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Abstract

Copper (Cu) is an unusual micronutrient as it can limit primary production, but can also
become toxic for growth and cellular functioning under high concentrations. Cu also displays
an atypical linear profile, which will modulate its availability to marine microbes across

the ocean. Multiple chemical forms of Cu coexist in seawater as dissolved species and
understanding the main processes shaping the Cu biogeochemical cycling is hampered

by key knowledge gaps. For instance, the drivers of its specific linear profile in seawater

are unknown and the bioavailable form of Cu for marine phytoplankton is debated. Here,
we developed a global 3D biogeochemical model of oceanic Cu within the NEMO/PISCES
global model, which represents the global distribution of dissolved copper well. Using

our model, we find that reversible scavenging of Cu by organic particles drives the dissolved
Cu vertical profile and its distribution in the deep ocean. The low modeled inorganic copper
(Cw’) in the surface ocean means that Cu’ cannot maintain phytoplankton cellular copper
requirements within observed ranges. The global budget of oceanic Cu from our model
suggests that its residence time may be shorter than previously estimated, and provides

a global perspective on Cu cycling and the main drivers of Cu biogeochemistry in different
regions. Cu scavenging within particle microenvironments and uptake by denitrifying

bacteria could be a significant component of Cu cycling in oxygen minimum zones.

1 Introduction

Copper (Cu) has a specific place among micronutrients; it is involved in many cellular
reactions such as oxygen and iron acquisition (La Fontaine et al., 2002; Maldonado et
al., 2006; Merchant & Helmann, 2012), but also denitrification (Granger & Ward, 2003),
which results in bacteria and phytoplankton having an essential Cu requirement. However,
high concentrations of copper in seawater can also induce toxic effects (Brand et al., 1986;
Debelius et al., 2011; Moffett et al., 1997), with a deleterious impact on growth. For this
reason, copper is often referred to as a ’Goldilocks’ element, whereby there is a balance
between enough Cu to avoid growth limitation, but not too much as to induce toxicity.
Understanding the role of copper as an essential micronutrient or toxin requires knowledge
of the major processes shaping the availability of copper in space and time, most notably
encompassed in the vertical profile. Uptake of Cu will be affected by its bioavailability,
which is also affected by the chemical speciaton of Cu. Cu is also of interest because of

its emerging linkages to iron cycling and acquisition (e.g. Maldonado et al., 2006; Peers

©2018 American Geophysical Union. All rights reserved.



43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

61

63

64

65

66

67

73

74

7%

& Price, 2006; Wood, 1978). Newly available datasets concerning the large scale distribution
of Cu in the ocean are emerging as part of the GEOTRACES program (e.g. Schlitzer
et al., 2018) and reveal the key features of its oceanic distribution. For instance, Cu concentrations
are higher in the surface coastal Pacific and Atlantic oceans, potentially due to a combination
of river discharge and aerosol deposition (Boiteau et al., 2016; Jacquot & Moffett, 2015;
Roshan & Wu, 2015). In the Southern Ocean, surface Cu concentrations are high in winter
and the major driving processes its variability in the surface layer are suggested to be
phytoplankton uptake and mixed layer depth variations (Cloete et al., 2018; Ellwood,
2008). A key unknown remains the unusual linear profile of Cu with respect to depth,
which typifies profiles across the Atlantic and Pacific Oceans (Heller & Croot, 2015; Jacquot
& Moffett, 2015; Roshan & Wu, 2015). Specifically, the relative role played by regeneration
of organic material, interior sources, scavenging and the role of organic complexation of
Cu with ligands in shaping the linear Cu profile remain poorly constrained globally.

The vertical distribution of Cu shows a notable difference to 'nutrient-like’ or ’scavenged’
elements, being typified by a linear increase with depth (Tagliabue, 2019). To explain
the widespread linear increase of dissolved Cu concentrations with depth, Hines et al.
(1984) and Biller and Bruland (2013) hypothesized the presence of deep water sources
of dissolved Cu from sediments or hydrothermal vents. However, it has been suggested
that Cu from these sources would be associated with high particle loads which would likely
scavenge Cu back to the sea floor, having very little impact on the wider water column
(German et al., 1991; Jacquot & Moffett, 2015; Roshan & Wu, 2015). Moreover, if hydrothermal
and sedimentary sources were the only driver of Cu vertical profiles, the linearity might
be expected to only occur in specific areas of the ocean due to the noted regionality in
hydrothermal signals (Tagliabue & Resing, 2016). Alternatively, Little et al. (2013) hypothesized
the existence of reversible scavenging of Cu onto particles as an explanation for the Cu
vertical profile. As also suggested for zinc (Weber et al., 2018), high particle concentrations
in surface seawater lead to high scavenging of dissolved phases onto particles and the decreasing
particle concentrations with depth then promotes the release from particle phases. Although
a reversible scavenging model brings a theoretical solution to the linear Cu profile, it has
not been tested globally.

The chemical speciation of Cu in seawater is a key component of its oceanic cycling
with more than 99 % of dissolved Cu (DCu) in the surface being organically bound with
ligands (Coale & Bruland, 2003; Jacquot & Moffett, 2015), and inorganic copper (Cu’)
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is only a very small fraction. Many different compounds form the ligand pool in seawater,
and Cu ligands are usually grouped into two categories. Strong ligands (with conditional
stability constants, KL for the reaction Cu’ + L = CuL, over 10'3-%) usually produced
by bacteria and plankton (Moffett & Brand, 1996), and weak ligands (KL lower than 10'3-5)
that are usually derived from organic matter originated from sea or from land (Whitby
et al., 2018). Strong ligands are often thiol groups (among which glutathione is the most
represented) and are produced by micro organisms, in particular diatoms, in response
to elevated Cu’ concentrations to detoxify copper (Leal et al., 1999; Whitby et al., 2018).
Because of the complexity of the chemical identification of ligands, their role in oceanic
Cu biogeochemical cycling is difficult to characterize.

The organic speciation of Cu may control its bioavailability to phytoplankton. Because
of its important physiological role (e.g. for iron, oxygen and nitrogen cycling: Granger
& Ward, 2003; La Fontaine et al., 2002; Maldonado et al., 2006; Merchant & Helmann,
2012), Cu is required in phytoplankton cells in proportions varying on average between
0.4 and 2 mmol:mol relative to P, and up to 3 mmolCu:molP (Twining & Baines, 2013;
Twining et al., 2019). The most bioavailable form of copper for phytoplankton is Cu’,
but the very low concentrations in surface seawater may indicate that insufficient Cu’
is available to meet phytoplankton requirements. Semeniuk et al. (2009) suggest that
ligand-bound copper can be at least partly available to phytoplankton and bacteria. Whether
dissolved Cu distributions and cellular quotas can be reconciled with Cu’ as the only bioavailable
form remains untested.

In this study, we present a global 3D coupled physical-biogechemical ocean model
of copper, implemented in the state-of-the-art NEMO /PISCES platform that simulates
global biogeochemical cycling (Aumont et al., 2015; Tagliabue et al., 2018) to examine
the role of different external sources and internal cycling in regulating the distribution
of Cu and its bioavailability. We describe the model main equations, physical and biogeochemical
forcings, initial conditions and the different experiments in section 2. Section 3 presents
an evaluation of the model results with available measurements. This section also provides
evidence that reversible scavenging is the main driver of the dissolved Cu linear profile
in the global ocean and that ligand-bound Cu is at least partially bioavailable for phytoplankton.
Section 3.4 presents a global budget of oceanic Cu including all biogeochemical reactions
and fluxes. Section 4 puts forward a holistic view of Cu cycling based on our model, which

highlights the major processes and sources impacting Cu in all ocean regions. Finally,
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section 5 provides an analysis of Cu cycling in the Pacific oxygen minimum zone (OMZ),

and tries to identify the key processes responsible for the [DCu] observed in the region.

2 Methods
2.1 Model description

We embedded a 3D model of Cu biogeochemistry within the widely used PISCES
model (Aumont et al., 2015), coupled to the dynamical model NEMO (Madec, 2006).
PISCES reproduces the biogeochemical cycling of various macronutrients (namely phosphate
POy, nitrate NOg, ammonium NHy and silicate Si), plankton (nanophytoplankton, diatoms,
microzooplankton and mesozooplankton), and one trace element (iron, Fe). Recent developments
allowed representing new trace elements such as manganese (Mn) and cobalt (Co) (Hulten
et al., 2017; Tagliabue et al., 2018), and gave new insights on the processes governing
Fe distributions in the ocean (Tagliabue & Resing, 2016). Seven new tracers were implemented
in PISCES in order to represent copper biogeochemical cycling: dissolved copper (DCu),
scavenged copper, which represents copper adsorbed on the surface of particles (SCu,
divided into small and large scavenged particles, SCup and SCug) this copper can be desorbed
to the dissolved phase at depth, copper associated with biogenic particles (CuPart, divided
into small and large copper particles, pCuPart and gCuPart) that can only be resupplied
via bacterial activity, and copper in phytoplankton cells (Cu®, with ¢ = N for nanophytoplankton
or ¢ = D for diatoms). All parameter values are summarized in Table 1. Other biogeochemical

parameters of PISCES are found in Aumont et al. (2015).

2.1.1 General equations

The general equation for DCu cycling is equation 1:

0DCu
ot

= Rivgy + Aerocy — Upoy — Scave, + Reming, + Recyclingey, (1)

DCu is the sum of the dissolved forms of copper in seawater: Cu’ and ligand-bound copper
(Cul). Ligands can represent a variety of compounds with a wide range of Cu affinity.
As a first approach, we use a simple ligand model with one type of ligand (L), uniformly
distributed over the ocean ([L] = 1 nM) and a fixed complexation constant (KL) of 1033,
representing a bulk average of all ligand types for the entire water column.

Rive,, and Aerog,, represent Cu from external sources (rivers and aerosols respectively).

Upc,, is Cu uptake by phytoplankton, Recyclingc,,, is recycling of dissolved Cu by zooplankton,
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Scavc, represents the scavenging flux, and Reminc,, is bacterial remineralization from
particulate material.

The general equation for scavenged Cu is equation 2:

0SCu
ot

= Scave,, — sinking (2)

With Scave,, copper scavenging and sinking SCu sinking rate, increasing with depth
following the same equations as C, Fe and Co (Tagliabue et al., 2018).

The general equation for Cu? is equation 3:

5Cu®
ot

= Upcy —m® — GrazZ’ (3)

With m? phytoplankton mortality, Graz$ grazing of zooplankton species p on phytoplankton
species ¢ (with p = Z for microzooplankton and p = M for mesozooplankton). Calculation
of these terms are described in Aumont et al. (2015).

The general equation for CuPart is equation 4:

6CuPart

50 = Scavey + Exercy + Aggow — Remingy, (4)

With Aggc., the aggregation term which is a positive function of particulate organic matter

(see Aumont et al., 2015), and FEzcre,, the excretion of Cu via zooplankton faecal pellets.
The biogeochemical parameter values are based on the PISCES general equations

valid for macronutrients (Aumont et al., 2015), Fe (Tagliabue & Resing, 2016) and Co

(Tagliabue et al., 2018).

2.1.2 External Sources of Copper

We derive riverine inputs of DCu from the Fe:Cu ratio in rivers based on Gaillardet
et al. (2014). Cu flux is computed in PISCES similarly to the other nutrient fluxes (see
Aumont et al., 2015).

Atmospheric deposition of natural and anthropogenic Cu is derived from the modeled
deposition fluxes of Paytan et al. (2009). Solubility of Cu from atmospheric deposition
is fixed to 40% as an average for all aerosol types represented in the atmospheric model
(see also Sholkovitz et al., 2010, for a discussion on aerosol Cu solubility), and dissolution
is considered instantaneous upon deposition on the surface ocean. Atmospheric Cu deposition

is added to the DCu pool according to the following equation:

[DOu} = [DCU] + pey X Soley (5)

©2018 American Geophysical Union. All rights reserved.
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With pe,, the total (dry + wet) atmospheric Cu flux and Sole, the solubility. Atmospheric
Cu fluxes show a satisfying correlation with measurements (see Mahowald et al., 2018,
Figures 4e and 4f). No Cu input from hydrothermal vents or from sediments are considered

in this model.

2.1.3 Reversible scavenging model

We simulate reversible Cu scavenging onto organic particles, similar to zinc (Weber
et al., 2018). This model assumes a continuous exchange between the inorganic copper
(Cu’) and organic particles, instead of the irreversible uptake of trace metals onto particles,
which is used to represent most trace metals (see Bacon & Anderson, 1982). We assume
a fast equilibrium between adsorption and desorption, allowing us to describe Cu scavenging
as a function of the organic particles concentration (PartC) and a partition coefficient

(KDCwu). The equation for scavenging is equation 6.

ztre
Seavew = T ow o0 (6)

ztre = Parte * KDCu (7)

The strong KL for copper-ligand complexation keeps [Cu’] low in the water column.
Therefore, the term on the right hand side of equation 6 is positively correlated with Partc.
When this term is greater than 0, net scavenging is occurring. On the contrary, if the
particle load (Part¢) is low, resolubilization is occurring (Cu’ release from the scavenged

pool).

2.1.4 Copper biological uptake

Cu uptake by phytoplankton is modelled following the Co model from Tagliabue
et al. (2018) and is represented using an evolving Cuw:P ratio in the planktonic cells (equation

8).
bCu 1—6%/69

y % mazx 8
bCu + kSCU¢ 1.05 — 9¢/9$m1‘ ( )

Upcu = H?;Laac X Gfmw"

In this equation, p¢,,. is the maximum phytoplankton growth rate and is fixed to 1.05
day~! for both nanophytoplankton and diatoms (Aumont et al., 2015). 6% is the Cu:P

ratio and 69

¢ . the maximum ratio (see table 1 and Twining & Baines, 2013). bCu is the

bioavailable Cu concentration (bioavailable Cu can be all DCu or Cu’ alone) and ksCuy

the half saturation constant (expressed for DCu in nmolCu L~! for Cu uptake) for phytoplankton

©2018 American Geophysical Union. All rights reserved.
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group ¢. Following equation 8, Cu uptake is down-regulated when Cu:P gets close to the

maximum value.

2.2 Experimental design

After a 500-year spin-up, all simulations ran for 600 years starting from the same
initial conditions. The reference simulation is called REF and two sets of experiments
were performed (SCAV and INORGANIC-CU). SCAV is designed to quantify the effects
of different partition coefficients (KDCu) on copper vertical distribution (LOWSCAV
and HIGHSCAV). FESCAV serves as a control to show that reversible scavenging is responsible
for the linear [DCu] profile over the ocean. In this simulation, Cu scavenging is similar
to iron scavenging: once Cu’ is adsorbed onto particles, it can only be remobilized by
bacterial activity or recycled after grazing by zooplankton. The aim of the INORGANIC-
CU and INORGANIC-CU2 simulations is to observe whether phytoplankton can maintain
their Cu:P quotas if they were only using Cu’ as a Cu source instead of using Cu’ and
CulL as in REF. INORGANIC-CU2 aims at maximizing the uptake of Cu’ by phytoplankton
by lowering phytoplankton half saturation constants for Cu’ uptake. All simulations and

their specific parametrizations are described in Table 2.

Table 2. Description of all simulations. KDCup and KDCug are units are 1/mmol, ksCuy and

ksCup units are nmolCu L~!. Rev. Scav. stands for reversible scavenging.

Name KDCup KDCug Rev. Scav. ksCuy ksCup bCu
REF 100E-3 5E-3 Yes 4 12 DCu
LOWSCAV 50E-3 1E-3 Yes 4 12 DCu
HIGHSCAV 200E-3 10E-3 Yes 4 12 DCu
FESCAV 100E-3 5E-3 No 4 12 DCu
INORGANIC-CU 100E-3 5E-3 Yes 4 12 Cuw’
INORGANIC-CU2 100E-3 5E-3 Yes 0.01 0.03 Cuw’
797

©2018 American Geophysical Union. All rights reserved.
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3 Results and Discussion
3.1 Dissolved Copper Distribution

The modelled DCu distribution in our reference simulation (REF) is able to closely
reproduce measurements from different campaigns and experiments (A. Gourain pers.
comm. compiled data from e.g. the GEOTRACES database (Schlitzer et al., 2018), line
P transect in the North Pacific (Posacka et al., 2017; Semeniuk et al., 2016) and PINTS
expedition in the Tasman Sea (Hassler et al., 2014) see Figures la, d and g). Average
[DCu] in the first 50 m is 0.83 nmolCu L~!, with minimal concentrations (below 0.20 nmolCu L)
in the subtropical Pacific along the Indonesian coasts and in the subtropical oligotrophic
gyres, and maximal concentrations (over 1.5 nmolCu L~!) in the Southern Ocean where
modelled [DCu] slightly overestimates the measurements. However, most of the measurements
in this region are obtained during summer, which may explain the lower annual mean
in our model. An assessment of the seasonal variability in our model showed that surface
[DCu] can vary by up to 1 nmolCu L1 in this region (see Figure B.1). In the intermediate
layer (400-500m), the model overestimates [DCu] by around 40 % in the Pacific OMZ.

In the deep ocean, concentrations in the North Pacific are measured between 2 and 3 nmolCu L~!
and the model values are over 3 to 4 nmolCu L1,

Overall, modeled [DCu] is coherent with the measurements of the vertical DCu distribution
along the GA03 (Roshan & Wu, 2015), GA10 (Little et al., 2018) and GP16 (Boiteau
et al., 2016) GEOTRACES sections as represented in Figure 2. The REF simulation reproduces
the general feature of a linear increase of [DCu] with depth for all sections. [DCu] in the
Pacific OMZ is overestimated (section GP16, between 400 and 700m depth, figure 1d).

Along GP16, the [DCu] increase with depth is too strong, leading to overestimated concentrations
between 500 and 3000 m. In the deep waters of the North Atlantic (section GA03, Figure 2a),
[DCu] is well represented in the western sector (between 20 and 40°W), but overestimated

by around 0.6 to 0.8 nmolCu L~! in the eastern sector.

When evaluated statistically, the REF model reproduces the observations well across
different depth ranges (Figure 3a) with a global correlation of 0.86 and the model - data
regression line (slope=0.92) is very close to the 1:1 line. The weaker model performances
between 200 and 500m (R=0.42) highlight the model deficiencies in the eastern Pacific
OMYZ in particular. Concerning the vertical profile, when the model is compared to the
data at the same vertical co-ordinates, it remains within the observation variability and

reproduces the progressive DCu increase with depth well (Figure 3b). Overall, the REF

—10—-
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Figure 1. Average DCu concentration (nmol L™!) from the REF (a, d, g), HIGHSCAV (b, e,
h) and LOWSCAV (c, f, i) simulations in the 0-50 m (a, b, c), 400-500 m (d, e, f) and 2500-3000

m (g, h, i) depth layers. Dots represent data points.

simulation is a solid foundation from which to assess the main processes driving the bioavailability

and distribution of Cu in the ocean.

3.2 The Role of Reversible Scavenging

The simulations LOWSCAV, HIGHSCAV and FESCAV examine the effects of different

scavenging modes and partition coefficients on [DCu] vertical distribution. Figure 4a shows
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Figure 2. Average [DCu| (nmol L ') along the GA03 (a, top), GP10 (b, middle) and GP16
(¢, bottom) GEOTRACES cruises. Left panels represent the data, middle panels the REF

simulation and right panels cruise tracks.

how reversible scavenging (simulations REF, HIGHSCAV and LOWSCAYV) is responsible
for the linear profile of [DCu]. The average vertical DCu profile in REF can be modeled

by a linear regression with R=0.62 and p-value <1%. Reducing or enhancing the scavenging
partition coefficient as in HIGHSCAV or LOWSCAV modifies the slope of the regression
accordingly and systematically degrades the regression coefficient (R) in comparison to
REF. The high partition coefficients in HIGHSCAV results in Cu’ being quickly adsorbed
onto particles and removed from the water column via sinking, leading to underestimated
[DCu] over the water column by about 1 nmolCu L™ (see Figures 1b, e, h and 4b, e and
h). On the other hand, the low partition coefficients in LOWSCAV leads to overestimated
[DCuy] (see Figures lc, f, i and 4c, f and i) and increases the average deep [DCu] by about

0.6 nmolCu L~!. The iron-like scavenging represented in FESCAV is the most common

—12—
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Figure 3. (a) Scatter plot of DCu concentration (nmol L ™') in the model versus measured
concentrations, the black line represents the 1:1 line, the dotted line represents the slope of the
model versus data regression. Numbers in the left corner represent the correlation coefficient (R,
log-log regression) and the depth range, numbers in the left corner represent values for the entire
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500m: 222, 500-1500m: 180, 1500-4750m: 497. (b) Average [DCu] profiles from the data (black
line) and from the model (red line). Dashed lines represent the standard deviation, number on

the left corner represents correlation coefficient between the model and data.

form of trace metal scavenging and leads to a nutrient-like [DCu] profile across the global

ocean, with uniform concentrations around 1 nmolCu L~! below the euphotic layer.
Overall, [DCu] in the surface ocean is not highly impacted by the scavenging partition

coefficient (see Figure la, b and c), however, the partition coefficient impacts [DCu] in

the OMZ regions and the anomalies propagate to the deep ocean layers, affecting the entire

water column (see Figure 1d, to i).

3.3 Bioavailable form of Copper

We conducted a set of simulations to assess how different assumptions regarding
phytoplankton uptake impacts DCu distribution in the ocean. The total Cu’ pool in the
global ocean is 83 times smaller than total DCu in the REF simulation. In agreement,

Coale and Bruland (2003) and Moffett et al. (1997) observed that over 99 % of DCu is

—13—
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indicates that the statistical regression is not significant (p-value > 1%). The panels b to

k represent [DCu] in HIGHSCAV (b, e and h), LOWSCAV (c, f and i) and FESCAV (d, g
and k) along the GA03, GA10 and GP16 cruise sections. See Figure 2 for the data and REF

concentrations).
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bound with organic ligands. Map 5d shows that, in REF, equatorial and high latitudes

Cuw:P quotas are around 1.2 to 1.5 mmolCu:molP. Around the East Asian coasts, the Baltic
Sea, the Bering Strait and the Drake Passage, the cellular Cu:P ratio is below 1 mmolCu:molP.
Phytoplankton Cu:P in REF is close to the maximal value of 2 mmolCu:molP in most

oceanic regions, indicating that phytoplankton is able to satisfy its copper demand. We

also calculated the total Cu uptake in the first 100 meters of the global ocean and found

a total uptake of 31 GmolCu year—!. Converted into pmolCu day~! L™, results from

REF give 2.4 pmolCu day~! L1, which is on the lower end of Semeniuk et al. (2009)

and Semeniuk et al. (2016). These authors also found variability in uptake rates in the

northwestern Pacific (between 3 and 125 pmolCu day—* L~1).

c) INORGANIC-CU2
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olCu L)

L som—
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Figure 5. Top row: maps of [DCuy] in surface (0-100m) in REF and in the INORGANIC-
CU and INORGANIC-CU2 simulations (background) and in the GEOTRACES data (circles).

Bottom row: maps of the average Cu:P ratio (mmolCu molP) in phytoplankton cells (0-100m)

In INORGANIC-CU, reducing the bioavailable Cu pool to only Cu’ leads to only

50 to 80 % ligand-bound copper and high surface [DCu] in all oceanic regions, including
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the oligotrophic gyres where it is close to the ligands concentration (around 1 nmol L~1,
Figure 5). Improving the ability of phytoplankton to acquire Cu’ at low concentrations

by reducing the ksCu, to 0.01 nmol L=! and 0.03 nmol L' in the INORGANIC-CU2
simulation brings the proportion of ligand-bound copper over 95 % in most parts of the
ocean. However, there is, to our knowledge, no published value of phytoplankton half
saturation constant for Cu. However, Figure 5c shows that reducing ksCuy still leads

to up to 50% overestimation in surface [DCu] and low spatial variability as high levels

of CuL remain unused in the surface ocean. Figures 5e and f show that relying on Cu’

as the only Cu source decreases the Cu:P ratio in the phytoplankton cells below that of
REF, even with a very high phytoplankton affinity for Cu (INORGANIC-CU2). In the
equatorial and high latitudes regions, Cu:P quotas are around 0.5 to 1.5 mmolCu:molP

in INORGANIC-CU2 and below 0.5-1 mmolCu:molP in INORGANIC-CU. Around the
East Asian coasts, the Baltic Sea, the Bering Strait and the Drake Passage, the cellular
Cu:P ratio is below 0.5 mmolCu:molP in INORGANIC-CU2 and is close to 0 in INORGANIC-
CU. These results indicate that the surface ocean Cu’ pool is too small to fuel phytoplankton
cells to their maximal Cu:P quota, even with very low ksCug. Therefore, at least a fraction
of CuL has to be bioavailable to phytoplankton in order to avoid sub-maximal quotas

in phytoplankton cells that may have consequences on cellular functions (see Annett et

al., 2008). Finally, Cu uptake rate decreases in INORGANIC-CU?2 to 27 GmolCu year—!
(2.0 pmolCu day~! L1), which is below Semeniuk’s estimates, indicating that Cu’ is

a too small pool to maintain Cu biogeochemical cycling in the surface ocean.

Accurately representing Cu bioavailability and uptake in our model affects the Cu
distribution and phytoplankton cellular ratios (Figure 5). Neither limiting, nor toxic effects
of Cu on phytoplankton and zooplankton growth are included in the present model configurations.
Laboratory assessments of Lowest Observed Effect Concentration (LOEC) and No Observed
Effect Concentration (NOEC), which are necessary to assess toxic Cu concentrations,
are rare (see e.g. Suratno et al., 2015). Representing both the limitation and toxicity effects
of Cu on plankton growth in PISCES relies on deeper knowledge on physiological effects
of Cu and on estimations of concentration thresholds for limiting and toxic effects (Prosnier
et al., 2015). However, such developments should be the next step towards modelling the

potential impacts of Cu and other metal contamination in the ocean food webs.
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3.4 Global Budget and Residence Time of Oceanic Copper

Cu supply to the ocean is dominated by rivers, with aerosols playing a minor role,
leading to a residence time of 400-500 years (Figure 6). Natural aerosols are the dominant
aerosol Cu source at the global scale (respectively 0.08 and 0.19 GmolCu year~! of anthropogenic
and natural Cu aerosols, see Figure 6). However, our estimates of aerosol Cu deposition
based Paytan et al. (2009) modelling study are 50 % higher than Little et al. (2014) estimate
of 0.054 GmolCu year—! based on a global average Cu deposition flux and average solubility.

The global Cu riverine flux from our model is estimated at about 6.7 GmolCu year~!,
which is about 10 times higher than Little et al. (2014) estimate of 0.6-0.8 GmolCu year—1!,
based river isotopic composition from Vance et al. (2008) with few sampling points. Our
Cu river flux estimation is based on a fixed Cu:Fe ratio in rivers from Gaillardet et al.

(2014) who considered a greater number of samples, but used only measurements in rivers,
far from anthropogenic activities and may therefore underestimate the total Cu river flux.
Moreover, river catchment basins are often rich in organic matter, humics and ligands

that may bind copper and modify its bioavailability, but there is no global estimate of
ligand fluxes from rivers. In spite of these potential caveats, our estimation agrees with
Little et al. (2014) that rivers are the main external Cu source to the global ocean. However,
our greater input fluxes of Cu result in a much shorter residence time for Cu of between

400 and 500 years.

Upon arrival in the surface ocean, a fraction of Cu is scavenged by particles and
sinks into deeper water, representing a loss of 1.2 GmolCu year—! from the top 100 m
of the global ocean. In contrast, phytoplankton uptake represents a sink of DCu of 31 GmolCu year™
with approximately half of the uptake flux being recycled by zooplankton (17 GmolCu year—1),

and 9 GmolCu year—!

is remineralized by bacteria. The model suggests a residence time
of 3 years for the top 100m, which agrees with estimates of 2.5-8 years from the North
Pacific (Semeniuk et al., 2016). The remainder 5.8 GmolCu year—! sinks into deeper water
as particulate organic Cu.

The average Cu:C ratio decreases progressively from 15 to 10 to 8 umolCu:molC
for phytoplankton uptake, zooplankton recycling and particule remineralization respectively,
and the ensuing modelled export ratio of 16 pmolCu:molC agrees with Semeniuk et al.
(2016) estimations between 1.5 and 15 for the North Pacific region. We calculated the

Cu:C ratio in the dissolved phase from the total organic and inorganic dissolved Cu and

P, and used the Redfield ratio of 106:1 molC:molP. We found 10 pgmolCu:molC in the
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Figure 6.

Cu budgets in the first 100 meters of the global ocean. Numbers represent

Cu fluxes between (in GmolCu year™') numbers in the left corner represent total inorganic
particulate and dissolved Cu (CuPart and DCu) in the first 100 meters (GmolCu). Numbers in

parenthesis represent the Cu:C ratio of each process and compartment (umolCu:molC)

dissolved phase on average over the surface ocean. Regional Cu budgets and ratios are

available in appendix (see Figure A.1).

4 Towards a General View of Copper Biogeochemical Cycling

We can also use our model to highlight the most important processes driving Cu
cycling in each ocean region (Figure 7). The impacts of the different anthropogenic and
natural Cu external sources on the surface ocean are not evenly distributed, with the northern
hemisphere oceans receiving more external inputs of Cu from rivers and aerosols than
the southern hemisphere. In particular, the North and Equatorial Atlantic regions receive
over 2.5 GmolCu year~! from rivers and 0.003 GmolCu year—! from aerosol deposition,
mostly from the Amazon river and Saharan dust deposition (see Figure A.1). The surface
Pacific, on the other hand, receives less copper from external sources but is characterized
by the dominance of anthropogenic aerosols, mainly industrialized cities around the Pacific

coasts of Asia (see e.g. Uematsu et al., 1983; Wang et al., 2016). Finally, the southern
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Thanks to recent developments, PISCES is the first global biogeochemical model
to represent a range of trace metals (Co, Zn, Fe, Mn see e.g. Hulten et al., 2017; Tagliabue
et al., 2018), and now Cu. The next developments should include relations between these
different elements in phytoplankton cells in order to observe the response of phytoplankton
communities to the different elemental ratios in external nutrient sources (Hirose, 2007;
Wang et al., 2017). These modelling developments should also be paired with sampling
efforts in order to obtain reliable estimates of the trace metal concentrations and elemental

ratios in aerosols, rivers and planktonic cells in various regions of the global ocean.

5 Copper Cycling in the Oxygen Minimum Zones

Figures 1 and 2 show that [DCu] in the Pacific OMZ seems overestimated in our
model. To evaluate the representation of the Pacific OMZ in PISCES, we use the GEOTRACES
GP16 section (Moffett & German, 2018) and compare our model results with the oxygen
and nutrients concentrations measured in situ (Figure 8). The modelled oxygen concentration
is too high below 200 m and the expansion of the Pacific OMZ is not well represented:
the very low oxygen concentrations (below 50 mmol m~2) are constrained between 100
and 300 m in the model whereas they are observed until 800 m in the measurements (Figure 8a).
This feature was already observed by Aumont et al. (2015) who hypothesized that it may
be linked with too intense ventilation of oxygen rich waters from the Southern Ocean.
However, the macronutrients nitrate and phosphate from PISCES match the GP16 data
well, suggesting that their distribution is not being affected by incorrect rates of remineralization
(Figures 8b and c).
Modelled [DCu] in the Pacific OMZ is at least 0.5 nmolCu L~ higher than the measurements
across all our simulations (Figure 8d). Only the increased scavenging in HIGHSCAV leads
to a decrease of [DCu] in the OMZ and brings the simulated concentrations closer to the
measurements. However, the deeper [DCu] becomes underestimated in this simulation
(see Figure 2).
Ultimately, our model either contains a too strong Cu source, or is missing a Cu
sink specific to low oxygen waters. However, there is no sediment source of Cu in the model
that could explain the high [DCu] close to the continental shelf, and there is no major
river flow or atmospheric deposition flux in this region. It thus appears likely that there
is a Cu specific sink operating in low oxygen waters. One candidate may be sulfides, which

are very strong scavenging particles (Dyrssen, 1988), and have been measured in the Arabian
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In addition to abiotic sinks, it is possible that high rates of denitrification in OMZs,
catalyzed by the Cu-containing enzyme nitrous oxide reductase (Codispoti et al., 2001;
Granger & Ward, 2003) may be a component of Cu removal. Also, denitrification and
ammonia oxidation by archea requires Cu as well as Fe (Glass & Orphan, 2012). Our
model includes explicit representation of denitrification, but does not account for Cu consumption
by denitrifying bacteria, which will require two Cu atoms per nitrous oxide reductase.
Also, Posacka et al. (2019) hypothesized that up to 50% of biogenic Cu in the ocean could
be consumed by bacteria. Therefore, Cu scavenging by sulfides in particle microenvironments
as well as Cu uptake by denitrifying bacteria could be a significant component of Cu cycling
in OMZs. These processes could be incorporated in future developments of the PISCES

model in order to assess their importance.

6 Conclusions

This study presents a global 3D coupled physical-biogeochemical model of oceanic
Cu cycling, developed within the widely-used NEMO/PISCES model. The model captures
correctly the main features of Cu distribution in the ocean: low surface concentrations
and linear increase with depth. This study brings confirmation that reversible scavenging
is the main driver of [DCu] vertical distribution and the scavenging rate determines the
slope of the linear profile of [DCu] over the global ocean. Moreover, our simulations support
the hypothesis that ligand-bound copper has to be at least partly bioavailable for phytoplankton
to maintain their cellular Cu ratio.

We present a global budget of surface Cu including biogeochemical processes such
as uptake, recycling, remineralization and export, finding that external Cu sources deliver
about 7 GmolCu year~—! to the surface oceans and that phytoplankton uptake represents
31 GmolCu year—!. These new estimates provide a shorter residence time than previously
calculated (approximately 10 times shorter). Moreover, this new value may be underestimated
as some external Cu sources are likely missing in our budget. Equatorial regions are responsible
for the majority of the global Cu uptake and biological cycling whereas the mid and high
latitudes (in particular the southern ocean) are responsible for most of the Cu export
below 100m. The southern part of the ocean also gathers 50% of the global surface Cu
budget. Finally, the high Cu:C ratios in the surface Atlantic and Indian oceans seem to

be linked with the important Cu fluxes from natural and anthropogenic external sources.
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Although our model overestimates [DCu| in the OMZ, this points to the potential
role for additional processes associated with particle microenvironments or bacterial cycling
in driving the Cu distribution in low oxygen systems. Further developments in the NEMO/PISCES
model should also include explicit effects of Cu on phytoplankton growth (fertilizing and
toxic effects), interaction effects with other trace metals such as Fe and a better representation
of ligands cycling. These developments should be paired with measurements and experiments

to better constrain the model hypotheses.

A Regional Copper Budgets

The northern Pacific and Atlantic regions receive more Cu from rivers than their
southern counterparts, but receive a similar amount of natural Cu aerosols (Figure A.1).
Also, the equatorial regions receive most of the riverine Cu (about 2 Gmol year—! for
both the equatorial Pacific and the equatorial Atlantic). The northern Pacific region receives
more Cu from anthropogenic aerosols, mainly because of the north Asian sources. The
equatorial Atlantic also receives most of the global natural aerosol load from the Sahara
(1 Gmol year~!). Also, Cu export is 2 to 5 times more important in the southern regions
than in the northern regions, which is mainly linked to physical processes. Moreover, the
export values of SCu per unit area are an order of magnitude higher in the southern regions
than in the northern ones, making the southern region a more important Cu sink than
the equatorial and northern regions. Most of the biological activity is found in the equatorial
regions, therefore, most of the Cu uptake, remineralization and recycling is occurring in
the equatorial Pacific and Atlantic. Overall, the southern oceanic regions hold most of
the global Cu content. There is in total 8 GmolCu in the top 100 m in the southern Atlantic
and Pacific whereas there is 7 GmolCu in the top 100 m of the equatorial Pacific and
Atlantic. However, the average Cu concentrations are higher in the equatorial regions.

The Cu:C of particulate and dissolved Cu is higher in the Atlantic. This is probably
linked to the higher Cu fluxes from external sources. Likewise, the Cu:C ratio in particulate
export is higher in the Atlantic (19 pmolCu:molC). Also, there is a strong gradient in
the Cu:C ratios from the equatorial regions toward the mid and high latitudes. In particular
for dissolved elements, the Cu:C ratio in the northern regions is between 98 and 117 pmolCu:molC,
it is around 20 to 30 pmolCu:molC in the equatorial regions and around 150 to 250 pmolCu:molC
in the southern regions. Likewise, the Cu:C ratio for phytoplankton uptake follows the

same increasing trend from equatorial regions to the higher latitudes, showing that phytoplankton
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adapt to the high Cu ratio in their environment by increasing the Cu:C of their nutrient
uptake. However, the Cu:C ratio in remineralization processes decreases towards the poles
from respectively 8.3 and 11 in the equatorial Pacific and Atlantic, it decreases to about

7.3 and 7.7 in the northern and southern Pacific and Atlantic respectively.

B Seasonal Cycling of DCu

The Southern Ocean and the Mediterranean are the regions experience the most
intense seasonal variations in surface [DCu] (Figure B.1a). In the Southern Ocean, this
is probably linked with the very intense changes in surface physical and biogeochemical
conditions. In the Mediterranean, the important impacts of external nutrient sources on
the surface biogeochemistry may also concur to the important variability we observe. Regions
of high productivity and upwelling regions such as the western coasts of Africa and America

also have a marked seasonal amplitude of [DCu] between 0.3 and 0.5 nmolCu L.

0.695

0.690

0.685

0.680

Latitude
DCU nM

0.675
0.670

0.665

0.660 ) - ) ) ) ) ) ) | — REF

T
100°W

Langitude
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Figure B.1. a) Amplitude of average monthly [DCu] in surface (0-50m). b) Seasonal cycle of

average surface (0-50m) [DCu] over the global ocean.

Figure B.1b shows the global seasonal cycle of surface [DCu]. This figure shows that
the seasonal cycling has a weak amplitude on the global scale. However, global [DCu]

seems higher during Austral spring (between September and November).
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487 C Seasonal Variability of Atmospheric Deposition

488 The most important variability in aerosol Cu deposition is located in the Mediterranean

39 and North Atlantic, downwind of the Sahara, and in the North Indian Ocean downwind

490 of the Sahara and Middle East deserts (Figure C.1a).

492

494

<95

498

499

500

502

03

504

05

le7 Aerosol deposition

molCu month

—100

0 100 1 2 3 4 5 6 7 8 9 10 11 12
NAY_LON Month

a) amplitude of Cu aerosol deposition (microgCu/m2/month) b) Seasonnal cycle of aerosol deposition

Figure C.1. a) Amplitude of average monthly Cu aerosol deposition (ugCu month™'). b)

Seasonal cycle of average Cu deposition (molCu month™') over the global ocean.

Figure C.1b shows that Cu deposition from aerosols is highly variable over a year.
The difference between the lowest deposition flux in October and the highest deposition
flux in July is over 0.015 GmolCu month~1). Aerosol deposition is a highly dynamic process
that varies greatly in space and time. Our model accounts for such variability thanks

to the sate-of-the-art Cu deposition model from Paytan et al. (2009).
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