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ABSTRACT  

Organosulphides are ubiquitous in the natural world and are important in the agriculture, 

pharmaceuticals and petrochemical sectors. For the first time a lightweight (12 kg), man-

portable membrane inlet mass spectrometer (MIMS) has been employed to analyse volatile 

organosulphur compounds (VOSCs) in the gaseous phase. Monitoring of such compounds in 

field conditions (outside the chemical laboratory). Representative compounds tested include: 

2-methyl-2-propanethiol, 1-propanethiol, diethyl disulphide, 1-butanethiol, ethanethiol, 

thiophene, methyl ethyl sulphide and dimethyl disulphide. Experiments in the gas phase were 

performed at low parts-per-billion (ppb) analyte levels. The results obtained showed low 

limits of detection (high parts-per-trillion - ppt), very good linear regression within the 

examined concentration range, fast membrane response times and good repeatability with 

relative standard deviation, RSD < 4%. Analysis of a complex multi-component gaseous 

mixture of organosulphur compounds was also demonstrated.  
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1. INTRODUCTION 

The continuous increase of air and water pollution poses a major concern for public health as 

well as contributing to climate change. The extensive use of volatile organic compounds 

(VOCs) is well known to contribute to environmental pollution [1-10]. Volatile 

organosulphur compounds (VOSCs), a subclass of VOCs, are mainly released into the 

atmosphere from industrial waste, waste management facilities and from natural sources (e.g. 

volcanoes, wildfires, vegetation, fossil fuels, oceans) [11]. The removal of organosulphides is 

also a major activity in the petrochemical sector and monitoring of organosulphide 

compounds is important in the pharmaceutical sector and in agriculture.  VOSCs have been 

previously investigated in the gaseous phase using headspace gas chromatography (GC) with 

flame ionisation detection (FID) and/or GC coupled with an electrolytic conductivity detector 

(ELCD) [12]. Benchtop MIMS [13, 14] and proton-transfer reaction time-of-flight mass 

spectrometry (PTR-ToF-MS) have also been utilised [15].  

    Sample collection of sulphur compounds in the gas phase is a complicated procedure as 

organosulphur compounds are highly reactive, can be adsorbed onto surfaces, reacting with 

them. They may also undergo photooxidation reactions and are prone to catalytic oxidation 

[16, 17]. Thus, special containers (e.g. glass or stainless steel sorbent tubes, glass canisters, or 

gas sample bags) are required for their collection and transportation to the chemical 

laboratory, to avoid absorption phenomena or any type of chemical reactions. To prevent 

photochemical reactions, transparent glass canisters or sampling bags can be covered with 

light preventing surfaces e.g. aluminium foil. The complex reactive nature of the 

organosulphur compounds alongside with the time-consuming collection, transportation and 

storage of the samples demonstrate the need for in-situ and real-time chemical analysis using 

reliable systems with high sensitivity.  



    Portable MS and more specifically field-deployable MIMS [18-41] could be a possible 

solution for VOSCs detection and monitoring. MIMS has been previously utilised in the 

detection and on-line monitoring of VOCs and semi-VOCs for various applications; i.e. 

homeland security, forensics, environmental monitoring (air quality and water analysis), 

industrial processes, health and life science, molecular communications, etc. MIMS is a well 

investigated analytical methodology which employs a membrane interface to introduce 

sample molecules into the vacuum system of a mass spectrometer for analysis. It is based on 

a three-stage pervaporation process. Sample molecules (from the gaseous, liquid or solid 

phase) absorb onto the surface of a membrane, diffuse through it and finally desorb into the 

vacuum system. MIMS is a selective technique, property which depends on the membrane 

material (e.g. silicone, polytetrafluoroethylene - PTFE, polyethersulfone - PES, nylon, etc.), 

its characteristics (e.g. hydrophobic, hydrophilic, thickness, porosity, etc.) and the operational 

conditions (e.g. sample flow, suction flow, applied temperature, etc.). A widely used 

membrane material is polydimethylsiloxane (PDMS) which allows non-polar or medium 

polarity molecules to pass through it.  

    Portable MS based systems for on-site VOCs analysis are still limited in the market for 

various reasons (operational or technical). The MS-200 (Kore Technology Ltd.) [42] is a 

portable time-of-flight MS weighting 20kg with a mass range of 1-1000 amu and limits of 

detection in the low ppb concentration area. It can analyse 1 spectrum every 5 minutes. The 

Torion T-9 Portable GC-MS (PerkinElmer Corporation) [43] is a toroidal ion trap mass 

spectrometer that weighs 14.5 kg. It can scan molecules with molecular weight from 50 to 

500 amu. Sample collection and introduction into the vacuum chamber is done using a solid 

phase micro extraction (SPME) fibre. Griffin™ 400 (FLIR Systems Inc.) [44]
 

is a 

transportable GC-MS that weighs 37 kg and consumes 600W of power when it is in 

operation. It has a mass range between 40 and 425 amu. The IonCam (OI Analytical Inc.) 



[45] weighs 19 kg and has a power consumption of 150 W. It can scan masses below 210 

amu. The EcoSys-P (European Spectrometry Services Ltd. UK) [46]
 

weights 23 kg, 

consumes 200 W of power when is in full operation and can scan masses up to 200-300 amu. 

The Dq1000™ (Fluid Inclusion technologies Inc.) [47] is a quadrupole mass spectrometer 

used in the detection and analysis of hydrocarbons and other species in oil-based drilling 

operations. It weights 23kg, consumes 390W of power and can analyse light molecules (up to 

140 amu). Mini 10, Mini 11 and Mini 12 are all portable MS systems based on ion trap 

technology developed in Aston Labs (Purdue University) [48] weighting 10, 4 and 25 kg 

respectively. These systems utilise various ambient environment ionisation techniques e.g. 

paper spray (PS), electrospray ionisation (ESI), etc. allowing the analysis of chemical 

analytes with different physical and chemical properties. Inficon (Syracuse, NY) [49] in 

collaboration with the University of North Texas have also developed a mobile QMS system 

for VOC screening.  

    In this work, a portable system based on triple filter quadrupole mass spectrometry (QMS) 

provided by Q-Technologies Ltd. UK [50] was utilised. The chemical sensor weighs less than 

12 kg and has power consumption of 75 W. It can detect compounds with mass range m/z 1 – 

200 amu, and its limits of detections are in the ppt range. The triple filter QMS has several 

advantages over single QMS. It offers enhanced ion focusing, high sensitivity and resistance 

to contamination. In this study, we focus on the analysis (detection and monitoring) of low 

molecular weight VOSCs in the gas phase with potential focus in industrial systems and 

environmental applications.  

 

2. EXPERIMENTAL PART 

 

2.1 Motivation 



The motivation behind this study is to investigate the direct chemical analysis of volatile 

organosulphur compounds in the gas phase using a lightweight portable MS system. The 

target of this study is to provide a complete user-friendly analytical solution that will enable 

the measurement (detection, monitoring, alarming, etc.) of environmental pollutants and toxic 

industrial compounds in field applications. Selected chemicals for analysis are presented in 

Table 1, whereas Table 2 gives an overview of their main uses and possible health effects. 

The high toxicity of the investigated compounds and the human exposure to them may lead to 

severe health issues [1, 2, 4, 6, 7, 8, 9, 10]. 

 

Table 1. Summary of the volatile organosulphur compounds analysed by our MIMS system. 

Compound 

CAS 

Number 

Molecular 

weight 

(g/mol) 

Vapour 

pressure (kPa) 

at 25
o
C 

log octanol/water 

partition coefficient 

(log Kow) 

Odour 

threshold 

(ppb) 

2-methyl-2-propanethiol 75-66-1 90.187 24.13 2.14 0.33 

1-propanethiol 107-03-9 76.157 20.56 1.81 0.75 

diethyl disulphide 110-81-6 122.244 0.57 3.17 N.A. 

1-butanethiol 109-79-5 90.187 5.93 2.28 0.1-1 

ethanethiol 75-08-1 62.134 70.53 1.27 0.76 

thiophene 110-02-1 84.140 10.63 1.81 N.A. 

methyl ethyl sulphide  624-89-5 76.161 24.7 1.54 N.A. 

dimethyl disulphide 624-92-0 94.19 3.83 1.77 0.029 

 

Table 2. Summary of common uses and potential health effects of the volatile organosulphur 

compounds tested in this work [6, 7, 8, 9, 10]. 

Compound Main uses Possible health effects 

2-methyl-2-propanethiol 

1. Natural gas odorant 

2. Flavour additive 

1. Depressant 

2. Muscular weakness 

3. Headache, dizziness, nausea, 



confusion 

4. Lung damage (in high 

concentrations) 

5. Neurologic effects e.g. narcosis and 

paralysis 

1-propanethiol 

1. Agricultural uses 

2. Feedstock for insecticides 

1. Muscular weakness 

2. Headache, nausea 

3. Pulmonary irritation 

4. Respiratory issues, e.g. paralysis 

5. Unconsciousness 

diethyl disulphide 

1. Petrochemical industry 

2. Agricultural pesticide 

3. Flavour constituent  

 

1. Respiratory irritation 

2. Skin irritation 

3. Gastrointestinal irritation 

4. Pulmonary edema 

5. Cyanosis  

1-butanethiol 

1. Food flavour 

2. Natural gas odorant  

3. Industrial solvent 

4. Intermediate in cotton 

processing 

1. Musculoskeletal abnormalities 

2. Craniofacial abnormalities 

3. Respiratory stimulation 

4. Weakness, headache, dizziness, 

nausea 

5. Visual disorders, confusion  

ethanethiol 

1. Natural gas odorant 

2. Stabiliser for adhesives 

3. Mining industry  

1. Dizziness, headache 

2. Death 

3. Liver and kidney disorder 

4. Anaemia 

thiophene 

1. Agrochemical industry 

2. Pharmaceuticals 

3. Petrochemical industry 

1. Skin and eye irritation 

2. Skin allergies 

3. Liver damage 

4. Headache, nausea, vomiting 

5. Respiratory problems 



methyl ethyl sulphide  

1. Natural gas odorant 

2. Corrosion inhibitor for zinc 

3. Food additive 

1. Skin irritation and eye damage 

 

dimethyl disulphide 

1. Pulp and paper facilities 

2. Food additive 

3. Industrial processes, e.g. 

petrochemicals, in 

refineries,  

4. Agricultural pesticide  

5. Soil fumigant 

1. Toxic 

2. Headache and nausea 

3. Liver damage 

4. Pulmonary irritation 

5. Neurologic symptoms, e.g. coma 

6. Gastrointestinal effects 

7. Dermatological effects e.g. 

dermatitis 

8. Hemolytic anemia 

 
 

2.2 Reagents. 

The following chemical analytes: 2-methyl-2-propanethiol (99% purity), 1-propanethiol 

(99% purity), diethyl disulphide (99% purity), 1-butanethiol (99% purity), ethanethiol (97% 

purity), thiophene (99% purity), methyl ethyl sulphide (96% purity) and dimethyl disulphide 

were purchased from Sigma Aldrich Co. LLC., U.K. Standard stock solutions of the  above 

reagents were prepared in methanol at concentrations of 200 μg/mL and 1000 μg/mL. 

Methanol (HPLC grade, purity >99.9 %) was also provided by Sigma Aldrich Co. LLC., UK. 

All reagents were provided in the liquid phase and the stock solutions were stored in the 

fridge at 4
o
C until their use. 

 
 

2.3 Experimental Procedure.  

Experiments were done using a hand-portable (12 kg) membrane inlet mass spectrometer 

(Figure 1) supplied by Q-Technologies Ltd., Liverpool, UK. The MIMS system is based on 

quadrupole mass spectrometry and its technical characteristics have been previously 



described in detail. Briefly, it consists of a triple filter quadrupole mass analyser (QMA) 

hosted in a stainless steel vacuum chamber continuously pumped down by a diaphragm and a 

turbomolecular pump (Agilent Varian Mini-TASK AG 81 pumping system). The pumping 

speed of the vacuum system is 38 L/m for N2, whereas, the base pressure of the system with 

the sampling valve fully closed is 1 x 10
-7

 Torr. Sample introduction is achieved by a 

membrane inlet sampling probe connected to the side of the vacuum chamber. The technical 

characteristics of the probe can be found in the literature [35-38]. For our experiments, the 

sampling probe was kept at ambient temperature. Sample molecules pass through the 

membrane interface into the vacuum chamber where they are being ionised by an electron 

impact (EI) ion source. The generated ion fragments travel through a triple filter QMA, they 

are being separated according to their mass-to-charge ratio and they finally reach the detector 

that is a multiplier. The detected signals are being recorded and displayed on a laptop 

computer for further analysis. During data acquisition, 10 acquisition points per unit mass 

and 20 scans throughout the mass range m/z 40-150 amu were recorded.  

    To generate gas standards, we used the technique of the static dilution bottles. Details can 

be found in the literature [51, 52]. Appropriate quantities of the liquid stock solution were 

injected in clean 1.2 L glass flasks (Sigma Aldrich Co. LLC., U.K.) filled with zero grade 

nitrogen (purchased from BOC UK Ltd.). The flasks were covered with silicone caps and 

several layers of parafilm M. They were left then in ambient conditions for 8 hours to 

evaporate and to reach the thermodynamic equilibrium. Gas standards of the selected 

chemical analytes (Table 1) were prepared at the following concentrations: blank, 5 ppb, 10 

ppb, 25 ppb, 50 ppb, 75 ppb and 100 ppb. All experiments were triplicated, to allow us to 

perform statistical analysis, to check the repeatability of the tests and the stability of our 

system. 

 



 

Figure 1. Schematic representation of the MIMS system used in our experiments. 

 

3. RESULTS AND DISCUSSION 

 

3.1 Organosulphur compound experiments 

This experimental series was done to investigate the mass spectrometric detection and 

monitoring of volatile organosulphur compounds in the gas phase using our portable MS 

system. A membrane sampling probe was inserted into the individual flasks containing 

gaseous samples at standard concentrations (described above). The sequence of testing was 

done starting with the flask with the lowest concentration and ending with the flask 

containing the gas standard with the highest concentration to eliminate memory effects and/or 

carry over phenomena. Between individual concentration samples, a purging phase of 5 

minutes was allowed. This included sampling of ambient air and cleanse of the spectrum area 

from any observed peaks. Representative mass spectra (at the maximum signal intensity 

value – at the point when detection reaches a steady state condition) for 2-methyl-2-

propanethiol, 1-propanethiol, diethyl disulphide, 1-butanethiol, ethanethiol, thiophene, 

methyl ethyl sulphide and dimethyl disulphide corresponding to 100 ppb distinct gas 



standards are presented in Figure 2 and 3. The relative intensities of the detected ion 

fragments of the experimentally obtained EI mass spectra match well with the reference mass 

spectra from the NIST Chemistry Webbook.  

 

Figure 2. Representative experimental mass spectra at 100 ppb for a) 2-methyl-2-

propanethiol, b) 1-propanethiol, c) diethyl disulphide and d) 1-butanethiol obtained with our  

MIMS system. 

 



 

Figure 3. Representative experimental mass spectra at 100 ppb for a) ethanethiol, b) 

thiophene, c) methyl ethyl sulphide and d) dimethyl disulphide obtained with our MIMS 

system. 

 

 

3.2 Multi-compound experiment  

In order to examine that our system can operate reliably with complicated samples (which 

commonly occur in practice), we generated a gas mixture of 5 compounds: 1-butanethiol, 2-

methyl-2-propanethiol, thiophene, dimethyl disulphide and methyl ethyl sulphide at 100 ppb 

each. Sample preparation was done within a stainless-steel mixing chamber connected with 

five pieces of Teflon tubing (150 mm length with 6.35 mm ID) to five 1.2 L glass flasks (one 

compound per flask) containing the gas standards. Gaseous samples were prepared following 

the same process as discussed above. A representative mass spectrum of a multi-compound 



mixture is shown in Figure 4. Characteristic mass fragments of the examined compounds are 

clearly shown. There is an overlapping peak (m/z 90) common in the mass spectrum of 1-

butanethiol and 2-methyl-2-propanethiol, which can deconvoluted to the individual 

components by calculating the contribution of individual compound components to the peak 

intensity.  

 

Figure 4. Experimental mass spectrum of a mixture of 1-butanethiol (m/z 56, 90), 2-methyl-

2-propanethiol (m/z 57, 75, 90), thiophene (m/z 58, 69, 84), dimethyl disulphide (m/z 79, 94) 

and methyl ethyl sulphide (m/z 48, 61, 76) at 100 ppb each obtained with our MIMS. 

 

3.3 Evaluation of the method 

This section summarises the analytical characteristics of Liverpool MIMS system. We 

examine the following analytical criteria: a) membrane response, b) linearity of the data, c) 

limits of detection (LoD), d) repeatability and stability of the results obtained. Table 3 gives 

an overview of these characteristics. The calibration curves generated by the gas standards 

may allow us to run quantification measurements with confidence. The average linear 



regression coefficient is 0.9947 whereas the LoD were found to be in low ppb concentration 

area. LoD values were calculated based on experimentally obtained signal current values of 

the characteristic peak of each compound. LoD were calculated to be five times above the 

baseline.  The average rise time (the time required for the signal to reach its maximum signal 

intensity) for the compounds tested is 17.6 sec whereas the average fall time (the time 

required for the signal of a compound to return to the baseline levels) is 23 sec. The 

measurements obtained showed a good repeatability with relative standard deviation (RSD) 

equal to 3.9 %. The stability of our data was confirmed by monitoring selected ions for the 

compounds e.g. 1-propanethiol (m/z 76) and diethyl disulphide (m/z 122). Figure 5a presents 

four representative pulses of increasing concentration (25ppb, 50 ppb, 100 ppb and 200 ppb) 

of 1-propanethiol. Each step has a duration of 360 sec. The response of the MIMS in regards 

to the increased concentrations is linear with an R
2
 at 0.9966. In addition, figure 5b shows an 

increase-decrease profile of 1-propanethiol with seven repeated steps at 50 ppb each. As it 

can be seen, even the short step times, Liverpool MIMS system provides repeatable data with 

an RSD equal to 4 %. 

 

Figure 5. a) Stepwise increase profile for the mass fragment m/z 76 of 1-propanethiol, b) 

increase-decrease profile of the mass fragment m/z 76 of 1-propanethiol. 



 

Table 3. Summary of the analytical characteristics (response time, R
2
 values and LODs) of 

our MIMS approach in the analysis of organosulphur compounds that were tested. 

Compound 

characteristic 

mass fragments 

(m/z)  

rise 

time 

(sec) 

fall 

time 

(sec) 

R
2
 

LOD (ppb) 

in air 

(calculated) 

2-methyl-2-propanethiol (m/z 57) 57, 75, 90 14 19 0.9952 0.506 

1-propanethiol (m/z 76) 47, 61, 76 15 22 0.9966 0.974 

diethyl disulphide (m/z 122) 66, 79, 94, 122 22 33 0.9953 0.982 

1-butanethiol (m/z 56) 56, 90 24 28 0.9841 0.740 

Ethanethiol (m/z 62) 47, 62 26 31 0.9998 0.513 

Thiophene (m/z 84) 58, 69, 84 12 17 0.9922 1.257 

Methyl ethyl sulphide (m/z 61) 48, 61, 76 16 13 0.9987 0.769 

Dimethyl disulphide (m/z 94) 79, 94 12 21 0.9956 0.635 

 

 

3.4 Validation experiments 

To validate the performance of our system, we run simulation experiments in a test chamber 

with a volume of 16 m
3
 to simulate an indoor environment [38]. The test chamber was purged 

overnight and filled with synthetic air (BOC Ltd. UK) before the start of the experiment. A 

vapour generator [53-56] was used to produce a mixture of 2-methyl-2-propanethiol, 

thiophene and dimethyl disulphide at 100 ppb each in a controllable way. The vapour 

generator (based on controlled evaporation of liquid analytes and their diffusion in a carrier 

gas stream) was connected with the test chamber and vapour samples were introduced by a 

sidewall hole with diameter of 6.35 mm. Injection time was 10 sec. In another sidewall, our 

MIMS system was sampling continuously the chamber air (as described above). A fan inside 

the chamber was providing a homogeneous distribution of the sample mixture. A 

representative mass spectrum of the injected mixture, 2 minutes after sample injection, is 

presented in Figure 6. At this time, the detected concentrations of 2-methyl-2-propanethiol, 



thiophene and dimethyl disulphide were calculated (based on the calibration curves) to be 

2.26, 3.01 and 2.05 ppb respectively.  

 

 

Figure 6. Representative mass spectrum of a mixture of 2-methyl-2-propanethiol (m/z 57, 75, 

90), thiophene (m/z 58, 69, 84), dimethyl disulphide (m/z 79, 94) obtained from a test 

chamber using Liverpool MIMS system. 

 

4. CONCLUSSIONS 

In this paper we report a lightweight (12 kg) portable MS is able to detect and monitor both 

qualitatively and quantitatively organosuphur compounds in the gaseous phase for air quality 

monitoring purposes and/or industrial emissions. Proof-of-principle for trace detection of low 

molecular weight VOSCs using MIMS was demonstrated. During measurements, fast 

membrane response times (few seconds) were observed, whereas we got good linear 

calibration curves for the compounds tested and repeatability with RSD calculated to be 3.9 

%. Good peak discrimination and separation were also obtained when a complex mixture of 

organosulphide compounds was tested. Detection experiments within a test chamber with a 



volume of 16 m
3
 were also performed. These positive results allow future exploitation of this 

technology for example in environmental monitoring.  

    Future work includes field testing and validation of the technique described above. We also 

plan to further miniaturize our sensor using a lighter vacuum system (e.g. Pfeiffer HiPace 10 

Turbo Pump and MVP-006 Diaphragm) and to improve its technical characteristics for higher 

pressure operation. Characteristically, for field testing, we plan to utilize a quadrupole mass 

analyser with mass range up to 500 amu in order to expand the range of the VOCs which we 

can detect on-site. A heated membrane sampling probe could allow detection of compounds 

at lower concentrations levels compared to the current LoD with faster response times (e.g. 

by a factor of 5), whereas integration of signal processing algorithms in our data analysis 

software would boost sensitivity. We also plan to benefit from machine learning and 

advanced chemometrics to allow our system to interpret data itself, generate alarms and make 

decisions autonomously. The later in combination with our additional miniaturization plans 

will enhance the capabilities of the system and will allow us to integrate it on autonomous 

robotic platforms for remote chemical sensing in various application areas.      
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