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ABSTRACT  
 
Drug-induced liver injury (DILI) is a leading cause of drug attrition throughout all 
stages of the drug discovery process and is a frequent adverse drug reaction (ADR) 
with significant clinical burden. Therefore, a concerted effort to predict the onset of 
DILI before clinical manifestation is paramount. Nevertheless, currently available 
models to predict DILI are often lacking, due to their poor physiological relevancy to 
the in vivo hepatic phenotype. Furthermore, the current gold standard biomarkers for 
diagnosing DILI, such as alkaline phosphatase (ALP), have inadequate sensitivity 
and specificity. Whilst circulating levels of miR-122 have shown improved clinical 
utility in diagnosing hepatocellular DILI, miRNAs signatures for other hepatic cell 
types have not yet been elucidated. 

Cholangiocytes are epithelial cells that line the hepatic bile ducts and are primarily 
responsible for altering the composition of canalicular bile. Cholangiocytes are 
targeted by both mixed and cholestatic DILI, which without proper diagnosis and 
clinical intervention, can cause bile duct degeneration and destruction. Cholangiocyte 
DILI is typically diagnosed by elevations in circulating ALP, though it is not known if a 
panel of cholangiocyte-derived miRNAs could aid a more effective diagnosis. Recent 
research has identified that cholangiocytes can be reprogrammed in vitro into a bi-
phenotypic hepatic organoids. This novel liver model has demonstrated a degree of 
Drug-Metabolizing Enzymes and Transporter (DMET) activity, which may make them 
viable in vitro tools for predicting DILI. However, their proteome remains poorly 
characterised.  

Therefore, the aims of this thesis were threefold. 1) To characterise global miRNA 
expression in murine cholangiocytes and hepatocytes in order to identify novel 
circulating biomarkers. 2) Induce cell-specific toxicity in vivo to assess the detection 
of putative circulating biomarkers in pre-clinical models. 3) Characterise the proteome 
of biliary-derived organoids to assess their phenotype relative to donor-derived liver 
tissue. 

In order to identify the global miRNA profiles of hepatocytes and cholangiocytes, both 
cell types were isolated from CD-1 mice with a purity of ≥97 % and ≥94 %, 
respectively. Global miRNA expression was assessed by microarray, which revealed 
93 miRNAs uniquely expressed in cholangiocytes and 178 miRNAs co-expressed 
between cholangiocytes and hepatocytes. This data was further triaged by SAM 
statistical analysis and publicly available database searching. Ultimately, 50 uniquely 
expressed and 13 enriched cholangiocyte miRNAs were identified as candidate 
miRNA biomarkers of cholangiocyte DILI.  Although these 63 miRNAs of interest were 
all translational into human, their tissue expression is not solely liver specific. The 
expression of all five members of the miR-200 family (miR-141, -200a, -200b, -200c 
and -429) were found to be enriched or unique to cholangiocytes. These miRNAs 
have previously been implemented as circulating biomarkers for various biliary 
diseases, although their role in cholangiocyte DILI is yet to be assessed. 
Cholangiocyte injury was therefore induced in CD-1 and C57BL/6J mice and Sprague 
Dawley rats with α-napthylisothiocyanate (ANIT) and 4,4′-Diaminodiphenylmethane 
(DAPM). Although these miRNAs were elevated in the serum of hepatotoxin-dosed 
animals, there was a highly variable degree of liver injury. In ANIT-dosed animals, 
significant enlargement and toxicity of the stomach was observed, which has not been 
previously reported. Further work is therefore required to induce a more consistent 
liver injury and to fully elucidate if the detection of these circulating miRNAs in the 
serum was caused by hepatic or gastric toxicity. 

Hepatic organoids are a recent innovation in in vitro modelling. Initial research 
suggests organoids better recapitulate the liver phenotype in vitro compared to pre-
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existing proliferative cell models. However, they remain poorly characterised. A global 
proteomic profiling of undifferentiated and differentiated hepatic organoids and donor-
matched livers was therefore performed to assess both their similarity to liver tissue 
and DMET expression. iTRAQ analysis revealed 4,405 proteins commonly detected 
in all sample types. Differentiation of organoids significantly increased the expression 
of multiple CYP450s, phase II enzymes, liver biomarkers and some hepatic 
transporters. While the final phenotype of differentiated organoids is distinct from liver 
tissue, they contain multiple DMET proteins necessary for liver function and drug 
metabolism, such as CYP450 3A, GSTA and MDR1A. Further experimentation, 
optimisation and characterisation of biliary-derived hepatic organoids is needed 
relative to pre-existing models to fully contextualise their use as a putative in vitro 
model of DILI. 

In summary, this work has utilised cholangiocytes as both diagnostic and predictive 
tools of DILI. A selection of translational candidate miRNAs that could be used as 
circulating biomarkers of cholangiocyte injury has been identified. In vivo investigation 
of cholangiocyte injury by ANIT was highly variable and was associated with a 
previously unidentified stomach toxicity. However, a selection of candidate miRNAs 
was elevated under certain conditions. This work has also characterised the 
proteomic profile of biliary-derived organoids, a novel hepatic in vitro model. 
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1.1 Anatomy and physiology of the liver 

1.1.1 Microanatomy of the liver  

The liver is the largest gland in the human body and is responsible for a number of 

key functions, such as detoxification of endogenous and exogenous compounds, lipid 

metabolism and bile acid synthesis. It is formed of microanatomical polygon-shaped 

units, termed hepatic lobules (Fig 1.1) 1. These are characterised by a large vein, the 

central venule, at the heart of the lobule. Located around the lobule periphery are 

multiple portal triad structures, which consist of biliary ductules, hepatic arterioles and 

portal venules (Fig 1.1). Hepatic arterioles deliver a small volume of oxygen-rich blood 

from the aorta, which mixes with a larger volume of nutrient-rich, partially 

deoxygenated blood delivered by portal venules from the gastrointestinal tract, 

pancreas and spleen. Blood runs into hepatic sinusoids and flows to the terminal 

hepatic venule to join systemic circulation 2.  

 
 

Figure 1.1- Structure of a hepatic liver lobule 

The liver consists of an arrangement of hepatic lobules, which are the functional units of the 
liver. Each lobule consists of a central venule (CV) surrounded by multiple portal triads (PT), 
comprising of a hepatic arteriole, portal venule and bile duct. The red/blue arrow represents 
the flow of oxygenated blood from the PT to the CV, whereas the green arrows represents the 
flow of bile from CV to PT. 

 

PT

CV

PT
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1.1.2 Microenvironments of the liver 

Hepatocytes, the parenchymal cells of the liver, exist as a heterogeneous population 

across the lobule due to liver zonation. Areas of liver zonation can be delineated as 

zone I (periportal region), zone II (mid-lobular region) and zone III (perivenous region) 

(Fig 1.2A). The flow of blood across hepatic lobules creates a gradient of oxygen, 

nutrients, metabolites, hormones and cytokines. These physiological variances 

combined with zone specific signalling pathways, such as Wnt/β-catenin 3, hedgehog 

4 and hepatocyte nuclear factor 4 alpha (HNF4α) signalling 5,6, produce zonation 7.  

 
 

Figure 1.2A- Zonation across the hepatic lobule 

Various environmental and genetic factors contribute to liver zonation. Cells within these 
zones are phenotypically and functionally distinct from one another. The liver acinus is 
described as zone I (periportal region), zone II (mid-lobular region) and zone III (perivenous 
region). Zones indicated by dashed lines. Central venule (CV), portal triads (PT).  

 

There are multiple differences in the phenotype and function of hepatocytes seen 

within different liver zones. For example, the rate of β-oxidation and gluconeogenesis 

is highest in zone I, whereas lipogenesis, ketogenesis and glycolysis are highest in 

Zone I
Zone II

Zone III
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zone III 8. For pharmacological and toxicological studies, zone III is typically of interest 

as it expresses the highest levels of cytochrome P450 (CYP450) enzymes 9 and 

various hepatic transporter proteins 10. Nevertheless, zone I has gained more 

attention within regenerative medicine studies following the identification of hepatic 

progenitor cells (HPC) within the biliary tree 11.  

1.2 Cell types in the liver 

The liver consists of physiologically and morphologically distinct cell types. 

Hepatocytes represent approximately 60 % of all cells in the liver yet occupy 80 % of 

the total liver volume. The remaining liver cell types are referred to as the non-

parenchymal cells (NPC) and make up 40 % of the hepatic cell population, but only 

represents 6.5 % of the liver volume, with vasculature and ductular structures 

accounting for the remaining volume 12. Of the hepatic NPC, liver sinusoidal 

endothelial cells (LSEC) account for 50 %, intrahepatic lymphocytes (IHL) for 25 %, 

kupffer cells (KC) for 20 %, cholangiocytes (also known as biliary duct epithelial cells,  

BEC) for 5 % and hepatic stellate cells (HSC) for <1 % 13. Each of these cells are 

found in distinct areas within the liver (Fig 1.2B) and perform niche roles during 

hepatic homeostasis and injury, which have been extensively reviewed elsewhere 14–

17. Owing to the nature of the work in this thesis, hepatocytes, cholangiocytes and 

hepatic stem cells are further discussed. 
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1.2.1 Hepatocytes 

Hepatocytes are highly specialised and polarised epithelial cells and are responsible 

for the majority of physiological processes associated with hepatic function; in broad 

terms, they are responsible for metabolism of carbohydrates, proteins and lipids, 

storage of fat and glycogen and protein synthesis and secretion 18. Hepatocytes are 

ubiquitously found across zone I-III of the liver lobule, although their gene and protein 

expression vary greatly between these zones. They are typically identified by the 

expression of α1-antitrypsin (A1AT), HNF4α and albumin 19. Zone I hepatocytes have 

higher expression of carbamoylphosphate synthetase (CPS1) and zone III 

hepatocytes express higher levels of glutamine synthetase (GS) and most CYP450 

enzymes 20,21.  

A major component of the hepatocyte phenotype is the expression of Drug-

Metabolizing Enzymes and Transporter (DMET) proteins. Lipophilic compounds 

undergo biotransformation by CYP450 enzymes in order to create a polar 

intermediate compound. These are further metabolised to endogenous compounds 

(e.g. glucuronic acid) to create a hydrophilic molecule which can be exported into 

plasma or bile for excretion 22.  

Canalicular bile is produced by hepatocytes and deposited across their apical 

membranes into bile canaliculi, which connect to the finest branches of the biliary 

tree, named the Canals of Hering. These canals represent an anatomical and 

physiological intermediate between the liver parenchyma and the start of the biliary 

tree in the liver microarchitecture 23.  

1.2.2 Cholangiocytes 

Cholangiocytes (BEC) are epithelial cells which line the bile ducts. They are identified 

by specific protein markers, such as cytokeratin (CK) 7 and CK19 and gamma-
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glutamyl transpeptidase (GGT) 24. As biliary excretion of drugs is a major pathway of 

drug elimination, the roles of cholangiocytes in toxicology is an area of interest. 

In humans, the intrahepatic biliary tree is made up of small ducts (ductules, 

interlobular, and septal) and large ducts (area and segmental) 25. The morphology of 

cholangiocytes varies depending on their location within the biliary tree. In humans 

and rodents, small bile ducts are typically lined by 4-5 cholangiocytes (approximately 

6 µm) with a flat, cuboidal morphology. Alternatively, large ducts are lined with <40 

cholangiocytes in human and 15 in rodents (approximately 15 µm) with a  columnar 

morphology 24. Large cholangiocytes are typically described as more specialized, as 

they possess a higher number of organelles and smaller nucleus to cytoplasm ratio 

than small cholangiocytes 26. Interspecies variation in protein expression is seen 

between large and small cholangiocytes, which is extensively reviewed elsewhere 

27,28.  

The main physiological role of cholangiocytes is to alter the composition of canalicular 

bile through a series of secretive and re-absorptive processes, largely regulated by 

hormones, neurotransmitters, nucleotides, and peptides. These processes are 

mediated predominantly by the large cholangiocytes though adenosine 3′,5′-cyclic 

monophosphate (cAMP)-dependent processes 29. On the other hand, small 

cholangiocyte function is principally controlled by inositol trisphosphate 

(IP3)/Ca2+/calmodulin-dependent protein kinase I signalling pathway 30. Regardless 

of size, cholangiocytes possess primary cilia that extend into the lumen of the bile 

duct from the apical membrane. These primary cilia function to detect changes in bile 

flow, composition, and osmolality that feed back into intracellular signalling pathways 

within cholangiocytes 31. 

The full array of physiological roles performed by cholangiocytes in biliary modification 

is extensive and has been reviewed elsewhere 27–29,32. Some key examples include 

the Cl-/HCO3- exchange, which results in bicarbonate-rich, alkaline bile which is 
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important for a number of physiological processes, such as digestion 27 and 

cytoprotection against bile acids, which are found in mM concentrations at the luminal 

surface of cholangiocytes 33. These bile acids are also moved across the 

cholangiocyte basolateral membrane into the local circulation, where they return to 

hepatocytes to be re-secreted into bile. This process is known as the cholehepatic 

shunt pathway and aids in total hepatobiliary transport of bile acids and the adaption 

of cholangiocytes to chronic cholestasis 34,35.  

1.2.3 Resident hepatic stem cells 

Multiple adult stem cell niches exist within the liver. Wang et al. recently discovered 

diploid Axin2+ hepatocyte-like cells located proximal to the central venule that 

differentiate into polyploid mature hepatocytes under normal homeostatic conditions 

36. Biliary tree progenitor cells (BtPC) exist within the peribiliary glands of the large 

intra- and extrahepatic ducts of the liver and are able to differentiate into hepatic or 

pancreatic lineages 37. BtPC are suspected to be the source of cell turnover for the 

entire extrahepatic biliary tree and the large intrahepatic ducts. Finally, hepatic 

progenitor cells (HPC, named oval cells in rodents) are bipotent progenitor cells 

located in the Canals of Hering and biliary ductules. They are thought to be precursor 

cells to hepatoblasts and capable of regenerating hepatocytes and small 

cholangiocytes 11,38. 

Both BtPC and HPC exhibit a phenotype similar to cholangiocytes, such as CK7, 

CK19, SOX9, neural cell adhesion molecule (NCAM) and epithelial cell adhesion 

molecule (EpCAM) expression 21,39. Unlike cholangiocytes, they both express 

markers such as prominin-1, forkhead box L1, Trophoblast Cell Surface Antigen-2 

(TROP-2) and Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) 

40–43. Uniquely to hepatoblasts, some mature hepatocyte attributes such as CK18 and 

albumin expression may also be co-expressed with the biliary phenotype 11,44.   
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The prevailing consensus for HPC-mediated regeneration states that when the liver 

is injured in such a way that negates the proliferative effects of hepatocytes and 

cholangiocytes, a ductular reaction occurs. This is an alternate method of cellular 

regeneration by the proliferation and differentiation of HPC 45. Under normal 

physiological conditions, the presence of HPC is minimal, though progressive liver 

injury induces their prevalence over time 46. Depending on the type of injury, HPC are 

suggested to rapidly differentiate into either cholangiocytes or hepatocytes 47. 

Functional roles of these cells have mostly been identified in rodent studies, where 

the hepatobiliary cellular population is diminished, and consequential regeneration is 

impeded. 2-acetylaminofluorene (2-AAF) with partial hepatectomy, 3,5-

diethoxycarboncyl-1,4-dihydrocollidine (DDC) or a choline-deficient, ethionine-

supplemented (CDE) diet are the typically used models of progenitor cell proliferation 

and liver injury 48–51. Novel genetic models have used targeted inducible depletion of 

E3 ubiquitin ligases to induce hepatocyte death and progenitor cell proliferation 52,53.  

However, experimental validation of the roles of HPC in liver injury and regeneration 

have been controversial. While HPC have been isolated, expanded and partially 

characterised in vitro, multiple studies have cast doubt on the ability of these cells to 

differentiate and repopulate the liver in vivo post-injury. Lineage tracing of novel 

hepatocyte populations following classic HPC-inducing liver injury revealed <2 % of 

hepatocytes were HPC derived, and were instead replenished from pre-existing 

hepatocytes 54–57. On the contrary, Raven et al. have recently more accurately 

mimicked the human in vivo phenotype by genetically inhibiting the proliferative ability 

of hepatocytes, in combination with liver injury. Lineage tracing revealed 

approximately 20-30 % of regenerating hepatocytes were biliary derived. The new 

parenchyma was CYP450 2D+ and HNF4α+ and  normally found adjacent to 

CK19+/SOX9+ ductal cells, with SOX9+/HNF4α+ intermediate cells seen at the 

interface of novel hepatocytes and ductular reactions 58. It still remains to be fully 
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elucidated if HPC are a defined cholangiocyte-like stem cell, or the result of a de-

differentiated mature cholangiocyte 59. 

1.3 Drug-induced liver injury (DILI) 

Adverse drug reactions (ADR) are a major concern for healthcare systems and the 

pharmaceutical industry with an estimated annual cost to the UK of £ 1 billion and $ 

4 billion to the USA  and are responsible for approximately 5 % of hospital admissions 

60. Furthermore, the incidence of developing an ADR within hospital has been 

estimated between 3.2-14.7 % 61–63. A concerning statistic is that approximately 50 % 

of all ADR have been classified as potentially or certainly preventable 61,64,65.  

ADR are capable of causing systemic toxicity in multiple organ systems; however, the 

liver is especially susceptible due to its proficient metabolic turnover of xenobiotics. 

Although drug-induced liver injury (DILI) is an infrequent disease within the general 

population, it is a common ADR. The annual incidence of DILI is estimated to occur 

in 1 per 10,000-100,000 patients 66, though this is thought to be underestimated; 

European population and cohort studies over the last 16 years have refined this rate 

to range between 3.4 and 19.1 cases per 100,000 inhabitants 67–69. It is the leading 

cause of acute liver failure (ALF) in the western world, with relatively poor prognosis 

70. Six months after initial DILI onset, 10 % of patients have died or undergone liver 

transplantation. Of the remaining patients, 20 % present with persistent hepatocellular 

injury requiring further medical attention 71. Furthermore, it is one of the major causes 

of drug attrition throughout all stages of the drug discovery process. In early 

development, 50 % of all pre-clinical candidate drugs display effects upon the liver at 

supra-therapeutic doses 72. Over a 60 year period, DILI was responsible for 18 % of 

all drugs retracted post-marketing which represents the largest single reason for 

withdrawal 73. 
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DILI is caused by a wide array of prescribed and over-the-counter medications, which 

are taken on their own, or in combination. To date, over 1,000 medications and 

supplements have been identified as hepatotoxic 74. Antibiotics (in particular, 

amoxicillin-clavulanate), anti-infectives, non-steroidal anti-inflammatory drugs 

(NSAIDS),  antipsychotic  drugs and analgesics are the therapeutic classes of drugs 

most commonly associated with DILI 68,75–78. Dietary and herbal supplements are 

increasingly identified to cause hepatotoxicity, being responsible for 4 %, 9 % and 16 

% of identified DILI cases in the Spanish DILI registry 79, Drug-Induced Liver Injury 

Network (DILIN) 80 and a prospective study of the Icelandic population 67, respectively.  

1.3.1 Classifications of DILI 

DILI is categorised as either intrinsic or idiosyncratic. Intrinsic reactions are those 

which are perceived as an extension of the pharmacology of the drug. These are 

predictable in nature and show a clear dose-response relationship, such as liver 

toxicity associated with supra-therapeutic doses of acetaminophen (APAP) 81. 

Idiosyncratic reactions are complex to model pre-clinically and are unpredictable. This 

is due to patient genetic variation, alongside complex pathophysiological mechanisms 

which includes both metabolic and immune-mediated responses. These reactions 

can be very severe in nature and are commonly undiscovered until post-marketing 

distribution, where the drug becomes widely available to susceptible individuals 72,82.  

DILI can arise as a consequence of acute or chronic toxicity and is typically difficult 

to diagnose. DILI patients typically present with non-specific symptoms, such as 

malaise, nausea, vomiting and abdominal pain and only liver-specific symptoms, such 

as jaundice and ascites, in severe cases. Furthermore, biopsy samples can 

histologically appear similar to other acute or chronic liver disease 83. Once a DILI 

diagnosis is made based upon clinical chemistry and pathological observations, the 

severity is classified as mild, moderate, severe or fatal, as recommended by 

international expert opinion guidelines 84.  
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The main cellular targets of DILI are hepatocytes and cholangiocytes. Consequently, 

the pattern of injury caused by hepatotoxins can be described as hepatocellular, 

cholestatic or mixed injury. This diagnosis is based on the R-ratio at patient 

presentation, depending upon serum and liver biopsy results (later described in 

section 1.5.1). Hepatocellular DILI is the most common form of injury, accounting for 

approximately 50 % of all injury, with cholestatic and mixed representing 30 % and 

20 % respectively 85,86.  

1.4 DILI of hepatocytes and cholangiocytes 

If a case of DILI of the hepatocytes or cholangiocytes occurs without resolution, it can 

lead to a chronic pathological state. Clinically, this resembles primary liver or biliary 

cirrhosis with elevated levels of liver enzymes and jaundice, detectable over several 

months to years 87. Persistent injury of the cholangiocytes leads to ductal sclerosis 

and ductopenia. Ultimately this leads to vanishing bile duct syndrome (VBDS) which 

is characterized by a loss of >50 % of bile ducts within the portal triad. In general, DILI 

without resolution leads to fibrosis and cirrhosis, liver failure, and ultimately death 88. 

Early biochemical studies of freshly isolated rat hepatocytes and cholangiocytes 

showed that cholangiocytes have approximately 35 % of the total level of glutathione 

(GSH) compared to hepatocytes. The activity of glutathione S-transferase (GST) 

activity and the ability of cholangiocytes to reduce oxidized GSH was also significantly 

lower in cholangiocytes compared to hepatocytes 89. This may offer an insight into the 

susceptibility of cholangiocytes to DILI.  

The exact mechanisms of direct cholangiocyte and hepatocyte injury can be broadly 

described as a toxic effect of a parent compound or reactive metabolite. The 

downstream effects of toxicity manifests as distinct cellular perturbations, such as 

oxidative stress, endoplasmic reticulum stress and mitochondrial dysfunction 90.  
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1.4.1 Parent compound toxicity 

Evidence of parent compound toxicity in cholangiocytes comes from the use of α-

napthylisothiocyanate (ANIT) and 4,4′-diaminodiphenylmethane (DAPM), though the 

final toxic insult is typically mixed hepatocellular injury. Neither ANIT nor DAPM are 

clinically relevant compounds; the former has limited industrial use, whereas the latter 

is used in the production of epoxy resins, polyamides, and polyurethanes 91. 

ANIT has been shown to conjugate to hepatocyte GSH which is then transported into 

bile ducts by the multi-resistance-associated protein 2 (MRP2, ABCC2). ANIT and 

GSH readily dissociate, leaving a high concentration of ANIT in the bile, which is then 

taken up by cholangiocytes 92–94. The cellular mechanisms of ANIT injury are 

suggested to be a depletion of cholangiocyte GSH, leading to oxidative injury in 

combination with the release of cytotoxic and inflammatory mediators 95,96. DAPM-

associated cholangiocyte injury is also though to occur via biliary excretion of toxic 

compounds. Bile isolated from DAPM-treated rats has been shown to be toxic to 

cholangiocytes both in vivo and in vitro. The cellular mechanisms of DAPM biliary 

toxicity are proposed to be rapid mitochondrial dysfunction and impairment of glucose 

uptake 97–99. 

Parent compound toxicity is also observed in hepatocytes. In vitro dosing of rat 

primary hepatocyte cultures with papaverine and its major metabolites revealed 

greater cytotoxicity with the parent compound 100. Similar observations were noted 

when dosing with leflunomide, whereby CYP450 inhibitors enhanced toxicity and 

CYP450 inducers decreased toxicity 101.  

1.4.2 Reactive metabolite toxicity 

The most well-known reactive metabolite-mediated DILI is by APAP, a commonly 

taken analgesic and anti-pyretic. With APAP overdose, the glucuronidation and 

sulphation pathways within hepatocytes are overloaded and metabolism is 
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prominently mediated by CYP450 2E1 into the reactive metabolite N-acetyl-p-

benzoquinone imine (NAPQI). NAPQI brings about a rapid depletion of GSH and the 

formation of reactive oxygen species, protein adducts and release of inflammatory 

cytokines. Critically, these adducts can also form within the mitochondria, disrupting 

the electron transport chain, which ultimately leads to necrotic cell death 102. This 

CYP450-dependant metabolism is typically zone III specific. However, a similar 

phenomenon is also observed in cholangiocytes, whereby CYP450 2E1 expressing 

large cholangiocytes are damaged by carbon tetrachloride and small cholangiocytes 

are unaffected 103.  

Specifically, for cholangiocytes, Lakehal et al. demonstrated that flucloxacillin is not 

directly toxic to human hepatocytes or gall bladder-derived cholangiocytes. However, 

hepatocyte-conditioned media and liver microsomes with recombinant CYP450 3A4 

conditioned media triggered significant dose-dependent cell death in 58 % and 69 % 

of cholangiocyte cultures respectively 104.  

A number of metabolites from bile duct cannulated rats treated with fenclozic acid, an 

NSAID withdrawn post-marketing due to hepatotoxicity, have also been associated 

with cholangiocyte DILI. These metabolites were capable of binding to GSH and 

coenzyme A, which are associated with the toxicity of other carboxylic acid containing 

drugs 105. Cholangiocyte injuring GSH-conjugated reactive metabolites have also 

been identified in human and rat microsomes incubated with terbinafine 106.  

1.5 What is a biomarker? 

To help identify and accurately diagnose the onset of DILI in both pre-clinical and 

clinical settings, there is a need for a sensitive and specific biomarker(s) that could 

aid drug design and modification, as well as patient diagnosis, stratification and 

treatment. A biomarker is defined as, “a characteristic that is objectively measured 
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and evaluated as an indicator of normal biological processes, pathogenic processes 

or pharmacological responses to a therapeutic intervention” 107.  

When evaluating candidate biomarkers for DILI, the ideal biomarker would show 

complete liver specificity and only elicit a response to DILI and no other hepatic injury. 

It should also be sufficiently sensitive that it can be detected at injury onset with the 

use of non-specialised equipment for rapid diagnosis and prognosis within the clinic 

or point-of-care environment. Early diagnosis would also be greatly facilitated by 

biomarkers easily obtained from bio-fluids by a non-invasive procedure, such as those 

found in the circulation. They should be conserved and translational, allowing the 

transition of candidate markers in pre-clinical studies to be clinically viable in humans. 

1.5.1 Current biomarkers of DILI 

Currently, there is no single biomarker that is suitable for the diagnosis of DILI, due 

to the multi-factorial character of its pathophysiology. Consequently, current 

diagnosis is one based upon exclusion of conditions that commonly mimic DILI 

symptoms in order to create a causal link between a drug and any potential liver 

injury.  These causality valuations into drug-mediated hepatotoxicity are made using 

methods such as Roussel-Uclaf Causality Assessment Method (RUCAM) and 

combined expert opinion 108.  

A major component of diagnosis relies on a liver function test, which examines 

biochemical perturbation within the patient using a panel of serum biomarkers such 

as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline 

phosphatase (ALP) and total bilirubin (TBIL). Elevations of ALT/AST in the serum 

correlate with hepatocyte necrosis and subsequent release of these markers into the 

circulation. Elevations in ALP reflects damage to the cholangiocytes or canalicular 

membrane and TBIL is indicative of whole liver function 109,110. The criteria for 

determining hepatocellular, cholestatic or mixed liver injury is determined by upper 

limit of normal (ULN) values and the R-ratio, established by the Council for 
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International Organizations of Medical Sciences (CIOMS) 111. The R-ratio is defined 

as R = (ALT/ALT ULN) / (ALP/ALP ULN). Liver injury is defined as: hepatocellular, 

ALT ≥ 3 ULN and R ≥ 5, cholestatic, ALP ≥ 2 ULN and R ≤ 2 and mixed injury, ALT ≥ 

3 ULN and ALP ≥ 2  ULN and 2 < R < 5 83,84. 

These panels have been clinically relevant for many years and remain the gold 

standard for DILI diagnosis. As an extension of these biomarker panels, the Food and 

Drug Administration (FDA) endorses the use of Hy’s law, which is typically used pre-

clinically to identify hepatotoxicity. Hy’s law is based on the observations of Dr Hyman 

Zimmerman and it states that “drug-induced jaundice caused by hepatocellular injury, 

without a significant obstructive component, leads to death or liver transplantation in 

>10% of cases”. This has been refined to a drug which causes elevations of ALT/AST 

>x3 and TBIL >x2 ULN in the absence of other cholestatic/hepatic co-morbidities is 

likely to cause hepatotoxicity. The use of Hy’s law has been validated in various DILI 

cohorts 78,85,112.  

1.5.2 Problems with current biomarkers 

The current diagnostic biomarkers of DILI are not without their limitations. None of 

the aforementioned markers offer true mechanistic insight into the basis of DILI and 

are also detectable in other forms of liver disease, such as viral hepatitis and 

ischaemic injury 109. Furthermore, they are not liver-specific and injuries in other tissue 

types causes elevations of these markers which may cause false-positive diagnosis 

in patients with multiple co-morbidities. Both ALT and AST are present in skeletal 

muscle and have shown to be elevated in the serum of patients of polymyositis and 

extreme exercise 113. This was shown by Thulin et al., who demonstrated that serum 

ALT/AST were significantly elevated in healthy volunteers after extreme exercise with 

fold changes of 2.5 and 5.5 respectively when compared to pre-exercise serum 

samples 114. ALP is also present in bone tissue and is increased in response to 

osteoblast activity. Elevated serum levels have been detected in metabolic bone 
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disease, downstream effects of hyperthyroidism and in post-menopausal women, 

who incidentally represent a high-risk group for DILI 115,116. Serum TBIL can also 

appear elevated by the processing of erythrocytes and subsequent degradation of 

haemoglobin or by alteration of bilirubin transporters 117.  

Although Hy’s law has relatively high sensitivity for detecting DILI, it lacks specificity 

as many incidences that match the criteria for hepatotoxicity will fully recover without 

progression to ALF 118. This was highlighted by a recent suspension of neuregulin-1β 

from phase I clinical trials due to two patients meeting the criteria for Hy’s law. 

However, following serum sampling and mathematical modelling, it was predicted that 

there was <13 % hepatocyte death, which would not be sufficient to raise circulating 

TBIL <2x ULN 119.  

One of the major limitations of the aminotransferases is the relatively low sensitivity 

and delayed release from the cell following DILI. Furthermore, they have an extended 

half-life in circulation; although biomarker stability is necessary, ALT has a half-life of 

approximately 47 hours and AST has a half-life of 17 hours 109. This may be 

undesirable as the DILI may have resolved and the liver be in repair, whereas 

ALT/AST measurements would not reflect this. The detection of circulating ALT/AST 

is purely diagnostic as these markers are released into the serum post-injury, 

representing a defined period of latency in the recognition of DILI following exclusion 

of other diseases. Relatively large elevations in ALT/AST can also be observed in 

response to drug treatment that do not cause overt progressive DILI, such as statins 

and heparins, which may only serve to remove safe candidate drugs during pre-

clinical testing in the future 120,121.  

Consequently, there has been recent interest in the development of novel circulating 

biomarkers which are able to detect mitochondrial damage (GLDH and mitochondrial 

DNA fragments), cell death (total HMGB1, full and caspase cleaved keratin-18) and 

APAP-protein adducts in APAP-DILI patient cohorts. Many of these circulating 
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biomarkers show improvement over the existing set in terms of specificity, prognostic 

and mechanism-based utility 122,123. However, a limitation of these biomarkers is that 

they are not liver or disease specific. Furthermore, they are predominantly protein-

derived, thus their stability and detection of low-level injury may be challenging 

compared to RNA-derived biomarkers 124.  

1.6 microRNAs as potential biomarkers 

Despite these inadequacies, the combination of ALT/AST, ALP and TBIL remain the 

current gold standard in DILI detection in man. Any novel biomarkers must therefore 

provide added value to the pre-existing ones in order to be deemed clinically useful. 

Novel markers would therefore have to show increased specificity and sensitivity, 

while demonstrating prognostic and mechanistic attributes.   

MicroRNAs (miRNAs) have been shown to be a rich source of biomarkers for a wide 

range of pathological states across multiple organs. They are small (18-25 

nucleotides long) non-coding RNA molecules that regulate post-transcriptional gene 

expression 125. The biogenesis of miRNAs is a tightly regulated process, whereby the 

hairpin pri-miRNA structure is initially transcribed from miRNA genes (Fig 1.3). These 

precursor structures are subsequently cleaved into pre-miRNA by the type 3 RNAse 

Drosha-DGCR8 complex and translocated into the cytosol by Exportin 5 126. The 

hairpin structure is then processed into a double strand RNA molecule by another 

type 3 RNAse DICER-HIV-1 TAR RNA binding protein (TRBP) complex, and mature 

single strand miRNA is produced by association with the RNA-inducing silencing 

complex (RISC). Within the RISC complex, mature miRNA can associate and bind to 

target mRNA, preventing its translation and ultimately repressing protein expression 

127. 
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Figure 1.3 Biogenesis and processing of microRNAs 

Canonical microRNA (miRNA) biogenesis consists of nuclear transcription by RNA 
polymerases (RNAP) and processing of intermediate stem-loop primary (pri-miRNA) and 
precursor (pre-miRNA) molecules. Pri-miRNA undergoes nuclear cleavage by the DROSHA-
DGCR8 complex to form pre-miRNA. Pre-miRNA molecules are exported to the cytoplasm by 
Exportin 5 and further cleaved by the DICER-TRBP complex, into a mature miRNA duplex 
(miR-miR*, astericks denotes passenger strand). Finally, a mature miRNA strand associates 
with  Argonaute (AGO) to form the RNA-induced silencing complex (RISC), which modifies 
gene expression.  

 

miRNAs make for an attractive non-invasive biomarker as following organ damage, 

they are released from the cell into easily obtained bio-fluids, such as blood and urine. 

Within the bloodstream, they are incorporated into extracellular vesicles (e.g. 

microparticles, exosomes or apoptotic bodies) or are protein-bound (e.g. lipoproteins 

or argonaute2) which protects them from endogenous RNase degradation, ensuring 

their stability 128.  Furthermore, miRNAs are very highly conserved across mammalian 

genomes, which greatly aids a translational approach from pre-clinical studies to the 

clinic 129. There has been emerging evidence to suggest miRNA biomarkers can be 

used to identify mechanistic effects upon the liver, such as inflammation 130,131 and 

hepatic regeneration132,133. Fig 1.4 details the initial cellular processing and ultimate 

release of miRNA and current biomarkers into the circulation following toxicity. 
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1.6.1 microRNA-122 

Select miRNAs have been shown to be highly tissue specific. Of those miRNAs that 

are liver enriched, the highlight candidate biomarker for DILI is miR-122. miR-122 is 

one of the most abundant adult hepatic miRNAs, accounting for approximately 70 % 

of the total liver miRNAome 134. Due to its prevalence within the liver, it is of no 

surprise that it regulates a wide range of key gene networks such as hepatic circadian 

rhythm, lipid metabolism and cell differentiation 135–137.  

The role of circulating miRNAs in DILI was first demonstrated back in 2009, where 

elevated levels of liver-enriched miRNAs, including miR-122 and miR-192, were 

discovered in mouse plasma following toxic APAP exposure. It was further noted that 

changes in the serum levels of these miRNAs could be detected significantly earlier 

than the aminotransferases 138. The translational aspect of miRNAs as potential 

biomarkers of DILI was subsequently highlighted in a cohort of 53 APAP-overdose 

humans, where circulating levels of miR-122 were found to be around 100 times 

higher than control samples 139. Since then, there have been several studies showing 

the release of liver enriched miRNAs in response to toxic injury in both human and 

rodents, but also in cynomolgus monkeys 140 and zebrafish 141. The release of 

miRNAs into cell culture medium by in vitro modelling of drug-induced NAFLD has 

also been shown to correlate to circulating miRNAs in patient serum samples, 

highlighting the potential use of miRNAs at the multiple stages of pre-clinical testing 

142.  

It has been shown in clinical case studies that miR-122 is detectable up to 8 hours 

before ALT and only 4 hours after initial toxic insult, thus proving a more rapid 

approach in diagnosing DILI 143. The half-life of miR-122 is also shorter than either 

ALT or AST, returning to baseline after 3-7 days, which may be more representative 

of the progression of liver injury 139. Ultimately, this reduces clinical burden by 

achieving an earlier diagnosis and appropriate treatment plans. Furthermore, in 
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serum samples of patients with APAP toxicity with early presentation to hospital, 

Receiver Operating Characteristic (ROC) analysis of miR-122 showed greater 

sensitivity in predicting APAP toxicity compared to aminotransferases 144.  

Although liver specific, miR-122 is not unique to DILI profiles. It is differentially 

processed and elevated in serum in response to other hepatic injury types of differing 

aetiology. In hepatocellular carcinoma, levels of miR-122 are significantly reduced 

and are associated with poor prognosis and loss of hepatocyte phenotype 145. 

Circulating levels of miR-122 have been shown to increase in bile duct ligated mice 

146, reperfusion injury and acute rejection of liver transplantation 147 and in NAFLD 148. 

Therefore, it is important to exclude these other hepatic pathological conditions before 

using individual miRNAs to diagnose DILI. This has led to the idea that a panel of 

serum miRNA profiles may be a more accurate method to diagnose liver injury. Ward 

et al. showed that a panel of 11 miRNAs, including miR-122, could discriminate a 

diagnosis of APAP-induced DILI against patients with ischaemic hepatitis 149. This 

work has recently been advanced by examining serum samples from 72 patients from 

patients with APAP-DILI, hepatitis B infection, liver cirrhosis and type II diabetes with 

next generation sequencing. It was found that patients of each disease group 

presented with elevated ALT levels, indicative of liver damage. However, each 

disease state presented with a specific “signature” of circulating miRNA which could 

be used to identify the individual underlying cause of liver injury 150.  

1.6.2 Zonated and non-parenchymal derived microRNAs in liver injury 

Liver zonation is the master regulator of the differential phenotype seen within the 

liver parenchyma, although there are contributing genetic factors, such as zone-

specific miRNA regulation 151. Though the majority of toxicology and biomarker 

research focuses on APAP which exerts its toxicity in the perivenous area, there are 

many drug classes that produce periportal DILI 152.  



Chapter One 

 

24 
 

Identification of DILI in either zone I or zone III of the liver by a circulating biomarker 

would be advantageous for a number or reasons. Cholangiocytes, found within the 

periportal region are targets of toxicity for numerous commonly prescribed drugs, 

such as penicillins 104. Serious damage of these cells may ultimately lead to VBDS, 

which requires liver transplantation. Diagnosis is dependent upon liver biopsies, 

whereas a panel of miRNA biomarkers selective for cholangiocyte or generalised 

periportal injury would ensure a non-invasive, early diagnosis 88. Detection of zone-

specific miRNAs in pre-clinical testing may also ultimately aid future drug design by 

linking the drugs chemical properties to the area of DILI. 

Investigations into miRNA serum profiles of zonal hepatotoxins are in their infancy yet 

may prove to be very important in the future search for novel mechanistic biomarkers. 

Yamaura et al. induced zonal hepatocellular necrosis by dosing rats with APAP or 

methapyrilene. They noted uniquely upregulated and downregulated circulating 

miRNAs between the two different dosing groups, which may indicate a unique 

zonated biomarker 153. It was noted in a follow-up paper that the miRNAs that are 

upregulated in serum do not necessarily correlate to miRNA that are downregulated 

in liver tissue following DILI, indicating a potentially more complex method of miRNA 

release than a simple deposition of highly abundant miRNA into biofluids 131. Church 

et al. used the hepatobiliary toxins ANIT and FP004BA to cause periportal injury in 

rats. Several miRNAs that were consistently elevated in blood samples from the two 

drugs were identified, indicating possible novel and unique hepatobiliary injury 

markers. 154. A recent study by Oda et al. is one of the first comprehensive reports of 

circulating miRNA biomarker discovery in NPC. LSECs are sensitive to injury 

following chemotherapy or radiotherapy, which can lead to vascular disease and 

sinusoidal obstruction syndrome (SOS). miRNA analysis of isolated LSECs revealed 

an enrichment of miR-511-3p compared to isolated hepatocytes. Circulating levels of 
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miR-511-3p were observed in rats 6 hours after dosing with monocrotaline, whereas 

levels of miR-122-5p were observed 34 h post-dose 155.  

1.7 Modelling DILI 

Although there have been improvements in the detection and diagnosis of DILI, the 

expression “prevention is better than cure” is applicable for hepatotoxicity. DILI 

modelling has evolved and improved to ultimately better reflect the human in vivo 

phenotype. However, to date there is not one cell detection system that sufficiently 

satisfies the wide-reaching requisites of DILI prediction. 

1.7.1 In vivo models 

In vivo pre-clinical toxicity testing is a critical component in determining drug safety. 

Mice and rats make up approximately 85 % of all animals used in scientific animal 

procedures and are the most commonly used species in evaluating toxicity of a 

compound 156. In vivo studies are advantageous as they can model the 

pharmacokinetic and pharmacodynamic effects of a drug. Critically, they can 

reproduce the hepatic systemic organ phenotype; furthermore, it is possible to 

evaluate hepatocellular, vasculature, inflammatory and hyperplastic effects of a drug.  

However, the main concern of animal testing is the lack of translation into human, due 

to species dependant differences in toxicity sensitivities and metabolism. For 

example, genome mining revealed mice have been shown to express 102 putatively 

functional CYP450 genes, whereas humans only express 57 157. 

Rodent toxicology studies are estimated to only positively predict 43 % of potentially 

hepatotoxic events in human 158. A number of high profile compounds that passed 

pre-clinical testing have gone on to cause severe or fatal DILI in humans, such as 

troglitazone, lumiracoxib and bromfenac, which have been withdrawn post-marketing 

159–161.  
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In order to reduce the number of end-stage and post-marketing withdrawals of novel 

compounds, more predictive in vitro models are therefore needed.  

1.7.2 In vitro models 

Prior to in vivo testing, a large catalogue of candidate drug analogues is tested in 

vitro. These models are typically human derived in order to combat species 

differences seen with in vivo modelling and vary in complexity. Cells may be cultured 

in 2D-monolayers or in 3D-structures, such as spheroids or extracellular matrix 

supported sandwich cultures. Cultures may also be static or contained within complex 

bioreactors and microfluidic systems 162. Finally, in vitro models may be multicellular, 

incorporating NPC and immune cells around a hepatocyte core in order to mimic the 

in vivo phenotype 163. 

A major undertaking in these systems is improving the phenotype of the central 

hepatocyte-like core. Table 1.1 highlights the advantages and disadvantages of 

commonly used hepatocyte and hepatocyte-like cells within in vitro toxicology. Whilst 

primary hepatocytes are the gold standard cell model for hepatotoxicity testing, their 

availability, and stability during long-term culture and high inter-individual variation 

limit their utility. Furthermore, their inability to proliferate make them an expensive 

single-use option 164. Basic and advanced cancer-derived and immortalised cell lines, 

such as HepG2, HepaRG and Upcyte cells are therefore commonplace. However, 

these cells generally have low DMET activity, altered Nrf2 cell defence signalling 

pathways and poorly represent the in vivo organ phenotype 165,166. There has 

therefore been significant investment into stem cell derived systems due to the unmet 

need for an in vitro hepatic model that shows physiological improvement over the 

currently used systems. 
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Table 1.1 Advantages and disadvantages of hepatocyte cells currently used in 
vitro 

Currently used in vitro models of hepatotoxicity vary in their complexity and phenotypic 
relevancy. Different hepatocyte cell models are more suitable than others depending on the 
defined endpoints of hepatotoxicity testing.  

 

1.7.3 Stem cells models 

There is a significant recent interest in developing hepatocyte-like cells from human 

embryonic stem cells (hESC) and human induced pluripotent stem cells (iPSC). Both 

hESC and iPSC have been shown to demonstrate a relatively mature hepatic 

phenotype, being capable of fat and glycogen storage, alongside albumin production 

and select CYP450 activity comparable to primary hepatocytes 167–169.  

Sirenko et al. has demonstrated that iPSC can be used in high-throughput toxicity 

screening against a library of 240 hepatotoxins of differing toxicity mechanisms, 

including steatosis, mitochondrial toxicity, reactive metabolite formation and CYP450 

inactivation 170. Patient-derived iPSC are an attractive concept as they have been 

shown to mimic the in vivo phenotype of any genetic polymorphisms, such as A1AT, 

which has allowed the development of novel clinical compounds to challenge the 

disease state 171. A biobank of iPSC derived from patients with differing Human 

Leukocyte Antigens (HLA) has been created, which will potentially aid personalised 

drug design and prediction of genetic-mediated idiosyncratic DILI 172. 

Advantages Disadvantages

Basic cell lines   

(HepG2, HuH7)

Easy, quick and inexpensive to culture, readily 

available, highly reproducible.

Cancer derived, low of DMET activity, prone to 

genetic drift.

Advanced cell lines 

(UpCyte, HeapRG)

Generally better DMET activity and physiological 

representation than cancer cell lines.

Costly proprietary media, HepaRG: Cancer derived, 

requires time consuming differentiation UpCyte: 

Donor dependant variability, limited availability.

iPSC derived cells

Phenotype of a semi-mature hepatocyte. Exhibits 

same phenotype as the donor. Can differentiate into 

any hepatic cell.

Currently invalidated for DILI testing. Time 

consuming and expensive culture, no universally 

agreed differentiation protocol.

Organoids

Long term culture possible, exhibits same 

phenotype as the donor. Can differentiate into a 

hepatocyte or biliary phenotype.

Poorly characterised and unvalidated for DILI 

testing. Time consuming and expensive culture, no 

universally agreed differentiation protocol.

Primary 

hepatocytes

Most physiologically representative; highest DMET 

expression of all currently available models.

Donor dependant variability, poor availability, single 

use, rapid de-differentiation in culture.
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However, a major caveat in the use of iPSC is the long-term stability of the genome 

and relative lack of metabolic competence. Cellular reprogramming causes DNA 

aberrations, which affect differentiation capacity and increase tumorigenicity 173.  

1.7.4 Organoid models 

Organoids are a recent innovation in stem cell-derived in vitro modelling. They are 

described as a 3D cell model consisting of self-organising, organ-specific cell types 

that mimics the corresponding in vivo tissue 174. To date, organoids from multiple 

tissues have been developed as a models of disease 175. Attention has turned to 

resident liver stem cells, as described in section 1.2.3, as a possible source of 

hepatocyte-like cells for in vitro modelling. 

Huch et al. identified LGR5+ stem cells (HPC) near the bile ducts in damaged murine 

livers, which regenerated both hepatocytes and cholangiocytes in vivo. Isolated HPC 

cultured in vitro formed self-organising 3D structures with both biliary and hepatocyte 

phenotypes, termed hepatic organoids. It has been reported that approximately 5-30 

% of biliary derived cells will form an organoid in vitro 176,177. Hepatic organoids can 

be differentiated into a hepatocyte lineage by blocking Notch signalling and engrafted 

back into murine livers 178.  

It has been further demonstrated differentiated human derived organoids were 

genetically stable in long term culture (90 days) by chromosomal karyotyping. Hepatic 

organoids were capable of glycogen and fat storage, albumin secretion, bile acid 

production; CYP450 3A4 activity and midazolam metabolism was also confirmed in 

organoids 179,180. Organoids from patients with A1AT deficiency and Alagille syndrome 

have both been cultured, which successfully recapitulated the disease phenotype in 

vitro. Long term expansion (8 months) of liver organoids from canine livers has also 

been reported 181. However, biliary-derived hepatic organoids have not been 

sufficiently characterised to the levels of pre-existing in vitro models.  
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1.8 Thesis Aims- 

The role of NPC in DILI has historically been understudied relative to the liver 

parenchyma. Cells within the biliary network of the liver are both possible targets of 

DILI and potential tools in predicting toxicological outcomes. However, currently used 

biomarkers for hepatocellular injury have numerous limitations and putative 

cholangiocyte biomarkers remain to be investigated. Moreover, novel biliary derived 

in vitro organoid models may be more physiologically relevant compared to currently 

used systems, although they remain critically under-characterised. The work in this 

thesis has therefore been undertaken in an attempt to further understand the roles of 

biliary cells in the prediction and detection of DILI. Consequently, the aims of the 

research presented within this thesis were to: 

• Characterise global miRNA expression in murine cholangiocytes and 

hepatocytes in order to identify novel circulating biomarkers. 

• Induce cell-specific toxicity in vivo to assess the detection of putative 

circulating biomarkers in pre-clinical models. 

• Characterise the proteome of hepatic organoids from ductal structures to 

assess their phenotype relative to donor-derived liver tissue 
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2.1 Introduction 

The liver is the largest gland in the body that consists of multiple cell types that 

mediate numerous key physiological functions, such as the detoxification of 

xenobiotics and the production of bile. These specific functions are directly mediated 

by both hepatocytes and cholangiocytes, which are examples of parenchymal and 

non-parenchymal cell types, respectively.  

Hepatocytes are the most abundant cell type in the liver, constituting 60-80 % of the 

total liver cell population. They are located throughout zone I-III in the liver and are 

accountable for the majority of drug metabolism and clearance. Consequently, 

research directed at understanding the mechanisms of DILI have mostly focused on 

hepatocytes 13.   

Cholangiocytes are epithelial cells which line the bile ducts located within zone I of 

the liver and typically represent 5% of the total liver cell population. These 

cholangiocytes, or bile duct epithelial cells (BECs), exist as a heterogeneous 

population of large and small cells, depending upon their microanatomy within the 

biliary tree 25. Cholangiocytes primarily function to modify canalicular bile through a 

series of secretive and absorptive processes, largely regulated by hormones, 

neurotransmitters, nucleotides, and peptides 29. 

More recently however, the mechanisms of damage and response of the non-

parenchymal cells in response to toxic insult is being increasingly investigated. As 

biliary excretion of drugs is a major pathway of drug elimination, the roles of 

cholangiocytes in pharmacology and toxicology is of interest. 

Adverse drug reactions (ADR) are a major concern for healthcare systems and the 

pharmaceutical industry with an estimated annual cost to the UK of £1 billion and $4 

billion to the USA 60. Drug-induced liver injury (DILI) is a common ADR and represents 
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the leading cause of acute liver failure in the western world, as well as being 

responsible for 18% of all drugs removed from the market between 1953-201370 73.  

DILI is clinically classified as hepatocellular, cholestatic or mixed depending on the 

point of injury and subsequent serum biomarker analyses. Hepatocellular signifies 

injury to hepatocytes, cholestatic indicates cholangiocyte damage and mixed injury 

presents with symptoms of both. Cholestatic or mixed injury is prevalent, accounting 

for 50 % of all DILI cases in patient cohorts 858680. However, when diagnosing a mixed 

or cholestatic injury, the current gold standard biomarkers (ALT, AST, ALP, GGT, 

TBIL) are collectively lacking. They are not truly liver specific, are altered with a range 

of other co-morbidities that are commonly observed in high-risk DILI patients, and 

have differing release kinetics following injury 124. Therefore, there is a need for novel, 

sensitive and specific biomarkers that can aid patient diagnosis and stratification. 

Furthermore, they could be used to aid drug design and modification throughout pre-

clinical testing.   

MicroRNAs (miRNAs) are small (18-25 nucleotides long) non-coding RNA molecules 

that regulate post-transcriptional gene expression and have been shown to be a 

capable source of biomarkers for a wide range of pathological states across many 

organs 125. Following organ injury, they are released from stressed or damaged cells 

into easily obtained bio-fluids, such as whole blood, where they remain relatively 

stable 182. Furthermore, miRNAs are highly conserved across mammalian genomes, 

which greatly aids a translational approach from pre-clinical studies to the clinic 183. 

With respect to detecting DILI, miR-122 has been the main biomarker of interest, due 

to the fact it is both highly expressed and liver specific 184. However, the abundancy 

of miR-122 stems from its expression in hepatocytes, making it an ideal biomarker for 

detecting hepatocellular injury, such as paracetamol toxicity 139. 
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A miRNA biomarker derived from cholangiocytes could therefore inform of 

mechanistic cholestatic DILI, as well as offering greater sensitivity and specificity over 

the currently used protein biomarkers. Thus far, a comprehensive analysis of miRNA 

expression in cholangiocytes has yet to be undertaken.  

2.1.1 Aims and hypothesis 

The aims of this chapter were to: 

• Optimize and utilize an isolation protocol for both cholangiocytes and 

hepatocytes from suitable primary tissue. 

• Establish global miRNA expression in these cells by a miRNA microarray. 

• Identify translational miRNAs with unique or enriched expression in 

cholangiocytes. 

The main hypothesis within this chapter was that cholangiocytes express unique or 

enriched miRNAs when compared to hepatocytes when isolated from the same 

donor, that ultimately allow for the identification of novel candidate circulating 

biomarker(s). 
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2.2 Materials and Methods 

Unless otherwise stated, all materials were purchased from Sigma Aldrich (Poole, 

UK). 

2.2.1 Human Resection Samples 

Human liver tissue was collected from surgical margins of patients undergoing liver 

resections at Aintree Hospital, Liverpool. Adult patients (age ≥18 years) were 

recruited to this study and all tissue collection was undertaken with full informed 

consent and ethical approval from the relevant institutional review boards (National 

Research Ethics Service REC reference code: 11/NW/0327). 

2.2.2 Experimental animals 

The protocols described were undertaken in accordance with the criteria outlined in 

a project licence granted under the Animals Scientific Procedures Act 1986 and 

approved by the University of Liverpool Animals Ethics Committee. 5-7-week-old 

male CD-1 mice were purchased from Charles River laboratories (Cambridge, UK) 

and had a 7-day acclimatisation period prior to experimentation. Animals were 

maintained in a 12-hour (h) light/dark cycle with free access to food and water.  

2.2.3 Immunohistochemical staining of EpCAM positive cells in liver 

samples 

Human liver samples and left median liver lobes were resected and placed in 4 % 

Paraformaldehyde (PFA) solution for 24-48 h for fixation. Livers were then transferred 

to 70 % ethanol for long term storage and transport. 

Immunohistochemistry of mouse samples were performed in collaboration by Julie 

Haigh at The School of Veterinary Science, University of Liverpool.  

Tissues were dehydrated in a rising concentration of ethanol washes, followed by 

incubation in xylene. Tissues were then submerged in molten paraffin to create a 
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tissue block. Blocks were sectioned in 4 µm slices and dried onto polylysine 

microscope slides. Sections were de-waxed and subjected to low pH antigen retrieval 

using a Dako autostainer PT link as per the manufacturer’s instructions. Slides 

underwent a peroxidase block for 30 min at room temperature (RT), were washed in 

0.1 % Tris-buffered saline with Tween 20 (TBS-T) and then blocked in 10 % horse 

serum for 10 minutes (min) at RT.  

Slides were then incubated with the anti-EpCAM antibodies (anti-mouse G8.8 

(DSHB), 1:1 dilution, anti-human HEA125 (Progen, Heidelberg, Germany), 1:10 

dilution) in TBS-T for 1 h at RT, washed for 5 min in TBS-T and then incubated with 

the respective secondary antibody (anti-rabbit BA-4000 (Vector Laboratories Ltd, 

Peterborough, UK), anti-mouse K5007 (Dako, Denmark), both at a 1:100 dilution for 

30 min at RT. Positive staining was detected using an avidin-biotin complex (ABC) 

stain with a DAB (3, 3 -diaminobenzidine) horseradish peroxidase (HRP) substrate 

(Vector Laboratories Ltd). Slides were washed three times in dH2O for 5 min at RT. 

Slides were stained with Papanicolaou’s 1b Haematoxylin for 1 min and tap water 

was used as a blueing solution. Slides were dehydrated in a rising concentration of 

ethanol, cleared with xylene and mounted with DPX mounting medium. 

2.2.4 Isolation of primary murine cells  

Primary mouse hepatocytes and cholangiocytes were isolated using a modified 

versions of the two-step collagenase methods 185 186. Five CD-1 mice were 

anesthetised by intraperitoneal (i.p) injection of sodium pentobarbital 50 mg/mL (200 

mg/kg) (Merial, Lyon, France). 

2.2.4.1 Isolation of primary murine hepatocytes 

Upon loss of corneal and pedal reflexes, a U-shaped transverse incision was 

performed on the lower abdomen to the bottom of the ribcage to reveal the intestinal 

cavity. The intestines were then moved to the right to reveal the hepatic portal vein 
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and inferior vena cava. A 22 gauge (G) cannula was inserted into the vena cava and 

a wash buffer (Hank’s buffered saline solution (HBSS) x1, 4.3 mM NaHCO3, 250 µM 

Ethylene diamine tetraacetic acid (EDTA), 20 mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), pH 7.4) was perfused through the liver at a 

rate of 10 mL/min. The portal vein was immediately cut to allow the liver to clear of 

blood and the liver was left to perfuse for approximately 8-10 min.  The perfusion was 

then switched to a digestion buffer (HBSS x1, 4.3 mM NaHCO3, 830 µM MgSO4, 5 

mM CaCl2, 20 mM HEPES, 0.013% collagenase IV, pH 7.4) for approximately 3-5 

min, until the liver was digested.  

Following the digestion, the liver was excised and washed with HBSS. The 

gallbladder was removed, and liver capsule was disrupted using forceps to release 

the digested hepatic cell mixture. The liver was gently agitated with forceps in HBSS, 

leaving the biliary tree and a cell suspension. The cell suspension was filtered through 

a 100 µm cell strainer and biliary tree was placed in HBSS on ice for sequential 

digestion. To isolate hepatocytes, cells were centrifuged at 50 x g at 4 °C for 2 min 

and the supernatant discarded. The pellet was washed in HBSS twice more using the 

previous centrifuge conditions.  

2.2.4.2 Isolation of primary murine cholangiocytes  

All centrifuge steps were performed at 300 x g at 4 °C for 5 min and all orbital shaker 

steps were performed at 30 RPM at 4 °C. 

Biliary trees from 4-5 mice were collected as a by-product of the hepatocyte isolation 

and left gently agitating on an orbital shaker for 15 min to remove any contaminating 

cells. The tissue was then diced into 0.3-0.5 cm pieces with a scalpel and suspended 

in digest buffer (RPMI media with 200 µg/mL DNase I, 320 µg/mL collagenase I and 

480 µg/mL hyaluronidase) and was left in an agitating water bath at 37 °C for 20 min.  
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The tissue was pelleted, washed in HBSS and re-pelleted. The tissue was re-

suspended in another digest buffer (Phosphate buffered saline (PBS) with 200 µg/mL 

EDTA and 1 mg/mL trypsin) and was left in an agitating water bath at 37 °C for 5 min. 

The digestion was stopped by the addition of isolation buffer (RPMI media with 10 

µg/mL DNase I) supplemented with 10 % foetal bovine serum (FBS) and cells were 

further incubated in an agitating water bath at 37 °C for 5 min. The mixture was then 

pelleted and resuspended in isolation buffer. Any remaining clumps were removed by 

passing the mixture through a 19 G needle, followed by a 22 G needle. Finally, the 

mixture was passed through a 100 µm cell strainer to isolate single cells. The single 

cell suspension was divided between 4 tubes to maximise cholangiocyte yield. The 

suspension was pelleted and then resuspended in isolation buffer and an anti-EpCAM 

hybridoma antibody (G8.8, DSHB, IA, US) at a 1:5 dilution. Cells were incubated at 4 

°C with gentle agitation for 30 min before being pelleted and washed with HBSS. Cells 

were resuspended in isolation buffer and 1 % anti-rat immunomagnetic beads (11035, 

Invitrogen, Vilnius, Lithuania) that were prepared as per the manufacturer’s 

instructions. Cells were incubated at 4 °C with gentle agitation for 30 mins. Cells were 

passed through a DynaMag-15 magnet (ThermoFisher, UK) and cholangiocytes were 

retained through positive magnetic immunoaffinity selection.  

2.2.5 Immunoblotting of protein lysates 

Isolated hepatocytes and cholangiocytes were homogenised in 

Radioimmunoprecipitation assay (RIPA) buffer for 15 min on ice with intermittent 

vortexing and centrifuged at 15,000 x g for 15 min at 4 °C. The resulting supernatant 

was retained, and protein concentration was determined by BCA assay. Samples 

were prepared for loading by mixing with NuPage sample reducing agent and NuPage 

LDS sample buffer (ThermoFisher) and then denatured at 90 °C for 5 min. Protein 

separation was performed on 4-12 % NuPage polyacrylamide gels at 170nV for 70 

min in NuPage MOPS running buffer (ThermoFisher). The resolved proteins were 
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transferred to a nitrocellulose membrane at 230 mA for 70 min in a 20 % methanol 

tris-glycine buffer. Successful transfer and even loading were confirmed with 

Ponceau Red stain. Membranes were washed in 0.1 % TBS-T and blocked in 5 % 

non-fat dried milk for 1h at RT. The appropriate membranes were then probed with 

anti-albumin (ab207327, Abcam (Cambridge, UK), 1:2,000 in 2.5 % milk), anti-CK19 

(ab52625, Abcam, 1:40,000 in 2.5 % milk), anti-α-tubulin (T6199, 1:5,000 in 2.5 % 

milk) and anti-β-actin (ab8227, Abcam, 1:10,000 in 2.5 % milk) overnight with gentle 

agitation at 4°C.  

The primary antibody solutions were discarded, and the membranes were washed 5 

x 5 min in 0.1 % TBS-T. The membranes were then incubated with anti-mouse IgG 

(A9044, 1:5,000 in 2.5 % milk) or anti-rabbit IgG (A9169, 1:5,000 in 2.5 % milk) for 1 

h with gentle agitation at RT. The secondary antibody solutions were discarded, and 

the membranes were washed 5 x 5 min in 0.1 % TBS-T, before being treated with a 

chemiluminescent substrate (PerkinElmer, MA, US). Proteins were visualised by 

exposure to X-ray film in a dark room.  

2.2.6 Suspension immunofluorescence staining 

All centrifuge steps were performed at 300 x g at RT for 5 min, unless otherwise 

stated, all incubation steps were performed on an orbital shaker at 30 RPM at 4 °C.  

Freshly isolated hepatocytes and cholangiocytes were washed in PBS and pelleted 

before being resuspended in 4 % PFA. Cells were incubated for 30 min, before being 

pelleted and washed twice with PBS. Cells were then incubated with permeabilising 

buffer (PBS with 0.5 % Triton-X and 0.2 % Tween-20) for 30 min. Cells were washed 

in PBS and then incubated with blocking buffer (permeabilising buffer with 10 % goat 

serum or 10 % casein-blocking solution) at RT for 30 min. After blocking, cells were 

pelleted and resuspended with blocking buffer with either anti-CK19 (ab52625, 

Abcam, 1:500) or anti-albumin (ab207327, Abcam, 1:200) antibodies and left to 

incubate overnight.  
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Cells were pelleted and washed with permeabilising buffer three times and 

resuspended in blocking buffer with anti-rabbit Alexa Fluor 488 (ab150077, Abcam, 

1:500) or anti-rabbit Alexa Fluor 647 (ab150083, Abcam, 1:500) and left to incubate 

for 1 h. Hoechst reagent was added at a 1:5,000 dilution and cells were incubated for 

a further 20 min at 4 °C. Labelled cells were washed once with permeabilising buffer 

and once with PBS. Finally, cells were resuspended in ProLong gold (ThermoFisher) 

and mounted on coverslides. Maximum intensity projection (MIP) images were 

captured on an Axio observer Z1 microscope (Zeiss, Germany).  

Purity was calculated as a percentage by counting positively stained cells (albumin 

or CK19) in the population of total cells (Hoechst) of three separate areas of the slide 

from independent isolations (n=3). 

2.2.7 Total RNA extraction  

Total RNA was isolated from hepatocytes and cholangiocytes by the miRNeasy mini 

extraction kit (Qiagen, Venlo, Netherlands) as per the manufacturer’s instructions. 

Briefly, 700 µL of Qiazol reagent was added to the cells. Samples were vortexed and 

incubated for 5 min at RT to ensure complete lysis and then spiked with the 

exogenous miRNA cel-lin 4 to a final concentration of 10 pM (Applied Biosystems, 

UK). 140 µL of chloroform was added to the samples, which were vortexed and 

centrifuged at 12,000 x g at 4 °C for 15 min. Approximately 350 µL of the resulting 

upper aqueous solution was then transferred to a new microcentrifuge tube. The RNA 

extraction was automated by the Qiacube liquid handler (Qiagen), using the 

manufacturer’s protocol, “Aqueous phase- Total RNA_V2” from their online protocol 

repository. RNA concentration and purity were assessed on a NanoDrop1000 

(ThermoFisher). 
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2.2.8 Assessing differences in global miRNA expression in murine 

primary cells 

2.2.8.1 Preparation of samples for microarray analysis  

The miRNA microarray of mouse hepatocytes and cholangiocytes was performed in 

collaboration with Dr. Carolyn Jones at The MRC Toxicology Unit, University of 

Leicester.  

Before proceeding with the microarray, the total RNA underwent a quality control on 

an Agilent 2100 Bioanalyzer using an RNA 6000 Nano kit as per the manufacturer’s 

instructions (Agilent). Total RNA was prepared for the microarray using miRNA 

Complete Labelling and Hybridisation Kit, miRNA Spike-In Kit and Gene Expression 

Wash Buffer Kit as per the manufacturer’s instructions (Agilent, CA, US).  

In order to label the miRNA, 100 ng of total RNA was combined with CIP mastermix 

to a total of 4 µL. RNA was incubated at 37 °C for 30 min in order to dephosphorylate 

the samples. 2.8 µl of 100% Dimethyl sulfoxide (DMSO) was added and the samples 

were incubated at 100 °C for 10 min to denature the samples. Finally, the 3'-end of 

RNAs were labelled with pCp-Cy3 upon incubation with a T4 RNA ligation master mix 

for 2 h at 16 °C.  

Labelled miRNAs were purified using Micro Bio-Spin 6 columns kit (Bio-Rad) as per 

the manufacturer’s instructions and eluted RNA was formed into a dried pellet using 

a DNA SpeedVac (ThermoFisher). To hybridise miRNAs to the microarray chip, the 

pelleted RNA was resuspended in nuclease free ddH2O and mixed with the 

hybridisation master mix and incubated 100 °C for 5 min. The resulting mixture was 

loaded onto the microarray chip (SurePrint Mouse miRNA Microarray, Release 21.0, 

Agilent) and placed into a hybridisation oven at 55 °C for 20 h at 20 RPM. Microarray 

slides were then washed twice with wash buffer, before being scanned using a 

G2505C microarray scanner (Agilent) and the raw microarray data extracted.  
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2.2.8.2 Microarray analysis 

The analysis of the microarray data was performed in collaboration with Dr. Ben 

Francis at Biostatistics Department, University of Liverpool.  

The raw dataset was analysed using the Agilent Feature Extraction (AFE) software 

(Agilent). The AFE algorithms estimate a quality control of the data as well as a 

summarised signal for each identified miRNA, termed as the total gene signal (TGS). 

The TGS was then further analysed in the R statistics package, using the 

AgiMicroRna library, an open source Bioconductor package 187. The AgiMicroRna 

library allowed a further QC of the data by producing principle component analysis 

(PCA) and differential expression analysis of the microarray data.  

The data were subject to quantile normalisation and differential expression analysis 

using both a t-test and Significance Analysis of Microarrays (SAM). Reported miRNA 

values are stated as normalised relative fluorescence units (RFU) and those miRNAs 

with an FDR ≤ 5 % from the SAM analysis were retained as candidate biomarkers. 

Fold change relative to cholangiocytes for miRNAs was calculated by 2(Log2 cholangiocyte 

gene expression – Log2 hepatocyte gene expression). 

2.2.8.3 Triage of microarray data to identify candidate miRNA 

biomarkers 

Each detected miRNA was initially stratified according to if their expression was 

unique to cholangiocytes or shared with hepatocytes. All miRNAs with inconstant 

expression across biological replicates were removed, along with miRNAs identified 

to be false positive by miRBase V.21.  

All miRNAs that exhibited significantly enriched or unique expression in 

cholangiocytes by SAM analysis were retained. Finally, any miRNAs that were 

specific to mouse, without a human equivalent according to miRBase V.22, were 

removed from downstream analysis.  
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2.2.8.4 Tissue distribution of miRNAs 

A publicly available miRNA high-throughput Solexa deep sequencing library of 14 

different tissues in mouse was downloaded (Gene expression omnibus accession: 

GSE67885)188. The individual reads for each miRNA expressed in liver, cerebrum, 

spleen, stomach, kidney, oesophagus, small intestine, cerebellum, lung, ovary, 

uterus, heart, colon and pancreas were cross referenced against the miRNAs of 

interest. The total reads of each miRNA in each tissue were listed to assess total gene 

expression, alongside individual miRNA reads in the liver expressed as a percentage 

of the total reads, to assess liver specificity.  

2.2.9 Quantitative polymerase chain reaction (qPCR)  

Specific miRNAs of interest were measured using TaqMan qPCR. Total RNA 

extraction was performed on primary murine hepatocytes and cholangiocytes as 

outlined in section 2.2.7.  

Total RNA was reverse transcribed using specific stem-loop primers for each 

individual miRNA species of interest (mmu-miR-200b-3p, mmu-miR-200c-3p, mmu-

miR-429, cel-lin-4-5p, snoRNA202) and the TaqMan MicroRNA Reverse 

Transcription Kit, according to the manufacturer’s instructions (Applied Biosystems).  

Total extracted RNA was diluted to 2 ng/mL and combined with the reverse 

transcription master mix to a total volume of 15 µL. cDNA was generated on a 

GeneAmp PCR System 9700 (ThermoFisher) thermocycler at: 30 min at 16 °C, 30 

min at 42 °C, 5 min at 85 °C and a 4 °C hold. Then, 2 µL of cDNA was added to the 

corresponding specific TaqMan qPCR primer and PCR mastermix according to the 

manufacturer’s instructions. All liquid handling was automated by a QIAgility robot 

(Qiagen) and all samples were loaded into PCR plates in duplicate. Samples 

underwent the qPCR reaction in a ViiA 7 (Applied Biosystems) with the following 

conditions: 2 min at 50 °C, 10 min at 95 °C and then 50 cycles of 15s at 95 °C and 60 
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s at 60 °C.  Ct values were determined using the fluorescence signal produced from 

the TaqMan probes. Cel-lin-4 was used as an exogenous normaliser and snoRNA-

202 was used as an endogenous normaliser. Fold change in expression of miRNA 

was calculated by the 2–∆∆Ct method 189. 
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2.3 Results 

2.3.1 Identification of antibodies suitable for isolation of primary 

cholangiocytes 

To accurately understand the global miRNA expression of cholangiocytes and 

hepatocytes, pure populations of each cell type needed to be isolated from whole liver 

tissue. As the isolation of cholangiocytes is performed by positive selection 

immunoaffinity purification, it was imperative to use an antibody with high specificity 

for a unique cholangiocyte cell surface antigen in order to minimise contamination of 

other cell types. Both cholangiocytes and hepatocytes are hepatic epithelial cells, 

although the expression of epithelial cell adhesion molecule (EpCAM) is unique to 

cholangiocytes. Different monoclonal anti-EpCAM antibodies positively stained bile 

duct structures without non-specific binding to other cell types (Fig 2.1), indicating 

they would be suitable for isolating primary cholangiocytes from either mouse or 

human livers. 

 
 

Figure 2.1- Anti-EpCAM antibodies specifically stain cholangiocytes in mouse 
and human livers. 

Healthy tissue from resected human liver (A) and a CD-1 mouse (C) were stained for the 
unique cholangiocyte marker EpCAM with two different monoclonal antibodies. A negative 
control with no primary antibody was used for comparison (B,D). Magnification x10, scale bar 
100 µm.  
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2.3.2 Histopathological scoring of human liver samples 

It was important to ensure that miRNAs in both cholangiocytes and hepatocytes were 

only expressed under normal conditions in healthy tissue, as perturbations in the liver 

can induce differential expression in the basal miRNAome. 

When assessing the quality of the anti-EpCAM antibody in human tissue, multiple 

human samples presented with biliary hyperplasia (Fig 2.2A) and immune infiltration 

(Fig 2.2B) in the periportal area. Areas of lipid deposition were also noted throughout 

the liver (Fig 2.2B).  

 
 

Figure 2.2- Evidence of periportal injury in representative healthy human liver 
samples 
 
(A) EpCAM+ stained bile ducts in human liver reveal atypical bile duct growth and formation, 
throughout the periportal area. (B) Red dotted areas indicate areas of lipid deposition and 
black dotted areas show inflammation/fibrosis around the periportal area of the liver. BD= Bile 
duct. Magnification x10, scale bar 100 µm. 
 

A total of 17 human resected liver samples were therefore collected in order to assess 

the quality of the tissue. Although this tissue was designated healthy by surgical 

margins, human liver samples typically came from elderly patients undergoing a form 

of cancer resection, who typically present with several comorbidities and are taking 

multiple medications at the time of hospital administration. Further patient histories 

revealed donors were diagnosed with liver cirrhosis (n=4) and undefined liver disease 

(n=2), secondary to the cause of resection. Details of these patients are listed in Table 

2.1 
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Table 2.1- Patient information of resected human liver samples. 

Representative healthy liver samples (n=17) defined from surgical margins was collected 
alongside patient’s medical history in order to evaluate tissue quality.  Patients age, BMI and 
number of  medications taken at time of hospital admission are presented as mean ± SD. 

 

The human liver samples underwent histological review by a trained pathologist who 

assessed the tissue for fibrosis, immune cell infiltration and lipid deposition. 

Altogether, 17/17 patients presented with at least mild lipid deposition, mild periportal 

fibrosis and mild periportal inflammation (Table 2.2). Given the location of 

cholangiocytes in the periportal region of the liver, it was deemed that cholangiocytes 

isolated from human liver samples could not be truly classed as healthy cells when 

compared to those derived from naïve mouse livers.  

 

 

 

Human resected samples (n=17)

Male (n=12) Female (n=5)

Age 61.5  13.0 66.8  30.5

BMI 27.6  3 21.1  2.5

# medications taken 5.4  3.1 3.5  2.6

Hypertensive

Yes 6 1

No 6 2

N/A 0 2

Diabetic

Yes 1 1

No 10 4

N/A 1 0

Cause for resection

Primary liver tumour  

(HCC/CCA)
4 2

Liver metastasis 8 2

Bile duct stones 0 1
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Table 2.2- All representative healthy human liver samples show some degree 
of periportal injury. 
 

Representative healthy liver samples (n=17) were scored by a trained pathologist for fibrosis, 
inflammation and lipid deposition as none, mild, moderate or severe. All liver samples were 
scored as at least mild for all criteria, with inflammation and fibrosis specifically affecting the 
periportal area. 
 

2.3.3 Isolation protocols produce viable and pure populations of cells 

Based on the unsuitable condition of the human tissue, the CD-1 mouse was chosen 

to isolate healthy cholangiocytes and hepatocytes. Optimisation of isolation 

procedures reported in section 2.2.4 successfully revealed biliary structures from the 

liver (Fig 2.3A), which allowed subsequent digestion for individual cholangiocytes. 

Isolated hepatocytes and cholangiocytes had a viability of ≥85 % by trypan blue 

staining. To assess the initial success of an isolation, isolated hepatocytes and 

cholangiocytes were lysed and probed for the positive specific cell markers, albumin 

and CK19 respectively, by western blot (Fig 2.3B). The HepG2 hepatocellular 

carcinoma cell line was used as a positive control, as it expresses both albumin and 

CK19. Independent isolations of hepatocytes and cholangiocytes (n=3) stained 

positively for their respective cell markers, indicating successful isolations for each 

cell type.  

Patient # Fibrosis Inflamation Lipid Deposition

1 Mild, PP only Mild, PP only Mild

2 Mild, PP only Mild, PP only Moderate/ Severe

3 Moderate, PP only Moderate, PP only Moderate/ Severe

4 Mild, PP only Mild, PP only Mild

5 Mild/Moderate, PP only Moderate, PP only, Interstitial Moderate/ Severe

6 Mild, PP only Mild, PP only Mild

7 Mild, PP only Mild, PP only Mild

8 Mild, PP only Mild, PP only Mild

9 Moderate/Severe, local bridging Moderate, PP only, Interstitial Moderate

10 Mild, PP only Mild, PP only Moderate

11 Mild, PP only Mild/Moderate, PP only, Interstitial Mild

12 Moderate, initial bridging Moderate, PP only Mild

13 Mild, PP only Mild, PP only Mild

14 Mild, PP only Mild, PP only Moderate

15 Mild, PP only Mild, PP only Mild

16 Mild, PP only Mild, PP only Mild

17 Moderate, PP only Moderate, PP only Mild
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Figure 2.3- Isolated hepatocytes and cholangiocytes are positive for their 
respective unique cell markers. 
 
(A) Fragments of the biliary tree, which is subsequently further digested to isolate 
cholangiocytes, magnification x10. (B) Isolated murine hepatocytes and cholangiocytes from 
independent isolations (n=3) are positive for albumin and CK19 respectively by western 
blotting. HepG2 was used as a positive control for both cell types.  
 

 
Importantly, western blot does not reveal the purity of isolations, and as freshly 

isolated cell samples would be lysed immediately for microarray preparation, a 

suspension immunofluorescence was performed. This allowed the assessment of the 

purity of freshly isolated cells without the need for plating, which could cause 

contaminating cells to die off due to selective media. Albumin and CK19 were used 

to positively identify each cell type. The technique was initially validated in HepG2 

cells to assess sufficient, uniform staining (Fig 2.4).  

 
 

Figure 2.4- Validation of the suspension immunofluorescence technique in 
HepG2 cells 
 
Adherent HepG2 cells were placed into suspension and stained for the hepatocyte marker 
albumin (red), the cholangiocyte marker CK19 (green) and Hoechst (blue). A negative control 
with no primary antibody was used for comparison.  Scale bar 20 µm. 
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Following isolation, hepatocyte purity was calculated at ≥97 % (Fig 2.5). Other 

features of hepatocytes such as large cell size and binucleation aided cell 

identification. Cholangiocyte yield was predictably lower than hepatocytes, with a 

purity of ≥94 % (Fig 2.6A). Further to the CK19 stain, a brightfield channel highlighted 

the DynaBeads physically bound to the cholangiocytes via the anti-EpCAM antibody 

used in the isolation (Fig 2.6B). Therefore, the isolation protocols for hepatocytes and 

cholangiocytes produced effectively pure populations of each cell type to be used on 

the microarray. 

 
 

Figure 2.5- Hepatocytes isolations are shown to be highly enriched by 
suspension immunofluorescence. 
 
Freshly isolated hepatocytes were stained for the hepatocyte marker albumin (red) and 
Hoechst (blue). Purity of the isolations was calculated as a percentage of albumin+ stained 
cells (red) relative to all cells (blue). A negative control with no primary antibody was used for 
comparison.  Scale bar 20 µm. 
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Figure 2.6- Cholangiocyte isolations are shown to be highly enriched by 
suspension immunofluorescence. 
 
(A) Freshly isolated cholangiocytes were stained for the cholangiocyte marker CK19 (green) 
and Hoechst (blue). Purity of the isolations was calculated as a percentage of CK19+ 
stained cells (green) relative to all cells (blue). A negative control with no primary antibody 
was used for comparison.  Scale bar 20 µm. (B) A brightfield view of isolated cholangiocytes 
reveals immunomagnetic beads used in the isolation protocol, bound to the unique 
cholangiocyte marker EpCAM. A negative control with no primary antibody was used for 
comparison.  Scale bar 20 µm.  
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2.3.4 Isolated total RNA from hepatocytes and cholangiocytes is high 

quality 

As RNA is prone to degradation, the accurate assessment of its integrity is one of the 

most critical steps for the success of any downstream analysis. Therefore, total RNA 

isolated from hepatocytes and cholangiocytes (n=4) was assessed on an Agilent 

2100 Bioanalyzer. The bioanalyzer produces an electropherogram and gel-like image 

and scores an RNA integrity number (RIN) between 1-10 (severely degraded to most 

intact, respectively) based on a complex algorithm of the entire electrophoretic trace. 

It is accepted that for sensitive RNA applications, a RIN score of at least seven is 

required.  

Total RNA from hepatocytes was determined to be high quality with strong peaks at 

the 28S and 18S rRNA fragment regions. There was minimal generation of shorter 

RNA fragments, indicating little to no degradation (Fig 2.7A, Fig 2.7C), which is 

reflected in the high average RIN score of 9.85 (Fig 2.7D). The total RNA from 

cholangiocytes displayed some degradation, shown by the increase in absorption 

spectra of shorter fragments (200-100 NT) when compared to hepatocytes (Fig 2.7B). 

This is more clearly recognised in the simulated gel image (Fig 2.7C). However, the 

RNA was still of sufficient quality for the microarray, with an average RIN score of 

7.78 (Fig 2.7D). 
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Figure 2.7- Isolated hepatocytes and cholangiocytes produce high quality total 
RNA.  
 
RNA was extracted from isolated hepatocytes and cholangiocytes and assessed on an Agilent 
Bioanalyser. An electrophoretic trace for hepatocytes (A) and cholangiocytes (B) and gel-like 
image of both cell types (C) reveal minimal RNA degradation. (D) RNA Integrity Number (RIN) 
scores for both isolated cell types were acceptable (>7) for the microarray. Data shown as 
mean ± SD, n=4.   
 

2.3.5 Initial microarray output reveals similar gene expression between 

hepatocytes and cholangiocytes 

Global miRNA expression profiles in hepatocytes and cholangiocytes were evaluated 

by SurePrint Mouse miRNA Microarray (Release 21.0), which contains probes for 

1,881 murine miRNAs. 

The initial data from the array was subject to quality control by AFE and AgiMicroRna 

software packages to ensure the microarray was correctly prepared, the necessary 

controls were functional, and that the downstream analysis of candidate biomarkers 
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was accurate. Principal component analysis (PCA) of all samples revealed a 

hepatocyte sample that had not grouped with the other hepatocyte biological repeats, 

indicated by the red circle (Fig 2.8A). Consequently, this sample and its matched 

cholangiocyte variant were removed from all subsequent analysis.  

Following quality control and normalisation of the microarray data to internal and 

spike-in controls, a total number of 276 miRNAs were detected in total across all 

samples. Of these, 178 miRNAs were shared between hepatocytes and 

cholangiocytes, 93 were unique to cholangiocytes and 5 unique to hepatocytes (Fig 

2.8B).  

 
 

Figure 2.8- Quality control of the microarray reveals large population of 
uniquely expressed miRNAs in cholangiocytes  
 
(A) Principal component analysis (PCA) revealed a hepatocyte isolation (circled in red) that 

did not cluster with other isolations. The sample and its matched cholangiocyte variant were 
removed from downstream analysis. (B) Initial analysis of the array detected 276 miRNAs 
(178 shared, 93 cholangiocyte unique, 5 hepatocyte unique) miRNAs in all samples.  
 

2.3.6 Identification of unique or enriched miRNAs in cholangiocytes 

As the overarching aim of this work was to identify uniquely expressed or enriched 

miRNAs in cholangiocytes, data from the array was triaged as outlined in section 

2.2.9.1 in order to identify candidate circulating miRNA biomarkers of DILI. 
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Briefly, miRNAs with inconsistent detection across all biological replicates in the 

microarray were removed from downstream analysis as well as miRNAs identified as 

false positives by miRBase V.20 190. This resulted in 69 unique and 134 shared 

miRNAs expressed in cholangiocytes (Fig 2.9).  
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One of the reasons why miR-122 is an attractive biomarker is due to its abundance 

in hepatocytes, so miRNAs from both cell types were ranked in descending order of 

expression to determine if a cholangiocyte equivalent existed.  However, a 

comparison of the top 25 expressed miRNAs revealed very similar expression profiles 

between hepatocytes and cholangiocytes (Fig 2.10). There were no uniquely 

expressed miRNAs in the most abundant cholangiocyte miRNAs (Fig 2.10A) and 

19/25 miRNAs were also detected in the most abundant hepatocyte miRNAs (Fig 

2.10B). 
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Figure 2.10- The top 25 most abundantly expressed miRNAs in each cell type 
are similar  
 
The most abundant miRNAs in hepatocytes (A) and cholangiocytes (B) were ranked in 
decreasing order of their log2 gene expression from the microarray. 19/25 miRNAs were 
expressed in the most abundant miRNAs in both hepatocytes and cholangiocytes; those 
miRNAs not shared in the most abundant miRNAs are highlighted in red and green for 
hepatocytes and cholangiocytes, respectively.  
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Therefore, to identify desirable cholangiocyte miRNA biomarkers with high 

abundance, a more targeted approach was taken. The top 25 uniquely expressed 

miRNAs were ranked in descending order of abundance (Fig 2.11A). Also, the basal 

expression of cholangiocyte enriched shared miRNAs was plotted against their fold 

change expression over hepatocytes (Fig 2.11B). This identified miRNAs with both 

high basal expression and enrichment over hepatocytes.  

The 69 unique and 134 shared miRNAs of interest, previously identified in section 

2.3.6, were further subject to statistical analysis by SAM in order to identify miRNAs 

with significantly different expression in cholangiocytes over hepatocytes. The 

miRNAs of interest were defined as those with an FDR <5 %. A complete listing of 

these miRNAs, their expression and significance is listed in appendix 2.1.   
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Figure 2.11- Highly abundant miRNAs make ideal biomarker candidates. 
 

(A) The most abundant uniquely expressed miRNAs in cholangiocytes were ranked in 

decreasing order of their log2 gene expression from the microarray. (B) Shared miRNAs with 
cholangiocyte enrichment were plotted as basal gene expression against their log2 fold 
change expression in hepatocytes. Black dot indicated average data point, miRNAs of interest 
were annotated in green.  
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Of the 134 shared miRNAs, 13 were enriched in cholangiocytes and were significantly 

different by SAM analysis (Fig 2.12A). Statistical analysis of uniquely expressed 

cholangiocyte miRNAs was possible as the AFE software assigns an undetected 

miRNA in hepatocytes a Log2 expression value of -1. Of the 69 unique miRNAs, 61 

were significant by SAM analysis (Fig 2.12B). The 8 insignificant miRNAs were 

generally low expression with high variation (average Log2 expression ± SD = 1.3 ± 

0.63). 

 
 

Figure 2.12- Statistical analysis of shared and unique cholangiocyte miRNAs 
by SAM analysis 
 
(A) Shared and (B) unique miRNAs were assessed by SAM analysis to identify significant 
differentially expressed miRNAs in cholangiocytes and hepatocytes. Shared miRNAs were 
first divided into cholangiocyte or hepatocyte enriched expression. The threshold for statistical 
significance was set at 5% FDR.  Data is expressed as mean log2 expression ± SD. 
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2.3.7 Further triage of significantly different microRNAs 

Although the microarray was performed in mouse, the ultimate goal of any 

translational biomarker is to have clinical utility in humans. Therefore, the 61 unique 

and 13 cholangiocyte enriched mouse miRNAs were compared on miRBase V.22 

(the most recent database at the time of searching) to attest if a human equivalent 

existed. All 13 cholangiocyte enriched miRNAs and the 50 of unique miRNAs were 

also expressed in human. Some miRNAs exhibited base additions, substitutions and 

nomenclature differences when comparing mouse and human equivalents, but these 

miRNAs were still retained (Appendix 2.2).  

An ideal circulating miRNA biomarker would show tissue specificity to the injured 

organ, such as miR-122 in the liver. The 13 shared and 50 unique translatable 

miRNAs of interest were further examined using a publicly available miRNA 

expression dataset of 14 organs in mouse (GEO accession: GSE67885); miR-122 

was included in the dataset for a comparison of a liver specific miRNA. There were 3 

unique miRNAs (miR-28c, miR-299b-5p) and a single shared miRNA (miR-3960) that 

were not detected in the GSE67885 database. There was a wide range in the total 

read count of unique and shared miRNAs in the different tissues (Appendix 2.3). 

However, neither unique nor shared miRNAs of interest showed substantial liver 

specificity. 

2.3.8 Validation of microarray by qPCR 

In order to validate the array, a selection of promising shared (miR-200b-3p and miR-

429-3p) and unique (miR-200c-3p) miRNAs were chosen to be analysed in freshly 

isolated hepatocytes and cholangiocytes by RT-PCR. The miRNA expression in the 

array relative to cholangiocytes (Fig 2.13A) was compared against a PCR normalised 

to the exogenous cel-lin-4 (Fig 2.13B) and endogenous snoRNA202 (Fig 2.13C). 

Gene expression determined by RT-PCR was shown to be very similar to the data 

obtained from the microarray. 
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Fig 2.13 Similar miRNA gene expression is detected by both microarray and 
PCR 
 
(A) The gene expression of three miRNAs of interest reported by the microarray, relative to 
cholangiocytes. In order to validate the microarray data, gene expression in freshly isolated 
hepatocytes and cholangiocytes was assessed by PCR. Data was normalised to the 
exogenous cel-lin-4 (B), or endogenous snoRNA202 (C). Relative gene expression detected 
by the microarray and PCR was comparable. 
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2.4 Discussion- 

Over the last decade, circulating miRNAs have gained attention as a novel class of 

biomarker in the detection of specific organ and cell injury. Multiple studies have 

shown the utility of miR-122 in the detection of hepatocellular injury following APAP 

toxicity in both human and pre-clinical models 144,191. However, miR-122 is also 

increased in response to cholestatic and mixed injury; whereas a different miRNA 

species derived from cholangiocytes could be better suited in detecting an injury of 

this nature 192. In this study, global miRNA expression profiles in murine hepatocytes 

and cholangiocytes were compared with the aim of identifying candidate miRNAs as 

novel DILI biomarkers. 

Primary human tissue is the gold standard model for cell isolations and our group has 

published extensively with isolated hepatocytes from resected tissues139,193,194. 

However, this study is the first to isolate cholangiocytes. As the quality of the 

periportal regions of the human livers were compromised, determined by pathologist 

scoring, it was necessary to switch to a pre-clinical model. Nevertheless, we have 

demonstrated that isolations of hepatocytes and cholangiocytes from murine livers 

produce viable and pure cell populations. 

A microarray analysis of isolated populations of native hepatocytes and 

cholangiocytes initially revealed 69 unique and 134 enriched cholangiocyte miRNAs. 

The large number of shared miRNAs is unsurprising given the similarities of both cell 

types. During development, cholangiocytes and hepatocytes both develop from 

hepatoblasts, a common precursor cell 195. There is also experimental evidence that 

cholangiocytes and hepatocytes can transdifferentiate to each other’s phenotype 

when their function and regeneration is significantly impaired 196. 

The evidence for the two cell type’s similarities was further demonstrated by ranking 

expressed miRNAs in terms of abundance. Previously identified liver enriched 
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miRNAs such as miR-122 and miR-192 were highly expressed in hepatocytes (Fig 

2.10A); this was to be expected as miR-122 reportedly constitutes 70% of all mature 

miRNAs in mature hepatocytes with an approximate copy number of 130,000 per cell 

197 and miR-192 is one of 9 miRNAs that accounts for ~89% of the hepatic miRNAome 

198. miR-122 was also highly expressed in cholangiocytes (Fig 2.10B), though it is 

unclear if this is due to hepatocyte contamination, as even a small number of 

hepatocytes could drastically inflate perceived gene expression.  

As highly abundant miRNAs were similar between the two cell types, we therefore 

sorted uniquely expressed miRNAs in cholangiocytes to identify candidate miRNA 

biomarkers (Fig 2.11A). A number of these miRNAs have been implicated in different 

hepatobiliary processes. For example, miR-342 has been shown to be downregulated 

in hepatocellular carcinoma (HCC) tissue 199, yet is upregulated in methionine/ 

choline-deficient (MCD) mouse models of non-alcoholic steatohepatitis (NASH) 200. 

miR-200c is downregulated in both HCC and intrahepatic cholangiocarcinoma (ICC) 

201 and has been detected in the serum of pre-clinical models with biliary hyperplasia 

154. miR-141 has been identified as potential circulating biomarker for primary biliary 

cirrhosis (PBC) 202 and its over-expression is implicated in poor prognosis of biliary 

tract cancers 203. Furthermore, it has been shown to be expressed in multiple intra- 

and extra-hepatic cholangiocarcinoma cell lines by microarray analysis 204. miR-146a 

expression is also downregulated in HCC 201 and is thought to supress liver fibrosis 

and stellate cell activation following chemical 205 or NASH injury 206. 

Although potentially not as desirable as uniquely expressed miRNAs, those with 

shared expression may still be viable biomarkers. Candidate shared miRNAs were 

identified by examining those with high basal cholangiocyte expression, as well as 

high enrichment over hepatocytes (Fig 2.11B). These miRNAs are also implemented 

in a number of cholangiocyte disease processes: downregulation of miR-126 in 

resected ICC relative to healthy cholangiocyte tissue is associated with increased 
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survival 207. miR-200a and miR-200b and miR-429 have been identified as a 

circulating marker of biliary hyperplasia 154 and biliary atresia 208 209.  

The aforementioned miRNAs were shown to be significantly different by SAM analysis 

and express a human equivalent; they are specifically referenced here due to their 

high abundance and enrichment and their defined role in biliary disease, or as a 

biomarker. Indeed, other significantly different miRNAs from the array are also 

implemented in various forms of liver physiology. 

However, when we compare the tissue distribution of candidate miRNAs, it becomes 

apparent that a single miRNA biomarker would not be feasible to inform of 

cholangiocyte injury. Both unique and shared miRNAs have relatively low liver 

abundance compared to other tissues, thus a panel of miRNA and/or protein 

biomarkers would be needed to confirm specific liver injury. Many promising miRNAs 

(miR-141, miR-200a, miR-200b, miR-200c, miR-429) have a low individual read count 

in liver tissue, and therefore very low liver specificity, according to the GSE67885 

tissue library. However, this could be a consequence of their unique or enriched 

expression in cholangiocytes, which only make up 5% of the total liver.  

2.4.1 Conclusions & future work 

In this chapter, miRNA expression profiles for both hepatocytes and cholangiocytes 

were compared, and 50 unique and 13 shared miRNAs were identified as potential 

candidates for circulating biomarkers of cholangiocyte DILI. It was also noted that 

resected human tissue typically presents with a damaged periportal area, which 

impedes sensitive RNA interrogation of the tissue. Consequently, optimised isolation 

protocols for isolating murine hepatocytes and cholangiocytes provided pure and 

viable hepatic cell populations  

Future work should aim to characterise the finalised 50 unique and 13 shared miRNAs 

in an in vivo CD-1 mouse with cholangiocyte DILI, or in serum samples of human 
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patients presenting with mixed or cholestatic injury. These miRNAs should be 

contextualised relative to the current gold standard biomarkers in order fully compare 

their sensitivity and release kinetics. 

2.4.2 Limitations 

A potential caveat of the initial analysis was the manner in which the cells were 

isolated. As the cells were donor matched, the differences in isolation time may have 

had an effect on miRNA expression. Hepatocytes are typically isolated within 1 h of 

sedating the animal, whereas cholangiocytes are isolated after >4 h.  

Furthermore, the GSE67885 tissue atlas used 8-week-old female C57BL/6J mice to 

generate their sequencing reads. Whilst these are a similar age to the mice in this 

study, sex status can produce differential miRNA expression 210. 

Finally, SAM analysis was used to identify differentially expressed miRNAs. The data 

was also analysed by paired multiple t-test, which was shown to be less stringent 

(Appendix 2.1). Some miRNAs removed due to the more rigorous statistical exclusion 

criteria may still be viable biomarker candidates (e.g. miR-223-3p, Log2 BEC= 7.86, 

Log2 HEP= 3.75, t-test FDR= 0.03, SAM FDR= 5.75%). 
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3.1 Introduction 

Bile duct lesions are a feature of both mixed and cholestatic DILI, which account for 

approximately 50 % of all clinical DILI cases 211. Perturbations to the cholangiocytes, 

the cardinal cell of the bile duct, can result in a prolonged state of cholangitis. Without 

proper diagnosis and clinical intervention, this can ultimately lead to bile duct 

degeneration and destruction, necessitating the need for liver transplantation 212.  

Currently, both the diagnosis and the classification of DILI is dependent upon RUCAM 

and R-ratio scoring 213,214. These scoring measurements currently utilise circulating 

protein biomarkers as diagnostic tools. ALP is the classical marker of cholestatic liver 

injury. Within the liver,  it is located within cholangiocytes and on the apical 

membranes of hepatocytes 215. The circulating levels of ALP in healthy patients is 

prone to variation and can be influenced by sex, blood group, pregnancy, old age and 

bone development in children 216. Furthermore, the distribution of circulating ALP in 

healthy adult patients is derived from bone (approximately 58-67 %), liver (25-33.5 

%), and the intestinal tract (8-9 %) 217. Abnormal ALP serum values are therefore 

typically corroborated by further biomarker tests, such as 5’ nucleotidase (5’NT) or γ-

glutamyl transferase (GGT) in order to confirm complete liver specificity. Mild to 

moderate (2-3x ULN) levels of circulating ALP are typically seen in multiple types of 

liver disorder and significant elevations (>3x ULN) are associated with both intra- or 

extrahepatic cholestasis 216. These values represent a relatively small dynamic range 

between healthy and diseased states.  

miRNAs have been proposed as a novel family of biomarkers that may offer improved 

clinical utility over the current gold standard protein biomarkers. Hepatocellular 

enriched miRNAs, such as miR-122 and miR-192 have already showed improvement 

over ALT/AST in identifying DILI in both pre-clinical models and humans 139,218. 

However, no such miRNAs currently exist for identifying cholangiocyte DILI. In the 

previous chapter, over 60 cholangiocyte enriched or unique murine miRNAs were 
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identified as circulating biomarker candidates. Five of these miRNAs, miR-141, -200a, 

-200b, -200c and -429, show promise as they have previously been detected in the 

serum of other biliary diseases, such as ICC 201,203, PBC 202, biliary hyperplasia 154 and 

biliary atresia 208,209 following a search of the literature. 

Cholangiocyte DILI is clinically associated with commonly prescribed drugs, such as 

amoxicillin/clavulanic acid 219, flucloxacillin 220 and carbamazepine 221. However, 

human cholangiocyte DILI is supposed to be predominantly idiosyncratic and 

mediated via T-cell hypersensitivity, opposed to direct parent compound or reactive 

metabolite toxicity 212. Attempts to pre-clinically model DILI involving the adaptive 

immune response have largely been unsuccessful 222,223. Therefore, the classic 

methodology of inducing cholangiocyte injury is bile duct ligation (BDL), though this 

is not translational to human DILI 224. Consequently, toxicological studies of 

cholangiocytes have historically used acute dosing of ANIT and DAPM, two chemical 

compounds, which ultimately result in a mixed periportal injury. While these 

compounds are not clinically relevant, they have been shown to induce cholangiocyte 

DILI predominantly in rats 154,225–228, but also in mice 229–232. The details of these 

studies are summarised in Table 3.1. 
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Table 3.1- Experimental conditions of previous hepatobiliary toxicology studies 

ANIT and DAPM, typically administered by oral gavage, have been extensively used in the 
past to induce cholangiocyte injury in vivo.  

 
To date, the CD-1 mouse has yet to be utilised in combination with ANIT to induce 

biliary injury. Furthermore, the detection of miR-141, -200a, -200b, -200c and –429 in 

response to cholangiocyte DILI in a mouse model has not yet been elucidated. The 

detection of these cholangiocyte enriched and unique miRNAs coupled with analysis 

of their fold change relative to a vehicle control would allow a direct comparison 

against the currently used protein biomarkers. 

  

Rat Sprague Dawley Male, 8 wk ANIT - Corn Oil 50 o.g 154

Rat Wistar 200-250 g ANIT - Corn Oil 300 o.g 225

Rat Wistar Male, 220-240 g ANIT - Olive Oil 100-200 o.g 227

Rat Wistar 300-335g ANIT - Corn Oil 20-40 o.g 228

Rat Sprague Dawley Male, 290-350 g DAPM - 35% EtOH 50 o.g 226

Mouse C57BL/6 Female, 8-9 wk ANIT - Olive Oil 50 o.g 229

Mouse C57BL/6 Male, 8-10 wk ANIT - Corn Oil 75 o.g 231

Mouse C57BL/6 Male, 8-10 wk DAPM - N/A 50 i.p 230

Mouse ICR N/A DAPM - N/A 10-100 o.g 232

Reference
Administration 

route 

Animal 

Information
StrainSpecies Drug - Vehicle

Dose 

(mg/kg)
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3.1.1 Aims and hypothesis 

The aims of this chapter were to: 

• Induce cholangiocyte injury in CD-1 and C57BL/6J mice and Sprague Dawley 

rats with a single acute dose of hepatobiliary toxicant. 

• Assess the degree of liver injury by classical serum biomarkers and 

histopathological scoring. 

• Detect cholangiocyte enriched or unique miRNAs of interest in the serum of 

these animals and contextualize them relative to the type and degree of injury. 

The main hypothesis within this chapter was that cholangiocytes would be injured in 

the CD-1 mouse following a single dose of hepatobiliary toxicant, causing previously 

identified cholangiocyte-enriched miRNAs to be released from the liver and be 

detected in serum. The degree of injury and biomarker release would be similar to 

C57BL/6J mice and Sprague Dawley rats, which have been previously utilised in 

cholangiocyte toxicology studies.  Candidate miRNA biomarkers would be released 

at an earlier time point and show a greater dynamic range between healthy and DILI 

samples than the current gold standard biomarkers. 
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3.2 Materials and Methods 

Unless otherwise stated, all materials were purchased from Sigma Aldrich (Poole, 

UK). 

3.2.1 Experimental animals 

The protocols described were undertaken in accordance with the criteria outlined in 

a project licence granted under the Animals Scientific Procedures Act 1986 and 

approved by the University of Liverpool Animals Ethics Committee. 5-7-week-old 

male CD-1 and C57BL/6J mice and Sprague Dawley rats were purchased from 

Charles River laboratories (Cambridge, UK) and had a 7-day acclimatisation period 

prior to experimentation. Animals were maintained in a 12 h light/dark cycle with free 

access to food and water.  

3.2.2 Chemical exposure in experimental animals 

The animal numbers, dosing and time points utilised in this study were selected, in 

part, based on previously published data 154,231,233,234. For fasted animals, food was 

withdrawn approximately 16 h prior to dosing. All animals were dosed approximately 

between 09.00-10.30 a.m. On the morning of dosing, all animals were weighed and 

received a single dose of freshly constituted hepatobiliary toxicant. ANIT (50 mg/kg 

and 75 mg/kg) or corn oil and DAPM (100 mg/kg and 200 mg/kg) or polyethylene 

glycol 300 (PEG) were administered by oral gavage (o.g) in a volume of 10 mL/kg.  

3.2.3 Sample collection and processing 

Experimental animals were euthanized in a rising concentration of CO2 and weighed 

post-mortem. Livers and stomachs were excised, weighed and immersed in 4 % PFA 

and fixed for 24-48 h at 4 °C. Animals were exsanguinated via cardiac puncture by a 

20 G needle and the blood was collected and left to clot at RT for 30-60 min. The clot 

was separated by centrifugation at 1,500 x g at 4 °C for 10 min with no brake. The 

serum was retained without disturbing the clot, aliquoted and stored at -80 °C. 
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3.2.4 Haematoxylin and eosin (H&E) staining and histological scoring 

H&E staining of experimental animal samples were performed in collaboration with 

Julie Haigh at The School of Veterinary Science, University of Liverpool.  

The processing and sectioning of tissue blocks is described in Section 2.2.3. For H&E 

staining, liver and stomach sections underwent deparaffinisation by 3 x 5 min 

incubations in xylene and 5 min in 100 % ethanol. Slides were briefly submerged in 

decreasing concentrations of 100 %, 95 %, 80 %, 70 % and 50 % ethanol. Slides 

were rinsed twice in dH2O and submerged in Mayer’s haematoxylin for 5 min, followed 

by one wash in tap water for 5 min and one rinse in dH2O. Slides were then 

submerged in Eosin Y solution for 5 min. To dehydrate the sample, slides were briefly 

submerged in 95 % ethanol, then twice into 100 % ethanol. Finally, slides underwent 

two 1 min washes in xylene.  

Histological scoring of experimental animal samples was performed by Dr Lorenzo 

Ressel at The School of Veterinary Science, University of Liverpool.  

H&E stained liver and stomach sections (n= ≥3 per experimental condition and time 

point) were microscopically examined by a trained veterinary pathologist and 

pathological changes of interest were annotated. The severity of pathological findings 

was graded between none, mild, moderate, marked and severe.  Incidence was 

stratified as low, moderate or high. This was defined as present in ≤1/3 of examined 

samples, present in ≤2/3 of examines samples and present in all samples, respectively.  

3.2.5 Quantification of serum ALT activity 

Serum ALT was determined by a photometric kinetic assay using the Infinity ALT 

(GPT) Liquid Stable Reagent (TR71121, ThermoFisher Scientific, UK). ALT catalyses 

the production of pyruvate from L-alanine and 2-oxoglutarate. Pyruvate is then 

reduced by lactate dehydrogenase into L-lactate, whilst NADH is co-currently 
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oxidised into NAD. The kit measures ALT activity by the decrease in absorbance at 

340 nm due to the oxidation of NADH.  

To perform the assay, ALT reagent was warmed to 37 °C and the serum samples 

were defrosted on ice. Serum was diluted 1:10 in dH2O and 30 µL was loaded in 

duplicate into a 96 well plate. 300uL of pre-warmed ALT reagent was added to the 

serum and the maximum rate of ALT activity was determined by the decrease of 

absorbance at 340 nm over a 10 min kinetic read by a Varioskan Flash plate reader 

(ThermoFisher Scientific). This value was then multiplied by a determined factor, 

which accounted for path length correction, dilution factor and the millimolar 

absorption coefficient of NADH at 340 nm, to produce a final ALT activity (U/L) value. 

3.2.6 Quantification of serum ALP activity 

Serum ALP was determined by a colorimetric kinetic assay using the Alkaline 

Phosphatase Assay Kit (ab83369, Abcam (Cambridge, UK). ALP catalyses the 

hydrolysis of phosphate esters in an alkaline buffer. The kit uses p-nitrophenyl 

phosphate (pNPP) as a phosphatase substrate, which is de-phosphorylated by ALP. 

This causes a colorimetric change, with a peak optical density at 405 nm. 

To perform the assay, ALP assay buffer and stop solution were warmed to RT and 

the serum samples defrosted on ice. Murine serum samples were diluted 1:10 in dH2O 

and rat serum samples were diluted 1:100 in dH2O. The standard curve and 80 µL of 

diluted serum were loaded in duplicate into a 96 well plate. 50 µL of 5 mM pNPP 

solution was added to the serum samples and 10 µL of reconstituted ALP enzyme 

was added to the standard curve samples. The plate was incubated at 25 °C for 1 h 

in darkness, briefly shaken, and the optical density at 405 nm was determined by a 

Varioskan Flash plate reader. Final ALP activity (U/mL) in serum samples were 

extrapolated from the standard curve values.  
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3.2.7 Total RNA extraction  

Total RNA was isolated from serum by the miRNeasy mini extraction kit (Qiagen, 

Venlo, Netherlands) with minor modifications to the manufacturer’s instructions. 120 

µL of serum was made up to a total volume of 200 µL with nuclease-free H2O. 1 mL 

of Qiazol reagent was added to the diluted serum. Samples were vortexed and 

incubated for 5 min at RT to ensure complete lysis and then spiked with the 

exogenous miRNA, cel-lin-4, to a final concentration of 10 pM (Applied Biosystems, 

UK). 200 µL of chloroform was added to the samples, which were vortexed and 

centrifuged at 12,000 x g at 4 °C for 15 min. Approximately 600 µL of the resulting 

upper aqueous solution was then transferred to a new microcentrifuge tube and mixed 

with 900 µL of 100% ethanol. All future centrifuge steps were performed at RT. 

This new mixture was loaded into a RNeasy Mini column and spun at 8,000 x g for 

15 s. 700 µL of RWT buffer was added to the Mini column and spun at 8,000 x g for 

15 s, followed by 500 µL of RPE buffer and another spin at 8,000 x g for 15 s. The 

spin columns were washed with 500 µL of RPE buffer and a spun at 8,000 x g for 2 

min. 50 µL of nuclease-free H2O was added to the Mini column and spun at 8,000 x 

g for 15 s in order to elute total RNA into a new microcentrifuge tube. 

3.2.8 Quantitative polymerase chain reaction (qPCR) 

Specific miRNAs of interest were measured using TaqMan qPCR. Total RNA was 

reverse transcribed using specific stem-loop primers for each individual miRNA 

species of interest (mmu-miR-122-5p, mmu-miR-141-3p, mmu-miR-200a-3p, mmu-

miR-200b-3p, mmu-miR-200c-3p, mmu-miR-429-3p, let-7d-5p and cel-lin-4-5p,) by 

the TaqMan MicroRNA Reverse Transcription Kit, according to the manufacturer’s 

instructions (Applied Biosystems).  

5 µL of total RNA was combined with the specific reverse transcription primer and 

master mix to a total volume of 15 µL. cDNA was generated on a GeneAmp PCR 
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System 9700 (ThermoFisher Scientific) thermocycler at: 30 min at 16 °C, 30 min at 

42 °C, 5 min at 85 °C and a 4 °C hold. The resulting cDNA was then made to a total 

volume of 20 µL with nuclease-free H2O. Then, 2 µL of cDNA was added to the 

corresponding specific TaqMan qPCR probe and master mix according to the 

manufacturer’s instructions.  

The plating and reaction conditions of the PCR is described in Section 2.2.10. Cel-

lin-4 was used as an exogenous control for extraction and reverse transcription 

efficiency and let-7d-5p was used as an endogenous normaliser. Fold change in 

expression of miRNA was calculated by the 2–∆∆Ct method 189. 

3.2.9 Statistical analysis 

All statistical analysis was performed on GraphPad Prism V.8.2.0 (CA, US). The 

differences in total body weight pre- and post-dose were analysed by a paired two-

tailed t-test. The differences in organ weight and biomarker levels between time-

matched controls were analysed by unpaired two-tailed t-test. Differences in 

biomarker levels relative to the 0 h control was performed by one-way ANOVA with 

Dunnet’s multiple comparison test.  
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3.3 Results 

3.3.1 ANIT does not cause liver injury in non-fasted CD-1 mice 

For physiological relevancy, the hepatobiliary toxic effects of ANIT were observed in 

non-fasted CD-1 mice. Throughout the study, ANIT appeared to be well tolerated by 

the mice. Non-fasted CD-1 mice dosed with corn oil (n=5 per time point) or 75 mg/kg 

ANIT (n=5 per time point) were assessed for liver injury by histopathological 

assessment alongside serum ALT and ALP concentrations at 0 h, 12 h, 24 h, 48 h 

and 72 h post-dose. A small number of animals per group exhibited hypertrophy in 

the perivenous area, though this was also observed in the 0 h control group (Fig 

3.1A). Liver staining revealed minimal changes to liver histology at 0 h, 12 h, 24 h, 48 

h and 72 h post-dose (Fig 3.1B-H). 
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Figure 3.1- ANIT does not cause liver injury in non-fasted CD-1 mice by 
histological assessment 

(A) Histopathological assessment and representative images of H&E stained liver sections 
from non-fasted CD-1 mice dosed with ANIT (75 mg/kg) at (B) 0 h, (C) 12 h, (E) 24h, (F) 48 h 
and (H) 72 h or corn oil at (D) 24 h and (G) 72 h post-dose. Magnification x10, scale bar 100 
µm. 
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Circulating levels of ALT (Fig 3.2A) and ALP (Fig 3.2B) in serum from ANIT-treated 

animals displayed minimal elevation compared to the 0 h and time-matched controls. 

All time points were non-significant except for ALP in ANIT treated mice 72 h post-

dose, which decreased. A relatively high intra-group variation was also observed 

within these groups. 

 
 

Figure 3.2- ANIT causes minimal liver injury in non-fasted CD-1 mice by serum 
biomarker assessment 

Liver injury in non-fasted CD-1 mice dosed with corn oil or ANIT (75 mg/kg) was assessed 
by serum (A) ALT and (B) ALP. n=5 per group, bars represent the mean value ± SEM. ** = 
p<0.01 
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3.3.2 ANIT causes minimal liver injury in fasted CD-1 mice 

Due to the minimal hepatotoxicity observed in non-fasted CD-1 mice, food was 

withdrawn from future studies. It was hypothesised that food in the stomach may be 

dampening the toxic effects of ANIT, possibly due to retarded gastric emptying and 

intestinal absorption 235 and the intra-group variability may have been caused by 

different nutritional states of individual animals 236. 

Fasted CD-1 mice were dosed with corn oil (n=5 per time point) or 75 mg/kg ANIT 

(n=≥5 per time point) and sacrificed 0 h, 9 h, 24 h, 48 h and 72 h post-dose. 

Throughout the study, ANIT appeared to be poorly tolerated by the mice. Mice 

displayed a hunched posture, laboured or minimal movements and loose stools. The 

12 h time point was altered to a 9 h time point in order to not exceed the project 

licence animal severity limitation.  

H&E Liver staining revealed some hypertrophic effects in the perivenous area of a 

few select ANIT-treated mice (Fig 3.3A). No consistent and definitive liver injury was 

detected in the majority of ANIT-treated mice at 0 h, 9 h, 24 h, 48 h and 72 h (Fig 

3.3B-H).  
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Figure 3.3- ANIT causes variable liver injury in fasted CD-1 mice by histological 
assessment 
 
(A) Histopathological assessment and representative images of H&E stained liver sections 
from fasted CD-1 mice dosed with ANIT (75 mg/kg) at (B) 0 h, (C) 9 h, (E) 24h, (F) 48 h and 
(H) 72 h or corn oil at (D) 24 h and (G) 72 h post-dose. Magnification x10, scale bar 100 µm 
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A single mouse at both 48 h (Fig 3.4A) and 72 h (Fig 3.4B) exhibited marked liver 

injury consistent with ANIT toxicity, with periportal immune infiltration and necrosis.  

 
 

Figure 3.4- ANIT causes variable liver injury in non-fasted CD-1 mice by 
histological assessment 

 
Images of H&E stained liver sections from two non-fasted CD-1 mice dosed with ANIT (75 
mg/kg) at (A) 48 h and (B) 72 h post-dose. Liver injury in this model was inconsistent, though 
select mice did exhibit ANIT-induced periportal perturbation. White arrows indicate 
coagulative necrosis, black arrows indicate infiltrating immune cells. Magnification x10, scale 
bar 100 µm. 
 

This same inconsistent pattern of injury was observed in the circulating levels of ALT 

(Fig 3.5A) and ALP (Fig 3.5B) in ANIT-treated animals. A single mouse in both the 48 

h and 72 h group showed severe responses compared to all other mice at the 

corresponding time points. In all time points, there was an increase in biomarker 

concentration compared to 0 h and time-matched controls, though this effect was 

much more prominent in ALT than ALP. Significant differences were observed 

between the 24 h post-dose group for both ALT and ALP, however these changes 

were small. In combination with histology analysis, it was determined liver injury and 

cholangiocyte damage was insufficient. 
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Figure 3.5- ANIT causes minimal liver injury in fasted CD-1 mice by serum 
biomarker assessment 
 
Liver injury in fasted CD-1 mice dosed with corn oil or ANIT (75 mg/kg) was assessed by 
serum (A) ALT and (B) ALP. n=≥ 5 per group, bars represent the mean value ± SEM. * = 
p<0.05, ** = p<0.01 
 

3.3.3 ANIT causes significant changes in liver and stomach weight in 

fasted CD-1 mice 

During the fasted ANIT-treated CD-1 mouse study, it was noted that the animals 

displayed laboured movement. Through handling the mice and post-mortem 

examination, it was noted that the stomachs were enlarged and appeared to contain 

blood clots. A small follow-up study was therefore performed to examine this change 

in organ weight, whereby CD-1 mice were fasted, weighed and dosed with corn oil 

(n=3) or 75 mg/kg ANIT (n=3) and culled 30 h post-dose.  
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Upon sacrifice, corn oil-dosed mice weighed significantly more than their pre-dose 

weight. However, ANIT-dosed mice maintained a similar weight throughout the study 

(Fig 3.6A). Lack of weight gain in response to a toxic stimulus is not a rare occurrence, 

therefore livers and stomachs were also weighed and normalised to individual animal 

weight at time of sacrifice. Livers from ANIT-dosed animals weighed significantly less 

compared to corn oil control livers (Fig 3.6B). The stomachs from ANIT-dosed animals 

weighed significantly more than those of corn oil control mice (Fig 3.6C). The 

observed changes in liver, stomach and whole-body weight did not reflect the 

variability seen in the serum biomarker concentrations.  

 
 

Figure 3.6- ANIT causes significant changes in liver and stomach weight in 
fasted CD-1 mice 

 
Differences in the (A) total body, (B) liver and (C) stomach weights of CD-1 mice dosed with 
corn oil or ANIT (75 mg/kg) 30 h post-dose. Individual liver and stomach weights were 
calculated as a percentage of post-mortem body weight. Bars represent the mean value ± 
SEM. n.s= non-significant, * = p<0.05, ** = p<0.01 and *** = p<0.001.  
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Stomachs underwent histological assessment in order to evaluate any cellular 

perturbations (Fig 3.7A).  Control stomachs displayed unremarkable glandular (Fig 

3.7B) and non-glandular (Fig 3.7C) regions of the stomach. However, ANIT appeared 

to cause significant stomach toxicity in CD-1 mice. In the glandular region, a flattening 

and possible hyperplastic response of the epithelium was observed (Fig 3.7D), 

proximal to areas of haemorrhaging (Fig 3.7E). In the non-glandular area, a mild 

extravasation of neutrophils into the tissue was also apparent (Fig 3.7F) The size and 

weight difference of these stomachs, as well as visible areas of gastric bleeding is 

demonstrated in Fig 3.7G.  
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Figure 3.7- ANIT causes stomach toxicity in fasted CD-1 mice by histological 
assessment 

 
(A) Histopathological assessment and representative images of H&E stained stomach 
sections from fasted CD-1 mice dosed with corn oil or ANIT (75 mg/kg) 30 h post-dose. (B)  
corn oil treated, glandular stomach, (C) corn oil treated, non-glandular stomach, (D) ANIT 
treated, glandular stomach, black arrows indicate flattened epithelium, (E) ANIT treated, black 
arrow indicates haemorrhages (E) ANIT treated, non-glandular stomach, black arrow indicates 
neutrophil extravasation. (A-D) magnification x10, scale bar 100 µm, (F) magnification x20. 
(G) Image of corn oil and ANIT treated CD-1 stomachs. 
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3.3.4 DAPM causes minor liver injury in fasted CD-1 mice 

Due to the irregular liver toxicity observed with ANIT in the non-fasted and fasted CD-

1 mouse, a small pilot study using DAPM, a secondary line biliary toxin, was 

performed. CD-1 were fasted and dosed with PEG (n=3), 100 mg/kg DAPM (n=3) or 

200 mg/kg DAPM (n=3). Mice were culled at 30 h post-dose. Throughout the study, 

DAPM appeared to be well tolerated by the mice at both doses.  

Liver staining revealed a mild but consistent hydropic degeneration in the periportal 

areas of all experimental groups (Fig 3.8A-D). Diffuse coagulative necrosis was 

observed in the periportal areas of DAPM-treated mice, and this severity increased 

with dose strength (Fig 3.9C-D). However, the pattern of necrosis was not localised 

entirely to the periportal area and was described as randomly scattered throughout 

the liver lobule by the histopathologist. 

 
 

Figure 3.8- DAPM causes minor liver injury in fasted CD-1 mice by histological 
assessment 
 

(A) Histopathological assessment and representative images of H&E stained liver sections 
from fasted CD-1 mice dosed with (A) PEG, (B) 100 mg/kg DAPM or (C) 200 mg/kg DAPM 30 
h post-dose. White arrows indicate coagulative necrosis, black arrows indicate infiltrating 
immune cells. Magnification x10, scale bar 100 µm. 
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Serum biomarker analysis revealed a variable degree of liver injury. DAPM caused 

a non-significant concentration-dependant increase in both ALT (Fig 3.9A) and ALP 

(Fig 3.9B). However, there was a high degree of intra-group variability.  

 
 

Figure 3.9- DAPM causes minor liver injury in fasted CD-1 mice by serum 
biomarker assessment 

 
Liver injury in fasted CD-1 mice dosed with PEG or DAPM (100 and 200 mg/kg) was assessed 
by serum (A) ALT and (B) ALP. n=3 per group, bars represent the mean value ± SEM.  
 

3.3.5 DAPM does not cause significant changes in liver and stomach 

weight in fasted CD-1 mice 

As both ANIT and DAPM were administered by o.g, whole body, liver and stomach 

weights of DAPM-treated mice were recorded to see if similar discrepancies also 

occurred. Upon sacrifice, all experimental mice weighed significantly more than their 

pre-dose weight (Fig 3.10A). No significant difference was observed in the weights of 

livers between all dosed animals (Fig 3.10B). While there was a concentration-
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dependant increase in the stomach weights in animals dosed with DAPM, the overall 

change was relatively small and non-significant (Fig 3.10C).   

 
 

Figure 3.10- DAPM does not cause significant changes in liver and stomach 
weight in fasted CD-1 mice 

 
Differences in the (A) total body, (B) liver and (C) stomach weights of CD-1 mice dosed with 
PEG or DAPM (100 and 200 mg/kg) 30 h post-dose. Individual liver and stomach weights 
were calculated as a percentage of post-mortem body weight. Bars represent the mean value 
± SEM. n.s= non-significant, * = p<0.05 and ** = p<0.01 
 

3.3.6 ANIT causes moderate liver injury in fasted C57BL/6J mice 

Histological analysis revealed the pattern of liver injury in DAPM-treated CD-1 mice 

to be random and not confined completely to cholangiocytes (Fig 3.8A). This limited 

its utility as a consistent periportal toxin.  

Though ANIT displayed minimal and unreliable liver toxicity in CD-1 mice, published 

work has demonstrated its hepatobiliary toxicity in C57BL/6J mice. Therefore, a small 
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time-matched study of ANIT in C57BL/6J mice was performed. Mice were dosed with 

corn oil (n=3 per time point) or 75 mg/kg ANIT (n=3 per time point) and were culled 

24 h, 48 h and 72 h post-dose. Throughout the study, ANIT appeared to be well 

tolerated by the mice. No issues arose regarding exceeding the animal severity limit 

in the first 12 h in this study, unlike in the CD-1 experiment, although movement was 

lethargic up to 48 h post-dose. 

H&E liver staining revealed no changes to the perivenous area of ANIT-dosed mice 

(Fig 3.11A). However, in the periportal areas, mild hepatitis was observed at 24h (Fig 

3.11D), which progressed to infiltrating immune cells localised to the bile ducts at 48 

h (Fig 3.11F) and 72h (Fig 3.11H), with marked coagulative necrosis.  
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Figure 3.11- A time course of ANIT causes liver injury in fasted C57BL/6J mice 
by histological assessment 
 
(A) Histopathological assessment and representative images of H&E stained liver sections 
from fasted C57BL/6J mice dosed with ANIT (75 mg/kg) at (B) 0 h, (D) 24 h, (F) 48 h and (H) 
72 h, or corn oil at (C) 24 h, (E) 48 h and (G) 72 h post-dose. White arrows indicate coagulative 
necrosis, black arrows indicate infiltrating immune cells. Magnification x10, scale bar 100 µm  
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Serum biomarker analysis represented a more comprehensive and reproducible 

profile of liver injury than compared to previous CD-1 mouse studies. Peak ALT injury 

was observed at 48 h post-dose, though all time points were significantly elevated 

compared to the corn oil-treated mice. Furthermore, ALT was significantly higher at 

48 h and 72 h post-dose compared to the 0 h control (Fig 3.12A). Similar to ALT, the 

serum levels of ALP were all elevated in dosed animals compared to their time-

matched controls. This effect was significant at 24 h and 48 h post-dose. ALP levels 

appeared to peak at 24 h post-dose, with the exception of one mouse at 72 h (Fig 

3.12B).  

 
 

Figure 3.12- A time course of ANIT causes moderate liver injury in fasted 
C57BL/6J mice by serum biomarker assessment 

 
Liver injury in fasted C57BL/6J mice dosed with corn oil or ANIT (75 mg/kg) was assessed by 
serum (A) ALT and (B) ALP. n=3 per group, bars represent the mean value ± SEM. * = p<0.05 
and ** = p<0.01 
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3.3.7 ANIT causes significant changes in liver and stomach weight in 

fasted C57BL/6J mice 

Although ANIT appeared to be better tolerated in C57BL/6J mice than in the CD-1 

strain, an enlargement of the stomach was still apparent post-mortem. Measurements 

of total body, liver and stomach weight were therefore recorded.  

Similar to the CD-1 study, corn oil-dosed mice weighed significantly more than their 

pre-dose weight at all time points. Conversely, ANIT-dosed mice lost weight during 

the course of the experiment at all time points (Fig 3.13A). The weight of ANIT-treated 

livers at 24 h was significantly reduced compared to vehicle controls, although this 

effect resolved over the 48 h and 72 h time points (Fig 3.13B). ANIT-treated stomachs 

were significantly enlarged relative to vehicle controls at 24 h and 48 h post-dose and 

remained enlarged at 72 h post-dose. The biggest difference in stomach weight 

between corn oil-dosed and ANIT-dosed mice was observed at 24 h (Fig 3.13C). 

Similar to the liver, this effect resolved over time. 
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Figure 3.13- A time course of ANIT causes significant changes in liver and 
stomach weight in fasted C57BL/6J mice 

 
Differences in the (A) total body, (B) liver and (C) stomach weights of C57BL/6J mice dosed 
with corn oil or ANIT (75 mg/kg). Individual liver and stomach weights were calculated as a 
percentage of post-mortem body weight. Bars represent the mean value ± SEM. n.s= non-
significant, * = p<0.05, ** = p<0.01 and *** = p<0.001.  
 

 

3.3.8 ANIT causes moderate liver injury in fasted Sprague Dawley rats 

by histological assessment 

The previous experiments within this chapter involving ANIT have demonstrated a 

degree of stomach perturbation associated with varying degrees of reproducible liver 

injury in mice. Sensitivities in the stomach and liver to ANIT appeared to vary with the 

strain of mouse. ANIT is the classic hepatobiliary toxin used in pre-clinical studies, 

though it is more commonly used in rats than mice. In order to assess both the hepatic 
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and gastric effects of ANIT between pre-clinical species, Sprague Dawley rats were 

dosed with corn oil (n=6) or 50 mg/kg ANIT (n=6) and culled 30 h post-dose. 

Throughout the study, ANIT appeared to be well tolerated by the rats.  

H&E liver staining revealed no histological changes to the perivenous area of ANIT-

dosed rats (Fig 3.14A). In the periportal areas, infiltrating immune cells with moderate 

coagulative necrosis were observed (Fig 3.14C). The degree and features of the 

injury were noted to be similar to the lesions detected in the ANIT-treated C57BL/6J 

mouse (Fig 3.11). 

 
 

Figure 3.14- ANIT causes minor liver injury in fasted Sprague Dawley rats by 
histological assessment 

 
(A) Histopathological assessment and representative images of H&E stained liver sections 
from fasted Sprague Dawley rats dosed with (B) corn oil or (C) ANIT (50 mg/kg) 30 h post-
dose. White arrows indicate coagulative necrosis, black arrows indicate infiltrating immune 
cells. Magnification x10 and x20, scale bar 100 µm, and 50 µm. 
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Serum biomarker analysis revealed a significant rise in ALT in ANIT-treated rats 

compared to the corn oil controls (Fig 3.15A). The levels of ALP were also significantly 

higher in ANIT-treated rats compared to corn oil controls, although these values were 

more variable than the ALT measurements (Fig 3.15B).  

 
 

Figure 3.15- ANIT causes minor liver injury in fasted Sprague Dawley rats by 
serum biomarker assessment 
 

Liver injury in fasted Sprague Dawley rats dosed with corn oil or ANIT (50 mg/kg) was 
assessed by serum (A) ALT and (B) ALP. n=3 per group, bars represent the mean value ± 
SEM. * = p<0.05 and **** = p<0.0001. 
 

3.3.9 ANIT causes significant changes in liver and stomach weight in 

fasted Sprague Dawley rats 

Upon post-mortem examination, the stomachs of ANIT-treated rats were enlarged 

relative to the vehicle controls, therefore measurements of total body, liver and 

stomach weight were recorded. 
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Upon sacrifice, corn oil-dosed rats weighed significantly more than their pre-dose 

weight. However, ANIT-dosed rats maintained a similar weight throughout the study 

(Fig 3.16A). The weight of the liver was also significantly lower in ANIT treated rats 

compared to vehicle control (Fig 3.16B), as was seen in the previous mouse studies. 

The stomach weights of ANIT-dosed rats were significantly higher than corn oil-

treated rats (Fig 3.16C).  

 
 

Figure 3.16- ANIT causes significant changes in liver and stomach weight in 
fasted Sprague Dawley rats 
 
Differences in the (A) total body, (B) liver and (C) stomach weights of Sprague Dawley rats 
dosed with corn oil or ANIT (50 mg/kg). Individual liver and stomach weights were calculated 
as a percentage of post-mortem body weight. Bars represent the mean value ± SEM. n.s= 
non-significant, ** = p<0.01 and **** = p<0.0001. 
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As ANIT-associated stomach enlargement did not appear to be species dependant, 

stomachs underwent histological assessment (Fig 3.17A). Control stomachs were 

unremarkable in both glandular and non-glandular areas (Fig 3.17B). In the glandular 

region of ANIT-treated rats, a slight flattening of the epithelium was noted (Fig 3.17C). 

In the non-glandular area, a mild extravasation of neutrophils into the tissue was also 

apparent (Fig 3.17D). The increase in size difference between three representative 

control and ANIT-dosed stomachs is demonstrated in Fig 3.17E.  

 
 

Figure 3.17- ANIT causes minor stomach toxicity in fasted Sprague Dawley rats 
by histological assessment 

 
(A) Histopathological assessment and representative images of H&E stained stomach 
sections from fasted Sprague Dawley rats dosed with corn oil or ANIT (50 mg/kg) 30 h post-
dose. (B)  corn oil treated stomach, (C) ANIT treated, glandular stomach, black arrows indicate 
flattened epithelium, (D) ANIT treated, non-glandular stomach, black arrow indicates 
neutrophil extravasation. Magnification x10, scale bar 100 µm. (E) Image of corn oil and ANIT 
treated Sprague Dawley stomachs. 
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3.3.10 Murine serum preparation for miRNA analysis 

Although the degree of biliary injury varied greatly across the different mouse studies, 

it was still important to assess if any cholangiocyte enriched or unique miRNAs could 

be detected as circulating biomarkers. Therefore, total RNA was isolated from serum 

of hepatotoxin-dosed and time-matched controls (n=3 per treatment and time point) 

from non-fasted ANIT-treated CD-1 mice at 24 h post-dose, fasted ANIT-treated CD-

1 mice at 24 h and 72 h post-dose, fasted CD-1 mice dosed with 200 mg/kg DAPM 

and fasted ANIT-treated C57BL/6J mice at 24 h, 48 h and 72 h post-dose. These 

samples were chosen based upon identification of histopathological perturbation of 

the bile ducts and/or increases in circulating ALT and ALP. 

The concentration of RNA in serum is typically very low. Therefore, any technical 

variations in the isolation and reverse transcription of RNA induces discrepancies in 

the PCR reaction, leading to inaccurate interpretation of the data. In order to identify 

any potential technical inconsistencies, all serum samples were spiked with 

exogenous cel-lin-4 miRNA prior to RNA extraction and reverse transcription. The 

raw CT values of cel-lin-4 in each experimental group were similar (Fig 3.18), with an 

intra-group coefficient of variation of <5 %, shown in Appendix 3.1. This suggests any 

differences in miRNA expression would be due to biological variation and not 

technical error.  
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Figure 3.18- RNA extraction and reverse transcription efficiency is even across 
all murine serum samples 
 
In order to ensure any variation in serum miRNAs were not a product of technical 
discrepancies, the CT values of cel-lin-4, an exogenous spike-in, were assessed in 42 murine 
serum samples. Bars represent the mean value ± SEM, n=3 per group. 

 
 

The serum from multiple time points was analysed for the presence of cholangiocyte 

enriched (miR-200a, -200b and -429) or unique (miR-141 and -200c) miRNAs, 

identified in the previous chapter. miR-122 was included as a control and reference 

point for liver injury. All miRNAs were normalised to let-7d, an endogenous miRNA, 

previously used in our group as a normaliser for serum derived samples 237,238. 

3.3.11 Serum miRNA alterations in non-fasted CD-1 mice dosed with 

ANIT 

Immediate DILI was not detected by histopathology in non-fasted ANIT-treated CD-1 

mice 24 h post-dose, along with no significant change in ALT and ALP (Fig 3.1-3.5).  

However, by qPCR miRNA analysis, miR-141, -200b and -200c were significantly 

elevated compared to time-matched vehicle controls. miR-200a and -429 were also 

increased in the ANIT-treated samples. The levels of miR-122 remained unchanged 

(Fig 3.19). 
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Figure 3.19- Serum miRNA alterations in non-fasted CD-1 mice dosed with ANIT 
at 24h 
 

The fold change of 6 hepatic miRNAs of interest detected in the serum of non-fasted CD-1 
mice following a single dose of ο corn oil or ο ANIT (75 mg/kg) 24 h post-dose is shown. Bars 
represent the mean value ± SEM, n=3 per group. 

 
 

3.3.12 Serum miRNA alterations in fasted CD-1 mice dosed with ANIT  

DILI observed in fasted ANIT-treated CD-1 mice was highly variable by 

histopathology and serum biomarker analysis (Fig 3.3-3.5). Indeed, this was also the 

group with the highest degree of stomach toxicity (Fig 3.6-3.7). There were minor, yet 

significant, increases in ALT and ALP at 24 h post-dose. The levels of ALT in ANIT-

dosed mice remained elevated at 72h post-dose, indicating prolonged hepatocellular 

injury. 

The variability of this study was also mirrored in the changes of circulating miRNAs. 

In ANIT-treated mice at 24 h post-dose, 1-2 mice per group showed an increase in 

the detection of miR-141, -200a, -200c and -429, relative to vehicle control. miR-200b 

showed a consistently small, yet significant, increase relative to vehicle control. The 

levels of miR-122 did not change at this time point (Fig 3.20A). By 72 h post-dose, no 

difference was seen in the cholangiocyte miRNAs of interest between vehicle control 

and ANIT-dosed samples. However, miR-122 was elevated in 2/3 samples, although 

this signal was highly variable (Fig 3.20B) 
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Figure 3.20- Serum miRNA alterations in fasted CD-1 mice dosed with ANIT 
  
The fold change of 6 hepatic miRNAs of interest detected in the serum of non-fasted CD-1 
mice following a single dose of ο corn oil or ο ANIT (75 mg/kg) (A) 24 h and (B) 72 h post-
dose are shown. Bars represent the mean value ± SEM, n=3 per group. 

 
 

3.3.13 Serum miRNA alterations in fasted CD-1 mice dosed with DAPM  

200 mg/kg DAPM-dosed CD-1 mice did not experience significantly altered stomach 

weights (Fig 3.10B). A degree of mixed liver injury was identified by histopathological 

analysis and ALT and ALP serum elevations (Fig 3.8-3.9).  

In the DAPM-dosed serum miRNA signature, there was no increase in unique 

cholangiocyte miRNAs (miR-141 and -200c), though cholangiocyte enriched miRNAs 

(miR-200a, -200b and -429) were increased relative to vehicle control, but not to a 

significant extent. The levels of miR-122 also saw a large, variable increase (Fig 

3.21).  
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Figure 3.21- Serum miRNA alterations in fasted CD-1 mice dosed with DAPM  
 

The fold change of 6 hepatic miRNAs of interest detected in the serum of non-fasted CD-1 
mice following a single dose of ο PEG or ο DAPM (200 mg/kg) 30h post-dose are shown. 
Bars represent the mean value ± SEM.  

 
 

3.3.14 Serum miRNA alterations in fasted C57BL/6J mice dosed with 

ANIT  

ANIT-treated C57BL/6J mice exhibited reliable liver toxicity, albeit with apparent off-

target stomach toxicity. Histopathological scoring indicated worsening periportal 

necrosis over time, with associated immune infiltration (Fig 3.11). This damage was 

mirrored in serum biomarker detection, whereby significant elevations in ALT were 

observed at all time points and in ALP at 24 h and 48 h post-dose (Fig 3.12) 

The circulating miRNA signature of ANIT-treated mice at 24 h showed non-significant 

rises in all cholangiocyte miRNAs, except miR-200c. The levels of miR-122 were 

significantly elevated >10-fold compared to vehicle control (Fig 3.22A). At 48 h post-

dose, a small but significant increase in the circulating levels of miR-200b was 

detected. A slight increase in miR-200c was also seen. Two mice showed a moderate 

increase in miR-141, -200a and -429 relative to vehicle control and one mouse 

showed a marked increase in the circulating levels of each miRNA. Levels of miR-

122 were raised nearly 100-fold higher than vehicle control (Fig 3.22B). By 72 h, the 

levels of all cholangiocyte miRNAs of interest were elevated relative to vehicle 

controls, with the exception of miR-200c, whereby only one sample elicited a larger 
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response. Two mice showed a >20-fold increase in the circulating levels of miR-141, 

-200a and -429 relative to control. miR-122 was detected at approximately 160-fold 

higher in ANIT samples compared to vehicle control (Fig 3.22C). There was high intra-

group variability in all assayed miRNAs. 
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Figure 3.22- Serum miRNA alterations in fasted C57BL/6J mice dosed with ANIT  

 
The fold change of 6 hepatic miRNAs of interest detected in the serum of non-fasted C57BL/6J 
mice following a single dose of ο corn oil or ο ANIT (75 mg/kg) (A) 24 h, (B) 48 h and (C) 72 
h post-dose are shown. Bars represent the mean value ± SEM, n=3 per group. 
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3.3.15 Correlation of hepatic serum miRNAs with ALT and ALP 

In order to assess if the miRNAs of interest correlated with hepatocellular (defined by 

ALT) or cholestatic (defined by ALP) injury, Log2 ALT and ALP concentrations were 

plotted against the ΔCT PCR value for each miRNA. Of all miRNAs, miR-122 

correlated highest to Log2 ALT concentration (R2=0.32). miR-200a, -200b and -429 

are enriched in cholangiocytes, but their detection in serum may still increase during 

hepatocellular injury. These miRNAs poorly correlated with ALT (R2=0.09-0.18). 

Finally, miR-141 and -200c, which are unique to cholangiocytes, did not correlate to 

ALT (R2=0.0003-0.03) (Fig 3.23).  

 
 

Figure 3.23- Correlation of hepatic serum miRNAs of interest with ALT 

 
The levels of circulating hepatic miRNAs of interest relative to let-7d and Log2 transformed 
ALT values from 42 murine serum samples were correlated and analysed by Pearson 
correlation coefficient.  
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No single miRNA correlated well to ALP; miR-122 correlated strongest to ALP with 

an R2=0.09. There was no discernible difference in the correlation of either 

cholangiocyte enriched or unique miRNA to ALP (R2=0.01-0.07) (Fig 3.24).  

 
 

Figure 3.24- Correlation of hepatic serum miRNAs of interest with ALP 
 
The levels of circulating hepatic miRNAs of interest relative to let-7d and Log2 transformed 
ALP values from 42 murine serum samples were correlated and analysed by Pearson 
correlation coefficient.  
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Due to the multifaceted nature of this work, the main toxicological findings are 

summarised in Table 3.2 

 
 

Table 3.2- Summation of liver and stomach injury in ANIT and DAPM-dosed 
rodent models 
 
Injury induced in each study was assessed by histology, traditional serum biomarkers and 
circulating levels of the miR-200 family. The degree of injury relative to control is indicated as 
none (-), mild (+), moderate (++) or high (+++). 

 
  

Liver Injury Histopathology ALT ALP miRNA

CD-1 ANIT Fed - - - +

CD-1 ANIT Fasted + + - -/+

CD-1 DAPM Fasted ++ + -/+ +

C57BL/6J Fasted ++ +++ + ++

Sprague Dawley Fasted ++ ++ + N/A

Stomach Injury

CD-1 ANIT Fasted +++

C57BL/6J Fasted N/A

Sprague Dawley Fasted ++
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3.4 Discussion- 

The biomarkers for detecting abnormal liver function revolve around a core of serum 

ALT/AST and ALP measurements, whereby ALP is the current gold standard for 

detecting cholestatic injury. However, miRNAs enriched or unique to cholangiocytes 

may offer improved mechanistic insight and clinical utility over ALP in the detection 

and potentially, prediction of DILI. Throughout this chapter, there has been an attempt 

to induce cholangiocyte injury with different pre-clinical models using a single acute 

dose of different hepatobiliary toxins, with the aim of detecting circulating miRNAs 

indicative of cholangiocyte injury.  

The propensity of ANIT to cause reproducible cholangiocyte liver injury in this chapter 

was highly variable. This was especially notable in CD-1 mice by H&E liver staining, 

where only a small number of mice displayed overt liver injury (Fig 3.1-3.5). Whilst 

this is the first study of its kind to examine hepatobiliary toxicity in CD-1 mice, ANIT 

has been previously utilised in C57BL/6J mice and more commonly, in rat.   

The degree of liver injury presented in this chapter was shown to be relatively minor, 

yet highly inconsistent, by traditional biomarkers. However, this variability is also 

reflected in the literature, in studies with similar histopathological findings. In 

C57BL/6J mice dosed with ANIT by o.g and sacrificed 48 h post-dose, ALT values 

range from ~500-2000 U/L and ALP is detected at >2-4 the level of control 229,234,239. 

A study of 100 mg/kg DAPM in ICR mice, a genetically similar mouse to CD-1, showed 

a significant increase in ALT at 24 h post-dose, though circulating levels of ALP were 

reduced in the dosed group, indicating only hepatocellular injury 232. 

In rats, Church et al. showed Sprague Dawley rats dosed with 50 mg/kg ANIT 

displayed circulating ALT values at approximately 200 U/L, with a minor increase in 

ALP at 24 h post-dose, which is similar to the values shown in this work (Fig 3.15) 154. 

However, Sprague Dawley rats subjected to the same conditions showed no 
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significant differences in ALT or ALP 24 h post-dose 240 and in another study, ALT 

and ALP was not significantly different until 48 h and 72 h post-dose, respectively 241. 

Finally, Sprague Dawley rats dosed with 100 mg/kg ANIT and sacrificed 24 h post-

dose showed alterations in miR-122, ALT, AST, GLDH and bilirubin, but no change 

in ALP or GGT 242.  

Throughout this chapter, there were consistent elevations in the weights of stomachs 

in all ANIT-dosed animals, independent of mouse strain or pre-clinical species. In 

C57BL/6J, it was demonstrated that this enlargement was persistent up to 72 h post-

dose. This off-target effect of ANIT is not reported in the literature. 

In Sprague Dawley rats 30 h post-dose, C57BL/6J mice 24 h post-dose, and CD-1 

mice 30 h post-dose, the average weight of the stomach made up 5.43 %, 6.36 % 

and 8.86 % of total body weight respectively (Fig 3.6C, Fig 3.13C, Fig 3.16C). 

Incidentally, CD-1 mice appeared to exhibit the most inconsistent response to ANIT, 

both histologically and by serum biomarker analysis. There may be a causal link 

between reduced gastric motility and the degree of hepatobiliary injury in animals 

dosed o.g with ANIT. A similar study of Sprague Dawley rats dosed with 50 mg/kg 

ANIT showed decreased body weight over the course of the study compared to corn 

oil controls. In agreement with this study, the average stomach contents of corn oil-

dosed rats weighed 6.7 g opposed to 15.9 g in ANIT-treated rats 24 h post-dose. The 

authors noted that ANIT may result in delayed gastric emptying, but this was not 

further investigated 241.  

The work presented here is the first study to date to examine the stomachs of pre-

clinical models dosed with ANIT by o.g. ANIT appeared to damage to both the 

glandular and non-glandular areas of the stomach by histology (Fig 3.7, Fig 3.17). 

This effect appeared more severe in the CD-1 mouse than the Sprague Dawley rat. 

Histological scoring of C57BL/6J livers should also be performed to assess strain 

differences in the sensitivity of different mouse strains to direct toxicity of ANIT, which 
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may affect the outcome of future toxicity studies 243. The reduction in liver weight 

observed in all ANIT-dosed animals is likely caused by a reduced gastric motility 

stemming from stomach toxicity, opposed to liver toxicity itself 244. 

Work in the previous chapter identified miR-141, -200a, -200b, -200c and -429 as 

miRNAs enriched or unique to cholangiocytes. These five highly conserved members 

of the miR-200 family have been implicated in various hepatic pathophysiological 

processes, but their role as circulating biomarkers of biliary injury is not yet defined 

245,246. Although the miRNA signatures following hepatobiliary toxicity were generally 

increased relative to vehicle controls, though there was a high degree of variability in 

this study.  

The miRNA elevated to the highest degree throughout this study was miR-122. 

Previous studies in rats dosed with ANIT have demonstrated peak miR-122 injury 48 

h post-dose, at nearly 200-fold increase versus control 154. In the C57BL/6J 

experiment, a smaller but more prolonged detection of miR-122 was noted, with 

circulating levels being detected at >100- and >150-fold higher relative to controls at 

48 h and 72 h post-dose, respectively (Fig 3.22). The fold change of miR-122 at the 

24 h time point was higher than that of ALT relative to control, indicating miR-122 is 

released from the liver earlier, or has a larger dynamic range than ALT. Both options 

have been previously suggested for miRNAs 138,139. Unsurprisingly, miR-122 

correlated strongest with ALT concentration (Fig 3.23), in line with previous work 247. 

It was also the miRNA with strongest correlation to ALP (Fig 3.24), though this may 

be due to the variability seen in both liver injury and ALP measurements.  

The detection of cholangiocyte enriched miRNAs (miR-200a -200b and -429) in the 

serum may be due to pure cholangiocyte injury, pure hepatocyte injury or a 

combination of the two. For example, only elevations of miR-122 and cholangiocyte 

enriched miRNAs were observed in DAPM toxicity 30 h post-dose with no difference 

in cholangiocyte unique miRNAs. This indicates, at this time point, a purely 
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hepatocellular injury. Indeed, serum expression of miR-200a has been shown to be 

upregulated in response to both perivenous and periportal hepatocellular DILI, 

caused by APAP and methapyrilene, respectively 153. Moreover, miR-200a and -200b 

have been shown to increase in the liver following chronic (4-8 week) dosing of CCL4, 

a perivenous hepatocyte toxin, though the presence of each miRNA in the circulation 

was not evaluated 248. Nevertheless, these studies highlight the need to excise 

caution when evaluating cholangiocyte-enriched miRNAs detected in the serum. Due 

to the abundance of hepatocytes in the liver, a small degree of hepatocyte-specific 

injury could cause the release of low-expression hepatocyte miRNAs that could be 

falsely identified as highly abundant cholangiocyte-enriched miRNA. 

However, Church et al. demonstrated in ANIT-dosed rats, peak miR-200a -200b and 

-429 serum expression was observed at 24 h, which correlated with peak 

cholangiocyte injury; whereas peak miR-122 was detected at 48h, which correlated 

with peak hepatocyte injury 154. This may indicate the release of these specific 

miRNAs from cholangiocytes, not hepatocytes. Finally, in the initial non-fasted CD-1 

study, the levels of miR-122 did not change relative to control, indicating a lack of 

hepatocellular injury (Fig 3.19). However, all cholangiocyte miRNAs of interest were 

elevated, indicating that cholangiocytes may have actually been injured and releasing 

miRNAs.  

This same effect was observed with unique cholangiocyte miRNAs (miR-141 and -

200c) in the non-fasted CD-1 model, whereby elevations of these miRNAs further 

support the idea of cholangiocyte injury.  Circulating serum levels of miR-141 have 

been shown to correlate with levels of GGT 249 and elevations in miR-200c have been 

detected before levels of miR-122 in ANIT-dosed rats, indicating an initial non-

hepatocellular injury 154. Furthermore, miR-200c was shown to be uniquely elevated 

in rats dosed with ANIT or DAPM to induce cholestatic injury and it was not detected 

in the serum of hepatocellular and steatosis injury models 250. Conversely, Yamaura 
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et al. demonstrated that miR-200c was uniquely detected in response to 

methapyrilene toxicity, but not APAP, ANIT or BDL in rats, highlighting further 

inconsistencies in miRNA signatures of hepatobiliary injury 153. 

However, the interpretation of the presence of these circulating miRNAs in this study 

is limited. The work in the previous chapter identified enriched or unique 

cholangiocyte miRNAs, yet it also revealed that none of these were liver specific. 

Although ANIT does cause hepatobiliary toxicity in certain pre-clinical models, the co-

current stomach toxicity, highlighted in this work for the first time, may cause the 

release of gastric derived miR-141, -200a, -200b, -200c or -429.  

3.4.1 Conclusions & future work 

In this chapter, it has been demonstrated that the use of two hepatobiliary toxins, 

ANIT and DAPM, produces a highly variable degree of liver injury in rodent pre-clinical 

models. Hepatobiliary toxicity associated with ANIT was inconsistent in the CD-1 

mouse, but more reliable in C57BL/6J mice and Sprague Dawley rat. The amount of 

DILI seen in the animals was generally low by traditional serum biomarkers. With 

ANIT-dosed animals, significant enlargement and toxicity of the stomach was 

observed, which has not been previously reported. In DAPM and ANIT-treated 

animals, miR-122 was increased in response to liver injury. Five cholangiocyte-

associated miRNAs were also elevated with a large dynamic range, although it is 

unclear if they derive from the liver or stomach. Whilst previous miRNA studies have 

utilised the rat as a model of hepatobiliary injury 154, this work is the first miRNA study 

to utilise the mice challenged by ANIT and to demonstrate the associated gastric 

toxicity. Furthermore, the novel work presented in this chapter assesses miRNA 

signatures that can be used to identify cholangiocyte perturbations within a mixed or 

cholestatic DILI, which will aid further mechanistic understanding of these forms of 

injury. 
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Future work should aim to consolidate a dosing regimen in an appropriate pre-clinical 

model that gives reliable hepatobiliary injury, whilst minimising or eliminating gastric 

toxicity. This could be achieved by altering the administration route or the toxic 

compound itself. ANIT has been shown to cause hepatobiliary toxicity when 

administered by i.p 251, though it is not clear if direct abdominal toxicity would occur.  

In light of the variable DILI and gastric toxicity associated with ANIT, further 

investigations into the relationship between toxicity and pharmacokinetic profiles of 

ANIT should be considered. In fasted animals, a gastric toxicity that has not been 

previously reported was observed. It is possible that ANIT shows a high degree of 

promiscuity and bound to hydrophobic gastric targets, due to the lipophilic nature of 

ANIT, which potentially caused localised toxicity 252. The stomach toxicity could have 

attenuated gastric motility, which would have resulted in lower absorption into the GI 

tract, and ultimately the liver. This may explain some of the variation observed by 

serum biomarker measurements.  

Conversely, in the non-fasted CD-1 model, the stomachs and livers appeared 

unremarkable following administration of ANIT. Free access to food would increase 

splanchnic blood flow, increasing absorption from the GI tract. Food may also have 

been cytoprotective to both the liver and the stomach, reducing the toxicity in both 

organs. Differential toxicities between non-fasted and fasted rats following acute oral 

dosing of 9 different chemicals suspended in corn oil demonstrated a marginally lower 

LD50 in fasted animals in 7 of the chemicals 253. Therefore, characterising the 

concentration of ANIT in plasma, in addition to ANIT bound within the liver and 

stomach, would aid further understanding to the toxicities observed in this chapter. 

Repeated dosing of compounds with a known hepatobiliary liability held by the 

pharmaceutical industry have also shown to be damaging to the cholangiocytes, as 

recently shown by Church et al. in collaboration with Bayer Pharma AG 154. Other 

compounds, such as a DDC diet could be used as a more chronic method of 
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cholangiocyte toxicity 254 . Many of these are understudied in the mouse and would 

require further work and validation. However, human UpCyte cells dosed with the 

cholestatic compounds chlorpromazine, cyclosporin A, and ANIT showed no common 

miRNA signature between them, which highlights the variation and different 

mechanisms at play in detecting hepatobiliary injury with miRNAs 255.  

In order to comprehensively understand the release of cholangiocyte enriched and 

unique miRNAs in response to DILI, a new study, with sufficient time points and time-

matched controls, should be performed. This study should consist of two dosed 

groups of animals, one group with biliary DILI and one with hepatocellular DILI. A 

custom miRNA array accounting for the 50 unique and 13 shared miRNAs identified 

in the previous chapter should then be performed on the isolated serum of these 

animals. Further to this, in situ hybridisation of the liver for select miRNAs of interest 

could correlate the loss of these miRNAs from biliary structures to their appearance 

in the serum. The translational nature of these miRNAs could then be assessed in 

other pre-clinical models and human cholestatic clinical DILI samples.  

3.4.2 Limitations 

A potential caveat of this study is the sole use of ALP as a marker of cholestatic injury. 

ALP was originally chosen due to its supposed preferential rise over GGT in drug-

induced cholestasis 256. However, the study may have benefitted from supplementary 

markers, such as GGT, serum bile acids and bilirubin, which have been used 

previously alongside ALP in toxicology testing and appear to be more sensitive 229,231. 

The values of ALP in control samples between experiments appeared to vary which 

may limit interpretation. As serum samples were collected, stored and assessed over 

a period of approximately 14 months, there may be significant alterations in the 

enzyme caused by technical variation. An elevation of ALP at the 0 h time point 

compared to corn oil controls was also detected. This increase in circulating ALP was 
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also observed by Church et al, suggesting fasting may alter the interpretation of its 

serum concentration 154.   

Finally, due to the inconsistent nature of the biliary injury seen in the initial ANIT-

dosed CD-1 studies, the follow-up experiments involving DAPM, C57BL/6J mice and 

Sprague Dawley rats were small-scale studies, limiting statistical power. 

Interpretation of the data presented in these studies must therefore be taken with 

caution, pending future experiments.  
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4.1 Introduction 

DILI is characterised by significant high financial costs to the pharmaceutical industry. 

Therefore, a predictive and proactive approach in determining DILI as a potential 

outcome during drug development is warranted. While necessary, current in vitro 

models of hepatotoxicity are insufficiently predictive of the mechanisms and severity 

of DILI, for both pre-clinical models and humans 257.  

Primary hepatocytes have often been described as the gold standard cell model for 

hepatotoxicity testing. However, their availability, stability during long-term culture 

and high inter-individual variation limit their utility. Furthermore, their inability to 

proliferate make them an expensive single-use option. Therefore, the use of 

proliferative cell lines is commonplace. A portfolio of cell lines of varying complexity, 

such as HepG2, HepaRG and Upcyte cells, cultured in 2D or 3D, signify a varied 

representation of the in vivo phenotype. However, to date there is no single cell 

culture model that sufficiently satisfies the wide-reaching requisites of DILI prediction 

258–260. 

The liver is responsible for a number of key physiological processes in the body, 

which is reflected in its abundant and diverse proteome. Nevertheless, current in vitro 

models poorly represent the in vivo organ phenotype. For example, a common 

criticism of the existing in vitro models is the low-level expression or gradual depletion 

of key drug metabolising enzymes and transporters (DMET) proteins, which is 

essential when evaluating potential hepatotoxicity of compounds 193,261. Furthermore, 

key cellular defence proteins and pathways involved in the response to a toxic insult, 

such as the Nrf2-Keap1 signalling cascade, may also be dysregulated. This may be 

an inherent attribute due to the source of the model (e.g. cancer-derived cell lines) or 

as an adapted response over time to cell culture conditions 262,263.  
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Poorly predictive in vitro models ultimately necessitate the use of multiple, expensive 

and ethically challenging pre-clinical models in order to calculate hepatotoxicity, 

which in themselves are not absolutely predictive 158. Therefore, there is an unmet 

need for an in vitro hepatic model that shows physiological improvement over the 

currently used systems.  

Organoids are a recent innovation in in vitro modelling. They are described as a 3D 

cell model consisting of self-organising, organ-specific cell types that mimics the 

corresponding in vivo tissue 174. They are typically derived from pluripotent or resident 

adult stem cells within a primary tissue. In liver, these are thought to be the liver 

progenitor or oval cells located within biliary ductal structures 41. Organoid 

development is typically driven through specific cell culture conditions, such as 

extracellular matrix formation and growth factor-driven differentiation. To date, 

organoids generated from multiple organs such as brain 264, kidneys 265, lungs 266, 

pancreas 267, and gastrointestinal tract 268 have been reported. 

Organoids have garnered interest as an attractive physiological model due to their 

ability to recapitulate the phenotype of their derived donor tissue in both rodents and 

humans. For example, α1-antitrypsin deficiency and Alagille syndrome have both 

been modelled using patient-derived hepatic organoids 179 and organoids derived 

from pancreatic cancer formed carcinomas when orthotopically transplanted into mice 

269.  

To date, the primary reported use of organoids has been to model physiological 

disease states 270. However, the use of hepatic organoids as a model of DILI remains 

to be explored. It has been demonstrated that biliary-derived organoids are capable 

of CYP450 3A4 mediated detoxification of midazolam, although the metabolism of 

additional drugs by different CYP450 families remains to be elucidated. As hepatic 

organoids are reported to maintain genetic stability throughout long-term culture and 
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produce a mature hepatocyte-like phenotype when fully differentiated, they may offer 

an improvement over currently available hepatotoxicity models 179. 

Whilst organoids could be considered nascent a model of DILI, they are yet to be fully 

characterised to a comparable standard of pre-existing models. The assessment of 

the suitability of organoids as a model for hepatotoxicity is dependent on the DMET 

and Nrf2 protein expression when compared to liver. A global proteomic profiling of 

hepatic organoids and the livers from which they were derived from would allow a 

direct comparison of their relative phenotypes.  

4.1.1 Aims and hypothesis 

The aims of this chapter were to: 

• Isolate and culture ductal structures from the liver into undifferentiated 

organoids. 

• Differentiate organoids to a mature hepatic phenotype using targeted cell 

culture conditions. 

• Compare the proteome of undifferentiated and differentiated organoids and 

donor matched liver tissue by mass spectrometry to assess phenotypic 

differences. 

The main hypothesis within this chapter was that organoids derived from ductal 

structures in the liver could be differentiated to generate a phenotype comparable to 

liver tissue. From a toxicological perspective, differentiation would induce key 

CYP450, phase II and transporter proteins, which would validate organoids as an in 

vitro model for hepatotoxicity.  
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4.2 Materials and Methods 

Unless otherwise stated, all organoid reagents were purchased from STEMCELL 

technologies (Grenoble, France) and general reagents were purchased from Sigma 

Aldrich (Poole, UK). 

4.2.1 Experimental animals 

The protocols described were undertaken in accordance with the criteria outlined in 

a project licence granted under the Animals Scientific Procedures Act 1986 and 

approved by the University of Liverpool Animals Ethics Committee. 5-7-week-old 

male CD-1 mice were purchased from Charles River laboratories (Cambridge, UK) 

and had a 7-day acclimatisation period prior to experimentation. Animals were 

maintained in a 12 h light/dark cycle with free access to food and water.  

4.2.2 Isolation of murine hepatic duct fragments 

A male CD-1 mouse was sacrificed by schedule 1 cervical dislocation. The liver was 

removed, dissected into 3-5 mm pieces, suspended in ice-cold DMEM/F12 and 

allowed to rest for approximately 2 min.  

The supernatant was discarded and replaced with digestion solution (DMEM/F12 

supplemented with 15 mM HEPES, collagenase IV (1 mg/mL), dispase (1 U/mL)) and 

the suspension was incubated at 37 °C for 20 min in a water bath. The liver tissue 

was vigorously pipetted to break up the material and the mixture was allowed to settle. 

The supernatant was then removed and discarded, and fresh digestion solution was 

added. The suspension was returned to the water bath for 20 min and the supernatant 

was removed and retained on ice. This process was repeated a further four times. 

The pooled digestion mixture was passed through a 70 µm filter and the cell 

suspension retained. This was subsequently passed through a reversible 37 µm 

strainer and the cell suspension discarded.  
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The filter was inverted, and ductal fragments captured on the strainer were eluted into 

ice-cold DMEM/F12 media. The mixture was divided between 4 ice-cold tubes, which 

were centrifuged at 300 x g at 4 °C for 5 min. The supernatant was discarded, leaving 

pellets of ductal fragments. 

4.2.3 Culturing and cryopreservation of hepatic organoids 

200 µL of growth factor reduced Matrigel (356231, Corning, MA, USA) was added to 

the pelleted ductal fragments and gently resuspended by pipette. 40 µL of the mixture 

was pipetted into the middle of well of a pre-warmed 24-well plate. The plate was 

incubated at 37 °C for 15 min to allow the Matrigel suspension to solidify into a dome. 

700 µL of HepatiCult media was added per well and the organoids were incubated at 

37 °C in a humidified atmosphere of 5 % CO2. Organoids were monitored daily, with 

media changes every 2-3 days.  

Organoids were passaged when their lumens started to turn black, indicating the 

organoids had started to collapse. The HepatiCult media was discarded and the 

organoids were broken apart by pipetting ice-cold DMEM/F12 onto the Matrigel dome. 

The suspensions were then collected and vortexed at a medium speed for 5 seconds 

(s) in order to break the organoids into 30-100 µm fragments. The fragments were 

then pelleted at 300 x g at 4 °C for 5 min and plated as described above at a 1:4 sub-

culture.  

To cryopreserve the organoids, pellets of organoid fragments from four domes were 

resuspended in 2 mL CryoStor CS10. They were then transferred to a controlled-rate 

cell freezing container at -80 °C and then retained liquid nitrogen for long term 

storage.  

4.2.4 Differentiation of hepatic organoids 

At the start of differentiation, organoids were passaged and grown in HepatiCult 

media to promote outgrowth from fragments into organoids for 3 days. The media 
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was changed to differentiation media (Advanced DMEM/F12 supplemented with 1% 

penicillin/streptomycin, 1% GlutaMAX, 10 mM HEPES, 1:50 B27 supplement with 

vitamin A, 1 mM N-acetylcysteine, 10 μM DAPT, 10 nM recombinant human [Leu15]-

gastrin I, 50 ng/mL recombinant mouse EGF (Peprotech, US), 100 ng/mL 

recombinant human FGF10 (Peprotech) and 50 nM A83-01 (Tocris Bioscience, 

Bristol, UK)) as defined by Broutier et al. 180 for 9 days. 

To promote complete differentiation, the media was supplemented with 3 µM 

dexamethasone for 3 days. The media was changed daily throughout the 

differentiation protocol. 

4.2.5 Immunofluorescence analysis of hepatic markers 

All steps were performed at RT unless otherwise stated. All steps apart from 

permeabilisation were performed on an orbital shaker at 30 RPM at 4 °C. 

Media was removed from the organoids and the Matrigel domes were gently washed 

with PBS. Organoids were then fixed with 2 % PFA for 20 min and subsequently 

washed three times with PBS with 0.1 M glycine. The organoids were permeabilised 

with PBS with 0.5 % Triton-X for 10 min and washed three times with IF wash buffer 

(PBS with 0.25 % Triton-X and 0.05 % Tween-20) for 10 min. 

Organoids were then incubated for 1 h in blocking buffer (IF wash buffer with 10% 

casein blocking solution). The blocking solution was removed and replaced with the 

primary antibodies diluted in blocking solution overnight at 4 °C. The following 

antibodies were used: CK19 (ab52625, Abcam (Cambridge, UK,), 1:200), AFP 

(ab213328, Abcam, 1:100), ALB (ab207327, Abcam, 1:500) and CYP2E1 (ab28146, 

Abcam, 1:1,000). 

The antibody solution was removed and washed three times with IF wash buffer for 

10 min and the organoids were incubated with Alexa Fluor 488 (ab150077, Abcam, 

1:500) and phalloidin 594 (ab176757, Abcam, 1:500) in blocking buffer for 1 h. The 
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organoids were then washed twice with IF wash buffer for 10 min and then incubated 

with PBS with Hoescht (1:10,000) for 10 min. Organoids were then washed three 

times with PBS. 100 µL of PBS was added to the well to prevent domes from drying 

and organoids were imaged on an Axio observer Z1 microscope (Zeiss, Germany). 

4.2.6 Isobaric tagging for relative and absolute quantitation (iTRAQ) 

and LC-MS/MS analysis 

The preparation and running of the iTRAQ samples were performed in collaboration 

with Dr Roz Jenkins at the Centre of Drug Safety Science, University of Liverpool. 

Organoids were broken from their Matrigel domes and pelleted at 300 x g at 4 °C for 

5 min. Organoid fragments were then washed three times in ice-cold PBS and 

pelleted at 300 x g at 4 °C for 5 min. The pellets were then stored at -80 °C for 

subsequent analysis.  

Undifferentiated organoids, fully differentiated organoids and donor-matched liver 

tissue (n=4 per group) were prepared for iTRAQ analysis. Liver samples were 

homogenised with a Mixer Mill 220 ball homogeniser (Retsch, Haan, Germany) and 

all samples were mixed with dissolution buffer (0.5 M triethylammonium bicarbonate, 

0.1 % SDS, pH 8.5) and processed with a sonicator (3 x 10 s, 5 µm amplitude). The 

samples were centrifuged at 14,000 x g at 4 °C for 15 min, then frozen at -80 °C with 

a small sample retained for the determination of protein concentration. Protein 

concentration was determined by BCA assay and the samples were diluted in 

dissolution buffer to a concentration of 5 mg/mL. To confirm that the concentration 

was equal across all samples, protein aliquots were separated by SDS-PAGE and 

the gels were stained with Coomassie Blue according to the manufacturer’s 

instructions.  

100 µg of protein from each sample was denatured, reduced, cysteine blocked, 

digested and labelled by iTRAQ Reagents Multiplex Kit (Applied Biosystems, UK) 
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according to manufacturer's protocol. Briefly, samples were denatured with 0.1 % 

SDS and reduced by incubating with 5 mM tris-(2-carboxyethyl)phosphine solution at 

60 °C for 1 h. Cysteine groups were then blocked by incubating samples at RT for 10 

min with 10 mM methyl methanethiosulfonate (MMTS). Proteins were subsequently 

digested by incubation with trypsin (10 µg per sample) at 37 °C overnight and each 

sample was then labelled with a randomly assigned ITRAQ isobaric tag (113-121) for 

2 separate ITRAQ runs as follows: 

 
113 114 115 116 117 118 119 121 

iTRAQ Run 1 Undiff 4 Liver 3 Liver 4 Diff   2 Undiff 2 Diff   4 Pool 1 Pool 2 

iTRAQ Run 2 Undiff 1 Liver 1 Diff   1 Undiff 3 Liver 2 Diff   3 Pool 3 Pool 4 

 

Unbound reagent and trypsin were removed by cation exchange chromatography and 

fractions were desalted using a macroporous C18 column (Agilent, UK) and dried by 

centrifugation under vacuum (SpeedVac, Eppendorf, Germany). Samples were 

analysed by LC-MS/MS on a Triple TOF 6600 mass spectrometer (Sciex, UK), 

delivered into the instrument by automated in-line liquid chromatography using an 

Eksigent nanoLC 415 System.  Spectra were acquired in positive ion mode with up 

to 25 MS/MS spectra acquired per 2.5 s cycle throughout the course of the 90 min LC 

gradient.  

4.2.7 iTRAQ protein identification and statistical analyses 

Protein identification and relative quantification were performed using ProteinPilot 5 

(Sciex) with the latest version of the SwissProt database (July 2018), with trypsin as 

the digestion agent, MMTS as a modifier of cysteine residues and biological 

modifications allowed. The data were also searched against the decoy reversed 

database in order to establish the cut-off point for false positives (FDR). Proteins 
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identified with more than 95 % confidence and within a global FDR of 1% were 

included in the statistical analysis.  

Ratios for each iTRAQ label were obtained, using the common pools as the 

denominator (iTRAQ label 119 and 121). Data from the two iTRAQ runs were merged 

using RStudio V.1.0.143. Ratios were converted to their natural log and data analysis 

was performed using Partek Genomic Suite software V.7.18.0518, (Partek, MO, US). 

A batch correction algorithm was applied to the data in order to account for technical 

bias between iTRAQ runs. Hierarchical clustering and PCA were then performed on 

the batch corrected data. Proteins that were differentially expressed between the 

sample types were revealed using a 2-way ANOVA on the non-corrected data, taking 

both sample type and iTRAQ run 1 or 2 into consideration.  

4.2.8 KEGG pathway analysis of significantly different proteins 

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed on 

proteins with significant differing abundance (p<0.05) identified by 2-way ANOVA, 

using Database for Annotation, Visualization and Integrated Discovery (DAVID) V.6.8 

software 271,272 in order to functionally annotate differentially enriched pathways. The 

analysis was performed with default settings (minimum count threshold= 2, EASE 

threshold= 0.1) and the most significant 25 up and down regulated pathways were 

recorded, alongside the number of proteins contributing to the pathway and the EASE 

score (p value).  

4.2.9 Immunoblotting of protein lysates 

Validation of protein expression in iTRAQ samples (n=2 per group) was performed as 

described in section 2.2.5 with the following changes: Resolved proteins were 

transferred using a Trans-Blot turbo transfer system (Bio-Rad, UK). Membranes were 

then probed with anti-ALT 1 (ab202083, Abcam, 1:2,000 in 2.5 % milk), anti-CYP450 

3A4 (ab3572, Abcam, 1:2,000 in 2.5 % milk), anti-GSTA 1 (ab135709, Abcam, 1:250 
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in 2.5 % milk), anti-peroxiredoxin 1 (ab15571, Abcam, 1:1,000 in 2.5 % milk) and anti-

GAPDH (G9545, Sigma, 1:5,000 in 2.5 % milk). Proteins were visualised with a 

Chemidoc imaging system and band density was calculated with Image Lab software 

V.6.0.1 (Bio-Rad). Densitometry analysis was performed by normalising protein 

expression to GAPDH and quantifying each sample relative to the pool sample.  
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4.3 Results 

4.3.1 Freshly isolated ductal fragments and cryopreserved organoid 

fragments form undifferentiated organoids in culture 

In order to generate hepatic organoids for proteomic profiling, whole murine livers 

were digested and the ductal fragments isolated. As the isolation technique only uses 

cell strainers to capture the ductal fragments, a mixed population of cell digest was 

obtained and seeded into Matrigel domes. Early organoid formation was observed at 

24-72 h post-seeding and fully-grown organoids were achieved at 120 h post-seeding 

(Fig 4.1).  

Successful cryopreservation and resurrection of organoids is essential for their 

feasibility and utility as a reproducible in vitro model. Undifferentiated organoids were 

fragmented, stored in liquid nitrogen for six months and were successfully revived in 

culture. Organoid growth profiles from cryopreserved fragments were similar to that 

of freshly isolated ductal fragments (Fig 4.1).  
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Figure 4.1- Growth profile of undifferentiated hepatic organoid formation.  

Freshly isolated ductal fragments from CD-1 mice and organoid fragments that were 
cryopreserved for 6 months were seeded and cultured in HepatiCult media. The growth profile 
of undifferentiated organoids was assessed over a 120-hour period. White arrow shows 
collapsed organoids. Scale bar 100 µm.  
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4.3.2 Differentiated organoids express hepatic markers of varying 

maturity 

In order to accurately mimic the phenotype of an in vivo liver, hepatic organoids 

should be able to demonstrate essential physiological attributes, such as albumin 

production and CYP450 expression.  

As organoids originate from ductal fragments, they require differentiation to exhibit a 

mature hepatocyte phenotype. This is achieved using a combination of small 

molecules and growth factors over a period of 12 days (Fig 4.2A). Undifferentiated 

organoids were maintained and outgrown in HepatiCult media (Fig 4.2B). 

Differentiation media contains small molecules such as A83-01 and DAPT, which 

promote differentiation and inhibit or interfere with Notch signalling, an essential 

pathway in biliary development 273. Organoids were cultured in differentiation media 

for 9 days, and a further 3 days in differentiation media supplemented with 

dexamethasone, a known CYP P450 inducer 274 (Fig 4.2C).  

 
 

Figure 4.2- Hepatic organoids are differentiated over 15 days with defined 
culture media. 

(A) Differentiation and sample analysis timeline for hepatic organoids. Differentiation media 
inhibits Notch signalling, which changed organoids from a biliary phenotype to a mature 
hepatic phenotype. (B) Small, undifferentiated organoids are maintained in HepatiCult 
media, prior to differentiation. (C) Fully differentiated organoids are much larger, and 
express mature hepatic markers. Scale bar 100 µm.  
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In order to assess the extent and suitability of the differentiation from a biliary 

phenotype to a mature hepatocyte phenotype, a series of IF images were taken of 

undifferentiated, partially differentiated and fully differentiated organoids. Organoids 

were stained for actin, CYP450 2E1, the biliary marker CK19, the immature 

hepatocyte marker alpha-fetoprotein (AFP) and the mature hepatocyte marker 

albumin.  

Undifferentiated organoids had a relatively small diameter of approximately 80-250 

µm and strongly expressed both CK19 and CYP450 2E1. There was no observed 

expression of either immature or mature hepatocyte markers (Fig 4.3A).  

After four days of differentiation, there was a low-level expression of AFP indicating 

a shift toward an early hepatocyte phenotype. The expression of CK19 and albumin 

did not appear to change compared to undifferentiated organoids, although CYP450 

2E1 appeared slightly lower (Fig 4.3B).  

At day eight of differentiation, before the inclusion of dexamethasone, the levels of 

CK19 appear to remain unchanged compared to previous time points. There was 

continued low level expression of AFP and pockets of suspected albumin deposition 

were detected, indicating the development of a mature hepatocyte phenotype in a 

few select organoids. There was minimal expression of CYP450 2E1 at this stage 

(Fig 4.3C).  

At day twelve of the differentiation protocol, organoids were significantly larger, with 

an approximate diameter of 300-500 µm. Organoids maintained the expression of 

CK19. However, expression of immature and mature hepatocyte markers was highest 

at this stage of the organoid culture, although this was not uniform across all 

organoids. Notably, after the inclusion of dexamethasone, there appeared to be a 

slight re-emergence of CYP 2E1 expression (Fig 4.3D).  
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Actin staining was utilised as a measure of examining organoid and individual cell 

size over time, as cholangiocytes and hepatocytes are morphologically very different. 

Throughout the differentiation process, it appeared that the size of the cells remained 

unchanged. 
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Figure 4.3- Organoids express hepatic markers of varying maturity throughout 
their differentiation 

Organoids were stained for hepatic markers at (A) day 0, (B) day 4, (C) day 8 and (D) day 12 
of differentiation. Cells were stained for the biliary marker CK19, the immature hepatocyte 
marker alpha-fetoprotein (AFP), the mature hepatocyte marker albumin and CYP2E1 (all 
green). Organoids were counterstained for actin (red) and Hoechst (blue). A negative control 
with no primary antibody was used for comparison. Scale bar 50 µm.  
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4.3.3 Preparation and initial analysis of mass spectrometry 

In order to evaluate differential protein expression in liver and undifferentiated and 

differentiated organoids, samples were lysed and prepared for iTRAQ. Due to the 

quantitative nature of iTRAQ, it was necessary to confirm equal protein concentration 

by SDS-PAGE protein separation and Coomassie Blue staining (Fig 4.4). Samples 

were then labelled by iTRAQ reagent and relative global protein abundance was 

analysed by LC-MS/MS. 

 
 

Figure 4.4- Coomassie Blue staining shows equal protein concentrations in all 
samples 

Liver, undifferentiated and fully differentiated organoid (n=4) protein samples were diluted to 
5 mg/mL in preparation of iTRAQ analysis. Equal protein concentration across all samples 
was confirmed by Coomassie Blue staining.  

 

The mass spectrometry data identified 4,405 proteins consistently expressed in all 

samples, which allowed statistical comparison of each protein in each sample. PCA 

analysis of the proteome datasets revealed distinct clustering populations of liver, 

differentiated and undifferentiated organoid samples. The clustering of the 

undifferentiated and differentiated organoids on the PCA1 axis indicated they both 

exhibited a similar protein expression profile when compared to liver samples (Fig 

4.5). This was confirmed by hierarchical clustering, which demonstrated similar 

expression profiles and tight clustering of organoid samples when compared to liver 

tissue (Fig 4.6). 

Liver Undifferentiated Differentiated

1    2    3    4 1    2    3    4 1    2    3    4
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Figure 4.5- PCA analysis reveals distinct clustering of iTRAQ samples 

Liver, undifferentiated and differentiated samples cluster apart from each other following 
principle component analysis (PCA) of merge, batch corrected iTRAQ data. 

 

 

 
 

Figure 4.6- Characterisation of protein expression in liver and organoid 
samples 

An expression heatmap of all detected proteins by iTRAQ reveals tighter clustering of 
differentiated and undifferentiated organoid samples than to liver. 
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4.3.4 Global protein expression in liver, undifferentiated organoids and 

differentiated organoids 

In order to visualise the significance and magnitude of change in protein expression 

between livers, undifferentiated and differentiated organoids, volcano plots were 

generated of the p-values (-log10 p-value) and log2 fold change for each protein.  

Proteins were considered significantly differentially expressed if p<0.05. To examine 

the range of significance, proteins were further stratified into p>0.05, 0.05>p>0.01, 

0.01>p>0.001 and p<0.001. The number of individual protein species at each level of 

significance is indicated in Fig 4.7A. 

 

 
 

Figure 4.7- Global differential protein expression between organoids and livers 
varies by significance 
 
(A) Stratification of the number of proteins found differentially expressed between samples, 
ranked by their statistical significance. Volcano plots of (B) differentiated organoids/liver, (C) 
undifferentiated organoids/liver and (D) differentiated organoids/undifferentiated organoids 
indicating statistical significance (-log10 p-value) versus log2 fold change. Statistical 
significance is defined as ●= p>0.05, ●= 0.05>p>0.01, ●= 0.01>p>0.001 and ●= p<0.001 
 

 

  

Diff./Liver Undiff./Liver Diff./Undiff.

Upreg. Downreg. Upreg. Downreg. Upreg. Downreg.

p > 0.05 827 853 940 803 1269 1396

0.05> p >0.01 293 282 319 240 277 331

0.01> p >0.001 288 310 321 218 259 267

p <0.001 700 846 800 758 241 351

No Change 6 6 14

A

CB D
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The volcano plots comparing both differentiated (Fig 4.7B) and undifferentiated (Fig 

4.7C) organoids to liver, both demonstrated a similar distribution of points, with large 

expression changes at a high degree of significance. Of the total 4,405 proteins 

detected, 2,725 (61.8 %) and 2,662 (60.4 %) were significantly (p<0.05) altered in 

differentiated and undifferentiated organoids respectively.  

Conversely, when differentiated and undifferentiated organoids were compared, the 

relative change of protein expression and level of significance was small (Fig 4.7D). 

A total of 1740 (39.5 %) proteins were significantly (p>0.05) altered, further indicating 

both sets of organoid samples were more similar to each other than their original liver 

tissue. 

4.3.5 DMET and Nrf2 proteins in the context of global protein 

expression 

In order to assess the parameters of organoids with respect to their potential ability 

for drug metabolism and detoxification, alterations in the expression and significance 

of DMET and Nrf2-target proteins were highlighted in the context of their global 

protein expression.  

The DMET proteins of interest included 30 cytochrome P450 enzymes (Fig 4.8A), 32 

Phase II enzymes (Fig 4.8B) and 45 transporter (Fig 4.8C) proteins; 14 Nrf2-target 

(Fig 4.8D) and 14 hepatic biomarker (Fig 4.8E) proteins of interest were also included. 

The full individual p-values and changes in expression of these proteins are listed in 

Appendix 4.1. The expression of CYP450 (Fig 4.8A) and Phase II (Fig 4.8B) enzymes 

in both undifferentiated and differentiated organoids were generally downregulated 

when compared to liver tissue. However, upon differentiation, there was an 

upregulation of these key DMET enzymes. There was a similar trend observed with 

transporter proteins, although their downregulation and subsequent upregulation 

upon differentiation was not as pronounced (Fig 4.8C). Alterations in the level of Nrf2 
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and auxiliary hepatic proteins after differentiation were relatively modest compared 

with the differences observed in DMET proteins. However, there was still a trend for 

these proteins to be downregulated in organoids compared to liver (Fig 4.8D).  

 

 
 

 
 

  

A B
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Figure 4.8- Comparison of DMET and Nrf2 target proteins in the context of 
global protein expression 
 
The expression of (A) ● CYP450, (B) ● Phase II, (C) ● transporters and (D) ● Nrf2 proteins 
were highlighted on volcano plots of global protein expression comparing the differentiated 
organoids, undifferentiated organoids and livers. The volcano plots indicate statistical 
significance (-log10 p-value) versus log2 fold change. 
 

 

 

C D
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4.3.6 Expression of key hepatic proteins in liver, undifferentiated 

organoids and differentiated organoids  

Due to the implicit roles of metabolic turnover, conjugation and elimination of 

xenobiotics and chemicals by the liver, a focussed examination of individual proteins 

responsible for these processes was therefore warranted. 

It should be noted that CYP450 isoform and nomenclature differences exist between 

species. The human homologs of the murine CYP450s detected in this work are 

highlighted in Appendix 4.2 157. 

Fig 4.9A shows the log2 change in expression of 30 CYP450 enzymes between liver, 

differentiated and undifferentiated organoids. Levels of CYP450 in organoids were 

consistently lower than in liver, except for CYP450 2C55, 2J6, 2S1, 2U1 and 4B1. 

Upon differentiation, there was a significant increase in expression of multiple 

CYP450s; notable examples include CYP450 1A2, 2A5, 2D10, 2D26, 3A11 and 

3A13. CYP450 3A13 was particularly sensitive to differentiation and was the only 

CYP450 whose abundance was significantly lower in undifferentiated/liver that was 

also significantly higher in differentiated/liver. There was no substantial change in the 

expression of CYP450 2E1, however, it was previously demonstrated that 2E1 was 

expressed both pre- (Fig 4.3A) and post- (Fig 4.3D) differentiation.  
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The expression of phase II enzymes was largely lost in organoids when compared to 

liver, except various subclasses of the glutathione S-transferase (GST) family and 

sulfotransferase family. Differentiation of organoids broadly reversed this trend and 

the majority of phase II enzymes were significantly increased. However, the N-

acetyltransferase and UGT family was largely unchanged, except for UDP-

glucuronosyltransferase 2A3 (Fig 4.9B).  
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Transporters were generally downregulated in organoids compared to livers, though 

not to the extent of CYP450 and phase II proteins. There was no significant change 

in solute carrier family 22 member 1 (OCT1), multidrug resistance-associated protein 

1 and 7 (MRP1/7) expression in differentiated organoids compared to both liver and 

undifferentiated organoids. Conversely, solute carrier organic anion transporter 2A1 

(OATP-2A1), Multidrug resistance protein 1A (MDR1A) and Canalicular multispecific 

organic anion transporter 2 (MRP3) were all significantly upregulated in differentiated 

organoids compared to both liver and undifferentiated organoids.  

The majority of hepatic influx and efflux proteins were significantly underexpressed in 

differentiated organoids relative to liver, including OATP-A1 and -1B2, ATP-binding 

cassette sub-family G member 2 (BCRP), and the bile salt export pump (BSEP). 

Differentiation did not significantly affect the expression of these proteins compared 

to undifferentiated organoids. MRP6, canalicular multispecific organic anion 

transporter 1 (MRP2) and the sodium/bile acid cotransporter were all downregulated 

in differentiated organoids compared to liver, although differentiation did significantly 

increase their expression. (Fig 4.9C).  
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The changes in abundance of key Nrf2 related proteins 275 of interest were also 

analysed. The relative levels of KEAP1, the repressor protein of Nrf2, and HO-1 and 

NQO1, two commonly used reporters of Nrf2 activation, were similar between 

differentiated organoids and liver. However, there was some minor up- and down-

regulation of GSH- and thioredoxin (TXN)-based Nrf2 antioxidant proteins. The 

largest observed effect of differentiation was in glutathione peroxidase 1. Protein 

abundance was diminished in undifferentiated organoids compared to the liver, 

although this effect was significantly reduced post-differentiation. (Fig 4.9D). 
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In order to be considered as a predictive model of liver injury, the expression of 

currently used and recently identified putative protein biomarkers of DILI 276 were also 

investigated. Differentiation of organoids increased the expression of ALT, AST and 

GLDH compared to undifferentiated organoids, whereas HMGB1 and CK 18 were 

unaffected. Of the candidate novel biomarkers, differentiation significantly increased 

the expression of the phase II enzymes, GSTA1 and GSTA3 (shown in Fig 4.9B), 

sorbitol dehydrogenase and arginase 2 (Fig 4.9E). 

 
 

Figure 4.9- Comparison of log2 fold changes of individual key hepatic proteins 
in undifferentiated organoids, differentiated organoids and liver. 
 
The log2 change in expression of (A) 30 CYP450 enzymes, (B) 30 Phase II, (C) 45 transporter, 
(D) 25 Nrf2 and auxiliary and (E) 14 biomarker proteins was calculated following iTRAQ 

analysis. A hash (#) or asterisks (*) indicates significant differential expression of proteins in 
differentiated organoids/liver or differentiated/undifferentiated organoids respectively. * = 
0.05>p>0.01, ** = 0.01>p>0.001 and *** = p<0.001.  
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4.3.7 KEGG analysis reveals distinctly altered biological pathways in 

differentiated organoids  

Mass spectrometry analysis of differentiated organoids revealed 2,719 and 1,726 

significant (p<0.05) differentially expressed proteins when compared to both liver and 

undifferentiated organoids respectively. These changes in abundance were observed 

both globally (Fig 4.7) and in DMET and Nrf2 associated proteins (Fig 4.8-13). In 

order to understand the implications of these changes in expression, KEGG pathway 

analysis was used to contextualise significantly up and down-regulated proteins 

within biological pathways. The 25 most significant pathways for each condition were 

recorded. 

Upregulated proteins found in differentiated organoids were associated with 

pathways of cellular morphology and cell-cell interactions. 

Glycolysis/gluconeogenesis and metabolic pathways were also significantly 

upregulated. Conversely, multiple metabolic processes, including fatty acid 

degradation and metabolism were downregulated in differentiated organoids 

compared to liver. With respect to a hepatic phenotype, there was a loss of drug 

metabolising pathways. In line with the upregulation of the glycolysis pathway, a loss 

of ATP producing pathways, such as the TCA cycle and oxidative phosphorylation 

was observed (Fig 4.10) 
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Figure 4.10- The top 25 up- and down-regulated biological pathways in 
differentiated organoids compared to liver. 
 
KEGG pathway analysis was performed on significantly (p<0.05) up- and down-regulated 
proteins in differentiated organoids compared to liver. The 25 most significant pathways were 
recorded, alongside the total number of proteins contributing to each pathway. 
 

A comparison of biological pathways between differentiated organoids and 

undifferentiated organoids revealed an upregulation of pathways that were typically 

downregulated when differentiated organoids were compared to liver. For example, 

the metabolism of xenobiotics by CYP450 pathway was downregulated in 

differentiated organoids/liver (p=1.40x10-8) but upregulated in 

differentiated/undifferentiated organoids (p=1.67x10-8) There was an upregulation of 

multiple metabolic process, including fatty acid, glutathione and retinol metabolism. 

Pathways that were downregulated between differentiated and undifferentiated 

organoids represented RNA translation and protein synthesis. Downregulation of 

carbon and fatty acid metabolism pathways were also observed. However, the protein 

count contributing to each pathway was relatively low compared to the other pathway 

analyses. This is reflected in the fact that only 21 pathways were significantly altered 

(Fig 4.11).  

Differentiated/Liver upregulated pathways Differentiated/Liver downregulated pathways

Term Count p Value Term Count p Value

Spliceosome 59 1.53E-27 Metabolic pathways 377 7.68E-86

Regulation of actin cytoskeleton 55 2.10E-13 Ribosome 81 5.19E-38

Bacterial invasion of epithelial cells 31 5.24E-13 Oxidative phosphorylation 75 8.39E-34

Salmonella infection 27 7.66E-10 Parkinson's disease 75 3.50E-31

Focal adhesion 47 1.58E-09 Biosynthesis of antibiotics 88 1.87E-28

Fc gamma R-mediated phagocytosis 26 2.24E-08 Valine, leucine and isoleucine degradation 40 7.19E-25

Endocytosis 50 1.52E-07 Alzheimer's disease 74 1.86E-24

Biosynthesis of antibiotics 43 3.46E-07 Peroxisome 46 2.19E-21

Adherens junction 22 4.40E-07 Carbon metabolism 53 1.13E-19

Tight junction 24 1.66E-06 Huntington's disease 71 4.95E-19

Glycolysis / Gluconeogenesis 20 1.94E-06 Proteasome 31 3.27E-18

Amino sugar and nucleotide sugar metabolism 17 2.00E-06 Non-alcoholic fatty liver disease (NAFLD) 60 1.17E-17

Fructose and mannose metabolism 14 2.45E-06 Fatty acid metabolism 30 6.22E-15

Biosynthesis of amino acids 21 4.85E-06 Fatty acid degradation 29 1.56E-14

Sphingolipid signaling pathway 28 6.00E-06 Glyoxylate and dicarboxylate metabolism 22 3.19E-14

Amoebiasis 27 6.01E-06 Propanoate metabolism 21 6.53E-14

Galactose metabolism 13 7.64E-06 Tryptophan metabolism 27 3.92E-13

Proteoglycans in cancer 38 1.06E-05 Glycine, serine and threonine metabolism 22 2.77E-10

Carbon metabolism 26 1.60E-05 Butanoate metabolism 18 2.99E-10

Central carbon metabolism in cancer 18 2.18E-05 Chemical carcinogenesis 34 9.27E-10

Pentose phosphate pathway 12 2.36E-05 Protein processing in endoplasmic reticulum 49 1.27E-09

ECM-receptor interaction 21 5.03E-05 Pyruvate metabolism 21 1.28E-09

Synaptic vesicle cycle 17 5.56E-05 Citrate cycle (TCA cycle) 18 1.13E-08

Leukocyte transendothelial migration 25 6.37E-05 Metabolism of xenobiotics by cytochrome P450 26 1.40E-08

Lysosome 25 1.11E-04 Drug metabolism - cytochrome P450 26 2.91E-08
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Figure 4.11- The top 25 up- and down-regulated biological pathways in 
differentiated organoids compared to undifferentiated organoids. 
 
KEGG pathway analysis was performed on significantly (p<0.05) up- and down-regulated 
proteins in differentiated organoids compared to undifferentiated organoids. The 25 most 
significant pathways were recorded, alongside the total number of proteins contributing to 
each pathway. 
 

4.3.8 Validation of mass spectrometry by immunoblotting 

In order to validate the differential expression of proteins by iTRAQ, the expression 

of a CYP450 (3A11), phase II (GSTA1), DILI biomarker (ALT1) and Nrf2 associated 

protein (PRDX1) were further analysed by immunoblotting (n=2 per group). Samples 

from day four and day eight of differentiation were also included to show the change 

of protein induction over time.  

The result of the immunoblot (Fig 4.12A) was compared to the iTRAQ abundance 

data (Fig 4.12B) for these markers. The trend in protein expression appeared to 

reflect the iTRAQ data. Densitometry analysis was performed to quantitatively assess 

change in protein expression. Band intensities calculated relative to GAPDH revealed 

an increase in CYP450 3A11, GSTA1 and ALT1 over time. The levels of PRDX1 

remained constant throughout the differentiation (Fig 4.12C). Overall, changes in 

Differentiated/Undifferentiated upregulated pathways Differentiated/Undifferentiated downregulated pathways

Term Count p Value Term Count p Value

Metabolic pathways 219 7.38E-59 Ribosome 87 4.12E-63

Parkinson's disease 48 1.14E-22 Proteasome 33 1.43E-27

Alzheimer's disease 52 1.60E-22 Spliceosome 38 1.13E-13

Oxidative phosphorylation 46 2.91E-22 RNA transport 41 4.27E-12

Valine, leucine and isoleucine degradation 30 8.86E-22 Ribosome biogenesis in eukaryotes 25 1.09E-09

Huntington's disease 51 2.34E-19 Protein processing in endoplasmic reticulum 35 1.21E-08

Biosynthesis of antibiotics 50 4.27E-17 Aminoacyl-tRNA biosynthesis 20 6.58E-08

Non-alcoholic fatty liver disease (NAFLD) 42 1.31E-16 Biosynthesis of antibiotics 38 2.10E-07

Chemical carcinogenesis 27 9.12E-12 One carbon pool by folate 8 1.91E-04

Fatty acid degradation 20 1.21E-11 Carbon metabolism 20 4.06E-04

Carbon metabolism 29 8.96E-11 Epstein-Barr virus infection 22 4.68E-04

Tryptophan metabolism 17 4.90E-09 RNA degradation 16 4.92E-04

Metabolism of xenobiotics by cytochrome P450 19 1.67E-08 DNA replication 10 5.18E-04

beta-Alanine metabolism 13 1.85E-07 Protein export 9 6.35E-04

Glutathione metabolism 16 4.13E-07 Fatty acid metabolism 12 6.56E-04

Amino sugar and nucleotide sugar metabolism 15 5.39E-07 Biosynthesis of amino acids 14 2.17E-03

Propanoate metabolism 11 1.65E-06 Pentose phosphate pathway 8 3.94E-03

Glyoxylate and dicarboxylate metabolism 11 3.51E-06 Terpenoid backbone biosynthesis 6 1.94E-02

Retinol metabolism 19 3.51E-06 Peroxisome 12 2.94E-02

Drug metabolism - cytochrome P450 16 5.08E-06 Fatty acid elongation 6 3.20E-02

Fatty acid metabolism 14 5.63E-06 Biosynthesis of unsaturated fatty acids 6 3.71E-02

Fructose and mannose metabolism 11 1.75E-05 Antigen processing and presentation 11 5.95E-02

Histidine metabolism 9 3.19E-05 Proximal tubule bicarbonate reclamation 5 6.37E-02

Pyruvate metabolism 11 6.50E-05 Purine metabolism 19 7.62E-02

Arginine biosynthesis 8 6.64E-05 Metabolic pathways 102 8.16E-02
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protein expression determined by immunoblotting was shown to be an accurate 

reflection of the data obtained from the iTRAQ. 

 
 

Figure 4.12- Similar protein expression is detected by both iTRAQ and 
immunoblotting. 

 
(A) Log2 change in expression of DMET and Nrf2 proteins detected by iTRAQ. (B) Immunoblot 
of DMET and Nrf2 proteins in liver and organoids at various stages of differentiation (n=2). (C) 
Densitometry analysis of DMET and Nrf2 proteins relative to GAPDH revealed a similar protein 
expression as observed in the iTRAQ experiment. 
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4.4 Discussion 

The value of any cultured cell as a disease model is the ability to robustly reflect the 

in vivo phenotype. Whilst primary hepatocytes are the current gold standard for 

modelling the liver, their availability, reproducibility and DMET stability in culture 

negatively affect their wide-spread use. Hepatic organoids are a novel, but poorly 

characterised, in vitro system that may meet the current need for a more 

physiologically relevant, proliferative, liver-derived cell model. In this study, the global 

proteome of undifferentiated and differentiated murine organoids and donor derived 

liver tissue were compared in order to better characterise this nascent hepatic model. 

The in vitro proliferation of hepatocytes is typically not possible under standard culture 

conditions and therefore requires extensive measures such as viral transfection 277 or 

culture with TNFα 278. Conversely, it was observed that hepatic organoids from a 

single donor could be expanded and passaged multiple times in basal expansion 

media. The proliferative and differential potential of murine HPC over hepatocytes 

has been previously demonstrated 279. Long term cryopreservation and resurrection 

of organoids was also possible (Fig 4.1), which would be beneficial for retaining high 

value samples and potentially lowering the number of single-use animals for research 

280. However, potentiation morphological and functional differences in freshly isolated 

and cryopreserved organoids would need to be evaluated 281. 

As organoids are biliary-derived, a defined differentiation protocol of Notch signalling 

inhibition and dexamethasone produces a mature hepatocyte phenotype 180. At the 

final stage of differentiation, organoids expressed low levels of AFP, select organoids 

expressed albumin; however, organoids remained CK19+ (Fig 4.3A-D). This suggests 

that differentiation of organoids does not induce a complete transdifferentiation from 

a biliary to hepatocyte phenotype, only a gain of hepatocyte function. Li et al. has also 

demonstrated that human HPC cultured in hepatocyte medium were 
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CK19+/AFP+/Albumin+ 282. Fully differentiated human organoids have also been 

shown to be EpCAM+/HNF4α+/Albumin+ 180 and CK19+/Albumin+/CYP450 3A4+ 179.  

This shift toward a hepatocyte-like cell was confirmed by KEGG pathway analysis, 

with the upregulation of multiple metabolic and CYP450 pathways in differentiated 

organoids compared to undifferentiated organoids (Fig 4.11). Further evidence for a 

small-scale phenotypic change is reflected by the tight clustering of undifferentiated 

and differentiated organoids compared to liver tissue by hierarchal and PCA analysis 

(Fig 4.5, Fig 4.6). The same tight clustering of organoids relative to donor-matched 

liver tissue has also been observed on a gene level by whole-genome transcriptomic 

analysis of essential liver function markers 179. 

The expression of DMET proteins in hepatic organoids remain to be comprehensively 

defined. Within our dataset, the differentiation protocol partially restored the 

expression of the majority of CYP450 enzymes, though not to the level as observed 

in the liver. The murine equivalent families of CYP450 3A4, 2D6, 2C19, 1A2 and 2B6, 

which oxidatively metabolise the most commonly prescribed drugs 283,  were all 

significantly upregulated in differentiated organoids compared to undifferentiated 

organoids (Fig 4.9A).  

Previous work has shown that differentiated human organoids demonstrated CYP450 

3A4 activity and were capable of metabolising midazolam, a commonly used probe 

of CYP450 3A4 activity 284,285. In agreement with previous studies, the expression of 

CYP450 3A proteins in our data increased in differentiated organoids following culture 

with dexamethasone 286,287. The metabolism of midazolam is not strictly unique to 

CYP450 3A4, it is also turned over by CYP450 3A3 and 3A5 288. Interestingly, the 

level of CYP450 3A13 (equivalent to human CYP3A5) was the only CYP450 enzyme 

significantly higher in differentiated organoids compared to both liver and 

undifferentiated organoids and may be primarily responsible for the midazolam 

metabolism seen in the original study.  
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Finally, differentiation induced high expression of CYP450 2C55 and 2S1 (Fig 4.9A). 

While relatively little is known about these CYP450 enzymes, Waterschoot et al. 

observed a >30-fold increase in gene expression of CYP450 2C55 in a CYP450 3A-

/- mouse model, which was capable of midazolam metabolism 289. CYP450 2S1 has 

been shown to be mainly expressed in extrahepatic tissue within epithelial cells and 

to metabolise retinoic acid, a key driver of differentiation 290. The increase of these 

two CYP450 proteins in fully differentiated organoids warrants further investigation.  

At the time of writing, this is the first study to profile phase II and hepatic transporters 

in biliary derived hepatic organoids. Differentiation upregulated the expression of the 

GST and sulfotransferase family, with many proteins expressed at near-identical 

(GST-M2, sulfotransferase 1A1) or higher (GST-A1, sulfotransferase 1C2) levels of 

expression to the liver (Fig 4.9B). Although hepatic transporters generally had lower 

expression in organoids compared to liver, the magnitude of difference was relatively 

small compared to CYP450 and phase II proteins. There are a number of essential 

hepatobiliary influx and efflux transporters expressed in differentiated organoids, such 

as MDR1A, MRP1/2/3/6/7, OCT1, OATP-1, BSEP, BCRP and the sodium/bile acid 

cotransporter (Fig 4.9C). Critically, many of these proteins are lacking in currently 

used hepatic models, such as HepG2 291,292.  

In particular, parallels can be drawn between organoids and HepaRG cells as they 

are both derived from a progenitor cell that requires differentiation to a hepatobiliary 

phenotype, with useful CYP450 3A expression 293. Unlike HepaRG, organoids are not 

cancer derived, thus may have more favourable Nrf2 and bioenergetic profile for 

toxicity testing. The levels of free radical production and Nrf2 activation in HepaRG 

varies throughout differentiation, which may harm mechanistic understanding of drug-

induced cellular defence activation 294. Within this dataset, no significant change in 

the levels of KEAP1, HO-1 or NQO1 between liver and organoids was detected, 

indicating a stable Nrf2 system throughout culture (Fig 4.9D). Furthermore, 
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differentiated organoids expressed the most commonly used current gold standard 

DILI biomarkers to a similar level as the liver, which would aid in their use as a 

translational tool for evaluating hepatotoxicity (Fig 4.9E).  

4.4.1 Conclusions and future work 

In this chapter, it has been shown that biliary-derived organoids are a proliferative cell 

system, capable of long-term culture and cryopreservation. Through a combination of 

3D culture, growth factors and small molecules, organoids can be differentiated to a 

hepatocyte-like phenotype. The final organoid proteomic profile contains multiple 

DMET proteins necessary for liver function and drug metabolism. However, the final 

phenotype is distinct from liver tissue; organoids retain a biliary phenotype and the 

majority of DMET enzymes are generally lower than donor-derived liver tissue. 

However, this does not mean to say that their expression is not useful for ADMET 

studies, relative to pre-existing models. 

Organoids may offer utility compared to other advanced hepatic models such as 

HepaRG, spheroid and iPSC models. Unlike HepaRG cells, organoids form from a 

non-cancerous, patient-specific donor cell and reach differentiation in a shorter 

timeframe. While spheroids can be formed from patient specific hepatocytes, their 

lack of availability, proliferation and de-differentiation in culture limits their use in 

routine drug testing. Finally, though iPSC cells are non-cancerous and patient 

specific, a lack of standardised differentiation protocol and ability to form 3D 

structures restricts their utility. 

However, for in vitro toxicological studies, there is concern surrounding the accuracy 

and normalising of seeding organoid fragments compared to an exact cell count seen 

in the other hepatic models. Further investigation to determine which model is fit for 

a specific purpose is therefore required.  
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We have shown that differentiated organoids express high levels of certain essential 

metabolising and transport proteins, such as CYP450 3A, GSTA and MDR1A. 

Therefore, organoids may be the most appropriate model for assessing drug classes 

that are processed through these pathways, such as such as alkylating chemotherapy 

agents 295. Furthermore, the expression of multiple hepatobiliary transporters may 

enable mechanistic insight into biliary efflux of metabolised compounds and inform of 

potential cholestatic perturbations, which are typically difficult to model in vitro 296. 

Since the publication of biliary-derived organoids, a recent development has achieved 

organoid outgrowth from albumin+/Axin2+ hepatocytes. Compared to biliary-derived 

organoids, gene expression of cholangiocyte/HPC markers (CK19, SOX9) was 

significantly lower and hepatic markers (albumin, HNF4α and CYP450 1A2 and 

3A11), were comparable to primary hepatocytes, which may offer a more 

physiologically relevant hepatocyte model 59. As the field of hepatic organoids is 

relatively novel, organoid isolation and differentiation protocols will require further 

experimentation, optimisation and characterisation.  

Future work for biliary derived organoids should aim to compare the phenotype of 

differentiated murine organoids to both in vivo mouse studies and human derived 

organoids. Assessing the differences and similarities between in vitro dosing of 

organoids and in vivo toxicological studies would aid the understanding of how human 

derived organoids could predict clinically observed toxicity. Ultimately, this could 

identify translational differences which may help predict complexities when moving 

from pre-clinical models to phase I trials. Furthermore, organoids should be 

challenged with curated hepatotoxic test and training compounds in order to evaluate 

their response to toxicity, with both standardised cytotoxic and mechanistic end 

points. This response should then be contextualised relative to existing 2D and 3D in 

vitro models in order to assess their utility as a predictive and sensitive model of DILI.  
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Finally, while organoids appear to mimic the hepatobiliary aspect of the liver, other 

NPC are not reflected in the current system. Patient-derived cancer organoid models 

have started to incorporate immune cells to better reflect the in vivo phenotype of the 

tumour microenvironment 297. While initial studies have co-cultured HPC with 

fibroblasts to alter differentiation, the effects of culturing with other key NPC, such as 

LSEC, remain to be evaluated 298. 

4.4.2 Limitations 

A caveat of this work was the use of DMET, Nrf2 and biomarker proteins used to 

evaluate the similarities between organoids and liver, which represented <3 % of all 

proteins detected by iTRAQ. Whilst care was taken to contextualise these DMET 

proteins in line with previous publications 275,299, some proteins were omitted for ease 

of analysis, such as phase I CYP450-independent metabolising enzymes and non-

GSH and TXN-based Nrf2 defence mechanisms. Furthermore, the assessment of 

how suitable organoids are at reflecting the in vivo phenotype was made solely upon 

DMET activity, whereby other key physiological metrics, such as zonated hepatic 

proteins, may still be relevant to fully profiling hepatic organoids. 

Finally, large proteomic differences were observed between both undifferentiated and 

differentiated organoids compared to liver. For example, Fig 4.10 shows an 

upregulation of cytoskeleton, glycolytic and cell-cell interaction pathways and a down 

regulation of oxidative phosphorylation pathways in differentiated organoids 

compared to liver. This is indicative of the proteome adapting from an in vivo 

environment to an in vitro environment, whereby cells are proliferating in glucose-rich 

media 300. A comparison against donor-derived hepatocytes may also have been 

useful to contextualise biliary-derived organoids against the current gold standard 

model. However, due to the size of the liver and nature of both the organoid and 

hepatocyte isolation procedures, this was not feasible in mouse, but would be in 

human samples. 
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5.1 Introduction 

DILI is a major cause of patient morbidity and mortality and impedes the development 

of novel drug therapies. In order to address these issues, a better understanding in 

the prediction and detection of hepatic toxicological outcomes is needed. There is a 

well-established requirement for both novel in vitro systems and biomarkers for DILI. 

Whilst the majority of hepatotoxicity research has historically focused on the 

hepatocytes, cholangiocytes are both possible targets of DILI and potential tools in 

predicting toxicity. 

Improved prediction of DILI would primarily depend upon a robust in vitro model that 

accurately reflects the in vivo hepatic physiology. However, current routine 

assessment in in vitro modelling of DILI is still largely reliant upon proliferative cancer-

derived cells, which typically have low DMET activity and an altered Nrf2 cell defence 

signalling pathway 301. Biliary-derived hepatic organoids have recently been 

described as a more physiologically relevant in vitro system, though they remain to 

be characterised to the same level of pre-existing models. 

The enhanced detection of DILI would require specific, sensitive and mechanistically 

informative biomarkers. Elevations in the current gold standard biomarkers are purely 

diagnostic and can be caused by diseases unrelated to the liver or liver injury in the 

absence of DILI 276. miRNAs have previously been shown to be an attractive 

circulating biomarker of hepatocellular liver injury, accounting for many of the 

shortcomings of the current serum biomarkers 124. However, the identification of 

cholangiocyte-enriched miRNAs and their detection following DILI remains to be 

elucidated.  

5.2 Summary of the work in this thesis 

This thesis set out to elucidate how cholangiocytes can be utilised as potential tools 

of improving the detection and prediction of DILI. Specifically, studies within this thesis 
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were designed to characterise global miRNA expression in murine cholangiocytes, in 

order to identify and detect novel circulating biomarkers in serum following 

cholangiocyte-specific toxicity in vivo. Moreover, this thesis aimed to characterise the 

proteome of biliary-derived organoids to assess their phenotype relative to donor-

derived liver tissue. 

In Chapter 2, a novel discovery of 63 statistically significant miRNAs that were either 

enriched or uniquely expressed in a pure population of freshly isolated murine 

cholangiocytes were identified as putative circulating biomarkers. Importantly, these 

miRNAs were all translational to human, though ultimately not shown to be liver 

specific. These putative miRNAs may be useful as part of a panel of biomarkers in 

the diagnosis and understanding of mechanistic cholangiocyte DILI, either clinically, 

or in a controlled point-of-care environment, such as clinical trials 

In Chapter 3, a panel of five cholangiocyte-derived miRNAs from the miR-200 family 

were investigated in the response to cholangiocyte toxicity. Liver injury was not shown 

to be cholangiocyte specific and in ANIT-treated animals, overt stomach toxicity was 

observed, which has not been previously reported.  While some members of the miR-

200 family were detected in the serum of dosed animals, this chapter highlighted the 

difficulties in modelling both cholangiocyte and cholestatic liver injury, which has 

valuable implications for the design and interpretation of future toxicological and 

biomarker discovery studies 

In Chapter 4, the proteome of biliary-derived organoids and donor-derived liver was 

assessed to better characterise this nascent in vitro model. Differentiated organoids 

expressed higher levels of key DMET proteins compared to undifferentiated 

organoids. Although the final differentiated organoid phenotype was distinct from 

donor-derived liver tissue, the in-depth proteomic characterisation of biliary-derived 

organoids will aid researchers in the selection of the most appropriate in vitro tool for 

the future. 
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Overall, the majority of the aims outlined at the beginning of this thesis were 

successfully achieved.  

5.3 General limitations of experimental studies 

5.3.1 Limitations of animal studies 

The data presented within this thesis must be interpreted within the context and 

limitations of the experimental design. A selection criterion for the candidate murine 

miRNAs identified in Chapter 2 was that an equivalent human miRNA also existed, to 

ensure any findings were translational to the clinic. However, in Chapter 3, 

cholangiocyte injury was modelled predominantly in fasted mice and rats, with an 

acute dose of a non-clinically relevant compound. Whilst the compounds used in this 

work may cause the same cholestatic adverse outcomes associated with clinically 

relevant xenobiotics, the mechanisms of injury and miRNA release may be altered. 

Therefore, the translational relevancy of fasting and single acute dosing must be 

considered 302.  Although VBDS is the most severe clinical manifestation of 

cholangiocyte toxicity, clinical case studies show this injury is caused by a prolonged 

daily exposure to a drug 303–306. A large disparity in how cholangiocyte injury and 

cholestasis is modelled in vitro and in vivo compared to patient injury remains 255.  

5.3.2 Limitations of miRNAs 

The limitations of miRNAs as biomarkers are both technical and biological in nature. 

The use of circulating miRNAs as biomarkers has been limited due to a lack of 

standardised and universally accepted normalisation methodology. Over the last 

decade, published literature has presented miRNA data normalised to snoRNAs 307, 

endogenous miRNAs 308, exogenous miRNAs 309, standard curve 310, a combination 

of miRNAs 311 or no normalisation at all 312. Indeed, this thesis also presents miRNA 

qPCR data with dissimilar normalisers, which followed the best agreed method at the 
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time of experimentation. Ultimately, this represents a major issue for the 

reproducibility, understanding and translation of miRNA studies 313.  

An incomplete understanding surrounding the biological release of miRNAs is another 

contributing factor to the high variability and large dynamic range seen with circulating 

miRNA signatures. Unlike traditional biomarkers, miRNAs are not only passively 

released into the serum following cell death. For example, in the absence of overt 

toxicity, miR-122-containing exosomes may be actively released from the liver, which 

is thought to contribute to the high variation of circulating miRNA values 314. Due to 

this miRNA variation, the Predictive Safety Testing Consortium (PSTC) has recently 

started perusing GLDH as a novel DILI biomarker over miR-122 276.  

5.4 Future perspectives 

The work in this thesis identified 63 cholangiocyte enriched or unique murine miRNAs 

as candidate circulating biomarkers for the first time. However, difficulties in inducing 

sufficient and reproducible cholangiocyte damage were encountered in vivo due to a 

lack of clinically relevant compounds and potential strain and species differences in 

response to toxicity. Consequently, new experimentation is needed to ratify these 

putatively discovered miRNA biomarkers in confirmed instances of cholangiocyte 

injury. 

In order to confirm reproducible cholangiocyte toxicity in vivo, a larger experiment 

consisting of different pre-clinical models dosed with different hepatobiliary toxins at 

multiple time points could be performed. The serum from all these animals could then 

be probed for the 63 miRNAs of interest, or a common miRNA signature in response 

to biliary injury. However, the degree of injury and miRNAs released may still be 

translationally irrelevant.  

It may therefore be worthwhile to assess translational relevancy by examining if the 

63 miRNAs of interest are present in rat and human cholangiocytes, by both in situ 
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hybridisation and cell isolation procedures. From a mechanistic perspective of 

identifying cholangiocyte injury, if in vivo studies necessitate utilising non-clinically 

relevant compounds, which ultimately poorly translate to clinically observed 

cholangiocyte DILI, it may therefore be justified to directly analyse human DILI serum 

samples for any miRNAs identified to be present in murine, rat and human 

cholangiocytes. Importantly, future circulating miRNA biomarkers should always be 

used in a panel alongside established hepatic biomarkers as currently no single 

biomarker is truly informative of the degree or type of DILI. 

Work in this thesis has helped to characterise biliary-derived organoids by their 

proteome, though they are still in their infancy as an in vitro model. While the 

proteomic screening yielded promising DMET expression, more work is required to 

fully characterise their phenotype and qualify them as a cohesive model of DILI to the 

same degree as pre-existing advanced hepatic in vitro models. Currently, other ‘omics 

approaches and high-throughput testing of known hepatotoxic compounds remains 

to be performed. This thesis demonstrates differentiated organoids retain a biliary 

phenotype, which may implicate them in the future as a 3D, patient specific in vitro 

model of hepatobiliary DILI, which does not exist in current drug-development. 
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5.5 Summation of key findings  

In summary, the key findings presented in this thesis are: 

• A population of miRNAs exist that are enriched or unique to cholangiocytes 

compared to the liver parenchyma, which may serve as potential circulating 

biomarkers of cholangiocyte DILI. 

• Cholangiocyte injury in vivo is highly variable depending on the strain, species 

and toxin used, determined by histopathology and both traditional and miRNA 

circulating biomarkers. 

• ANIT, a classic hepatobiliary toxicant, causes previously unidentified stomach 

toxicity when administered by oral gavage. 

• Biliary-derived organoids can be differentiated to a more hepatic proteomic 

phenotype with increased DMET expression under targeted cell culture 

conditions.  
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Unique BEC miRNAs (n=69) miR-340-3p 1.60 -1.00 6.05 0.01 0.09

miR-M87-1 3.57 -1.00 23.82 0.01 0.00 miR-342-3p 6.68 -1.00 205.09 0.01 0.09

miR-1249-3p 1.81 -1.00 7.02 0.01 0.00 miR-29c-5p 1.82 -1.00 7.07 0.01 0.09

miR-125a-3p 2.61 -1.00 12.17 0.01 0.00 miR-1306-3p 2.82 -1.00 14.14 0.01 0.09

miR-125a-5p 5.14 -1.00 70.43 0.01 0.00 miR-154-5p 2.59 -1.00 12.06 0.02 1.01

miR-128-3p 1.65 -1.00 6.29 0.01 0.00 miR-300-3p 2.25 -1.00 9.51 0.03 1.90

miR-132-3p 2.37 -1.00 10.36 0.02 0.00 miR-129-1-3p 1.42 -1.00 5.35 0.02 2.00

miR-141-3p 5.77 -1.00 109.14 0.01 0.00 miR-127-3p 2.08 -1.00 8.44 0.03 2.86

miR-142a-3p 4.88 -1.00 58.89 0.01 0.00 miR-182-5p 1.59 -1.00 6.02 0.03 3.92

miR-142a-5p 3.38 -1.00 20.80 0.01 0.00 miR-299b-5p 1.42 -1.00 5.36 0.03 4.37

miR-143-3p 3.88 -1.00 29.53 0.01 0.00 miR-3075-5p 1.86 -1.00 7.26 0.03 5.33

miR-146a-5p 5.36 -1.00 82.37 0.01 0.00 miR-379-5p 1.98 -1.00 7.92 0.04 8.00

miR-155-5p 2.19 -1.00 9.15 0.01 0.00 miR-195a-3p 1.27 -1.00 4.83 0.04 9.11

miR-181a-5p 2.16 -1.00 8.93 0.01 0.00 miR-375-3p 2.25 -1.00 9.55 0.06 16.54

miR-183-5p 3.66 -1.00 25.30 0.01 0.00 miR-200b-5p 1.00 -1.00 3.99 0.07 22.05

miR-1896 3.38 -1.00 20.85 0.01 0.00 miR-200a-5p 0.78 -1.00 3.42 0.10 26.31

miR-18a-5p 1.88 -1.00 7.36 0.01 0.00 miR-466f-3p 0.76 -1.00 3.39 0.12 29.64

miR-1901 1.93 -1.00 7.61 0.01 0.00 miR-450a-2-3p 0.84 -1.00 3.58 0.13 30.30

miR-1967 2.92 -1.00 15.17 0.02 0.00

miR-199b-5p 3.54 -1.00 23.33 0.01 0.00 BEC enriched miRs (n=52)

miR-200c-3p 6.08 -1.00 135.21 0.01 0.00 miR-126a-3p 11.68 8.08 12.06 0.01 0.00

miR-214-3p 4.35 -1.00 40.81 0.01 0.00 miR-200a-3p 8.02 4.34 12.89 0.01 0.00

miR-24-1-5p 1.91 -1.00 7.54 0.01 0.00 miR-200b-3p 8.36 5.39 7.81 0.02 0.00

miR-28c 1.60 -1.00 6.05 0.01 0.00 miR-27a-3p 7.98 5.02 7.82 0.02 0.00

miR-301a-3p 4.10 -1.00 34.27 0.01 0.00 miR-3960 9.74 8.67 2.09 0.01 0.00

miR-3067-3p 2.29 -1.00 9.81 0.01 0.00 miR-429-3p 7.59 4.69 7.50 0.01 0.00

miR-30b-3p 1.30 -1.00 4.93 0.01 0.00 miR-497a-5p 7.44 3.94 11.30 0.01 0.00

miR-3113-5p 2.33 -1.00 10.09 0.01 0.00 miR-195a-5p 7.98 4.08 15.02 0.01 0.09

miR-324-5p 3.03 -1.00 16.34 0.01 0.00 miR-24-3p 9.30 7.16 4.42 0.02 1.15

miR-326-3p 1.74 -1.00 6.67 0.01 0.00 miR-23a-3p 8.48 5.54 7.67 0.02 1.58

miR-335-5p 2.20 -1.00 9.21 0.02 0.00 let-7e-5p 7.77 4.65 8.67 0.02 1.78

miR-338-3p 3.92 -1.00 30.26 0.01 0.00 miR-199a-3p 6.80 3.85 7.73 0.03 3.90

miR-340-5p 2.83 -1.00 14.24 0.01 0.00 let-7i-5p 8.94 7.69 2.36 0.02 4.00

miR-374c-5p 1.52 -1.00 5.72 0.01 0.00 miR-223-3p 7.86 3.75 17.31 0.03 5.75

miR-5121 6.79 -1.00 221.12 0.01 0.00 miR-652-3p 6.00 4.05 3.88 0.03 6.22

miR-532-5p 2.92 -1.00 15.14 0.01 0.00 miR-26a-5p 8.96 8.15 1.75 0.02 8.06

miR-542-5p 1.29 -1.00 4.88 0.01 0.00 miR-10a-5p 6.90 4.23 6.36 0.04 8.97

miR-551b-3p 2.24 -1.00 9.45 0.01 0.00 miR-23b-3p 8.12 7.28 1.80 0.02 9.68

miR-669n 2.68 -1.00 12.81 0.02 0.00 let-7b-5p 10.77 9.86 1.87 0.03 14.38

miR-674-3p 2.24 -1.00 9.47 0.01 0.00 miR-331-3p 5.10 3.87 2.34 0.05 16.38

miR-872-5p 1.95 -1.00 7.72 0.01 0.00 miR-151-5p 7.29 6.39 1.87 0.04 16.49

miR-877-5p 2.56 -1.00 11.81 0.01 0.00 miR-466i-5p 8.22 7.07 2.21 0.05 17.13

miR-99b-5p 4.56 -1.00 47.08 0.01 0.00 let-7c-5p 10.50 9.48 2.03 0.05 18.02

miR-126a-5p 1.98 -1.00 7.87 0.01 0.00 miR-322-5p 6.67 3.87 6.95 0.06 18.12

miR-511-3p 6.31 -1.00 158.26 0.01 0.00 miR-5126 10.83 9.30 2.88 0.06 20.15

miR-210-3p 2.80 -1.00 13.94 0.01 0.02 miR-721 5.96 3.80 4.47 0.07 20.35

miR-199a-5p 3.77 -1.00 27.37 0.01 0.06 miR-574-5p 5.85 4.68 2.25 0.06 21.51

miR-96-5p 4.41 -1.00 42.37 0.01 0.06 miR-3473b 10.55 8.61 3.85 0.07 21.53

miR-181c-5p 4.25 -1.00 38.11 0.01 0.07 miR-125b-5p 7.50 6.72 1.72 0.07 25.62

miR-503-5p 1.93 -1.00 7.64 0.01 0.08 miR-16-5p 8.09 7.65 1.36 0.07 30.31

miR-5130 3.24 -1.00 18.88 0.01 0.08 miR-15a-5p 8.65 8.09 1.48 0.10 31.32

miR-193b-3p 3.70 -1.00 26.08 0.01 0.08 miR-1224-5p 10.49 9.79 1.63 0.12 32.37
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Appendix 2.1 Statistical analysis of miRNAs found in all biological samples. 

All unique and shared miRNAs detected on the array were analysed by both SAM analysis 
and t-test in order to identify differentially expressed miRNAs. SAM analysis was used for 
differential expression analysis as it was more stringent than t-test. The threshold for 
significance was 5 % False detection rate (FDR) and 0.05 adjusted p-value FDR for SAM and 
t-test analysis respectively. Non- significant values are highlighted in red. 

B
E

C
 e

x
p
re

s
s
io

n

H
e
p
 E

x
p
re

s
s
io

n

U
n
lo

g
g
e
d
 F

C

t-
te

s
t 
F

D
R

S
A

M
R

 F
D

R
 (

%
)

B
E

C
 e

x
p
re

s
s
io

n

H
e
p
 E

x
p
re

s
s
io

n

U
n
lo

g
g
e
d
 F

C

t-
te

s
t 
F

D
R

S
A

M
R

 F
D

R
 (

%
)

miR-15b-5p 7.10 6.69 1.32 0.12 34.96 miR-M23-1-5p 4.52 7.68 0.11 0.03 12.84

miR-30d-5p 6.44 6.24 1.15 0.05 35.48 miR-219a-5p 2.39 4.06 0.31 0.02 13.95

miR-29a-3p 10.41 9.94 1.39 0.16 36.51 miR-1949 3.47 4.02 0.68 0.01 16.94

let-7d-5p 9.24 8.85 1.31 0.16 37.51 miR-378b 3.92 6.80 0.14 0.03 20.34

miR-350-3p 4.52 3.97 1.47 0.21 38.44 miR-1839-3p 3.04 4.48 0.37 0.03 20.88

miR-709 9.53 8.85 1.60 0.24 38.79 miR-1906 3.35 4.57 0.43 0.03 21.08

miR-3470a 7.02 5.98 2.06 0.25 39.17 miR-188-5p 5.38 6.15 0.58 0.02 25.53

miR-3473a 5.08 4.49 1.50 0.26 40.38 miR-3098-5p 4.04 5.37 0.40 0.03 25.56

miR-140-3p 4.60 4.33 1.21 0.33 43.39 miR-139-3p 2.26 3.88 0.33 0.03 26.03

miR-211-3p 8.31 7.86 1.37 0.46 44.74 miR-20a-5p 6.38 7.39 0.50 0.03 27.15

miR-99a-5p 7.12 7.04 1.06 0.43 46.21 miR-19b-3p 7.55 8.37 0.56 0.03 28.73

miR-3102-5p 7.20 7.12 1.05 0.47 46.62 miR-101c 4.45 5.99 0.34 0.04 29.12

miR-221-3p 3.78 3.67 1.08 0.59 46.78 miR-361-5p 4.80 5.65 0.55 0.03 31.21

miR-494-3p 8.51 8.31 1.15 0.72 47.34 miR-98-5p 4.28 5.18 0.54 0.03 31.28

miR-30a-5p 8.99 8.96 1.02 0.25 47.38 miR-2137 5.49 6.86 0.39 0.05 33.57

miR-680 4.59 4.48 1.08 0.81 47.97 miR-122-5p 11.54 13.69 0.23 0.06 34.68

miR-130a-3p 8.57 8.54 1.02 0.77 48.15 miR-677-3p 2.05 4.27 0.22 0.06 35.11

miR-29b-3p 8.29 8.26 1.03 0.87 48.41 miR-101a-3p 5.62 6.81 0.44 0.05 35.52

miR-152-3p 5.38 5.36 1.01 0.96 48.83 miR-1904 5.86 7.11 0.42 0.05 36.07

miR-103-3p 7.25 7.25 1.00 0.99 48.95 miR-652-5p 5.57 6.33 0.59 0.04 36.81

miR-34a-5p 5.84 6.18 0.79 0.02 38.81

Hep Enriched miRNAs (n=82) miR-1982-5p 4.60 5.61 0.50 0.06 39.83

miR-148a-3p 6.03 8.77 0.15 0.01 0.00 miR-423-5p 3.79 4.29 0.71 0.04 40.80

miR-193a-3p 3.83 7.95 0.06 0.02 0.00 miR-3081-5p 3.63 4.85 0.43 0.07 42.17

miR-21a-3p 1.36 3.39 0.24 0.01 0.00 miR-29c-3p 8.60 9.15 0.68 0.05 42.86

miR-30a-3p 4.71 5.91 0.44 0.01 0.00 miR-7a-5p 3.10 4.82 0.30 0.11 44.84

miR-320-3p 2.48 4.94 0.18 0.01 0.00 miR-28a-5p 3.68 4.07 0.77 0.06 46.29

miR-345-5p 3.47 5.42 0.26 0.01 0.00 miR-690 6.39 7.17 0.58 0.12 47.65

miR-365-3p 3.55 6.58 0.12 0.01 0.00 miR-1839-5p 2.55 3.51 0.51 0.15 48.42

miR-697 2.79 5.70 0.13 0.01 0.00 miR-20b-5p 4.16 5.08 0.53 0.15 48.63

miR-712-5p 2.37 4.44 0.24 0.01 0.00 miR-26b-5p 7.69 8.11 0.75 0.12 49.03

miR-30e-3p 2.39 4.11 0.30 0.01 0.35 miR-362-3p 3.64 3.65 1.00 0.99 49.05

miR-30e-5p 5.99 7.22 0.43 0.01 0.55 miR-5107-5p 4.93 4.94 0.99 0.99 49.06

miR-194-5p 5.98 8.62 0.16 0.02 0.65 let-7a-5p 10.32 10.34 0.99 0.94 49.23

miR-5100 9.84 10.97 0.45 0.01 1.42 miR-3072-5p 5.66 5.70 0.97 0.88 49.51

miR-19a-3p 3.91 5.46 0.34 0.01 2.95 miR-466h-3p 3.75 3.88 0.91 0.85 49.71

miR-212-3p 4.69 7.49 0.14 0.02 3.02 miR-106b-5p 6.03 6.09 0.96 0.71 49.99

miR-3968 7.27 10.26 0.13 0.02 3.83 let-7f-5p 10.12 10.19 0.95 0.66 50.18

miR-185-5p 2.98 5.08 0.23 0.02 5.11 miR-25-3p 5.51 5.83 0.80 0.16 50.23

miR-202-3p 5.26 7.80 0.17 0.02 5.69 miR-2861 6.45 6.60 0.90 0.63 50.39

miR-107-3p 7.03 8.20 0.44 0.01 7.10 miR-3095-3p 5.13 5.54 0.75 0.60 50.60

miR-1897-3p 2.36 5.44 0.12 0.02 7.70 miR-1897-5p 5.64 5.81 0.89 0.54 50.62

miR-m88-1-3p 4.65 5.92 0.42 0.02 7.78 miR-140-5p 4.82 5.03 0.86 0.53 50.70

miR-92a-3p 6.54 7.83 0.41 0.02 7.83 miR-425-5p 3.66 4.00 0.79 0.24 50.76

miR-192-5p 8.21 10.65 0.18 0.02 8.96 miR-21a-5p 10.87 11.29 0.75 0.25 50.76

miR-93-5p 4.17 5.26 0.47 0.01 9.16 miR-30b-5p 5.48 5.65 0.89 0.45 50.80

miR-31-5p 3.89 5.98 0.23 0.02 9.32 let-7g-5p 9.52 9.73 0.86 0.45 50.86

miR-455-3p 1.99 4.16 0.22 0.02 9.55 miR-1895 6.13 6.29 0.90 0.39 50.89

miR-22-3p 8.46 10.51 0.24 0.02 9.64 miR-27b-3p 5.79 6.04 0.84 0.27 50.98

miR-378a-3p 3.67 6.44 0.15 0.02 11.34 miR-467f 3.81 4.38 0.67 0.42 50.99

miR-30c-2-3p 2.66 4.45 0.29 0.02 11.62 miR-3963 12.04 12.39 0.78 0.31 50.99

miR-30c-5p 6.74 7.49 0.59 0.01 12.65 miR-671-5p 4.82 5.62 0.58 0.36 51.00
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miRNA Mouse Human Notes

miR-342-3p UCUCACACAGAAAUCGCACCCGU UCUCACACAGAAAUCGCACCCGU

miR-511-3p AAUGUGUAGCAAAAGACAGGAU AAUGUGUAGCAAAAGACAGA

miR-200c-3p UAAUACUGCCGGGUAAUGAUGGA UAAUACUGCCGGGUAAUGAUGGA

miR-141-3p UAACACUGUCUGGUAAAGAUGG UAACACUGUCUGGUAAAGAUGG

miR-146a-5p UGAGAACUGAAUUCCAUGGGUU UGAGAACUGAAUUCCAUGGGUU

miR-125a-5p UCCCUGAGACCCUUUAACCUGUGA UCCCUGAGACCCUUUAACCUGUGA

miR-142a-3p UGUAGUGUUUCCUACUUUAUGGA UGUAGUGUUUCCUACUUUAUGGA Exists as hsa-miR-142-3p

miR-99b-5p CACCCGUAGAACCGACCUUGCG CACCCGUAGAACCGACCUUGCG

miR-96-5p UUUGGCACUAGCACAUUUUUGCU UUUGGCACUAGCACAUUUUUGCU

miR-214-3p ACAGCAGGCACAGACAGGCAGU ACAGCAGGCACAGACAGGCAGU

miR-181c-5p AACAUUCAACCUGUCGGUGAGU AACAUUCAACCUGUCGGUGAGU

miR-301a-3p CAGUGCAAUAGUAUUGUCAAAGC CAGUGCAAUAGUAUUGUCAAAGC

miR-338-3p UCCAGCAUCAGUGAUUUUGUUG UCCAGCAUCAGUGAUUUUGUUG

miR-143-3p UGAGAUGAAGCACUGUAGCUC UGAGAUGAAGCACUGUAGCUC

miR-199a-5p CCCAGUGUUCAGACUACCUGUUC CCCAGUGUUCAGACUACCUGUUC

miR-193b-3p AACUGGCCCACAAAGUCCCGCU AACUGGCCCUCAAAGUCCCGCU

miR-183-5p UAUGGCACUGGUAGAAUUCACU UAUGGCACUGGUAGAAUUCACU

miR-199b-5p CCCAGUGUUUAGACUACCUGUUC CCCAGUGUUUAGACUAUCUGUUC

miR-142a-5p CAUAAAGUAGAAAGCACUACU CAUAAAGUAGAAAGCACUACU Exists as hsa-miR-142-5p

miR-324-5p CGCAUCCCCUAGGGCAUUGGUGU CGCAUCCCCUAGGGCAUUGGUG

miR-532-5p CAUGCCUUGAGUGUAGGACCGU CAUGCCUUGAGUGUAGGACCGU

miR-340-5p UUAUAAAGCAAUGAGACUGAUU UUAUAAAGCAAUGAGACUGAUU

miR-1306-3p ACGUUGGCUCUGGUGGUGAUG ACGUUGGCUCUGGUGGUG

miR-210-3p CUGUGCGUGUGACAGCGGCUGA CUGUGCGUGUGACAGCGGCUGA

miR-125a-3p ACAGGUGAGGUUCUUGGGAGCC ACAGGUGAGGUUCUUGGGAGCC

miR-154-5p UAGGUUAUCCGUGUUGCCUUCG UAGGUUAUCCGUGUUGCCUUCG

miR-877-5p GUAGAGGAGAUGGCGCAGGG GUAGAGGAGAUGGCGCAGGG

miR-132-3p UAACAGUCUACAGCCAUGGUCG UAACAGUCUACAGCCAUGGUCG

miR-300-3p UAUGCAAGGGCAAGCUCUCUUC UAUACAAGGGCAGACUCUCUCU Exists as hsa-miR-300

miR-551b-3p GCGACCCAUACUUGGUUUCAG GCGACCCAUACUUGGUUUCAG

miR-335-5p UCAAGAGCAAUAACGAAAAAUGU UCAAGAGCAAUAACGAAAAAUGU

miR-155-5p UUAAUGCUAAUUGUGAUAGGGGU UUAAUGCUAAUCGUGAUAGGGGUU

miR-181a-5p AACAUUCAACGCUGUCGGUGAGU AACAUUCAACGCUGUCGGUGAGU

miR-127-3p UCGGAUCCGUCUGAGCUUGGCU UCGGAUCCGUCUGAGCUUGGCU

miR-126a-5p CAUUAUUACUUUUGGUACGCG CAUUAUUACUUUUGGUACGCG Exists as hsa-miR-126-5p

miR-503-5p UAGCAGCGGGAACAGUACUGCAG UAGCAGCGGGAACAGUUCUGCAG

miR-24-1-5p GUGCCUACUGAGCUGAUAUCAGU UGCCUACUGAGCUGAUAUCAGU

miR-18a-5p UAAGGUGCAUCUAGUGCAGAUAG UAAGGUGCAUCUAGUGCAGAUAG

miR-29c-5p UGACCGAUUUCUCCUGGUGUUC UGACCGAUUUCUCCUGGUGUUC

miR-1249-3p ACGCCCUUCCCCCCCUUCUUCA ACGCCCUUCCCCCCCUUCUUCA

miR-326-3p CCUCUGGGCCCUUCCUCCAGU CCUCUGGGCCCUUCCUCCAG Exists as hsa-miR-326

miR-128-3p UCACAGUGAACCGGUCUCUUU UCACAGUGAACCGGUCUCUUU

miR-340-3p UCCGUCUCAGUUACUUUAUAGC UCCGUCUCAGUUACUUUAUAGC

miR-28c AGGAGCUCACAGUCUAUUGA AAGGAGCUCACAGUCUAUUGAG Exists as hsa-miR-28-5p

miR-182-5p UUUGGCAAUGGUAGAACUCACACCG UUUGGCAAUGGUAGAACUCACACU

miR-374c-5p AUAAUACAACCUGCUAAGUG AUAAUACAACCUGCUAAGUGCU

miR-299b-5p GGUUUACCGUCCCACAUACAU UGGUUUACCGUCCCACAUACAU Exists as hsa-miR-299-5p

miR-129-1-3p AAGCCCUUACCCCAAAAAGUAU AAGCCCUUACCCCAAAAAGUAU

miR-30b-3p CUGGGAUGUGGAUGUUUACGUC CUGGGAGGUGGAUGUUUACUUC

miR-542-5p CUCGGGGAUCAUCAUGUCACGA UCGGGGAUCAUCAUGUCACGAGA

miR-5121 AGCUUGUGAUGAGACAUCUCC N/A

miR-M87-1 AGGCAGCCGUCGGCAGCGGCAGC N/A

miR-1896 CUCUCUGAUGGUGGGUGAGGAG N/A

miR-5130 CUGGAGCGCGCGGGCGAGGCAGGC N/A

miR-1967 UGAGGAUCCUGGGGAGAAGAUGC N/A

miR-669n AUUUGUGUGUGGAUGUGUGU N/A

miR-3113-5p GUCCUGGCCCUGGUCCGGGUCC N/A

miR-3067-3p CCAAGCGGCUGCCCUGGGAGAGG N/A

miR-674-3p CACAGCUCCCAUCUCAGAACAA N/A

miR-872-5p AAGGUUACUUGUUAGUUCAGG N/A

miR-1901 CCGCUCGUACUCCCGGGGGUCC N/A

A
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Appendix 2.2 Removal of murine miRNAs with no human equivalent as 
candidate biomarkers  

As candidate miRNAs should be translational, shared (A) and unique (B) miRNAs of interest 
were examined on miRBase V.22 for their human equivalent. Those with no human 
equivalent were removed from downstream analysis. Differences between murine and 
human isoforms were noted in bolded red for additional bases and italicised red for base 
substitutions. 

 

 
  

miRNA Mouse Sequence Human Sequence Notes

miR-195a-5p UAGCAGCACAGAAAUAUUGGC UAGCAGCACAGAAAUAUUGGC Exists as hsa-miR-195-5p

miR-200a-3p UAACACUGUCUGGUAACGAUGU UAACACUGUCUGGUAACGAUGU

miR-126a-3p UCGUACCGUGAGUAAUAAUGCG UCGUACCGUGAGUAAUAAUGCG Exists as hsa-miR-126-3p

miR-497a-5p CAGCAGCACACUGUGGUUUGUA CAGCAGCACACUGUGGUUUGU Exists as hsa-miR-497-5p

let-7e-5p UGAGGUAGGAGGUUGUAUAGUU UGAGGUAGGAGGUUGUAUAGUU

miR-27a-3p UUCACAGUGGCUAAGUUCCGC UUCACAGUGGCUAAGUUCCGC

miR-200b-3p UAAUACUGCCUGGUAAUGAUGA UAAUACUGCCUGGUAAUGAUGA

miR-199a-3p ACAGUAGUCUGCACAUUGGUUA ACAGUAGUCUGCACAUUGGUUA

miR-23a-3p AUCACAUUGCCAGGGAUUUCC AUCACAUUGCCAGGGAUUUCC

miR-429-3p UAAUACUGUCUGGUAAUGCCGU UAAUACUGUCUGGUAAAACCGU

miR-24-3p UGGCUCAGUUCAGCAGGAACAG UGGCUCAGUUCAGCAGGAACAG

let-7i-5p UGAGGUAGUAGUUUGUGCUGUU UGAGGUAGUAGUUUGUGCUGUU

miR-3960 GGCGGCGGCGGAGGCGGGGG GGCGGCGGCGGAGGCGGGGG

B
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Appendix 4.2- Table of human and murine CYP450 homologs 
 
CYP450 isoform and nomenclature differences exist between species. The human 
homologs of the murine CYP450s detected in Chapter 4 are shown above.  

Human Mouse Human Mouse

1A2 1A2 2D6 2D9

1B1 1B1 2D10

20A1 20A1 2D26

2A13 2A12 2E1 2E1

2A7 2A5 2F1 2F2

2B6 2B10 2J2 2J5

2B19 2J6

2C8 2C29 2S1 2S1

2C19 2C39 2U1 2U1

2C40 3A4 3A11

2C50 3A5 3A13

2C54 3A43 3A25

2C55 4A22 4A12A

2C70 4B1 4B1

4V2 4V2
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