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Abstract

Thesis Title: Data Analysis and Machine Learning: on Long Memory Com-
modity Time Series
Author: Tianyuan Ni

Recently, data driven approaches to modeling time series become important in to-

day’s market environment. This thesis studies the application of machine learning

techniques on long memory financial time series, motivated by two main challenges

that are attributed to the long memory and economic variables dependence structures.

Our research is to develop a data analysis framework including 1) Examine data char-

acteristics and stylized facts, in particular, long memory modeling with skewed and

kurtotic shocks of commodity daily price data, 2) Perform cluster to find proper groups

that commodities are related in both the time and frequency domains, as well as to

reduce their dimensionality, 3) Develop preferred neural networks to predict future

values for commodities prices.

Our study demonstrates that the majority of commodity time series exhibit long-

memoryness, hence the linear ARIMA model with stable shock is able to model the

data. Model-based functional data clustering on both time and frequency domain can

identify different products into groups on a reduced dimension. Lastly, by taking into

account the cluster results on long memory features, our novel recurrent dynamic neu-

ral network forecasting algorithm can provide stable and high accurate forecast results.

Conclusively, our machine learning techniques combining financial time series clus-

tering and forecasting algorithms outperform traditional theories and existing models,

which can improve the model performance in commodity time series analysis and in-

form better investment decisions as well as risk management.
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Chapter 1

Introduction

1.1 Motivations

The mounting volume of data and rapid development of technology keep trans-
forming the financial market, thus modeling and forecasting of financial time
series are essential when adopt data analytics techniques to inform better in-
vestment and risk management decisions. Because of the huge and complex
sets of random technical indicators that drive the dynamic of prices, although
today’s technology has great potential to bring together big data and other rela-
tive information and manage informative data pictures more accurately, we still
lack an efficient forecasting model to capture the majority data features and
variation tendency.

The Efficient Market Hypothesis (EMH) suggests that the prices on market
fully reflect all the available information, while, a growing number of researches
reject the EMH showing that predictive properties do exist in financial markets
[118, 123, 52, 76]. It is well known that price data often contain a lot of noise
and complex relationships which do not follow a pure random walk, and price
changes are neither independent nor identically distributed.

Therefore, whether predictions can be made about future values of financial
time series is of significant interest. In general, there are two main challenges
existing in financial market:

1) Long memory in financial time series. There are various linear and
nonlinear dependencies between successive price changes, so that the classical
time series models like ARMA process are no longer valid to forecast future

6



CHAPTER 1. INTRODUCTION 7

behavior as they cannot capture both the nonlinearity and the long-range de-
pendence features into a single time series model. The existence of long memory
in financial markets has been an important subject of both theoretical and em-
pirical studies since around 1980. If assets display long memory, the series
realizations may appear to have nonlinear properties and are not independent
over time. This observations of persistence in time series mean that a slower
decay of the autocorrelation function would be expected, and values from the
remote past can help to forecast future behavior.

2) Dependence on economic variables. Another feature of financial time
series is that they are usually multi-dimensional, so that one can have higher
dimensional vector time series representing yet-to-be-executed prices for each
instance of the time series. It has been observed that a wide range of economic
variables exhibit dependent structure, so the study of correlation coefficients
between variables plays a key role in the high dimensional time series analysis.
Given several time series, the dependence is the measuring of the existing de-
pendency among different variables, or, the dependency of exogenous factors.
There are several measures available in economics such as correlation and copu-
las. While these approaches have their own advantages and disadvantages, there
is no clear view on how both methods differ over time and how we can identify
similarities and dissimilarities among these variables.

Although many economic data can be adequately explained by linear mathe-
matical models, they can usually be better modeled using nonlinear models. An
attractive way is to make minimal assumptions and use a data-driven, model-
free and nonparametric approach. This motivates the use of machine learning
for data clustering and financial forecasting.

There are four main markets in the financial world: bond market, stock
market, commodity market and exchange market. This thesis discusses and ad-
dresses some of the difficulties associated with practical data analysis with real-
world commodity market, followed by time series analysis within three parts:
characterization, clustering and forecasting. A new data analysis framework
is developed based on various machine learning algorithms to efficiently detect
structures and optimal features in commodity data, in order to have better
forecast results.
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1.2 Chapters Overview

In this thesis, we start with introduction, which includes the motivations and
objectives for undertaking the research. From the literature review of efficient
market hypothesis to the long memory time series process, we study some im-
portant stylized facts of commodity daily index and future prices, with a de-
tailed description of the data set shown in the second section. Our study shows
that most of the price processes have unit roots with stationary, skewed and
kurtotic increments and long-range dependence, therefore the classical normal-
ity assumptions with constant volatility are not appropriate for modeling the
commodity daily index and futures prices data in today’s real-world financial
market.

In the second chapter, we continue further study on the long memory and
ARFIMA model. The model of an Autoregressive Fractionally Integrated Mov-
ing Average (ARFIMA) process is used to model a time series with long-range
dependence, or long memory. We first discover that suitable models for com-
modity daily index and future prices are ARFIMA(p, d, q) models with skewed
and kurtotic (e.g., α-stable) shocks. Since non-linear autoregressive models are
practically very difficult to implement, we study another measure of fractionally
of processes - generalized Hurst exponent. We show that if we focus our atten-
tion to this measure, rather than the R/S Hurst exponent, linear ARIMA(p, 1, q)

models with α−stable shock can still be good candidates for modeling commod-
ity data.

In order to capture the dynamics of the data, the third chapter consists of
multidimensional data clustering for commodity futures on both time domain
and frequency domain. Following the basic clustering methods, the model-
based functional data clustering methods are developed on time domain, to
approximate density of functional random variables. On the frequency domain
of the long memory process, the clustering modeling simultaneously estimates
spectral density functions for stationary time series with some common features.
We then present the experimental results of the two clustering methods.

The fourth chapter implements a powerful recurrent dynamic neural network
forecasting algorithm that enables us to predict future prices of a series of com-
modity data, while taking into account the clustering results on long memory
features of the financial instruments. In order to evaluate the clustering meth-
ods in terms of prediction performance, a comparison to the relevant machine
learning models is given. Even though the framework of different clustering
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algorithms is designed for long memory time series, one can build a forecast-
ing algorithm providing the smartest features to have consistent and unbiased
estimates of futures values.

The last chapter concludes the thesis and highlights the contributions. At
the end, potential developments for further work are addressed.

1.3 Efficient Market Hypothesis

The basic and primary hypothesis about the market behavior is the efficient
market hypothesis (EMH), a well-known theory in financial economics. From
the 1960s, it was generally believed that stock markets were extremely efficient in
reflecting information, prices must always show a full reflection of all available
and relevant information and should follow a random walk process [38]. In
other words, under the efficient market hypothesis (EMH), a market is said to
be efficient with respect to an information set if the price fully reflects that
information set.

Based on the information set, there are three common types of efficient
markets:

• Weak form efficiency: The information set includes only historical prices.

• Semi-strong form efficiency: The information set includes all publicly
available information.

• Strong form efficiency: The information set includes all public and private
information.

Market efficiency concludes that martingales is able to model prices, and there
should be no profit opportunity by using historical data since the best forecast
of the future price is the current price information. Cowles [30] suggested that
professionals cannot earn investment returns in the efficient market. Working
[122] also discovered that it is impossible to predict price changes successfully in
an ideal futures market. Thus, if all relevant information is immediately incor-
porated into current prices, future prices cannot be predicted by analyzing prices
from the past. In other words, changes in prices should be independently and
identically distributed. However, under the efficient market hypothesis (EMH),
investors’ trading strategies are correlated due to the arbitrage [40]. Mandelbrot
[88] proposed that successive changes in prices are not independent Gaussian
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random variables, but rather exhibit many recognizable patterns and are non-
stationary. Meanwhile, Cootner [29] found that the stock market does not follow
a random walk. Forecasting price or return ratio became more challenging and
it was difficult to reconcile with the standard hypothesis. From the 1980s, many
studies started to concern the EMH. Grossman and Stiglitz [49] showed that it
is impossible for a market to be perfectly informationally efficient and prices
cannot perfectly reflect the information that is available. A number of studies
focused on the test and validation of the weak form efficient market hypothesis
(EMH) with respect to stock markets, concluding that most of the financial
markets are either weak form efficient or inefficient (see [118, 123, 52, 76]).

In the real financial market, economic and financial historical data typi-
cally exhibit some distinct low-frequency, non-periodic cyclical patterns. This
is called a long memory phenomenon which was first discovered by Granger [45].
Most of the financial time series, including stock returns and commodity prices
appear to be long-range dependent (LRD) (see [48, 55, 80, 96]). Mandelbrot
[86] summarized that in the presence of long memory, pricing derivative securi-
ties with martingale methods might not be appropriate. If asset returns display
long memory, the series realizations are not independent over time, and values
from the remote past can help forecast future returns. Therefore, the presence
of long memory in asset returns indicates that by conditioning on historical
returns, future asset returns can be predicted more accurately.

1.4 Time Series Modeling

A time series is a sequence of data points over a time interval. Many sets
of data are time series, such as daily stock price, monthly house price, yearly
global temperature and so on.Time series analysis on scientific applications,
particularly in the field of economics and finance, as well as the physical and
biological sciences, has revolutionized the way people handle a sequence of data
set.

Assume a time series can be defined as a collection of random variables over
time. Usually, we have collected data (observed sample) beginning at some
particular date and ending at another (say, from t = 1 to t = T )

{y1, y2, . . . , yT }.

A time series {yt}∞t=−∞ is defined by describing the time series variable y
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observed at time t, where t is typically discrete and varies over the integers.
yt−1 is the value of y in the previous period and called its first lagged value.
Similarly, the jth lag is denoted by yt−j or Ljy, with L the log operator such
that Liy = yt−i for i ∈ R, and the value of y that is h period ahead is denoted
by yt+h or L−hy. Time series analysis involves methods for analyzing data in
order to extract statistics of the data. In this section, we will discuss four classic
time series models that are useful for the prediction of future values based on
observed values.

From the time domain approach, the landmark work from Box et al. [17]
developed a systematic class of models called Autoregressive Moving Average
(ARMA) models. Such models are to explain the structure of the current value
on past values. An ARMA(p, q) process is defined as a combination of the
autoregressive process (of order p) and moving average process (of order q)

yt = µ+ a1yt−1 + a2yt−2 + · · ·+ apyt−p + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q

where εt is white noise process of random variables that are usually assumed to
be independent and identically distributed and ai ∈ R, θi ∈ R are the parame-
ters for autoregressive and the moving average terms. Also, µ ∈ R is normal a
constant. Note, an ARMA(p, q) process can be defined as

φ(L)yt = θ0 + θ(L)εt,

where φ(L) = 1 −
∑p
i=1 aiL , θ(L) = 1 −

∑q
i=1 θiL are polynomial operators

in L of degrees p and q and θ0 = (1 −
∑p
i=1 φi)µ. For simplicity, one can also

denote ȳt = yt − µ and have the ARMA model presented as

φ(L)ȳt = θ(L)εt.

According to Box et al. [17], an ARMA process is only stationary if the
roots of φ(L) = 0 lie outside the unit circle. The process exhibits explosive
nonstationary behavior if the roots lie inside the unit circle. However, when
the roots are on the unit circle, to achieve stationary, one can rewrite the non-
stationary ARMA(p, q) process as

φ(L)(1− L)dȳt = θ(L)εt

so that the autoregressive operator φ(L) can be stationary again for some value
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d which we will discuss further in later chapters, and we call such processes
autoregressive integrated moving average ARIMA(p, d, q) processes.

Remark 1. A process {yt}t=0,1,2,... is an ARIMA(p, 1, q) process if φ(L) has
only one unit root λ = 1 and the increment process {yt − yt−1}t=0,1,2,3... is
stationary.

In addition, time series has been widely used for model and prediction pur-
pose. For example, McCleary et al. [94] applied the ARIMA model to be the
baseline building block for impact assessment, forecasting, and causal modeling.
Kalpakis et al. [66] demonstrated the desired features of LPC cepstral coefficients
based on accurate clustering and efficient modeling of ARIMA time series, while
Hamilton [51] proposed this type of model for demonstrating changes in regime
based on U.S. real GNP data, which can also be used as an objective criterion
for measuring U.S. economic cycle.

1.5 Commodity Data Description

A commodity is a basic good that can be bought and sold or is interchangeable
with other products of similar value. Some examples of commodities include
grains, gold, beef, gold and oil. However, trading commodities is much more
complex than simply buying and selling goods on the spot market. Derivatives
such as Futures, Forward, Swaps, Exchange-traded Commodities (ETC) have
become the primary instruments in commodity markets. In our study, we focus
on the commodity futures and index. A commodity futures contract is an agree-
ment to buy or sell a predetermined amount of a commodity at a specific price
on a specific date in the future. A commodity index is a fixed-weight index or
(weighted) average of selected commodity prices, to measure commodity price
and investment return performance. The index values usually vary according to
underlying commodities and are often traded on exchanges.

The commodities in our study are classified into five main categories: grains,
softs, metals, meats and energy. The daily commodity index and futures data
are obtained from Bloomberg 1 and we focus on the most actively traded com-
modities in each category. Thus, a total of eighteen different commodities are
studied, namely Grains: wheat, soybean oil, soybean, oats, corn, canola; Softs:
sugar, orange juice, cocoa, coffee; Metals: aluminum, gold, copper, palladium,

1Bloomberg Professional. Retrieved from Bloomberg terminal.



CHAPTER 1. INTRODUCTION 13

platinum; Livestock: lean hogs, feeder cattle; Energy: crude oil. For the uni-
variate analysis, we use the closing price, which is the last observed price traded
on a given trading day.

In the Appendix, Table 6.1 provides a brief description of the data sources
of commodities. The first column lists the varieties of commodities and the
second column briefly presents data sources. NYMEX refers to New York Mer-
cantile Exchange, LME: London Metal Exchange, CME: Chicago Mercantile
Exchange, NYBOT: New York Board of Trade, ICE: Intercontinental Exchange,
WCE: Winnipeg Commodity Exchange. The third column lists the period of
commodity prices data, as we can see most commodities are available from the
1970s or 1980s. In our study, we choose the common time period from 01 Jan-
uary 2008 to 31 August 2018, and a total of 100, 224 daily observations are
examined.

1.6 Stylized Facts

Generally, stylized facts are widely understood to be an economic term de-
fined by empirical findings that are accepted as truth, for example, the common
properties that can characterize random varieties of financial instruments and
markets (see [25, 53, 15]). Stylized facts tend to be values that are presenta-
tions of the data sets’ empirical characteristics. Such measurements of data
properties are usually model independent and are calculated from the data it-
self directly (see [34, 28]). In order to build the framework to analyze, cluster
and forecast, it is important to understand the underlying fundamentals and
empirical properties of commodity times series.

In this section, we study four basic stylized facts of the daily index and future
commodity prices: stationarity, dependence, skewness and kurtosis. Most of the
financial price time series, including commodity prices, appear to have unit roots
with stationary increments, long-range dependency, skewness and kurtosis with
different fractional characteristics.

Stationarity

Definition 1. A time series {yt} is stationary if for any sequence s1, · · · , sn ∈
N∪{0} and natural number t ∈ N, (ys1 , · · · , ysn) has the same joint distribution
as (ys1+t, · · · , ysn+t).
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Definition 2. A time series {yt}t=0,1,2,... is stationary in weak sense if yt,∀t ∈ Z
has a finite variance and

1. ∃µ ∈ R such that E (yt) = µ for all t ∈ Z ,

2. E [(yt1 − µ) (yt2 − µ)] = γ (|t2 − t1|) for t1, t2 ∈ Z

We show that all commodity time series except few are unit root processes with
stationary increments. In Appendix Tables 6.2-6.4 we give the values of unit
root test for each commodity. We use Augmented Dickey-Fuller (ADF ) test
and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for the unit root tests.
The intuition behind ADF test is that it determines how strongly a time series
is defined by a trend. The null hypothesis of the test is that the time series
can be represented by a unit root, in other words, it is not stationary. The
alternate hypothesis (rejecting the null hypothesis) is that the time series is
stationary. We interpret this result using the p-value from the test. A p-value
below a threshold (such as 5% or 1%) suggests we reject the null hypothesis
(stationary), while a p-value above the threshold suggests we fail to reject the
null hypothesis (non-stationary). Please note, a minimum p-value of 0.001 is
set in the ADF test package we used from the Python package statsmodels.
On the other hand, the intuition behind KPSS test is that it determines how
strongly a time series is defined by a trend. The null and alternate hypothesis for
the KPSS test are opposite that of the ADF test. Same as ADF test, we interpret
this result using the p-value from the test. A p-value below a threshold (such
as 5% or 1%) suggests we reject the null hypothesis (non-stationary), otherwise
a p-value above the threshold suggests we fail to reject the null hypothesis
(stationary). Please note, a maximum p-value of 0.1 is set in the KPSS test
package we used from the Python package statsmodels. In these tables, “ADFP ”
is the test statistic p−value for ADF test. “KPSSP ” is the p-value from the
KPSS test. “Lags” are the lags for the time series model which is defined in
Definition 4. As one can see, except oats index and gold index prices, all other
time series have unit roots.

Dependence

In statistics and time series analysis, the autocorrelation function (ACF) of a
time series process yt describes the correlation between values of the process at
different times.
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Definition 3. The autocorrelation function (ACF) as a function of the two
times or of the time lag h can be calculated as

ACFh =

∑T
t=h+1(yt − ȳ)(yt−h − ȳ)∑T

t=1(yt − ȳ)2

In addition to the ACF, the partial autocorrelation function (PACF) studied
in our research gives the partial correlation of a time series with its own lagged
values.

In Appendix, Figure 6.3-6.8 give the sample ACF and PACF patterns for the
daily price data for all products. We can see for all products, the autocorrelation
decays to zero very slowly, which is consistent with the observation from unit
root test. The first lag value of partial autocorrelation function is statistically
significant and close to one, whereas partial autocorrelations for all other lags
are not statistically significant.

Recently, many research have shown that macroeconomic data presents prop-
erties from long-range dependence time series processes, and similar to our sam-
ple ACF results, the rate of decay of statistical dependence is slower than an
exponential decay. Long-range dependence (or long memory, long-range persis-
tence) has proven to be very important in modeling financial and economic data
sets (see [79, 45, 104]).

Not until the 1960s and 1970s, after Mandelbrot and his colleagues in-
troduced “fractals” and “self-similar” processes, the theory of time series was
not enough developed to address long-range dependence (in price series see
[85, 91, 90]). A stationary process Yt has the long memory property, if for its
autocorrelation function ρ(k) = Cov(Yt, Yt+k)/V ar(Yt) it holds that

∞∑
k=−∞

|ρ(k)| =∞

A long memory series has an autocorrelation function that decays hyper-
bolically, much more slowly than the geometrically tail off by “short memory”
(ARMA) processes. Thus, it may be predictable at long horizons. The de-
tailed empirical analysis on long-range dependence will be presented in the next
chapter.
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Skewness and Kurtosis

An random variable X’s third and fourth standardized moments are also com-
monly used to present its stylized facts if exist. Called skewness and kurtosis,
they are defined by

Skewness = E

[(
X − µ
σ

)3
]

Kurtosis = E

[(
X − µ
σ

)4
]

where µ and σ are mean and standard deviation accordingly. For observations
of X: x1, x2, ... xn, the sample skewness and kurtosis are defined respectively
as

S =
1
n

∑n
i=1(xi − x)3

σ̂3
,

and

K =

∑n
i=1(xi − x)4

nσ̂4
.

where we define σ̂2 =
∑n
i=1(xi−x)

2

n and x̄ denotes the sample mean.
Kurtosis gives a measure of the thickness in the tails of a probability density

function. For a normal distribution the kurtosis is 3. We further define for X,
the Excess kurtosis (EK) is calculated as

EK = K − 3

It follows that, for a normal distribution, the excess kurtosis is 0. A fat tail
distribution has a value of kurtosis that exceeds 3. That is, excess kurtosis is
positive.

In Appendix, Tables 6.2-6.4 give the skewness and kurtosis for commodity price
increments, and Figure 6.1 and 6.2 also show the histogram plot for commodity
data. One can see all the time series samples have skewed and kurtotic incre-
ments. Generally speaking, if data is kurtotic, the prices will crash more often
than expected, if data is skewed, the prices will crash to the direction that the
distribution is skewed [93].

In general, we observed that regardless of the type of the commodities, al-
most all daily index and future price time series have unit roots with station-
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ary increments where also increments are kurtotic and skewed. We have also
observed that most of the processes are persistent and they have long-range
dependence structure.



Chapter 2

Generalized Hurst Exponent

2.1 Long Memory and R/S Hurst exponent

Modeling commodity prices has proven to be challenging. Since 1990, when fi-
nancial data became widely available, the financial literature witnessed a surge
of interest in analyzing LRD processes. For instance, Haubrich and Lo [54]
analyzed the associations between the business cycle and long-term memory,
while Tieslau [116] provided details of estimating long memory models to price
and monetary series. Cont [26] studied the relevance of LRD processes to fi-
nancial modeling and discussed basic principles of financial theory and possible
economic explanations for their presence in financial time series.

From the last chapter we show most of the commodity prices appear to be
non-stationary, long-range dependence (LRD), skewed and kurtotic with differ-
ent fractional characteristics. More specifically, we are more interested in the
long-range dependence characteristic. Popular indexes that measure the time
series fractional characteristics are R/S and generalized Hurst exponents [89].

In this section we will describe the concept of Hurst exponent within R/S
analysis framework. The R/S Hurst exponent was first proposed by the hy-
drologist Hurst to study and predict the Nile River floods [60]. In his study,
Hurst discovered that the values of successive yearly run-offs show a certain
level of dependency. This phenomenon could not be modeled using a process
with independent increments so he developed a method that eventually became
known today as the Hurst rescaled range analysis (R/S). First applications of
Hurst exponent in fractal geometry were proposed in [90] and [87], as Hurst ex-

18
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ponent is directly related to fractal dimension, and is a measure of a data series
"mild" or "wild" randomness [100]. Fractal analysis has become more popular
in the finance community recently in particular, one application is the use of
Hurst exponent in financial or economical time series data. Peters [99] used
the Hurst process and R/S Analysis in testing and researching Capital Mar-
kets. He introduced the Fractal Markets Hypothesis (FMH), which avoids the
classical assumptions that returns are lognormal and uncorrelated for financial
mathematical models.

The rescaled range, or, R/S analysis is able to distinguish a random series
from a fractal series, irrespective of the distribution of the underlying series
(Gaussian or non-Gaussian). Given a sequence of n observations time series
y1, y2, · · · , yT , of full length T is divided into a number of shorter time series of
length n = T, T/2, T/4, .... The Hurst exponent, H, is defined in terms of the
rescaled range as follows.

First find the mean:

y =
1

n

n∑
i=1

yt.

Then R captures the maximum and minimum cumulative deviations of the
observations yt from its mean y, and it is a function of time:

R(n) = max
15t≤n

[
t∑
i=1

(yi − y)

]
− min

15t≤n

[
t∑
i=1

(yi − y)

]

S(n) is the sample standard deviation of the original time series:

S(n) =

√√√√ 1

n

n∑
i=1

(yi − y)2

Then the R/S ratio can be calculated. The Hurst exponent is denoted by
H such that for some constant C, we have

E(R/S)n = CnH as n→∞. (2.1)

The Hurst exponent is referred to as the "index of long-range dependence",
which provides a measure for long term memory and fractality of a time series.
Due to its robustness, the Hurst exponent has broad applications in time series
analysis with only a few underlying systems assumptions. The values of the
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Hurst exponent range between 0 and 1. Based on the Hurst exponent value H,
a time series can be classified into three categories.

(1) H = 0.5 indicates a random walk.
(2) 0 < H < 0.5 indicates an anti-persistent (ergodic) series.
(3) 0.5 < H < 1 indicates a persistent (trend) series.
The strength of mean-reverting increases as H approaches 0. A persistent

series is trend reinforcing, which means the direction (up or down compared to
the last value) of the next value is more likely the same as the current value. The
strength of trend increases asH approaches 1. Most economic and financial time
series are persistent with H > 0.5. A time series with a large Hurst exponent
has strong trend, thus it’s natural to believe that such time series are more
predictable than those having a Hurst exponent close to 0.5.

Commodity prices are usually understood to be mean-reverting with R/S
Hurst exponent smaller than 1/2 (see [117] and the references therein). However,
looking at a large set of daily future and index commodity prices, we observe
that commodity price time series have unit roots with skewed, kurtotic and
stationary increments whose R/S and generalized Hurst exponent (which will
be defined in the next sub section) are usually greater than 1/2. While the
R/S Hurst exponent is related to the long-range dependence structure, the
generalized Hurst exponent is related to the existence of the higher moments of
a shock processes. As we will discuss later in this thesis, if R/S Hurst exponent
of a time series is greater than 1/2 , it is a long-range dependent process.

Taking logarithm on both sides of the Hurst exponent equation (2.1), we have:

log(E(R/S)n) = c+H log(n) as n→∞ (2.2)

Then we run a linear regression to estimate the Hurst exponent H. The slope
of the regression line approximates the Hurst exponent.

In this thesis we compute the Hurst exponent of the set of daily index and
future commodity prices based on equation 2.2. The results show that in all
case except, wheat index, oats future and index the Hurst exponent is larger
than 1/2, which indicates the process is persistent. The results are reported in
the Tables 6.2-6.4 in the Appendix.

Remark 2. It is interesting that the observation of H > 1/2 for almost all
commodities. This does not only imply the persistence of the data but also shows
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the consistency of our measurement as we obtained the same properties from
product ACF and PACF plots. R/S is robust if H depends on the exponents
characterizing long-range dependence and does not depend on the underlying
distribution of the time series. An interesting implication of this fact is that
even if we assume the shock processes are fat tail, one should not be worried
about the existence of R/S Hurst exponent. Indeed the robustness of R/S holds
if there is a number d ∈ (0, 1/2) such that H = d + 1/2. The number d is a
measure of the process’s long-range dependence, and is roughly equal to the rate
of the decay of ci’s in (2.4). We will discuss about long memory parameter d in
detail later. For further discussion one can also see [108] and [4].

The model of an Autoregressive Fractionally Integrated Moving Average
(ARFIMA) process has often been referred as defining a time series with long-
range dependence, or long memory.

Definition 4. An ARFIMA (p, d, q) model is an ARMA model where the inno-
vations are fractional white noise, which can be rewritten in operator notation
as:

φ(L)(1− L)d(Yt − µ) = θ(L)εt

where d is the fractional integration parameter allowed to take non-integer val-
ues, φ(L) = (1−φ1L−φ2L2−· · ·−φpLp) specifies the AR lag polynomial, and
θ(L) = (1 + θ1L+ · · ·+ θqL

q) specifies the MA lag polynomial. When |d| 6= 0.5,
the process can be considered as a long memory process.

Formally, ARFIMA process {yt}t=0,1,2,.. can be introduced as a process
whose fractional increment z′t = (I − L) d (zt) is ARMA(p− 1, q), where L is the
lag operator and {zt}t=0,1,2,... is the increments of the original data {yt}t=0,1,2,....

By invertibility of the operator (1− L)
d, z′t = (I − L) d (zt) implies zt =

(1− L)
−d

(z′t). The operator (I − L)−d can be introduced by using its Taylor
expansion (I − L)−d = I + dL/1! + d(d+ 1)L2/2! + d(d+ 1)(d+ 2)L3/3! + · · ·
(i.e. zt = z′t + dz′t−1 + d(d + 1)z′t−2/2! + d(d + 1)(d + 2)z′t−3/3! + · · · ) needs
to exist (see [57, 46]). It is shown that for − 1

2 < d < 1
2 the increments of an

ARFIMA(p− 1, 1 + d, q) process is a stationary process with long memory (see
[57, 46]).

Fractional ARIMA or ARFIMAmodel is proven to be a useful way to capture
the long memory of a process. For instance, in [9, 10] the long-range dependence
of commodity prices were investigated by using ARFIMA processes. Their ob-
servations of low frequency monthly spot (in [9]) and future (in [10]) prices
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suggested that the commodity prices in most cases have long-range dependency
and can be modeled by using non-linear ARFIMA processes. MLE approach
was used to estimate ARFIMA models for the macroeconomic time series [31].
Baillie [6] also found estimated ARFIMA model provides a good explanation of
the behavior of US CPI inflation.

In the following sections, we first study the ARFIMA(p, d, q) models with
skewed and kurtotic shocks for modeling commodity daily index and future
prices. However, since non-linear models are very difficult to implement in
practice, we study linear models with fat tail shock processes. Even though
linear models with fat tail shock processes cannot generate long memory time
series, they can generate time series with generalized Hurst exponents similar to
the ones from the commodity daily index and future prices. This suggests that
with regards to the generalized Hurst exponent, linear ARIMA(p, 1, q) models
with α−stable shock1 processes are good models with statistical characteristics
very similar to commodity daily prices.

2.2 Generalized Hurst Exponent for Time Series

Model

Given that almost all our commodity data series have unit roots with stationary
increments, and Hurst exponents mostly greater than1/2, we are motivated to
study processes that can have, and potentially can be used to generate these
properties. Indeed, we want to observe later the same number for linear models,
and compare them with the ones from commodity data.

The basic R/S Hurst exponent is related to the expected size of price
changes, as a function of the lag between observations, as measured by E

(
|yt − yt−k|2

)
.

For the generalized form of the coefficient, the exponent here is replaced by a
more general term, denoted by r. In this paper, we introduce the generalized
Hurst function as follows. For a number r > 0, observe from [89]

Hr (k, t) =

log

(
E |yt − yt−k|r

E |yt − yt−1|r
)

r log (k)
. (2.3)

If r = 2 we simply use the notation H (k, t). We will see later that for the
processes we used in this paper, Hr (k, t)is independent from t, therefore at this

1Indeed d = H − 1
2
, where H denotes the R/S Hurst exponent.
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moment we can assume Hr (k, t) = Hr (k).
As we will see later if the shock processes of an ARIMA(p, 1, q) process have

finite variance then lim
k→∞

log

(
E |yt − yt−k|2

E |yt − yt−1|2

)
/ log (k) = 1. Thus, for r = 2 the

time series behavior is consistent with a standard random walk, but exhibits
properties more like the characteristics of fractional Brownian motion for r 6= 2.

Remark 3. We will discuss later that according to corollary 2, except the wheat
future, soybean oil future, oats future, cocoa future and index, aluminum fu-
ture, gold index, palladium index, and lean hogs index, in all other cases the
independent shock process cannot have finite variance, since otherwise we had
to have generalized H = 1/2. This result reinforces our assumptions that these
processes are more likely to experience extreme values.

2.3 Time Series with Finite and Infinite Vari-

ances Shocks

In this section we discuss how linear autoregressive processes with infinite vari-
ance shock processes have long memory, which can be used in replace of non-
linear autoregressive time series. Our research shows that the generalized Hurst
exponent of an ARIMA process with α-stable shocks is asymptotically greater
than 1/2. This is consistent with our observation from the commodity daily
index and future prices. Not only this, α-stable shocks (defined below) can pro-
duce processes that generate skewed and kurtotic data, which better justifies
the use of ARIMA processes with α-stable shocks.

Stationary time series have different representations. Among them, we
are interested in the canonical representation of the stationary processes. Let
{yt}t=0,1,2,··· be a stationary process, then there exists {εt}t∈Z, a sequence of
uncorrelated and identical distributed random variables and a sequence of real
numbers {ci}i=0,1,2,,··· such that

yt = µ+

∞∑
i=0

ciεt−i. (2.4)

Before we introduce stationarity, we will discuss the concept of unit root
first. In time series , unit root arises when either the autoregressive or moving
average polynomial of an ARMA model has a root on or near the unit circle.
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One straight forward application is that a root near 1 of the autoregressive poly-
nomial indicates the differences need to be applied to the data set before fitting
an ARMA model, whereas a root near 1 from the moving-average polynomial
could be due to data over differencing [18].

Remark 4. ARMA(p, q) time series, yt = µ′ +
∑p
i=1 aiyt−i +

∑q
j=0 θjεt−j has

an unit root if and only if
∑p
i= ai = 1.

The theorem suggests that any sequence type ARMA(p, q), yt =
∑p
i=1 aiyt−i+∑q

j=0 θjεt−j , in which the lag coefficients
∑q
i= ai 6= 1 has a limit in probability

and time of either infinite or zero. It is known that if φy has root λ = 1, the
difference process zt := yt − yt−1 is an ARMA(p− 1, q) process with the same
shock process εt and

zt = b2zt−1 − · · ·+ bpzt−p+1 +

q∑
j=0

θjεt−j .

It is well understood that a process {zt}t=0,1,2,... is stationary if and only if
all roots of θz are inside the unit root circle. In this study, we assumed zt is
stationary, therefore the roots λ2, ..., λm of are all inside the unite circle.

In that case, if the time series {yt}t=0,1,2,... has finite variance, we have the
following formula for the auto-correlation function:

γi = E [(yt+i − µ) (yt − µ)] =

∞∑
l=0

cl+icl.

Note that the auto-correlation only depends on lag i and not time t. However,
one needs to be careful since the summation yt =

∑∞
i=0 ciεt−i has to be meaning-

ful in a “topology”. For instance, if {εi}i∈Z belong to L2 i.e., has finite variance,
then

∑∞
i=0 ciεt−i is convergent in L

2 norm. Nevertheless, we can assume in an
appropriate topology yt =

∑∞
i=0 ciεt−i is convergent and we work with a time

series whose representation can be given as an infinite summation (or infinite
moving average, MA(∞)).

2.3.1 α-stable Random Variables

Stable distributions are a class of probability distributions suitable for modeling
heavy tails and skewness. Assume {εi}i∈Z is a random variable with character-
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istic function equal to

Φε (τ) = E [exp (iτε)]

=

exp(−|τ |
α[1− Iβtan πα

2
(sign τ)]) α 6= 1

exp(−|τ |[1 + Iβ
2

π
(sign τ)log |τ |]) α = 1

, (2.5)

with µ ∈ (−∞,∞) and I =
√
−1. Then the random variable X is stable if and

only if X d
= σε+ µ, where σ 6= 0 and µ ∈ R.

We denote X is an α-stable random variable with mean µ, scaling parameter
σ and skewness parameter β. For simplicity, we denote an α-stable random vari-
able by Sα (σ, β, µ). Note that if ε0 ∼ Sα (1, β, 0) then ε = σε0 ∼ Sα (σ, β, 0).
Later we will assume that the shock process {εi}i∈Z has a common distribu-
tion Sα (σ, β, 0). A simple application of this definition is to show that the
summation of any sequence of α-stable random variables is α-stable. It is also
easy to see that for any series of independent random variable in general, if
εi ∼ Sα (σi, β, µi) , i ∈ N we have that

∑∞
i=1 εi ∼ Sα

(
(
∑∞
i=1 σ

α
i )

1
α , β,

∑∞
i=1 µi

)
.

In the following, we discuss how linear autoregressive processes with infinite
variance shock processes have long memory, which can be used in replace of
non-linear autoregressive time series.

In [9, 10] the authors observed that the monthly spot and future commodity
prices have long-range dependence property. That implies the ARFIMA model
can be a good model to fit the data. Barkoulas et al. [9] also studied the
long memory-ness of the commodity monthly data by estimating the fractal
parameter d. Based on these existing studies we can see the nonlinear ARFIMA
models are usually applied for finite variance shock processes.

However, our results about the generalized Hurst exponent show that the
shock processes are unlikely to be thin tail and symmetric (see next sections).
Recall that one can consider a representation in the form (2.4) for the increments
of an ARFIMA(p−1, 1+d, q) process, where −1/2 < d < 1/2. It is shown in [46]
that up to a slow varying function2, we must have ci ∼ id−1. This inspires us to
consider a similar measure for the long-range memory with no finite variance,
that is, the rate of decay of ci. According to [4], if d ∈ (0, 1 − 1

α ) for some
α ∈ (1, 2), such that up to a slow varying function we have ci ∼ id−1, then
for α-stable shock process, H = d + 1/2. Since for almost all commodities we
observe that H > 1/2, we can see that d > 0, and hence, the process display

2A function L is slow varying if ∀a > 0, limx→∞
L(ax)
L(x)

= 1.
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the long-range memory.
Looking at the canonical representation (2.4) of the stationary processes, one

can observe that in order to generate time series with skewed and kurtotic in-
crements one needs to consider skewed and kurtotic shock processes. Therefore,
in short, our observations suggest that a good model for commodity daily index
and future prices is an ARFIMA(p, d, q) process with α-stable shocks. However,
since non-linear autoregressive models are practically difficult to implement, in
the next sections, we study another measure of fractionally of processes - gener-
alized Hurst exponent, and show that if we focus our attention to this measure
rather than the R/S Hurst exponent, linear models still can be good candidates
for modeling actual data.

2.3.2 Generalized Hurst Exponent for ARIMA models

To study the generalized Hurst exponents of ARIMA processes, we need to
explain few things about all ARMA processes first.

A standard way of studying an ARMA(p, q) process zt is to represent it in
the form of a vector AR(1) process. To study this problem we rewrite it in a
vector form as follows

zt

zt−1

zt−2
...

zt−p+2


︸ ︷︷ ︸

Zt

=



b2 b3 · · · bp−1 bp

1 0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1 0


︸ ︷︷ ︸

B



zt−1

zt−2

zt−3
...

zt−p+1


︸ ︷︷ ︸

Zt−1

+



∑q
j=0 θjεt−j

0

0
...
0


︸ ︷︷ ︸

−→εt

.

We can rewrite the ARMA(p, q) process as follows

Zt = BZt−1 +−→εt . (2.6)

Using (2.6), we can represent the process Zt as an infinite moving average pro-
cess. In order to do that, we have to consider the i.i.d shock process {εt}t∈Z,
then iteratively (2.6) we get

Zt =

∞∑
l=0

Bl−−→εt−l. (2.7)
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Denoting component (1, 1) of Bl by
[
Bl
]
1,1

we get

zt =

∞∑
l=0

[
Bl
]
1,1

q∑
j=0

θjεt−l−j . (2.8)

This means in the representation (2.4) i.e., zt =
∑∞
l=0 clεt−l of a stationary

process, for l > q we have cl =
∑q
j=0 θj

[
Bl−j

]
1,1

. It is well-understood that for
any number 1 > ρ > max {|λ2| , ..., |λm|} where λ are roots of φ(L), there is an
Mρ > 0 such that

|cj | ≤Mρρ
j , j = 1, 2, ... (2.9)

Note that if we have an AR(p) process, meaning that q = 0, then we have
cl =

[
Bl
]
1,1

.

Remark 5. Inequality (2.9) shows that ARMA models can only generate pro-
cesses with short-range dependence. However, since they are linear they can be
used much easier for fitting and forecasting, and that is why we choose them
for modeling commodity prices.

2.3.3 Generalized Hurst Exponent with Finite Variance
Shocks

Let us assume that {yt}t=0,1,2,... is a process with stationary increments. The
variance of the one time-step increment can be expressed as

yt − yt−k = (yt − yt−k) + (yt−1 − yt−1) + · · ·+ (yt−k+1 − yt−k+1)

= (yt − yt−1) + (yt−1 − yt−2) + · · ·+ (yt−k+1 − yt−k)

= zt + zt−1 + · · ·+ zt−k+1.

We have
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E |yt+k − yt| 2 =

t∑
i=t−k+1

t∑
j=t−k+1

cov (zi, zj)

=

t∑
i=t−k+1

t∑
j=t−k+1

γ|i−j|

=

k−1∑
i=0

k−1∑
j=0

γ|i−j|

= 2

k−1∑
i=1

(k − i) γi + kγ0

= 2

k−1∑
j=1

j∑
i=1

γi + kγ0 (2.10)

where γ|t2−t1| = γ (|t2 − t1|) = E (zt1zt2) . First, observe that E |yt+k − yt| 2

is only a function of k, proving that H (k, t) = H (k). We show as k goes to ∞,
H (k) converges to 1/2.

Theorem 1. Suppose {yt}t=0,12,... is a process with stationary increments and
∀i ≥ 1,Var (εi) < ∞. Then E |yt+k − yt| 2 ∼ O (k) iff limj→∞

∑j
i=1 γi is con-

vergent.

Proof. By using the Cesaro summability theorem, one gets from (2.10)

lim
k

E |yt+k − yt| 2

k
= lim

k
2

k−1∑
j=1

∑j
i=1 γi
k

+ γ0

= 2

∞∑
i=1

γi + γ0.

Corollary 1. With all assumptions of the previous theorem, limk→∞H (k) ≤ 1
2

iff limj→∞
∑j
i=1 γi is convergent.

An implication from (2.4) and (2.9) is that if shocks have finite variance, for
1 > ρ > max {|λ2| , ..., |λm|} , there exists Kρ such that

E (zt+izt) ≤ Kρρ
i, i ≥ 1,
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or
|γi| ≤ Kρρ

i, i ≥ 1. (2.11)

Using this last inequality, for a large number M we have∣∣∣∣∣∣
∞∑
j=M

γj

∣∣∣∣∣∣ ≤
∞∑
j=M

Kρj (2.12)

≤ Kρρ
M

1− ρ
.

This implies that limM→∞
∑M
j=1 γj exists and is finite. We denote this limit by

γ.
As one can see, when the shocks have finite variance, the rate of the co-

variance process decays exponentially, therefore the process has short memory.
Now by using Corollary 1 we have

Corollary 2. For an ARIMA(p, 1, q) process with finite variance shocks we have

lim
k→∞

H (k) ≤ 1

2
.

This corollary confirms that the generalized Hurst exponent of an ARIMA
process with finite variance shocks is asymptotically 1/2. This is not consistent
with our observation from the commodity daily index and future prices, which in
almost all cases (except the wheat future, soybean oil future, oats future, cocoa
future and index, aluminum future, gold index, palladium index, and lean hogs
index) generalized H > 1/2. In the next section we will see that the result is
different for the fat tail shock process.

2.3.4 Generalized Hurst Exponent with α−stable Shocks

In the previous sections we observe that the commodity daily index and future
prices are skewed, kurtotic and have generalized Hurst exponent larger than
1/2. This motivates us to study ARIMA processes with skewed and kurtotic
shocks. Among all such shock processes, we find the α-stable shock processes
more convenient to work with3. First, they can be skewed and leptokurtic
(as opposed to normal shocks), and also (as we will see) can yield processes

3It is very likely that the same is true for the shock process whose tail behaves similar to
the tail of an α-stable shock i.e., Fε(x) ∼ 1 − 1/xα, x → ∞. However, since studying the
general case is beyond the scope of this paper we leave it to interested reader.
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with generalized Hurst exponents larger than 1/2. On the other hand, the
self similarity of α-stable processes makes it very convenient to find the Hurst
function of an ARIMA process α-stable shocks.

As discussed for any stationary ARMA(p, q) process zt there exists a se-
quence {ci}∞i=1 and an i.i.d sequence {εi}i∈Z such that

zt =

∞∑
i=0

ciεt−i.

Now let us assume that εi ∼ Sα (σ, β, 0) , i ∈ Z and also
∑∞
i=0 |ci|

α
<∞.

For our ARIMA(p, 1, q) process yt with increments zt, we have that

yt − yt−k = (yt − yt−1) + ...+ (yt−k+1 − yt−k) (2.13)

= zt + · · ·+ zt−k+1 =

k−1∑
j=0

∞∑
i=0

ciεt−j−i.

To visualize this we look at the following development

yt − yt−k = c0εt+ c1εt−1+ c2εt−2 · · · ck−1εt−k+1 +ckεt−k · · ·
+c0εt−1+ c1εt−2 · · ·

+c0εt−2 · · ·
. . .

+c0εt−k+1 c1εt−k · · ·

.

If we let ci = 0 for i = −1,−2, · · · , we get that yt−yt−k =
∑∞
i=0

(∑k−1
j=0 cj+i−k+1

)
εt−i.

Therefore,

yt − yt−k ∼ Sα


 ∞∑
i=0

∣∣∣∣∣∣
k−1∑
j=0

cj+i−k+1

∣∣∣∣∣∣
α

1
α

, β, 0

 (2.14)

Let 0 < α < 2. It is known that for any α-stable random variable ε ∼ Sα (σ, β, µ)

and for every 0 < r < α < 2, r-th moments are fine. However, if α = 2, then for
any r ≥ 0, r-th moments are fine. Let ε0 ∼ Sα (1, β, 0), then by (2.14) we get
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E |yt − yt−k|r = E


∣∣∣∣∣∣∣
 ∞∑
i=0

∣∣∣∣∣∣
k−1∑
j=0

cj+i−k+1

∣∣∣∣∣∣
α

1
α

ε0

∣∣∣∣∣∣∣
r

=

 ∞∑
i=0

∣∣∣∣∣∣
k−1∑
j=0

cj+i−k+1

∣∣∣∣∣∣
α

r
α

E (|ε0|r) .

This implies

log

(
E |yt − yt−k|r

E |yt − yt−1|r
)

= log


(∑∞

i=0

∣∣∣∑k−1
j=0 cj+i−k+1

∣∣∣α) rα E (|ε0|r)

(
∑∞
i=0 |ci−k+1|α)

r
α E (|ε0|r)


= log


∑∞i=0

∣∣∣∑k−1
j=0 cj+i−k+1

∣∣∣α∑∞
i=0 |ci−k+1|α


r
α
 (2.15)

=
r

α
log

∑∞i=0

∣∣∣∑k−1
j=0 cj+i−k+1

∣∣∣α∑∞
i=0 |ci−k+1|α


Corollary 3. Let 0 < α ≤ 2 and r > 0. Furthermore, if 0 < α < 2, we assume
0 < r1 < r2 < α. Then

Hr1 (k) = Hr2 (k) .

Proof. Given (2.15) we have

Hr (k) =

log

(
E |yt − yt−k|r

E |yt − yt−1|r
)

r log (k)
=

1
α log

(∑∞
i=0|

∑k−1
j=0 cj+i−k+1|α∑∞

i=0|ci−k+1|α

)
log (k)

.

By the previous corollary, the following definition of Hα is indeed consistent
with the original definition (2.3).

Hα (k, t) = Hα (k) =

log

(∑∞
i=0|

∑k−1
j=0 cj+i−k+1|α∑∞
i=0|ci|

α

)
α log (k)

.
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Corollary 4. Let 1 < α ≤ 2 and assume that shock sequence {εi}i∈Z is i.i.d
and α-stable. Then

lim
k→∞

log

(∑∞
i=0|

∑k−1
j=0 cj+i−k+1|α∑∞

i=0|ci−k+1|α

)
log (k)

= 1.

Proof. Proof in the Appendix.

Theorem 2. Suppose 0 < α < 2 and 0 < r < α, or α = 2 and r > 0. Then

lim
k→∞

Hr (k) =
1

α
.

This theorem confirms that the generalized Hurst exponent of an ARIMA
process with α-stable shocks is asymptotically greater than 1/2. This is con-
sistent with our observation from the commodity daily index and future prices.
Not only this but α-stable shocks can produce processes that generate skewed
and kurtotic data, which better justifies the use of ARIMA processes with α-
stable shocks.

2.4 Simulation and Testing

In this section, we are going to examine the robustness of the generalized Hurst
exponent estimation to i.i.d. non-normal process with heavy tails. As intro-
duced in the second section, α-stable random variable follows distribution with
parameters mean µ, µ ∈ R, scaling parameter σ, σ > 0, and skewness parameter
β, −1 ≤ β ≤ 1. For simplicity, we apply µ = 0, σ = 1 and β = 0 symmet-
ric distribution. Here we use i.i.d. α−stable distributed random variables from
Sα(1, 0, 0) with different value of parameter α ∈ (0, 2] in the stable distributions,
to simulate 100 time series with lengths of 5000.

It is interesting to see how the generalized Hurst exponent changes with the
different α for various lags lengths of time series. In other words, we simulate
the grid of independent identically distributed stable increments with varying
coefficient α and k. In this case, we have 0.1 ≤ α ≤ 2 with a step of 0.1,
and 30 ≤ k ≤ 350 with a step of 10. For each position in the grid, we then
estimate generalized Hurst exponents. The results of Table 6.6 and 6.7 in the
Appendix summarize all the expected value of a whole grid of the simulated
results, showing how the generalized Hurst exponent changes for different α
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values. Also we can observe that the generalized Hurst exponent is converging
to 1/α when lags k goes to the maximum number of trading days (here we
assume 350 to be the number of trading days per year).

The figure 2.1 also display the results of generalized Hurst exponents from
100 time series simulations plotted in the gray dashed lines, with the heaviest
tails (α = 0.1) to the normal distribution (α = 2), while the red line represents
the mean value. The X-axis goes from the simulation with the heaviest tails to
the simulations with the normal distribution. It is clearly shown that expected
value of the generalized Hurst exponents is slowly converging to 0.5 with α

changing from 0 to 2.
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Figure 2.1: Generalized Hurst Exponents Estimation.

2.5 Investigation of Commodity Daily Index and

Futures Prices

Recall, we have also observed that almost all daily index and future price time
series have unit roots with stationary increments where also increments are kur-
totic and skewed. In addition, we observe that, except wheat index, oats index
and future prices, daily commodity prices have R/S Hurst exponent greater
than 1/2. This shows that almost all the processes are persistent and they have
long-range dependence structure. Based on existing literature as well as our ob-
servations, ARFIMA(p, d, q) process with α-stable shocks can be a good model
for modeling commodity prices.
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We have also observed that except for the wheat future, soybean oil future,
oats future, cocoa future and index, aluminum future, gold index, palladium
index, and lean hogs index, all other commodities have generalized Hurst ex-
ponent is greater than 1/2. The results are reported in the Table 6.5 in the
Appendix. Since general Hurst exponent is used to measure the long memory
of the underlying data sets, the traditional bootstrap method cannot be applied
due to the lack of replication features for long-range dependence.

Table 6.8 shows the log-likelihood for all the commodities fitted with ARIMA
models with α-stable residuals and normal distributed residuals together with
estimated values of α. One can see the log-likelihoods are relatively close indi-
cating similar model fitting results and modeling abilities. Further research may
be needed on developing some goodness-of-fit test to see if one model is better
than the other.

We still do not have enough explanation for the fractionality and variety
of R/S and generalized Hurts exponent of commodities. However, as it was
discussed in [26], one can name few reasons. For instance, heterogeneity in
time horizons of economic agents, where long-term investors naturally focus on
long-term behavior of prices and traders aim to exploit short-term fluctuations
[75, 50], by using genetic algorithms for decision rules [3] and switching be-
tween trading strategies. Switching of economic agents between two behavioral
patterns leads to large, aggregate fluctuations in the financial market [82, 71]
and finally investor inertia, where the duration of regimes that agents holding
their strategies seems to be more important [78, 11]. In addition, Samorodnit-
sky [108], Doukhan et al. [36] attempted to explain the long-range dependence
in other financial time series data where the dependence properties of finan-
cial time series are discussed through the empirical behavior of auto-correlation
functions. GARCH model [14, 13] and LRD were used to take into account
the volatility clustering phenomenon (see [27, 35, 50, 13]). Since the LRD are
often formulated in terms of self-similar process [12], self-similarity does not
imply LRD in any way and self-similar processes may originate from different
process like fractional Brownian motions, α-stable Lévy process, etc. This is
why we also study α−stable shocks in our analysis . Cont [26] argued that
theoretical restrictions imposed by arbitrage are quite weak and cannot be used
as arguments to exclude a family of stochastic processes as potential models,
and it is more interesting to use fractional processes as models of volatility (see
[98, 7, 24]).



Chapter 3

Multidimensional Data
Clustering

3.1 Cluster Analysis and Feature Learning

Cluster analysis is a very important analysis and is often required in real-world
problems. It is a statistical tool used for grouping a set of objects so that objects
in a same group, or a cluster, are more closely related to each other than to
objects in other groups or clusters. This can identify mutually homogeneous
groups (clusters) of observations such that the within-group-object similarity is
maximal and the between-group-object similarity is minimal of some random
variable X. An object can be described by a set of measurements, or by its
relation to other objects. Assuming the observations in the same cluster share
similar statistical properties, that is, have a highly correlated inner relationship,
this will provide us with more useful information for modeling and forecast
future scenarios.

It is well-known that the measured commodity data observations are usually
high-dimensional and contain significant redundant information. A large num-
ber of features can cause learning models to overfit and affect their performance.
To address this challenge, many existing approaches apply dimensionality re-
duction on high-dimensional data either based on feature extraction or feature
selection before standard clustering modeling. In machine learning, dimension-
ality often refers to the number of features or input variables in a dataset.
Recently, Principal Component Analysis (PCA) is commonly used for feature

35
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extraction which creates low-dimensional representations of the original feature
set. Feature selection finds an appropriate subset of the original features in order
to filter irrelevant or redundant variables. Dimensionality reduction technique
is often able to efficiently obtain features from very high dimensional datasets
that works well in practice, however, discriminant information that is hidden in
different subspaces can be lost when many irrelevant dimensions are filtered.

Clustering algorithms divide, or partition, data into natural groups of ob-
jects. By natural it means that the objects in a cluster should be internally sim-
ilar to each other, but differ significantly from the objects in the other clusters.
There are many clustering methods in literature, ranging from nonparametric
approaches in defining specific distances or dissimilarities for functional data,
such as variants of the k-means method [114] and clustering after transforma-
tion and smoothing [110] to k-centers functional clustering approach [23]. Most
recently, the model-based procedure for clustering functional data has become
popular, such as curves clustering method using functional random variables
density approximation [61, 62] and expend coefficients of the curves into a spline
basis of functions that distribute according to a mixture Gaussian distribution
[63].

When consider the modeling of high-dimensional data, one can categorize
them into groups based on the model characteristics of individual series or the
residuals after model fitting. Such properties are called the functional nature of
the data [77]. Model-based functional data clustering takes the functional nature
of the data. In this section we study two different model-based functional data
clustering methods based on both time domain and frequency domain. The first
approach has been developed in analysing functional data on time domain to
approximate density of functional random variables. Functional observations
are serially correlated over time, where each curve represents a segment of the
whole time interval. The second functional data clustering on the frequency
domain can simultaneously estimate Spectral Density Functions (SDFs) for a
collection of stationary time series that share some common features. The main
purpose of this section is to efficiently distinguish different time series, choose
the optimal structure of data set so that we can achieve the most efficient data
features.
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3.2 Model-based Functional Data Clustering in

Time Domain

One of the effective methods to explore the relationships among data and clus-
ters is the Functional Data Clustering. Such a method enables us to detect pat-
terns and find clusters with high-dimensional time-dependent functional data.
When study the clusters, particularly when the underlying data is observed fre-
quently in time domain, Functional Data Analysis (FDA) is commonly used for
multiple time series.

In this section, we first outline the techniques of functional data analysis and
functional principal components analysis to transform discrete observations into
an optimal representation of curves into a function space of reduced dimension.
Then, the approximation of the density function for multivariate functional data
is introduced.

3.2.1 Modeling Functional Data

In Functional data analysis (FDA), functional data are typically observed dis-
cretely and each time series is treated as observations of a continuous function
collected at a finite time points. In theory, however, observations are assumed
to be in an infinite dimensional space, for example, some random variables X
taking values from an infinite dimensional space, such as a space of functions
defined on some continuous set T .

According to [39], a functional random variable X is a random variable with
values in an infinite dimensional space1. In order for the clustering algorithms
to perform on finite dimensional data, discretely observed data need to be trans-
formed into continuous functions or curves (functional data). To do so, the most
popular approach is to reduce the infinite dimensional problem to a finite one
by approximating data with elements from some finite dimensional space.

From [39], the important features of functional data are 1) functional data
are infinite dimensional; 2) the measurements within one curve display high
correlation.

Definition 5. Let X be a vector space over C. An inner product on X is a
map (·, ·) : X ×X → C such that, for all x, y, z ∈ X and λ ∈ C:

1. (x, y) = (y, x) (Symmetry)
1The random variable underlying data is a stochastic process X = {X(t), t ∈ T}
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2. (x+ y, z) = (x, z) + (y, z) (Bilinearity)

3. (λx, y) = λ(x, y) (Homogeneity)

4. (x, x) ≥ 0 with equality iff x = 0 (Positivity)

Definition 6. A complete inner-product space is called a Hilbert space H.

Consider X = {Xt}t∈T taking values in a Hilbert space H of functions defined
on time set T , the underlying model for Xi’s is generally an i.i.d. sample of
random variables with the same distribution as X.

Define a basis Φ = {φ1, φ2, · · · , φL} generating some space of functions in
H, X can have the basis expansion for some L ∈ N, αil ∈ R.

Xi(t) =

L∑
l=1

αilφl(t)

Then, the sample paths basis coefficients can be estimated from discrete-time
observations.

3.2.2 Functional Principle Components Analysis (FPCA)

Principal Component Analysis (PCA) is a very popular dimensionality reduction
technique that captures the maximum information presented in the original data
and simultaneously minimizes the difference between the original data and the
new reduced dimensional representation [64, 103, 102].

PCA is widely applied to reduce the number of variables in a model as well.
Finding a small number of linear combinations of the variables that account for
most of the variance in the observed data is the most common approach that
motivates the PCA [58], obtaining linearly uncorrelated variables stemming from
linearly correlated variables.

One way to operate PCA is by solving the characteristic polynomials of a
system. Denote covariance matrix as C,which is symmetric and can be rewrit-
ten as C = QΛQ−1 = QΛQT =

∑n
i=1 λiqiq

T
i , where matrix Q consists of

eigenvectors qi of C and Λ is a diagonal matrix with eigenvalues λi of C. The
characteristic polynomial of C is given by det(C − λI) = 0, where det(·) is the
determinant and I is the identity matrix. By solving the polynomial, one can get
the eigenvalues λi and corresponding eigenvector qi. In PCA the eigenvalues are
sorted in descending order, i.e. λi ≥ λi+1, and as such the first corresponding
eigenvector has the highest degree of explanation of the eigenvectors in Q.
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Another approach of PCA is to obtain best low-rank matrix approximation
of the data matrix [64]. The two approaches compute the spectral decomposition
of the sample covariance matrix and the singular value decomposition (SVD) of
the data matrix respectively, and give the same result.

Different from the traditional functional basis expansion, where pre-specified
sets of basis functions are needed, Functional Principal Component Analysis
(FPCA) is a key technique in FDA due to its leading role in extracting the
features and characterizing a set of curves. Thus, when dealing with discrete
data, FPCA is carried out as a preprocessing step to find and reconstruct the
functional form of data.

FPCA generalizes the Functional Principal Components (FPCs) through
data-adaptive basis functions that are determined by the covariance function
of functional data from Rn to the L2 space. It is determined by principal
components characterizing the variability of density via the eigenfunctions cor-
responding to the ranked eigenvalue of an empirical covariance operator.

In short, given functional data {X1, . . . , Xn}, FPCA is a tool that gives us
an optimal representation of curves into a function space of reduced dimension
from Rn to the L2 space when clustering functional data, by determining prin-
cipal components via the eigenfunctions corresponding to the largest, second
largest, etc. eigenvalue of an empirical covariance operator. Specifically, dimen-
sion reduction is achieved through an expansion of the underlying Xi(t) in a
functional basis that consists of the eigenfunctions the covariance operator of
the process X.

Consider functional random variable X as a L2-continuous stochastic pro-
cess2, i.e.:

∀t ∈ T, lim
h→0

E[|X(t+ h)−X(t)|2] = 0

Let µ = {µ(t) = E[X(t)]}t∈T denotes the mean function X. The covariance
operator γ of X is an integral operator:

γ : L2(T ) −→ L2(T )

f
γ−→ γf =

ˆ T

0

k(·, t)f(t)dt (3.1)

with kernel k defined by the covariance function:
2Under mild assumptions, the underlying stochastic process can be expressed as a countable

sequence of uncorrelated random variables FPCs, which in many practical applications is
truncated to a finite vector.
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k(s, t) = E[(X(s)− µ(s))(X(t)− µ(t))], s, t ∈ T

Under the L2-continuity hypothesis, the mean and the covariance function
are continuous and the covariance operator γ is a Hilbert-Schmidt one.

Definition 7. Hilbert-Schmidt Operator
Let D ⊂ Rn be a bounded domain. A function k : D × D → R is called a

Hilbert-Schmidt kernel if
´
D

´
D
|k(x, y)|2dxdy < ∞. For every u ∈ L2(D) the

integral operator K : L2(D)→ L2(D) given by

Ku(x) =

ˆ
D

k(x, y)u(y)dy

is compact, positive and self-adjoint.

In the case of a compact, positive and self-adjoint operator, the eigenvalues
are non-negative. The spectral analysis of γ provides a countable set of pos-
itive eigenvalues {λj}j≥1 associated to an orthonormal basis of eigenfunction
{ψj}j≥1:

γψj = λjψj

with λ1 ≥ λ2 ≥ · · · ≥ 0 .
Since γψj =

´
D
k(s, t)ψj(s)ds from eq(3.1), then we have:

ˆ T

0

k(s, t)ψj(s)ds = λjψj(t), s, t∈T

Karhunen and Loève [67, 81] independently discovered the FPCA expansion,
also known as Karhunen-Loève expansion. The Karhunen-Loève expansion of
the curves allows each cluster’s parameters to be of different sizes, based on the
quantity of variance expressed by the corresponding FPCA.

Definition 8. Karhunen-Loève Expansion

X(t) = µ(t) +

∞∑
j=1

Cjψj(t) , t ∈ T (3.2)

where µ is the mean function of X, {Cj}j≥1 are the functional principal com-
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ponents (FPCs) of X, sometimes referred to as scores:

Cj =

ˆ T

0

(X(t)− µ(t))ψj(t)dt, j ≥ 1

and ψj form an orthonormal system of eigenfunctions of the covariance operator
of X: ˆ T

0

k(s, t)ψj(s)ds = λjψj(t), s, t∈T

where {Cj}j≥1 are zero-mean uncorrelated random variables with variance λj .

3.2.3 Approximation of the Density for Multivariate Func-
tional Data

Consider the principal components indexed by the descending order of the eigen-
values (λ1 ≥ λ2 ≥ · · · ). Let X(q) denotes the approximation of X by truncating
eq(3.2) at the first q terms, q ≥ 1

X(q)(t) = µ(t) +

q∑
j=1

Cjψj(t) , t ∈ T (3.3)

Hence, X(q) is the best approximation of X under the mean square criterion
[33]. Denoting by ||.|| the usual norm on L2(T ), the convergence of the sum in
eq (3.3) holds such that E(||X −X(q)||2) =

∑
j≥q+1 λj and ||X −X(q)|| q→∞−→ 0.

Similar dimension reduction can be achieved by expanding the functional
data into other function bases, such as spline, Fourier, or wavelet bases. The
particular feature of FPCA is it uses principal components for a fixed q, so the
FPC expansion explains most of the variation in X in L2. When choosing q
in an estimation setting, there is a trade-off between bias and variance. Thus,
model selection procedure is needed to obtain consistency of the representation.

Model-based clustering based on mixture models has been widely used in
clustering multivariate data and has been extended to functional data clustering.
For example, Jacques and Preda [61] applied functional clustering models based
on Gaussian Mixture Models, assuming each class is represented by a Gaussian
probability density, to identify homogeneous groups of data sampled from a
mixture densities model.

Recall eq(3.3), assume X is a Gaussian process, and the principal compo-
nents Cj are Gaussian and independent. Then the density f (q)X can be used as
an approximation of the density of X with the following form:
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f
(q)
X (x) =

q∏
j=1

fCj (cj(x)) (3.4)

where fCj is the principal component density and cj(x) =< x,ψj >L2 is the jth
component score of x.

Given functional data {X1, . . . , Xn}, consider when there exists a latent
group variable Z, of K groups, such that Z = Z1, . . . , ZK with

Zg =

1 if X belongs to cluster g

0 otherwise
1 ≤ g ≤ K

For each i = 1, . . . , n associated to Xi, the corresponding categorical variable
Zi,g indicates the cluster group Xi belongs. Then each couple (Xi, Zi,g) is
assumed to be an independent realization of the random vector (X,Z).

Conditional on the group, the probability density fCj,g of the jth principal
component of X is assumed to be the univariate Gaussian density with zero
mean and variance λj,g. Under this model it follows that the unconditional
approximated density of X can be written as

f (q)x (x; θ) =

K∑
g=1

πg

qg∏
j=1

fCj,g (cj,g(x);λj,g)

where qg is the number of the first principal components, cj,g(x) is the jth
principal component score, with parameter θ = (πg, λ1,g, . . . , λqg,g)1≤g≤K and
πg are mixing probabilities (

∑K
g=1 πg = 1).

Then the iterative Expectation-Maximization (EM) algorithm is used to
maximize the pseudo completed log-likelihood:

L(q)(θ;X,Z) =

n∑
i=1

K∑
g=1

Zi,g

log πg +

qg∑
j=1

log fCj,g (Ci,j,g)


where Ci,j,g = Cjg(Xi) is the jth principal score of the curve Xi belonging to
the group g.

Since the group label Zi are unknown when estimate the mixture model
parameters, the iterative EM algorithm3 consists the computation for the con-

3The general Expectation-Maximization (EM) algorithm is widely applied to iteratively
compute a maximum likelihood estimation for incomplete-data problems. In our study, it
used for clustering when cluster labels are treated as “missing” values.
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ditional expectation for the pseudo completed log-likelihood in the E step, and
the computation of the principal component scores for each group in the M step.

3.3 Multidimensional Data Clustering in Frequency

Domain

In time series analysis, any stationary process has both a time domain and a
frequency domain representation. The dynamics of time series obtained from
time domain can also be supplemented by frequency domain analysis, i.e. spec-
tral analysis. On frequency domain, spectral analysis plays an important role in
identifying and forecasting time series trend and analyzing the economic cycles.

In this section, we focus our attention on the frequency domain approach
to clustering the commodity time series based on modeling spectral density
functions. Firstly, spectral domain analysis of finite–dimensional stationary
time series and the nonparametric technique for estimating spectral density is
introduced. Then this method is extended to simultaneously estimate spectral
density functions for a collection of stationary time series using a shared basis.

3.3.1 Spectral Analysis for Covariance-stationarity Pro-
cess

Spectral analysis is concerned with exploration of cyclical patterns and is mainly
used to detect the signal periodicities in the frequency domain by decomposing
the process into an infinite sum of periodic functions, each having a different
frequency ω ranging between 0 and π. For a covariance-stationarity process
{Xt}∞t=−∞ the spectral representation can be written as

Xt = µ+

π̂

0

α(ω) cos(ωt)dω +

π̂

0

β(ω) sin(ωt)dω

where the frequency ω corresponds to a time horizon T , such as T = 2π/ω, and
weights α(ω), β(ω) are random variables with zero mean.

Commonly used frequency estimation methods can be classified into para-
metric and nonparametric categories (see [32, 68, 112]). Parametric approach
assumes that a certain model like ARMA model generates the signal and the
pectral density (defined above) is computed from the ARMA model parame-
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ters that are estimated by fitting the time series process. Nonparametric ap-
proach assumes the signal is composed of basis functions, such as discrete Fourier
transform, and the signal at certain frequency is estimated by filtering or fit-
ting. Functional structure estimation through nonparametric techniques has
been developed in various areas, such as density estimation and regression.

Suppose that {X1, X2 . . . , Xn} is a zero–mean weakly stationary time series
with autocovariance function γ(h), where the hth autocovariance is defined as:

γ(h) = E(XtXt+h), h = 0,±1,±2, · · ·

If the sequence of autocovariances is absolutely summable4, then it has the
spectral representation as:

γ(h) =

ˆ 1/2

−1/2
f(ω)e2πiωhdω, h = 0,±1,±2, · · ·

The autocovariance function and the spectral density function therefore form
a Fourier pair, where f(ω) is the spectral density of X with the inverse Fourier
transform:

f(ω) =

∞∑
h=−∞

γ(h)e−2πiωh, −1

2
≤ ω ≤ 1

2

Then the periodogram can be denoted as In(ω) and it can be seen as a
discrete Fourier transform of the sample covariance γ̂(h):

In(ω) =

n+1∑
h=−(n−1)

γ̂(h)e−2πiωh = | 1
n

n∑
t=1

Xte
−2πitω|2

Now suppose X is a mean-zero stationary Gaussian process with a para-
metric covariance function γ(h; θ), then the likelihood function under Gaussian
framework can be written as:

L(θ) =
1

(2π)n/2|Γn,θ|1/2
exp

(
−1

2
X>Γ−1n,θX

)
where Γn,θ is the covariance matrix of the random vector X, then define

4A sequence {γ(h)} is absolutely summable if it satisfies
∑∞
h=−∞ |γ(h)| <∞.
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`(θ) = −2× logL(θ):

`(θ) ∝ log(|Γn,θ|) + tr(XX>Γ−1n,θ)

The Whittle log-likelihood function can be rewritten according to [121]:

`W (θ) = n

ˆ 1/2

−1/2

{
log(fθ(ω)) + In(ω)fθ(ω)−1

}
dω (3.5)

For a discrete frequency range, the Whittle approximation (3.5) has the
following form:

`W (θ) = n
∑

−1/2<ωj<1/2

{
log(fθ(ωj)) + In(ωj)fθ(ωj)

−1} (3.6)

3.3.2 Nonparametric Collective Spectral Density Estima-
tion

Estimating spectral densities from high-dimensional time series is challenging.
Current approaches are either not stable or computationally expensive. The
nonparametric collective estimation that minimizes a penalized Whittle log-
likelihood was developed by Maadooliat et al. [83] for multiple time series clus-
tering, as the spectral density functions that share common features can be
collectively estimated.

Given a collection of stationary time series Xi’s, where i = 1, · · · ,m and
X>i = (Xi1, Xi2, · · · , Xin) with the associated spectral density fi. assume each
log-spectral density function can be represented by a linear combination of a
common set of basis functions {φk(ω), k = 1, · · · ,K} and its own set of coeffi-
cients. Specifically, we assume that log{fi(ω)} = ui(ω) with

ui(ω) =

K∑
k=1

φk(ω)αik, i = 1, · · · ,m (3.7)

The spectral density functions can be expressed as

fi(ω) = expui(ω) = exp

{
K∑
k=1

φk(ω)αik

}
, i = 1, · · · ,m (3.8)

The basis functions φk(ω) are not pre-specified, thus need to be determined
from the data. The dimension is reduced by representing the raw periodogram
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on a set of common basis functions while allowing each one to differ by intro-
ducing random effects into the model.

To achieve this goal, the basis functions can be modeled by a low-dimensional
subspace of a function space spanned by a rich family of fixed basis functions
{b`(ω), ` = 1, · · · , L}(L� K), such that

φk(ω) =

L∑
`=1

b`(ω)θ`k, k = 1, · · · ,K (3.9)

For identifiability, b`, ` = 1, · · · , L, are assumed linearly independent, i.e.
the bases are orthonormal, and a large enough L ensures the needed flexibility
in representing the unknown spectral densities. The most commonly used fixed
basis functions are monomials, B-splines, Fourier, Polynomial and Wavelets.
Bivariate splines can be used as the fixed basis functions for bivariate spectral
densities.

Denote φ(ω) = (φ1(ω), · · · , φK(ω))>, αi = (αi1, · · · , αiK)>, b(ω) = (b1(ω), · · · , bL(ω))>,
θk = (θ1k, · · · , θLk)>, and Θ = (θ1, · · · , θK). Then, the ui(ω) in the vector-
matrix can be simplified with eq(3.7) and eq(3.9) as

ui(ω) = φ(ω)>αi = b(ω)>Θαi, i = 1, · · · ,m.

The periodogram Ii,n is a rough estimate of the spectral density, associated
with the time series observations over n time points. Thus, for m spectral
densities, the Whittle approximate has the form:

`W (Θ,A) =

m∑
i=1

∑
j

{ui(ωj) + Ii,n(ωj) exp[−ui(ωj)]}

where

A = (α1, ..., αm)T .

Following [47] where a roughness penalty approach is used to estimate pa-
rameters by minimizing the penalized likelihood criterion−2`W (Θ, A)+λ

∑K
k=1 PEN(φk),

where PEN(φk) is a roughness penalty function that ensures a smooth function
by regulating the estimated basis function φk and λ > 0 is a penalty param-
eter. Newton-Raphson algorithm is used to minimize the penalized Whittle
approximate log-likelihood.
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3.4 Optimal Number of Clusters

The main challenge in clustering analysis is to find the optimal number of clus-
ters, which is usually not predefined. Various techniques have been suggested to
determine the optimal number of clusters [95, 44]. For example, BIC and AIC
are frequently used in the context of traditional model-based clustering to select
the number of clusters [1, 109, 16]. The ratio of the between and within-cluster
sum of squares [21] and averaged Mahalanobis distance between the basis ex-
pansion coefficients and their closest cluster centre [111] are also calculated to
choose the optimal number of clusters.

To select the optimal number of clusters in this study, we consider a popu-
lar technique known as the “elbow plot” or the “L-curve” [115], which uses the
within-cluster dispersion to determine the number of clusters. To be more spe-
cific, L-curve looks at the percentage of variance explained as a function of the
number of clusters and plots a sequence of the number of clusters C versus their
corresponding within-cluster sum of squares. Within-cluster sum of squares
is the summation of each clusters distance between that specific clusters with
each points against the cluster centroid. Although this procedure is very simple
and straightforward, it is not a formal statistical procedure. As the number
of clusters increases, within-cluster sum of squares will decrease monotonically.
However, the first value of the number of clusters at which within-cluster sum
of squares reaches a minimum and remains stable indicates that there has been
the largest increase in goodness of fit and hence which is the optimal number of
clusters.

In our study, the number of clusters ranging from 1 to 12 are considered
to permit exploring a wide range of possible number of clusters. Elbow plot
in Figure 3.1 displays the optimal number of clusters is 3, based on the daily
future data from the eighteen commodity products.

3.5 Clustering Results for Commodity Futures

Prices

In this section, we will discuss the experimental outcome obtained from two
model-based functional data clustering methods on both time domain and fre-
quency domain. The data consists of the eighteen commodity products daily
future price data according to Table 6.1, and the futures daily return are normal-
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Figure 3.1: Elbow Plot for Optimal Number of Cluster

ized within the common time period from 01 January 2008 to 31 August 2018.
The goal is to provide a classification results into 3 groups, and to compare
between the two models.

For the time domain data clustering method, we first need to compute prin-
cipal component functions for reconstruction of the functional form of the data.
Figure 3.2 shows that the first four components account for 42%, 22%, 16%
and 5% of the variation. For the clustering algorithm, we set up the maximum
number of iterations as 200. Moreover, to avoid the convergence to a local max-
imum of the pseudo likelihood, the EM algorithm is designed to run 10 times
with random parameter initializations. The whole fitting procedure is carried
out through the fda package in R software.

For the frequency domain data clustering method, we can estimate smoothed
spectral density functions in terms of frequency value. We choose B-spline as the
fixed basis functions with a degree of 3 and the maximum number of iterations
is fixed to 30. The algorithm was performed on a web application available at
“https://ncsde.shinyapps.io/NCSDE”.

We attempt to find the optimal combination between the classifier and the
number of features that are fed to it. The number of iterations for both meth-
ods is fixed to 500, meaning we design an experiment whereby we attempt each
method for 500 times on identical datasets. The Figure 3.3 illustrates the sim-
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Figure 3.2: First Four PCA Function Plot

Time Domain Cluster Frequency Domain Cluster
Group 1 wheat, oats, canola oats, aluminum, copper, palladium

Group 2 soybean oil, soybean, corn, orange juice, coffee, sugar,
sugar, orange juice, cocoa crude oil

coffee, aluminum, gold, copper, wheat, soybean oil, soybean, corn,
Group 3 palladium, platinum, lean hogs, canola, cocoa, gold, platinum,

feeder cattle, crude oil lean hogs, feeder cattle

Table 3.1: Clustering Results between time domian analysis and frequency do-
mian analysis on commodity Future price

ilarities and the differences between the different curves of commodity data.
Table 3.1 shows the top clustering result from two methods, both obtaining an
accuracy of 74% and over 5.

5One should note that other cluster results were evaluated in the same test, but failed to
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Figure 3.3: Commodity Future Price Clustering Results based on Time Domain
Analysis (left) and Frequency Domain Analysis (right).

The results show that two clustering methods provide different compositions
of clusters. For the time domain data clustering method, it is hard to observe
three distinct groups from the left graph in Figure 3.3. We can see Group 1

only contains the grains products while Group 2 contains the rest of grains
and all soft products, expect Coffee - which are part of the Group 3 with all the
metals, livestock and energy products. However, from the right graph the curves
in the same cluster have similar shape. We can observe three distinct groups
of commodity products, although each group contains mixed of products from
five main categories. The green group tends to decrease with high frequency
while the red group performs oppositely and the last group (black) mostly stay
the same. Normally, clustering method should yield similar results from the
same stationary time series data regardless its time domain presentation or
frequency domain presentation. This is due the the characteristics of the data
are fundamentally the same for both presentation method. However, we do
observe different grouping results from our research and this will be further
studied in future researches. We cannot provide a definite explanation here
but suspect the grouping difference is due to long-memory processes that are
characterized by auto-covariance sequences that are square summable but not
absolutely summable. Such models may have spectra that are unbounded at
the zero frequency.

There are many standard methods to evaluate the performance of the cluster

provide more stable results, hence are omitted from this table.
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results in discovering the correct group label (see [5, 8]) but these strategies are
criticized as misleading since they rely on the assumption that class labels occur
simultaneously with cluster structure. Kogan [72] discussed that the best way
to evaluate clustering performance is to explain how the clusters make sense on
real-world datasets. Hence, the evaluation strategy in this study is to model
the impact of clustering results on forecast abilities. In other words, the cluster
that gives us the most appropriate input information that can provide the most
accurate forecast results will be the best model. This strategy will be analyzed
in the next chapter.



Chapter 4

Long Memory Time Series
Forecasting

4.1 Development and Application of Machine Learn-

ing

Artificial intelligence (AI) is the study of making machines or software capable
of intelligent behaviors. The ideas behind it inspire many scientists to begin
critically discussing the possibility of building an electronic brain. The begin-
ning of modern AI was originated in classical philosophers’ attempts to describe
human thinking as a mechanical manipulation of symbols since antiquity. Early
AI researchers developed algorithms that help people to solve puzzles or make
logical deductions. Later on, AI has gain the ability to identify and distinguish
between different objects, categories, relations and situations. Many researchers
like Laird et al. [73] and Geary [41] believe that their work needs to be incorpo-
rated into a machine with general intelligence (known as strong AI), combining
all the skills and even exceeding human abilities at most or all of them. Ma-
chine learning, the study of computer algorithms, is another key research field
in AI that let the computer have the ability to learn and improve automatically
through experience. Mathematical analysis of machine learning algorithms are
well developed by scientists and their performance are continuously improved,
for example, Natural language processing gives machines the ability to read and
understand the languages that humans speak [92].

52
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Today, Artificial Intelligence has been a thriving field with many practical ap-
plications and active research topics applied that can solve real-life problems, like
spam emails classification, face recognition, image classification, speech recogni-
tion, signal denoising, weather forecast, robot design and so on, see[19, 20, 107]
for more. Over the last few years, artificial neural network and deep learning
have gained extensive attention. The study of artificial neural networks began
a decade before, Rosenblatt [105] invented the perceptron that used input from
sensors such as cameras, microphones to deduce aspects of the world. Werbos
[119] further developed the backpropagation algorithm. The main categories
of networks are feedforward neural networks and recurrent neural networks.
Furthermore, deep neural network is built as an artificial neural network with
multiple hidden layers between the input and output layers. As a result, this
kind of Artificial Intelligence can be applied to not only the learning part, but
also the problem of intelligent control. But on the other hand, advances ma-
chine learning algorithms and computer hardware are needed for more efficient
methods for model training and control, see [113] for detials.

Figure 4.1: We developed this graph to illustrate the Machine Learning process

In recent years, “Machine Learning” has become more and more popular,
as it concerns the design and development of algorithms that allow computers
to evolve behaviors based on empirical data and provides computers with the
ability to learn, see Figure 4.1. By gathering knowledge from experience, ma-
chine learning allows the computer to learn complicated concepts by building
algorithms out of simpler ones without explicit operations form human beings.
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There are several different categories of Machine Learning, for instance, super-
vised learning, unsupervised learning and reinforcement learning. Supervised
learning includes both classification and regression, where classification is to
arrange a group of things in classes or categories according to different charac-
teristics based on a number of examples of several categories. Regression is the
fitting of a function that explains the relationship between inputs and outputs
for the prediction. Unsupervised learning is finding patterns in a stream of in-
puts, such as clustering or image identification. Reinforcement learning is to
make sequence decisions that enable an agent to automatically determine the
behavior in an interactive environment by trial and error using feedback from
actions and experiences, in order to maximize its performance.

4.2 Artificial Neural Networks and Learning Al-

gorithms

Although many economic data can be adequately explained by linear mathe-
matical models, they usually can be better modeled using nonlinear model in
nature, especially when used for future prediction. On the other hand, the in-
creased volatility in commodity prices also makes the forecasting more difficult
since the traditional methods are less reliable and complex forecast methods are
not robust in today’s market environment. To overcome these limitations, ma-
chine learning algorithms such as the artificial neural networks (ANNs), support
vector machines (SVMs) and relevance vector machines (RVMs) are proved to
be useful as an alternative to forecast financial data and are able to capture the
market pattern (see [120, 37, 22, 69, 59]).

Artificial neural networks are a class of generalized nonlinear nonparametric
models based on studies of the human brain activities and are able to learn.
From a learning process, they get the intelligence which can mine valuable in-
formation from a mass of historical data. In recent years, machine learning
technique, especially artificial neural networks are widely used in financial data
mining or forecasting. For example, Zhang et al. [124] showed that a modified
neural network forecasting model was able to perform with high accuracy, and
the mining system had a better capability of controlling risk. In [2] a Neu-
ral Network model was developed for forecasting stock price time series data
regarding Intercontinental Bank Nigeria.
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4.2.1 Multilayer Perceptron (MLP)

In machine learning, multilayer perceptron (or MLP) is the classical type of
feedforward artificial neural network and are used frequently in time series pre-
diction. The structure of layered feedforward neural networks is shown in Figure
4.2.

Figure 4.2: Perceptron Neural Networks

Each of these networks consists of a set of inputs and one or more layers
of parallel neurons. These networks are called neural because they are loosely
inspired by neuroscience. Inputs are connected only to neurons in the first layer
(referred to as an input layer) usually with an extra input b0 representing the
bias of each neuron. Neurons in one layer are connected to all neurons in the
hidden layer. The last layer, called output layer, producing the output of the
network, is called an output layer. Any layers that precede the output layer are
called hidden layers. Each hidden layer of the network is typically vector-valued.
The dimensionality of these hidden layers determines the width of the model.
Basic Neural Network consist of three layers: input, hidden and output layer,
and the neurons in each layer are interconnected by connection strengths called
weights.
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4.2.2 Backpropagation (BP) Algorithm

MLP utilizes a supervised learning technique called backpropagation for train-
ing. This is a supervised learning technique which is based on the Gradient
Descent method that attempts to minimise the error of the network by moving
down the gradient of the error curve. Idea behind BP algorithm is quite simple;
the training process can de described as: for each input entry in the training
data set, input signals are forward-propagated through the network towards the
output, initialized weights and output against desired value are checked and feed
back with errors. When output of Neutral Network is evaluated against desired
output, the weights between layers are modified by using a gradient descent
training algorithm and updated until error is small enough.

The backpropagation algorithm was developed by Werbos [119] and redis-
covered independently by Priddy and Keller [101]. It is widely used as the most
popular, effective, and easy-to-learn model in feed forward multilayer neural
networks and it performs parallel training for improving the efficiency of Multi-
layer Perceptron network. It is considered a generalization of the delta rule for
nonlinear activation functions and multi-layer networks [119].

If we associate index m with the input layer, index n with the hidden layer,
and index k with the output layer, then an output unit in the network dia-
grammed in Figure 4.2 computes an output value yk given an input zmvia the
following compositional function:

yk = gk(bk +
∑
n

gn(bn +
∑
m

zmwmn)wnk)

where gk is the activation function for units in that layer k, and the weight wm,i
links the outputs of units feeding into layer i to the activation function of its
units . The term bi is the bias for units in layer i. One training method is to
determine the network weights that minimize the errors the network makes. A
standard way of quantifying error is to take the squared difference between the
network output yk and the target value tk:

θ =
1

2

∑
k∈K

(yk − tk)2

One method to find optimal weights is gradient descent method. δ is defined
as the first-order derivative of total error function such that δ = ∂θ/∂w. The
update rule of the algorithm could be
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wj := wj − αδj

where α is the learning rate.
Another widely used method is Newton’s method, where the second-order

derivatives of the total error function are calculated for each component of
gradient vector. In order to get the minima of total error function θ, each
element of the gradient vector should be zero. To be more specific, assume N
is the total number of output nodes, and the gradient components we have can
be denoted by δ1, δ2, . . . , δN that can be written in matrix form:


−δ1
−δ2
...
−δN

 =


∂2θ
∂w2

1

∂2θ
∂w1∂w2

· · · ∂2θ
∂w1∂wN

∂2θ
∂w2∂w1

∂2θ
∂w2

2
· · · ∂2θ

∂w2∂wN
...

...
. . .

...
∂2θ

∂wN∂w1

∂2θ
∂wN∂w2

· · · ∂2θ
∂w2

N

×


∆w1

∆w2

...
∆wN


where the square matrix is called Hessian matrix such that

H =


∂2θ
∂w2

1

∂2θ
∂w1∂w2

· · · ∂2θ
∂w1∂wN

∂2θ
∂w2∂w1

∂2θ
∂w2

2
· · · ∂2θ

∂w2∂wN
...

...
. . .

...
∂2θ

∂wN∂w1

∂2θ
∂wN∂w2

· · · ∂2θ
∂w2

N


and then more formally, we can obtain

−δ = H∆w

Therefore, the update rule for Newton’s method is

wj := wj −H−1j δj

4.2.3 Levenberg-Marquardt (LM) Algorithm

The Levenberg–Marquardt algorithm blends the gradient descent method and
the Gauss-Newton algorithm. It’s more robust than the Gauss-Newton algo-
rithm, because it can converge well even if the error surface is much more com-
plex than the quadratic situation [97]. The basic idea of the Levenberg–Marquardt
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algorithm is that it performs a combination of the gradient descent algorithm
and the Gauss–Newton algorithm: during the training process, the Leven-
berg–Marquardt algorithm switches to the gradient descent algorithm, until
the local curvature is appropriate to make a quadratic approximation; then it
approximately becomes the Gauss–Newton algorithm, which can speed up the
convergence significantly.

In order to make sure that the approximated Hessian matrix is invertible,
Levenberg–Marquardt algorithm introduces another approximation to Hessian
matrix:

H ≈ JTJ + µI

where J denotes the Jacobian matrix Jij = ∂ei/∂wj in Gauss–Newton algo-
rithm, e is a vector of total error function θ, µ is the combination coefficient
that is always positive and I is the identity matrix. With this approxima-
tion,matrix H is always invertible since the elements on the main diagonal of
the approximated Hessian matrix are larger than zero with the positive µ. Thus,
the update rule of Levenberg–Marquardt algorithm can be presented as

wj := wj − (JTJ + µI)−1Jjej

In fact, when the combination coefficient µ is zero, this is just Newton’s
method (also called Newton–Raphson method) using the approximate Hessian
matrix; when μ is very small (nearly zero), it is approaching to Gauss–Newton
algorithm; but when µ is large, this becomes gradient descent with a small
step size, which can be interpreted as the learning coefficient α = 1/µ. Al-
though the Levenberg-Marquardt algorithm tends to converge a bit slower than
Gauss–Newton algorithm, it converges much faster than the gradient descent
method.

4.3 Recurrent Neural Networks (RNN)

Recurrent neural network (RNN) is a type of artificial neural network designed
to recognize patterns in sequences of data, such as text, images, sensors and
stock markets. Typically a RNN approach is based on learning from sequences
and the networks in loop allow the information to persist. Each network in
the loop takes input and information from previous network, so that sequential
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information is preserved in the recurrent network’s hidden state, which manages
to span many time steps as it cascades forward to affect the processing of each
new example.

The purpose of this chapter is to design a recurrent neural network that is
based on a nonlinear autoregressive network with exogenous inputs (NARX)
model, while taking into account the clustering features.

4.3.1 Nonlinear Autoregressive Network with Exogenous
Inputs (NARX)

The recurrent dynamic network used in our research is a nonlinear autoregressive
network with exogenous inputs (NARX) model, which allows the output time
series to be related to its previous data and another independent time series, i.e.
the data in the same cluster. Based on different cluster results in the previous
subsection, we use different input time series corresponding to each method.

The NARX model is based on the linear ARX model, which is commonly
used in time series modeling. Compared with common multi-layer perceptron
network, the model we used is a typical recurrent neural network or RNN in-
troduced by Rumelhart et al. [106].

From multi-layer networks to recurrent networks, a related idea we need
to mention is the use of convolutional approach, that is, the basis for time-
delay neural networks [74]. The output of convolution is a sequence where
each member of the output is a function of a small number of neighboring
inputs, supplying neural networks with “memory” to deal with the temporal
dimension. This NARX feedback neural networks with feedback connections
enclosing several layers allow the output signal of a time series yt to relate to
previous data of itself and another independent time series xt.

Definition 9. The defining equation for the NARX model is

yt = f(yt−1, yt−2, · · · , yt−ny , xt−1, xt−2, · · · , xt−nx) (4.1)

where the next value of the dependent output signal yt - the predicted value
of y for the time t, is regressed on previous values of the past output signal
yt−1, yt−2, · · · , yt−ny and previous values of exogenous inputs xt−1, xt−2, · · · , xt−nx .
To implement NARX model we can approximate the mapping function f(·) of
the neural network following a feedforward neural network. Here nx is the
number of input delays and ny is the number of output delays.
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Figure 4.3: Nonlinear Autoregressive Network with Exogenous Inputs (NARX)
Architecture

Figure 4.3 illustrates the model architecture in NARX design. The network
is first trained by the input series xt−1, xt−2, · · · , xt−nx and target time series
yt−1, yt−2, · · · , yt−ny . In our research study, the price of a specific product can
be affected by other products directly or indirectly. Assuming that our model
consists of a deterministic component and a statistical component, then we can
have two inputs: 1) for the deterministic component, the daily price data of
a single product we target for forecast will simply be included as endogenous
input of the NARX model. 2) for the statistical component, the exogenous input
contains the daily price data of other products that are relevant to the target,
i.e. the products in the same cluster as the predicted one. More specifically,
we denote the model as NARXTime and NARXFrequency when the exogenous
inputs chosen from the cluster results based on either time domain clustering
or frequency domain clustering, respectively.

During the training phase the true past values are fed into the network to
increase the model accuracy. The time series in the same cluster will be the
second type of entry as exogenous input signals in the model. In general, if we
have K commodity variables in the same cluster group g, then the exogenous
inputs is a matrix denoted as

Xg =
[

xgx−nx xgx−nx+1 · · · xgt−2 xgt−1

]

=


xg1,x−nx xg1,x−nx+1 · · · xg1,t−2 xg1,t−1
xg2,x−nx xg2,x−nx+1 · · · xg2,t−2 xg2,t−1

...
...

. . .
...

...
xgK,x−nx xgK,x−nx+1 · · · xgK,t−2 xgK,t−1


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The mapping function f(·) is initially unknown and it is approximated during
the training process. The internal architecture that performs this approxima-
tion is purely feedforward network, meaning the usual training algorithm the
Levenberg-Marquardt (LM) algorithm, can be used. Similar to the MLP, the
weights can be adjusted so that the NARX model produce an output close to
the target values.

After the training process, the model with the lowest out-of-sample testing
error is chosen for forecasting, a network is simulated in open-loop form, which
replaces its associated feedback layer weights with a new input and input weight
connections, for as long as output data is known. To perform multi-step predic-
tion it switches to closed-loop form which replaces its associated feedback input
and their input weights with layer weight connections coming from the output.

4.3.2 Long Short-Term Memory (LSTM)

The mathematical challenge of learning long-term dependencies in recurrent
networks is the vanishing gradient problem. As the length of input sequence
increases, the gradient signal gets so small that learning becomes very slow for
long-term dependencies, and it becomes harder to capture the influence of the
earliest time.

Long Short-TermMemory (LSTM) was developed by Hochreiter and Schmid-
huber [56]. With a special RNN structure, it is proven to be stable and powerful
when predicting time series with long-range dependencies [43, 42, 84].

Comparing to RNNs, LSTM’s cell has a more complex structure. The hidden
layer(s) contains the memory cell, which is the unique part of LSTM, containing
three gating units, i.e. the input gate it, the forget gate ft and the output gate
ot. Both input and output gates are the same as the RNN’s input and outputs
layers with corresponding weights. The forget gate learns how to remember
or forget its previous state, allowing LSTM to catch more complex temporal
patterns. Through the three gates in each of the memory cells, the network
maintains and adjusts its cell state:
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it = σ(Wixt + Uiht−1 + bi)

ft = σ(Wfxt + Ufht−1 + bf )

ot = σ(Woxt + Uoht−1 + bo)

ct = ftct−1 + it · tan h(Wcxt + Ucht−1 + bc)

ht = ot · tan h(ct)

where xt is the input to the memory cell, σ is the sigmoid active function, Wi,
Wf , Wc, Wo, Ui, Uf , Uc and Uo are the weight matrices, bi, bf , bc and bo

are biases, it, ft, ot represent the values of input, forget and output gate, ct
maintains state from time step to time step and ht represents the output of
hidden state.

4.4 Network Training and Implementation

In order to implement prediction results, we are going to train four machine
learning models: multilayer perceptron (MLP) model, nonlinear autoregres-
sive network with exogenous inputs from time domain clustering (NARXTime)
model, nonlinear autoregressive network with exogenous inputs from frequency
domain clustering (NARXFrequency) model, and long short-term memory (LSTM)
model. This section includes detailed descriptions of the following five steps and
implementation results.

Step1: Data Processing

All the commodity future price data are collected from the Bloomberg database
and pre-processed for the networks. Detailed data description is demonstrated
in the first chapter, and all the data are collected within the same time frame
from 01 January 2008 to 31 August 2018 for consistency. Since some commodity
input with limited available data points will have impact on the training set and
neural network performance, all missing values are interpolated linearly to keep
as many training examples as possible.

Although it is commonly accepted that the more input variables fed in the
network the better results one can get, research shows that the predictive power
will decrease if too much information is fed. This is due to the additional noise
being increased when more data sets are fed to the model [37]. Hence, in order
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to reduce the number of input variables that are irrelevant but keep as much
information as possible, the inputs used in the two NARXmodels are applied the
three optimized clustering groups shown in the last chapter, since commodity
time series in the same cluster represent the high internal relationship that can
improve the predictive power.

Step 2: Training, Validation and Testing Sets

The data set is divided into three subsets: 1) Training sets: for training the
network to recognize patterns in the data. 2) Validation sets: for the model
selection in order to choose the configuration that has the best predictive power
on the specific time series. 3) Testing sets: for model evaluation. In our study,
we randomly divide all the historical data into three groups: 70% for the training
set, 15% for validation set and the remaining 15% for the testing set.

Step 3: Neural Network Paradigms

The network is divided into three layers: input layer, hidden layers and output
layer. Although increasing the number of hidden layers provides the ability to
generalize, in practice, a network with two hidden layers and sufficient number
of nodes is enough and has historically shown good performance [65]. In our
model, we have chose to use one output layer and one input layer and L is
defined to be from 2 to 5 as the reasonable range of hidden layers. A hidden
layer optimization test is automatically implemented to evaluate the optimal
number of hidden layers for each model with the top prediction performance.

As well known, the performance of neural networks depends on a number
of subjective choices, for example, the choice of the architecture (layers, units,
transfer functions), the choice of the training algorithm, and the choice of the
initial weights. To keep the performance comparable where no method obtains
the computation advantage of the other, besides the same separation ratio of
training, validation and testing, we used the same or similar parameters in the
hidden parameters for all the forecasting models.

Step 4: Neural Network Training

In order for a network to be able to recognize patterns it needs to be presented
with observations from the training data set as paired inputs and outputs, called
supervised learning. This allows computation of the optimal weights between
neurons. We first initialize all the weight matrices with random values, and



CHAPTER 4. LONG MEMORY TIME SERIES FORECASTING 64

carry out training with an optimization heuristic to find the set of weights that
minimizes the error function. We apply backpropagation Levenberg–Marquardt
learning algorithm to train our neural network model as it converges much faster
than the common stochastic gradient descent method. As the learning rate is
adaptive to the error function, the initial choice is set to the standard value
0.01. If the error function decreases the learning rate will be increased, and vice
versa.

Once the networks are trained, they are tested on validation data sets. This
allows comparison of estimated out-of-sample predictive performance of different
architectures. The network that has the best predictive performance on the
training sets for every time series is assumed to have the best generalization
ability. Then this network is used for evaluating the neural network technique
on the test set.

Step 5: Implementation

In our study, lags of 30 time steps are chosen to present a month of data taken
from the previous time steps, to use as input variables predicting the next time
period. For model hyper parameters, the same batch size1 of 16 is used by the
stochastic gradient descent in each step. Due to the fact that real commodity
price data is available on the market on daily basis, one can have access to
the actual values of time steps between prediction. Our neural network state
automatically renews everyday the latest available input data with the observed
values instead of the predicted values.

One key thing that remains to be determined is the number of epoch -
one complete presentation of the data set to be learned to a learning machine.
To ensure we have a convergence for the error term and over-fittings are ad-
equately avoided, a loop of multiple choices of epochs is taken from 2i with
i = 1, 2, 3, ..., 12. By comparing the error term for out-of-sample testing, we
then selected the optimal epoch number to train and use in the model for each
corresponding data set. Based on the optimal epoch number chosen, we run the
model based on training data and validation data to predict the testing data
range one step at a time with the real data being added dynamically as well. For
the actual implementation of both the multilayer perceptron and the recurrent
neural network, Tensorflow is used via the Keras framework in Python, while for
NARX neural network we implement through Matlab Neural Network Toolbox.

1The batch size is a number of samples processed before the model is updated
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For comparison purposes, ARIMA model is also added in this test to provide
benchmarks for all error measures. There are two practices an ARIMA model
can employ in this case, one way is to update the ARIMA model at each time
step with the newly available data when forecast the next step. In this sense, the
ARIMA model is alway re-trained and provides a one step forecast essentially.
Another practice is using the training data sets to estimate the ARIMA model
parameters and make the forecast based on these estimated parameters. While
the first method may provide more accurate forecast results due to the frequent
updates, the second method is closer to the machine learning model structures.
In this research, since the ARIMA models are not used for goodness of fit
comparison, we choose the first method to provide better error measurement
statistics for benchmarking purpose only. The best ARIMA model for each
individual commodity is selected by looping over a large set of ARIMA models
and the model that generates the best information criterions will be used.

More specifically, as show in Table 6.9 in Appendix, a set of ARIMA models
are pre-defined. These are ARIMA models with AR lags as 2, 4 or 8, with MA
lags as 0, 1 or 2 and finally with integral equals to 0 or 1 indicating whether the
first differences is taken into the data. The system has a total of 18 ARIMA
models with all different AR, MA combinations. For each product, all 18 models
are estimated and their information criterions2 are calculated. Finally, the best
ARIMA model configuration is selected by adopting the ARIMA model with
the lowest information criteria values.

Model Forecasting Results

The plots Figure 4.4 and 4.5 provide multistep prediction results of daily fu-
ture price for all the eighteen commodities3 starting from 01 January to 31
August in year 2018. This 8 months observation window provides us a decent
size for model forecast-ability testings. In each figure, the yellow line represents
forecast results using multilayer perceptron (MLP) model, purple line and green
line denote results from nonlinear autoregressive network with exogenous inputs
from time domain clustering (NARXTime) model and frequency domain cluster-
ing (NARXFrequency) model, and blue line stands for long short-term memory

2We use the summation of AIC (Akaike information criterion), BIC (Bayesian information
criterion) and HQIC (Hannan–Quinn information criterion) as the finally information criteria
value. See Box-Muller method in [17] for details.

3These commodities are wheat, soybean oil, soybean, oats, corn, canola, sugar, orange
juice, cocoa, coffee, aluminum, gold, copper, palladium, platinum, lean hogs, feeder cattle and
crude oil.
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Figure 4.4: Community Future Forecast Result. Comparison based on ARIMA,
MLP, NARXTime, NARXFrequency and LSTM Model.
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Figure 4.5: Community Future Forecast Result. Comparison based on ARIMA,
MLP, NARXTime, NARXFrequency and LSTM Model.
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(LSTM) model prediction results. In addition, to compare the machine learn-
ing forecasting results with other models, the autoregressive integrated moving
average (ARIMA) model (plotted as red line) is used as the benchmark in this
research. The true observation are also plotted in gray line with four machine
learning forecast results as comparison .

The performance results on all products clearly shows that all the machine
learning algorithms are able to capture nonlinear relationship as well as per-
forming the forecast, especially the ability of identifying trend patterns. In
contrast, the ARIMA model needs to be updated at each step in order to pro-
vide some adequate forecast. This concludes that through the learning process,
neural networks with more clustering information are capable of capturing non-
linear relationship as well as performing the forecast, especially the ability of
identifying trend patterns.

4.5 Measure the Model Performance

In theory, the model’s performance in the validation period is the best guide to
its ability to predict the future. The evaluation indicates the true out-of-sample
performance of autoregressive integrated moving average (ARIMA) models,
nonlinear autoregressive network with exogenous inputs from time domain clus-
tering (NARXFrequency) and frequency domain clustering (NARXFrequency).
As we are interested to evaluate whether our model is suitable for estimating
the expected return, multilayer perceptron (MLP) model and long short-term
memory (LSTM) model are used for model comparison.

4.5.1 R Squared (R2)

In order to measure the goodness of our fit, a few measurements are proposed
here. R squared is a common statistical measure of how close the data are to
the fitted with the regression results. It can be calculated by dividing explained
variation with total variation. More specifically, given a set P comprising pairs
of the true values (or targets, denote yk) and predicted (fitted) values (ŷk), one
can work out the R2 by

R2 = 1−
∑
k∈P (yk − ŷk)2∑
k∈P (yk − ȳk)2
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where ȳk =
1

N

∑
k∈P yk is the data mean, and N is the set size of P.

4.5.2 Normalized Mean Squared Error

One usual measure to evaluate and compare the predictive power is the nor-
malized mean squared error (NMSE). Given a set P comprising pairs of the
true values (or targets, denote yk) and predicted values (ŷk), the NMSE which
normalizes the MSE by dividing it through the variance of respective series can
be defined as

NMSE =

∑
k∈P (yk − ŷk)2∑
k∈P (yk − ȳk)2

=
1

σ2
P

1

N

∑
k∈P

(yk − ŷk)2

where σ2
P is the estimated variance of the data, ȳk being the mean, and N is

the size of a set P . Note, one can have NMSE = 1−R2.

4.5.3 Mean Absolute Percentage Error

Another common measure of forecast error is called mean absolute percent error
(MAPE, [70]), which is popular due to its advantages of scale-independency and
interpretability. Following the same notation, MAPE can be obtained by

MAPE =
1

N

∑
k∈P

|ŷk − yk|
yk

the absolutely difference between predicted values (ŷk) and actuals (yk) is calcu-
lated and then divided by actuals to gives the percentage per observation error.
An average is then applied on all the observations errors to provide an overview
of absolute changes.

4.5.4 Directional Change

Since the normalized mean square errors (NMSE) and mean absolute percentage
error (MAPE) measure only provide measures on the scale or size of the errors,
we employed another error measure to test the direction forecast-abilities. The
directional change, defined by

Dstst =
1

N

∑
k∈P

bk
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where

bk =

1 if (yt+1 − yt)(ŷt+1 − yt) ≥ 0

0 otherwise

is also used in our test to reflect the quality of the forecast in terms of directional
changes.

Our aim is to select the neural network with the best performance on fore-
casting commodity future daily price movements over eight months, where the
error of out-of-sample testing is the lowest compared to the other models. Ta-
ble 4.1 and 4.2 contain the comparison of the out of sample test for the models
respectively. In general, we are able to obtain at least 46% of accuracy for MLP
model, 60% of accuracy for both NARX models and 78% of accuracy for LSTM
model, while the optimal model can obtain at least 80% of forecasting accuracy
for all eighteen products.

One would expect the NARX model to perform more stable at both the
time and the frequency domain when compare to the traditional MLP model or
LSTM model. This can be justified by the additional information supplied by
the commodity futures in the same cluster.

When compare to short memory MLP model, all of the products exhibit the
expected behaviors where all testing statistics show that NARX model performs
better than MLP model. Since we inject more than one set of time series data
for each of the NARX model in both the time and frequency domains from the
clustering results, the forecasting model can take more market information with
trends or characteristics into account. Based on the statistics, the additional
information indeed bring better performances in estimation errors as well as
directional changes.

However, our testing results indicate some additional interesting results. As
we can see, the forecasting ability differs per product when we focus on the two
NARX models clustered by time domain or frequency domain. In general, we
can see that for error term, frequency domain has similar performances with
time domain based on NMSE, MAPE and R2 statistics. The same consis-
tency is not presented in corn, coca, aluminum, platinum, lean hogs and crude
oil. In these products the time domain NARX performs relatively better than
other models due to higher R2 values. From the directional changes statistics,
majority of the results show value higher than 0.5, which means the NARX
models can predict the right direction of price movement at most of time. But
the inconsistency of performances between two NARX models also applies to
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Commodity Measurement
Forecasting Model

ARIMA MLP NARXTime NARXFreq LSTM

Wheat

NMSE 0.0715 0.1811 0.1577 0.1474 0.1488

MAPE 0.0164 0.0255 0.0243 0.0243 0.0237

R2 0.9308 0.8189 0.8423 0.8526 0.8512

Dstst 0.5115 0.5345 0.5345 0.5287 0.5057

Soybean Oil

NMSE 0.0246 0.1216 0.0575 0.0507 0.0529

MAPE 0.0070 0.0160 0.0109 0.0103 0.0104

R2 0.9762 0.8784 0.8784 0.9493 0.9471

Dstst 0.5230 0.5747 0.5517 0.5805 0.5345

Soybean

NMSE 0.0218 0.0640 0.0494 0.0483 0.0444

MAPE 0.0088 0.0165 0.0144 0.0143 0.0133

R2 0.9783 0.9360 0.9506 0.9517 0.9556

Dstst 0.5345 0.5517 0.5230 0.5345 0.5517

Oats

NMSE 0.1152 0.3147 0.2144 0.2060 0.2173

MAPE 0.0141 0.0259 0.0197 0.0197 0.0201

R2 0.8886 0.6853 0.7856 0.7940 0.7827

Dstst 0.5057 0.5230 0.5690 0.5460 0.5230

Corn

NMSE 0.0585 0.2081 0.1055 0.1104 0.1026

MAPE 0.0086 0.0177 0.0127 0.0125 0.0123

R2 0.9416 0.7919 0.8945 0.8896 0.8974

Dstst 0.5747 0.4943 0.5747 0.5977 0.5575

Canola

NMSE 0.0579 0.2673 0.1566 0.1254 0.1800

MAPE 0.0054 0.0128 0.0095 0.0085 0.0104

R2 0.9423 0.7327 0.8434 0.8746 0.8200

Dstst 0.6379 0.5287 0.5345 0.4943 0.5345

Sugar

NMSE 0.0289 0.1644 0.0856 0.0742 0.0582

MAPE 0.0126 0.0306 0.0235 0.0221 0.0188

R2 0.9722 0.8356 0.9144 0.9258 0.9418

Dstst 0.5345 0.5747 0.4885 0.4885 0.5690

Orange juice

NMSE 0.0347 0.0980 0.0912 0.0778 0.0802

MAPE 0.0102 0.0186 0.0187 0.0168 0.0165

R2 0.9660 0.9020 0.9088 0.9222 0.9198

Dstst 0.5460 0.4828 0.4483 0.4425 0.5230

Cocoa

NMSE 0.0332 0.0720 0.0641 0.0756 0.0585

MAPE 0.0162 0.0238 0.0226 0.0255 0.0221

R2 0.9676 0.9280 0.9359 0.9244 0.9415

Dstst 0.5517 0.5632 0.5862 0.5747 0.5805

Coffee

NMSE 0.0502 0.2910 0.1100 0.1084 0.1667

MAPE 0.0102 0.0262 0.0155 0.0153 0.0203

R2 0.9503 0.7090 0.8900 0.8916 0.8333

Dstst 0.5460 0.5862 0.5575 0.5690 0.5230

Table 4.1: Performance Measurements for Different Machine Learning Forecast-
ing Model
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Commodity Measurement
Forecasting Model

ARIMA MLP NARXTime NARXFreq LSTM

Aluminum

NMSE 0.1043 0.2100 0.3701 0.4025 0.2081

MAPE 0.0119 0.0166 0.0226 0.0224 0.0162

R2 0.8998 0.7900 0.6299 0.5975 0.7919

Dstst 0.5115 0.5172 0.5517 0.5460 0.5402

Gold

NMSE 0.0288 0.0549 0.1333 0.0764 0.0537

MAPE 0.0046 0.0068 0.0116 0.0085 0.0066

R2 0.9714 0.9451 0.8667 0.9236 0.9463

Dstst 0.5230 0.5747 0.5172 0.5460 0.5747

Copper

NMSE 0.0418 0.1227 0.0879 0.0795 0.0784

MAPE 0.0089 0.0157 0.0127 0.0121 0.0119

R2 0.9600 0.8773 0.9121 0.9205 0.9216

Dstst 0.5057 0.5172 0.5805 0.5575 0.5747

Palladium

NMSE 0.0785 0.1642 0.1423 0.1394 0.1707

MAPE 0.0127 0.0195 0.0183 0.0182 0.0197

R2 0.9249 0.8358 0.8577 0.8606 0.8293

Dstst 0.4713 0.5575 0.5517 0.5287 0.5000

Platinum

NMSE 0.0250 0.2426 0.0588 0.0626 0.0661

MAPE 0.0089 0.0323 0.0139 0.0146 0.0148

R2 0.9750 0.7574 0.9412 0.9374 0.9339

Dstst 0.5805 0.4770 0.5172 0.4828 0.5632

Lean hogs

NMSE 0.0479 0.2004 0.1025 0.1034 0.1073

MAPE 0.0162 0.0445 0.0261 0.0263 0.0274

R2 0.9524 0.7996 0.8975 0.8966 0.8927

Dstst 0.5632 0.4828 0.4828 0.4713 0.4655

Feeder cattle

NMSE 0.0727 0.5369 0.1949 0.1612 0.1631

MAPE 0.0077 0.0263 0.0132 0.0119 0.0130

R2 0.9291 0.4631 0.8051 0.8388 0.8369

Dstst 0.5287 0.4828 0.5690 0.5632 0.5057

Crude oil

NMSE 0.0830 0.2522 0.1635 0.1644 0.1933

MAPE 0.0118 0.0225 0.0172 0.0173 0.0196

R2 0.9191 0.7478 0.8365 0.8356 0.8067

Dstst 0.5747 0.4943 0.5517 0.5460 0.5230

Table 4.2: Performance Measurements for Different Machine Learning Forecast-
ing Model
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the directional changes, so we cannot conclude whether the time or frequency
domain can generate overall better models as the statistics are close to each
other.

Not surprisingly, LSTM has better or similar forecasting performance than
all other models under investigated products. Both Figure 4.4 - 4.5 and Table
4.1 - 4.2 demonstrate the same conclusion. Since the LSTM algorithm models
the underlying sequences with all its previous states, such a long memory model
can capture more data characteristics. Another interesting observation from
the best neural network model in terms of R2 statistic, is it appears that the
all the grain products and soft products have better performance with either
LSTM or NARX models clustered by frequency domain other than time domain.
One possible interpretation is that these two categories are less sensitive to
time changes, so the forecasting results based on time domain cluster fail to
outperform. But for livestocks and energy products, the LSTM models provide
less accurate results compared to NARX model, which means the price of these
two kinds of products relies more on other market information.

Based on the test results, it is clear that NARX forecasting model based
on different clustering assumption generates performance better than the MLP
method and is comparable to LSTM algorithm in both forecasting errors and
directional changes. There is evidence of increased performance on the exper-
iments that contain more relevant data as input. More specifically, clustering
by time domain and frequency domain improves the model forecast-abilities by
providing more correlated close-market data sequences to support the model
trainings.



Chapter 5

Conclusions and Future
Development

5.1 Conclusion and Contributions of the Thesis

Predicting financial times series using traditional models is a challenging task.
In this research, our innovative data analysis framework provides an interesting
perspective for clustering algorithms and commodity price forecasting applica-
tions. The research investigates the statistical characteristics of commodity data
and the internal relationship among different commodity data based on func-
tional clustering on time domain and frequency domain modeling. The aim of
this thesis is to study the modeling methodologies and utilize machine learning
techniques to combine financial time series clustering and forecasting models
that outperforms traditional theories and existing models to inform better in-
vestment and risk management decisions.

The last chapter concludes the models, methodologies, algorithms and ap-
plications presented in each chapter and the contributions made. Finally, the
summary of limitations of our current work and future suggestions are extended
for further work.

Chapter 1: Introduction The first chapter in the thesis introduces the back-
ground and motivations of our research. Facing the two main challenges in the
financial market, long memory in financial time series and dependence on eco-
nomic variables, the lack of efficient model causes the difficulty to capture data
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features and variation tendency for forecasting and risk management. The the-
sis structure and objectives are given to propose a new data analysis framework
based on various machine learning algorithms to improve the efficiency of de-
tecting optimal features in commodity data and the forecast performance. The-
oretical background and literature on the Efficient Market Hypothesis (EMH)
and time series model are reviewed. Given the weak form of the efficient market
hypothesis, values from the remote part of a long memory time series can help
forecast future returns. For the research on stylized facts, the chapter shows a
description of the data used: daily index and futures data for eighteen different
commodities from Bloomberg, along with the study of statistical characteristics
with regard to four basic stylized facts: stationarity, dependence, skewness and
kurtosis. We find that all of the commodity prices expect oats index appear to
have unit roots with stationary increments, and all the products are long-range
dependent, skewed and kurtotic with different fractional characteristics.

Chapter 2: Generalized Hurst Exponent The main purpose of the sec-
ond chapter is to provide a possible alternative approach for the first challenge
to model the long memory financial time series. We first introduce the long
memory and ARFIMA model. Due to the fact that non-linear models are prac-
tically very difficult to implement, we consider ARIMA models and see how
well they can capture the commodity prices statistical characteristics. Inter-
estingly, unlike the R/S Hurst exponent, the generalized Hurst exponent of a
linear process can be similar to the actual commodity daily data. We study
statistical characteristics of an ARIMA(p, 1, q) model with α-stable shocks, and
observe that while this process has unit roots with skewed, kurtotic and station-
ary increments, its generalized Hurst exponent can be greater than 1/2, which
is consistent with the commodity daily index and future prices. According to
our empirical observation, only wheat future index, wheat future, soybean oil
future, oats future prices fail to have generalized Hurst exponent greater than
1/2. As a result, we prove that a linear model still can be applied for mod-
eling actual data. In addition, a strong implication of our discussions is that
even though the generalized Hurst exponent is a measure of fractionality, it is
not necessarily affected by a time series memory. Therefore, ARIMA(p, 1, q)

models with skewed and kurtotic (e.g., α-stable) shocks are suitable to model
commodity daily index and future prices.
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Chapter 3: Multidimensional Data Clustering The third chapter pro-
poses one solution to analyze the dependence on high dimensional time series
as mentioned in the second challenge. We start with the review of various
functional clustering methods, then focus on two model-based functional data
clustering methods from both time domain and frequency domain. For model-
ing multidimensional data, dimension reduction technique is performed to find
principal variables in order to approximate the density function. On the time
domain functional principal component analysis (FPCA) is adopted to build an
optimal representation of curves into a function space of reduced dimension,
from Rn to the L2 space by determining principal components characterizing
the variability of density ft. On the frequency domain, the log-spectral den-
sity functions log{fi(ω)} is estimated by a linear combination of a common set
of basis functions φk(ω) and corresponding coefficients. Two experiments with
commodity futures data are conducted for both methods. To select the optimal
number of clusters, we consider the Elbow method with within-cluster sum of
errors. Results show the comparison between two cluster methods based on
time domain analysis and frequency domain analysis.

Chapter 4: Long Memory Time Series Forecasting The purpose of the
fourth chapter is to perform multiple predictions for commodity future prices,
which are long memory time series. First, the literature on Machine Learn-
ing applications and Artificial Neural Networks are introduced, following the
basic supervised algorithms Backpropagation (BP) and Levenberg-Marquardt
(LM) applied to the prediction of financial or commodity markets. In order to
determine which inputs to be used in the model, the study applies the Recur-
rent Neural Network (RNN) that is based on a nonlinear autoregressive net-
work with exogenous inputs (NARX) model that takes into account the cluster-
ing results, to obtain multiple-time-ahead predictions. The performance of the
NARX model is compared with the performance of the traditional time series
ARIMA model, classic machine learning multilayer perceptron (MLP) model
and long short-term memory (LSTM) model which can capture long-range de-
pendency. For performance evaluation, out-of-sample test through normalized
mean square errors (NMSE), mean absolute percentage error (MAPE) and Di-
rectional Change test are used to measure the model performance of these three
methodologies. The forecast results trained on a daily basis for future prices
with respect to the last ten years. The result shows that our approach based
on data clustering gives much better performance than the MLP model, and is



CHAPTER 5. CONCLUSIONS AND FUTURE DEVELOPMENT 77

able to provide a high accuracy as LSTM approach for eight-month prediction
horizon. Therefore, taking advantage of the interdependence structure between
high-dimensional time series can improve the forecast accuracy.

5.2 Limitations and Future Development

In this section, we present some limitations of our work and provide potential
ideas for future research.

One of the potential improvement of our research is on clustering methods.
It is important that the model is robust when the data distribution is skewed, in
order to provide the cluster results that converge for each experiment and have
consistent economics findings. Hence prior to applying PCA, data transforma-
tion is applied so that the PCA can also be smooth. One way to approximate
discrete data by a function is the roughness penalty approach. The roughness
penalty can be introduced to ensure the desired smoothness on the FPC weight
functions and apply the maximum penalized likelihood for parameter estima-
tion, which can avoid data over-fitting and allow one to control the amount of
smoothing by using a large number of basis functions. Once we can model curve
approximation for data with skewed distribution, we can understand dynamics
better and have more reliable clustering results for our future work.

Another limitation in our forecasting study is that only the commodity prices
are considered as inputs in the NARX model. It would be interesting to intro-
duce more economic factors to see if the networks can learn from the correlation
between markets. However, we have not analyzed other multi-factors that are
related to commodity price, such as temperature, weather, inflation, supply and
demand in commodities, and other different asset classes, e.g. stocks and bonds,
etc., as inputs to the network. Assuming these factors do exhibit different statis-
tical properties and dependencies, as such it would be of interest to investigate
the appropriate and informative inputs and potential use of advanced neural
networks to relax the limit of multi-factor models in order to improve forecast
performance. Another part of neural networks to be enhanced is the problem
of overfitting the data, one of the major issues when the models are quite com-
plicated. Therefore, regularization technique also needs to be introduced to our
model and the optimal magnitude of the regularization coefficient remains to
be explored.
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Appendix

In the following we present the proof of Corollary 4, tables of results and the
tables of data descriptions.

6.1 Proof of Corollary 4
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which implies
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have the following
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6.2 Tables of Results

Commodity Description Period
Grains

Wheat Bloomberg Generic 1ST W Wheat CBOT 1971/12/09 - 2018/08/31

No.2 soft red winter wheat IL index 1992/01/02 - 2018/08/31

Soybean Oil Bloomberg Generic 1ST BO Soybean oil CBOT 1972/12/23 - 2018/08/31

Crude soybean oil spot IL index 1984/01/02 - 2018/08/31

Soybean Bloomberg Generic 1ST S Soybean CBOT 1970/01/02 - 2018/08/31

Yellow beans FOB Chicago Index 1996/01/02 - 2018/08/31

Oats Bloomberg Generic 1ST O Oats CBOT 1970/01/02 - 2018/08/31

Kansas Oats Index (OATAUSKS) 2008/06/19 - 2018/08/31

Corn Bloomberg Generic 1ST C Corn CBOT 1970/06/26 - 2018/08/31

Illinois NC Spot Price Index (CORNILNC) 1992/01/02 - 2018/08/31

Canola Bloomberg Generic 1ST WC Canola WCE 1982/01/04 - 2018/08/31

Canola Spot Canada Vancouver Index (WCEFC1VA) 2003/01/02 - 2018/08/31

Softs

Sugar Bloomberg Generic 1ST SB Sugar NYBOT 1970/06/26 - 2018/08/31

CSCE No.11 Sugar Spot Golable Index 1990/12/03 - 2018/08/31

Orange juice Bloomberg Generic 1ST JO NYBOT 1970/06/26 - 2018/08/31

Orange juice spot prices index 1994/01/03 - 2018/08/31

Cocoa Bloomberg Generic 1ST CC Cocoa NYBOT 1970/06/26 - 2018/08/31

Ivry Grd1 Coco Bean Spot Index 1997/01/02 - 2018/08/31

Coffee Bloomberg Generic 1ST KC Coffee NYBOT 1972/08/26 - 2018/08/31

Colombia Milds New York Index 1997/07/01 - 2018/08/31

Metals

Aluminum Bloomberg Generic 1ST LA future NYMEX 1997/07/23 - 2018/08/31

S&P 500 Aluminum index 1989/09/11 - 2018/08/31

Gold Bloomberg Generic 1ST GC future NYMEX 1975/01/01 - 2018/08/31

NYSE Arca Gold BUGS Index 1994/12/26 - 2018/08/31

Copper Bloomberg 3M copper future LME 1986/04/01 - 2018/08/31

Bloomberg S&P GSCI copper index CME 1977/01/07 - 2018/08/31

Palladium Bloomberg Generic 1ST PA future NYMEX 1986/04/14 - 2018/08/31

Bloomberg S&P GSCI palladium index 2008/09/10 - 2018/08/31

Platinum Bloomberg Generic 1ST PL future NYMEX 1986/04/30 - 2018/08/31

Bloomberg platinum index LME $OZ currency 1992/01/02 - 2018/08/31

Livestock and Meats

Lean hogs Bloomberg Generic 1ST LH lean hogs CME 1986/04/01 - 2018/08/31

S&P GSCI lean hogs spot index 1976/01/07 - 2018/08/31

Feeder cattle Bloomberg Generic 1ST FC cattle feeder CME 1989/11/08 - 2018/08/31

Bloomberg feeder cattle index CME 1996/01/22 - 2018/08/31

Energy

Crude oil Bloomberg Generic 1ST CL crude oil NYMEX 1989/03/08 - 2018/08/31

Bloomberg Brent crude oil index ICE 1998/06/15 - 2018/08/31

Table 6.1: Commodity Data Description
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Commodity Lags
ADFP KPSSP ADFP KPSSP R/S

Skew. Kurt.
log prices Increments Hurst

1 0.798 0.01 0.001 0.1

Wheat Future 10 0.807 0.01 0.001 0.1 0.530 -0.8318 21.4787

50 0.814 0.01 0.001 0.1

1 0.498 0.01 0.001 0.1

Wheat Index 10 0.494 0.01 0.001 0.1 0.496 -0.6528 15.3956

50 0.552 0.01 0.001 0.1

1 0.507 0.01 0.001 0.1

Soybean Oil Future 10 0.528 0.01 0.001 0.1 0.548 -0.0489 5.5908

50 0.573 0.01 0.001 0.1

1 0.584 0.01 0.001 0.1

Soybean Oil Index 10 0.578 0.01 0.001 0.1 0.548 0.0203 44.6239

50 0.56 0.01 0.001 0.1

1 0.838 0.01 0.001 0.1

Soybean Future 10 0.838 0.01 0.001 0.1 0.542 -0.6364 9.5364

50 0.802 0.01 0.001 0.1

1 0.637 0.01 0.001 0.1

Soybean Index 10 0.632 0.01 0.001 0.1 0.566 -0.3591 9.4468

50 0.604 0.01 0.001 0.1

1 0.759 0.01 0.001 0.1

Oats Future 10 0.768 0.01 0.001 0.1 0.499 -1.0821 16.2376

50 0.809 0.01 0.001 0.1

1 0.397 0.01 0.001 0.1

Oats Index 10 0.351 0.01 0.001 0.01 0.438 -0.2052 17.7400

50 0.373 0.01 0.001 0.01

1 0.804 0.01 0.001 0.1

Corn Future 10 0.803 0.01 0.001 0.1 0.535 -1.0222 53.5188

50 0.745 0.01 0.001 0.1

1 0.512 0.01 0.001 0.1

Corn Index 10 0.482 0.01 0.001 0.1 0.555 -0.1560 8.2449

50 0.417 0.01 0.001 0.1

1 0.763 0.01 0.001 0.1

Canola Future 10 0.752 0.01 0.001 0.1 0.552 -0.9982 18.4464

50 0.736 0.01 0.001 0.1

1 0.699 0.01 0.001 0.1

Canola Index 10 0.728 0.01 0.001 0.1 0.559 -3.0055 269.5416

50 0.747 0.01 0.001 0.1

Table 6.2: Unit root test, increments stationary test, R/S Hurst exponent,
skewness and kurtosis for stylized facts of wheat, soybean oil, soybean, oats,
corn, canola.



CHAPTER 6. APPENDIX 84

Commodity Lags
ADFP KPSSP ADFP KPSSP R/S

Skew. Kurt.
log prices Increments Hurst

1 0.552 0.01 0.001 0.1

Sugar Future 10 0.564 0.01 0.001 0.1 0.548 0.1804 11.1910

50 0.523 0.01 0.001 0.1

1 0.864 0.01 0.001 0.1

Sugar Index 10 0.872 0.01 0.001 0.1 0.544 -0.3139 6.6039

50 0.873 0.01 0.001 0.1

1 0.755 0.01 0.001 0.1

Orange Juice Future 10 0.749 0.01 0.001 0.1 0.518 0.4386 14.7120

50 0.765 0.01 0.001 0.1

1 0.646 0.01 0.001 0.1

Orange Juice Index 10 0.668 0.01 0.001 0.1 0.54 1.0189 13.5505

50 0.692 0.015 0.001 0.1

1 0.861 0.01 0.001 0.1

Cocoa Future 10 0.866 0.01 0.001 0.1 0.54 -0.1577 6.1614

50 0.852 0.01 0.001 0.1

1 0.857 0.01 0.001 0.1

Cocoa Index 10 0.859 0.01 0.001 0.1 0.56 -0.1862 6.2647

50 0.891 0.01 0.001 0.1

1 0.669 0.01 0.001 0.1

Coffee Future 10 0.671 0.01 0.001 0.1 0.539 -0.0548 12.3571

50 0.659 0.01 0.001 0.1

1 0.542 0.01 0.001 0.1

Coffee Index 10 0.562 0.01 0.001 0.093 0.547 0.2620 8.2271

50 0.508 0.01 0.001 0.062

1 0.633 0.01 0.001 0.1

Aluminum Future 10 0.611 0.01 0.001 0.1 0.562 -0.32 7.08

50 0.636 0.01 0.001 0.1

1 0.501 0.01 0.001 0.1

Aluminum Index 10 0.518 0.01 0.001 0.1 0.643 -0.0972 11.8983

50 0.533 0.01 0.001 0.1

1 0.964 0.01 0.001 0.1

Gold Future 10 0.962 0.01 0.001 0.1 0.589 -0.0933 10.1068

50 0.976 0.01 0.001 0.1

1 0.99 0.01 0.001 0.01

Gold Index 10 0.974 0.01 0.001 0.01 0.58 0.3562 8.5216

50 0.969 0.01 0.001 0.019

Table 6.3: Unit root test, increments stationary test, R/S Hurst exponent,
skewness and kurtosis for stylized facts of sugar, orange juice, cocoa, coffee,
aluminum, gold.
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Commodity Lags
ADFP KPSSP ADFP KPSSP R/S

Skew. Kurt.
Log prices Increments Hurst

1 0.902 0.01 0.001 0.1

Copper Future 10 0.891 0.01 0.001 0.1 0.596 -0.3530 9.1628

50 0.862 0.01 0.001 0.1

1 0.862 0.01 0.001 0.1

Copper Index 10 0.854 0.01 0.001 0.1 0.553 -0.2225 6.9661

50 0.838 0.01 0.001 0.1

1 0.881 0.01 0.001 0.1

Palladium Future 10 0.887 0.01 0.001 0.1 0.608 -0.1757 8.7960

50 0.854 0.01 0.001 0.1

1 0.889 0.01 0.001 0.1

Palladium Index 10 0.913 0.01 0.001 0.1 0.55 -0.5176 6.5479

50 0.941 0.01 0.001 0.1

1 0.999 0.01 0.001 0.1

Platinum Future 10 0.999 0.01 0.071 0.1 0.55 -1.2066 24.0771

50 0.999 0.01 0.369 0.1

1 0.898 0.01 0.001 0.1

Platinum Index 10 0.901 0.01 0.001 0.1 0.568 -0.5388 12.8654

50 0.86 0.01 0.001 0.1

1 0.677 0.01 0.001 0.1

Lean Hogs Future 10 0.681 0.01 0.001 0.1 0.551 -0.1201 39.0743

50 0.706 0.01 0.001 0.1

1 0.575 0.01 0.001 0.1

Lean Hogs Index 10 0.59 0.01 0.001 0.1 0.54 -0.0267 3.8566

50 0.564 0.01 0.001 0.1

1 0.956 0.01 0.001 0.1

Feeder Cattle Future 10 0.963 0.01 0.001 0.1 0.582 0.0657 16.8000

50 0.938 0.01 0.001 0.1

1 0.997 0.01 0.001 0.079

Feeder Cattle Index 10 0.991 0.01 0.001 0.1 0.596 -1.1218 26.1202

50 0.975 0.01 0.001 0.1

1 0.733 0.01 0.001 0.1

Crude Oil Future 10 0.767 0.01 0.001 0.1 0.555 -0.8582 19.2292

50 0.689 0.01 0.001 0.1

1 0.859 0.01 0.001 0.1

Crude Oil Index 10 0.846 0.01 0.001 0.1 0.597 -0.3301 5.7561

50 0.811 0.01 0.001 0.1

Table 6.4: Unit root test, increments stationary test, R/S Hurst exponent,
skewness and kurtosis for stylized facts of copper, palladium, platinum, lean
hogs, feeder cattle, crude oil.
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Figure 6.1: Histogram Plot for Commodity Future Price
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Figure 6.2: Histogram Plot for Commodity Index Price
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Figure 6.3: Sample ACF and PACF for Community Future Price of wheat,
soybean oil, soybean, oats, corn, canola, sugar, orange juice.
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Figure 6.4: Sample ACF and PACF for Community Future Price of cocoa,
coffee, aluminum, gold, copper, palladium, platinum, lean hogs.
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Figure 6.5: Sample ACF and PACF for Community Future Price of feeder cattle,
crude oil.
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Figure 6.6: Sample ACF and PACF for Community Index Price of wheat, soy-
bean oil, soybean, oats, corn, canola.
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Figure 6.7: Sample ACF and PACF for Community Index Price of sugar, orange
juice, cocoa, coffee, aluminum, gold, copper, palladium.
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Figure 6.8: Sample ACF and PACF for Community Index Price of platinum;
lean hogs, feeder cattle, crude oil.
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GHE α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6 α=0.7 α=0.8 α=0.9 α=1.0

k=30 1.6674 1.6636 1.6575 1.6356 1.5707 1.4535 1.3398 1.2069 1.0977 0.9899

k=40 1.6673 1.6630 1.6555 1.6322 1.5664 1.4479 1.3366 1.2041 1.0958 0.9885

k=50 1.6666 1.6613 1.6536 1.6292 1.5630 1.4428 1.3341 1.2017 1.0944 0.9871

k=60 1.6661 1.6602 1.6521 1.6268 1.5596 1.4383 1.3318 1.1995 1.0935 0.9857

k=70 1.6660 1.6593 1.6508 1.6248 1.5565 1.4344 1.3296 1.1975 1.0929 0.9845

k=80 1.6660 1.6587 1.6493 1.6229 1.5534 1.4311 1.3276 1.1957 1.0922 0.9833

k=90 1.6661 1.6581 1.6480 1.6213 1.5506 1.4283 1.3258 1.1942 1.0914 0.9819

k=100 1.6662 1.6575 1.6468 1.6199 1.5483 1.4259 1.3241 1.1927 1.0907 0.9807

k=110 1.6664 1.6568 1.6455 1.6185 1.5460 1.4236 1.3226 1.1913 1.0901 0.9796

k=120 1.6663 1.6563 1.6445 1.6172 1.5437 1.4214 1.3213 1.1899 1.0895 0.9788

k=130 1.6663 1.6558 1.6435 1.6160 1.5416 1.4194 1.3200 1.1885 1.0889 0.9782

k=140 1.6662 1.6552 1.6426 1.6148 1.5398 1.4175 1.3187 1.1871 1.0881 0.9778

k=150 1.6661 1.6546 1.6416 1.6137 1.5381 1.4156 1.3175 1.1859 1.0875 0.9775

k=160 1.6659 1.6541 1.6408 1.6125 1.5364 1.4137 1.3163 1.1848 1.0869 0.9771

k=170 1.6658 1.6535 1.6401 1.6114 1.5347 1.4120 1.3151 1.1837 1.0863 0.9767

k=180 1.6657 1.6530 1.6395 1.6103 1.5331 1.4104 1.3139 1.1828 1.0858 0.9762

k=190 1.6655 1.6525 1.6387 1.6092 1.5316 1.4089 1.3129 1.1818 1.0853 0.9758

k=200 1.6654 1.6520 1.6380 1.6082 1.5302 1.4075 1.3118 1.1810 1.0848 0.9754

k=210 1.6652 1.6514 1.6372 1.6074 1.5288 1.4062 1.3109 1.1802 1.0843 0.9750

k=220 1.6648 1.6507 1.6362 1.6066 1.5275 1.4049 1.3100 1.1795 1.0838 0.9745

k=230 1.6643 1.6501 1.6352 1.6058 1.5262 1.4037 1.3091 1.1787 1.0833 0.9740

k=240 1.6639 1.6496 1.6344 1.6050 1.5250 1.4025 1.3081 1.1780 1.0828 0.9735

k=250 1.6634 1.6491 1.6334 1.6043 1.5238 1.4013 1.3071 1.1773 1.0824 0.9730

k=260 1.6630 1.6487 1.6324 1.6036 1.5228 1.4002 1.3061 1.1767 1.0821 0.9727

k=270 1.6626 1.6483 1.6315 1.6030 1.5217 1.3991 1.3051 1.1761 1.0819 0.9724

k=280 1.6623 1.6479 1.6307 1.6024 1.5207 1.3979 1.3043 1.1754 1.0817 0.9722

k=290 1.6620 1.6476 1.6300 1.6018 1.5197 1.3968 1.3034 1.1748 1.0814 0.9720

k=300 1.6617 1.6472 1.6292 1.6012 1.5188 1.3957 1.3025 1.1742 1.0812 0.9717

k=310 1.6615 1.6470 1.6285 1.6007 1.5178 1.3946 1.3016 1.1736 1.0809 0.9713

k=320 1.6613 1.6467 1.6279 1.6001 1.5168 1.3935 1.3007 1.1730 1.0807 0.9710

k=330 1.6612 1.6464 1.6273 1.5994 1.5158 1.3924 1.2997 1.1725 1.0804 0.9707

k=340 1.6610 1.6461 1.6266 1.5988 1.5149 1.3914 1.2988 1.1720 1.0802 0.9704

k=350 1.6609 1.6458 1.6260 1.5982 1.5140 1.3903 1.2979 1.1715 1.0799 0.9701

Table 6.6: Expected values of generalized Hurst exponent of simulated 100 time
series for different α in the columns, and different simulated time series lengths
k in the rows.
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GHE α=1.1 α=1.2 α=1.3 α=1.4 α=1.5 α=1.6 α=1.7 α=1.8 α=1.9 α=2.0

k=30 0.9002 0.8249 0.7607 0.7076 0.6631 0.6250 0.5888 0.5588 0.5264 0.4999

k=40 0.8996 0.8240 0.7596 0.7063 0.6622 0.6248 0.5888 0.5593 0.5263 0.4999

k=50 0.8989 0.8227 0.7586 0.7054 0.6610 0.6246 0.5884 0.5594 0.5258 0.5000

k=60 0.8985 0.8213 0.7582 0.7051 0.6600 0.6247 0.5883 0.5600 0.5258 0.4995

k=70 0.8980 0.8200 0.7581 0.7050 0.6591 0.6246 0.5882 0.5602 0.5260 0.4994

k=80 0.8974 0.8188 0.7576 0.7045 0.6579 0.6246 0.5884 0.5604 0.5259 0.4992

k=90 0.8966 0.8179 0.7569 0.7041 0.6567 0.6245 0.5884 0.5606 0.5258 0.4986

k=100 0.8958 0.8172 0.7566 0.7038 0.6558 0.6245 0.5886 0.5607 0.5257 0.4983

k=110 0.8952 0.8165 0.7564 0.7032 0.6550 0.6248 0.5890 0.5607 0.5256 0.4985

k=120 0.8947 0.8159 0.7561 0.7027 0.6544 0.6249 0.5895 0.5610 0.5256 0.4983

k=130 0.8944 0.8153 0.7559 0.7021 0.6538 0.6250 0.5897 0.5610 0.5253 0.4982

k=140 0.8941 0.8148 0.7554 0.7015 0.6534 0.6248 0.5899 0.5610 0.5254 0.4981

k=150 0.8937 0.8143 0.7551 0.7010 0.6533 0.6247 0.5900 0.5610 0.5253 0.4978

k=160 0.8934 0.8140 0.7548 0.7004 0.6530 0.6245 0.5899 0.5612 0.5252 0.4975

k=170 0.8931 0.8136 0.7544 0.6998 0.6527 0.6244 0.5897 0.5613 0.5252 0.4976

k=180 0.8928 0.8131 0.7538 0.6993 0.6524 0.6243 0.5894 0.5612 0.5252 0.4977

k=190 0.8924 0.8126 0.7534 0.6989 0.6521 0.6244 0.5891 0.5612 0.5252 0.4979

k=200 0.8919 0.8122 0.7530 0.6986 0.6519 0.6246 0.5888 0.5613 0.5252 0.4979

k=210 0.8913 0.8117 0.7525 0.6983 0.6518 0.6247 0.5884 0.5614 0.5252 0.4980

k=220 0.8908 0.8112 0.7521 0.6979 0.6515 0.6245 0.5882 0.5614 0.5251 0.4978

k=230 0.8904 0.8108 0.7516 0.6976 0.6513 0.6242 0.5879 0.5617 0.5248 0.4976

k=240 0.8899 0.8104 0.7511 0.6972 0.6511 0.6239 0.5876 0.5621 0.5246 0.4977

k=250 0.8894 0.8100 0.7508 0.6970 0.6510 0.6237 0.5875 0.5624 0.5246 0.4978

k=260 0.8890 0.8096 0.7504 0.6968 0.6508 0.6236 0.5874 0.5626 0.5244 0.4979

k=270 0.8886 0.8092 0.7501 0.6964 0.6507 0.6235 0.5871 0.5626 0.5243 0.4980

k=280 0.8881 0.8088 0.7497 0.6961 0.6507 0.6235 0.5870 0.5627 0.5244 0.4979

k=290 0.8877 0.8084 0.7494 0.6957 0.6508 0.6234 0.5868 0.5629 0.5245 0.4980

k=300 0.8873 0.8081 0.7491 0.6953 0.6507 0.6235 0.5867 0.5630 0.5245 0.4979

k=310 0.8870 0.8078 0.7488 0.6949 0.6506 0.6235 0.5866 0.5632 0.5246 0.4978

k=320 0.8865 0.8074 0.7486 0.6946 0.6505 0.6235 0.5865 0.5635 0.5245 0.4977

k=330 0.8861 0.8072 0.7482 0.6942 0.6503 0.6235 0.5864 0.5638 0.5244 0.4976

k=340 0.8857 0.8069 0.7478 0.6938 0.6501 0.6235 0.5864 0.5639 0.5244 0.4977

k=350 0.8853 0.8065 0.7475 0.6935 0.6500 0.6235 0.5864 0.5641 0.5243 0.4978

Table 6.7: Expected values of generalized Hurst exponent of simulated 100 time
series for different α in the columns, and different simulated time series lengths
k in the rows.
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Commodity
Maximum Log-likelihood

Estimated α
α-stable normal

Wheat Future -1.5155 -1.4189 1.8868
Wheat Index -1.4991 -1.4189 2.0163
Soybean Oil Future -1.5159 -1.4189 1.8248
Soybean Oil Index -1.5115 -1.4189 1.8248
Soybean Future -1.5155 -1.4189 1.8450
Soybean Index -1.5088 -1.4188 1.7667
Oats Future -1.5155 -1.4189 2.0040
Oats Index -1.5028 -1.4187 2.2831
Corn Future -1.4993 -1.4189 1.8691
Corn Index -1.5125 -1.4189 1.8018
Canola Future -1.5025 -1.4189 1.8116
Canola Index -1.5061 -1.4188 1.7889
Sugar Future -1.5064 -1.4189 1.8248
Sugar Index -1.5125 -1.4188 1.8382
Orange Juice Future -1.5052 -1.4189 1.9305
Orange Juice Index -1.5105 -1.4186 1.8519
Cocoa Future -1.5155 -1.4189 1.8519
Cocoa Index -1.5154 -1.4188 1.7857
Coffee Future -1.5007 -1.4189 1.8553
Coffee Index -1.5111 -1.4188 1.8282
Aluminum Future -1.5155 -1.4188 1.0274
Aluminum Index -1.4948 -1.4188 1.5552
Gold Future -1.4842 -1.4189 1.6978
Gold Index -1.5155 -1.4189 1.7241
Copper Future -1.5103 -1.4189 1.6779
Copper Index -1.5136 -1.4189 1.8083
Palladium Future -1.5128 -1.4189 1.6447
Palladium Index -1.5154 -1.4186 1.8182
Platinum Future -1.5062 -1.4189 1.8182
Platinum Index -1.5044 -1.4189 1.7606
Lean Hogs Future -1.4259 -1.4189 1.8149
Lean Hogs Index -1.5155 -1.4189 1.8519
Feeder Cattle Future -1.4944 -1.4189 1.7182
Feeder Cattle Index -1.5037 -1.4188 1.6779
Crude Oil Future -1.5059 -1.4189 1.8018
Crude Oil Index -1.5217 -1.4188 1.6750

Table 6.8: Log-likelihood comparison for α = 2 and estimated α’s
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6.3 Source Code

# Nina Ni (2019 @Liverpool )

import pandas as pd
import numpy as np
from s c ipy import s t a t s
from s k l e a rn . met r i c s import mean_squared_error

# performance the ADJ and KPSS t e s t f o r g i v i n g data s e t s
s t a t s_t e s t s = False
i f s t a t s_t e s t s == True :

# perform ADF t e s t
from s ta t smode l s . t sa . s t a t t o o l s import a d f u l l e r
from s ta t smode l s . t sa . s t a t t o o l s import kpss

for this_product in source_index_df :
# pr in t
print ( ’The␣ADF␣and␣KPSS␣ t e s t s ␣ f o r ␣ ’ , str ( this_product ) , ’ ␣

index ␣ are : ’ )
# obta in current product p r i c e s
this_product_array = source_index_df [ this_product ] . va lue s
# apply adf / kpss t e s t to o r i g i n a l data , l o g data and

increment data
for i in [ 1 , 1 0 , 5 0 ] :

# ADF
print ( ’The␣p−va lue s ␣ f o r ␣ADF␣ t e s t s ␣ are : ␣%.4 f ␣%.4 f ␣%.4 f ’

%
( a d f u l l e r ( this_product_array , maxlag=i , r e g r e s s i o n=’

ct ’ ) [ 1 ] ,
a d f u l l e r (np . l og ( this_product_array ) ,maxlag=i ,

r e g r e s s i o n=’ ct ’ ) [ 1 ] ,
a d f u l l e r (np . d i f f ( this_product_array ) ,maxlag=i ,

r e g r e s s i o n=’ ct ’ ) [ 1 ] ) ,
’ ( o r i g i n a l , ␣ log , ␣ increment ) ␣ f o r ␣ l ag ␣ ’ , str ( i ) , ’ . ’ )

for i in [ 1 , 1 0 , 5 0 ] :
# KPSS
print ( ’The␣p−va lue s ␣ f o r ␣KPSS␣ t e s t s ␣ are : ␣%.4 f ␣%.4 f ␣%.4 f ’

%
( kpss ( this_product_array , l a g s=i , r e g r e s s i o n=’ ct ’ )

[ 1 ] ,
kpss (np . l og ( this_product_array ) , l a g s=i , r e g r e s s i o n=

’ ct ’ ) [ 1 ] ,
kpss (np . d i f f ( this_product_array ) , l a g s=i , r e g r e s s i o n

=’ ct ’ ) [ 1 ] ) ,
’ ( o r i g i n a l , ␣ log , ␣ increment ) ␣ f o r ␣ l ag ␣ ’ , str ( i ) , ’ . ’ )
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print ( ’ ’ )

for this_product in source_future_df :
# pr in t
print ( ’The␣ADF␣and␣KPSS␣ t e s t s ␣ f o r ␣ ’ , str ( this_product ) , ’ ␣

f u tu r e ␣ are : ’ )
# obta in current product p r i c e s
this_product_array = source_future_df [ this_product ] . va lue s
# apply adf / kpss t e s t to o r i g i n a l data , l o g data and

increment data
for i in [ 1 , 1 0 , 5 0 ] :

# ADF
print ( ’The␣p−va lue s ␣ f o r ␣ADF␣ t e s t s ␣ are : ␣%.4 f ␣%.4 f ␣%.4 f ’

%
( a d f u l l e r ( this_product_array , maxlag=i , r e g r e s s i o n=’

ct ’ ) [ 1 ] ,
a d f u l l e r (np . l og ( this_product_array ) ,maxlag=i ,

r e g r e s s i o n=’ ct ’ ) [ 1 ] ,
a d f u l l e r (np . d i f f ( this_product_array ) ,maxlag=i ,

r e g r e s s i o n=’ ct ’ ) [ 1 ] ) ,
’ ( o r i g i n a l , ␣ log , ␣ increment ) ␣ f o r ␣ l ag ␣ ’ , str ( i ) , ’ . ’ )

for i in [ 1 , 1 0 , 5 0 ] :
# KPSS
print ( ’The␣p−va lue s ␣ f o r ␣KPSS␣ t e s t s ␣ are : ␣%.4 f ␣%.4 f ␣%.4 f ’

%
( kpss ( this_product_array , l a g s=i , r e g r e s s i o n=’ ct ’ )

[ 1 ] ,
kpss (np . l og ( this_product_array ) , l a g s=i , r e g r e s s i o n=

’ ct ’ ) [ 1 ] ,
kpss (np . d i f f ( this_product_array ) , l a g s=i , r e g r e s s i o n

=’ ct ’ ) [ 1 ] ) ,
’ ( o r i g i n a l , ␣ log , ␣ increment ) ␣ f o r ␣ l ag ␣ ’ , str ( i ) , ’ . ’ )

print ( ’ ’ )

## use l i k e l i h o o d r a t i o t e s t to t e s t i f alpha−s t a b l e i s b e t t e r

# f ind log−d i f f o f the data and t e s t i f i t i s normal
# loop over products and conduct the normal t e s t
for i = 1 : l ength ( a l l_pr ice_data )

this_data = data_cleans ing ( a l l_pr ice_data { i , 2 } ) ;
a l l_pr ice_data { i , 1}
this_data = d i f f ( l og ( this_data ) ) ;
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# working on normal t e s t s
this_data_stdN = ( this_data − mean( this_data ) ) / std ( this_data )

;
# Anderson−Darl ing t e s t
[ ad_test_h ( i ) , ad_test_p ( i ) ] = adte s t ( this_data_stdN ) ;
# One−sample Kolmogorov−Smirnov t e s t
[ ks_test_h ( i ) , ks_test_p ( i ) ] = k s t e s t ( this_data_stdN ) ;
# Log l i k e l i h ood fo r normal and alpha s t a b l e d i s t r i b u t i o n
# normal
tmp = normpdf ( this_data_stdN ) ;
Nlog ( i ) = mean( log (tmp(tmp > 0) ) ) ;
# alpha
pd1 = makedist ( ’ S tab le ’ , ’ a lpha ’ ,min(2 ,1 / mean_GHE( i ) ) , ’ beta ’

, 0 , ’gam ’ ,1 , ’ d e l t a ’ , 0 ) ;
Alog ( i ) = mean( log ( pdf ( pd1 , this_data_stdN ) ) ) ;
# Like l i hood r a t i o t e s t o f model s p e c i f i c a t i o n
[ LR_test_h( i ) ,LR_test_p( i ) ] = l r a t i o t e s t ( Alog ( i ) , Nlog ( i ) , 1 ) ;

end

Test_Table = tab l e ({ a l l_pr ice_data { : , 1}} ’ , ␣ ( 1 . /mean_GHE) ’ , ad_test_h
’ , ad_test_p ’ , . . .
ks_test_h ’ , ␣ks_test_p ’ , Alog ’ , ␣Nlog ’ , LR_test_h ’ , ␣LR_test_p ’ ) ;

Test_Table . P rope r t i e s . VariableNames = { ’ Product ’ , ’ a lpha ’ , ’AD_h’ , ’
AD_p’ , . . .
’KS_h ’ , ’KS_p ’ , ’LH_a ’ , ’LH_N’ , ’LR_h ’ , ’LR_p ’ } ;

w r i t e t ab l e ( Test_Table , ’ Test_Table . csv ’ )

# use arima model to perform a one−s top f o r e c a s t
ARIMA_forecast = Fal se
i f ARIMA_forecast == True :

from s ta t smode l s . t sa . arima_model import ARIMA
import i t e r t o o l s
from min i u t i l s import progress_bar
import datet ime
import os
import matp lo t l i b . pyplot as p l t
# arima es t imat ion
def ar ima_f i t ( data_ser ies , ar , d , ma) :

try :
model = ARIMA( data_ser ies , order = [ ar , d , ma ] )
model_fit = model . f i t ( d i sp=0)
AIC_BIC_HQIC = model_fit . a i c + model_fit . b i c +

model_fit . hq ic
except :

model_fit = ’ F i t t i n g ␣ e r r o r ! ’
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AIC_BIC_HQIC = np . nan

return { ’ order ’ : [ ar , d ,ma] , ’ model_fit ’ : model_fit ,
’AIC_BIC_HQIC ’ : AIC_BIC_HQIC}

# t h i s func t i on f i nd s the b e s t arima model v ia compare
informat ion c r i t e r i a

def f ind_best_arima ( data , ar_ranges = [ 0 , 1 , 2 , 4 , 8 ] , ma_ranges =
[ 0 , 1 , 2 , 4 , 6 ] , i n t eg ra l_range s = [ 1 , 2 , 3 ] ) :
# bu i l d a l l arima es t imat ion parameter combinations
parameters = l i s t ( i t e r t o o l s . product ( ar_ranges ,

in tegra l_ranges , ma_ranges ) )
# run the models in loop or p a r a l l e l
r e s u l t = [ ]
for th i s_se t in parameters :

r e s u l t . append ( ar ima_f it ( data_ser i e s = data , ar =
th i s_se t [ 0 ] , d= th i s_se t [ 1 ] , ma = th i s_se t [ 2 ] ) )

# put t o g e t h e r a l l r e s u l t
f u l l_ r e s u l t = pd . DataFrame ( r e s u l t )
# sor t by the sma l l e s t AIC + BIC + HQIC
f u l l_ r e s u l t = f u l l_ r e s u l t . sor t_values ( ’AIC_BIC_HQIC ’ , ax i s

=0, ascending=True )
# return the b e s t model
best_model = f u l l_ r e s u l t . i l o c [ 0 ]
return { ’ Product ’ : data . name ,

’ Best ␣AR−I−MA␣ lag s ’ : best_model . order ,
’ Corresponding ␣ARIMA␣paramters ’ : str ( best_model .

model_fit . arparams ) + str ( best_model . model_fit .
maparams ) ,

’AIC_BIC_HQIC ’ : best_model .AIC_BIC_HQIC,
’ Best_model ’ : best_model
}

# func t ion to ge t the f o r e c a s t done fo r g iven product
def f o recast_product ( product_name , source_df ) :

try :
# pr in t ( ’ Forecas t ing by ARIMA for ’ , s t r ( product_name ) ,

’ s t a r s . . . ’ )
# ob ta in current product p r i c e s
this_product_array = source_df [ product_name ]
t r a i n i n g_s e r i e s = \

this_product_array [ this_product_array . index <=
datet ime . datet ime ( year=2017 , month=12, day=31) ]

t r a i n i n g_s e r i e s = \
t r a i n i n g_s e r i e s [ t r a i n i n g_s e r i e s . index > datet ime .

datet ime ( year=2015 , month=1, day=1) ]
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# f ind the b e s t model with a l l h i s t o r i c a l data t i l l end
2017

best_model = \
find_best_arima ( t r a i n i ng_se r i e s , ar_ranges =[2 , 4 ,

8 ] , ma_ranges=[0 , 1 , 2 ] , i n t eg ra l_range s
= [0 , 1 , 2 ] )

# making one s t ep f o r e c a s t
f o r e ca s t_date s = this_product_array . index [

this_product_array . index > datet ime . datet ime ( year
=2017 , month=12, day=31) ]

fo recast_data = pd . DataFrame ( this_product_array )
th i s_data_ser i e s = t r a i n i n g_s e r i e s

for this_day in f o r e ca s t_date s :
# adding one day data to the model
this_arima = ARIMA( thi s_data_ser ie s , order=

best_model [ ’ Best ␣AR−I−MA␣ lag s ’ ] )
th i s_ar ima_f i t = this_arima . f i t ( d i sp=0)
forecast_data . l o c [ this_day , ’ TS_Forecast ’ ] =

this_ar ima_f i t . f o r e c a s t ( ) [ 0 ]
th i s_data_ser i e s [ this_day ] = this_product_array [

this_day ]

# wri t e r e s u l t s to f i l e
i f not ( os . path . i s d i r ( ’ . / output ’ ) ) :

os . mkdir ( ’ . / output ’ )
forecast_data [ fo recast_data . index > datet ime . datet ime (

year=2017 , month=12, day=31) ] . \
to_csv ( ’ . / output / ’+str ( product_name ) + ’ . csv ’ )

forecast_data [ fo recast_data . index > datet ime . datet ime (
year=2017 , month=12, day=31) ] . p l o t ( )

p l t . show ( )

return { ’ Product ’ : best_model [ ’ Product ’ ] ,
’ Best ␣AR−I−MA␣ lag s ’ : best_model [ ’ Best ␣AR−I−MA␣

l ag s ’ ] ,
’ Corresponding ␣ARIMA␣paramters ’ : best_model [ ’

Corresponding ␣ARIMA␣paramters ’ ] ,
’AIC_BIC_HQIC ’ : best_model [ ’AIC_BIC_HQIC ’ ] ,
}

## NARX Neural Network Forecast (Matlab Neural Network Toolbox )
# Time s t ep s need to be f o r e c a s t
Predict_Time = 180 ;
# Number o f time de lay in NN
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Time_Delay = 2 ;

# NNinput − input time s e r i e s .
m = Predict_Time / Time_Delay ;
NN_Result = ze ro s ( Predict_Time , 1 ) ;

for q = 1 :m
NNinput = Group1 (1 : end−Time_Delay∗m + (q−1)∗Time_Delay , : ) ;
X = tonndata (NNinput , f a l s e , f a l s e ) ;
T = tonndata ( r (1 : end−Time_Delay∗m + (q−1)∗Time_Delay ) , f a l s e , f a l s e

) ;

# Choose a Training Function ’ tra in lm ’ i s u s ua l l y f a s t e s t .
tra inFcn = ’ tra in lm ’ ;

# Create a Nonlinear Autoregres s i ve Network with Externa l Input
inputDelays = 1 : Time_Delay ;
feedbackDelays = 1 : Time_Delay ;

# Choose the opt imal number o f hidden l a y e r s
for p = 1 :5

[ net s {p} , performance_option (p) ] = NARX_Optimal . . .
( p , X, T, inputDelays , feedbackDelays , t ra inFcn ) ;

end

p = f i nd ( l o g i c a l ( performance_option = min( performance_option ) ) ,1 ) ;

net = nets {p } ;
[ x , xi , a i , t ] = prepar e t s ( net ,X, {} ,T) ;

f p r i n t f ( ’ \nWe␣have␣ optimal ␣ l ay e r ( s ) ␣ i s ␣%. i . ’ , p )

# Multi−s t ep Pred ic t ion . The func t i on CLOSELOOP rep l a c e s the
feedback input with a d i r e c t connect ion from the outout l a y e r .

netc = c l o s e l o op ( net ) ;
netc . name = [ net . name ’ ␣−␣Closed ␣Loop ’ ] ;
[ xc , x ic , a ic , t c ] = prepar e t s ( netc ,X, {} ,T) ;
yc = netc ( xc , x ic , a i c ) ;
c losedLoopPerformance = perform ( net , tc , yc ) ;

# Sometimes i t i s u s e f u l to s imu la te a network in open−l oop form
for as long as there i s known output data , and then swi tch to
c losed−l oop form to perform mu l t i s t e p p r ed i c t i on wh i l e
prov id ing only the e x t e rna l input .

# Here the input s e r i e s and t a r g e t s e r i e s are used to s imu la te the
network in open−l oop form , tak ing advantage o f the h igher
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accuracy t ha t prov id ing the t a r g e t s e r i e s produces :

numTimesteps = s i z e (x , 2 ) ;
knownOutputTimesteps = 1 : ( numTimesteps−Time_Delay ) ;
predictOutputTimesteps = ( numTimesteps−Time_Delay+1) : numTimesteps ;
X1 = X( : , knownOutputTimesteps ) ;
T1 = T( : , knownOutputTimesteps ) ;
[ x1 , xio , a i o ] = prepare t s ( net ,X1, {} ,T1) ;
[ y1 , xfo , a fo ] = net ( x1 , xio , a i o ) ;

# Next the the network and i t s f i n a l s t a t e s w i l l be converted to
c losed−l oop form to make p r ed i c t i on s .

x2 = X(1 , predictOutputTimesteps ) ;
[ netc , x ic , a i c ] = c l o s e l o op ( net , xfo , a fo ) ;
[ y2 , xfc , a f c ] = netc ( x2 , x ic , a i c ) ;
mult iStepPerformance = perform ( net ,T(1 , predictOutputTimesteps ) , y2 ) ;

## p l o t out a l l r e s u l t s and perform the t e s t s

class s t a t s_t e s t s ( ) :

def __init__( s e l f , r ea l , e s t ) :
s e l f . r e a l = r e a l
s e l f . e s t = e s t

def r_squared ( s e l f ) :
s lope , i n t e r c ep t , r_value , p_value , std_err = s t a t s .

l i n r e g r e s s ( s e l f . r ea l , s e l f . e s t )
return r_value ∗∗2

def NMSR( s e l f ) :
# Normalized Mean Squared Error
return mean_squared_error ( s e l f . r ea l , s e l f . e s t ) / (np . std (

s e l f . r e a l ) ∗∗ 2)

def MAPE( s e l f ) :
# Mean Abso lute Percentage Error
return np . nanmean(np . abs ( s e l f . e s t − s e l f . r e a l ) / s e l f . r e a l )

def DC( s e l f ) :
# Direc t i ona l Change
return np . nanmean(np . d i f f ( s e l f . r e a l ) ∗ ( s e l f . e s t [ 1 : ] − s e l f

. r e a l [ : −1 ] ) >= 0)
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i f True :
import datet ime
import matp lo t l i b . pyplot as p l t
import matp lo t l i b . dates as mdates
import path l i b
# l i s t a l l f i l e s from the machine l ea rn ing r e s u l t s f o l d e r
a l l_ r e s u l t s = l i s t ( pa th l i b . Path ( ’ . / output ’ ) . g lob ( ’ ∗ . csv ’ ) )
t e s t_ r e s u l t s = [ ]
for t h i s_ f i l e in a l l_ r e s u l t s :

this_product = str ( t h i s_ f i l e ) . s p l i t ( ’ / ’ ) [ 1 ] [ : − 4 ]
i f this_product == ’ mode l_se lect ion ’ :

pass
else :

print ( ’ P l o t t i ng ␣ ’ , str ( t h i s_ f i l e ) , ’ ␣ f o r ␣product : ␣ ’ ,
str ( this_product ) )

this_pd = pd . read_csv ( t h i s_ f i l e , index_col= ’ Dates . 1 ’ )

# Set the l o c a t o r
l o c a t o r = mdates . MonthLocator ( ) # every month
# Spec i f y the format − %b g i v e s us Jan , Feb . . .
fmt = mdates . DateFormatter ( ’%b ’ )
p l t . f i g u r e ( f i g s i z e =(8 , 5) , dpi=160)

this_pd [ this_product ] . p l o t ( c o l o r=’#979797 ’ , l i n ew id th
=3)

this_pd [ ’MLP’ ] . p l o t ( c o l o r=’#ED8F12 ’ , l i n ew id th=1)
this_pd [ ’NARX_T’ ] . p l o t ( c o l o r=’#9E12B6 ’ , l i n ew id th=1)
this_pd [ ’NARX_F’ ] . p l o t ( c o l o r=’#1AB716 ’ , l i n ew id th=1)
this_pd [ ’LSTM’ ] . p l o t ( c o l o r=’#1FB8DA ’ , l i n ew id th=1)
this_pd [ ’ TS_Forecast ’ ] . p l o t ( c o l o r=’#F10E1F ’ , l i n ew id th

=1)

p l t . x t i c k s ( [ 0 , 22 , 44 , 66 , 88 , 110 , 132 , 154 , 175 ] ,
[ ’ Jan ’ , ’ Feb ’ , ’Mar ’ , ’Apr ’ , ’May ’ , ’ Jue ’ , ’

Ju l ’ , ’Aug ’ ] )

p l t . l egend ( ( ’ Observat ions ’ , ’MLP’ , ’NARX_Time ’ , ’
NARX_Frequency ’ , ’LSTM’ , ’ARIMA’ ) )

p l t . t i t l e ( r "$\ bf {" + this_product + "}$" )

p l t . x l ab e l ( ’ Date␣ (Year␣ 2018) ’ )
p l t . y l ab e l ( ’ Pr i ce ’ )
p l t . g r i d (True )
p l t . s a v e f i g ( ’ . / output / ’ + this_product + ’ . eps ’ , format
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=’ eps ’ )

# perform the t e s t
s t = s t a t s_t e s t s ( this_pd [ this_product ] . va lues , this_pd [

’ TS_Forecast ’ ] . va lue s )
t h i s_ r e su l t = {

’ Product ’ : this_product ,
’NMSE’ : s t .NMSR( ) ,
’MAPE’ : s t .MAPE( ) ,
’R2 ’ : s t . r_squared ( ) ,
’ Dstst ’ : s t .DC( ) ,

}
t e s t_ r e s u l t s . append ( th i s_r e su l t )

pd . DataFrame ( t e s t_ r e s u l t s ) . to_csv ( ’ . / s t a t s_t e s t . csv ’ , index =
False )
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