0   , ∀𝑘1 = 1, … , 𝑠1 

then: 𝑋1 ≼𝑠1
𝑋2 ⇒ 𝑚𝑋1,𝐸(𝐻)

∗ ≥ 𝑚𝑋2,𝐸(𝐻)
∗ . 

2. If   ∀𝑐, ℎ, −ℎ
 𝑢(𝑘1,1)(𝑐,ℎ)

 𝑢(𝑘1,0)(𝑐,ℎ)
≥ 0,   ∀𝑘1 = 1, … , 𝑠12 ;   −ℎ

 𝑢(𝑘1,2)(𝑐,ℎ)

 𝑢(𝑘1,1)(𝑐,ℎ)
≥ 1,   ∀𝑘1 =

0, … , 𝑠1 , 𝑎𝑛𝑑 − ℎ
 𝑢(𝑘1,3)(𝑐,ℎ)

 𝑢(𝑘1,2)(𝑐,ℎ)
≥ 2 , ∀𝑘1 = 0, … , 𝑠1, 

then: 𝑋1 ≼𝑠1
𝑋2 ⇒ 𝑚𝑋1,𝐻

∗ ≥ 𝑚𝑋2,𝐻
∗ . 

Proof.  𝑋1 ≼𝑠1
𝑋2 implies that (𝑋1, 𝐸(𝐻)) ≼𝑠1,0 (𝑋2, 𝐸(𝐻)) and applying Theorem 1 gives the 

result of part 1. Notice that 𝑋1 ≼𝑠1
𝑋2 implies (𝑋1, 𝐻) ≼𝑠1,1 (𝑋2, 𝐻) and applying Theorem 1 

gives the result of the second part.  

Q.E.D.∎ 

 



 

In the first part of the proposition, wealth risk changes from 𝑋2 to 𝑋1 . That is a pure increase 

in background risk (exogenous risk). Therefore, this increase in background risk gives the 

decision-maker incentives to increase the demand for health care in order to hedge the 

exogenous risk. The conditions, in the second part of the proposition, involve the relative risk 

aversion being greater than one and the relative prudence being greater than two.  

We have the following result when the health production function is additive. 

Proposition 4 bis. Assume the health production function is additive. 

1. If   𝑢 ∈  𝒰𝑠1,1−𝑖𝑐𝑣
 then 𝑋1 ≼𝑠1

𝑋2 ⇒ 𝑚𝑋1,𝐸(𝐻)
∗ ≥ 𝑚𝑋2,𝐸(𝐻)

∗ . 

2. If   𝑢 ∈  𝒰𝑠1,2−𝑖𝑐𝑣
 then 𝑋1 ≼𝑠1

𝑋2 ⇒ 𝑚𝑋1,𝐻

∗ ≥ 𝑚𝑋2,𝐻
∗ . 

The proof is the same as that of Proposition 4 except that we use Theorem 2 instead of Theorem 

1.  

Q.E.D.∎ 

 

For example, assume that the wealth risk increases according to the second order stochastic 

dominance. When facing only the wealth risk (the health status is riskless), the decision-maker 

increases the demand for health care if the bivariate utility function exhibits pair-wise risk 

aversion, risk aversion with respect to wealth and cross-prudence with respect to wealth. If the 

health status is risky, the conditions to be fulfilled in order to see an increase in the demand for 

health care after a second degree deterioration of the wealth risk are risk-aversion with respect 

to the two attributes of the utility function, pair-wise risk aversion, cross-prudence with respect 

to wealth and health and temperance. 

In periods of crisis, namely after an increase in wealth risk, the individuals will react by 

increasing their demand for health care. Health care plays a hedging role against the 

deterioration of wealth risk.  

 

6. The Case of Dependent Health and Wealth Risks 



So far we have studied the effect of the change in the bivariate risk in the decision process. 

Now, we want to know whether the dependence of the exogenous risk (wealth risk) and the 

endogenous risk (health risk) affects the decision process. To do so, we consider the case of 

Bernoulli-distributed variables and the concept of quadrant dependence.  

 

6.1 Bernoulli-distributed Variables: Correlation 

Assume that 𝑋 and 𝐻 take two values 𝑥1 and 𝑥2 for 𝑋 with 𝑥1 ≤ 𝑥2 and ℎ1 and ℎ2 for 𝐻 with 

ℎ1 ≤ ℎ2. 𝑥1 represents low wealth whereas 𝑥2 corresponds to high wealth. ℎ1 corresponds to 

poor health status whereas ℎ2 represents good health status. The joint distribution of (𝑋, 𝐻) is 

given by: 

𝑃(𝑋 = 𝑥1, 𝐻 = ℎ1) = 𝜌𝑝𝑞, 

𝑃(𝑋 = 𝑥1, 𝐻 = ℎ2) = 𝑝(1 − 𝜌𝑞), 

𝑃(𝑋 = 𝑥2, 𝐻 = ℎ1) = 𝑞(1 − 𝜌𝑝), 

𝑃(𝑋 = 𝑥2, 𝐻 = ℎ2) = 1 − 𝑝 − 𝑞 + 𝜌𝑝𝑞. 

The marginal distribution of 𝑋 is given by: 𝑃(𝑋 = 𝑥1) = 𝑝 and 𝑃(𝑋 = 𝑥2) = 1 − 𝑝. 

The marginal distribution of 𝐻 is given by: 𝑃(𝐻 = ℎ1) = 𝑞 and 𝑃(𝐻 = ℎ2) = 1 − 𝑞. 

There are three cases depending on the value of the dependence parameter 𝜌: 

𝜌 > 1:  𝑋 and 𝐻 are positively correlated; 

𝜌 = 1:  𝑋 and 𝐻 are independent; 

𝜌 < 1:  𝑋 and 𝐻 are negatively correlated.  

Let 𝑚⊥
∗   and 𝑚∗   be the optimal decisions in the case of independence and dependence, 

respectively. Intuition suggests that a positive correlation will induce an increase in the demand 

for health care because with positive correlation poor health status is likely to be accompanied 

by low wealth. Therefore, that gives the decision-maker incentives to hedge against this bad 

situation (low health and poor health) by increasing the demand for health care.  The negative 

correlation will have the opposite effect and will give incentives to reduce the demand for health 



care because poor health is likely to be accompanied by high wealth. The exogenous risk acts 

like a hedge-wealth. We have the following propositions: 

Proposition 5: Assume the health production function is multiplicative. If   𝑢 ∈  𝒰1,1−𝑖𝑐𝑣 with 

 −ℎ
𝑢(1,2)(𝑐,ℎ)

𝑢(1,1)(𝑐,ℎ)
≥ 1  , ∀𝑐, ℎ , then 

i)         If 𝑋 and 𝐻 are positively correlated, then 𝑚∗≥ 𝑚⊥
∗ . 

ii)      If 𝑋 and 𝐻 are negatively correlated, then 𝑚∗≤ 𝑚⊥
∗ . 

Proof. The first-order condition is given by: 

−𝑢(1,0)(𝑦0 − 𝑚, ℎ0)

+ 𝜑′(𝑚)[𝜌𝑝𝑞ℎ1𝑢(0,1)(𝑥1, ℎ1 + 𝜑(𝑚)ℎ1)

+ 𝑝(1 − 𝜌𝑞)ℎ2𝑢(0,1)(𝑥1, ℎ2 + 𝜑(𝑚)ℎ2)

+ 𝑞(1 − 𝜌𝑝)ℎ1𝑢(0,1)(𝑥2, ℎ1 + 𝜑(𝑚)ℎ1)

+ (1 − 𝑝 − 𝑞 + 𝜌𝑝𝑞)ℎ2𝑢(0,1)(𝑥2, ℎ2 + 𝜑(𝑚)ℎ2)] = 0. 

Equivalently: 

−𝑢(1,0)(𝑦0 − 𝑚, ℎ0) + 𝜑′(𝑚)𝐸𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡[𝐻𝑢(0,1)(𝑋, 𝐻 + 𝜑(𝑚)𝐻)]

+ (𝜌 − 1)𝑝𝑞[ℎ1𝑢(0,1)(𝑥1, ℎ1 + 𝜑(𝑚)ℎ1) − ℎ2𝑢(0,1)(𝑥1, ℎ2 + 𝜑(𝑚)ℎ2)

− ℎ1𝑢(0,1)(𝑥2, ℎ1 + 𝜑(𝑚)ℎ1) + ℎ2𝑢(0,1)(𝑥2, ℎ2 + 𝜑(𝑚)ℎ2)] = 0. 

where 

 𝐸𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡[𝐻𝑢(0,1)(𝑋, 𝐻 + 𝜑(𝑚)𝐻))] = 𝑝𝑞ℎ1𝑢(1,0)(𝑥1, ℎ1 + 𝜑(𝑚)ℎ1) + 𝑝(1 −

𝑞)ℎ2𝑢(1,0)(𝑥1, ℎ2 + 𝜑(𝑚)ℎ2) + (1 − 𝑝)𝑞ℎ1𝑢(1,0)(𝑥2, ℎ1 + 𝜑(𝑚)ℎ1) + (1 − 𝑝)(1 −

𝑞)ℎ2𝑢(1,0)(𝑥2, ℎ2 + 𝜑(𝑚)ℎ2). 

Let 

 𝛱 ∗= ℎ1𝑢(0,1)(𝑥1, ℎ1 + 𝜑(𝑚)ℎ1)+ℎ2𝑢(0,1)(𝑥2, ℎ2 +

𝜑(𝑚)ℎ2)− ℎ2𝑢(0,1)(𝑥1, ℎ2+ 𝜑(𝑚)ℎ2)− ℎ1𝑢(0,1)(𝑥2, ℎ1 + 𝜑(𝑚)ℎ1). 

The first-order condition expressed at 𝑚 = 𝑚⊥
∗  is non-negative if and only if (𝜌 − 1)𝛱 ∗ is non-

negative. That is, −ℎ 𝑢(0,1)(𝑥, ℎ) exhibits pair-wise risk aversion:  



𝜕[−𝑢(0,1)(𝑥, ℎ) − ℎ𝑢(0,2)(𝑥, ℎ)]

𝜕𝑥
≤ 0 ⇔ −𝑢(1,1)(𝑥, ℎ) − ℎ𝑢(1,2)(𝑥, ℎ) ≤ 0.  

                           if and only if −ℎ
𝑢(1,2)(𝑥,ℎ)

𝑢(1,1)(𝑥,ℎ)
≥ 1  ,∀𝑥, ℎ. 

The first-order condition can be rewritten as follows: 

−𝑢(1,0)(𝑦0 − 𝑚, ℎ0) + 𝜑′(𝑚)𝐸𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡[𝐻𝑢(0,1)(𝑋, 𝐻 + 𝐻𝜑(𝑚))] + (𝜌 − 1)𝑝𝑞𝛱 ∗= 0. 

Assume that 𝑋 and 𝐻 are positively correlated (𝜌 > 1). Then, 𝑚∗≥ 𝑚⊥
∗  if the first-order 

condition expressed with 𝑚⊥
∗  is non-positive: 

−𝑢(1,0)(𝑦0 − 𝑚, ℎ0) + 𝜑′(𝑚))𝐸𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡[𝐻𝑢(0,1)(𝑋, 𝐻 + 𝐻𝜑(𝑚))] + (𝜌 − 1)𝑝𝑞𝛱 ∗≥ 0. 

⇔ (𝜌 − 1)𝑝𝑞𝛱 ∗≥ 0 

⇔ 𝛱 ∗≥ 0. 

Thus the result follows.The positive correlation increases the value of the decision variable. For 

the case of negative correlation, the proof is the same.  

Q.E.D.∎ 

 

The conditions in Proposition 3 are pair-wise risk-aversion coupled with relative risk aversion 

with respect to health greater than one. 

Proposition 5 bis: Assume the health production function is additive. If  𝑢 ∈  𝒰1,1−𝑖𝑐𝑣  with 

𝑢(1,2)  ≥ 0, then 

i) If 𝑋 and 𝐻 are positively correlated, then 𝑚∗≥ 𝑚⊥
∗ . 

ii) If 𝑋 and 𝐻 are negatively correlated, then 𝑚∗≤ 𝑚⊥
∗ . 

Proof. The first-order condition is given by:  

−𝑢(1,0)(𝑦0 − 𝑚, ℎ0)

+ Ф′(𝑚)[𝜌𝑝𝑞𝑢(0,1)(𝑥1, ℎ1 + Ф(𝑚)) + 𝑝(1 − 𝜌𝑞)𝑢(0,1)(𝑥1, ℎ2 + Ф(𝑚))

+ 𝑞(1 − 𝜌𝑝)𝑢(0,1)(𝑥2, ℎ1 + Ф(𝑚))

+ (1 − 𝑝 − 𝑞 + 𝜌𝑝𝑞)𝑢(0,1)(𝑥2, ℎ2 + Ф(𝑚))] = 0. 



Equivalently: 

−𝑢(1,0)(𝑦0 − 𝑚, ℎ0) + Ф′(𝑚)𝐸𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡[𝑢(0,1)(𝑋, 𝐻 + Ф(𝑚))]

+ (𝜌 − 1)𝑝𝑞[𝑢(0,1)(𝑥1, ℎ1 + Ф(𝑚)) − 𝑢(0,1)(𝑥1, ℎ2 + Ф(𝑚))

− 𝑢(0,1)(𝑥2, ℎ1 + Ф(𝑚)) + 𝑢(0,1)(𝑥2, ℎ2 + Ф(𝑚))] = 0, 

where 

 𝐸𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡[𝑢(0,1)(𝑋, 𝐻 + Ф(𝑚))] = 𝑝𝑞𝑢(1,0)(𝑥1, ℎ1 + Ф(𝑚)) + 𝑝(1 − 𝑞)𝑢(1,0)(𝑥1, ℎ2 +

Ф(𝑚)) + (1 − 𝑝)𝑞𝑢(1,0)(𝑥2, ℎ1 + Ф(𝑚)) + (1 − 𝑝)(1 − 𝑞)𝑢(1,0)(𝑥2, ℎ2 + Ф(𝑚)). 

Let 𝛱 = 𝑢(0,1)(𝑥1, ℎ1)+𝑢(0,1)(𝑥2, ℎ2)− 𝑢(0,1)(𝑥1, ℎ2)− 𝑢(0,1)(𝑥2, ℎ1), 

𝛱 is non-negative (respectively non-positive) if and only if 𝑢(0,1) is super-modular (respectively 

sub-modular). That is,  𝑢(1,2) ≥ 0. 

The first-order condition can be rewritten as follows: 

−𝑢(1,0)(𝑦0 − 𝑚, ℎ0) + Ф′(𝑚)𝐸𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡[𝑢(0,1)(𝑋, 𝐻 + 𝑚)] + (𝜌 − 1)𝑝𝑞𝛱 = 0 

Assume that 𝑋 and 𝐻 are positively correlated (𝜌 > 1). Then, 𝑚∗≥ 𝑚⊥
∗  if the first-order 

condition expressed with 𝑚⊥
∗  is non-positive: 

−𝑢(1,0)(𝑦0 − 𝑚, ℎ0) + Ф′(𝑚)𝐸𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡[𝑢(0,1)(𝑋, 𝐻 + 𝑚)] + (𝜌 − 1)𝑝𝑞𝛱 ≥ 0 

⇔ (𝜌 − 1)𝑝𝑞𝛱 ≥ 0 

⇔ 𝛱 ≥ 0.  

Thus the result follows. The positive correlation increases the value of the decision variable. In 

case of negative correlation, the proof is the same.  

Q.E.D.∎ 

 

In the case of additive health production function, the partial derivatives alternate in sign. The 

conditions are pair-wise risk aversion and cross-prudence with respect to health. 



Conditions in Proposition 5 mean that the utility function belongs to 𝒰1,1−𝑖𝑐𝑣 (the utility 

function exhibits pair-wise risk aversion) and the coefficient of relative risk aversion of 𝑢(1,0) 

is greater than one. The last condition implies 𝑢(1,2)  ≥ 0, meaning that the utility function 

exhibits cross-prudence with respect to health. Therefore, conditions in Proposition 5 are more 

stringent than those in Proposition 5 bis.  

 

6.2 Increasing the Correlation 

Epstein and Tanny (1980) show that an increase in the dependence on parameter 𝜌 is disliked 

by any bivariate risk-averse decision-maker (𝑢(1,1)  ≤ 0, ). That is,  

𝜌1 ≥ 𝜌2 ⇒ (𝑋1, 𝐻1) ≼1,1−𝑖𝑐𝑣 (𝑋2, 𝐻2),                  (5) 

where 𝜌1 and 𝜌2 are the respective dependence parameters of (𝑋1, 𝐻1) and (𝑋2, 𝐻2). Let 𝑚1
∗ 

and 𝑚2
∗  denote the respective demand for health care. 

Intuitively, the more health risk and the wealth risk are correlated, the larger the demand for 

health care. This is true for pair-wise risk-averse decision-makers because they dislike an 

increase in the correlation (see Epstein and Tanny 1980). We have the following result: 

Proposition 6: Assume the health production function is multiplicative. If   𝑢 ∈  𝒰1,1−𝑖𝑐𝑣 with 

  −ℎ
𝑢(0,2)(𝑐,ℎ)

𝑢(0,1)(𝑐,ℎ)
≥ 1; −ℎ

𝑢(1,2)(𝑐,ℎ)

𝑢(1,1)(𝑐,ℎ)
≥ 1  , ∀𝑐, ℎ,  then  𝜌1 ≥ 𝜌2 ⇒ 𝑚1

∗ ≥ 𝑚2
∗ . 

Proof.  𝜌1 ≥ 𝜌2 ⇒ (𝑋1, 𝐻1) ≼1,1−𝑖𝑐𝑣 (𝑋2, 𝐻2). 

Thus applying Theorem 1 gives the result.  

Q.E.D.∎ 

 

Proposition 6 bis: Assume the health production function is additive. If   𝑢 ∈  𝒰1,2−𝑖𝑐𝑣  

then, 𝜌1 ≥ 𝜌2 ⇒ 𝑚1
∗ ≥ 𝑚2

∗ . 

Proof.  𝜌1 ≥ 𝜌2 ⇒ (𝑋1, 𝐻1) ≼1,1−𝑖𝑐𝑣 (𝑋2, 𝐻2). 



Thus applying Theorem 2 gives the result.  

Q.E.D.∎ 

 

Increasing the dependence increases the optimal value of the amount invested in health care 

when the decision-maker exhibits pair-wise risk aversion. From a policy perspective this 

proposition suggests that policy measures which increase the correlation between health and 

wealth will tend to result in an increase in the demand for health care.  

 

6.3 Quadrant Dependence 

Let us deal with a more general concept of dependence, namely that of quadrant dependence. 

We assume that (𝑋, 𝐻) is positively (negatively respectively) quadrant dependent. Recall the 

definition of quadrant dependence: 

Definition 6 : Lehman (1966) 

i) (𝑋, 𝐻) is said to be positively quadrant dependent if  

𝑃(𝑋 > 𝑥, 𝐻 > ℎ) ≥ 𝑃(𝑋 > 𝑥)   𝑃(𝐻 > ℎ), ∀𝑥, ℎ.  

ii) (𝑋, 𝐻) is said to be negatively quadrant dependent if  

𝑃(𝑋 > 𝑥, 𝐻 > ℎ) ≤ 𝑃(𝑋 > 𝑥)   𝑃(𝐻 > ℎ), ∀𝑥, ℎ.  

Let us define the bivariate risk (𝑋⊥, 𝐻⊥) such that: 

- 𝑋⊥ and 𝑋 have the same distribution, 

-  𝐻⊥ and 𝐻 have the same distribution and, 

- 𝑋⊥ and 𝐻⊥ are independent.  

We want to compare the optimal amount obtained with the dependence between the two sources 

of risks (𝑚∗ ) with that obtained in the case of independence (𝑚⊥
∗ ). Denuit, Lefevre and 

Mesfioui (1999) show that: 

i) (𝑋, 𝐻) positively quadrant dependent is equivalent to (𝑋, 𝐻) ≼1,1−𝑖𝑐𝑣
(𝑋⊥, 𝐻⊥); 



ii) (𝑋, 𝑌) negatively quadrant dependent is equivalent to  (𝑋⊥, 𝐻⊥) ≼1,1−𝑖𝑐𝑣
(𝑋, 𝐻). 

Let 𝑚⊥
∗  be the optimal decision in the case of independence. Intuition suggests that positive 

quadrant dependence will increase the optimal amount invested in health care compared to 

independence, whereas negative quadrant dependence will decrease it. We have the following 

propositions: 

Proposition 7: Assume the health production function is multiplicative. If   𝑢 ∈  𝒰1,1−𝑖𝑐𝑣 with 

  −ℎ
𝑢(0,2)(𝑐,ℎ)

𝑢(0,1)(𝑐,ℎ)
≥ 1; −ℎ

𝑢(1,2)(𝑐,ℎ)

𝑢(1,1)(𝑐,ℎ)
≥ 1  , ∀𝑐, ℎ . 

i) If (𝑋, 𝐻) is positively quadrant dependent, then 𝑚∗≥ 𝑚⊥
∗ . 

ii) If (𝑋, 𝐻) is negatively quadrant dependent, then 𝑚∗≤ 𝑚⊥
∗ . 

Proof. The proof is direct by applying Theorem 1 and the fact that: 

i)(𝑋, 𝐻) positively quadrant dependent is equivalent to (𝑋, 𝐻) ≼1,1−𝑖𝑐𝑣
(𝑋⊥, 𝐻⊥). 

ii)(𝑋, 𝐻) negatively quadrant dependent is equivalent to  (𝑋⊥, 𝐻⊥) ≼1,1−𝑖𝑐𝑣
(𝑋, 𝐻) .   

Q.E.D.∎ 

 

Proposition 7 bis: Assume the health production function is additive. If   𝑢 ∈  𝒰1,2−𝑖𝑐𝑣  

i) If (𝑋, 𝐻) is positively quadrant dependent, then 𝑚∗≥ 𝑚⊥
∗ . 

ii) If (𝑋, 𝐻) is negatively quadrant dependent, then 𝑚∗≤ 𝑚⊥
∗ . 

Proof. The proof is direct by applying Theorem 2. and the fact that: 

i)(𝑋, 𝐻) positively quadrant dependent is equivalent to (𝑋, 𝐻) ≼1,1−𝑖𝑐𝑣
(𝑋⊥, 𝐻⊥). 

ii)(𝑋, 𝐻) negatively quadrant dependent is equivalent to  (𝑋⊥, 𝐻⊥) ≼1,1−𝑖𝑐𝑣
(𝑋, 𝐻) .   

Q.E.D.∎ 

 



That is, when the wealth risk and the health risk are dependent via the concept of positive 

quadrant dependence, the decision-maker chooses an optimal value of the decision variable 

higher than what he or she could choose in the event of independence. Negative dependence 

reverses the inequality because poor health is for the most part offset by large wealth and low 

wealth is offset by good health. This is a form of homemade diversification. 

 

7. Effectiveness of Medical Treatments 

The decision maker sacrifices some consumption in order to improve future health status via 

the health production function. However with uncertainty surrounding the effectiveness of 

future medical care, the final health status taking into account the health production function 

and the uncertainty will be as follows: 𝜓(𝑚, 𝐻)+∈  with 𝐸(∈) = 0 where ∈  determines the 

efficiency of medical treatment in the future.  We assume that ∈ and 𝐻 are independent. Thus, 

we face a Rothschild and Stiglitz (1970) increase in risk. The decision-maker maximises: 

𝑢(𝑦0 − 𝑚, ℎ0) + 𝐸𝑢(𝑋, 𝜓(𝑚, 𝐻)+∈).        (6) 

Assume that all the risks are independent and define the derived utility function as follows: 

𝑉(𝑤, ℎ) = 𝐸𝑢(𝑤, ℎ+∈). 

Therefore, the decision-maker maximises: 

𝑢(𝑦0 − 𝑚, ℎ0) + 𝐸𝑉(𝑋, 𝜓(𝑚, 𝐻)). 

Let 𝑚∈
∗ , denote the optimal expenses in health care in presence of ∈. We want to point out 

conditions under which 𝑚∈
∗  is greater than 𝑚0

∗ , the optimal expenses in health care without ∈ . 

We have the following result: 

Proposition 8: If   𝑢 ∈  𝒰1,2−𝑖𝑐𝑣, then 𝑚∈
∗ ≥ 𝑚∗. 

Proof. The proof is direct by applying Theorem 2 and the fact that (𝑋, 𝐻+∈) ≼1,2−𝑖𝑐𝑣
(𝑋, 𝐻). 

Q.E.D.∎ 

 

This result is intuitive because the uncertainty surrounding the efficiency of the treatments plays 

the role of white noise. Therefore, the situation in presence of this uncertainty is like the initial 



one in presence of the health and wealth risks but with more global risk. The decision-maker 

must be risk-averse with respect to health and pair-wise risk, while being cross-prudent with 

respect to health to at least guarantee an increase in the demand for health care, regardless of 

the form of the health production function. We can notice that the comparison between 𝑚∈
∗  and 

𝑚0
∗  corresponds to analysing the conditions in which the decision-maker with utility function 𝑉 

will demand more health care than the decision-maker with utility function 𝑢 in presence of 

wealth and health risks. 

 

8. Conclusion 

In this paper, we analyse the behaviour of a decision-maker with a multiplicative/additive health 

production function with a bivariate utility function facing simultaneous health and wealth risk 

(the bivariate risk). We study the general changes in the bivariate risk caused by the 

(𝑠1, 𝑠2) −increasing concave order and show that the optimal value of the amount invested in 

health care decreases when the utility function belongs to the class of (𝑠1, 𝑠2) −increasing 

concave functions and the coefficients of generalised partial risk aversion of order (𝑠1, 𝑠2) are 

less than 𝑘1.  

In increasing health risk (endogenous risk) or wealth risk (exogenous risk) induces an increase 

in the demand for health care and causes the decision-maker to build health capital. We 

generalise the results concerning the effects of wealth risk acting as a background risk on the 

optimal amount invested in health care. We conclude that increasing correlation causes an 

increase in the optimal investment. Positive dependence increases the optimal value of the 

choice variable whereas negative dependence decreases it. With uncertainty surrounding the 

effectiveness of future medical care, the demand for health care also increases as with the initial 

case. The conditions are more stringent with a multiplicative health production function than 

with additive health production function. 

In terms of future work, we would like to investigate extensions to our current work. In 

particular, alternative methods of modelling dependencies between risks could be investigated. 

For instance  the application of copulas for modelling dependencies between risk factors was 

considered a favourable method (prior to the Global Financial Crisis), its application in health 

and wealth risk settings may be more viable. We would also like to investigate alternative 

method of risk management to determine the optimal outcomes for decision makers.  This is 



particularly pertinent given that risk management is an active area of research where 

innovations are frequently occurring.  
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