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ABSTRACT 

It is of great interest and importance to detect the amount of water, oil and gas 

passing through a pipe in real time for many industrial applications. However, due 

to the different physical properties of the three fluids (water, oil, and air/gas), it is 

beyond most companies’ ability to effectively and accurately calculate the fluid 

content. Other situations could also make such estimation more difficult. For 

example, at the industrial level, the internal environment of the pipe is often 

accompanied by high pressure while the liquid flows at high speed. Also, highly 

polluted oil can easily damage electronic equipment. Consequently, there has been 

constant concerns regarding to multiphase flow detection. 

The existing advanced three-phase flow detection technology generally develops 

around imaging technology, such as electrical resistance tomography, electrical 

capacitance tomography and microwave tomography. The advantage of these 

methods is that the internal environment of the pipe can be reconstructed intuitively, 

thereby achieving the purpose of "perspective". However, the shortcomings of these 

methods are also obvious: firstly, the reconstruction operation is complicated, 

which requires considerable amount of calculation, potentially causing severe 

postponement. Secondly, when there is large amount of high-conductivity liquid 

(e.g., water) in the pipe, the amount of each fluid in the three-phase flow is hard to 

calculate. 

In this thesis, a detection method combining microwave measurement and 

convolutional neural networks was proposed and validated. The author designed a 

microwave measurement multiphase flow experiment as well as a convolutional 

neural network model with microwave measurement data as input data. The Error 

Sum of Square of oil predicted content is 0.81. Since a trained model is applied to 

predict water and oil content, this system involves less calculation and can be 

considered almost real-time detection. Besides, this system is not only based on 

non-destructive testing, but also suitable for a wide range of materials, included the 

liquid with high water content inside the pipe.  
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INTRODUCTION 

Compared to the dramatic development of innovation projects in industrial 

production, technology to accurately detect the effect of process tolerances on raw 

materials quality has already fallen behind. It takes several production steps to fully 

qualify a new product, which could be inconvenient and inaccurate. Unilever, one 

of the largest consumer goods producers in the world, addressed liquid quality 

detection as one of the three challenges at the beginning of 2018, which specifically 

refers to “Development of robust in-line measurement techniques to track 

microstructure evolution during processing of personal care liquids (shampoo, body 

wash, conditioners)” [1]. The old method to detect the quality of the finished 

product, normally, is just to test it straightly at the end of producing. However, this 

method has high risk in terms of cost. For example, the product cannot be sold 

because it does not satisfy the quality standards though it has finished all the 

production steps. Therefore, companies would like to find some real-time detecting 

methods to avoid unqualified products as much as possible to reduce wastes. 

 
Fig. 1 The petroleum industry needs real-time monitoring of data from 

product mining 

In petroleum industry, the methods of real-time product testing are necessary and 

desperately in need. It is common to see Three-phase flows of gas and two liquid 

phases in the production of oil. Usually, an oil and gas reservoir contain gas, oil and 
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water. Although oil and gas are wanted, underground water is not. When the oil is 

extracted from the reservoir, underground water is likely to flow into the well 

because it could penetrate the rock via pores easily. What is more, it is beneficial to 

inject water into the reservoir in order to increase recovery of the oil and gas when 

a well gets older [2]. Because wells that have been extracted for different length of 

time contain different yield of gas, oil, and water, detecting the percentage of each 

liquid in the output is of great importance in determining the life of oil wells and 

the production cost. Therefore, it is important to accurately measure the different 

liquid’s content in multiphase flow during the production process to help companies 

successfully achieve maximum return on investment [3]. Oil and gas pipeline 

monitoring sensors have gradually become a key factor in determining the 

profitability of the oil industry. 

 
Fig. 2 Oil and gas pipeline monitoring sensors have become a new 

way to increase profits in the oil industry. 

There have been continuous discussion and proposals regarding to multiphase 

flow/liquid testing, due to the complex and constant changing flow conditions, as 

well as the great difference in the dielectric constant between water, oil and air 

(around 80, 2 and 1 respectively) (Section 2.1). 

During this process, many solutions have been proposed and various kinds of 

theories have been put forward. Some are intrusive testing methods, such as Time 

Domain Reflectometry (Section 2.1.1) and Wire-mesh Sensor (Section 2.1.2). The 



 

3 

 

others are non-intrusive testing methods like electrical capacitance tomography 

method (Section 2.1.3.2) and microwave tomography method (Section 2.1.4). Also, 

Since the product is multiphase, it could be separated into single phases of liquid 

by a large separator and then measured by different flow meter [4]. This kind of 

method integrated many separate liquid sensors and combined these liquid sensors 

into a multiphase flowmeter. 

The solutions shown above could effectively solve the problem of measuring the 

liquid content in a certain state in the pipeline, but a common limitation is also 

obvious. In the actual production process, the multiphase flow is continuously 

flowing inside a tube/pipe. It means that the content of the liquid changes in every 

moment, and these sensors need to calculate the result repeatedly. Since most of 

these methods are based on complex mathematical operations, which require time 

to calculate, making it difficult to achieve real-time detection. Thus, a method to 

achieve real-time detection by reducing the amount of calculation is necessary. 

In modern daily life, machine learning technology has been widely used: from web 

search and network filtering, to analyze network users' preferences as well as speech 

and image recognition. Machine learning technology appears more frequently in e-

commerce, Internet products and other fields. This technology analyzes and 

summarizes network information, also predicts the results according to the needs of 

the users as well as the product information that users may be interested in [5].  

Nowadays, most of the existing Neural Network (NN) (Section 2.2) models are 

based on the highly simplified brain dynamics. These powerful computational 

models have been applied in solving the problems of complex pattern recognition, 

function estimation as well as classification issues [6]. Also, there is no need to 

understand or analyze NN with a good knowledge of physical phenomena [7]. Deep 

Learning (DL) is part of NN, which uses a mathematical model that consists of 

multiple processing layers to learn samples with high-dimensional data. It uses the 

backpropagation (BP) algorithm to adjust the parameters in order to discover the 

complex internal structure of big data. DL shines in processing images, video, 

speech and audio. One of the typical methods of deep learning is convolutional 

neural networks (CNN) (Section 2.2.2). It has been applied effectively in lots of 
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fields. For example, ‘Alpha go’, an intelligent chess system that is popular all over 

the world, which is also based on CNN. 

 
Fig. 3 ‘Alpha go’ battles and defeats Korean Go players 

However, it is a challenge to combine deep learning with industrial measurement. 

Since machine learning is not a reliable measure in the minds of many people who 

hold traditional ideas, people tend to use computational methods to make 

quantitative measurements. Although some people are not willing to try this method, 

there is an unavoidable tendency for combining artificial intelligence with industrial 

development. This thesis is going to study the possibility of using convolutional 

neural networks instead of traditional calculation methods to measure and predict 

liquid content in multiphase flow inside a pipe. 
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CHAPTER 1  LITERATURE REVIEW 

1.1. Multiphase Flow Testing 

Multiphase flow/liquid is a common raw material or output in many industrial fields, 

such as energy, chemical engineering and food engineering. One of the most typical 

multiphase flow testing problems is gas-oil-water three-phase flow testing, which 

is a measurement problem that caught the attention of the oil industry. 

Facing the multiphase flow testing, the main difficulties are as following: 

a. Great difference of permittivity between oil, gas and water. 

b. Changing liquid content is at any time. 

c. Complex liquid structure. 

d. High pressure and temperature in pipeline. 

The future market of the three-phase flowmeters is important if the application of 

three-phase flowmeters has a real goal to make a flowmeter perpetually be fitted 

into each individual well in all new surface and subsea developments [8]. 

Several methods for measuring multiphase flow are described below. Some of them 

are not suitable for measuring multiphase liquid in pipe, and others have been 

researched and expanded in decades. But all of them are typical methods in the 

measurement of multiphase flow. 

1.1.1. Time Domain Reflectometry 

Time domain reflectometry (TDR) is a pulse sampling technique. It is a relatively 

common method in the detection of cable impedance variations and continuity [9]. 

For the convenience of measurement, the transmission cable can be regarded as a 

series of circuit components, so the coaxial cable used for TDR measurement can 

be considered as an ideal transmission circuit, which is illustrated as Fig. 1.1. 

 

Fig. 1.1 Discrete model of an unbalanced, lossless transmission line. 

The voltage-current relationship of a time-varying signal inside the length of the 

coaxial cable is decided by characteristic impedance, pulse propagation velocity, as 
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well as the reflection coefficient [10]. The characteristic impedance 𝑍0 depends 

on the capacitance   and inductance   per unit length: 

𝑍0 = √
𝐿

𝐶
 

𝑍0  is measured in ohms,   in henrys and   in farads. For an ideal model, the 

impedance can be considered as a pure resistor. The propagation speed v of the pulse 

signal depends on the capacitance and inductance per unit length: 

𝑣 =
1

√𝐿𝐶
 

All changes of the transmission line, such as changing material or shape, will result 

in the changes in impedance. The electromagnetic signal propagating on the 

transmission line will also partially or even totally reflect at the discontinuity of the 

impedance. If there is a coaxial cable terminated with a load 𝑍𝑇 , the reflection 

coefficient 𝜌 could be calculated as: 

𝜌 =
𝑍𝑇 − 𝑍0

𝑍𝑇 + 𝑍0
 

The simplest TDR model is consisted by a pulse generator and pulse sampler which 

is shown in Fig. 1.2. 

 

Fig. 1.2 TDR and two segment coaxial networks 

This model shows a TDR, a transmission line which is made up by two series 

coaxial cables as well as a load resistor 𝑅𝑇. Two coaxial cable segments have its 

own impedance 𝑍1 𝑎𝑛𝑑 𝑍2  ( 𝑍1 ≠ 𝑍2 ) which is given by their unit length 

capacitance (𝐶1 𝑎𝑛𝑑 𝐶2) and inductance (𝐿1 𝑎𝑛𝑑 𝐿2).  

       

  

  
    

  

  

v 

  

  

v 
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Fig. 1.3 Pulse reflection diagram 

TDR could launch a pulse electrical signal. This pulse starts to ambulate on segment 

1 with voltage amplitude 𝑉1  and propagation velocity 𝑣1  on 𝑡0 , at the time it 

arrives the linking with coaxial cable segment 2, then another pulse with amplitude 

𝑉2 will keep transmitting coaxial cable segment 2, however, with a new velocity. 

Meanwhile, a pulse with amplitude 𝑉3 reflects along segment 1 to the sampling 

circuit. Reflection coefficient, 𝜌12, is applied to calculate the amplitude produced 

by the transmitted and reflected pulses. At 𝑡1, the reflected pulse will reach out the 

sampling circuit. Pulse 𝑉3 keeps travelling along segment 2 and it would not stop 

until it arrives the termination resistor where it reflects. This reflected pulse has 

amplitude 𝑉4, which is decided by the reflection coefficient named 𝜌23. Then, this 

pulse transmits back along segment 2 until it arrives the connection with segment 

1. Over again, a part of the pulse continues to 

travel to the sampling circuit that arriving at 𝑡1 

and the termination will be reflected another 

portion of pulse. 𝑉5  and 𝑉6  show these 

pulses. Finally, the amplitudes are decided by 

reflection coefficient called 𝜌21. This process 

could be illustrated by Fig. 1.3. 

This technology was later developed to 

measure the liquid level of different fluid. In 

1960s, it was used to measure a single level 

and named "TDR liquid level sensor" [11]. In 

recent years, TDR technology is still receiving 

the attention of many people from all over the 

world. In 2012, Andrea Cataldo explored the 

    

  
 
  

 
  

    

  
 
  

Fig. 1.4 MG1-E Single Level Probe 

for Liquids and Solids 
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use of a low-cost portable TDR device for the automatic control and real-time 

monitoring of the flow and the liquid level in intravenous (IV) medical infusions 

[12]. E. I. Trenkal (2017) proposed a solution based on TDR to determine the 

structure and layer parameters of multiphase liquids in real-time mode in order to 

improve the accuracy of measurement [13]. After decades of improvement, the level 

gauge based on TDR technology can now be mass-produced. Fig. 1.4 shows an 

example. The structure of TDR liquid level sensor could be described as Fig. 1.5. 

 

Fig. 1.5 The structure of TDR liquid level sensor (pic. a) and probe (pic. b) 

The probe of TDR liquid level sensor is an open transmission line and the liquid 

inside the tank becomes the transmission line's insulation dielectric [9]. At the liquid 

interface, different dielectric constants of the fluid will cause changes in the 

impedance of the transmission line and some of the pulse signal to be reflected to 

the TDR receiver too. The liquid levels and the location of interface could be 

accurately determined by reflected pulse amplitude and time. 

Compare with other fluid level sensors, TDR technology have a lot of advantages, 

such as simple mounting, high resolution, ability to measure multiple fluid interface 

levels and handle complex tank geometries. What is more, the dielectric constants 

of the fluid layers must improve with the depth along the investigation [9]. 

1.1.2. Wire-mesh Sensor 

Wire-Mesh Sensor (WMS) is one of the imaging devices which can provide flow 

images at high spatial and temporal resolutions [14]. In many researches about 

WMS, it is mostly used in the decision of the distribution of the phase fraction and 
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visualization of the flow behavior within the cylindrical pipe. Flow structures that 

appear inside pipes with some flow rate fluids are usually analyzed [15]. 

Furthermore, take a typical situation as an example-when the fluid has two different 

liquids model or two-phase flow. This can be a blend of gas as well as oil that flow 

from a well when in the oil industry [16]. 

 

Fig. 1.6 Simplified scheme of the electrode-mesh device [17]. 

There are two models of working principle of the wire-mesh sensor, one is on the 

basic of the measurement of conductivity; the 

other is the permittivity value in the research area. 

In 1998, Prasser firstly designed a wire-mesh 

sensor which based on conductivity measurements 

and Fig. 1.6 shows the electrode-mesh sensor 

structure in his paper [17].  

This WMS has two layers of conductive wire grids 

placed in parallel with a spacing of 2 mm and their 

wires are arranged to intersect at 90 degrees in 

space. Fig. 1.7 shows the layout of transmission 

lines in wire-mesh sensor [18]. When the spacing 

of the two planes is occupied by the conductive 

phase, the voltage pulse of the first layer of the 

wire grid (emission plane) reaches the second 

Fig. 1.7 Layout of transmission 

lines in wire-mesh sensors [18]. 
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plane (receiving plane). In 2015, Weiling Liu improved the conductivity wire-mesh 

sensor measurement system to test the horizontal gas-water two-phase flow and 

achieved 200 frames/s time resolution and 3.1 mm spatial resolution [19]. However, 

this kind of sensor is not suitable for all multiphase flow problems due to the need 

to have a conductive phase [20]. In 2007, on the basic of permittivity measurement, 

a wire-mesh sensor was exploited for visualizing and investigating of non-

conducting fluids. Gas-oil two-phase flow is a specific example [21]. 

Compared to other tomography systems, the disadvantages of WMS as an intrusive 

detection method can be partially compensated by high temporal resolution, low 

cost, and accurate local measurements rather than parameter reconstruction [16]. 

Therefore, WMS is often used to compensate for the shortcomings of electrical 

tomography process [15]. 

1.1.3. Electrical Tomography 

Tomographic imaging is a technique which helps to reconstruct the internal 

distribution of an object with a physical parameter. This technique used an image 

with gray or color scale for easy visualization to present the results. Tomographic 

imaging provides a special imaging method to the oil, chemical (Fig. 1.8), 

pharmaceutical as well as food industries to make the industrial processes to be 

visualized and provides great information for control and optimization without 

invading the pipes and vessels instead of a single-point measurement. 

 

Fig. 1.8 Electrical resistance tomography for kids with Cystic Fibrosis in 2019. 
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On the basic of gaining information on electronic impedance which includes 

resistance, capacitance as well as inductance, electronic tomography is applied in 

electrical property. For example, it can be used in the description of conductivity, 

permittivity and permeability and distribution of materials [22]. In addition, the 

property of the material as well as a specific method are needed to measure the 

electrical property. Take the oil industry as an example, gas/oil/water multiphase is 

full of challenges. Conductivity and permittivity can be regarded as the dominant 

electrical property. Electrical capacitance tomography which is known as ECT has 

been researched and developed for a long time. It has been known that the ECT can 

provide quantitative information about the distribution of materials with an 

electrical dominance in the way of cross-sectional. As for the shortage of electrical 

capacitance tomography, the fluid inside the pipe must be continuous oil [23]. It 

means ECT cannot work well when the water is a continuous phase because of the 

media is conductive dominance. Therefore, in the case of water, the conductivity of 

water limits the capacitance electrodes so that the values capacitance couldn’t be 

measured precisely [22]. On the contrary, electrical resistance tomography (ERT) 

could provide information about conductive distribution. For example, the inter-

electrode conductance can be measured even if the water is a continuous phase. For 

a multiphase flow meter, it is more significant to measure oil-continuous flows and 

water-continuous flows with more water is produced with oil and gas. 

1.1.3.1. Electrical  apacitance  omography 

In electrical capacitance tomography, the internal dielectric constant distribution 

structure is reconstructed by measuring the external capacitance between the 

electrode plates. These plates are mounted around the outer perimeter of the object. 

During the measurement, a voltage is applied to the electrodes according to a 

predetermined sequence. A single electrode is excited in sequence and the 

capacitance between all other electrode pairs is measured simultaneously [24]. Fig. 

1.9 shows a typical 12-electrode ECT sensor. These electrodes are mounted on the 

outside of the insulating tube or container. Different electrode pairs can detect the 

cross-section of the liquid in the pipe or vessel from different angles. A complete 

measurement cycle has a total of N(N − 1) independent measurements, where N 

is the number of electrode plates. In the ECT sensor, 66 independent measurements 
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can be made in one cycle. 

 

Fig. 1.9 Typical ECT sensor with 12 sensing electrodes [24] 

There are two types of circuits for ECT sensors, one is a charge/discharge circuit 

[25] and the other is an AC-based circuit. Fig. 1.10 is the charging/discharging 

circuit. The output of this circuit is [26] 

𝑉0 = 2𝑓𝑉𝑐𝐶𝑥𝑅𝑓 + 𝑒1 − 𝑒2 

Where 𝑒1 and 𝑒2 are the offset voltages of op-amps. 

 

Fig. 1.10 Charge/discharge circuit in ECT system 

The advantages of this circuit are linear, low cost and high sensitivity (0.56 V/pF) 
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[24]. But it has the disadvantage of charge injection of CMOS switches [27]. 

Base on sine-wave excitation and phase sensitive demodulation, an improved 

circuit called the AC circuit is designed in Fig. 1.11. This circuit uses DDS signal 

generators with programmable amplitude, frequency and phase. Therefore, it is 

available to test both capacitance and loss conductance with this circuit [24].  

 

Fig. 1.11 AC-based circuit employed in ECT system 

After all the electrode pairs have measured the capacitance, the measured 

capacitance values are reconstructed into an image as a dielectric constant 

distribution. In this process, it is necessary to normalize the capacitance 

measurements. In 2011, Zhiheng Guo compared the capacitance measurement 

normalization in different methods in the ECT system and studied the relationship 

between image quality and normalization method selection. He believed that 

optimizing the normalization method can improve the performance of some 

iterative algorithms [28]. 

ECT is merits-less costly, not radiate, quick-responsive, and non-instructive as well 

as non-invasive when compared with other modalities. What is more, ECT can be 

applied in strict environment with great pressure and high temperature. In the 

1980’s [29], the US Department of Energy in Morgantown had the very first try to 

use ECT in the process of visualizing and industrial process. Furthermore, Electrical 

Capacitance Tomography (ECT) is one of the important industrial applications that 

first developed and the most mature tomographic imaging technique. 
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1.1.3.2. Electrical  esistance  omography 

The electrical resistance tomography (ERT) has been researched for decades and 

become one of the most significant process tomography [30]. It also has wide uses 

in many different industrial fields, such as metallurgy, petroleum, paper making as 

well as environmental engineering [31].  

 

Fig. 1.12 Single drive electrode method [32]. 

Fig. 1.12 is an ERT schematic based on a single drive electrode method [32]. After 

a constant current is injected into one of the electrodes, the current is continuously 

measured from the other electrodes. The excitation current is then injected into the 

next electrode to repeat the above steps. A total of 16 sets of measurements are 

repeated for all independent data and each set containing 15 data points. Therefore, 

the number of outputs is 15×16=240. The resistor R in the figure is the grounding 

connection resistance, and the voltage of this resistor R can be measured. Based on 

the above data, the Ohm's law can be used to derive the output current. 

The following Laplace equation expresses the relationship between potential 

distribution, conductivity and the applied current in this method. 

∇ × (𝜎∇𝜑) = 0, between electrodes 

∫ 𝜎 ×
𝜕𝜑

𝜕𝑛
𝑑𝑠 = +𝐼,

𝑠
 for injected electrode 

∫ 𝜎 ×
𝜕𝜑

𝜕𝑛
𝑑𝑠 = −𝐼𝑥,

𝑠−
 for measured electrodes. 
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In addition, the exciting current and the output current meet the following 

equation: 

∑ 𝐼𝑖

𝑘

𝑖=1

= 𝐼 

where 𝜑 represents the electric potential, 𝜎 represents the conductivity 

distribution in the field, 𝐼 represents the exciting current, 𝐼𝑖 represents the 

output current, and 𝑛 is the outer normal vector of each point at the boundary of 

the sensing field. 

As the new generation of process parameter measuring technique, it can be known 

as an on-line measurement tool with the merits of visual, on-instructive, less costly 

as well as non-radiate. What is more, based on the fact that different conductivity 

with different medium varies, ERT proved the fact that when acquired conductivity 

distribution of the sensing filed; the medium distribution of the measured field can 

be identified. The data acquisition strategy like the adjacent method, the adaptive 

method, the opposite method as well as the multireference method can decide the 

resolution and the accuracy of the reconstructed image [32]. 

The leading-edge measurement method uses ECT and ERT in combination for 

imaging called ECT/ERT dual-modality system for imaging. This system uses two 

separate electrode planes, one performing an ECT measurement and the other 

performing an ERT [33]. However, this method is an expedient derived from the 

inability to simultaneously measure high permittivity liquid and low permittivity 

liquid. It has two drawbacks. One is the need for two separate switches and data 

acquisition systems. The other is that it takes time for liquid to flow from one plane 

to another, so two separate electrode planes produce inconsistent images [34]. 

Yang et al. proposed an ERTv/ECT system based on a dual modality impedance 

analyzer with 4-wire sensing [23]. Here, the ERTv denotes electrical resistance 

tomography with voltage excitation. This system integrates the ERT and ECT 

sensors on the same plane, enabling simultaneous measurement of capacitance and 

resistance. Fig. 1.13 shows the structure of this system [23]. 
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Fig. 1.13 3D sensor structure, 8 internal electrodes, axial grounded guards (top). 

Radial grounded guards, grounded screen and connection terminals in cross-

sectional view (bottom) [23]. 

This ERTv/ECT system allows capacitance and resistance measurements to be 

obtained in a spatially and temporally coherent manner. It allows the measurement 

of multiphase flow over the entire range of water/liquid ratios. However, its imaging 

accuracy is not high enough. 

1.1.4. Microwave Tomography 

With comparison to the tomographic imaging techniques stated above, microwave 

tomography (MWT) generates images of dielectric properties on the basic of the 

evaluation of the scattered electromagnetic fields which is produced by an object 

[35]. When tracing the progress of the microwave tomography systems, it can be 

started in the late 1970s and early 1980s [36], [37]. In industrial process imaging, 

microwave tomography has different demands from that for medical imaging. Apart 

from spatial resolution, high temporal resolution as well as real-time imaging is 

significant for processes, flows or reactions that in high speed [35]. In a specific 

application, two different imaging methods – both quantitative and qualitative may 

be needed. The quantitative imaging methods are enough for many applications of 

representing distributions, patterns, or shapes. While the qualitative methods would 
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be more informative, it provides images that contrasted with quantitative methods 

that mentioned above and permittivity values from which other physical parameters. 

For example, qualitative imaging method derive data from density, moisture 

contend as well as phase fraction [35]. 

 

Fig. 1.14 The microwave tomography system setup [35] 

The basic principle of microwave tomography is to measure the data of the scattered 

microwave field around the object with microwaves incident from different angels, 

and reconstruct the image as well as the multiple views of the object according to 

the dielectric properties (such as dielectric constant 𝜀𝑟 or dielectric contrast s). In 

a hardware for a microwave tomography system, circuits for microwave signal 

generation and detection, antennas for microwave signal transmitting and receiving 

as well as a personal computer are essentially needed. In this system, the antennas 

are usually placed in a background medium and this medium could be a matching 

medium of natural air. Fig. 1.14 shows the microwave tomography system setup 

[35]. 

When implementing microwave imaging, it is necessary to solve the forward-

scattering and inverse-scattering problem. A two-dimensional (2D) model is a 

compromise solution to the problem of forward scatter. Microwave scattering is 

usually a three-dimensional scattering problem. It has been shown that the three-

dimensional model can be reduced to a 2D model using a two-dimensional 

approximation [38], [39]. Numerous tomographic image reconstruction algorithms 

have been developed to solve the inverse-scattering problem. Such as iterative 

image reconstruction algorithms based on the Gauss-Newton method [40], the 
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Newton-Kantorovich method [41], the quasi-Newton method [42], the conjugate 

gradient method [43], and the sequential quadratic programming method [44]. In 

practical applications, these methods need to be selected according to the actual 

situation, because they all have different complexity, produce images of different 

quality, and different sensitivity to data. 

1.1.5. Summary 

The table below shows all the solutions mentioned above and summarizes their 

advantages and disadvantages. 

Table 1.1 The advantages and disadvantages of the solutions mentioned above. 

As can be seen from the above table, these six solutions for multiphase flow 

measurement cannot be characterized by non-destructive testing, entire range of 

water/oil ratios measurement, and low error. Therefore, it is necessary to research a 

method for measuring multiphase flow with these three characteristics. 

1.2. Neural Network 

Most machine learning can be divided into supervised learning and unsupervised 

learning. Supervised learning is a task of machine learning that learning a function 

that maps an input to an output on the basic of example input-output pairs [45]. On 

the contrary, unsupervised learning is a type of machine learning algorithm that 

applied in drawing inferences from the datasets that consist of data input without 

labeled responses. However, the early form of neural network architectures did not 

learn but only a few years later, the first ideas about unsupervised learning were 

developed. However, neural networks have been around even longer in a sense 

because the early supervised neural networks were originally variants of linear 

regression methods dating back at least to the early 1800s [46]. 

Solutions Non-distractive Imageable Low error 
Low computational 

complexity 

Measure non-conductive 

multiphase flow 

Measure highly conductive 

multiphase flow 

TDR × × √ √ √ √ 

WMS × √ √ √ √ √ 

ECT √ √ √ × √ × 

ERT × √ √ × × √ 

ERTv/ECT × √ × × √ √ 

MWT √ √ × × √ √ 
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A standard neural network (NN) can consist of many simple, connected processors 

called neurons and each of them produces a sequence of real-valued activations. In 

this process, the input neurons can be activated by sensors perceiving the 

environment; other neurons are activated through weighted connections from the 

neurons activated previously. Depending on the issue and how the neurons are 

connected, some neurons may influence the environment by triggering actions, but 

it requires long causal chains of computational steps, where each step transforms 

(usually in a non-linear way) the collected activation of the network. Deep learning 

about assigning credit across many such steps accurately [46]. 

For ease of organization and understanding, only the basic backpropagation neural 

network and convolutional neural networks in deep learning are introduced here. 

1.1.1. Backpropagation Neural Network 

In the early period of pattern recognition, researchers attempted to replace hand-

designed features with a trainable multi-layer network [47]. But this solution was 

not widely understood until 1980s. It has been recognized that a simple stochastic 

gradient descent can train a multi-layer architecture [5]. The backpropagation 

procedure can be used to calculate the gradient because the inputs and internal 

weights of the module are relatively smooth.  

     

Fig. 1.15 The forward transfer in neural network and the equations 
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𝑍𝑙 = ∑ 𝑊𝑘𝑙 𝑦𝑘 

𝑘 𝜀 𝐻2 

𝑦𝑘 = 𝑓(𝑍𝑘) 

𝑍𝑘 = ∑ 𝑊𝑗𝑘 𝑦𝑗 

𝑗 𝜀 𝐻1 

𝑦𝑗 = 𝑓(𝑍𝑗) 

𝑍𝑗 = ∑ 𝑊𝑖𝑗 𝑦𝑖 

𝑖 𝜀 𝐼𝑛𝑝𝑢𝑡 

Compare outputs with correct 

answer to get error derivatives 

Output units 

Hidden units H2 

Hidden units H2 

Input units 



 

20 

 

Fig. 1.15 shows the neural network forward transfer (two hidden layers and one 

output layer) and the equation for calculating the forward channel. Each layer of 

the neural network constitutes a module and the gradient can be propagated back 

through the module. The total output Z of each unit at each layer needs to be 

calculated first because it is the weighted sum of the cell outputs in the next layer. 

Then Z will be applied a nonlinear function to obtain the output of the unit. Bias 

terms are omitted for simplification.  

In neural networks, there are a lot of nonlinear functions which are commonly used 

include rectified linear units (ReLU) (1.1), Sigmoids (1.2) and logistic functions 

logistic (1.3). 

𝑓(𝑧) = 𝑚𝑎𝑥(0, 𝑧)                         (1.1) 

𝑓(𝑧) = 1/(1 + 𝑒−𝑥)                       (1.2) 

𝑓(𝑧) =
1

1+𝑒𝑥𝑝 (−𝑧)
                          (1.3) 

Fig. 1.16 shows the backward transmission of the neural network. The output error 

derivative of each unit at each hidden layer is calculated, equal to the weighted sum 

of the error derivatives relative to the total input of the units in the upper layer. Then, 

the error derivative is converted from a derivative relative to the output into a 

derivative relative to the input. The method here is to multiply it by the gradient of 

𝑓(𝑧). 

      

Fig. 1.16 The backward transfer in neural network and the equations 
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At the output layer, the cost function is differentiated to calculate the error 

derivative with respect to the output of a unit. If the cost function for unit 𝑙 is 

0.5(𝑦𝑙 − 𝑡𝑙), where 𝑡𝑙 is the target value [48]. 

Feedforward neural network architectures, which learn to map a fixed-size input 

such as an image to a fixed-size output like a probability for each of several 

categories has been used for many applications of deep learning. A set of units 

calculates a weighted sum of their inputs from the layer before and pass the result 

by a non-linear function for the aim to go from one layer to the next. 

Neural nets and backpropagation were abandoned by the community of machine-

learning and ignored by the computer vision and speed-recognition during the late 

1990s. It was a world-wide recognition that learning effective, multistage and 

feature extractors with little prior knowledge was infeasible. However, there was a 

special type of neural network which was deep as well as feedforward. Compared 

with networks that fully connected between adjacent layers, this kind of network 

was more easy-training and better-generalized. The network stated above was the 

convolutional neural network (ConvNet) [49], [50]. During the time when neural 

networks were disliked by people, ConvNet achieved many practical successes and 

recently it has been largely accepted by the computer-vision community. 

1.1.2. Convolutional Neural Network 

ConvNets are specific in the process of data that come in the way of multiple arrays. 

For example, a color image consists of three 2D arrays including pixel intensities 

in three color channels. Actually, many data modalities are in this kind of form 

(multiple arrays) such as 1D for signals and sequences, including language; 2D for 

images or audio spectrograms as well as 3D for video or volumetric images. 

Furthermore, local connections, shared weights, pooling and the use of many layers 

are the four key ideas behind ConvNets that benefit from the properties of natural 

signals. 

A series of phases form the classic architecture of ConvNet, in which the 

convolutional layer and the pooling layer formed the first few stages. The 

convolutional layer takes the important role to detect local conjunctions of features 

from the previous layer. A local patch in the feature map of the previous layer 
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connected to each unit in the convolutional layer. A set of weights called filter banks 

are used to connect these units and patches. Then, functions such as ReLU make 

these locally weighted sums non-linear. Discrete convolution is the mathematical 

term for the filtering operation performed by the feature map. The name of the 

convolutional layer is also derived from this. 

The pooling layer takes the responsibility to mix semantically same features into 

one. The reliable detection of the motif can be done by coarse-graining the position 

of each feature for the reason that the relative positions of the features forming a 

motif can vary somewhat. A typical pooling unit calculates the maximum of a local 

patch of units in one feature map or in some feature maps. Followed by more 

convolutional and fully connected layers, two or three steps of convolution, non-

linearity and pooling are stacked. Backpropagating gradients by a ConvNet is as 

simple as by a regular deep network which allows all the weights in all the filter 

banks to be trained. For a detailed introduction to the convolutional neural network 

structure, please refer to Section 2.2. 

The classic notions of simple cells and complex cells in visual neuroscience [51], 

and the overall architecture is reminiscent of the LGN–V1–V2–V4–IT hierarchy in 

the visual cortex ventral pathway are the direct inspiration of the convolutional and 

pooling layers in ConvNets [52]. Neocognitron, which is rooted by ConvNets, to 

some extent, has similar architecture with ConvNets but did not have an end-to-end 

supervised-learning algorithm such as backpropagation [53]. The recognition of 

phonemes and simple words was done by a primitive 1D ConvNet named a time-

delay neural net [54]. 

When dating back to the early 1990s, there have been many applications of 

convolutional networks and it started with time-delay neural networks for the 

recognition of speech [55] and the reading of document [50]. The application of a 

ConvNet trained jointly with a probabilistic model that implemented language 

constraints was used in the system of document reading. 10% of all the cheques in 

the United States were read by this reading document system by the late 1900s. 

Later, Microsoft developed a number of ConvNet-based systems to recognize the 

optical character and handwriting [56]. What is more, in the early 1990s, ConvNets 
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were also tried for the detection of object in natural images which include faces as 

well as hands [57], it is also applied in the recognition of face [58]. 

Similar to the scenario that CNN has applied, multiphase flow detection is a task 

that requires a lot of complex calculations. According to Section 1.1.5, the proposed 

work should have the following characteristics: non-invasive, low error, low 

computational complexity, and suitable for entire range of water/oil ratios. 

Therefore, the possibility of microwave based multiphase flow detection using 

convolutional neural network is considered. 
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CHAPTER 2  METHODOLOGY 

As presented in the literature review, it is difficult to calculate the liquid content of 

the three-phase flow by the conventional calculation method. The current 

mainstream three-phase flow measurement method is tomography. However, it is 

impossible to accurately measure the content of water and oil at the same time, 

especially in liquid environments with a lot of water as there is prominent difference 

in water and oil permittivity. The leading-edge measurement method of three-phase 

flow uses ECT and ERT in combination for imaging, which is called ECT/ERT 

dual-modality system for imaging. However, this method is an expedient due to the 

inability to simultaneously measure high permittivity liquid and low permittivity 

liquid. 

Different from the above methods, the theoretical basis of measurement in this 

thesis is based on electromagnetic fields rather than electric fields, and the main 

measurement equipment is antenna. Antenna, as a sensor, can transmit and receive 

electromagnetic waves of different frequency bands. Since the electromagnetic 

wave has characteristics such as refraction and reflection, it is available to analyze 

the characteristics of the medium in the field by receiving different data. Therefore, 

non-destructive testing can be achieved based on electromagnetic wave/antenna 

detection methods. 

Detection of multiphase flow by using convolutional neural network (CNN) is 

inspired by image recognition. One major use of CNN is to identify and classify 

images. Besides, in recent years, there have been some achievements in dealing 

with regression issues such as housing prices prediction [5]. The advantage of this 

method is that no necessary formula derivation is required, as well as that the 

already trained model can be directly used in the prediction to save time. 

2.1. Theory of Antenna Testing 

2.1.1. Maxwell’s Equations and Wave Equation 

Maxwell's equations are a set of partial differential equations that the British 

physicist James Clark Maxwell (1831-1879) established in the 19th century to 
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describe the relationship between electric fields, magnetic fields, charge density, 

and current density. This system of equations is composed of four equations: 

Gauss's law, Gauss's law for magnetism, Faraday's law and Ampère's law with 

Maxwell's addition. Below is the mathematical expression of the equations [59]: 

𝛻 × 𝐸 = − 𝑑𝐵 𝑑𝑡⁄   

𝛻 × 𝐻 = 𝐽 + 𝑑𝐵 𝑑𝑡⁄                      (2.1) 

𝛻 ∙ 𝐷 = 𝜌 

𝛻 ∙ 𝐵 = 0 

where 𝜌 is the charge density, E is the electric field, B is the magnetic flux density, 

H is the magnetic field, 𝐽 is the current density, D is the electric displacement, 

𝛻 =
∂

∂x
�̂� +

∂

∂y
�̂� +

∂

∂z
�̂� is a vector operator. 

According to Fourier’s theory, many complex situations are composed of linear 

combinations of harmonic. In the case of a time-harmonic with the time factor 

𝑒𝑗𝜔𝑡, the frequency will be single [57]. From Equation (2.1), we have [59] 

𝛻 × 𝐸 = −𝑗𝜔𝜇𝐻  

𝛻 × 𝐻 = (𝜎 + 𝑗𝜔𝜇)𝐸                   (2.2) 

𝛻 ∙ 𝐷 = 𝜌/𝜀 

𝛻 ∙ 𝐵 = 0 

After curling, the first equation can be transformed into: 

𝛻 × 𝛻 × 𝐸 = 𝛻(𝛻 ∙ 𝐸) − 𝛻2𝐸 = − − 𝑗𝜔𝜇∇ × 𝐻 

where 𝛻2 =  𝛻 ∙ 𝛻 = ∂2

∂x2⁄ + ∂2

∂y2⁄ + ∂2

∂z2⁄ . 

Combine this result with the second and third formulas in Equation (2.2) to obtain 

𝛻2E − 𝑗𝜔𝜇(𝜎 + 𝑗𝜔𝜇)𝐸 = ∇(𝜌/𝜀)                (2.3) 

Define a value γ and let 

γ = √𝑗𝜔𝜇(𝜎 + 𝑗𝜔𝜇) = 𝛼 + 𝑗𝛽                 (2.4) 

where 𝛼  and 𝛽  are the attenuation constant and phase constant, respectively. 

These two constants could be derived from Equation (2.4): 

α = ω√𝜇𝜀 [
1

2
(√1 +

𝜎2

𝜀2𝜔2
− 1)]

1/2
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β = ω√𝜇𝜀 [
1

2
(√1 +

𝜎2

𝜀2𝜔2
+ 1)]

1/2

 

Then Equation (2.3) is available to be written as [59]: 

𝛻2E − 𝛾2E = ∇(𝜌/𝜀)                      (2.5) 

In the case of source-free region (ρ = 0), Equation (2.5) is: 

𝛻2E − 𝛾2E = 0                         (2.6) 

Here is the wave equation. 

2.1.2. Antennas to Radio Waves 

Any situation can be considered as a combination of many single frequency sources. 

If only the case of a single frequency source is considered, Maxwell's equations can 

be rewritten as [59]: 

𝛻 × 𝐸 = −𝑗𝜔𝜇𝐻  

𝛻 × 𝐻 = 𝐽 + 𝑗𝜔𝜇𝐸                      (2.7) 

𝛻 ∙ 𝐷 = 𝜌/𝜀 

𝛻 ∙ 𝐵 = 0 

Use the derivation process similar to Equation (2.3) to get: 

𝛻2E + 𝜔2𝜇𝜀𝐸 = 𝑗𝜔𝜇𝐽 + ∇(𝜌/𝜀) 

This equation links the radiated electric field (no magnetic) to source directly. The 

boundary conditions are needed to solve the equation. If the boundary is open, the 

field will disappear when the distance from the source 𝑉 to the field is infinite [59]. 

The solution of the Equation (2.7) in a uniformed medium (𝜇 and 𝜀) is [60] 

𝐸(𝑟) = −𝑗𝜔𝜇 ∫ 𝐽(𝑟′)
𝑒−𝑗𝛽∙|𝑟−𝑟′|

4𝜋|𝑟 − 𝑟′|
𝑑𝑣′

𝑣

+
1

𝑗𝜔𝜇
𝛻(𝛻 ∙ ∫ 𝐽(𝑟′)

𝑒−𝑗𝛽∙|𝑟−𝑟′|

4𝜋|𝑟 − 𝑟′|
𝑑𝑣′

𝑣

) 

Here 𝑟 is the distance vector from the origin to the observation point and 𝑟′ is 

from the origin to the source point. The radiated electric field of the time varying 

current 𝐽 (the time factor 𝑒𝑗𝜔𝑡 is omitted here) is given in this equation which 

reveals the relationship between radio waves and antennas [59], which is the 

foundation of antenna theory. 
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2.1.3. Antenna Bandwidth  

As one of the fundamental antenna parameters, Bandwidth indicates the range of 

frequencies that antenna can exactly release or receive energy. Usually, the required 

bandwidth is one of the important parameters in the antenna required for decision 

making. For instance, there are many kinds of antennas with narrow bandwidths 

which cannot be applied in the wideband operation. 

In the experiment, the frequency range in which the antenna can work below -10dB 

in free space is generally regarded as the bandwidth of the antenna. 

2.1.4. Scattering Parameters 

Fig. 2.1 shows an ordinary two-port network. 𝑎1 and 𝑎2 are the input whilst 𝑏1 

and 𝑏2 are the output at Port 1 and Port 2, respectively. This example can be used 

to describe scattering parameters: 

[𝑆] = [
𝑆11 𝑆12

𝑆21 𝑆11
]                        (2.8) 

 

Fig. 2.1 A two-port network 

If Equation (2.8) is used to link input with output, then 

[
𝑏1

𝑏2
] = [

𝑆11 𝑆12

𝑆21 𝑆11
] [

𝑎1

𝑎2
]                    (2.9) 

Thus, 

𝑆11 = Port 1 reflection coefficient = 
𝑏1

𝑎1
⁄ ; 

𝑆12 = Port 2 to Port 1 transmission coefficient/gain = 
𝑏1

𝑎2
⁄ ; 

𝑆21 = Port 1 to Port 2 transmission coefficient/gain = 
𝑏2

𝑎1
⁄ ; 

𝑆22 = Port 2 reflection coefficient = 
𝑏2

𝑎2
⁄ ; 

In fact, S-parameters are reflection and transmission coefficients not only for a 

network of 2 ports such as in this case, but also for a network of N ports. There 
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parameters were initially presented in optics where optical waves were 

decentralized by objects. Then the concepts were developed to radio waves and RF 

engineering. However, the term ‘S-parameters’ remains unchanged. 

For a 2-port loss-free network, we have 

[𝑆11]2 + [𝑆21]2 = 1 

[𝑆22]2 + [𝑆12]2 = 1                    (2.10) 

Which is equivalent to 

|𝑎1|2 + |𝑎2|2 = |𝑏1|2 + |𝑏2|2 

That is, the input power and the output power are the same. 

We can know clearly from Fig. 2.2 that a transmitting-receiving antenna system in 

the space can be regarded as a 2-port network. Furthermore, the transmission and 

reflection can be characterized by using S-parameters. 𝑆11  and 𝑆22  are the 

reflection coefficients of Antenna 1 and Antenna 2 respectively. They show that the 

antenna satisfies the antenna feed line well. 𝑆21  and 𝑆12  are the transmission 

coefficients from one antenna to another. They are decided by the features of both 

antennas, such as radiation patterns and matching, as well as the distance between 

them. 

 

Fig. 2.2 A transmitting-receiving antenna system 

2.2. Theory of CNN Model 

A convolutional neural network is made up by an input and output layer in 

combination with different hidden layers. In the hidden layer, there are usually some 

convolutional layers which convolve with multiplication or other dot product. 
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These layers are commonly connected to additional convolutions, such as pooling 

layers or fully connected layers (i.e. dense layers). Their inputs and outputs are 

hidden by the activation function and the final convolution. 

The theory of convolutional neural network is illustrated in Fig. 2.3. The input of 

CNN model is a tensor with shape (number of samples)×(width)×(height)×(depth). 

This is an attribute of convolutional layer. To illustrate, a normal picture could be 

used as an example. The picture size, such as 256× 256, means that there are 

256×256 pixels which could be describe as numerical values in this picture. Also, 

each picture has their own depth which is always called RGB of image. Thus, one 

256×256 picture could be equal to a 256×256×3 high dimensional matrix. 

 

Fig. 2.3 Simple schematic of the convolutional layer 

The input in Fig. 2.3, as a simplest example, is a 6×6×1 matrix. It will convolve 

with a pre-specified 3×3 kernel. The depth of kernel (or filter) is always equal to 

depth of input. Thus, this kernel here should have the same depth with the input. 

The multiplication would result in the orange circles which make up a new matrix. 

The followed layer is pooling layer. There are many kinds of pooling layers, and 

here a maximum pooling layer is used. It divides all the data in matrix by the same 

pre-specified size (here is 2×2) and retains only the maximum value in each part. 

After that, there will be a flattening process to flatten all the left data from the high 

dimensional matrix (width× height× depth) to a one-dimensional matrix (1× N). 

Then the fully connected layers are followed. The above process is summarized and 

drawn as Fig. 2.4, which is the complete model structure diagram. 
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Fig. 2.4 A complete structure of convolutional neural 

network with one convolutional layer 

In the multiphase flow testing, if the type and content of the liquid in the tube 

changes, the data detected by the antenna will change accordingly. In other words, 

the matrix formed by all the parameters and data 

measured by antennas has a one-to-one correspondence 

with the environment inside the tube. Analogous to image 

recognition, although it is difficult to obtain a precise 

cross-section of the liquid in the tube, each liquid cross-

section has a unique matrix corresponding to it. Thus, the 

liquid content, which could be directly measured by the 

liquid cross section in the tube, can be indirectly measured 

by analyzing the matrix. 

The length S of the data matrix is the number of 

parameters, which are always S-parameter. N is the height 

of matrix, which represents the number of frequency 

points. The signal, which collected by VNA, has real part 

and imaginary part. This could be the depth of the data 

matrix. Therefore, the size of this high dimensional matrix should be S× N× D 

(D=2). Then this data matrix is used as the input of CNN model.  

 

 

   

Fig. 2.5 The shape of 

input data. 
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CHAPTER 3  MEASUREMENTS 

In this chapter, a microwave-based system is employed to obtain the information of 

a multiphase flow inside a pipe. Unlike a real-world system, a plastic container is 

used to simulate a pipe. Different amounts of water and oil is filled into the 

container to simulate different multiphase flow. An Anritsu Vector Network 

Analyzer (VNA) and two pyramidal horn antennas are used to detect three-phase 

flow with different liquid content ratios inside the pipe/container. In the 

measurement, the two horn antennas are used to measure different amounts of 

liquids in the vertical and horizontal directions. The measured S-parameters are 

presented as high dimensional matrix before introduced into the convolutional 

neural network model for training. This neural network model is used to directly 

predict the water and oil content, thereby avoiding complicated calculation 

derivation. In data processing, raw data is extracted by VNA, then reshaped the data 

size into the required high dimensional matrix. The processed data is imported into 

the neural network model which is written by Python. 

3.1. Measurement Setup 

 
Fig. 3.1 All the devices used in the experiment (a: 250ml flask, b: 150ml 

beaker, c: two Marconi 6036/4 horn antennas, d: plastic box for simulating 

pipes, e: two-port Anritsu economy VNA MS46322B). 
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This experiment uses two horn antennas (Marconi 6036/4) of the same specification 

as a probing tool for 8 to 12 GHz, a two-port Anritsu VNA MS46322B (frequency 

range: 1MHz - 43.5GHz) as a transmitting and receiving device, a two-liter (2L) 

transparent cuboid plastic box to stimulate pipe, which contains vegetable oil and 

pure water. For accurate measurement of 5% (100 mL) of liquid, this test uses a 250 

mL flask and a 200 mL beaker to measure water and oil, respectively. Fig. 3.1 shows 

all the devices used in this experiment. 

For three-phase flow measurement, the permittivity of each phase usually has a 

large discrepancy. The permittivity of air is considered as 1 (real part of permittivity 

is 1 and imaginary part of permittivity is 0). After testing, the permittivity of 

vegetable oil and pure water is shown in the following table. 

Table 3.1 Permittivity of vegetable oil and pure water in different frequency. 

 Permittivity of Vegetable Oil Permittivity of Pure Water 

Frequency, GHz Real Part Imaginary Part Real part Imaginary Part 

8 2.32 0.81 66.32 29.13 

8.5 2.38 0.70 64.86 30.17 

9 2.31 0.58 63.56 31.34 

9.5 2.36 0.70 61.92 32.23 

10 2.24 0.60 60.61 32.91 

As shown in Fig. 3.2, the measurement of this experiment is divided into two parts. 

The first part is the two antennas placed opposite longitudinally. Then a pipe is 

placed with a certain proportion of liquid in the middle close to the two antennas. 

The current directions of the two antennas are parallel to the orientation of the pipe. 

The S-parameters of this two-port system at this liquid ratio is measured. The 

second part is to place the two antennas horizontally opposite each other, and then 

place a pipe with a certain proportion of liquid in the middle close to the two 

antennas. The current directions of the two antennas are perpendicular to the 

orientation of the pipe. The S-parameters of this two-port system at this liquid ratio 

is measured.  

During the experiment, in order to facilitate the measurement, the two-phase liquid 
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(water and oil) needs to remain stationary and layered. Since the two antennas need 

to remain opposite to each other in a straight line that is either vertical (in vertical 

testing) or parallel (in horizontal testing) to the horizontal plane, two devices for 

fixing the two antennas and the pipe need to be fabricated. 

 

Fig. 3.2 Schematic image of the installation of the two parts in 

this experiment, the orange part represents oil and the blue part 

represents water 

Fig. 3.3 and Fig. 3.4 show the device pictures for vertical and horizontal testing, 

respectively, which were built in the laboratory of the High Frequency Engineering 

Group at the University of Liverpool. 

At the time of measurement, there are twenty values to be measured (5% 

measurement accuracy) from 0% to 95%. By mixing these different contents of 

water and oil, a total of 210 liquid combinations can be obtained (Section 4.2). Each 

combination was measured five times in both vertical testing and horizontal testing, 

with the first four times as training data and the last measured data as test data. A 

total of 5×210×2=2100 data files of the form '.csv' is obtained. These are the raw 

data of this experiment. 

 

 

  

Plastic Box (Pipe) 
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Fig. 3.3 The device pictures for vertical testing 

 
Fig. 3.4 The device picture for horizontal testing 

3.1.1. Frequency Chosen 

The frequency 𝑓  and wavelength 𝜆  of electromagnetic wave inversely 

proportional. The relationship between these two parameters follows the formula 

below: 

𝜆 =
𝐶0

√𝜀𝑟 ∙ 𝑓
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where 𝐶0 is the speed of light in vacuum; 𝜀𝑟 is the relative permittivity. 

The path loss increases as the frequency of the electromagnetic wave increases. 

Diffraction is more likely to occur after the wavelength becomes longer (the object 

to be measured is circumvented). Therefore, as the size of the measured object 

determines the frequency range, a reasonable size is required to prevent excessive 

path loss which could result from high frequency.  

Fig. 3.5 is the plastic box used to simulate the pipe in this experiment. The length 

H is 125 mm, width W is 110 mm and 

height H is 150 mm. In order to ensure 

the measurement sensitivity of the 

stratified liquid, the wavelength 

should not be too long. Therefore, the 

electromagnetic wave propagation 

path is about 3 to 5 wavelengths here. 

This ensures the sensitivity of the 

measurement with an acceptable level 

of path loss. Considering the above 

reasons, 8 GHz to 10 GHz is selected 

as the measured frequency band. 

3.1.2. Antenna 

The antennas used in this experiment are Marconi 6036/4 horn antennas. The 

specifications of this type of antenna are as follows: 

Table 3.2 Specifications of Marconi 6036/4 horn antennas 

Design WR90 Standard Gain Horn 

Waveguide Size WR90 

Connector type UBR100 Waveguide Flange 

Impedance 50 Ohms 

Gain 17.2 dB 

Polarization Linear 

Fig. 3.5 The plastic box used to 

simulate a pipe 
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Size 

Length 80 mm 

Width 80 mm 

Height 150 mm 

Fig. 3.6 is the picture of Marconi 6036/4 horn antennas. To ensure that the 

bandwidth of this type of antenna could cover the frequency range in this 

experiment (8 GHz – 10 GHz), the testing of bandwidth has been done and the 

result is shown in Fig. 3.7. 

 

Fig. 3.6 Marconi 6036/4 horn antennas in University of Liverpool 

Fig. 3.7 Bandwidth of Marconi 6036/4 horn antenna. 
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The bandwidth of this type of antenna is from 6.9 GHz to 13.4 GHz as shown in the 

figure, which covers the frequency range in this experiment. 

3.1.3. Orthogonal Polarization 

If the two 2-port system experiments in Section 3.1 are to be considered as a 4-port 

system experiment, an experiment is conducted to verify that in these two 

placement methods, the cross-polarized setup receives much less power than co-

polarized setup. 

    
Fig. 3.8 Verification experiment of polarization matching 

Fig. 3.9 S21 value of two polarized setups 
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Fig. 3.8 shows the details of the experiment. The antenna is placed in the same way 

as Fig. 3.2. The S21 value of two polarized setups is shown in Fig. 3.9. The S21 

value of cross-polarized setup is 40 dB more than the value of co-polarized setup. 

3.2. Procedure 

3.2.1. Data Processing 

Table 3.3 shows an example of the raw data recorded by the VNA. There are four 

parts labeled by number 1, 2, 3 and 4 in this table which correspond to S11, S12, 

S21 and S22 respectively. Each part has three columns, namely FREQ.GHZ 

(frequency), REAL (the value of real part) and IMAG (the value of imaginary part). 

The file exported by the VNA is in ‘.csv’ format. By utilizing MATLAB, the data 

in these files can be preprocessed. 

Table 3.3 An example of the raw data which is recorded by the VNA 

PNT 
FREQ1.

GHZ 

REAL

1 
IMAG1 

FREQ2.

GHZ 
REAL2 IMAG2 

FREQ3.

GHZ 
REAL3 IMAG3 

FREQ4.

GHZ 
REAL4 IMAG4 

1 8 
-1.09E-

01 
9.48E-03 8 2.00E-03 -1.74E-03 8 1.57E-03 -7.30E-04 8 -4.01E-02 -1.89E-01 

2 8.002 
-1.16E-

01 
1.18E-02 8.002 1.79E-03 -1.68E-03 8.002 1.73E-03 -5.65E-04 8.002 -5.14E-02 -1.88E-01 

3 8.004 
-1.15E-

01 
1.27E-02 8.004 1.79E-03 -1.52E-03 8.004 1.81E-03 -4.28E-04 8.004 -5.60E-02 -1.88E-01 

4 8.006 
-1.13E-

01 
1.36E-02 8.006 1.78E-03 -1.40E-03 8.006 1.98E-03 -3.32E-04 8.006 -6.03E-02 -1.88E-01 

5 8.008 
-1.12E-

01 
1.48E-02 8.008 1.94E-03 -1.31E-03 8.008 2.20E-03 -2.84E-04 8.008 -6.44E-02 -1.88E-01 

6 8.01 
-1.10E-

01 
1.58E-02 8.01 2.07E-03 -1.34E-03 8.01 2.52E-03 -3.19E-04 8.01 -6.86E-02 -1.88E-01 

7 8.012 
-1.08E-

01 
1.68E-02 8.012 2.21E-03 -1.47E-03 8.012 2.78E-03 -4.77E-04 8.012 -7.28E-02 -1.87E-01 

8 8.014 
-1.06E-

01 
1.79E-02 8.014 2.34E-03 -1.56E-03 8.014 2.99E-03 -7.57E-04 8.014 -7.68E-02 -1.86E-01 

9 8.016 
-1.04E-

01 
1.90E-02 8.016 2.47E-03 -1.77E-03 8.016 3.13E-03 -1.16E-03 8.016 -8.04E-02 -1.85E-01 

10 8.018 
-1.02E-

01 
2.00E-02 8.018 2.44E-03 -2.11E-03 8.018 3.16E-03 -1.54E-03 8.018 -8.38E-02 -1.84E-01 

11 8.02 
-1.00E-

01 
2.09E-02 8.02 2.25E-03 -2.38E-03 8.02 3.10E-03 -1.95E-03 8.02 -8.72E-02 -1.83E-01 

12 8.022 
-9.87E-

02 
2.21E-02 8.022 2.16E-03 -2.57E-03 8.022 2.79E-03 -2.23E-03 8.022 -9.04E-02 -1.82E-01 

… … … … … … … … … … … … … 

… … … … … … … … … … … … … 

994 9.986 
-1.31E-

01 
-1.21E-01 9.986 -7.76E-04 -4.23E-04 9.986 -7.33E-04 -1.87E-04 9.986 -1.04E-01 1.29E-01 

995 9.988 
-1.33E-

01 
-1.21E-01 9.988 -8.25E-04 -3.04E-04 9.988 -6.91E-04 -8.90E-05 9.988 -1.01E-01 1.32E-01 

996 9.99 
-1.34E-

01 
-1.21E-01 9.99 -8.02E-04 -1.99E-04 9.99 -6.15E-04 4.30E-05 9.99 -9.87E-02 1.35E-01 

997 9.992 
-1.35E-

01 
-1.21E-01 9.992 -8.00E-04 -5.29E-05 9.992 -5.38E-04 1.76E-04 9.992 -9.59E-02 1.39E-01 

998 9.994 
-1.35E-

01 
-1.22E-01 9.994 -7.26E-04 9.62E-05 9.994 -4.13E-04 2.89E-04 9.994 -9.29E-02 1.42E-01 

999 9.996 
-1.36E-

01 
-1.22E-01 9.996 -6.22E-04 2.35E-04 9.996 -2.33E-04 3.80E-04 9.996 -8.98E-02 1.45E-01 

1000 9.998 
-1.37E-

01 
-1.23E-01 9.998 -4.62E-04 3.32E-04 9.998 -6.26E-05 3.05E-04 9.998 -8.64E-02 1.48E-01 

1001 10 
-1.38E-

01 
-1.23E-01 10 -3.57E-04 3.01E-04 10 7.61E-05 2.33E-04 10 -8.29E-02 1.51E-01 
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In MATLAB, the built-in method ‘csvread’ is used to read csv files. In order to 

ensure that information is retained to the maximum extent, the first 1000 data are 

extracted from the data of 1001 frequency points, which is convenient for the 

subsequent convolution process using Python. As aforementioned in Section 2.2, 

the ideal high-dimensional matrix imported into python should be S×N×D, where 

S is the number of S parameters, N is the number of frequency points, and the 

value of D is 2, which means two parts of signal (the real part and the imaginary 

part). Section 3.1.3 mentions one 2-port horizontal testing and one 2-port vertical 

testing will be used to simulate one 4-port testing. In order to detect the training 

accuracy of the 4-port testing compared to the 2-port testing, the 2-port 

measurement data will be imported into the same model for training. However, 

since the number of S-parameters of the data (2 sets of 2-port S-parameters), 

which requires an 8×1000×2 high dimensional matrix for the raw data. In other 

words, the model's input size is set to 8. Accordingly, a set of 2-port measured data 

also needs to be processed into a matrix of size 8×1000×2. Therefore, when 

processing the experimental data of horizontal/vertical testing only, the original 

data is processed into a matrix of size 4×1000×2. Repeat this step to process 

another identical matrix. The two matrices of size 4×1000×2 are then spliced into 

a matrix of size 8×1000×2 and imported into the model. The shape of three input 

matrices (2-port system of horizontal testing only, 2-port system of vertical testing 

only, 4-port system of horizontal and vertical testing) are shown in Fig. 3.106. 

 

Fig. 3.10 The shape of three input matrices 
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When importing MATLAB processed data into Python, the ‘reshape’ operation in 

Python is used. In Python, since ‘reshape’ is a reverse fill, for the 8×1000×2 high-

dimensional matrix, ‘reshape’ is filled from ‘2’ first, then filled with 1000×2, and 

finally an 8× 1000× 2 high-dimensional matrix is formed after repeating this 

process 8 times. Therefore, when processing raw data, the data has been processed 

in MATLAB as 2×1000×8 (or 2×8000) format and exported as a '.mat' file. Then 

we use 'sio.loudmat' in Python to read the exported ‘.mat’ files. The figure below 

shows the data processing flow chart 

 

Fig. 3.11 Data processing flow chart 

For the target matrix that needs to be imported into Python, its size should be the 

number of samples multiplied by the number of outputs (water and oil content). 

For more convenient automatic entry of data, the files’ names can be saved as 

‘water+A+oil+B’ when exporting data from the VNA, where A and B are the 

      
       
        

      

              

        

           

         

        

           

        



 

41 

 

volume percentages of water and oil, respectively. Then in MATLAB, regular 

expressions are used to extract the values of A and B, which are subsequently 

recorded in the target matrix. 

3.2.2 Neural Network Model Design 

The convolutional neural network (CNN) model used in this experiment is 

designed on Keras. Keras is an open source neural network library written in 

Python. It supports running on top of TensorFlow, Microsoft Cognitive Toolkit, 

Theano or PlaidML. Keras is developed to achieve rapid experimentation of deep 

neural networks with the advantages of being user-friendly, modular and scalable. 

The output is a matrix of size 2×1, which are water content and oil content. Three 

convolutional layers and two dense layers are used in this model. Mean squared 

error (MSE) is chosen as the loss function metric. The network structure is 

demonstrated in Fig. 3.12. 

This network structure figure has the following description: 

1. A ReLU operation is performed after each convolutional layer to improve the 

nonlinear characteristics of the network. 

2. The main purpose of the 1×1 convolutional layer is to reduce the dimension 

as well as to correct the linear activation (ReLU in this case). For example, the 

output size of the previous layer is 100×100×128. After 5×5 convolutional 

layer with 256 channels (stride size = 1, padding size = 2), the output data size 

is 100 × 100 × 256, and the number of convolution layer parameters is 

128×5×5×256=819200. If the output of the above layer passes through the 

1× 1 convolutional layer with 32 channels and then the 5× 5 convolutional 

layer with 256 outputs, the output size is still 100 × 100 × 256, but the 

convolution parameter has been reduced to 128 × 1 × 1 × 32 + 

32×5×5×256=204800, a dramatic reduction of about 4 times.  
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Fig. 3.12 Network model structure 
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The network structure details are as follows: 

1. Input: 

The original input matrix is 8×1000×2. 

2. The first layer (convolutional layer): 

Use 7 × 11 convolution kernel (stride is 1) and 64 channels, output is 

8× 1000× 64. Perform ReLU operation after convolution. After 1× 5 max 

pooling (stride is 1×2), the output is 8×500×64. 

3. The second layer (convolutional layer): 

Use 64 convolution kernels with size 1×1 to reduce the dimensionality before 

the 3×3 convolution kernel and perform ReLU operation. Patch size becomes 

8× 500× 64. Then the result is convolved by 192 3× 3 convolution kernels 

(padding is 1) and output size is 8×500×192. Perform ReLU operation after 

convolution. After 1 × 5 max pooling (stride is 1 × 2), the output size is 

8×250×192. 

4. The third layer (convolutional layer): 

Use 96 convolution kernels with size 1×1 to reduce the dimensionality before 

the 3×3 convolution kernel and perform ReLU operation. Patch size becomes 

8× 250× 96. Then the result is convolved by 128 3× 3 convolution kernels 

(padding is 1) and output size is 8×250×128. Perform ReLU operation after 

convolution. After 1× 5 average pooling (stride is 1× 1), the output size is 

8×250×128. 

Table 3.4 The network structure details. 

Type 
Patch Size / 

Stride 
Output Size Depth 

#3×3 

reduce 
#3×3 Params 

Convolution 7×11 / 1 8×1000×64 1 - - 9920 

Max pool 1×5 / 2 8×500×64 0 - - - 

Convolution - 8×500×192 2 64 192 110784 

Max pool 1×5 / 2 8×250×192 0 - - - 

Convolution - 8×250×128 2 96 128 110720 

Average pool 1×5 / 1 8×250×128 0 - - - 

Flatten - 1×1×256000 - - - - 

Linear - 1×1×256 1 - - 65536k 

Linear - 1×1×2 1 - - - 
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CHAPTER 4  RESULTS AND DISCUSSION 

4.1. Model Training Result 

In machine learning, gradient descent is an iterative optimization algorithm that 

looks for the best result (the minimum of the curve). To find a local minimum of a 

function using gradient descent, one takes steps proportional to the negative of the 

gradient (or approximate gradient) of the function at the current point. This 

algorithm is iterative, meaning that it has to be applied multiple times to get the 

optimization results. The iterative nature of the gradient descent allows the 

graphical representation of the under-fitting to evolve in order to obtain the best fit 

to the data. 

When the data size is too large to be input at one time, the data could be divided 

and input into computer as small pieces one by one. The number of data in these 

small pieces is called batch size. These batches update the weight of the neural 

network at the end of each step and fit the given data. During training, a batch of 

training image is trained once through the network (one forward propagation + one 

backward propagation). The weight is updated once per iteration. At the time of 

testing, one batch of test images passes through the network once (one forward 

propagation). When a completed data set passes through the neural network once 

and returns once, the process is called one epoch. The number of batches required 

to complete one epoch is called iterations. 

For the training data, a validation split value is set to divide all the training data to 

two part: training data and validation data. Training data is used to train the model 

as the name implies, and validation data is used to select and modify the model. 

After training, testing data is needed to show how the expected condition of this 

model will be under real conditions. The biggest difference between testing data 

and validation data is that the model or parameters are modified by validation data 

only. In this model, the value of batch size is 64 and the value of epoch is set to 300. 

15% of training data is randomly selected as validation data. In this neural network 

model, mean squared error (MSE) is chosen as loss function. After testing, the 

training and validation error reach convergence by training 300 epochs for this 

convolutional neural network model. Fig. 4.1 illustrates the train and validation 
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error by training 300 epochs in Python. 

Fig. 4.1 Training and validation error for 300 epochs 

As can be seen in the figure, the validation loss is higher than the training loss, 

indicating that there is data overfitting in the model training. This situation is 

common when using neural network models for regression analysis. The training 

accuracy of 300 epochs in the figure is acceptable in this experiment. 

4.2. Horizontal Testing and Vertical Testing 

It is inaccurate to combine the data of horizontal testing and vertical testing as the 

output data of the 4-port system. But due to the characteristics of this experiment, 

only the content of different phase is changed. No change or movement of the 

antennas and the pipe occurred during the measurement. In other words, whether it 

is the data of the 4-port system or the splicing data of the two 2-ports, the influence 

of the environment outside the tube and the mutual influence between the antennas 

are constant during a complete experiment. It is also demonstrated in Section 3.1.3 

that there is no significant influence between the antenna placed laterally and the 

antenna placed longitudinally in terms of orthogonal polarization (the effect on the 

signal between the opposing antennas is not significant). Thus, this data 

combination was built to simulate the measurement data of the 4-port antenna 
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system and compare the training results with the results of the 2-port system after 

the model training. 

As mentioned in Section 3.1, there are a total of 210 combinations of different three-

phase liquid contents in the measurement. Table 4.1 and Table 4.2 show all 

combinations and list the prediction of oil content and water content for each 

combination. 

Table 4.1 The prediction of oil content tested by the neural network which use horizontal data 

and vertical data as input. 

 
The true content of oil in the pipeline, % 
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0 1.2 6.4 9.3 14.3 20.9 26.2 30.2 35.8 39.1 44.6 49.8 55.9 61.8 66.0 69.3 74.6 80.2 85.7 90.0 94.4 

5 0.3 4.1 10.2 15.2 19.3 25.9 30.3 36.1 40.8 45.9 51.9 55.4 59.6 65.6 69.8 74.7 80.8 84.8 88.7  

10 0.4 5.0 10.5 15.9 19.7 25.7 30.0 35.6 39.6 46.5 51.0 55.3 61.0 65.1 69.7 73.9 80.2 84.6   

15 0.2 5.4 9.9 15.8 20.2 25.8 30.6 34.0 40.5 45.6 49.7 55.5 61.1 65.3 70.1 75.5 79.9    

20 0.7 5.4 9.3 16.5 19.6 25.3 31.0 35.6 40.7 45.6 51.2 55.9 60.2 65.2 70.0 74.5     

25 0.3 5.6 9.5 15.6 20.4 25.8 29.3 34.9 39.2 44.6 49.8 55.1 60.7 65.0 70.8      

30 0.2 4.4 10.0 15.0 19.5 25.6 29.5 33.8 39.6 44.6 49.2 54.8 59.7 64.9       

35 0.1 4.9 9.0 14.7 19.3 25.0 28.6 34.6 40.5 45.0 49.8 54.7 60.8        

40 0.1 4.2 9.6 13.8 19.6 23.6 28.2 34.6 39.0 44.8 49.7 54.3         

45 0.1 4.6 10.1 15.5 19.7 24.2 28.5 34.5 38.8 44.4 50.4          

50 0.2 3.6 8.6 15.3 19.3 24.2 28.9 34.6 39.3 44.7           

55 0.2 4.8 9.1 15.8 19.3 25.3 28.7 34.7 40.0            

60 0.0 4.6 8.9 14.7 19.0 23.1 31.6 36.7             

65 0.3 3.9 8.7 13.3 20.9 26.3 32.0              

70 0.1 6.4 9.6 13.1 22.7 26.7               

75 0.1 5.9 9.6 17.9 21.9                

80 1.3 7.6 8.7 15.2                 

85 0.2 6.0 11.0                  

90 0.1 9.1                   

95 0.1                    

The predicted value of the oil and water are separately compiled and analyzed for 

better analysis result. It is easy to see from Table 4.1 that almost all the prediction 

results of oil have little error compared with the theoretical value. A relatively large 

error in the prediction of 5% oil only occurs when the water content reaches 90%.  

Fig.4.2 and Fig. 4.3 are comparison diagrams based on the data in Table 4.1 which 

are more intuitive than the comparison of the predicted and theoretical values. 
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Fig. 4.2 3D Comparison of theoretical value and predicted value (Table 4.1). 

 Fig. 4.3 2D Comparison of theoretical value and predicted value (Table 4.1). 
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In 3D Comparison, the closer the predicted image is to the standard value, the 

smaller the error. In order to calculate the error value, here we use Error Sum of 

Square (SSE) as the figure of merit. 

SSE =
1

𝑛
∑(𝑥𝑖 − �̅�)2

𝑛

𝑖=1

 

The following table shows the SSE value in each content of oil. 

Table 4.2 The SSE value in each content of oil based on Table 4.1. 

The SSE value of all the data in Table 4.1 is 0.8072. The water content predicted by 

neural network model is discussed below.  

Table 4.3 The prediction of water content tested by the neural network which use horizontal data 

and vertical data as input. 

 
The true content of water in the pipeline, % 
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0 1.0 5.7 10.0 14.6 18.6 24.3 29.8 34.9 39.6 44.2 50.5 55.9 60.7 58.2 59.1 55.8 61.8 57.8 57.3 50.4 

5 0.2 6.1 9.8 14.4 20.0 23.6 29.1 34.7 39.0 44.5 49.5 55.4 59.1 61.9 61.6 63.6 62.1 66.7 64.2  

10 0.0 5.7 9.1 14.2 18.7 23.5 28.2 34.2 38.5 44.9 50.7 55.3 60.9 57.1 64.1 65.2 63.8 64.3   

15 0.1 4.9 9.8 14.3 18.7 23.1 29.3 33.6 39.7 44.4 50.5 55.5 60.3 60.2 59.1 58.6 61.7    

20 0.1 4.5 9.0 14.3 19.4 24.4 29.4 34.2 39.6 44.0 49.9 55.9 60.6 59.7 56.9 59.9     

25 0.1 4.9 8.9 13.8 19.0 24.7 28.5 34.6 39.6 44.2 51.0 55.1 60.2 60.4 59.6      

30 0.3 4.6 9.3 13.5 19.1 24.3 28.9 35.0 39.9 45.1 50.4 54.8 58.6 62.1       

35 0.1 4.6 9.5 14.3 18.5 24.2 28.8 34.4 39.6 45.2 50.7 54.7 58.2        

40 0.1 4.8 9.4 13.8 19.3 23.8 28.6 34.2 39.7 45.3 51.1 54.3         

45 0.3 4.8 9.8 13.6 19.2 24.3 29.0 34.9 40.0 44.9 50.7          

50 0.2 4.6 10.3 13.4 19.3 24.4 28.4 34.2 39.9 44.4           

55 0.2 4.7 8.6 14.5 18.8 24.0 29.0 34.3 40.5            

60 0.2 4.5 9.3 14.0 19.0 24.0 29.1 34.3             

65 0.2 4.6 9.8 14.1 18.9 24.3 29.0              

70 0.2 4.8 9.7 13.5 19.2 24.0               

75 0.4 4.4 8.9 13.5 19.3                

80 0.3 4.1 9.0 15.0                 

85 0.3 4.3 10.0                  

90 0.3 3.9                   

95 0.2                    

Theoretical 

value, % 
0 5 10 15 20 25 30 35 40 45 

SSE  0.216 1.86 0.632 1.302 1.027 1.066 1.367 0.672 0.528 0.432 

Theoretical 

value, % 
50 55 60 65 70 75 80 85 90 95 

SSE  0.715 0.306 0.859 0.216 0.212 0.392 0.183 0.23 0.845 0.36 
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Fig. 4.4 3D Comparison of theoretical value and predicted value (Table 4.3). 

Fig. 4.5 2D Comparison of theoretical value and predicted value (Table 4.3). 
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It can be seen from the above two figures that the model is more accurate when the 

predicted water content is below 60%. When it is higher than 60%, the predicted 

result is no longer accurate. A table of the SSE values in each content of water is 

shown below. 

Table 4.4 The SSE values in each content of water based on Table 4.3. 

And the SSE value of all the data in Table 4.3 is 40.5. 

4.3. Horizontal Testing Only 

The purpose of training and testing the data of the 2-port system separately is to test 

the effect of increasing the number of antennas on the accuracy of the predicted 

results. 

Table 4.5 The prediction of oil content tested by the neural network which only use horizontal data as input. 

 
The true content of oil in the pipeline, % 
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0 1.4 5.7 7.1 13.6 18.5 24.5 13.9 33.7 38.9 43.9 48.8 54.4 61.0 65.7 68.7 75.0 80.1 85.5 90.1 92.3 

5 0.5 4.8 8.9 12.5 18.5 24.2 29.3 33.8 38.6 43.8 48.3 56.4 59.0 63.7 69.6 78.0 82.1 83.5 88.1  

10 0.7 5.0 8.4 29.5 21.2 25.5 29.3 34.7 38.8 43.3 50.4 53.6 58.0 64.1 67.4 72.7 80.0 72.0   

15 0.3 15.3 9.0 14.9 20.1 23.8 28.7 30.5 40.4 44.2 50.5 55.7 59.3 64.8 70.0 74.1 73.6    

20 1.3 5.2 10.3 15.3 31.8 25.3 29.2 37.1 39.1 43.2 49.3 52.9 57.5 66.5 69.4 73.6     

25 0.4 5.3 11.1 10.7 12.1 24.5 30.3 34.2 38.8 42.7 48.5 47.8 60.0 65.0 60.6      

30 0.3 20.4 9.2 14.7 21.0 25.2 36.7 33.6 40.0 44.3 21.5 58.5 60.0 64.4       

35 0.1 4.1 10.1 15.5 3.7 32.0 28.8 40.2 39.2 45.3 48.1 54.7 59.6        

40 0.0 10.9 9.6 14.0 19.6 25.6 29.0 35.0 40.7 44.4 50.0 49.0         

45 0.1 3.2 11.0 28.6 19.8 24.8 41.6 33.7 38.5 37.1 40.6          

50 0.2 11.7 12.5 14.9 19.1 24.4 25.0 21.8 38.7 42.7           

55 0.2 9.0 9.5 15.2 15.4 23.8 28.3 31.4 27.9            

60 0.2 0.4 8.7 15.6 17.9 21.8 22.8 27.0             

65 4.1 0.5 11.5 20.3 25.0 26.1 29.5              

70 1.1 5.4 12.4 27.0 31.0 31.1               

75 1.2 5.3 12.2 31.4 34.2                

80 1.1 10.3 14.9 39.0                 

85 2.1 11.4 13.6                  

90 1.4 13.5                   

95 1.4                    

Theoretical 

value, % 
0 5 10 15 20 25 30 35 40 45 

SSE  0.097 0.338 0.507 1.108 1.01 1.045 1.298 0.472 0.362 0.31 

Theoretical 

value, % 
50 55 60 65 70 75 80 85 90 95 

SSE  0.46 0.306 0.975 28.42 103.8 218.3 312.2 501.1 867.5 1989.1 
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Fig. 4.6 3D Comparison of theoretical value and predicted value (Table 4.5). 

Fig. 4.7 2D Comparison of theoretical value and predicted value (Table 4.5). 
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Table 4.5 illustrates the prediction of oil content tested by the neural network which 

only uses horizontal data as input. The error of the data can be clearly seen from 

Figures 2 and 3. Therefore, if only horizontal testing data are used for training and 

detection, a successful prediction could still be achieved, though the accuracy is not 

high enough. The SSE value of the data are shown as follows. 

Table 4.6 The SSE values in each content of water based on Table 4.5. 

The SSE value of all the data in Table 4.3 is 26.6. 

The predicted results of water content are below. 

Table 4.7 The prediction of water content tested by the neural network which only use horizontal data as input. 

 
The true content of water in the pipeline, % 
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0 2.5 5.0 11.1 15.5 20.1 26.3 29.1 35.0 39.8 44.0 50.0 55.2 58.5 16.0 28.6 17.2 25.4 54.9 28.4 27.6 

5 4.4 6.7 10.0 10.5 20.1 24.8 19.2 24.8 15.1 44.6 11.8 4.4 6.4 16.3 61.4 64.6 63.6 63.6 62.0  

10 2.3 2.1 8.9 14.5 20.0 25.0 30.0 34.3 40.6 43.5 46.6 53.0 58.7 62.3 64.0 65.1 65.7 66.1   

15 1.3 4.1 10.4 15.4 20.0 27.7 30.3 34.6 40.0 40.9 50.2 53.4 56.5 60.1 59.5 58.3 53.3    

20 2.2 6.8 9.6 14.0 21.1 28.7 29.7 25.7 38.7 44.1 48.8 52.6 59.1 59.7 60.8 56.8     

25 0.9 5.6 11.0 16.3 20.0 24.6 28.7 33.9 35.9 43.9 48.4 53.5 57.7 59.1 58.3      

30 6.3 5.1 10.5 15.8 21.3 25.7 27.7 34.9 38.6 44.3 45.4 51.6 59.1 57.3       

35 1.4 5.5 9.7 17.0 19.9 25.5 30.0 40.3 38.6 43.5 45.5 52.8 58.7        

40 0.7 4.8 11.0 14.1 20.5 25.0 28.3 33.9 41.7 43.2 48.3 48.3         

45 1.7 4.2 12.0 14.7 19.7 23.3 29.4 34.3 39.1 42.4 48.6          

50 1.0 5.8 9.8 15.7 19.2 24.5 49.4 34.5 39.0 48.6           

55 1.1 4.4 10.5 19.7 17.2 24.0 28.9 35.0 38.2            

60 1.0 5.1 10.1 13.4 20.3 24.0 28.4 34.2             

65 0.9 5.5 10.1 13.5 21.6 25.4 28.6              

70 0.7 5.0 11.6 13.4 20.0 26.4               

75 0.7 4.9 11.6 17.3 20.1                

80 0.6 4.5 11.6 11.9                 

85 0.6 5.5 9.6                  

90 0.5 4.7                   

95 0.5                    

Theoretical 

value, % 
0 5 10 15 20 25 30 35 40 45 

SSE  1.694 32.98 4.129 84.75 53.03 6.855 37.46 23.88 13.21 7.577 

Theoretical 

value, % 
50 55 60 65 70 75 80 85 90 95 

SSE  91.17 12.15 1.613 0.806 16.22 3.412 11.35 57.17 1.81 7.29 
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Fig. 4.8 3D Comparison of theoretical value and predicted value (Table 4.7). 

Fig. 4.9 2D Comparison of theoretical value and predicted value (Table 4.7). 
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Fig. 4.8 and 4.9 show the predicted results of water content. Results are similar to 

the water predicted results in Section 4.2 to some extent, but also with lower 

accuracy.  

The SSE value of the data are shown in Table 4.7 below. The SSE value of all the 

data in Table 4.7 is 166.57. 

Table 4.8 The SSE values in each content of water based on Table 4.7. 

4.4. Vertical Testing Only 

For the same purpose in the last section, the experimental data of the vertical testing 

is also imported into the model for training and testing to check the prediction 

results. 

Table 4.9 The prediction of oil content tested by the neural network which only use vertical data as input. 

 
The true content of oil in the pipeline, % 
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0 34.8 10.0 16.3 29.0 15.8 21.7 11.5 51.6 42 56.9 43.0 40.3 35.2 57.3 62.5 60.2 51.1 54.6 60.2 62.7 

5 5.4 6.2 8.1 13.7 14.9 14.5 11.5 16.5 11.3 25.5 32.8 16.4 11.9 15.0 9.1 24.4 10.3 36.2 18.3  

10 5.6 10.8 7.8 25.6 12.2 19.2 21.2 19.8 27.1 14.6 11.8 21.7 36.7 22.9 23.5 17.6 14.1 42.1   

15 1.2 21 11.7 19.3 36.7 17.1 12.7 13.2 27.2 21.2 27.5 13.1 10.3 18.1 39.6 27 27.3    

20 2.1 3.7 2.5 18.8 19.8 17.2 37.1 9.4 10.1 20.3 32.3 25.1 23.5 17.9 10.6 32.0     

25 3.7 2.7 3.6 16.2 10.3 19.2 25.0 22.7 27.1 8.2 8.2 26.5 31.4 28.5 21.5      

30 1.4 3.0 13.8 20 16.6 10.2 8.4 21.5 26.7 25.8 20.5 25.3 7.9 25.4       

35 0.9 7.1 3.9 17.1 25.7 19.1 22.9 7.1 8.3 22.6 23.8 16.3 13.3        

40 4.3 3.0 3.9 9.8 11.3 21.7 22.1 10.2 17.2 15.9 9.3 24.2         

45 1.8 7.2 7.2 12.8 13.4 10.2 13.8 17.9 21.2 10.8 8.7          

50 2.8 1.9 3.3 18.6 9.3 8.5 11.9 24.5 11.5 25.2           

55 3.6 3.3 5.2 9.8 8.5 14.9 13.6 5.3 9.7            

60 1.5 1.4 5.4 7.1 9.1 17.5 10.7 7.9             

65 8.8 2.2 1.5 11.0 5.5 3.6 14.9              

70 17.9 4.4 3.2 15.6 5.0 5.2               

75 1.1 4.9 5.5 9.0 11.0                

80 4.3 5.9 1.4 5.0                 

85 13.2 2.5 1.0                  

90 0.7 7.9                   

95 0.6                    

Theoretical 

value, % 
0 5 10 15 20 25 30 35 40 45 

SSE  4.475 0.974 0.957 4.352 0.901 2.058 36.43 17.16 54.23 4.358 

Theoretical 

value, % 
50 55 60 65 70 75 80 85 90 95 

SSE  152.1 292.9 362.2 703.7 359.3 831.4 1042 573.7 2289 4543 
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Fig. 4.10 3D Comparison of theoretical value and predicted value (Table 4.9). 

Fig. 4.11 2D Comparison of theoretical value and predicted value (Table 4.9). 
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Different from the results in Section 4.2 and 4.3, the predicted result of oil content 

with vertical data only as input is unsatisfying. Table 4.9 illustrates the prediction 

result and the error of data based on Figures 2 and 3. Results showed that it is 

difficult to predict the oil content by training the model with vertical testing data 

only. Table 4.10 shows the SSE value of the data in Table 4.9. 

Table 4.10 The SSE values in each content of water based on Table 4.9. 

The SSE value of all the data is 575.67 in this part.  

Below is the prediction of water content. 

Table 4.11 The prediction of oil content tested by the neural network which only use vertical data as input. 

 
The true content of water in the pipeline, % 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 

T
h
e 

tr
u
e 

co
n
te

n
t 

o
f 

o
il

 i
n
 t

h
e 

p
ip

el
in

e,
 %

 

0 1.2 34.4 30.2 38.5 52.3 43.8 35.7 53.5 40.4 38.8 52.6 56.4 52.6 28.7 49.1 59.6 42.6 26.1 63.1 60.1 

5 10.1 13.3 14.9 6.6 56.5 56.6 49.4 21.9 35.5 24 36.1 50.6 54.1 50.3 44.6 51.6 50.5 57.0 40.1  

10 1.1 11.9 23 28.9 19.4 46.8 42.9 31.6 36.8 51.5 48 37.5 54.8 59.4 49.6 52.2 62.7 61.2   

15 3 6.1 24.6 14.2 17.7 40.2 35.7 26.1 37.4 50.3 42.6 19.3 50.3 55.3 39.7 38.4 57.2    

20 1.3 7.9 26 32.3 30.8 24.8 41.7 41.6 26 32.9 50 50.6 22.1 53.2 51.5 47.6     

25 6.0 4.9 18.7 30.5 18.4 20.0 42.8 43.1 29.9 38.9 53.9 51.1 27.3 58.4 55.5      

30 1.9 6.1 20.4 18.9 17.8 31.9 22.1 27.3 42.2 24.5 24 49.9 47.8 26.2       

35 4.1 14.3 18.3 14.2 43.1 39.3 27.7 45.1 51 41.4 18.9 54.9 53.8        

40 2.1 7.4 6.2 27 21.6 10.7 29.9 28.4 20.9 18.6 26.1 28.6         

45 3.5 6.3 36.9 17.4 16.6 46.1 43.5 40.5 33 52.3 51.7          

50 3.4 10.1 24.0 9.0 11.6 33.3 21.7 13.2 32 43.5           

55 3.1 12.9 11.6 40.0 29.6 21.4 23.4 42.4 38.6            

60 2.7 4.9 16.3 29.2 17.5 7.7 33.8 41.5             

65 3 12.6 21.8 11.2 19.4 28.2 35.2              

70 3.2 23.9 12.6 17.8 32.5 41.0               

75 4.8 9.2 11.5 24.0 22.4                

80 3.2 5.1 33.6 30.8                 

85 4.0 11.0 28.0                  

90 3.2 21.4                   

95 4.2                    

Theoretical 

value, % 
0 5 10 15 20 25 30 35 40 45 

SSE  96.56 20.5 34.87 38.85 95.16 138.4 226.8 440.4 500.3 659.6 

Theoretical 

value, % 
50 55 60 65 70 75 80 85 90 95 

SSE  929 1067 1623 1664 2122 2045 3203 1715 3014 1043 
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Fig. 4.12 3D Comparison of theoretical value and predicted value (Table 4.11). 

Fig. 4.13 2D Comparison of theoretical value and predicted value (Table 4.11). 
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From the figures shows above, the prediction of water content is terrible. This 

means it is also difficult to predict the oil content by training the model with only 

the data of the vertical testing. In Section 4.5 these results will be discussed carefully.  

Table 4.12 shows the SSE value of the data in Table 4.11. 

Table 4.12 The SSE values in each content of water based on Table 4.11. 

The SSE value of all the data is 246.61 in this part.  

4.5. Discussions 

The results of the model training are satisfactory. Although a certain degree of 

overfitting occurs (validation loss is higher than train loss), it is normal in regression 

machine learning. 

In the pre-processing of the data, the integration of the measurement data of 

horizontal testing and vertical testing is selected, and the integrated new data is 

imported into the model for training in order to improve the accuracy by increasing 

the data dimension. However, in order to reflect the effect of this practice, the 

measurement data of the horizontal testing or the vertical testing is also processed 

separately into the same size data as explained in the aforementioned text, and the 

same model is imported for learning and detection. The prediction results of the 

neural network trained with these input data are represented by Error Sum of Square 

as the figure of merit, and the results are shown in the following table: 

Table 4.13 SSE values for oil/water predictions from different neural networks. 

 Horizontal + Vertical Horizontal only Vertical only 

Liquid Oil Water Oil Water Oil Water 

Total 

SSE 
0.8072 40.50 26.60 166.57 575.67 246.61 

Smaller SSE values mean smaller measurement errors [61]. Therefore, when the 

Theoretical 

value, % 
0 5 10 15 20 25 30 35 40 45 

SSE  64.77 100.6 184.9 161 211.5 242.2 93.74 117 78.42 174.5 

Theoretical 

value, % 
50 55 60 65 70 75 80 85 90 95 

SSE  249.1 262.2 363 478.2 494.8 679 772 1607 1607 1218 
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SSE is close to 0, the model selection and fitting are better, and the data prediction 

is more successful. 

The results of Section 4.2 indicate that the network is available, and a high accuracy 

neural network could be trained using horizontal and vertical testing data as input. 

Although there are limits on the prediction of water content, the demand at the 

application level is mainly an accurate prediction of oil content. The results of 

Section 4.3 and 4.2 are similar, indicating that it is also possible to train the model 

to achieve the prediction of water/oil content through the data of horizontal testing, 

but the accuracy of this method is much lower. The results of Section 4.4 indicate 

that the measurement data obtained in vertical testing cannot be used alone to train 

the model. 

There are two possible reasons why these three well-trained neural networks have 

limits or inaccuracies in predicting liquid content: 

(1) The vector network analyzer has a dynamic range in the experiment. The system 

dynamic range of the VNA is defined as the difference between the measured power 

available on the test port and on the noise floor of the receiver. When the liquid 

content reaches a certain value, the signal to noise ratio is limited. Therefore, when 

the liquid content is increases, the measurement of the signal gradually reaches the 

limit of the dynamic range of the VNA, so the measured value is not accurate. The 

solution to this problem is to replace the settings in the experiment with a better 

frequency range, more suitable antennas, or another vector network analyzer with 

a larger dynamic range. 

(2) The accuracy of the model is still not enough. Although it can be seen from 

Section 4.2 that the oil content can be predicted from 0% to 95%, it is impossible 

to predict the value when the water content reaches above 60%, as the data would 

be too close to those below 60%, making the model indistinguishable. The solution 

to this problem is to increase the depth of the network. 
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CHAPTER 5  CONCLUSIONS AND FUTURE WORK 

5.1. Summary of Key Contributions 

In this thesis, after comparing the advantages and disadvantages of many current 

methods for measuring three-phase flow, a self-built neural network model is 

proposed to accurately predict water/oil content through the collation and analysis 

of microwave measurement data, which offers a novel and valuable method to 

industries. Several antennas are used to measure signal changes caused by the 

multiphase flow inside the pipe. A neural network model is designed and trained to 

analyze these test data, which can achieve accurate prediction of oil content. The 

advantage of the proposed method is that it only needs to train the model in advance, 

and the computation is fast when predicting oil content in the unknown materials 

inside the pipe. Therefore, the cost is low, the operation is simple, and this system 

can be considered almost real-time detection due to the very small delay. 

Besides, compared with other three-phase flow detection methods, this work can 

accurately measure the oil content under high water content and avoid using the 

imaging technology to image high-water-content multiphase flow which is a 

challenge to many tomographic methods. In this work, the model of the 

convolutional neural network can be trained in advance by using the database, and 

then real-time measurement can be achieved through the application of the trained 

model. 

The main contributions of this thesis are as follows: 

(1) The principles of antennas and convolutional neural networks are explained and 

analyzed to examine how they can be combined, which also the underpinning 

theories of the subsequent experimental equipment selection, experimental 

method design, and data extraction and processing. 

(2) The experimental method is designed. Through the analysis of the data obtained, 

a program for batch extracting the required data and processing it into the 

required size is written using MATLAB. After data processing, a convolutional 

neural network model for regression analysis is designed and debugged by using 

Python. 
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(3) The oil content prediction results, which other methods couldn’t measure 

accurately in full liquid range, are all good if both horizontal and vertical 

experimental data were used. The SSE value is 0.81 which means the model 

selection and fitting are good and the data prediction is successful. 

5.2. Limitations 

The main limitations of this study are listed below: 

(1) Due to the nature of the microwave, the material of the pipe needs to be non-

conductive. 

(2) This test only measures static and stratified liquid environments. Models that 

have been trained may not be suitable for predicting complex liquid 

environments that are agitated and mixed. 

(3) The frequency range and antennas used in this experiment are specially selected 

for this pipe. The selection of frequency range as well as antenna’s factors 

should be reconsidered for different pipes. 

(4) Each different pipeline requires a separate database collection and model 

training. Attention to the type of liquid in multiphase liquid should be paid. 

5.3. Future Work 

The future research and development of this achievement is advised to focus on the 

following aspects: 

(1) Design a dedicated antenna especially with high gain because currently 

available antennas on the market are not suitable enough for measuring liquids 

in pipes. Furthermore, the use of an amplifier in circuit can be a good idea to 

increase the signal-to-noise ratio. 

(2) Design a convolutional neural network model specially for 4×1000×2 input 

data to discuss the causes of the poor performance if only horizontal (or vertical) 

data was used. 

(3) Experiment by using VNA with 4 ports or more. This allows multiple pairs of 

antennas to be used simultaneously to measure data for more accurate. 

(4) Detect the agitated liquid environment and expand the database and data types 
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of the training model in order to predict more complex liquid environments. 

(5) Optimize the neural network model and increase the number of layers to make 

the model deeper in order to achieve higher resolution of data and more 

accurate prediction results.  
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