Effect of desiccation on mosquito oviposition site selection in Mediterranean temporary habitats
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Abstract
1. Hydroperiod duration has been identified as the main factor determining the faunal composition and structure of aquatic communities in temporary habitats. We hypothesize that desiccation will positively affect mosquito oviposition habitat selection during the post-drought period due to the lack of antagonists. 
2. An experiment was carried out in outdoor mesocosms to assess whether desiccation events have post-drought effects on i) community richness, and ii) mosquito oviposition. 
Three different treatments were randomly assigned to the mesocosms: i) eight mesocosms were left dried for a week and then re-flooded; ii) eight mesocosms stayed dry for four weeks before they were re-flooded; iii) eight mesocosms were maintained at a constant water volume of 30 L during the entire experiment as controls. Mosquito oviposition and invertebrate community richness were monitored in every mesocosm, along with environmental parameters (water temperature, pH, conductivity, dissolved oxygen, total suspended solids (TSS) and chlorophyll a concentration). 
3. Post-drought mosquito oviposition and larval abundance were higher in the short-drought and long-drought pools compared to the control. Desiccation negatively affected the biomass of the filter feeder invertebrates in both desiccation treatments. Chlorophyll a concentrations were higher in the long-drought pools than in controls. The negative impact of desiccation on zooplankton led to a post-drought increase in algae, associated with an increase in mosquito oviposition.
4. Despite immediate negative effect on mosquitoes, pulsed disturbances can benefit mosquitoes since they favor oviposition during the post-disturbance recovery period due to a lower abundance of mosquito antagonists and higher food resources for their offspring.
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Introduction
The composition and dynamics of the communities inhabiting temporary habitats are influenced by the duration of the hydroperiod and by seasonality (Boix et al. 2001). Hydroperiod has been identified as the main factor determining the faunal composition and structure of aquatic communities in these systems (McLachlan 1985; Jeffries 1994; Spencer et al. 1999), and drought is often the major mortality factor for insects in temporary pools (Batzer & Resh 1992). However, the timing of inundation also plays an important role in shaping the aquatic community (Kneitel 2014). Drought causes considerable changes within aquatic ecosystems (Cowx et al. 1984). It imposes changes in macroinvertebrate communities and functional feeding group composition (Sangiorgio et al. 2007; Johnson & Colón-Gaud 2013), and increases the importance of intraspecific and interspecific competition, which increases metamorphosis time thus delaying emergence into adulthood of aquatic insects (Blaustein & Chase 2007). The magnitude of these changes depends on the degree and duration of the drought. Some organisms have adopted life history traits that allow them to cope with the stressful characteristics of temporary habitats, such as resting egg stages, desiccation resistance, and ability to migrate into the hyporheic zone (Smock et al. 1985; Smock 1999; Griswold et al. 2008). 
Global warming is expected to increase both intermittency (i.e. alternation between flowing water periods during the wet season and dry periods, usually during hot summer months) and discontinuity (i.e. more disconnected pools) of streams. In Israel, the amount of rainfall is expected to decrease and variability of rainfall to increase, leading to an increase in the frequency of extreme hydrological events (Ayalon et al. 2011). 
Habitat disturbances are widely assumed to promote colonization by opportunistic species (Lozon & MacIsaac 1997; D'antonio et al. 1999). Mosquitoes are generally opportunistic insects and are often able to colonize a habitat faster than their antagonists (i.e., competitors and predators), leading to rapid population outbreaks. However, up to now, very few studies have focused on the effect of drought episodes on mosquito population dynamics. Earlier studies have assessed the effect of drought and amount of rainfall on the composition of the adult mosquito population (Smith & Love 1956) and mosquito species preferences (Bradshaw & Holzapfel 1988). Others tried to correlate mosquito abundance (Aedes species) with rainfall episodes (Gleiser et al. 2000). Chase and Knight (2003) have evaluated the effect of hydroperiod length on mosquito abundance in three different wetland types (temporary, semi-permanent and permanent). They demonstrated that the emergence of mosquitoes increased after a drought event due to the loss of antagonists, which usually limit mosquito abundance. These studies suggest that disturbances, in the form of desiccation events, can influence mosquito population dynamics. However, in order to understand effects of drought on mosquitoes, it is important to consider oviposition habitat selection (OHS). 
When facing choices between small water bodies or larger ones, ovipositing female mosquitoes will select the smaller patches, even if these have a short hydroperiod (Bohenek et al. 2017, Westby and Juliano, 2107). When selecting breeding sites, ovipositing mosquitoes are known to avoid habitats with antagonist species in order to favor offspring fitness (Spencer et al. 2002). They may avoid  competitor species for food (Blaustein and Kotler 1993, Stav et al. 2005, Duquesne et al. 2011), or either predators or predator-released kairomones (Spencer et al. 2002, Blaustein et al. 2004, Eitam et al. 2004, Stav et al. 2005, Van Dam and Walton 2008, Silberbush et al. 2010). Mosquitoes may thus exploit disturbed, enemy-free sites for their larvae. However, some mosquito species, such as Aedes triseriatus, can adopt avoidance behavior at the larval stage, when facing a predator (Juliano et al. 2019). Overall, both timing and frequency of disturbances may be very important in determining the outcome of drought on mosquito populations (Mogi et al. 1993).
In a field mesocosm study, we assessed mosquito OHS decisions, mosquito larval performance and invertebrate community structure alterations following simulated drought events. We hypothesized that mosquitoes would oviposit more in pools that had completely dried and were re-flooded compared to pools that retained constant water levels, because of the absence of antagonists and increased food resources, such as algae and bacteria. . Mosquito OHS was assessed based on number of egg rafts laid in the experiment, during the post-drought period of community recovery. 

Materials and Methods 
Experimental design
In March 2015, an experiment was conducted in outdoor mesocosms set up in the Hai Bar Nature Reserve, Mount Carmel, Israel (340 m asl; 32º45’18” N; 35º00’54” E). Twenty-four outdoor mesocosms (40 L plastic tubs, length × width × height: 50 × 40 × 20 cm) were dug in the ground to mimic rock pools from Mediterranean stream beds in a 4 x 6 grid design, with 50cm between two mesocosms. The mesocosms were set up at ~80 m from a large, temporary artificial pond created by the Israel Nature & Parks Authority that served as a source for colonizing insects and amphibians in our mesocosms. The Mount Carmel area experiences rainy events from about mid-October through mid-April, followed by dry months in the remainder of the year. The mesocosms (pools) were naturally filled by rain from November and were left uncovered to allow colonization by insects and amphibians. 
The mesocosms were randomly assigned to one of the two treatments - two different drought or desiccation regimes – or control (no drought). In the two desiccation treatments (short- and long-drought bouts, explained below), the pools were allowed to dry, while in control, we maintained a constant water volume of 30 L during the entire experiment (Fig. 1). On April 14th, 2015, the 16 pools assigned to desiccation treatments had completely dried. Two weeks before the end of the hydroperiod, approximately 5 L of water were removed each week from each treated pool to ensure they would be all dry on the same day. Care was taken to avoid removing organisms along with the water, by passing the removed water through an aquarium net (mesh size = 250 µm) and returning the contents of the net to the experimental pool. Since small algae, bacteria and particles could pass through the net, 5L was also removed from the control pools, but then replaced with distilled water to maintain the water level. We used distilled water instead of aged tap water because of the high conductivity of tap water in the area.
The eight pools that were assigned to a short dry period (short-drought pools) were flooded again on April 21st, 2015 with distilled water, one week after they had been completely dried out, while the remaining 8 pools remained dry for four weeks before they were reflooded on May 19th, 2015 (long-drought pools). Thereafter, the 30 L water level was maintained with distilled water in all 24 pools. The dates of flooding were in line with the rain episodes in Israel as the last rainfall in 2015 occurred on 28-30 May. 
To simulate natural conditions in northern Israel, ten days after reflooding the long-drought pools, we allowed all 24 pools to start drying up. We monitored the post-drought period of community recovery until the water level in the pools was too low to perform the sampling. The experiment ended on 23 June 2015.

Sampling
Sampling was performed in all pools (when not dry) every two weeks beginning 4 March, then on 17 and 31 March, 14 and 28 April, 12 and 26 May, 9 and 23 June. On each sampling date, water temperature, pH, conductivity, and dissolved oxygen were measured in every pool, between 10:00 AM and 12:00 PM using a pH/EC/TDS Combo testing meter (Hanna Instruments, Kehl am Rhein, Germany), and an optical dissolved oxygen meter (ProODOTM, YSI Inc., Yellow Springs, OH). Phytoplankton chlorophyll a concentrations were determined in 100 mL water samples filtered through Whatman GF/C fiberglass filters. Pigments were extracted overnight using 1.5 mL of methanol. Chlorophyll a was quantified spectrophotometrically (Spectrophotometer Nanodrop 2000C, Thermo Fisher Scientific Inc., Waltham, MA USA) according to Ritchie (2006) to determine phytoplankton biomass. TSS concentrations were determined in additional 100 mL water samples filtered through pre-weighed oven-dried Whatman GF/C fiberglass filters (2 h at 500 °C; 1.2 µm mesh size; Whatman International, Maidstone, UK) and weighed according to the AFNOR (2006) method after 48 h at 105 °C.
From all 24 pools, invertebrate and anuran tadpole data were collected on each sampling date. Anuran eggs were counted in each experimental pool. Invertebrates and tadpoles were sampled by sweeping a net (dimension = 9.5 x 7 cm; mesh size = 250 µm) through the water (volume sampled: 8 L) after gentle mixing, to collect both planktonic and benthic individuals. Invertebrates were then preserved in 80% ethanol in the laboratory. Fixed specimens were counted under a stereomicroscope (Leica M125 stereomicroscope, Leica Microsystems, Wetzlar, Germany) and identified to species level when possible, using identification keys (Johannsen and Thomsen 1937, Pennak 1978, Amoros 1984). Anuran tadpoles were counted on site and returned to the experimental pools.
Oviposition of mosquitoes was evaluated by counting the number of egg rafts laid in the pools three times a week during the experimental period and identifying them to species level after hatching. The egg rafts were collected and isolated until the eggs hatched to identify the larvae (Rioux 1958; Harbach 1985). The larvae were then released back into the respective tubs. Mosquito larvae relative abundance was estimated by sweeping a net (dimension = 9.5 x 7 cm; mesh size = 250 µm) through the water (volume sampled: 8 L). 
The identified taxa were categorized as active (insects and amphibians: Culicidae, Chironomidae, Ceratogonidae, Ephemeroptera, and the frog Hyla savignyi) or passive dispersers (zooplankton: calanoid copepods, cladocerans, and ostracods). Biomass was estimated for each taxon. Dry masses for cladocerans and calanoids were predicted from length-weight regressions of Dumont et al. (1975). Similarly, ostracod dry masses were predicted according to Widbom (1984), and dry weights of dipterans were estimated according to Sota et al. (1998), Dawson et al. (2000), Duquesne et al. (2011), Morante et al. (2012). Dry masses of ephemeropterans were estimated according to Gupta et al. (1993). Weights of Hyla savignyi were estimated according to Stein & Blaustein (2015). The taxa were categorized as either grazers/scrapers (Ostracoda, Chironomidae, Ceratopogonidae, Ephemeroptera, and amphibian tadpoles) or filter feeders (calanoids and cladocerans). Both grazers/scrapers and filter feeders may be considered as competitive antagonists of Culiseta longiareolata larvae (Blaustein & Margalit 1994), and filter feeders as potential competitive antagonists of Culex larvae (Stav et al. 2005). 
For analysis, the sum of mosquito egg raft and larval abundances were calculated for each week and each experimental pool. 

Statistical Analysis
To analyse the effect of desiccation on the different dependent variables (abiotic parameters, chlorophyll a concentrations, taxa richness, invertebrate biomass, mosquito egg raft and larval abundances) we performed a repeated measures ANOVA (RM-ANOVA). The data were divided into 2 stages (before and after flooding) according to the timing of desiccation and flooding: from 4 March to 14 April (before desiccation), when all 24 pools began with 30 L water and evaporation and water removal occurred in the two desiccating treatments; from 21 April to 23 June, when the short-drought pools were filled and maintained to 30 L, and from 19 May to 23 June, when the long-drought pools were filled and maintained to 30 L for 10 days and then evaporation occurred (Fig. 1). Repeated measures ANOVA was performed and each variable was tested for the effects of desiccation duration (control [always flooded] vs. short-drought [dry one week, then flooded], and control vs. long-drought [dry four weeks, then flooded]), as re-flooding timing was different for each treatment. Data were log-transformed (y = log (x + 1)) prior to analysis to meet the assumptions of homogeneity of variance and normal distributions. A Greenhouse–Geisser correction for sphericity was used when sphericity assumptions were not met. ANOVA tests were performed using Statistica Version 2.9.0 (Statsoft). Significance was accepted at p < 0.05 for all tests.
Data collected before the complete desiccation and data collected after the 2nd flooding were used to conduct several multivariate analyses. To examine differences in invertebrate species composition among treatments, sums of each taxon were calculated for each period and a nonmetric multidimensional scaling (NMDS) was run. The dissimilarity matrix was calculated using the Bray–Curtis dissimilarity with species’ presence–absence data. Species abundances were used to conduct a one-way analysis of similarity (ANOSIM) to test for treatment effects on community composition, followed by pairwise comparisons. If significant, ANOSIM results were followed by a SIMPER (similarity of percentages) test, using Bray–Curtis dissimilarity to determine the relative contribution of taxonomic groups to differences among treatments. ANOSIM and SIMPER were conducted using PAST, version 1.94b (Hammer et al. 2001).
We investigated the relationships among egg raft numbers for the main ovipositing mosquito species, filter feeder biomass, chlorophyll a and treatment after second flooding (19 May-23 June) using a path analysis. We hypothesized that egg raft numbers would be positively related to chlorophyll a (because pools with more chlorophyll a are expected to be more attractive to ovipositing mosquitoes) and negatively related to filter feeder biomass (because pools with more competing filter feeders are expected to be less attractive to ovipositing mosquitoes). We hypothesized that chlorophyll a would depend negatively on filter feeder biomass (because filter feeders consume phytoplankton). We hypothesized that filter feeder biomass would be reduced by drought treatments compared to the control (because filter feeders must either recolonize or emerge from refuges or resting stages after drought). We included only these a priori hypothesized relationships, because it would be difficult to fit more complicated models given the relatively small size of the experiment. We log(x + 1) transformed total egg raft numbers to deal with the mean-variance relationship expected for count data. We centred and scaled the means of filter feeder biomass and chlorophyll a to put their variances on similar scales. We coded treatment as two binary variables representing differences of long- and short-drought treatments from the control. We fitted the model separately for each main ovipositing mosquito species, using maximum likelihood in the sem() function in the R package lavaan 0.6-1 (Rosseel 2012).


Results
Abiotic parameters
Values of the abiotic parameters are summarized in Table 1. Before desiccation, there were no significant differences among treatments for pH, water temperature, dissolved oxygen and TSS (p > 0.05; Table 2). However, time x treatment interactions for conductivity before desiccation, were statistically significant for both long-drought vs control and short-drought vs control. (p <0.001; Table 2). Conductivity was significantly lower in the control pools (0.29 mS cm-1; Table 1) than in the short-drought (0.35 mS cm-1; Table 1) and long-drought pools (0.36 mS cm-1; Table 1).
After desiccation, there were no significant differences between short-drought and control pools, regarding any of the measured abiotic parameters except for the conductivity (p = 0.009; Table 2). However, time x treatment interactions were statistically significant for pH (p = 0.005; Table 2) and dissolved oxygen (p = 0.004; Table 2). pH and dissolved oxygen were lower in the long-drought pools than in control pools after the desiccation period (Table 1). 
A technical problem with the dissolved oxygen probe did not allow measurements to be taken on 4 March. Thus, measurements started on 17 March. Dissolved oxygen was significantly lower on 9 June in the long-drought pools (6.1 mg L-1) in comparison to the control (9.8 mg L-1; Table 1; p < 0.001). 

Aquatic community
There was an overall significant effect of the long drought on chlorophyll a concentrations in comparison to control (p < 0.001; Table 3). Chlorophyll a concentrations were significantly higher in the long-drought pools than in controls from 26 May to the end of the experiment (Fig. 2).
Fifteen invertebrate taxa were identified during the entire experiment. The aquatic invertebrate community was mainly comprised of crustaceans (nine species including calanoids, cladocerans and ostracods with Arctodiaptomus similis, Moina sp., Alona sp., Heterocypris sp., Cypris sp. and Potamocypris sp. being the most abundant), insects (which included Ephemeroptera, and Diptera), Physidae and tadpoles (Hyla savignyi). Chironomus sp. and Dasyhelea sp. were the most abundant insects. 
There were significant time x treatment interactions for active disperser richness, and for passive disperser richness after desiccation (p = 0.033, and p = 0.001, respectively; Table 3), between the short-drought pools and the controls. Active disperser richness was higher in short-drought pools than in control pools from 12 May to 9 June (Fig. 3A). Passive disperser richness was lower in short-drought pools than in control pools from 28 April to 12 May (Fig. 3B). 
Before desiccation, there was an overall significant effect of the short drought on filter-feeder biomass in comparison to control (p < 0.001; Table 3), but no differences were observed between long-drought pools and control (p > 0.05; Table 3). Filter feeder biomass was higher in the short-drought pools than in controls from 17 March to 31 March (Fig. 2). After desiccation, time x treatment interactions were statistically significant for filter feeder biomass between the short-drought pools and the controls (p < 0.001; Table 3), and between the long-drought pools and the controls (p = 0.002; Table 3). Biomass of filter feeders was lower in the short-drought pools than in controls from 28 April to 26 May (Fig. 4A). Filter-feeder biomass was lower in the long-drought pools than in controls on 26 May, but higher on 9 June and 23 June (Fig 4A).
Regarding the grazer / scraper biomass, there were no statistical differences between the treatments and control, before desiccation, (p > 0.05; Table 3). After desiccation, there were significant time x treatment interactions for the biomass of grazers / scrapers, between the short-drought pools and the controls (p = 0.024; Table 3), and between the long-drought pools and the controls (p = 0.023; Table 3). Biomass of grazers / scrapers was higher on 9 June and 23 June in the short-drought pools in comparison to control, and it was lower in the long-drought pools compared to controls on 26 May (Fig. 4B). 
Before desiccation, communities were not segregated in NMDS space according to treatments, and except for 2 pools (pool 3 (3L) and pool 10 (10L) of the long-drought treatment group), all the pools were grouped together (Stress = 0.23; Fig. 5A). However, after desiccation, communities segregated by treatment along NMDS dimension 1 (control, short-drought and long-drought; Stress = 0.19, Fig. 5B).
Before desiccation, the hypothesis of no difference in taxon composition among treatments could not be rejected (ANOSIM; R = 0.096, p = 0.063), but taxon composition was significantly different among treatments after desiccation (R = 0.14, p = 0.022). In this case, SIMPER was run and indicated that ostracods and the cladoceran Moina contributed most to differences among these treatments (75% and 68% respectively for short-drought and long-drought pools; Table 4). Chironomidae contributed 6.3% of the difference between short-drought pools and control (Table 4). The ceratopogonid Dasyhelea (6.3%) and the clam shrimp Cyzicus (5.4%) contributed to differences between long-drought pools and control. The rest of the species contributed less than 5% to differences in both treatments in comparison to control. 

Mosquito oviposition habitat selection and larval performance
Four different species oviposited in the mesocosms: Culiseta longiareolata, Culex laticinctus, Cx. pipiens and Cx. theileri. However, the mosquito species C. longiareolata was the main mosquito species ovipositing in the mesocosms during the experiment (Fig. 6A). Cx. laticinctus started to oviposit into the experimental pools later, starting from the 8th week of the experiment (Fig. 7A). Due to the lack of Culex egg rafts before desiccation, analyses were run from week 8 to the end of the experiment. 
Before desiccation, there were no significant differences among treatments in C. longiareolata oviposition, C. longiareolata larval abundance, Cx. laticinctus oviposition or Cx. laticinctus larval abundance (Table 5). 
After desiccation, there were significant time x treatment interactions between the short-drought pools and the control for C. longiareolata oviposition (p = 0.029; Table 5), C. longiareolata larval abundance (p < 0.001; Table 5), Cx. laticinctus oviposition (p = 0.012; Table 5) and Cx. laticinctus larval abundance (p = 0.036; Table 5). Culiseta longiareolata egg rafts were more abundant in the short-drought pools than in the control from week 8 to week 10 (Fig. 6A) and C. longiareolata larval abundance was higher in short-drought pools compared to control pools from week 9 to week 11 (Fig. 6B).  Cx. laticinctus oviposition was higher in the short-drought pools than in control from week 8 to week 10 (Fig. 7A) and Cx. laticinctus larval abundance was higher in the short-drought pools than in controls from week 9 to week 11 and on week 13 (Fig. 7B).
There was an overall significant effect of the long drought on C. longiareolata and Cx. laticinctus oviposition, in comparison to control (p = 0.013 for both; Table 5). From week 12 to week 16, C. longiareolata egg raft abundance was higher in the long-drought pools than in the control (Fig. 6A) and Cx. laticinctus oviposition was higher in the long-drought pools than in control pools from week 12 to the end of the experiment (Fig. 7B). There were significant time x treatment interactions for C. longiareolata larval abundance between long-drought pools and control pools (p = 0.012; Table 5). C. longiareolata larval abundance was higher in long-drought pools compared to control pools from week 13 to week 16 (Fig. 6B). Time x treatment interactions were statistically significant for Cx. latincinctus larval abundance between long-drought pools and control pools (p = 0.001; Table 5). Cx. latincinctus larval abundance was higher in the long-drought pools than in control pools from week 13 to the end of the experiment (Fig. 7B).

Path analysis
Path analyses for both C. longiareolata and Cx. Laticinctus showed the same qualitative patterns (Figure 8, Table 6). There were negative but not significant relationships between the two drought treatments and filter feeder abundance, and between filter feeder abundance and chlorophyll a (Figure 8, dashed arrows), but very little of the variation in filter feeder abundance and chlorophyll a was explained by the model (Table 6, R2 values). For both mosquito species, there was a significant positive relationship between chlorophyll a and oviposition (Figure 8, bold vertical arrows). The direct effect of filter feeders on oviposition was positive for both species but was significant only for Cx. Laticinctus (Figure 8b, curved bold arrow). Most of the variation in oviposition was unexplained, although the R2 values for oviposition were much higher than those for filter feeder abundance or chlorophyll a (Table 6, R2 values).

Discussion
We assessed the effect of desiccation in temporary habitats on mosquito populations during post-disturbance community recovery. Desiccation had a negative effect on invertebrate community richness and a positive effect on phytoplankton, which may have contributed to an increase of mosquito oviposition in the disturbed habitats. 

Impact of drought on communities
Most published studies of the effects of drought in freshwater communities are on lentic ecosystems, and very few concern lotic ecosystems. In the latter, stream flow variability has been identified as a major factor affecting abiotic and biotic factors that regulate lotic macrozoobenthic processes (Naiman et al. 2008; Ceola et al. 2013). Mediterranean streams are characterized by flooding and droughts. Recession of flood waters results in the formation of isolated rock pools along wadi channels, which can last from several weeks to several months, depending on the weather conditions (Ward & Blaustein 1994). Environmental parameters such as temperature, conductivity, depth and width and dissolved oxygen influence invertebrate distribution, genera richness and abundance (Pires et al. 2000; Tarr et al. 2005). In our study, the difference in water conductivity between treatments before desiccation was due to the addition of distilled water in the control pools to maintain the water level. This led to low conductivity in the control pools in comparison to the short-drought and long-drought pools. pH and dissolved oxygen were significantly lower in the long-drought pools than the controls after the desiccation period. Indeed, the “bloom” of algae observed in the long-drought pools may have influenced pH levels and dissolved oxygen concentrations through respiration and photosynthetic activity.
In our pools, the invertebrate community was generally comprised of crustaceans and insects, the diptera Chironomus sp. and Dasyhelea sp. being the most abundant insects after mosquitoes. After the drought, dipterans colonized the pools first, with non-flying taxa (mainly zooplankton, and mainly filter feeders in our case) arriving later. This delay may have led to an increase in phytoplankton because of reduced grazing. The effect of drought is linked to intrinsic characteristics of invertebrates (Johnson & Vaughn 1995): high recolonization rates, delayed hatching of drought-resistant eggs, and ability to take refuge (Delucchi 1988). Therefore, drought appears to favor dipterans, which are more tolerant of drought conditions and have more efficient recolonization mechanisms (Extence 1981; Pires et al. 2000). However, after a drought period, Otermin et al. (2002) observed non-flying taxa to be more abundant as they are more resistant to drought than flying taxa. 
In our study, the two drought regimes had different effects on the invertebrate community. The duration of the hydroperiod and seasonality influence the composition and dynamics of the communities inhabiting temporary habitats and determine the faunal composition and structure of aquatic communities in these systems (McLachlan 1985; Jeffries 1994; Boix et al. 2001). Drought imposes changes in the macroinvertebrate community, and the magnitude of the changes depends on the degree and duration of the drought (Boix et al. 2010). However, the timing of inundation has a greater and positive impact on both species richness and density than hydroperiod duration (Kneitel 2014). Densities of active dispersers such as Chironomidae and Culicidae increased in late inundation (in spring) and more specifically in the case of short-inundation treatment (8 weeks of inundation), when compared to early inundation (in winter) and to long-inundation treatment (16 weeks; Kneitel 2014). In our study, the inundation in the long-drought pools, which was later than in the short-drought pools, led to higher concentrations of chlorophyll a, perhaps due to the late development of the filter feeders, Moina being the crustacean the most impacted by the drought. We hypothesized that there would be a negative impact of both drought treatments on zooplankton, which are mainly herbivores, and that this would lead to an increase in algae. However, although our path analyses were consistent with this hypothesis, the relationships among these variables were not significant, and very little of the variation in filter feeder biomass and chlorophyll a was explained. Other factors that were not considered in our model may therefore be important.

Impact of drought on mosquitoes
Mosquito oviposition habitat selection is not random, and mosquitoes lay eggs selectively (Yoshioka et al. 2012). Indeed, while selecting habitat to lay their eggs, females integrate environmental information, on which they base ovipositing decisions (Edgerly et al. 1998), which can ultimately influence the offspring’s fitness (Edgerly et al. 1998). When facing choices, the female mosquito will select the habitat which is more suitable for her progeny, avoiding antagonists (competitor and/or predators; Blaustein et al. 1995; Blaustein 1998; Bond et al. 2005). However, in some specific cases, the mosquito Aedes aegypti will preferentially oviposit in habitats in which the predator Toxorhynchites theobaldi and dead conspecific larvae are present, as the ovipositing females are attracted by increasing bacterial abundance due to dead larvae (Albeny-Simões et al. 2014) Increasing the amount of food increases mosquito oviposition (Blaustein & Kotler 1993). Pulsed disturbances of larval mosquito sites can have an immediate negative effect on mosquitoes but can also favor mosquito oviposition during the post-disturbance recovery period due to the alteration of community structure (Duchet et al. 2017; Duchet et al. 2018). Indeed, Duchet et al. (2017, 2018) have shown that altered communities become attractive to gravid mosquitoes searching for oviposition sites when the disturbances decrease the abundance of mosquito antagonists but increase mosquito food resources. In our study, the disturbed pools, and more specifically the long-drought pools, had more food resources and fewer mosquito larvae competitors, making the pools more attractive for Cx. laticinctus, reflected in an increase in mosquito oviposition. Our path analysis supported the hypothesis that pools with more food would be more attractive to ovipositing mosquitoes. However, extensive studies are still needed in order to validate this hypothesis. They should include field studies in rock pool systems where abiotic and biotic parameters may be carefully monitored in combination with measurements of invertebrate biomass and mosquito oviposition for demonstrating the role of algae dynamics on mosquito oviposition. In contrast, the direct effect of filter feeders on oviposition estimated from our path analysis was unexpectedly positive (and significantly so for Cx. laticinctus). This is unlikely to be because high chlorophyll a favours both high filter feeder biomass and oviposition. This pathway is already included in our analysis, and would require a positive rather than a negative sign for the relationship between filter feeder biomass and chlorophyll a. An indirect mutualism also seems unlikely, because it would require mosquitoes and filter feeders to specialize on different components of the phytoplankton, rather than competing (Dethier & Duggins 1984). However, it is possible that there is an indirect effect of some physicochemical variable not considered in the path analysis, leading to some pools having high filter feeder biomass and also being attractive to mosquitoes. 
This post-drought increase in mosquito oviposition supports the observations from Chase & Knight (2003). These authors evaluated the effect of hydroperiod length on mosquito abundance and showed that emergence of mosquitoes increased after a drought event as predators and competitors, which usually contain mosquito populations, were limited after such events. Although predators can recolonize these semi-permanent habitats following drought, mosquitoes, considered as pioneer insects, typically have much more rapid population dynamics than predators, allowing them to escape predation, leading to population outbreaks in a very short period. 
In conclusion, changes to the hydrological cycle are likely under an enhanced greenhouse effect. An increased frequency of moderate to heavy rainfall events alternating with drought periods is expected in Mediterranean regions. This will increase the potential for flooding, which this study shows may have a profound effect on mosquito populations. One possible consequence is increased transmission rates for mosquito-borne diseases.
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Figures
Figure 1. Timing of the desiccation and flooding process in the experimental pools. Control: control pools; short drought: short-drought pools; long drought: long-drought pools.
Figure 2: Chlorophyll a concentrations (mean + SE, n = 8) in each treatment. Control: control pools; short drought: short-drought pools; long drought: long-drought pools. 
Figure 3: Taxonomic richness (mean + SE, n = 8) of active (A) and passive dispersers (B), in each treatment. Control: control pools; short drought: short-drought pools; long drought: long-drought pools. 
Figure 4: Biomass (mean + SE, n = 8) of filter feeders (A) and grazers / scrapers (B), in each treatment. Control: control pools; short drought: short-drought pools; long drought: long-drought pools.
Figure 5: Nonmetric multidimensional scaling (NMDS) plot of aquatic communities in the short-drought (S) circled in blue, long-drought pools (L) circled in red, and control (C) circled in green, before desiccation (from March, 4th to March, 31st; A) and after desiccation, when all the pools are filled (from May, 26th to June, 23rd; B).
Figure 6: Abundance of egg rafts (A) and C. longiareolata larvae (B) (mean + SE, n = 8). Control: control pools; short drought: short-drought pools; long drought: long-drought pools.
Figure 7: Abundance of egg rafts (A) and Cx. latincinctus larvae (B) (mean + SE, n = 8). Control: control pools; short drought: short-drought pools; long drought: long-drought pools.
Figure 8: path analyses representing relationships between oviposition, chlorophyll a, filter feeders and treatment after second flooding, for (A) C. longiareolata, (B) Cx. Laticinctus. Solid arrows represent positive relationships, and dashed arrows negative relationships.  Bold arrows represent significant relationships at the 0.05 level, based on z-tests. Numbers are standardized coefficients.
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Table 1: Abiotic parameters measured in the experimental pools. Means ± standard errors are presented (n = 8 for each treatment). C: control pools; Short: Short drought pools; Long: Long drought pools. Cells in grey represent missing data due to the drought (28 April and 12 May for the long drought pools), due to a technical problem with the dissolved oxygen probe on 4 March, or due to the sampling frequency (every four weeks for the TSS).
	Parameters
	Treatment
	4 March
	17 March
	31 March
	28 April
	12 May
	26 May
	9 June
	23 June

	pH
	Control
	7.9 ± 0.05
	7.8 ± 0.11
	8.1 ± 0.10
	8.1 ± 0.10
	8.1 ± 0.13
	8.6 ± 0.18
	9.2 ± 0.18
	9.0 ± 0.10

	
	Short
	7.9 ± 0.13
	7.9 ± 0.10
	8.1 ± 0.07
	7.9 ± 0.12
	7.9 ± 0.10
	8.3 ± 0.21
	9.1 ± 0.16
	8.9 ± 0.14

	
	Long
	7.7 ± 0.07
	7.8 ± 0.12
	8.1 ± 0.14
	
	
	8.4 ± 0.23
	7.9 ± 0.07
	8.2 ± 0.08

	conductivity (mS cm-1)
	Control
	0.29 ± 0.04
	0.30 ± 0.03
	0.22 ± 0.02
	0.25 ± 0.02
	0.26 ± 0.02
	0.21 ± 0.01
	0.24 ± 0.02
	0.32 ± 0.04

	
	Short
	0.35 ± 0.04
	0.43 ± 0.04
	0.53 ± 0.07
	0.17 ± 0.02
	0.21 ± 0.02
	0.16 ± 0.01
	0.18 ± 0.01
	0.22 ± 0.02

	
	Long
	0.36 ± 0.05
	0.39 ± 0.04
	0.45 ± 0.04
	
	
	0.17 ± 0.01
	0.24 ± 0.02
	0.29 ± 0.02

	water temperature (°C)
	Control
	14.2 ± 0.06
	12.8 ± 0.10
	16.7 ± 0.13
	19.0 ± 0.29
	18.2 ± 0.13
	20.3 ± 0.15
	23.1 ± 0.25
	20.8 ± 0.11

	
	Short
	14.2 ± 0.11
	12.8 ± 0.12
	17.2 ± 0.15
	19.2 ± 0.49
	18.5 ± 0.44
	20.5 ± 0.18
	23.4 ± 0.19
	20.9 ± 0.10

	
	Long
	14.1 ± 0.08
	12.8 ± 0.11
	17.1 ± 0.11
	
	
	20.3 ± 0.11
	23.0 ± 0.21
	20.8 ± 0.10

	Dissolved oxygen      (mg L-1)
	Control
	
	8.5 ± 0.47
	8.6 ± 0.56
	7.6 ± 0.36
	7.2 ± 0.38
	7.3 ± 0.31
	9.8 ± 0.68
	9.9 ± 0.69

	
	Short
	
	8.8 ± 0.36
	8.9 ± 0.44
	6.5 ± 0.44
	7.2 ± 0.55
	7.8 ± 0.39
	17.3 ± 7.68
	10.0 ± 0.47

	
	Long
	
	9.0 ± 0.51
	9.1 ± 0.59
	
	
	7.7 ± 0.76
	6.1 ± 0.51
	8.5 ± 0.46

	TSS (mg L-1)
	Control
	16.3 ± 2.68
	
	45.1 ± 15.09
	62.2 ± 23.03
	
	65.7 ± 13.72
	
	46.5 ± 7.42

	
	Short
	11.3 ± 2.36
	
	101.4 ± 29.77
	7.0 ± 0.90
	
	34.9 ± 9.12
	
	68.3 ± 16.35

	
	Long
	25.6 ± 6.32
	
	53.7 ± 10.70
	
	
	16.1 ± 2.32
	
	65.5 ± 13.58



Table 2. Results of repeated-measures ANOVA for the abiotic parameters before and after the complete desiccation of the pools 
	
	
	Before desiccation
	After desiccation

	
	
	Short drought vs. Control
	Long drought vs. Control
	Short drought vs. Control
	Long drought vs. Control

	
	Source of variation
	df
	F
	p
	df
	F
	p
	df
	F
	p
	df
	F
	p

	pH
	
	
	
	
	
	
	
	
	
	
	
	

	
	Treatment
	1, 14
	0.2
	0.645
	1, 14
	0.0
	0.877
	1, 14
	1.2
	0.293
	1, 14
	27.2
	< 0.001

	
	Time
	2, 28
	5.5
	0.010
	2, 28
	11.8
	< 0.001
	4, 56
	43.3
	< 0.001
	1.6, 22.9
	0.8
	0.427#

	
	Time * Treatment
	2, 28
	0.2
	0.789
	2, 28
	1.0
	0.372
	4, 56
	0.2
	0.944
	1.6, 22.9
	7.5
	0.005#

	Conductivity
	
	
	
	
	
	
	
	
	
	
	
	

	
	Treatment
	1, 14
	9.1
	0.009
	1, 14
	8.0
	0.014
	1, 14
	9.2
	0.009
	1, 14
	0.5
	0.487

	
	Time
	2, 28
	8.3
	0.001
	2, 28
	2.7
	0.087
	4, 56
	10.7
	< 0.001
	2, 28
	34.3
	< 0.001

	
	Time * Treatment
	2, 28
	44.5
	< 0.001
	2, 28
	28.3
	< 0.001
	4, 56
	1.3
	0.291
	2, 28
	1.4
	0.272

	Water temperature
	
	
	
	
	
	
	
	
	
	
	
	

	
	Treatment
	1, 14
	3.7
	0.074
	1, 14
	2
	0.149
	1, 14
	2
	0.149
	1, 14
	0.0
	0.992

	
	Time
	2, 28
	659.8
	< 0.001
	2, 28
	698
	< 0.001
	2, 28
	698
	< 0.001
	2, 28
	288
	< 0.001

	
	Time * Treatment
	2, 28
	1.7
	0.207
	2, 28
	1
	0.354
	2, 28
	1
	0.354
	2, 28
	0.2
	0.808

	Dissolved oxygen
	
	
	
	
	
	
	
	
	
	
	
	

	
	Treatment
	1, 14
	0.5
	0.505
	1, 14
	0.6
	0.438
	1, 14
	0.1
	0.743
	1, 14
	10.4
	0.006

	
	Time
	1, 14
	8.9
	0.010
	1, 14
	9.7
	0.008
	4, 56
	22.7
	< 0.001
	1.9, 27.7
	5.2
	0.012#

	
	Time * Treatment
	1, 14
	0.02
	0.901
	1, 14
	0.00
	0.984
	4, 56
	0.9
	0.473
	1.9, 27.7
	6.8
	0.004#

	TSS
	
	
	
	
	
	
	
	
	
	
	
	

	
	Treatment
	1, 14
	2.2
	0.160
	1, 14
	0.2
	0.670
	1, 14
	1.5
	0.248
	1, 14
	0.3
	0.569

	
	Time
	1, 14
	21.1
	< 0.001
	1, 14
	18.9
	< 0.001
	2, 28
	27.2
	< 0.001
	1, 14
	6.6
	0.023

	
	Time * Treatment
	1, 14
	0.4
	0.534
	1, 14
	0.8
	0.385
	2, 28
	0.1
	0.928
	1, 14
	0.7
	0.405


# with the Greenhouse-Geisser correction

Table 3. Results of repeated-measures ANOVA for the biotic parameters before and after the complete desiccation of the pools 
	
	
	Before desiccation
	After desiccation

	
	
	Short drought vs. Control
	Long drought vs. Control
	Short drought vs. Control
	Long drought vs. Control

	
	Source of variation
	df
	F
	p
	df
	F
	p
	df
	F
	p
	df
	F
	p

	Chlorophyll a
	
	
	
	
	
	
	
	
	
	
	
	

	
	Treatment
	1, 14
	0.4
	0.558
	1, 14
	1.7
	0.207
	1, 14
	3.4
	0.087
	1, 14
	29.7
	< 0.001

	
	Time
	2, 28
	0.9
	0.402
	2, 28
	0.2
	0.823
	4, 56
	2.5
	0.049
	2, 28
	0.225
	0.800

	
	Time * Treatment
	2, 28
	0.3
	0.775
	2, 28
	1.2
	0.321
	4, 56
	1.1
	0.374
	2, 28
	0.410
	0.667

	Active disperser richness
	
	
	
	
	
	
	
	
	
	
	
	

	
	Treatment
	1, 14
	0.1
	0.822
	1, 14
	0.01
	0.901
	1, 14
	0.8
	0.383
	1, 14
	0.001
	0.973

	
	Time
	2, 28
	1.5
	0.231
	2, 28
	0.9
	0.398
	4, 56
	4.7
	0.002
	2, 28
	0.1
	0.878

	
	Time * Treatment
	2, 28
	1.1
	0.345
	2, 28
	0.9
	0.414
	4, 56
	2.8
	0.033
	2, 28
	1.8
	0.178

	Passive disperser richness
	
	
	
	
	
	
	
	
	
	
	
	

	
	Treatment
	1, 14
	0.004
	0.951
	1, 14
	1.3
	0.278
	1, 14
	4.9
	0.043
	1, 14
	0.3
	0.608

	
	Time
	2, 28
	0.7
	0.517
	2, 28
	1.2
	0.306
	2,3, 32,9
	6.7
	0.002#
	2, 28
	5.9
	0.007

	
	Time * Treatment
	2, 28
	1.1
	0.344
	2, 28
	0.6
	0.541
	2,3, 32,9
	7.6
	0.001#
	2, 28
	2.8
	0.078

	Filter feeder biomass
	
	
	
	
	
	
	
	
	
	
	
	

	
	Treatment
	1, 14
	17.2
	< 0.001
	1, 14
	0.9
	0.368
	1, 14
	14.1
	0.002
	1, 14
	0.003
	0.958

	
	Time
	2, 28
	0.04
	0.966
	2, 28
	4.2
	0.026
	3,3, 45,7
	10.5
	< 0.001#
	2.0, 27,9
	2.1
	0.141#

	
	Time * Treatment
	2, 28
	3.1
	0.061
	2, 28
	0.3
	0.756
	3,3, 45,7
	11.2
	< 0.001#
	2.0, 27,9
	8.2
	0.002#

	Grazer/scraper biomass
	
	
	
	
	
	
	
	
	
	
	
	

	
	Treatment
	1, 14
	0.01
	0.926
	1, 14
	1.1
	0.314
	1, 14
	0.5
	0.495
	1, 14
	7.3
	0.017

	
	Time
	2, 28
	0.8
	0.454
	2, 28
	0.2
	0.846
	4, 56
	28.2
	< 0.001
	1,9, 26,2
	2.7
	0.087#

	
	Time * Treatment
	2, 28
	0.3
	0.738
	2, 28
	0.1
	0.923
	4, 56
	3.0
	0.024
	1,9, 26,2
	4.5
	0.023#


# with the Greenhouse-Geisser correction 
Table 4: SIMPER results for comparisons of desiccation treatment (Control, short drought and long drought pools) 
Short drought pools versus control (dissimilarity = 99.6)
	Taxon
	Contribution 
	Cumulative %
	Direction of difference with Control

	Potamocypris
	23
	41.5
	+

	Cypris
	7.5
	54.7
	+

	Moina
	6.7
	66.6
	-

	Heterocypris
	4.9
	75
	+

	Chironomus
	3.4
	81.3
	+

	Alona
	2.7
	86.1
	-

	Ceriodaphnia
	2.0
	89.6
	+

	Calanoid
	1.9
	93.0
	-

	Hyla savignyi
	1.3
	95.4
	+

	Dasyhelea
	1.2
	97.5
	+

	Cyzicus
	1.2
	99.6
	+



Long drought pools versus control (dissimilarity = 99.4)
	Taxon
	Contribution 
	Cumulative %
	Direction of difference with Control

	Potamocypris
	22
	35.8
	+

	Moina
	11.6
	54.6
	+

	Heterocypris
	8
	67.7
	+

	Dasyhelea
	3.9
	74
	+

	Cyzicus
	3.3
	79.4
	+

	Alona
	2.9
	84.2
	-

	Cypris
	2.6
	88.4
	+

	Ceriodaphnia
	2.0
	91.7
	+

	Calanoid
	1.7
	94.4
	-

	Hyla savignyi
	1.6
	97.0
	-

	Chironomus
	1.4
	99.4
	+



Table 5. Results of repeated-measures ANOVA for mosquito variables (Culiseta longiareolata and Culex laticinctus) before and after desiccation in the short drought and long drought pools. NA = not applicable (insufficient data for analysis).
 
	
	
	Before desiccation in short drought
	After desiccation in short drought
	Before desiccation in long drought
	After desiccation in long drought

	
	Source of variation
	df
	F
	p
	df
	F
	p
	df
	F
	p
	df
	F
	p

	Culiseta Egg raft abundance
	
	
	
	
	
	
	
	
	
	
	
	

	
	Treatment
	1, 14
	0.4
	0.532
	1, 14
	1.5
	0.241
	1, 14
	0.3
	0.618
	1, 14
	8.1
	0.013

	
	Time
	3,9, 54,1
	2.5
	0.055
	9, 126
	14.8
	< 0.001
	5, 70
	1.6
	0.170
	5, 70
	3.7
	0.005

	
	Time * Treatment
	3,9, 54,1
	2.4
	0.065
	9, 126
	2.2
	0.029
	5, 70
	1.0
	0.413
	5, 70
	1.2
	0.315

	Culiseta larval abundance
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Treatment
	1, 14
	2.1
	0.167
	1, 14
	2.0
	0.179
	1, 14
	2.1
	0.167
	1, 14
	15.4
	0.002

	
	Time
	5, 70
	14.6
	< 0.001
	3.2, 44.8
	10.7
	< 0.001
	5, 70
	14.6
	< 0.001
	2.1, 30.1
	11.4
	< 0.001

	
	Time * Treatment
	5, 70
	1.8
	0.127
	3.2, 44.8
	9.6
	< 0.001
	5, 70
	1.8
	0.127
	2.1, 30.1
	5.0
	0.012

	Culex egg raft abundance
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Treatment
	NA
	NA
	NA
	1, 14
	0.1
	0.815
	NA
	NA
	NA
	1, 14
	8.1
	0.013

	
	Time
	NA
	NA
	NA
	5,7, 79,2
	1.9
	0.088
	NA
	NA
	NA
	5, 70
	3.7
	0.005

	
	Time * Treatment
	NA
	NA
	NA
	5,7, 79,2
	3.02
	0.012
	NA
	NA
	NA
	5, 70
	1.2
	0.315

	
	Culex larval abundance
	
	
	
	
	
	
	
	
	
	
	
	

	
	Treatment
	NA
	NA
	NA
	1, 14
	1.3
	0.281
	NA
	NA
	NA
	1, 14
	0.5
	0.481

	
	Time
	NA
	NA
	NA
	5, 70
	3.03
	0.016
	NA
	NA
	NA
	2.5, 34.8
	16.3
	< 0.001

	
	Time * Treatment
	NA
	NA
	NA
	5, 70
	2.5
	0.036
	NA
	NA
	NA
	2.5, 34.8
	7.1
	0.001





Table 6. Path analyses for relationships between oviposition, chlorophyll a, filter feeder biomass and treatment after second flooding. Models fitted by maximum likelihood using R package lavaan 0.6-1. Oviposition is total egg rafts after second flooding, log(x+1) transformed. Chlorophyll a and filter feeder biomass are centred and scaled. Root mean square error of approximation 0.50 for C. longiareolata model, and 0.43 for Cx. laticinctus model. Relationships among chlorophyll a, filter feeder biomass and treatment are the same for both models.

	Response variable
	R2
	Explanatory variable
	Coefficient
	Standard error
	z-score
	P-value
	Standardized coefficient

	C. longiareolata oviposition
	0.37
	Chlorophyll a
	0.53
	0.15
	3.59
	<0.0005
	0.59

	
	
	Filter feeder biomass
	0.24
	0.15
	1.59
	0.11
	0.26

	Cx. laticinctus oviposition
	0.28
	Chlorophyll a
	0.36
	0.15
	2.46
	0.01
	0.43

	
	
	Filter feeder biomass
	0.31
	0.15
	2.13
	0.03
	0.38

	Chlorophyll a
	0.03
	Filter feeder biomass
	-0.16
	0.20
	-0.80
	0.42
	-0.16

	Filter feeder biomass
	0.01
	Long drought
	-0.02
	0.49
	-0.04
	0.97
	-0.01

	
	
	Short drought
	-0.17
	0.49
	-0.34
	0.73
	-0.08





Effect of desiccation on mosquito oviposition habitat selection in Mediterranean temporary habitats
Claire Duchet*, Shomen Mukherjee, Meital Stein, Matthew Spencer, Leon Blaustein




· Mosquito oviposition and larval abundance were higher in the short-drought and in the long-drought pools than in the control pools, after the pools were flooded. 
· Zooplankton, which were mainly herbivores, were negatively affected by the drought, leading to an increase of algae, which in turn, led to an increase of mosquito oviposition. 
· Changes of the frequency of moderate to heavy rainfall events, alternating with drought events, may have a profound effect on mosquito populations and possibly on the transmission rates of mosquito-borne diseases.
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control	0.68725630052783082	1.0697113073402422	2.6696684561352022	1.7743191234741387	1.5219113038443313	0.99519535254057589	0.83951344371175018	0.87287858798896123	2.2837482083113474	1	4 March	17 March	31 March	14 March	28 April	12 May	26 May	9 June	23 June	3.7798535625	4.3272283124999991	5.5536626289771265	1.7155097916666657	5.186657999496779	3.5573422445552074	3.6098330208333329	3.263496183473507	5.8963215043629038	short drought	0.65021353592526221	2.2575917852343999	1.4910352486462832	0	0.12263546933336826	1.1490527901971244	0.48509791183964807	0.56056607684689197	1.9377539625906386	1	4 March	17 March	31 March	14 March	28 April	12 May	26 May	9 June	23 June	4.1293179374999998	6.4855646249999994	6.029064834026042	0.92797668750000006	3.5684885528313703	1.7102086875	2.2221024847629391	6.3342400195640769	long drought	2.6417783936194903	2.31756508422973	1.0459891449584777	0	0	0	1.96	1.8	0.72	1	4 March	17 March	31 March	14 March	28 April	12 May	26 May	9 June	23 June	7.9605932946428553	7.7586157500000006	4.328926087328238	10.199999999999999	9.8000000000000007	9.5497719101123621	Sampling dates 

Chlorophyll a concentrations (µg L-1)


control	0.26305214040457559	0.26305214040457559	0.32732683535398854	0.26305214040457559	0.39809815731442771	0.16366341767699427	0.16366341767699427	0.35038244411336755	0.31339158526400435	1	5 March	17 March	31 March	14 April	28 April	12 May	26 May	9 June	23 June	1.625	1.625	1.5	1.625	2.125	2.75	2.25	1.875	2.25	short drought	0.22658174179374141	0.3779644730092272	0.37499999999999994	0	0.26305214040457559	0.1889822365046136	0.1889822365046136	0.16366341767699427	0.3238992347717331	1	5 March	17 March	31 March	14 April	28 April	12 May	26 May	9 June	23 June	2.125	1.5	1.625	1.625	3	3	2.75	1.625	long drought	0.3779644730092272	0.25	0.26726124191242434	0	0	0	0.1889822365046136	0.18298126367784995	0.29504842217604116	1	5 March	17 March	31 March	14 April	28 April	12 May	26 May	9 June	23 June	2	1.25	1.5	2	2.375	1.875	Sampling dates

Active disperser taxa richness


control	0.44067723854475233	0.37499999999999994	0.3238992347717331	0.59574383277186704	0.32732683535398854	0.49776285231308409	0.70552665232637179	0.3659625273556999	0.56694670951384085	1	5 March	17 March	31 March	14 April	28 April	12 May	26 May	9 June	23 June	6.875	6.375	6.625	6.375	7.5	7.625	6.375	5.75	4	short drought	0.37499999999999994	0.26726124191242434	0.35038244411336755	0	0.69275588361681506	0.68138514386924687	0.45316348358748282	0.31339158526400435	0.54894379103354984	1	5 March	17 March	31 March	14 April	28 April	12 May	26 May	9 June	23 June	6.375	6.5	6.875	3.125	5.5	6.75	6.25	4.125	long drought	0.35038244411336755	0.82239849569067525	0.26305214040457559	0	0	0	0.56694670951384085	0.39809815731442771	0.35038244411336755	1	5 March	17 March	31 March	14 April	28 April	12 May	26 May	9 June	23 June	6.125	5.625	6.625	5.5	5.875	5.125	Sampling dates

Passive disperser taxa richness


control	0.40412735572200137	0.17676128822056275	0.27297208452252292	0.77939416576274156	0.88425263035272561	0.58888669127112248	0.66253128463869526	0.16505761980939523	5.7586382125030207E-2	1	5 March	17 March	31 March	14 April	28 April	12 May	26 May	9 June	23 June	1.4887500000000002	0.84531250000000002	1.1339999999999999	2.1581250000000001	3.3485000000000005	3.1278124999999997	1.8846249999999998	0.36549999999999999	6.5062499999999995E-2	short drought	0.19511101321472984	0.37033457890780519	0.38952900531557738	0	5.1313674512397621E-2	0.17095957516116414	0.13816759806933748	0.77333500872150207	4.4280703381544023E-2	1	5 March	17 March	31 March	14 April	28 April	12 May	26 May	9 June	23 June	1.8110625000000002	2.6599374999999998	2.2178749999999998	8.3062499999999997E-2	0.51337500000000003	0.6061875000000001	1.30125	6.3562500000000008E-2	long drought	0.28234119963865151	0.19080769933364841	0.11294455567334785	0	0	0	6.3583426461112605E-2	0.70719496200532583	0.3795464685165611	1	5 March	17 March	31 March	14 April	28 April	12 May	26 May	9 June	23 June	1.8008124999999999	1.1256250000000001	1.0583125	0.12393750000000001	1.55	0.60406249999999995	Sampling dates

Biomass of filter feeders (mg)


control	1.3561707805635927	2.4428814757964066	1.5290151329135089	0.45670995432857869	8.4946740711656976E-2	1.5364571249662649	0.4864082034670057	0.18220082976965285	0.19164733579159304	1	5 March	17 March	31 March	14 April	28 April	12 May	26 May	9 June	23 June	2.537585	4.4420968749999998	2.4454981249999999	0.72406375000000001	0.13418562499999998	6.2861137499999993	2.0023175000000002	0.50810749999999993	0.46995187500000002	short drought	1.4244870765257167	0.99269447018781254	1.7545438293860336	0	1.3174165567232607E-3	2.0286458827910199	0.28055509614351742	0.46722402798091622	0.29548537597515467	1	5 March	17 March	31 March	14 April	28 April	12 May	26 May	9 June	23 June	2.1947343749999999	2.2275956249999997	2.4769749999999999	4.5037499999999991E-3	5.4181787499999992	1.9483187499999999	1.8255456250000002	0.87781500000000001	long drought	1.7312506667948528	0.95832068106466839	0.15959856110454326	0	0	0	0.24734846396678895	0.49918893448612511	0.28347127642188014	1	5 March	17 March	31 March	14 April	28 April	12 May	26 May	9 June	23 June	2.259916875	1.5071874999999999	0.32459562500000005	0.28363812500000002	0.63892749999999998	0.37896750000000001	Sampling dates

Biomass of grazers/scrapers (mg)


control	0.32808366141715878	0.30618621784789724	0.77280154129130851	0.35355339059327373	0.30618621784789724	0.5303300858899106	0.48232653761625938	0.9372684899334992	0.55901699437494745	0.5335936864527373	0.94280904158206325	0.39528470752104738	0.31180478223116176	0.15590239111558088	0.11785113019775791	0.15590239111558088	0.11785113019775791	0.32808366141715878	0.30618621784789724	0.77280154129130851	0.35355339059327373	0.30618621784789724	0.5303300858899106	0.48232653761625938	0.9372684899334992	0.55901699437494745	0.5335936864527373	0.94280904158206325	0.39528470752104738	0.31180478223116176	0.15590239111558088	0.11785113019775791	0.15590239111558088	0.11785113019775791	week 1	week 2	week 3	week 4	week 5	week 6	week 7	week 8	week 9	week 10	week 11	week 12	week 13	week 14	week 15	week 16	week 17	1.25	0.75	1.75	1.125	1.125	1.5	1.25	1.75	1.875	1.625	2.375	1.125	0.625	0.25	0.125	0.25	0.125	short drought	0.7559289460184544	0.3779644730092272	0.75445107765277164	0.47949005650348397	0.5	0.16366341767699427	0	1.0978875820670997	1.6949241449524686	0.74252224593899241	0.51538820320220757	0.1889822365046136	0.125	0.125	0.125	0.25	0	0.7559289460184544	0.3779644730092272	0.75445107765277164	0.47949005650348397	0.5	0.16366341767699427	0	1.0978875820670997	1.6949241449524686	0.74252224593899241	0.51538820320220757	0.1889822365046136	0.125	0.125	0.125	0.25	0	week 1	week 2	week 3	week 4	week 5	week 6	week 7	week 8	week 9	week 10	week 11	week 12	week 13	week 14	week 15	week 16	week 17	1.5	1	2.625	2.125	2	0.25	3.25	6.125	2.875	2.125	0.5	0.125	0.125	0.125	0.25	0	long drought	0.26726124191242434	0.26305214040457559	0.98198050606196563	0.96246521272941887	0.58056315025031635	0.47949005650348397	0	0	0	0	0	1.5698043554168508	0.3238992347717331	0.74999999999999989	0.18298126367784995	0.31339158526400435	0.16366341767699427	0.26726124191242434	0.26305214040457559	0.98198050606196563	0.96246521272941887	0.58056315025031635	0.47949005650348397	0	0	0	0	0	1.5698043554168508	0.3238992347717331	0.74999999999999989	0.18298126367784995	0.31339158526400435	0.16366341767699427	week 1	week 2	week 3	week 4	week 5	week 6	week 7	week 8	week 9	week 10	week 11	week 12	week 13	week 14	week 15	week 16	week 17	1	0.625	2.5	2.625	2.125	0.875	7	2.625	2.25	0.625	0.75	0.25	Sampling dates (weeks)
Egg raft abundane (C. longiareolata)

control	2.2074346778880809	8.2155775381718819	34.090766221536128	14.09868281912483	23.521075701227122	16.101929781346975	26.198107630677665	26.558865746451907	19.160208763401918	13.827316164288719	28.483283679078454	25.10001838106556	22.867501828077831	14.13524629145302	16.71903476838953	31.139410369484388	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	3.125	33.699999999999996	69.878999999999991	48.499200000000002	68.376999999999995	97.093279999999993	126.78400000000001	119.51056	114.80299999999998	118.42688	125.63600000000001	113.95308	92.205000000000013	85.223720000000014	161.11362496000001	167.52543846451204	short drought	7.7423637494354027	9.2481996317430042	20.175627885432174	12.539891885612779	13.33032362162086	7.9569349282604573	5.8108196495847295	17.151799439125913	20.86060095813157	25.083426830706937	16.459235499906139	24.729634957735563	19.051621023809538	35.179755155194357	35.220269233840092	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	21.125	33.375	91.566000000000003	65.998400000000004	126.217	111.03588000000001	8.875	169.428	217.81372000000002	148.029	135.33948000000001	107.57	82.471416000000005	150.36253203200005	139.29918317977601	long drought	10.59217618946038	7.8190244185027877	22.496094950012999	9.1039362023875583	24.719334329918471	20.546630161403243	8.7866579051910936	8.0853530270130136	10.876942354237983	28.207488590608886	34.570727133981812	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	28.875	32.799999999999997	81.391999999999996	54.371600000000001	121.68999999999998	114.40564000000001	65.75	240.69500000000002	191.62612000000004	299.90349024000005	313.89269100287999	Sampling dates (weeks)

Larval abundance (C. longiareolata)


control	0	0.11785113019775791	0	0	0	0	0	0	0	0.17677669529663687	0.38640077064565426	0.17677669529663687	0.35843021946010939	0.77280154129130851	0.31180478223116176	0.48232653761625938	0.37267799624996495	0	0.11785113019775791	0	0	0	0	0	0	0	0.17677669529663687	0.38640077064565426	0.17677669529663687	0.35843021946010939	0.77280154129130851	0.31180478223116176	0.48232653761625938	0.37267799624996495	week 1	week 2	week 3	week 4	week 5	week 6	week 7	week 8	week 9	week 10	week 11	week 12	week 13	week 14	week 15	week 16	week 17	0	0.125	0	0	0	0	0	0	0	0.375	0.875	0.375	0.5	1.75	0.625	1.25	1.25	short drought	0.125	0.125	0	0.125	0	0	0	0.26305214040457559	0.42257712736425823	0.39809815731442771	0.49099025303098282	0.31339158526400435	0.16366341767699427	0.39809815731442771	0.31339158526400435	0.411877235523957	0	0.125	0.125	0	0.125	0	0	0	0.26305214040457559	0.42257712736425823	0.39809815731442771	0.49099025303098282	0.31339158526400435	0.16366341767699427	0.39809815731442771	0.31339158526400435	0.411877235523957	0	week 1	week 2	week 3	week 4	week 5	week 6	week 7	week 8	week 9	week 10	week 11	week 12	week 13	week 14	week 15	week 16	week 17	0.125	0.125	0	0.125	0	0	0.375	1.5	0.875	0.75	0.75	0.25	1.125	0.75	0.75	0	long drought	0	0	0	0.125	0	0	0	0	0	0	0	0.62678317052800869	0.92461381899997264	0.625	0.98084329606138987	0.99888330506764245	0.84383266790790412	0	0	0	0.125	0	0	0	0	0	0	0	0.62678317052800869	0.92461381899997264	0.625	0.98084329606138987	0.99888330506764245	0.84383266790790412	week 1	week 2	week 3	week 4	week 5	week 6	week 7	week 8	week 9	week 10	week 11	week 12	week 13	week 14	week 15	week 16	week 17	0	0	0	0.125	0	0	1	2.625	2.625	2.625	4.625	2.375	Sampling dates (weeks)
Egg raft abundane (Cx. laticinctus)

control	0	0	8.375	5.8749999999999991	2.6249999999999996	1.25	0	0	0	5.1504160719582366	16.562045142002066	15.783623407099613	11.939953936259553	13.051751387676454	28.649981301414986	22.499950396770718	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	0	0	8.375	5.875	2.625	1.25	0	0	0	6.75	41.875	43.875	16.75	43.25	121	111.625	short drought	0	6.25	4.417649261768072	3.3098877840279028	8.25	4.5	3.125	17.054534378198156	19.563940499223126	11.295937955110867	13.0670489345201	23.774986855937481	15.569831176256949	26.206554182930212	26.514147167125703	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	0	6.25	5.875	4.75	8.25	4.5	3.125	48	100.625	88.25	56.625	69	58.25	89.375	60	long drought	0	0	0	0.125	0	0	5.2284848255903515	27.60693494654662	27.433320133943475	25.100823478239001	26.696667461902965	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	0	0	0	0.125	0	0	8.875	94.5	118.875	231.875	221.375	Sampling dates (weeks)

Egg raft abundance (Cx. laticinctus)


Control	42067	42080	42094	42108	42122	42136	42150	42164	42178	30	30	30	30	30	30	30	30	14	Short drought	30	26	6.3999999999999995	0	30	30	30	30	14	Long drought	30	26	6.3999999999999995	0	0	0	30	30	14	Dates


Water volume




image1.png
NMDS2

02

0.0

-0.2

-04

-0.6

Stage 1
Stress =0.231

00

NMDS1

02

04





image2.png
NMDS2

05

0.0

-0.5

-1.0

Stage 3
Stress = 0.198

-1.0

NMDS1

05





image3.emf

A C. longiareolata

short drought

long drought

B Cx. laticinctus

short drought

long drought

filter feeders

filter feeders

chlorophyll a

0.59

\ 4

oviposition

chlorophyll a

0.43

oviposition







image4.tiff
——Control

(1) awnjon 12repm

Dates

. Phytoplakton

E .
Q fiterfeeder

s Mostoeggrat (g gaerscroper




