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Air quality indices and cleanroom ventilation 
equations, and their application in a cleanroom HVAC 
system, part one: theoretical considerations 

Shuji Chen, Andrew Butterworth, L. Jiang 

Abstract 

This, the first part of a two-part paper summarizes current understanding of air quality 

indices and cleanroom ventilation equations and their use in a cleanroom heating, ventilation 

and air conditioning (HVAC) system. The equations for air quality indices, including the 

contaminant removal effectiveness index (CRE) and the air change effectiveness index (ACE) 

are reviewed, based on particles rather than gases, and dispersion rates from personnel and 

machinery are examined. The cleanroom ventilation equations, together with the air quality 

index and the dispersion rate of particles, are then used to calculate the minimum air change 

rate (ACR) that is required in non-unidirectional cleanrooms to achieve less than the maximum 

specified concentration of airborne particles. The second part of the paper will describe the 

experimental work carried out by EECO2 Ltd. 

Introduction 

Cleanrooms are widely employed in high-technology manufacturing, as in pharmaceutical, 

semiconductor and optoelectronic manufacturing, to meet the stringent requirements of high 

air cleanliness levels in the processing environment [1]. The high-technology manufacturing 

environment is based on a series of cleanrooms whose airborne particulate levels are 

controlled. As defined by the international cleanroom standard, ISO 14644-1 [2], a cleanroom 

is a “room within which the number concentration of airborne particles is controlled and 

classified, and which is designed, constructed and operated in a manner to control the 

introduction, generation and retention of particles inside the room”. Cleanroom air cleanliness 

classifications are specified according to the use of the cleanroom [3]. There are two main 

standards by which pharmaceutical cleanrooms are classified: EU GMP [4] and ISO 14644 

[2]. These standards categorize cleanrooms based on the maximum permitted particle 

concentrations as measured by counting the number of particles in one cubic meter of air. The 

particle concentration is controlled by the heating, ventilation and air-conditioning (HVAC) 

system which circulates air in the cleanrooms with a relatively high air change rate (ACR) [5]. 

Among building energy services, HVAC systems consume the most energy and account 

for about 10 - 20% of final energy use in developed countries [6]. Energy consumption due to 
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the maintenance of environmental conditions by means of HVAC systems accounts for 50% - 

70% of the total energy consumption for pharmaceutical manufacturing [7]. The provision of 

the supply airflow rate contributes significantly to the energy consumption of a cleanroom [8]. 

The reduction of the supply airflow rate gives a significant reduction of the overall energy use, 

with the associated reductions in cost and carbon footprint. Particles of different sizes behave 

differently as air moves through a room with, as a generalization, particles >1µm tending to 

settle out and particles <1µm tending to remain in the airflow. Selection of the airflow patterns 

is a major step in cleanroom design. There are three different types of airflow in a cleanroom: 

1) Unidirectional airflow  

Unidirectional airflow (UDAF) is defined in ISO 14644-4 [9] as “controlled airflow through 

the entire cross section of a clean zone with a steady velocity and approximately parallel 

airstreams.” A note adds “This type of airflow results in a directed transport of particles from 

the clean zone.” It is also specified as ≤14° from perpendicular when performing airflow 

parallelism [10]. Unidirectional filtered airflow is used for class ISO 5 and cleaner [9]. Particles 

are swept away from the critical zones and the airflow velocity is therefore critical. It has been 

shown that velocities as low as 0.3 m/s provide low concentrations of airborne contamination 

in normal levels of occupancy and activity, in unidirectional rooms. 

2) Non-unidirectional airflow 

Non-unidirectional airflow is defined in ISO 14644-4 [9] as “air distribution where the supply 

air entering the clean zone mixes with the internal air by means of induction”. ISO Class 6 

through 9 cleanrooms are recommended to use non-unidirectional airflow designs [9]. The 

concentration of particles is diluted by mixing with the filtered supply air and the mixed air is 

then removed from the critical zone in the exhaust air. This process is ACR dependent. For 

non-unidirectional airflow cleanrooms, the supply air rate, and correspondingly the ACR, 

needs only to be sufficient to effectively dilute the particles generated, known as the source 

strength, to an acceptable concentration.  

3) Mixed airflow 

Mixed airflow is described in ISO 14644-4 [9] as combining both unidirectional and non-

unidirectional airflow in the same room. It is well understood that higher airflow rates in the 

form of volume for non-unidirectional flow (dilution) and velocity for unidirectional flow 

(displacement) lead to a lower airborne contamination level [8]. Regulations and expected 

practice for both cleanroom types have dictated airflow rates that in some cases are excessive.  

Air quality indices 

Increased ventilation efficiency could be a significant way to decrease the amount of energy 
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used to achieve effective ventilation of the interior spaces of buildings [11]. Ventilation 

efficiency is evaluated by a series of indices to characterize the mixing behavior of air and the 

distribution of contaminants within a space [11]. Two indices are internationally accepted in 

the research area: contaminant removal effectiveness (CRE) and air change effectiveness 

(ACE). 

Tracer gas techniques have been widely used to study the pattern of airflow and 

contaminant migration in order to measure ACE and CRE. A series of tracer gas tests using 

CH4 were performed in in a study [12] to simulate contaminant migration and the removal of 

the contaminant generated by a point source in a residential building. The values of relative 

CRE and removal effectiveness were calculated from test results which can be used to assess 

air quality related problems in the building. Indoor air quality was evaluated using the CRE 

based on carbon dioxide (CO2) concentrations for three schools equipped with displacement 

ventilation (DV) systems in Ref. [13]. In Ref. [14], CRE and local air change index was 

measured in order to characterize ventilation effectiveness in the occupied zone. CO2 was 

used as the tracer gas to determine the CRE.  

A literature survey shows that the common method of measuring the air quality indices is 

by means of a tracer gas technique. With the tracer gas method, the tracer gas, such as CO2 

and methane (CH4), is injected into the room whose concentration is measured when the 

ventilation system is running to remove the contaminant. 

The air quality indices theory may be applied in pharmaceutical cleanrooms, but particles 

are treated as the contaminant instead of tracer gases. However, since there is no correlation 

between gases and particles, the air quality indices, designed initially for tracer gas, need to 

be changed to fit the concept of particles. Only small particles (≥0.5 µm) should be used as 

they stay in the airflow.  

Contaminant removal effectiveness (CRE) index 

Calculations for the supply airflow rate should include a suitable CRE index, to ensure that 

the cleanroom will maintain the required conditions during most of the anticipated variations 

of the source strength [8]. The mixing of the supply air to a cleanroom and the cleanroom air 

is unlikely to be 100% perfect which will lead to the airborne concentration of contamination at 

some locations within a cleanroom is higher or lower than average. The CRE is a measure of 

the effectiveness of the cleanroom’s air supply in diluting contamination in the cleanroom and 

can be used to calculate the extra air required to compensate for rooms with a poorer clean 

air supply.  

Diffusers are used for mixing the supply air into the room air. They can be selected to give 

near-perfect mixing in the room, in which case contaminant removal is by dilution, or to direct 
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clean air to the critical process locations. Different types of diffuser can result in different CREs 

with different values of throw and air patterns directed at those critical process locations.  

 One of the first indicators that define a perceived air quality is the CRE [15]. The CRE for 
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ε =
𝐶𝑒−𝐶𝑠

𝐶−𝐶𝑠
≈

𝐶𝑒

𝐶
        Equation (1) 

where:  

𝜀 = Contaminant removal effectiveness index; 

𝐶𝑒 = Particle concentration in the exit air (either in return or exhaust air);  

𝐶 = Average particle concentration at critical points in the cleanroom; 

𝐶𝑠 = Particle concentration in the supply air. 

Two indoor air quality (IAQ) indicators, air exchange effectiveness and contaminant 

removal effectiveness, were studied in Ref. [16]. The results show that CRE provides more 

informative results for removal of contaminants with known positions and generation rates. In 

the original equation for CRE, the denominator of the equation is the average value of the 

particle concentration in the cleanroom. However, in the method described in this paper, there 

are only two particle counters in the cleanroom from which it is not possible to calculate the 

average particle concentration. They will, however, give the average concentration at 

the points where they are located, which are, presumably, critical locations where contaminant 

removal is required to be most effective. Therefore, in the equation for CRE, 𝐶  has been 

redefined as ‘Average particle concentration at critical points in the cleanroom’. The ventilation 

is effective when the concentration of contaminants at these critical points is low. 

Air change effectiveness (ACE) index 

Air change effectiveness (ACE) index has long been used to represent the ability of an air-

distribution system to provide outside air where occupants breathe. It is a measure of how 

effectively the air present in a room is replaced by fresh air from the ventilation system [17]. It 

is defined in ASHRAE 129 [18] as the age of air that would occur throughout the space if the 

air was perfectly mixed, divided by the average age of air where occupants breathe. Thus, the 

ACE index is calculated by means of the following equation: 

𝐴𝐶𝐸 =
𝜏𝑛

2𝜏𝑝̅̅̅̅
       Equation (2) 

where: 

𝜏𝑛 is the nominal time constant for the room, which is the reciprocal of the ACR;  
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𝜏𝑝̅̅ ̅ is the mean age of air at a particular point in the occupied zone. 

Sandberg introduces the concept of the age of air in Ref. [19] which has been proven to be 

a useful tool in evaluating ventilation efficiency. The age of air is the length of time that some 

quantity of outside air has been in a building, zone, or space. The local mean age of air (𝜏𝑝̅̅ ̅) 

is defined as the average time it takes for air to travel from the inlet to any point 𝑝 in the room. 

The nominal time constant is defined as below: 

𝜏𝑛 =
𝑉

𝑄
              Equation (3) 

where: 

𝑉 is the room volume; 

𝑄 is the air supply rate. 

The mean age of air is calculated using the following equation: 

𝜏𝑝̅̅ ̅ =
1

𝐶(0)
∫ 𝐶𝑝(𝑡)𝑑𝑡

∞

0
       Equation (4) 

where:  

𝐶(0) is the initial concentration of the contaminant;  

𝐶𝑝(𝑡) is the concentration at a particular point in the room at time 𝑡. 

For ACE in cleanrooms, it is not easy to measure the age of air with particles since particles 

cannot be used as the tracer. A gas can be the tracer because it can mix with a specified 

amount of the supplied air perfectly which makes that part of the air traceable when it flows 

through the cleanroom. A particle is solid so it cannot be mixed with the air perfectly. Thus, 

the ACE concept had to be modified to fit the use of particles.  

W. Whyte et al redefined the ACE in Ref. [20] as below: 

𝐴𝐶𝐸 =
𝐴𝑖𝑟 𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒 𝑎𝑡 𝑎 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑖𝑟 𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑜𝑜𝑚
                 Equation (5) 

The new formula of the ACE was derived in Ref. [20] from the original ACE formula for 

tracer gas [18] and the theory of recovery rate for particles [21]. W. Whyte et al indicated that 

the “air change rate at a location” could be measured by the “decay rate at a location”. And 

the decay rate can be calculated using the method described in Ref. [21]. 

The cleanliness recovery rate between two successive measurements is calculated from 

the following equation [21]: 
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𝑛 = −2.3 ×
1

𝑡1
𝑙𝑜𝑔10 (

𝐶1

𝐶0
)                Equation (6) 

where: 

𝑛 is the cleanliness recovery rate; 

𝑡1 is the time elapsed between the first and second measurement; 

𝐶0 is the initial concentration; 

𝐶1 is the concentration after time 𝑡1  = 𝐶0exp (−𝑛𝑡1). 

Air change rate (ACR) is defined in Ref. [21] as the “rate of air exchange expressed as 

number of air changes per unit of time and calculated by dividing the volume of air delivered 

in the unit of time by the volume of the cleanroom or clean zone”. With this definition of ACR, 

the calculation of ACR requires a known volume. However, with the “air change rate at a 

location”, there is no known volume. For this reason, “air change rate at a location” should be 

replaced with “recovery rate at a location” in Equation (5) as that is what is measured in Ref. 

[14]. However, if “recovery rate at a location” is the numerator in the ACE equation, the 

denominator should be the average recovery rate so that the numerator and the denominator 

are in the same units. In fact, with perfect air mixing, the recovery rate for the room can be 

demonstrated to be the same as the air change rate in the room [22]. Therefore the “air change 

rate in the room” can be used as the denominator in the ACE equation and there is no need 

to attempt to measure the recovery rate at different points in the room in order to obtain the 

average recovery rate. 

Thus, the ACE can be redefined as below: 

𝐴𝐶𝐸 =
𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒 𝑎𝑡 𝑎 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

𝐴𝑖𝑟 𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑜𝑜𝑚
                Equation (7) 

The ACR is defined by the following expression: 

𝐴𝐶𝑅 =
𝑄

𝑉
           Equation (8) 

where: 

𝑄 is the supply airflow rate; 

𝑉 is the room volume. 

To calculate the ACE at a particular location in a cleanroom using 𝐴𝐶𝐸=𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 

𝑟𝑎𝑡𝑒 𝑎𝑡 𝑎 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐴𝑖𝑟 𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑜𝑜𝑚                Equation (7), the denominator is the 

ACR in the room calculated by Equation (8) and the numerator is calculated by 

𝑛=−2.3×
1

𝑡1
𝑙𝑜𝑔10 (

𝐶1

𝐶0
)                Equation (6). An ACE value of less than 1 indicates that the 

recovery rate at that location is less than the average recovery rate. At some locations, the 
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ACE value could be greater than 1, which demonstrate that the air distribution at those 

locations provides a faster recovery rate than the air change rate. 

Dispersion rate of particles  

The sources of airborne particle contamination in cleanrooms are machinery and 

personnel, and the total dispersion rate is calculated as follows: 

𝑇𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =  𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑝𝑒𝑟 𝑝𝑒𝑟𝑠𝑜𝑛 ×  𝑁𝑜. 𝑜𝑓 𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 +

 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑓𝑟𝑜𝑚 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑟𝑦                                                                                          Equation (9) 

The particle shedding experiments shown in Ref. [29] present the number of particles shed 

per minute by test subjects in personal clothing as shown in Table 1. The tests were carried 

out in a body box. 

There will also be some re-dispersion from the floor during walking, but in a typical 

cleanroom, it is less than 1% [23]. Typical dispersion rates are shown in [24], [25] and [26]. 

The contamination index for various personnel activities ranges from 100,000 particles per 

minute to 30,000,000 particles per minutes of 0.3m in size and larger according to different 

levels of actions [27]. Ref. [28] gives an indication of particulates generated by personnel 

within a cleanroom as shown in  

Figure 1. 
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Figure 1: Number of particles generated per second per person. 

The particle shedding experiments shown in Ref. [29] present the number of particles shed 

per minute by test subjects in personal clothing as shown in Table 1. The tests were carried 

out in a body box. 

Table 1: Number of particles shed per minute by test subjects in personal clothing [29]. 

Test-
person 

Sex Average number 
of 

particles/minute1 

Average number 
of 

particles/minute1 

Average number 
of 

particles/minute1 

Average number 
of 

particles/minute1 

  standing walking standing  walking 

 M/F ≥0.5µm ≥0.5µm ≥5µm ≥5µm 

1 M 268 4,650 3 61 

2 F 65 1,460 2 49 

3 M 184 4,398 5 100 

4 F 113 2,179 8 52 

5 F 182 2,287 18 67 

6 F 346 5,547 7 112 

7 M 404 13,367 10 316 

8 F 189 3,895 1 35 

9 M 154 2,626 5 76 

10 F 58 798 6 33 

11 F 53 657 6 30 

12 F 13 1,998 0 92 

13 M 337 4,784 32 209 

Average on all 
measurements 

182 3,742 8 95 
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Actual numbers 
of particles 
(projected) 2 

86,007 1,768,346 3,781 44,785 

Notes: 
1 As measured by the particle counters in the body box in which the tests were conducted 
2 Adjusted to take into account the ratio of the airflow through the particle counters to the total airflow 
through the body box 

Dispersion rate of particles from personnel in a cleanroom 

The dispersion of particles from personnel is usually the most important source in the 

cleanroom. To determine the exact value of the dispersion rate is difficult, as the rate of particle 

dispersion is dependent on each person, the design of the cleanroom garments, the occlusive 

nature of the fabrics used to manufacture garments, and the activity of personnel [8]. It is clear 

from dispersion chamber experiments presented in Ref. [30] that the dispersion of 

contamination from personnel varies according to activity and clothing. 

Dispersion rate of particles generated by machinery and equipment 

Dispersion rates of particles from machinery and other equipment vary according to type, 

and it is best to obtain information about the dispersion rate from the manufacturer of the 

machinery or equipment. Alternatively, the total dispersion rate can be obtained 

experimentally using the method outlined in ISO 14644-14 [31]. This method can also be used 

to include personnel operating the machinery, so that the total dispersion rate of all sources 

in the cleanroom obtained. 

Ventilation equations for ACR calculation 

The greatest effect on the particle concentration in non-unidirectional airflow cleanrooms is 

from the supply airflow rate and dispersion rates from personnel and machinery. The 

derivation and application of the ‘ventilation equations’ can be obtained in building services 

textbooks such as Ref. [32] and Ref. [33]. These equations are normally used to determine 

the concentration of undesirable or toxic gases during the build-up, steady state, and decay, 

in ventilated rooms or buildings. Equations used to calculate the airborne concentration of 

particles and microbe-carrying particles (MCPs) in the build-up, steady-state and decay 

conditions in non-unidirectional cleanrooms have been discussed by W. Whyte et al [34] [30]. 

The equation for an estimate of the concentration of airborne particles is proposed in Ref. 

[8]. By rearranging this equation in Ref. [30], the air supply rate for a given concentration of 

small particles can be calculated. 

𝑄 =
𝐷

𝐶
                    Equation (10) 

where:  
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𝑄 = Supply airflow rate (m3/s); 

𝐷 = Total particle dispersion rate from personnel and machinery (counts/s); 

𝐶 = Required airborne particle concentration (counts/m3) in the considered location. 

d. 

𝑄=
𝐷

𝐶
                    Equation (10) is based on the condition of particle “perfect mixing” with room 

air which rarely occurs in actual cleanrooms. Therefore, the air quality index is used to include 

the factors of “actual mixing” condition and the effectiveness of various airflow patterns. Thus, 

the ventilation equation can be derived as: 

𝑄 =
𝐷

𝜀𝐶
                          Equation (11) 

where: 

𝜀 = the air quality index (CRE or ACE). 

Both 𝐶 and 𝐷 should refer to the same occupancy state, and to the specified particle size 

under consideration. If an air change rate is required, it can be calculated from the cleanroom’s 

physical volume as follows:         

𝐴𝐶𝑅 =
3600𝐷

𝜀𝐶𝑉
              Equation (12) 

where:  

𝐴𝐶𝑅 = Air change rate per hour; 

𝑉 = Cleanroom volume (m3). 

The emission data given in [24], [25] and [34] should be used to estimate the contamination 

source strength depending on the number of personnel, the clothing to be used and the 

process equipment. 𝑄=𝐷𝜀𝐶                          Equation (11) can then be used to estimate the 

minimum supply airflow rate required. The calculations should only be used as a guide and 

should include any required compensating factors. The designer should determine the current 

contamination source strengths for existing cleanrooms and estimate all potential 

contamination source strengths for new cleanroom builds. Sufficient flexibility should be built 

into the design to allow progressive airflow tuning to take place as shown in Figure 2. 
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Figure 2: Design-testing-operation [8], Q1 is the design, airflow rate, Q2 is the airflow rate 

determined by testing and Q3 is the operational airflow rate if this is different from Q2. 

Ref. [7] provides discussion, guidance, and examples on the use of ICH Q9 “Quality Risk 

Management (QRM)” when reducing HVAC ACRs within manufacturing and supporting 

operations. As defined in Ref. [35], QRM is “a systematic process for the assessment, control, 

communication, and review of risks to the quality of the drug (medicinal) product across the 

product lifecycle”. Ref. [7] demonstrates that a reduction in airflows or ACR only can be 

considered if an appropriate QRM is conducted and approved. Use of the QRM approach 

provides an effective method to ensure the requirements from all stakeholders in the process 

are identified and assessed.  

Conclusion 

This first part of the paper has introduced the air quality indices, CRE and ACE, and 

demonstrated how they have been developed for use with particles rather than tracer gases. 

The theory of the dispersion rate of particles has been discussed and the measured values 

from other papers have been shown. The ventilation equations for ACR calculation have been 

developed with the introduction of the air quality indices based on particles. The second part 

of the paper, to be published later, will describe the experiments carried out to research these 

equations and present the results. 
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