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Abstract: This study focuses on the fault diagnosis of a hydroelectric generation system with 28 

hydraulic-mechanical-electric structures. To achieve this analysis, a methodology combining 29 

Bayesian Networks approach and fault diagnosis expert system is presented, which enables the 30 

time-based maintenance to transform to the condition-based maintenance. First, fault types and the 31 

associated fault characteristics of the generation system are extensively analyzed to establish a 32 

precise Bayesian Network. Then, the Noisy-Or modelling approach is used to implement the fault 33 

diagnosis expert system, which not only reduces node computations without severe information loss 34 

but also eliminates the data dependency. Some typical applications are proposed to fully show the 35 
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methodology capability of the fault diagnosis of the hydroelectric generation system. 36 

Keywords: hydroelectric generation system; fault diagnosis; Bayesian Network; expert system; state 37 

evaluation 38 

 39 

1. Introduction 40 

2015 United Nations Climate Change Conference promised that the raise of global warming is 41 

almost 2 °C compared to pre-industrial levels, which greatly promotes the electricity generation to 42 

turn to renewable energy such as hydropower generations [1]. China is leading to a hydropower 43 

boom, followed by India, Europe, the United States and Japan [2]. Hydropower plants have been 44 

built in more than 160 countries, with a total number of 11000 plants equipped with 27000 45 

hydro-turbine generator units at the end of 2017 [3]. In China, the hydropower capacity is expected 46 

to increase to 380 gigawatts by 2020 [4]. These hydropower plants are constructed at sites along 47 

rivers, including thirteen plants on the Salween or Nujiang, and twenty plants along the Brahmaputra 48 

[4]. In Brazil, 375 small hydropower plants with the total capacity of 4799 MW are currently running, 49 

and another 1701 MW installed capacity will be constructed in the next ten years [5]. Hydroelectric 50 

generation systems are under construction all over the world to ensure the enforcement of stricter 51 

energy and environmental policy. Obviously, the economic benefit and carbon dioxide mitigation of 52 

such hydroelectric generating systems are well known to the general public [6-11], but the stability 53 

and safety impacts of themselves still require enough attentions. 54 

Faults in the hydroelectric generation systems (HGS) inevitably result in unexpected safety 55 

accidents with enormous maintenance costs [12-14]. National Energy Administration issued that 56 

80% of HGS’ faults are caused by the vibration of the hydraulic-mechanic-electric components 57 

[15-16]. In general, the vibration in the HGS is defined as a drastic reciprocating motion caused by 58 
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unbalanced forces and uncertain disturbances [17-18]. For instance, 60% of the vibration faults are 59 

attributable to the out-of-balance rotating bodies and the pressure pulsation of flow passage 60 

components in Japan [19-20]. The current study of the HGS’s faults mainly focuses on the 61 

constituent components (e.g. generators, hydro-turbines and pipelines) [21-23]. Additionally, the 62 

collection of the on-line monitoring data under the condition of fast information flow is another 63 

challenge for fault diagnosis of the HGS [24-25]. To adequately analyze the faults mechanism, to 64 

predict behavior of systems, to evaluate operating reliability and to decrease maintenance costs, are 65 

the challenging tasks. Hence, it is of primary importance to provide the powerful methodology for 66 

the fault diagnosis of HGSs not only of systems but also of data available. 67 

Some popular efficient approaches, combining monitoring data and expert experiences, are 68 

developed for the fault diagnosis such as Fault-Tree Analysis (FTA), Event-Tree Analysis (ETA) and 69 

Bayesian Network (BN) [26-28]. FTA and ETA are applied to evaluate the reliability of systems, 70 

whereas these approaches lack lateral linkages between nodes and also require high-quality experts 71 

to cope with complicated computations [29]. In light of this, BN is widely used to overcome the 72 

limitations of FTA and ETA since it successfully incorporates expert experiences by means of lateral 73 

linkages [30-32]. However, the modelling of BN in practical applications is still difficult and tedious, 74 

especially for the complicated systems [33-34]. Thus, it is emergent to present suitable approaches to 75 

reduce node computations without severe information loss. 76 

This study aims to provide an efficient computational methodology for the fault diagnosis of the 77 

HGS. To establish a precise Bayesian Network of the HGS, we fully analyze the complex fault types 78 

and their associated fault characteristics. The Noisy-Or modelling approach is used to eliminate the 79 

data dependency and to reduce node computations. The fault diagnosis expert system is proposed 80 
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that is beneficial to the condition-based maintenance at the lowest cost. Finally, some typical 81 

applications are done to fully show the methodology capability of the fault diagnosis of the 82 

hydroelectric generation system. 83 

This study is structured as follows. Section 2 describes the global methodology of the BN fault 84 

diagnosis of the HGS. Section 3 presents the BN fault diagnosis model considering the hydraulic, 85 

mechanical and electric factors. Section 4 performs the applications of the fault diagnosis model of 86 

the HGS. Conclusions and discussions in section 5 summary this study. 87 

2. Methodology 88 

This section is dedicated to the overall theoretical background of the methodology adopted in 89 

the present study. A brief description of BN, Noisy-Or model and expert system is presented. 90 

2.1 Bayesian Network 91 

BN is a statistical graphical model that combines the probability theory with the graphic theory 92 

[35]. A complete BN is comprised of nodes, connecting arrows and the Conditional Probability 93 

Tables (CPTs), which is represented by a Directed Acyclic Graph (DAG). The BN displays the cause 94 

and effect relationships between the network variables, as shown in Fig. 1. 95 

 96 

Fig. 1 An example of BN. 97 

The implementation of BN relying on the Bayes theorem is defined as: The exhaustive event set 98 

 and the event  exist in a sample space , and they respectively meet the conditions 99 

of  ( ) and . Hence, we get [36-37]: 100 
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independence hypothesis:  103 

The variable nodes ( ) in the BN are conditionally independent for their father nodes. This 104 

means that the variable nodes satisfy the joint probability in Eq. (2). 105 

,                                (2) 106 

where  denotes the father node set of . 107 

2.2 Noisy-Or model 108 

The major work of BN is to determine the CPT, whereas the deduction of the joint probability is 109 

growing exponentially with the increase of variable nodes. For the BN with nth binary discrete nodes, 110 

it generally requires  conditional probabilities to describe the network model. To reduce node 111 

computations, Noisy-Or modelling approach is applied in the BN calculation. A typical Noisy-Or 112 

model [38-39] is expressed as 113 

,                               (3) 114 

where y is a safety accident,  is the set of fault nodes expressed by ;  is the truth 115 

set of fault nodes;  is the probability of y if or only if =True. 116 

2.3 Fault diagnosis expert system 117 

Fault diagnosis expert system is an intelligent tool that integrates expert experiences and 118 

Bayesian inferences, and it has significant advantages of the comprehensive collection of expert 119 

knowledge, the accurate simulation of expert thinking and the precision of fault diagnosis. The 120 

schematic diagram of the fault diagnosis expert system is performed in Fig. 2. The development of 121 

the efficient fault diagnosis expert system will be beneficial to the condition-based maintenance at 122 
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the lowest cost. 123 

 124 

Fig. 2 Schematic diagram of a fault diagnosis expert system. 125 

2.4 Global methodology 126 

Based on the above descriptions, Fig. 3 is plotted to show the global methodology of Bayesian 127 

fault diagnosis of the HGS. The calculation process plan is concluded in the following steps: 128 

(1) Using expert experiences and monitoring data to collect the hydraulic, mechanical and 129 

electric fault types in the HGS and also to investigate their associated fault characteristics. Based on 130 

this, a fault diagnosis model of Bayesian network for the HGS is presented. 131 

(2) The expert system gives the prior probabilities of nodes, and the Noisy-Or modelling 132 

approach is employed to reduce the node computations. 133 

(3) Based on the Bayes theorem, we conduct the Bayesian fault diagnosis inference of the HGS. 134 

The obtained posterior probabilities are used to perform the diagnostic fault locations and the 135 

relevant fault characteristics. If the actual fault component is included in the diagnostic fault 136 

locations, the maintenance worker is able to solve the problem in time. Conversely, if the diagnostic 137 

result is “No”, the Bayesian network will reassessment the posterior probabilities of fault locations in 138 

light of the updated CPT. 139 

(4) Summarizing the frequent fault locations and their corresponding fault characteristics to 140 

diminish the operation loss and maintenance loss in hydropower stations. 141 

 142 

Fig. 3 The global methodology of fault diagnosis of the hydroelectric generation system. CPT refers 143 

to the condition probability table. HGS refers to the hydroelectric generation system. 144 
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 145 

3. Model 146 

To model a BN of fault diagnosis, the critical task is to analyze the complex fault types and their 147 

associated fault characteristics in the HGS. we extensively collect the faults data of the HGS from 148 

literatures, on-site visit, and expert advice. In general, the HGS’s fault refers to that the system works 149 

abnormally with enormous vibrations and can even lead to accidental shutdown or component 150 

damage since about 80 percent of HGS’s faults are caused by component vibrations. Statistically, the 151 

disturbing forces (i.e. the rotational unbalanced force of rotors, the hydraulic unbalanced force and 152 

the unbalanced magnetic pull) with different magnitudes, directions and frequencies will influence 153 

the performance of vibrations. Based on the operating characteristic of the HGS, the disturbing 154 

forces are attributed to the hydraulic, mechanical and electric factors. Hence, the fault types and the 155 

associated fault characteristics can be performed in the fault diagnosis BN of the HGS, as shown in 156 

Fig. 4. 157 

 158 

Fig. 4 The Bayesian network of the fault diagnosis of the HGS coupling with hydraulic, mechanical 159 

and electric factors. 160 

 161 

4. Case Study 162 

The mechanical fault, as the most important influence factor on the safety of the HGS, is 163 

selected as a case study for the application of the BN proposed in this work. The typical mechanical 164 

fault (i.e. the rubbing fault MF2, the misalignment fault of rotor MF3 and the mechanical axial crack 165 

MF4) and their associated fault characteristics (i.e. the vibration with doubled frequency F2F0 and 166 
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the vibration with third frequency F3F0) are finally modeled a studied BN, as shown in Fig. 5. In the 167 

actual operation of hydropower stations, the rubbing fault (MF2) is triggered by improper assembly, 168 

shafting bend, rotor imbalance and mechanical looseness, resulting in enormous vibrations and 169 

noises. The misalignment fault of rotor (MF3) generally leads to the deformation of shaft and rotor 170 

swing, which significantly reduces the operating efficiency of the HGS. The mechanical axial crack 171 

(MF4) has obvious adverse effects on the stiffness of shaft, which can cause unexpected shaft-broken 172 

accidents with the increase of load and turbine speed. 173 

 174 

Fig. 5 A simple BN of the hydraulic generating system with critical mechanical faults. 175 

For the HGS’s BN with critical mechanical faults performed in Fig. 5, the possible working 176 

states of the fault nodes are “normal” and “trouble”, as well as the fault frequencies for their 177 

associated fault characteristics nodes include “high” and “low”. 178 

Example 4.1: Noisy-Or Model Applications 179 

To reduce the complicated computations of CPT, the Noisy-Or model can significantly 180 

eliminate disturbing influences between the fault node and the associated fault characteristics nodes. 181 

Based on the Noisy-Or model (3), the CPT of node F2F0 and node F3F0 in Fig. 5 is calculated as: 182 

i) CPT of node F2F0 183 

According to expert experiences, the following probabilities are obtained as: 184 

, , ; 185 

, ; 186 

, ; 187 

, . 188 

( 2 ) 0.2P MF trouble= = ( 3 ) 0.2P MF trouble= = ( 4 ) 0.4P MF trouble= =
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1 2( | ) ( 2 0 | 3 ) 0.44P y X P F F high MF trouble= = = = 1 2( | ) ( 2 0 | 3 ) 0.9P y X P F F low MF normal= = = =

1 3( | ) ( 2 0 | 4 ) 0.8P y X P F F high MF trouble= = = = 1 3( | ) ( 2 0 | 4 ) 0.92P y X P F F low MF normal= = = =
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For the Noisy-Or model (3), the matrix of ,  189 

Substituting the above probabilities into the Noisy-Or model (3-1), we obtain 190 

.                     (4) 191 

Based on the Noisy-Or model (3-2) and Eq. (4), it can be obtained as 192 

,             (5) 193 

where the fault node set  in Eq. (5-1), 194 

 in Eq. (5-2),  in Eq. 195 

(5-3), and  in Eq. (5-4). 196 

Therefore, the CPT of node F2F0 is listed in table 1. 197 

Table 1 CPT of node F2F0 198 

MF2 normal trouble 
MF3 normal trouble normal trouble 
MF4 normal trouble normal trouble normal trouble normal trouble 
low 1.000 0.2174 0.6222 0.1326 0.5366 0.1167 0.3339 0.0726 
high 0.0000 0.7826 0.3778 0.8647 0.4634 0.8833 0.6661 0.9274 

 199 

ii) CPT of node F3F0 200 

Based on expert experiences, the probabilities are obtained as follows: 201 

, ; 202 

, ; 203 
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, . 204 

Then, based on the Noisy-Or model (3), we can get: 205 

,                    (6) 206 

,               (7) 207 

where the fault nodes set  in Eq. (7-1), 208 

 in Eq. (7-2),  in Eq. 209 

(7-3), and  in Eq. (7-4). 210 

Thus, the CPT of node F3F0 is listed in Tab. 2. 211 

Table 2 CPT of node F3F0 212 

MF2 normal trouble 
MF3 normal trouble normal trouble 
MF4 normal trouble normal trouble normal trouble normal trouble 
low 1.000 0.7386 0.5978 0.4415 0.2737 0.2022 0.1636 0.1208 
high 0.0000 0.2614 0.4022 0.5585 0.7263 0.7978 0.8364 0.8792 

 213 

Example 4.2: BN-Based Fault Diagnosis of the HGS 214 

Using Bayes theory presented in the methodology section, we establish the fault diagnosis 215 

expert system of the HGS that integrates expert experiences and Bayesian inferences. The BN 216 

inference is utilized to give some typical applications of the BN-Based fault diagnosis of the HGS. 217 

Six cases are performed as follows. 218 
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● Case 1: Assuming the fact is the increasing vibration with doubled frequency. That is, the 219 

probability of the fault characteristic node F2F0 in “high” state is 1. Using the Bayesian diagnosis 220 

inference (the definition is revealed in the literature [40]), its father nodes probabilities including the 221 

rubbing fault MF2, the misalignment fault of rotor MF3 and the mechanical axial crack MF4 in 222 

“trouble” states are 0.3110, 0.2892 and 0.7718, respectively. The calculated result indicates that the 223 

HGS’s fault is most likely due to the mechanical axial crack with the occurrence of the increasing 224 

vibration with doubled frequency. 225 

● Case 2: When the on-line monitoring system captures the increasing signal of the vibration 226 

with third frequency, the probability of the fault characteristic node F3F0 in “high” state equals to 1. 227 

Similarly, the nodes probabilities of the rubbing fault MF2, the misalignment fault of rotor MF3 and 228 

the mechanical axial crack MF4 in “trouble” states are therefore calculated as 0.5230, 0.3663 and 229 

0.5665, respectively. This means that the mechanical rubbing and axial crack are able to result in the 230 

fault of the HGS. 231 

● Case 3: The HGS shows the vibration with doubled frequency and third frequency. As a 232 

result, the probability for the fault characteristic nodes F2F0 and F3F0 in the “high” state is 1. The 233 

nodes probabilities of the rubbing fault MF2, the misalignment fault of rotor MF3 and the 234 

mechanical axial crack MF4 in “trouble” states are obtained as 0.5145, 0.3568 and 0.7013 by means 235 

of Bayesian diagnosis inferences, respectively. Therefore, the mechanical axial crack may be 236 

considered as the main influence factor on the operating safety of the HGS in this case. 237 

● Case 4: Assuming the fault of the mechanical axial crack is found by maintenance workers, 238 

and the on-line monitoring system also captures the increasing signal of the vibration with doubled 239 

frequency. Based on the Bayesian support inference in literatures [40-41], its father nodes 240 
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probabilities of the rubbing fault MF2 and the misalignment fault of rotor MF3 in “trouble” states are 241 

0.2181 and 0.2150, respectively. Meanwhile, the parallel node probability of the vibration with third 242 

frequency F3F0 in the “high” state is 0.4325. 243 

Comparing with case 3, the probability for the occurrence of the rubbing fault and the 244 

misalignment fault of rotor significantly decreases if the fault of mechanical axial crack already 245 

exists in the HGS. Additionally, the hydropower station is suggested to develop the protection 246 

strategies to cope with the increase of the vibration with third frequency in advance. 247 

● Case 5: If the fault of the mechanical axial crack and the fault characteristic of the 248 

increasing vibration with third frequency occur during the maintenance task, the CPT of neighbor 249 

nodes using the Bayesian support inference are obtained. Specifically, its father nodes probabilities 250 

of the rubbing fault MF2 and the misalignment fault of rotor MF3 in “trouble” states are 0.3881 and 251 

0.2969, meanwhile the parallel node probability of the vibration with doubled frequency F2F0 in the 252 

“high” state is 0.8434. 253 

Comparing with the separate occurrence of the increasing vibration with third frequency in case 254 

2, the occurrence probability of the rubbing fault and the misalignment fault of rotor decreases when 255 

the fault of the mechanical axial crack and the fault characteristic of the increasing vibration with 256 

third frequency occur at the same time. In this situation, case 5 is easy to lead to the increase of the 257 

vibration with doubled frequency, which should be pay more attentions in the actual operation of 258 

hydropower stations. 259 

● Case 6: For the HGS existing in the fault of the mechanical axial crack and the fault 260 

characteristic of the increasing vibrations with both third frequency and doubled frequency, the CPT 261 

of neighbor nodes are calculated using the Bayesian support inference. That is, the probabilities of 262 
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the rubbing fault MF2 and the misalignment fault of rotor MF3 in “trouble” states are 0.4109 and 263 

0.3113, respectively. 264 

From the analysis of cases 3 and 6, when the HGS shows the same fault characteristic except for 265 

the mechanical axial crack, the occurrence probability of the rubbing fault and the misalignment fault 266 

of rotor will decrease. 267 

In conclusion, the calculated results in cases 1 to 3 are validated in refs. [42-46], and the 268 

diagnostic results obtained in cases 4 to 6 are consistent with ref. [47]. 269 

 270 

5. Conclusions and discussion 271 

In this work, the fault diagnosis method for the hydroelectric generation system coupling with 272 

hydraulic, mechanical and electric factors is presented. The methodology adopted in this work is 273 

based on the Bayesian Networks approach and the expert system. Herein a complete Bayesian 274 

network fault diagnosis model of the generating system is implemented that takes into consideration 275 

the comprehensive knowledge of the vibration fault types and the associated fault characteristics. 276 

The Noisy-Or modelling approach is used to calculate the CPT of the presented Bayesian network to 277 

overcome the limitation of the complicated node computations and data dependency in current 278 

approaches. The final implementation of the fault diagnosis expert system realizes the combination 279 

of expert experiences and Bayesian inferences. The obtained results allow to develop the time-based 280 

maintenance to the condition-based maintenance, which achieves the goal of the reduction of the 281 

maintenance costs in hydropower stations. In addition, historical data collected from a hydropower 282 

station is a good method to improve the accuracy of the diagnosis, while it is extremely difficult to 283 

obtain diagnosis from manufacturers since such data are confidential. To propel the future study of 284 
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historical data parameter learning or other data-based methods, we are attempting to cooperate with 285 

potential hydropower stations to carry out some experiments of the generating system. The above 286 

illustrations have been added to the manuscript to guide our future work. Moreover, the future work 287 

is designed to the extraction of the common fault characteristics to improve the coupling relationship 288 

of the electric faults with the mechanical hydraulic fault network. 289 
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Graphical Abstract: Global hydropower growth continues to accelerate with 25% of total 427 

capacity installed in just the last 10 years. This accelerating expansion and the important storage 428 

facility hydropower means it is increasingly important to understand the reasons for operational 429 

failures. Fault diagnosis of a hydroelectric generation system is a critical science and engineering 430 

problem to improve the safety of hydropower stations. To enable the risk quantification in the 431 

process of fault diagnosis, fault types and associated fault characteristics of a hydroelectric 432 

generation system are extensively analyzed to model a precise Bayesian Network. Noisy-Or 433 

modelling approach is used for the implementation of fault diagnosis expert system, which not only 434 

reduces the computation of nodes probability without severe information loss but also eliminate the 435 

data dependency. A typical application is proposed to fully show the capability of the presented 436 

methodology of the HGS’s fault diagnosis. The graphical table is shown in Fig. 6. 437 

 438 

Fig. 6 General technical route of this paper. 439 
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