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Abstract 

Uncertainty Quantification and Stochastic Model 

Updating for Structural Dynamics in Engineering 

Qiong Li Wang 

This dissertation focuses on the uncertainty quantification and model updating for 

structural dynamics. In deterministic model updating methods, in order to improve 

efficiency, the traditional sensitivity method is improved by putting the second-

order sensitivity into consideration for model updating. The variability inevitably 

exists due to different sources. They may arise from measurement noise, or to be 

inherent to the test structures variability such as manufacturing and material 

variability in structures. For such cases, the stochastic model updating methods 

may be considered to represent the uncertainty in the structural parameters. 

Bayesian model updating, combined with computationally efficient surrogate 

model approaches using advanced Markov Chain Monte Carlo (MCMC) methods 

is promising for some complex structure updating problems, which has an 

advantage of alleviating the computational cost for this real-time application tasks 

without losing accuracy. 

The computationally efficient Gaussian process emulator can be used to replace 

the original large finite element models since their running time may prohibit any 

type of finite element model analysis, which require large evaluations of the finite 

element model to be performed. As long as the computational cost of running the 

complex model is decreased, the uncertainty quantification analysis and stochastic 

model updating methods become tractable, which can be used to study their 

performance. 

Model discrepancy, defined as the difference between reality and the simulator 

output, as a very important modeling uncertainty is considered for model updating 

via Gaussian process emulation. It is found that using an informative prior 

distriburions for the calibration parameters, which can help to obtain the true 

updated posterior distribution of the calibration parameters. 

Another aspect of using the Gaussian process emulator is that it has the ability 

to model some underlying empirical relations with confidence. Because this 

statistical surrogate model estimates not only the expectation but also the variance. 

For some very important empirical relations (e.g. the empirical relations of 

dynamic increase factor (DIF) of steel skeleton reinforced concrete (SSRC) 

specimens under impact loadings), using the trained Gaussian process emulator to 

approximate this relationship is more convincing. 



 

IV 

 

 

  



 

V 

 

Declaration 

This work has not previously been accepted in substance for any degree and is not 

being concurrently submitted in candidature for any degree. 

Signed …………………(Candidate) 

Date……………………. 

STATEMENT 1 

This thesis is the result of my own investigations, except where otherwise stated. 

Other sources are acknowledged by explicit references. A bibliography is appended. 

Signed …………………(Candidate) 

Date……………………. 

 

  



 

VI 

 

  



 

VII 

 

 

Acknowledgments 

I would like to express my deepest gratitude to my supervisors, Dr. Francisco 

Alejandro Diaz De la O, and Professor John E. Mottershead. Without their 

continued encouragement, guidance, and support, it impossible for me to complete 

the work. 

I also want to express my deepest gratitude to their care, that kept me moving 

on when I once felt desperate and hopeless after heard the physical conditions of 

my newborn daughter. 

I am grateful to have had the opportunity of studying at the Institute for Risk 

and Uncertainty, University of Liverpool. My thankfulness also goes to Dr. 

Edoardo Patelli for providing the DLR AIRMOD industrial example and data. I 

also would like to thank Ander K. Gray for having an opportunity to work together. 

Finally, I would like to thank my wife, Wan Qi Guo. When I was doing my Ph.D. 

studies, she gave me a lot of encouragement and supported me emotionally. I am 

also grateful to my family and my friends both in Liverpool and China for their 

support, help, and care. 

This work is funded by the University of Liverpool and China Scholarship 

Council (CSC) joint scholarship. 

 

 

 

  



 

VIII 

 

 

  



 

IX 

 

 

Contents 

Abstract ................................................................................................................ III 

Declaration ............................................................................................................ V 

Acknowledgments ............................................................................................... VII 

Contents ................................................................................................................ IX 

List of Figures .................................................................................................... XIII 

List of Tables ...................................................................................................... XIX 

Symbols and acronyms ...................................................................................... XXI 

1 Introduction ................................................................................................... 1 

1.1 Motivation and background ............................................................... 1 

1.2 Aim and objectives ............................................................................ 4 

1.3 Outline of the thesis ........................................................................... 5 

2 Deterministic finite element model updating .............................................. 7 

2.1 Introduction ....................................................................................... 7 

2.2 Direct methods .................................................................................. 8 

2.3 Iterative methods ............................................................................... 9 

2.4 Computational intelligence inverse methods................................... 11 

2.5 Second-Order Sensitivities .............................................................. 13 

2.5.1 Background description ............................................................ 13 

2.5.2 A multi-objective optimization framework .............................. 15 

2.5.3 An illustrative example of three degree of freedom mass-spring 

system  .................................................................................................. 16 

2.5.4 An illustrative example of six storey bare frame ..................... 21 

2.6 Chapter summary ............................................................................ 23 



 

X 

 

3 Stochastic finite element model updating ................................................. 25 

3.1 Introduction ..................................................................................... 25 

3.2 The minimum variance method ...................................................... 26 

3.3 The probabilistic perturbation method ............................................ 27 

3.4 The Bayesian model updating method ............................................ 28 

3.4.1 The Metropolis-Hastings Algorithm ........................................ 31 

3.4.2 The transitional Markov Chain Monte Carlo algorithm .......... 34 

3.4.3 Surrogate modelling techniques in combination...................... 35 

3.4.4 Statistical summaries ............................................................... 36 

3.5 Non-probabilistic stochastic model updating methods ................... 36 

3.5.1 The interval model updating method ....................................... 36 

3.5.2 The Fuzzy model updating method.......................................... 37 

3.6 Comparison of uncertainty identification with probabilistic model 

updating approaches..................................................................................... 39 

3.7 Chapter summary ............................................................................ 46 

4 Gaussian process emulation ....................................................................... 47 

4.1 Surrogate modelling ........................................................................ 47 

4.2 A brief history of Gaussian processes ............................................. 47 

4.3 Gaussian process emulation ............................................................ 48 

4.3.1 Surrogate model construction .................................................. 49 

4.3.2 Covariance parameter estimation ............................................. 54 

4.3.3 Surrogate model training.......................................................... 58 

4.3.4 Diagnostics ............................................................................... 59 

4.4 Analysis of steel skeleton reinforced concrete materials ................ 61 

4.4.1 Background description ........................................................... 61 

4.4.2 Experimental program ............................................................. 63 

4.4.3 Experiment results analysis...................................................... 67 

4.4.4 Strain rate effects and GP emulation of DIFs on compressive 

strength and Young’s modulus ............................................................. 69 

4.4.5 Discussion ................................................................................ 74 

4.5 Chapter summary ............................................................................ 75 

5 Sparse Gaussian process emulation .......................................................... 77 



 

XI 

 

5.1 Computational efficiency Gaussian processes ................................ 77 

5.2 Sparse Gaussian process approaches ............................................... 77 

5.2.1 Subset of data ........................................................................... 77 

5.2.2 The Nystrom method ................................................................ 78 

5.2.3 Sparse pseudo-input Gaussian processes.................................. 78 

5.3 Variational sparse Gaussian process emulation ............................... 79 

5.4 Benchmark studies .......................................................................... 81 

5.4.1 An illustrative example of one dimension ................................ 81 

5.4.2 An illustrative example of two dimensions .............................. 84 

5.5 The DLR AIRMOD structure .......................................................... 88 

5.5.1 Background description ............................................................ 88 

5.5.2 Stochastic finite element model updating ................................ 93 

5.5.3 Results discussion ................................................................... 105 

5.6 Chapter summary .......................................................................... 106 

6 The importance of model discrepancy ..................................................... 107 

6.1 Introduction ................................................................................... 107 

6.2 Sources of uncertainty ................................................................... 108 

6.3 The modular Bayesian approach ................................................... 109 

6.3.1 Gaussian process for the simulator model (module 1) ........... 111 

6.3.2 Gaussian process for the discrepancy function (module 2) .... 112 

6.3.3 The calibration parameters posterior distribution (module 3) 113 

6.4 An illustrative example of a cantilever beam ................................ 114 

6.5 Chapter summary .......................................................................... 118 

7 Conclusion and future work ..................................................................... 119 

7.1 Summary of completed work ........................................................ 119 

7.2 Summary of contributions ............................................................. 120 

7.3 Research outlook ........................................................................... 122 

7.4 List of publications ........................................................................ 123 

Appendix A ........................................................................................................ 125 

A.1 Multivariate Gaussian distribution ...................................................... 125 

A.2 Marginal and conditional distributions ................................................ 125 

A.3 Integral of the product of two Gaussians ............................................. 125 



 

XII 

 

A.4 Gaussian likelihood with linear parameter .......................................... 125 

A.5 Linear transformations ........................................................................ 126 

Appendix B ....................................................................................................... 127 

Appendix C ....................................................................................................... 128 

Appendix D ....................................................................................................... 129 

Bibliography ..................................................................................................... 131 

 



 

XIII 

 

List of Figures 

Figure 2.1 Three degree of freedom mass-spring system. .................................... 17 

Figure 2.2 Convergence of uncertain parameters using the traditional sensitivity 

method (Eq. 2.9). ................................................................................. 17 

Figure 2.3 Convergence of uncertain parameters using the proposed sensitivity 

method (Eq. 2.22). ............................................................................... 18 

Figure 2.4 Convergence of uncertain parameters using the traditional sensitivity 

method (Eq. 2.9). ................................................................................. 18 

Figure 2.5 Convergence of uncertain parameters using the proposed sensitivity 

method (Eq. 2.22). ............................................................................... 19 

Figure 2.6 Convergence of uncertain parameters using the traditional sensitivity 

method (Eq. 2.9). ................................................................................. 20 

Figure 2.7 Convergence of uncertain parameters using the proposed sensitivity 

method (Eq. 2.22). ............................................................................... 20 

Figure 2.8 Six storey bare frame. .......................................................................... 21 

Figure 2.9 Convergence of uncertain parameters using classic (Eq. 2.9) and 

proposed (Eq. 2.22) methods. .............................................................. 22 

Figure 3.1 Target distribution and histogram of the MH method with 500 

iterations. ............................................................................................. 32 

Figure 3.2 Trace history of the MH method with 500 iterations. ......................... 33 

Figure 3.3 Target distribution and histogram of the MH method with 5000 

iterations. ............................................................................................. 33 

Figure 3.4 Trace history of the MH method with 5000 iterations. ....................... 33 

Figure 3.5 Three degree of freedom mass-spring system. .................................... 39 

Figure 3.6 Parameter convergence of mean values by perturbation method. ...... 40 

Figure 3.7 Parameter convergence of standard deviation by perturbation method.

 ......................................................................................................... 40 

Figure 3.8 Initial model responses cloud (10000 samples) versus Synt. Exp. 

responses cloud (10000 samples). ....................................................... 41 



 

XIV 

 

Figure 3.9 Updated model responses cloud (10000 samples) versus Synt. Exp. 

responses cloud (10000 samples). ...................................................... 41 

Figure 3.10 Initial model responses cloud 10000 samples versus Synt. Exp. 

responses cloud 10 samples (left) and Updated model responses cloud 

10000 samples versus Synt. Exp. responses cloud 10 samples (right) in 

𝜔1
2 and 𝜔2

2 plane. .............................................................................. 42 

Figure 3.11 Initial model responses cloud 10000 samples versus Synt. Exp. 

responses cloud 10 samples (left) and Updated model responses cloud 

10000 samples versus Synt. Exp. responses cloud 10 samples (right) in 

𝜔2
2 and 𝜔3

2 plane. .............................................................................. 42 

Figure 3.12 Parameter PDFs, CDFs and Metropolis-Hastings trace history for 

1.k
 ....................................................................................................... 44 

Figure 3.13 Parameter PDFs, CDFs and Metropolis-Hastings trace history for 

2.k
 ....................................................................................................... 44 

Figure 3.14 Parameter PDFs, CDFs and Metropolis-Hastings trace history for 

5.k
 ....................................................................................................... 45 

Figure 4.1 Five sample GP functions draw from Z(𝐱). The light blue are 

indicates the 95% credible interval. ................................................... 52 

Figure 4.2 Five sample GP functions draw from GP posterior conditioned on five 

observations(noise free). The light blue area indicates the 95% 

credible interval. ................................................................................. 52 

Figure 4.3 Five sample GP functions draw from GP posterior conditioned on five 

observations(noised). The light blue area indicates the 95% credible 

interval. ............................................................................................... 54 

Figure 4.4 Eight sample GP functions with SE covariance (left) and the SE prior 

covariance matrix for equally spaced ordered points (right). ............ 55 

Figure 4.5 Eight sample GP functions with Matérn 𝑣 = 1/2 covariance (left) 

and the Matérn 𝑣 = 1/2 prior covariance matrix for equally spaced 

ordered points (right). ......................................................................... 56 

Figure 4.6 Eight sample GP functions with Matérn 𝑣 = 3/2 covariance (left) 

and the Matérn 𝑣 = 3/2 prior covariance matrix for equally spaced 

ordered points (right). ......................................................................... 57 



 

XV 

 

Figure 4.7 The uniform random sampling technique with the number of data 

points n = 20. ..................................................................................... 58 

Figure 4.8 The LHS technique with the number of data points n = 20. ............. 59 

Figure 4.9 Steel skeleton arrangement with SSRC33 (left) and SSRC34(right). .. 63 

Figure 4.10 Steel skeleton (left) and the specimens (right). ................................. 64 

Figure 4.11 Quasi-static compression experiment instruments. ........................... 65 

Figure 4.12 SHPB dynamic compression experiment instruments. ...................... 66 

Figure 4.13 The representative signals of SSRC34 from SHPB experiment 

measured at the strain gauge in Figure 4.12. ..................................... 67 

Figure 4.14 Strain/stress equilibrium verification of SSRC33. ............................ 68 

Figure 4.15 Typical stress-strain curves at 35 / s =  for Concrete, SSRC33 and 

SSRC34. ............................................................................................... 69 

Figure 4.16 DIFs for compression strength (Concrete-15 points (specimens), 

SSRC33- 15 points (specimens) and SSRC34-15 points (specimens) 

taken from Table 4.4-4.6). .................................................................... 69 

Figure 4.17 DIFs for Young’s modulus(Concrete-15 points (specimens), SSRC33- 

15 points (specimens) and SSRC34-15 points (specimens) taken from 

Table 4.4-4.6). ...................................................................................... 70 

Figure 4.18 GP emulation of DIFs for compressive strength (left) and Young’s 

modulus (right) in Concrete (10 specimens used for training). .......... 73 

Figure 4.19 IPE of Concrete for compression strength(left) and Young’s modulus 

(right) (5 validation specimens). ......................................................... 73 

Figure 4.20 GP emulation of DIFs for compressive strength (left) and Young’s 

modulus (right) in SSRC33 (10 specimens used for training). ............ 73 

Figure 4.21 IPE of SSRC33 for compression strength (left) and Young’s modulus 

(right) (5 validation specimens). ......................................................... 73 

Figure 4.22 GP emulation of DIFs for compressive strength (left) and Young’s 

modulus (right) in SSRC34 (10 specimens used for training). ............ 74 

Figure 4.23 IPE of SSRC34 for compression strength(left) and Young’s modulus 

(right) (5 validation specimens). ......................................................... 74 

Figure 5.1 The standard Gaussian process emulation of latent function with f =

xsin(x). ................................................................................................ 82 



 

XVI 

 

Figure 5.2 The variational sparse Gaussian process emulation versus standard 

Gaussian process emulation of latent function with f = xsin(x). ...... 83 

Figure 5.3 The predictive standard deviation diagnostics for VSGPE (Blue) and 

standard Gaussian process emulation (Black) (both models are 

obtained through training and prediction). ........................................ 83 

Figure 5.4 The standard Gaussian process emulation of underlying function 

treated as ‘Black-box’ model for response surface. ............................ 84 

Figure 5.5 Contour display (left) and predictive standard deviation diagnostics 

(right) for standard GP emulation. ..................................................... 85 

Figure 5.6 The VSGP emulation of underlying function treated as ‘Black-box’ 

model for response surface with 15 sparse inducing variables. ......... 86 

Figure 5.7 Contour display (left) and predictive standard deviation diagnostics 

(right) for VSGP emulation with 15 sparse inducing variables.......... 86 

Figure 5.8 The VSGP emulation of underlying function treated as ‘Black-box’ 

model for response surface with 19 sparse inducing variables. ......... 87 

Figure 5.9 Contour display (left) and predictive standard deviation diagnostics 

(right) for VSGP emulation with 19 sparse inducing variables.......... 87 

Figure 5.10 DLR-AIRMOD structure (a) and beam joints (b)-(e) [152]. ............ 88 

Figure 5.11 Mode shapes used in model updating [152]. .................................... 89 

Figure 5.12 The finite element model and exciter locations of the AIRMOD 

structure [152]. ................................................................................... 90 

Figure 5.13 The IPE of standard GP emulation with Matérn v = 1/2 kernel for 

𝑓4 and 𝑓11. ....................................................................................... 94 

Figure 5.14 The performance measure of VSGP emulation with SE kernel for 1f  

2f  6f  and 7f . .................................................................................... 95 

Figure 5.15 The performance measure of VSGP emulation with Matérn v = 3/2 

kernel for 1f  2f  6f and 7f . ............................................................... 96 

Figure 5.16 The IPE of VSGP emulation with SE kernel for f1, f6, f7 and f19.

............................................................................................................. 97 

Figure 5.17 The IPE of VSGP emulation with Matérn v = 3/2 kernel for f1, f6 

f7 and f19. ......................................................................................... 97 

Figure 5.18 Results of selected updating parameters of AIRMOD structure. ..... 99 



 

XVII 

 

Figure 5.19 Updated parameter correlation matrix with Matérn 𝑣 = 3/2 kernel.

 ....................................................................................................... 101 

Figure 5.20 Frequency distributions using VSGP emulation with Matérn 

3

2
v
 

= 
 

 kernel versus measurement data. ...................................... 103 

Figure 5.21 Frequency distributions using VSGP emulation with SE kernel versus 

measurement data. ............................................................................. 104 

Figure 6.1 Description by (a) the prior distribution of a GP model with constant 

mean 0 and constant variance. (b), (c) and (d) the predictive posterior 

distribution for the same GP model after collecting response 

observations (red dots) with 4,8, and 15. The deep orange solid line is 

the predicted mean values and the sky blue shaded region indicates a 

95% confidence interval. ................................................................... 110 

Figure 6.2 The modular Bayesian approach flowchart. ..................................... 111 

Figure 6.3 The idealized and true cantilever beams. The calibration parameter to 

be identified is Young’s modulus (E). ................................................. 114 

Figure 6.4 The posterior distribution for the discrepancy function for the three 

prior distributions of the calibration parameter (a)uniform 

(b)N(105*103, 10.332) (c)N(85*103, 3.52). ........................................ 116 

Figure 6.5 Posterior distribution for the calibration parameter E for the three 

prior distributions (a)uniform (b)N(105*103, 10.332) (c)N(85*103, 

3.52). .................................................................................................. 117 

 

  



 

XVIII 

 

 



 

XIX 

 

List of Tables 

Table 2.1 Parameter values for the ‘experimental’ system................................... 17 

Table 2.2 Parameter values for the ‘experimental’ system................................... 21 

Table 2.3 The actual modal properties of the ‘experimental’ system ................... 22 

Table 3.1 Parameter values for the ‘experimental’ system................................... 39 

Table 3.2 Model updating results summary .......................................................... 45 

Table 4.1 Mix proportions of specimens ............................................................... 64 

Table 4.2 Longitudinal steel ratio ........................................................................ 64 

Table 4.3 Material properties in Quasi-static condition ...................................... 67 

Table 4.4 DIFs summary for Concrete ................................................................. 70 

Table 4.5 DIFs summary for SSRC33................................................................... 71 

Table 4.6 DIFs summary for SSRC34................................................................... 71 

Table 5.1 Statistics of identified frequency ........................................................... 90 

Table 5.2 Details of Finite element model ............................................................ 91 

Table 5.3 List of updating parameters .................................................................. 91 

Table 5.4 List of updating parameters .................................................................. 99 

Table 6.1 Notation of the cantilever beam example ........................................... 115 

 

  



 

XX 

 

 



 

XXI 

 

Symbols and acronyms 

 : Lagrange multiplier 

 : Perturbation of the system matrices. 

mZ : Measured outputs 

iZ : Predicted outputs 

iS : First-order sensitivity matrix 

zε : Error vector 

M : Symmetric mass matrix 

K : Symmetric stiffness matrix 

i : i-th eigenvalue 

i : i-th mode shapes 

ω : Symmetric weighting matrix 

ijH : Second-order sensitivity matrix 

T : Transformation matrix 

D : Modal properties obtained from experiments 

θ
Σ : Covariance matrix 

( )h  : Real-valued function 

β : Vector of unknown coefficients 

( )Z x : Gaussian process with zero mean and covariance 

2 : Scalar parameter 

C : Correlation matrix 

u : Parameter controls the typical amplitude 

 : Parameter controls the lengthscale of variation. 

 : Gamma function 

E : Young’s modulus 

A : Cross-section area of pressure bars 

0C : Elastic wave velocity 

m : Inducing variables 



 

XXII 

 

'
xx

: Kronecker delta 

( )ey x : Physical experiment response 

( )c x : Computer model response 

( ) x : Discrepancy function 

SD: Standard deviation 

KL: Kullback-Leibler divergence 

VSGP: Variational sparse Gaussian process 

EM: Expectation-Maximization 

SPGP: Sparse pseudo-input Gaussian process 

RPC: Reactive powder concrete 

GA: Genetic algorithm 

MH: Metropolis-Hastings 

TMCMC: Transitional Markov Chain Monte Carlo 

ME: Maximum entropy 

PDF: Probability density function 

MOO: Multi-objective optimization 

GP: Gaussian process 

GPE: Gaussian process emulator 

LHS: Latin hypercube sampling 

FRC: Fiber reinforced concrete 

SSRC: Steel skeleton reinforced concrete  

SHPB: Split Hopkinson pressure bar 

DIF: Dynamic increase factor 

IPE: Individual prediction errors 

FE: Finite element 

MCMC: Markov Chain Monte Carlo 

FRF: Frequency Response Functions 

MAC: Modal assurance criteria 

 

 



 

1 

 

1 Introduction 

1.1 Motivation and background 

The dynamic analysis of the engineering structures is increasingly becoming 

complex and computationally intensive and it will continue to do so to meet the 

challenges of the world to dynamic analysis. The interest in the vibration properties 

of the engineering structures is growing all the time because nearly all structures 

are subject to the vibration of one form or another, which is always considered as 

undesirable under some conditions.  

Today, for the dynamic design and analysis of complex structures, it is more 

important than ever to have reliable dynamic mathematical models. The finite 

element (FE) method [1] is a numerical analysis technique for obtaining 

approximate solutions to a wide variety of engineering problems. Due to its 

diversity and flexibility, it has become a well-established procedure in industry. In 

the FE method, the complex structures are divided into discrete areas or volumes 

known as ‘elements’ with simple and standard geometrical shapes whose dynamic 

behavior is known. Therefore, the original structure can be rebuilt form such 

‘elements’ to understand its overall dynamic behavior. Under different types of 

loadings, the FE methods can provide predictions of the dynamic behavior of the 

complex structures. This can help engineering researchers to detect any deficiency 

in the structure from the early stage of the design process and consequently reduce 

the cost of design. 

Although the FE method is widespread used for applications in engineering, it is 

always an approximate approach, and there are different sources of errors for this 

approximation. These errors are mainly divided into three groups, namely model 

structure errors, model parameter errors and model order errors. In order to reduce 

these errors in FE model predictions, FE model updating methods are described as 

follows. 

FE model updating methods can be defined as the adjustment of the FE model in 

light of a measured vibration test. After adjustment, the updated FE model is 

expected to represent the dynamic behavior of the structure more accurately. FE 
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model updating methods [2, 3] are well established and applied to industry 

structure updating problems. These methods are mainly divided into three groups, 

namely the direct methods, the iterative methods, and the computational 

intelligence methods. 

In the direct methods [2], a ‘representational’ model including the updated global 

mass and stiffness matrices are obtained that is capable of reproducing the 

measured data exactly. The major disadvantage of these methods is that the 

updated mass and stiffness matrices have little physical meaning and cannot be 

related to physical changes to the FE in the original models. In the iterative method 

[2], an iterative process based on sensitivity analysis is required in order to 

minimize an objective function which consists of the difference between predicted 

modal or FRF (Frequency Response Function) data and their measured 

counterparts. In the iterative method, the problems of convergence and ill-

conditioning of the matrices [4] are needed to solve. 

In fact, for the FE model updating problems, the experimental variability inevitably 

exists due to different sources [17]. They may arise from measurement noise, or to 

be inherent to the test structures variability such as manufacturing and material 

variability in structures. For such cases, different stochastic model updating 

methods may be considered to represent the uncertainty in the structural 

parameters. They may generally be categorized into two categories namely 

probabilistic stochastic model updating methods and non-probabilistic stochastic 

model updating methods. In non-probabilistic stochastic model updating methods, 

the interval model updating methods [74, 75] and fuzzy model updating methods 

[77-80] are the most representative methods. For probabilistic stochastic model 

updating method, the minimum variance method, the probabilistic perturbation 

method, and Bayesian model updating methods are the representative methods.  

When applying the probabilistic perturbation methods to complex structures in 

industry, the covariance updating is generally ill-conditioned and requires 

regularization [4]. For Bayesian model updating, the regularization is done 

automatically through using the output and parameter covariance matrices (present 

in the likelihood function and the prior distribution). Adopting the Bayesian FE 

model updating to complex structures (e.g. the AIRMOD structure in chapter 5) is 

the main focus of this thesis. The main disadvantage of Bayesian model updating 

is computationally intensive. But now these methods are tractable by using 



 

3 

 

advanced Markov Chain Monte Carlo (MCMC) methods [67-70], surrogate model 

techniques [83-88] and parallelized system strategies [161].  

Using high-fidelity surrogate models to replace the full FE model is another aspect 

of interest for Bayesian FE model updating in order to alleviate the computation 

cost without losing the accuracy. A surrogate model, also known as a metamodel 

[82] is an approximation to the output of the simulator, which is much less 

computationally expensive to use. Without generality, given n  inputs, for which 

the simulator has been evaluated, there will be n  output values. The metamodel 

will use this information to capture the behaviors of the original simulators. The 

selection of n  inputs, referred to as the training samples, which is important so 

as to maximize the information about the simulator with a minimal computational 

effort. Once built, the surrogate model can be used to infer the outputs of the 

original simulator at input configuration not included in the training samples. There 

are many different types of metamodels. (e.g. Polynomial chaos expansion 

methods [88], Response surface methods [83], Radial basis function methods[86], 

and Support vector machine methods [87]). Another surrogate model is the 

Gaussian process emulation (GPE). This emulator is a statistical surrogate model, 

which has the ability to quantify the uncertainty in any predictions it makes about 

the overall behaviors of the simulator. For the advantages of GPEs outlined in 

chapter 4, the GPEs are amongst the most widespread used metamodels in 

engineering. 

The GPE also has the ability to model some underlying empirical relations with 

confidence. In chapter 4, the behaviors of steel skeleton reinforced concrete (SSRC) 

materials are investigated by quasi-static tests and Split Hopkinson Pressure Bar 

(SHPB) test, respectively. The relations of the dynamic increase factor (DIF) for 

compressive strength and Young’s modulus of SSRC specimens can be constructed 

using GPE, which estimates not only the expectations but also the variances. 

Quantifying the uncertainty of this important empirical relations is important since 

it can be used to estimate DIFs of SSRC in numerical prediction of SSRC structure 

responses to other high-rate loadings. 

The inverse problem (e.g. Bayesian model updating) in uncertainty analysis, in 

which the experimental data are used to learn about sources of modeling 

uncertainties especially for calibration parameters and model discrepancy 



 

4 

 

functions (difference between reality and the simulator output) is another much 

challenging model updating problems, which is described in chapter 6. By an 

illustrative example of a cantilever beam to do the uncertainty quantification of 

model discrepancy, it seems that using an informative prior distribution for the 

calibration parameter helps to obtain the true updated posterior distribution to it. 

1.2 Aim and objectives 

The aim of this thesis is to model, propagate, update and identify the sources of 

modeling uncertainties for structural dynamics in engineering. By considering 

existing methodologies for model updating, various strategies are employed in 

terms of computational efficiency together with their level of accuracy for 

prediction. The application of the surrogate model, namely GPE, is the main focus 

of this thesis to quantify the uncertainty in any predictions to overall behavior of 

the complex mathematical models or underlying empirical relations. This work is 

an attempt: 

1. To critically review the existing deterministic model updating methods, 

especially for the sensitivity method and find out some strategies to improve 

the deterministic mode updating methods’ efficiency and accuracy. 

2. To critically review the existing stochastic model updating methods, especially 

for the probabilistic perturbation method and Bayesian model updating 

methods and find new strategies to develop the Bayesian model updating in 

order to cope with industrial model updating problems. 

3. To adopt surrogate modeling techniques especially GPEs to do the uncertainty 

quantification tasks in order to alleviate the burden of computations and model 

some important empirical relations (e.g. DIFs of SSRC materials under 

different impact loadings.).  

4. To develop a Bayesian model updating framework to do stochastic model 

updating, which account for the computational cost of the FE models by using 

the computational efficient GPEs. 

5. To examine the existing most comprehensive model updating formulations 

considering all sources of uncertainties and provide a better understanding of 

the issue of identifiability for calibration parameters. 
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1.3 Outline of the thesis 

Chapter 2 gives a literature review of the deterministic model updating methods. 

The advantages and disadvantages of these methods are discussed. An extension 

to the classic sensitivity method is proposed and the performance of this method is 

discussed by two numerical examples. 

Chapter 3 provides a literature review of the stochastic model updating methods. 

A detailed description of probabilistic stochastic model updating methods 

including probabilistic perturbation method and Bayesian model updating method 

is given. A brief description of non-probabilistic stochastic model updating 

methods including interval model updating methods and fuzzy model updating 

method is also described. A comparative study on the performance of probabilistic 

perturbation method and the Bayesian model updating method is provided.  

Chapter 4 describes the background theory for the surrogate model namely 

Gaussian process emulator (GPE). The GPE model construction process, the 

selection process of covariance functions and hyperparameter estimation, the 

surrogate model training and diagnostics are described. An analysis of steel 

skeleton reinforced concrete materials under quasi-static tests and SHPB test is 

carried out and the DIFs relations of SSRC materials is discussed. 

Chapter 5 gives a literature review of computational efficient GPEs. The Bayesian 

FE model updating combined with the computational efficient GPEs. and using a 

parallel computing strategy is carried out to the AIRMOD structure. The updating 

results are given and discussed.  

Chapter 6 provides the modular Bayesian approach to do the model updating by 

considering all sources of uncertainties namely parameter uncertainty, model 

discrepancy, code uncertainty, and experimental uncertainty. The GPEs are used to 

model the simulator model and discrepancy function, respectively. An illustrative 

example of the cantilever beam is used to demonstrate the application of this 

approach. In addition, the limitation and challenges of this approach are also 

discussed. 

Chapter 7 gives the conclusions of the research and provide suggestions for future 
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work. 
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2 Deterministic finite element model updating 

2.1 Introduction 

In the design of structures, making a comparison between measured datasets from 

prototype structures and predicted results from corresponding numerical models is 

very important. When the comparison process is carried out, the quality of the 

numerical models can be evaluated. If the results taken from numerical models 

agree with their experimental counterparts, the numerical models can be used for 

the purpose of the structural design. However, in most cases, this agreement cannot 

be achieved due to many kinds of errors in the numerical model, e.g. 

simplifications of the structure, erroneous geometrical shape assumption, 

discretization errors in FE mesh process and among many others. These errors can 

be effectively quantified through different methods in model updating, such as 

least squares estimators, total linear least squares, singular value decomposition 

and among many others in [2, 3]. The model updating methodologies [2] mainly 

deal with model parameter errors. In the model updating process, inaccurate 

parameters are selected by the analyst and corrected through valuable measured 

datasets. The measured datasets often include modal data such as natural 

frequencies, mode shapes and the Frequency Response Functions (FRFs), obtained 

from the experimental modal analysis [5, 6]. 

In order to evaluate the closeness of the experimental model and corresponding 

numerical counterparts, the comparison process is often carried out in the modal 

domain using the natural frequencies and the mode shape vectors. The modal 

assurance criteria (MAC) [7] is a statistical indicator that is most sensitive to large 

differencs and relatively insensitive to small differences in mode shapes. This 

yields a good statistical indicator and a degree of consistency between mode shapes. 

The MAC is often used to pair mode shape taken from numerical models with 

those obtained experimentally. The MAC indicator between a measured mode 

mi  and a numerical (analytical) mode 
nj  is defined as 

 

2| |

( )( )

T

mi nj

ij T T

nj nj mi mi

MAC
 

=
   

  (2.1) 



 

8 

 

The MAC value is between 0 and 1. The value of 1 means a perfect correlation and 

0  indicates no correlation between numerical and experimental mode shapes. 

In this chapter, a brief description of deterministic model updating methods 

including direct methods, iterative methods, and computational intelligence 

methods are given. A novel and efficient iterative method based on the classic 

sensitivity method is then proposed and its performance is evaluated in numerical 

examples. Finally, some useful conclusions are presented in the chapter summary. 

2.2 Direct methods 

The direct methods detailed described in [2] are one of the earliest methodologies 

employed for FE model updating. Three main direct methods defined as Lagrange 

multiplier method, optimal matrix method, and control theory based method are 

briefly described. 

The Lagrange multiplier method is an optimization technique deals with 

minimizing a function subjected to exact constraints on the independent variables. 

It is implemented by minimizing a constrained objective function, where the 

constraints are imposed by Lagrange multipliers [8]. 

The optimal matrix methods use analytical rather than numerical solutions to 

obtain matrices from the damaged systems. They are formulated using Lagrange 

multipliers and perturbation matrices and the optimization problem is used to 

minimize 

 ( , , ) ( , , )O C   +   M C K M C K   (2.2) 

where O   is the objective function,    is the Lagrange multiplier, C   is the 

constraint equation and   is the perturbation of the system matrices.  

The direct method consists in using different perturbation strategies until the 

differences between the FE model results and the measured counterparts are 

minimized in model updating. Baruch and Bar [9], Kabe [10] formulated Eq. (2.2) 

by minimizing the Frobenius norm of the error. Zimmerman et al. [11] successfully 

applied this method for model updating with incomplete measured modal data. 

The control theory based methods are also called eigenstructure assignment 

approaches based on control system theory. An updated FE model is that with 

eigenstructure which is obtained from measured datasets. Zimmerman and Kaouk 

[12] applied this approach to update a FE model of cantilever beam based on modal 
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properties successfully. When applying this technique, the reduction/expansion 

approaches (static reduction [13, 14], dynamic reduction [15]) should be 

considered to make sure the mode shapes and frequency response functions are 

expanded to the size of the FE model or the mass and stiffness matrices of the FE 

model are reduced to the size of the measured data. 

The direct methods possess the ability to reproduce the exact experimental datasets 

without iteration, which makes these algorithms computational efficient. But the 

disadvantages are still obvious, such as the updated mass and stiffness matrices 

have little physical meaning and cannot be related to physical changes to the finite 

elements in the original models and also lack of node connectivity. 

2.3 Iterative methods 

Due to the drawbacks mentioned in the direct methods, the iterative methods in [2] 

were developed. These methods used penalty functions involving the mode shapes 

and eigenvalue data: often the sum of squares of the differences between the 

measured and estimated eigenvalues are used. A set of parameters are iteratively 

adjusted to minimize penalty functions, which are generally non-linear functions 

of the parameters. If the change in the parameters between successive iterations is 

small, a good estimate of the modal model is available. Widespread iterative 

method called sensitivity method is described in detail. 

In the sensitivity method, the experimental model is treated as a perturbation in 

updating parameters to the initial numerical model. The perturbation equations 

(penalty functions) generally use a truncated Taylor series expansion after the 

linear term of modal data in terms of the unknown parameters may be written as 

follows: 

 ( )m i i i z− = − +Ζ Ζ S θ θ ε   (2.3) 

So that linearization is carried out at i=θ θ . The measured and predicted outputs 

are denoted as mZ   and iZ  . Where ( )i i=Z Z θ  . These outputs can be 

eigenfrequencies, mode shapes or complex frequency response functions. The iS  

is defined as the first-order sensitivity matrix, given by  

 

i

j

i

k =

 
=  

 θ θ

S   (2.4) 
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where 1,2, ,j q=  denotes the output data and 1,2, ,k p=  is the parameter 

index. The error vector zε  is assumed to be small for parameters θ  in the area 

of iθ . 

For undamped structural eigenvalue problem, the first derivatives of eigenvalues 

are expressed by Wittrick [16] since considering a system can be modeled by real 

symmetric mass and stiffness matrices M   and K  , the eigenvalue (natural 

frequency squared) i   and eigenvector (mode shapes) i   are given by the 

solution of 

  i i − =K M 0   (2.5) 

Differentiating Eq. (2.5) with design parameters k  gives 

   i i
i i i i

k k k k

 
   

   

   
− + − − = 

    

K M
K M M 0   (2.6) 

By premultiplying Eq. (2.6) by T

i   and using the mass orthogonality, the 

eigensystem produces 

 
Ti
i i i

k k k


  

  

   
= − 

   

K M
  (2.7) 

This expression is only requiring the thi −   eigenvalue, thi −  eigenvector and 

first-order sensitivity matrix to be calculated. The k   could be either element 

specifically defined in mass and stiffness matrices  and M K . 

Taking parameter updating techniques by defining a residual containing the 

analysis and test behavior differences which could be formed by Eq. (2.3). 

Therefore, the single objective function is to minimize 

 ( ) T

z zJ =θ ε ω ε   (2.8) 

The symmetric weighting matrix ω  is considered to account for the importance 

of each individual term in the residual vectors. ω   is difficult to estimate and 

Mottershead, et al. [17] suggest a reasonable choice is  
2

( )mdiag

−
=ω Z   to 

scaling and balance the effect of amplitude. 

Normally, in parameter updating, the number of measurements should always be 

made equal or larger than the number of parameters which yields determined or 

overdetermined equation systems. For these cases, simply minimize ( )J θ   with 
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respect to ( )i i = −θ θ θ  give a theoretical parameter estimate as 

 
1

( )T T

i i i i m i 

−

  = − θ S ω S S ω Z Z   (2.9) 

A fundamental requirement to obtain a solution is [ ]T

i irank p =S ω S . As p  is the 

number of parameters. 

The case when fewer measurements than parameters are available in Eq. (2.3) 

( )q p  leads to a undetermined equation systems whose solution is not unique. 

The treatment of ill-conditioned, noisy systems of equations is a problem to FE 

model updating. The classical weighted least squares method in Eq. (2.8) can be 

extended in case it is difficult to obtain a convergent solution because of an ill -

conditioned sensitivity matrix. The objective function ( )J θ  is expanded for the 

requirement of parameter changes iθ  should be minimized as 

 2( ) T T

z z i iJ  = +  θ ε ω ε θ ω θ   (2.10) 

The parameter weighting matrix ω  should be chosen to reflect the uncertainty 

in the initial parameter estimates and the regularisation parameter   provides a 

balance between the measurement residual T

z zε ω ε   and the side constraint 

T

i i θ ω θ  , which can be found in the work of Link [18] and Hansen [19]. 

Moreover, when ill-conditioning cannot be solved by well-thought 

parameterization of the model, regularization techniques can be used. A detailed 

overview of regularization techniques in FE model updating can be found in 

Titurus and Friswell [20]. 

2.4 Computational intelligence inverse methods 

FE model updating problems are sometimes computational expensive for realistic 

systems. The computational intelligence inverse methods are about using modern 

optimization algorithms to do the FE model updating, which has advantages to 

manage the computational load without losing updating efficiency and accuracy. 

Liu et al. [21] used a fuzzy theory, while Jung and Kim [22] employed a hybrid 

genetic algorithm for FE model updating. Tan et al. [23] used support vector 

machines for FE model updating, while Zapico, et al. [24] applied artificial neural 

networks to update a small steel frame. Further successful application of 

computational intelligence methods to FE model updating include Tu and Lu [25] 
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who used a genetic algorithm, Feng et al. [26] applied a hybrid of genetic algorithm 

and simulated annealing, He et al. [27] used a hybrid of a genetic algorithm and 

artificial neural networks and Marwala [28] applied the particle swarm 

optimization technique for FE model updating.
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2.5 Second-Order Sensitivities  

2.5.1 Background description 

As described in section 2.3 for the iterative method in FE model updating, the 

traditional sensitivity approach is basically using a linear approximation to 

represent the generally non-linear relationship between measured outputs and 

parameters of the model in need of correction by assuming a small change for 

design parameters. In reality, this assumption is sound more or less idealistic, if the 

variation for the design parameters is not small, only using the linear 

approximation approach to model the response outputs looks inadequate. 

Under such conditions, it is highly demanding to put the non-linear part of Taylor 

series expansion of model data into consideration, specifically, obtaining Taylor 

series expansion truncated after the second-order nonlinear term of model data to 

model the generally non-linear relationship of measured response and design 

parameters. 

 
1

( ) ( ) ( )
2

T

m j i j i j i i ij i zj− = − + − − +Z Z S θ θ θ θ H θ θ ε   (2.11) 

where 1, ,j q=   denotes the number of output datasets, 
i jS  is defined as the 

first-order sensitivity matrix expressed as 
j

k

 
 
 

 at the  thi  iteration. The 
ijH

is the second-order sensitivity matrix defined as 

 

2 2

2 2

 

j j

k k k u

ij

j j

u k u u i

   

   

 

 

=

  
 
    
 =
 
  

 
     θ θ

H   (2.12) 

where ( , , ) T

i k u i =θ . 

The second-order derivatives could be calculated similarly to the calculation 

process for the first-order sensitivities. By differentiating Eq. (2.6) with possible 

another parameter u  (could be either element specifically defined in mass and 

stiffness matrices M  and K  ) a second time, which could be expressed as 
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i i
i i

k u u k

i
i i i

k u k u

 
 

   


  

   

     
− + −         

      

   
+ − + − =         

      

K M K M

K M K M 0

  (2.13) 

Premultiplying Eq. (2.13) with T

i   , and using the mass orthogonality of the 

 thi   eigenvector (mode shapes), the second-order sensitivities of  thi  

eigenvalue can be expressed as 

 

2

2 2

T Ti i i
i i i i

k u k u u k

T i i
i i i

u k u k u k k u

  
   

     

 
  

       

      
= − + −         

        

     
+ − − − 

        

K M K M

K M M M
  (2.14) 

In addition, if the updating parameters are assigned for only stiffness parameters 

in the matrix K , Eq. (2.14) can be simplified as 

 

2
T

Ti i i

i i

k u k u u k

  
 

     

      
= +   

        

K K
  (2.15) 

The result in Eq. (2.15) only requires the first-order derivatives for eigenvectors 

to calculate. It is worth noting that there are several methods that can be used to 

calculate the first-order derivatives of the eigenvectors (mode shapes). In this 

section, a method proposed by Fox and Kapoor [29] is employed to calculate first-

order derivatives of the eigenvectors. 

This approach is based on expanding the gradient and described as a linear 

combination of all eigenvectors given as 

  
1

,
n

i
iuh

h
u

n N



 =


= 


  (2.16) 

Substitution of Eq. (2.16) the derivative of the eigenvalue problems, the factor 

 iuh is calculated in the form of 

  

 

 

1

2

T

h i i

k k

iuh

iuh i h

T

iui i i

k

i h

  
 


  

  


   
− +  

   = 
= −



 = −



M K

M

  (2.17) 

This expansion is exact if n N=  modes are used. For n N , this expansion gives 

an approximation depending on the number of modal terms, a suitable truncation 
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based n  is usually determined by trial-and-error. Another suggested method is 

proposed by Nelson [30], which has advantages that only the mode shape of 

interest is required. 

2.5.2 A multi-objective optimization framework 

Since we have obtained the non-linear approximation forms by truncated Taylor 

series expansion of model responses, the error vector zε   is defined as 
zjε  ,

1,2, ,j q=  and q  is the number of output datasets. The 
zjε  can be expressed 

as 

 ( ) ( ) ( )
1

2

T

zj mj ij ij i i ij iZ Z S
 

= − − − + − − 
 

ε θ θ θ θ H θ θ   (2.18) 

The multi-objective function is then proposed, which can be expressed as 

 ( ) , 1,2, ,T

zj j zjj
J j q= =θ ε ω ε   (2.19) 

where the weighting value 
jω  is chosen as ( )

2

, 1,2, ,j mjZ j q

−

= =ω .  

The multi-objective optimization problem is finally can be defined as 

 ( ) , 1,2, ,T

zj j zjj
arg min J j q= =

θ
θ ε ω ε   (2.20) 

The process of optimizing systematically and simultaneously a collection of 

objective functions is called multi-objective optimization (MOO) or vector 

optimization. The general multi-objective optimization problem can be expressed 

as follows  

 

1 2 ( ) ( ), ( ), , ( )

  ( ) 0, 1,2, ,

( ) 0, 1,2, ,

T

k

j

i

arg min F F F F

subject to g j m

h i e

=   

 =

= =

X
X X X X

X

X

  (2.21) 

Where k  is the number of objective functions, m  is the number of inequality 

constraints, and e  is the number of equality constraints. X  is the vector of design 

variables. In contrast to single-objective optimization, a solution to a multi-

objective problem is more of a concept than a definition. Typically, there is no 

single global solution, and it is often necessary to determine a set of points that all 

fit a predetermined definition for an optimum. 

Currently, some methods can be used to specify preferences, which may be 

articulated in terms of goals or the relative importance of different objectives. Most 

of these methods incorporate parameters, which are coefficients, exponents, 
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constraint limits, etc. that can be set to reflect decision-maker preferences. These 

optimization methods include: 

(1) Weighted global criterion methods in which all objective functions are 

combined to form a single function referred to the work by Wierzbicki [31], 

Miettinen [32]. 

(2) Weighted sum methods in which to give weights to sum all the objective 

functions referred to the work by Das and Dennis [33], Messal et al. [34]. 

(3) The Lexicographic methods in which the objective functions are arranged in 

order of importance. Referred to the work by Rentmeesters et al. [35] and 

Weighted min-max methods in which by introducing some additional 

unknown parameters γ   combined with weights ω   to process the 

optimization problems. 

Gembicki [36] proposed a weighted min-max method named goal attainment 

method for multi-objective optimization. This is concerned with the minimization 

of a set of objectives simultaneously, which will be used in this paper. Its definition 

combined with multiple-objective functions derived above can be specified by  

 

( ) ( ) ( )

( )

( ) ( ) ( ), 1 2

1
,  1,2, ,

2

, 1,2, ,
 

, , ,

 

T

zj mj ij ij i i ij i

T

zj j zjj

T

q

Z Z S j q

J j q

arg min J J J

Constraint Conditions



  
= − − − + − − = 

 
 = =



    



θ γ

ε θ θ θ θ H θ θ

θ ε ω ε

θ θ θ γ

 (2.22) 

The weights are defined as ( )
2

, 1,2, ,j mjZ j q

−

= =ω . In order to improve the 

computation efficiency, the sequential quadratic programming (SQR) method is 

incorporated, modifications are made to the linear search and Hessian matrix 

described by [37, 38]. 

2.5.3 An illustrative example of three degree of freedom mass-

spring system 

The numerical system, which is used to demonstrates the proposed sensitivity 

method is the three degree of freedom mass-spring system shown in Figure 2.1. 

The nominal values of parameters of the ‘synthetic experimental’ system are given 

in Table 2.1. 
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Figure 2.1 Three degree of freedom mass-spring system. 

 

In this example, the three uncertain parameters, 1 2 5, ,k k k  are assumed responsible 

for the observed variability in the three natural frequencies of the system. 

Table 2.1 Parameter values for the ‘experimental’ system 

Mass vector ( )kg   Stiffness vector ( / )N m   

1m
 1 1k  2 2k  2 

2m  1 3k  1 4k  1 

3m  1 5k  2 6k  3 

 

The first case is by assuming the changes for the design uncertain parameters 

1 2 5, ,k k k   are relatively small compared to the parameter values in the 

‘experimental’ system . Figure 2.2 and Figure 2.3 show the convergence of 

uncertain parameters using the traditional and proposed sensitivity method 

respectively when the initial values for the parameters are settled as 1 /N m . 

 

Figure 2.2 Convergence of uncertain parameters using the traditional sensitivity 

method (Eq. 2.9). 

M1

M2

M3

K1

K6

K4 K5

K2

K3
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In Figure 2.2, parameters convergence is to be obtained after 6  iterations except 

2k  with the final updated value 1.971 /N m , which is compared to the ‘synthetic 

experimental’ data point 2 /N m when using traditional sensitivity method. But in 

Figure 2.3, all the parameters values are updated to the ‘synthetic experimental’ 

value 2 /N m  after only 2 iterations by using the proposed sensitivity method. 

 

Figure 2.3 Convergence of uncertain parameters using the proposed sensitivity 

method (Eq. 2.22). 

 

 

Figure 2.4 Convergence of uncertain parameters using the traditional sensitivity 

method (Eq. 2.9). 
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Figure 2.5 Convergence of uncertain parameters using the proposed sensitivity 

method (Eq. 2.22). 

 

In the cases shown in Figure 2.4 and Figure 2.5, we set the initial values of the 

parameters to be 7 /N m  , which is larger than 1 /N m  . In Figure 2.4, the 

convergence of the parameters can be seen after 8  iterations except 2k  with the 

final updated value 1.987 /N m  , which is compared to 2 /N m  by using the 

classic sensitivity method. On the other hand, using the proposed sensitivity 

method shown in Figure 2.5, all the updating parameters have converged to the 

2 /N m with only 4  iterations. It can be concluded that when the changes for the 

parameters are small, the proposed sensitivity method seems to be more efficient 

and accurate than the traditional method.  

The second case is assuming that changes for the design uncertain parameters 

1 2 5, ,k k k  are relative large. The initial values for updating parameters are designed 

as 22 /N m  . In Figure 2.6, it can be seen that all the design parameters have 

converged to 2 /N m except 2k  with the final updated value 1.983 /N m  after 6 

iterations by using the traditional sensitivity method. More importantly, in Figure 

2.6, during the procedure of updating 2k  . Its value after the first iteration is 

negative -2.5848 N/m. When facing this situation, by giving constraints to the 2k  

during the updating process is suggested when using the traditional sensitivity 

method. 
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Figure 2.6 Convergence of uncertain parameters using the traditional sensitivity 

method (Eq. 2.9). 

 

 

Figure 2.7 Convergence of uncertain parameters using the proposed sensitivity 

method (Eq. 2.22). 

 

On the other hand, Figure 2.7 shows the convergence of parameters 1 2 5, ,k k k  by 

using the proposed sensitivity method. It is clear that all the parameters are updated 

to 2 /N m  with just 4 iterations. In addition, there is no need to set constraints to 

the parameters during the updating process. For this occasion, The proposed 

sensitivity method shows some merits for the mode updating problems compared 

to using the traditional method. 
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2.5.4 An illustrative example of six storey bare frame 

Figure 2.8 gives the numerical example under structural dynamics background. It 

is a six storey bare frame, which is used to demonstrate the application of the 

proposed sensitivity method. The nominal values of parameters of the ‘synthetic 

experimental’ system are given in Table 2.2. The corresponding measured modal 

properties are estimated, which is given in Table 2.3. 

 

 

Figure 2.8 Six storey bare frame. 

 

Table 2.2 Parameter values for the ‘experimental’ system 

Mass vector ( )kg  Stiffness vector ( / )N m  

1m  58 10  1k  91.5 10  

2m  56 10  2k  91.5 10  

3m  56 10  3k  91.8 10  

4m  56 10  4k  91.6 10  

5m  56 10  5k  92.0 10  

6m  56 10  6k  91.6 10  

 

In this case, the three uncertain parameters, 1 3 6, ,k k k  are assumed responsible for 

the observed variability in the six storey bare frame. The initial values for the 

design parameters are 9

1 1.8 10 /k N m=   , 9

3 2.5 10 /k N m=    and 

9

6 2 10 /k N m=  . 

M1

M2

M3

M4

M5

M6

K1

K2

K3

K4

K5

K6
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Table 2.3 The actual modal properties of the ‘experimental’ system 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 
2  

2( / )rad s   
154 1327 3267 5352 8591 10894 

1  -0.00019 0.000537 -0.0007 0.000574 0.000306 -0.00011 

2  -0.00036 0.000693 -0.00018 -0.00049 -0.00079 0.0004 

3  -0.00048 0.000518 0.00045 -0.0005 0.000559 -0.00063 

4  -0.00059 0.000621 0.000609 0.000492 0.000276 0.000789 

5  -0.00065 -0.00033 0.000139 0.000498 -0.00026 -0.00065 

6  -0.00069 -0.00065 -0.00062 -0.00049 0.000298 0.000211 

 

 

 

Figure 2.9 Convergence of uncertain parameters using classic (Eq. 2.9) and 

proposed (Eq. 2.22) methods. 

 

It can be seen that in Figure 2.9, which shows the convergence of design 

parameters 1 3 6, ,k k k using classic and proposed sensitivity method, respectively. It 

is clear that all the updating parameters have converged to the initial preset values 

except 1k  with 91.572 10 /N m  using classic sensitivity method. On the other 

hand, using the proposed sensitivity method, all the updating parameters 1 3 6, ,k k k  

have converged to the initial preset values. In addition, the number of iterations 

obtained with the proposed sensitivity method is much smaller than the one 

obtained with classic sensitivity method, which means that a relatively high 

efficiency is also achieved. 
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2.6 Chapter summary 

This chapter gives an overall review of the deterministic model updating 

approaches and the advantages and disadvantages of these methods are also 

discussed. The deterministic model updating methods are categories into three 

groups: (a) direct method, (b) iterative methods and (c) computational intelligence 

methods. 

A novel iterative method is then proposed, which is formulated based on the classic 

sensitivity method. The efficiency and advantages of this method are verified by 

using two numerical examples, named the three degree of freedom mass-spring 

system and the six storey bare frame. For the numerical examples provided, the 

proposed sensitivity method seems to have some advantages especially when large 

changes for the parameters of the model in need of correction. In addition, it also 

enriches the theory of deterministic model updating. 

The next chapter namely stochastic FE model updating will be introduced in detail. 
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3 Stochastic finite element model updating  

3.1 Introduction 

The previous chapter presented deterministic FE model updating, it was assumed 

that the measured data are accurate. However, variability inevitably exists in the 

measured data, model parameters and the uncertainty due to model discrepancy 

and approximations which has to be considered in the model updating procedure. 

In practical model updating the measured data are often imprecise, incomplete and 

variable. Therefore, it is very important to put statistical techniques into 

consideration to improve updating performance. 

Variability in experimental results can be categorized into two groups: reducible 

and irreducible [39]. Measurement noise and the use of sensors that affect the 

measurement signal processing that might introduce bias are some examples of 

reducible uncertainty which can be minimized by gathering more information (e.g. 

repeating the measurement). Under such conditions, randomness arises only from 

the measurement noise and the updating parameters take unique values, found by 

iterative correction to the estimated means, whilst the variances are minimized. 

On the other hand, the distributions of updating parameters become physically 

meaningful in the presence of irreducible uncertain measured data. The stochastic 

model updating problem includes not only the variability in measurement signals 

due to noise but also the variability that exists between nominally identical test 

structures, built in the same way from the same materials but with manufacturing 

and material variability [40]. Similar variability is known from environmental 

erosion, damage [41] or disassembly and reassembly of the same structure [42]. 

In this chapter, a detailed description of probabilistic stochastic model updating 

methods including minimum variance method, probabilistic perturbation method 

and Bayesian model updating method is given. A brief description of non-

probabilistic stochastic model updating methods including interval model updating 

methods and fuzzy model updating method is also described. Finally, A 

comparative study on the performance of probabilistic perturbation method and 

Bayesian model updating method is carried out on a three-degree-of-freedom 
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mass-spring system and some useful conclusions are presented in the chapter 

summary. 

3.2 The minimum variance method 

The minimum variance method is an iterative process that takes into account the 

parameter variability and the uncertainties related to constructing the FE model by 

Collins et al. [43]. The method incorporated statistical techniques to treat the test 

measurement errors as well as uncertainty in the estimation of updating parameters. 

In other words, it is assumed that both measured data and updating parameters have 

errors which may be described by their variances. This technique minimizes the 

variance of the uncertain parameters, at each iteration. 

Suppose iθ  is the vector of uncertain parameters at the thi  iteration of updating 

procedure. The variance matrix of the parameters at the thi  iteration is 

( )T

i i iE =θ θ V . By subtracting the predicted output iZ  at the thi  iteration from 

the measurement datasets mZ yields: 

 ( )m i i = − = −Z Z Z S θ θ   (3.1) 

Then the approximated uncertain parameter vector at the ( 1)thi +  iteration 1i+θ  

could be written as 

 1 ( )i i m i+ − = −θ θ T Z Z   (3.2) 

where T  is the unknown transformation matrix. The new variance of estimated 

parameters 1i+θ  for the ( 1)thi + iteration is given by 

 1 1 1( ) ( ) ( )T T T T T T

i i i i i i i i i i iE + + += = + + + − +V θ θ V D VS T T D VS TV T   (3.3) 

where ( )T

i i mD E= θ Z  is the correlation between the parameter approximation and 

the measurement noise. The output error variance is  

 
T T T

i i i i i i i i e = − − +V S VS S D D S V   (3.4) 

where ( )T

e m mE=V Z Z  and the transformation matrix is obtained by minimizing 

the variance at the ( 1)thi + iteration as follows 

 
1( )T

i i i i

−= −T VS D V   (3.5) 

At last, the updated parameters 1i+θ , 1i+V  and 1i+D  are obtained as  

 
1

1 ( ) ( )T

i i i i i i m i

−

+ = + − −θ θ VS D V Z Z   (3.6) 
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1

1 ( ) ( )T T T

i i i i i i i i i

−

+ = − − −V V VS D V VS D   (3.7) 

 
1

1 ( ) ( )T

i i i i i i i i e

−

+ = + − −D D VS D V S D V   (3.8) 

3.3 The probabilistic perturbation method 

The probabilistic perturbation methods applied a Tylor series expansion to extend 

the terms in model updating equations around a predefined data point and then to 

estimate the mean and variance of updated parameters [44]. Khodaparast et al. [45] 

also showed the computation of the Hessian matrix is not necessary for this kind 

of perturbation-based updating method since the correlation between the 

measurement and updating parameters is assumed to be not considered in model 

updating. Govers and Link [42] proposed analytical output covariance matrix for 

the stochastic model updating which was shown to be identical by Khodaparast et 

al. [45] and Silva et al. [46]. 

Let the estimated parameters 
1j+θ  could be updated using the prior estimate 

jθ  

expressed as  

 
1 ( )j j j m j+ = + −θ θ T Z Z   (3.9) 

where 
1n

j

Z  are the estimated parameters output vectors, 1n

m

Z  is the 

measurement datasets vectors. 1mθ  is the system parameters vector and 
jT  

is the transformation matrix. By accounting for the variabilities in measurement 

arising from multiple sources, the modal parameters are expressed as  

 
m m m= +Z Z Z   (3.10) 

 j j j= +Z Z Z   (3.11) 

where 
mZ  denotes the mean value of mZ  and mZ , 

1n

j

 Z  are random 

vectors. The variabilities in physical parameters at the thj iterations are given by 

 j j j= +θ θ θ   (3.12) 

Therefore, the stochastic model updating problems are defined as  

 1 1 ( )( )j j j j j j m m j j+ ++ = + + + + − −θ θ θ θ T T Z Z Z Z   (3.13) 

where the transformation matrix is  

 j j j= +T T T   (3.14) 
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1

n
j

j mk

k mk=


 = 




T
T Z

Z
  (3.15) 

where jT denotes the transformation matrix at the parameter means, ( )j j=T T θ  

and mkZ  is the thk element of mZ . Separating Eq. (3.13) into zero-order and 

first-order term, which leads to 

 

0

1

1

1

( ) ( )

( ) ( ) (( )( ))

j j m j

n
j

j j m j mk m j

k mk



 +

=

 = + −


 =  +  − +  −




θ T Z Z

T
θ T Z Z Z Z Z

Z

  (3.16) 

Eq. (3.16) gives the estimates of parameter means and covariance matrix. 

Khodaparast et al. [45] concluded that when the correlation between the updating 

parameters and the measurements are omitted, the requirement to calculate the 

second order sensitivities is no longer necessary since there is no significant 

deterioration on the estimated parameters distribution. The parameter covariance 

matrix can be estimated at the ( 1)thj + iteration expressed as  

 
1 1( , ) ( , ) ( , )

( , ) ( , ) ( , )

T

j j j j j j j

T T

j m m j j j j j j j

Cov Cov Cov

Cov Cov Cov

+ +  =   −  

+   −   +  
j

θ θ θ θ θ Z T

T Z Z T T Z θ T Z Z T
  (3.17) 

where jT  is the transformation matrix, that is, the generalized pseudo-inverse of 

the sensitivity matrix. 

 
1

1 2 1( )T T

j j j j

−= +T S WS W S W   (3.18) 

where 1W  and 2W are the weighting matrices to account for regularization of ill-

posed sensitivity equation [47]. 

3.4 The Bayesian model updating method 

Bayesian model updating methods are techniques based on the Bayesian inference 

[48], which is a statistical school of thought that quantifies the degree of belief of 

parameters’ values. This theory has had great advancement after the significant 

work by Jeffreys [49] and Cox [50]. Since then, different Bayesian methods have 

been developed and widely applied to many different disciplines, especially in 

statistically physicals [51], econometrics [52], information science [53] and 

finance [54]. 

Bayesian model updating methods initially developed by Beck and Katafygiotis 
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[55, 56] in structural dynamics and civil engineering field. After that, a detailed 

up-to-date exposition for these methods is given by Yuen [57].  

There are two levels of Bayesian model updating. The first level is parametric 

identification, in which a class of mathematical models for a particular physical 

phenomenon is given with unknown parameters to be identified. The second level 

deals with the selection of a suitable class of mathematical models for parametric 

identification. Using the first level of Bayesian model updating is the main purpose 

of the thesis. It is governed by the following Bayes’ rule [58] 

 
( | , ) ( | )

( | , )
( | )

P P
P

P
=

D θ Μ θ M
θ D M

D M
  (3.19) 

where ( | , )P θ D M  is the set of uncertain updating parameters in the presence of 

the data D   and model class M   (posterior probability). The prior probability 

density function (PDF) ( | )P θ M  reflects the probability of updating parameters 

θ  in the absence of measured information, and it is obtained independently of 

current measurement results. The ( | , )P D θ Μ   is the likelihood function, 

probability of datasets D  in the presence of fixed updating parameters θ  and the 

model class M  is selected. The denominator term ( | )P D M  is a normalization 

factor, known as evidence, ( | ) ( | , ) ( | )P P P d= 
θ

D M D θ Μ θ M θ  , which ensures 

( | , ) 1P d =
θ

θ D M θ . 

Eq. (3.19) could be further simplified to be represented by the prior density and 

the likelihood functions. Since it is always true when the measured datasets D  are 

always considered as a constant and the marginal distribution of the datasets D  

does not depend on the model parameters θ  and the model class M  is assigned 

to only one model to be updated, which is usually omitted to simplify the notation. 

Therefore, the Eq. (3.19) is then written as  

 ( | ) ( | ) ( )P P Pθ D D θ θ   (3.20) 

During the last decades, many methods aimed at obtaining theoretically consistent 

prior PDFs were proposed. The review papers can be found in the work of Jaynes 

[59] and Berger, et al. [60]. One approach is that of conjugate priors [61], where 

the prior PDF is chosen in a way that the posterior PDFs belongs to the same 

distribution family. For example, using a Gaussian prior when the likelihood is 
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Gaussian will result in a Gaussian posterior PDFs, and it is also said that the family 

of Gaussian distributions is self-conjugate. However, the most widely used method 

at present choose the prior PDFs based on the principle of maximum entropy (ME) 

introduced by Soize [62] for Bayesian inference. The ME principle expresses the 

probability distribution which best represents the current state of knowledge on 

updating parameters θ  is the distribution, which results in the largest information 

entropy. For instance, the ME procedure leads to a uniform prior PDF when it is 

known that a parameter is non-zero over a finite range of values in a certain interval. 

For the multivariate situations with no information, the maximum entropy always 

leads to independent prior variables, which means the joint prior PFDs of θ  is 

constructed as the product of the marginal prior PDFs of the individual i . 

In general, the likelihood function ( | , )P D θ Μ  is typically chosen as a zero mean 

multivariate normal distribution and covariance ( ( ), ( ))Cov ε θ ε θ =  , often 

justified on the basis that the information entropy [63] for a given mean and 

covariance is maximized. 

 1

( /2) 1/2
1

1 1
( | , ) exp( ( ) ( ))

(2 ) | | 2

N
T

i in
i

P −

=

= − 


D θ Μ θ θ 


  (3.21) 

For Bayesian FE model updating in structural dynamics, the datasets D  , 

represents the modal properties obtained from experiments (natural frequencies 

2( )m

i  and mode shapes m

i ), which are always chosen as eigenvalue residuals, 

( ( ))m

i i iz z = − θ , where 2( )m m

i iz = , ( ) ( )i iz =θ θ , 1, ,i n= , which represent 

the square of the thi  measured natural frequency and the thi  eigenvalue of FE 

model, respectively. When the prior PDF and likelihood function are determined, 

Eq. (3.20) allows for the posterior updating PDFs of the parameters based on the 

experimental measurements. 

Although Bayes’ theorem is intuitively appealing, however, in most practical 

applications, it requires multidimensional integration to acquire the marginal 

posterior probabilities of parameters which makes it impractical when the posterior 

distribution ( | , )P θ D M  evaluation is always complex and unlikely to be evaluated 

analytically. Therefore, the sampling techniques named the Markov Chain Monte 

Carlo (MCMC) methods can be used to approximate these complex posterior PDFs. 

An advantage of MCMC methods is that they can provide a full characterization 

of the posterior uncertainty when the data is sufficient to constraint the updating 
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parameters [64]. Thereby, they are practical for cases where no analytical solutions 

are available for the posterior PDFs. 

MCMC sampling methods [65, 66] form the most widespread used sampling 

techniques in Bayesian inference, most often using the Metropolis-Hastings (MH) 

algorithm described section 3.4.1 to sample the posterior PDFs ( | , )P θ D M . In 

recent years, some methods were developed to improve the convergence speed of 

the classic MH algorithm. These methods include adaptive MH MCMC [67], 

delayed rejection and adaptive MH MCMC [68]. Another group of improved 

MCMC approaches involves sequential sampling strategy, which is developed by 

Au, et al. [69], and the transitional Markov Chain Monte Carlo (TMCMC) method 

[70] is considered as such a representative sampling technique for Bayesian model 

updating. 

In this section, the classic Metropolis-Hastings (MH) approach and the transitional 

Markov Chain Monte Carlo (TMCMC) algorithm are described in detail, which also 

has been used in the thesis for Bayesian model updating in section 3.6 and chapter 5. 

3.4.1 The Metropolis-Hastings Algorithm 

The MH algorithm is one of the simplest MCMC methods that is able to draw 

samples from multivariable densities [71]. It is related to rejection and importance 

sampling and its general idea is to propose a PDF and then use it to generate 

proposed values. The proposed distribution is also used to obtain a move 

probability which is used to determine whether the calculated values should be 

accepted as the next state of the Markov chain. The move probability is defined by 

the product of the ratio of the target density and the ratio of the proposed density 

which means that a normalizing constant of the target density distribution function 

is not required in this algorithm. 

In the MH algorithm, to sample from the posterior distribution function ( | )p θ D , 

which is the target distribution function, where 1{ , }n =θ is an n-dimensional 

parameter vector, the proposal density distribution 1( | )nQ −θ θ   is introduced in 

order to generate a random vector θ  given the value at the previous iteration of 

the algorithm, which can be summarized as follows 

1. Begin the algorithm with an initial value 0θ  . 

2. At the iteration n  , 
θ  is drawn from the proposal probability distribution 
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density 1( | )nQ −θ θ , where 
1n−θ  is the parameter value of the previous step. 

3. Update the FE model to obtain the new analytical responses, then computer the 

acceptance probability, given by 

 1

1

1 1

( | ) ( | )
( , ) min{1, }

( | ) ( | )

t
t

t t

p D Q

p D Q


 
 −

− 

− −

=
θ θ θ

θ θ
θ θ θ

  (3.22) 

4. Draw u  from a uniform distribution (0,1)u U . 

5. If 
1( , )tu  

− θ θ  then accept state 
θ . Otherwise, reject 

θ . 

6. Repeat Step 2. 

 

Figure 3.1, Figure 3.2, Figure 3.3, and Figure 3.4 show the results of a single 

variable example using the  MH algorithm. The proposal distribution is settled as 

( ) (1,1)Q N=θ  , and the single variable target distribution is given by 

2

'2 ' ' '

exp( )(2 sin(5 ) sin(2 ))
( )

exp( )(2 sin(5 ) sin(2 ))

x x x
p x

x x x dx
+

−

− + +
=

− + +
 , which can also be simplified as 

2( ) exp( )(2 sin(5 ) sin(2 ))p x x x x − + +  , is plotted for 500 and 5000 iterations 

(samples), respectively. 

 

 

Figure 3.1 Target distribution and histogram of the MH method with 500 

iterations. 
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Figure 3.2 Trace history of the MH method with 500 iterations. 

 

 

 

Figure 3.3 Target distribution and histogram of the MH method with 5000 

iterations. 

 

 

Figure 3.4 Trace history of the MH method with 5000 iterations. 
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As expected, from Figure 3.1 to Figure 3.4, the histogram of samples approximate 

the target distribution. However, in Figure 3.1 and Figure 3.2, 500 iterations are 

looked not enough to give a good representation of the target distribution given as  

2( ) exp( )(2 sin(5 ) sin(2 ))p x x x x − + +  . This is because the acceptance rate is 

48.6%, which means only less than half samples (500) is selected to approximate 

the target distribution and also due to some other aspects’ influences like the start 

point, burn-in period, the lag, etc. By comparison in Figure 3.3 and Figure 3.4 

through fixing aspects’ influences mentioned above, increasing the number of 

iterations to 5000 iterations with the acceptance rate 48.9% leads to an almost 

excellent prediction of the form to the target distribution given as  

2( ) exp( )(2 sin(5 ) sin(2 ))p x x x x − + + . 

 

3.4.2 The transitional Markov Chain Monte Carlo algorithm 

The TMCMC [70], is motivated by a related adaptive MH method [72]. The 

fundamental basis of TMCMC is that samples are taken from a series of 

intermediate PDFs in an adaptive manner, expressed as 

 
0 1

( | ) ( ) ( | )

0, , ;0 1

is

i

I

p p p

i I s s s



= =    =

θ D θ D θ
  (3.23) 

where i  is the stage number and is  is the corresponding tempering parameter 

for the thi   stage, which controls the speed of this gradual transition and is 

automatically computed in the process to form the intermediate PDFs. It can be 

seen from Eq. (3.23) that the series start with prior PDF ( )p θ (when 0i =  and 

0 0s = ) and convergence to the posterior PDF ( | )p θ D  (when 1i =  and 1Is = ). 

Note that normalization is not necessary since only the relative probability 

densities are required. 

Given the thi   stage samples 
,1 ,2 ,{ , , , }i i i n     from ( | )ip θ D  , the 1( | )ip + θ D  

samples of the ( 1)thi +  stage are obtained by a resampling procedure, which can 

be achieved as follows [73]: 

The plausibility weights of samples 
,1 ,2 ,{ , , , }i i i n    with respect to 1( | )ip + θ D  

are first computed according to 
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1

1, ,

, ,

, ,

( | ) ( )
( ) ( | ) ,  1, ,

( | ) ( )

i

i i

i

s

i k i k s s

i k i ks

i k i k

p p
p k n

p p

 
  

 

+

+ −
= = =

D
D

D
  (3.24) 

Having the plausibility weights, the uncertain model parameters are then 

resampled based on the weights such that  

 
,

1, ,

,1

( )
 with probability ,  =1, ,n, dummy index

( )

i t

i k i t N

i tt

k t
 

 
 

+

=

= =


 (3.25) 

It can be seen that if N   is large, samples 
,1 ,2 ,{ , , , }i i i n     will be generated 

according to the intermediate PFDs ( | )ip θ D . 

The expectation of 
,( )i k    can be estimated by the average of 

,i k   samples, 

=1, ,nk  

 
1

, ,

1

( | ) ( ) 1
( ( )) ( )

( | ) ( )

i

i

s
N

i k i ks
k

p D p d
E

Np D p d

  
   

  

+

=

= 





  (3.26) 

and the evidence ( )p D  can be evaluated as  

 0

,1

( | ) ( ) ( | ) ( )
( )

( ) ( | ) ( )

( ( ))

Is

s

I

i ki

p p d p p d
P

p d p p d

E

     

    

 
=

= =

=

 

 



D D
D

D   (3.27) 

 

In chapter 5, TMCMC will be used to perform Bayesian FE model updating 

described on the DLR-AIRMOD structure. 

3.4.3 Surrogate modelling techniques in combination 

The main drawback of implementing Bayesian model updating for large-scale 

engineering structures for model updating problems is related to the intensive 

computation, e.g. carrying out Bayesian FE model updating for the DLR-

ALRMOD structure described in section 5.5. 

Besides using the advanced MCMC methods such as TMCMC [70] to develop the 

computational efficiency which allows the generation of samples to the updated 

posterior distribution for high dimensions, utilising the high-fidelity surrogate 

models described in chapter 4 and 5 to replace the full FE models are currently 

other aspects of interests for Bayesian FE model updating in order to alleviate the 

computation cost without losing accuracy. 
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3.4.4 Statistical summaries 

The merits of using Bayesian methods for FE model updating by MCMC 

techniques is that the uncertainty of the updated parameters is presented and the 

correlations between them can be measured. Once the posterior PDFs is 

approximated, it can be used to obtain information on the resolution of the 

parameters through the Bayesian scheme. The resolution analysis typically 

includes comparing the mean values, variance, and covariance matrix. 

The approximated mean value of updated parameters is expressed as 

 
1

1ˆ ( )
N i

i
E

N =
=  θ θ θ   (3.28) 

where ( )E θ  is the mean value of θ   and N   is the number of samples. The 

uncertainty of the estimated mean values for updated parameters can be 

characterized by the variance, expressed as 

 2 2

1

1ˆ ˆ ˆ( ) (( ) ) ( )
N i

i
V E

N =
= −  −θ θ θ θ θ   (3.29) 

The covariance matrix 
θ

Σ  is used to identify the correlation between the updated 

parameters is written as  

 

11 12 1

21 22 2

1 2

n

n

n n nn

c c c

c c c

c c c

 
 
 =
 
 
 

θ
Σ   (3.30) 

where 
2 2

( , )

ˆ ˆ(( ) ) (( ) )

i j

ij

i i j j

cov
c

E E

 
=

− −θ θ θ θ
  , ˆ ˆ( , ) (( )( ))i j i i j jcov E  = − −θ θ θ θ  

and the computed values 
ijc  are bounded between 1 and 1− . 

3.5 Non-probabilistic stochastic model updating methods 

Apart from describing the probabilistic stochastic model updating methods, a brief 

description of non-probabilistic stochastic model updating methods including 

interval model updating methods and fuzzy model updating methods is also 

provided. 

3.5.1 The interval model updating method 

The interval model updating methods stem from interval analysis [74]: the 
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parameter uncertainty may be modeled using a range between lower and upper 

bounds. The aim of interval analysis is to evaluate the range of possible outputs 

considering all possible combinations of the uncertain inputs within their 

permissible range. 

If each component of the response vector is generally represented by ( )iy x , the 

interval analysis is a numerical procedure equivalent to solving the following 

equations 

 max( ( )),   min( ( )),  =1, ,ni i i iy y y y i= =x x   (3.31) 

Subject to 

  x x x   (3.32) 

The operations on intervals, can be used to solve Eq. (3.31) when the response 

function ( )iy x   has an analytical expression in closed-form and a global 

optimization procedure is always considered as the most general solution. This 

optimization is carried out independently on every component of the response 

vector y .  

The interval analysis approach has been applied to the FE model updating by 

Gabriele and Valente [74] and Khodaparast et al. [75] in recent years. The interval 

method can also be seen as a specific case of the more general convex modeling 

approach [76], where it is assumed that the uncertain quantities lie within a convex 

region. The paper for interval FE model updating is in the work of Khodaparast et 

al. [75], who applied the interval model updating approach for frame structures 

with uncertain beam positions. This interval FE model updating approach is 

formulated based on the Kriging predictor [89] and an iterative model updating 

procedure. 

3.5.2 The Fuzzy model updating method 

The fuzzy model updating methods stems from the fuzzy set analysis, which is the 

extension of interval analysis originally attributed by Zadeh [77]. The fuzzy set 

method carries out uncertainty modeling in situations where besides the interval 

bounds, confidence values regarding the uncertain quantities are also available. It 

is about to determine the fuzzy description of outputs when the inputs are modeled 

using fuzzy sets. The fuzzy set is considered as an extension of a conventional set, 

which discriminates between elements that belong to the set and those which do 
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not. 

In the work of Erdogan and Bakir [78], Erdogan, et al. [79] and Khodaparast, et al. 

[80] proposed fuzzy model updating in structural dynamics. More precisely, 

Erdogan and Bakir [78] and Erdogan et al. [79] used the fuzzy models to model 

the uncertainty due to the measurement noise which has dealt with reducible 

uncertainty, and Khodaparast et al. [80] proposed a method to compute measured 

fuzzy membership functions of experimental data and then a fuzzy parameter is 

introduced to represent a set of interval parameters through the membership 

function. In addition, the kriging surrogate model is used to speed up the fuzzy FE 

model updating procedure.



 

39 

 

3.6 Comparison of uncertainty identification with 

probabilistic model updating approaches 

In this section, the methods introduced in section 3.3 and 3.4 namely the 

probabilistic perturbation method and the Bayesian model updating method are 

applied to the three degree of freedom mass-spring system shown in Figure 3.5 to 

investigate their performance for uncertainty identification. 

 

 

Figure 3.5 Three degree of freedom mass-spring system. 

 

The nominal values of parameters to the ‘synthetic experimental’ system are given 

in Table 3.1 with 1.0 ( 1,2,3)im kg i= =  , 1.0 /  ( 1, ,5)ik N m i= =  and 

6 3.0 /k N m=  . The updating random parameters are assumed to have Gaussian 

distributions with mean vector 
1 2 5

2.0 /k k ku u u N m= = =  and standard deviation

1 2 5
0.3 /k k k N m  = = = . The true mean values are the nominal values with a 

standard deviation 
1 2 5

0.2 /k k k N m  = = = . The updating random parameters 

1 2 5, ,k k k  are assumed to be independent. 

Table 3.1 Parameter values for the ‘experimental’ system 

Mass vector ( )kg   Stiffness vector ( / )N m  

1m
 1 1k  1 2k  1 

2m  1 3k  1 4k  1 

3m  1 5k  1 6k  3 

 

For this case, three uncertain updating parameters, 1 2 5, ,k k k   are assumed 

responsible for the observed variability in the three natural frequencies of the 

system. 

 

M1

M2

M3

K1

K6

K4 K5

K2

K3
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Figure 3.6 Parameter convergence of mean values by perturbation method. 

 

 

 

 

Figure 3.7 Parameter convergence of standard deviation by perturbation method. 
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Figure 3.8 Initial model responses cloud (10000 samples) versus Synt. Exp. 

responses cloud (10000 samples). 

 

 

Figure 3.9 Updated model responses cloud (10000 samples) versus Synt. Exp. 

responses cloud (10000 samples). 
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Figure 3.10 Initial model responses cloud 10000 samples versus Synt. Exp. 

responses cloud 10 samples (left) and Updated model responses 

cloud 10000 samples versus Synt. Exp. responses cloud 10 samples 

(right) in ω1
2 and ω2

2 plane. 

 

 

Figure 3.11 Initial model responses cloud 10000 samples versus Synt. Exp. 

responses cloud 10 samples (left) and Updated model responses cloud 

10000 samples versus Synt. Exp. responses cloud 10 samples (right) 

in ω2
2 and ω3

2 plane. 

 

The probabilistic perturbation method described in detail in section 3.3 is 

employed. The parameter convergence of mean and standard deviation is shown 

in Figure 3.6 and Figure 3.7 respectively, and the initial cloud of predicted round 

frequencies is made to converge to the cloud of ‘experimental’ predicted round 

frequencies shown from Figure 3.8 to Figure 3.11. In addition, the converged 

response cloud is shown to be a good agreement with the ‘synthetic experimental’ 

dataset.  

The Bayesian model updating method described in detail in section 3.4 is also used 
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for performance comparizon. Figure 3.12, Figure 3.13, and Figure 3.14 show the 

updating parameter probability densities, CDFs and the trace history for 1 2 5, ,k k k , 

which is obtained using the Bayesian model updating method with the MH 

algorithm described in section 3.4.1. with 15000 samples (2000 burn-in samples) 

in order to have a full characterization of the updated posterior distributions. 

The model updating results summary obtained by the probabilistic perturbation 

method and the Bayesian model updating method is shown in Table 3.2. It can be 

concluded that the updated results by these two methods to mean values, standard 

deviations for parameters and predicted responses of the system are all in good 

agreement with the ‘synthetic experimental’ datasets.  

More importantly, it is also worth noting that, the running time for the Bayesian 

model updating to the three degree of freedom mass-spring system is much longer 

than probabilistic perturbation method. 
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Figure 3.12 Parameter PDFs, CDFs and Metropolis-Hastings trace history for 

1.k
 

 

 

Figure 3.13 Parameter PDFs, CDFs and Metropolis-Hastings trace history for 

2.k
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Figure 3.14 Parameter PDFs, CDFs and Metropolis-Hastings trace history for 

5.k
 

 

Table 3.2 Model updating results summary 

 Value 
Perturbation 

method 

Errors 

(%) 

Bayesian 

model 

updating 

method 

Errors 

(%) 

1k
 1 1.011 -1.1 1.009 -0.9 

2k
 1 0.972 2.5 0.976 2.4 

5k
 1 1.003 -0.3 1.005 -0.5 

1  0.1997 0.1983 0.7 0.1982 0.7 

2  0.1997 0.1992 0.25 0.1993 0.2 

5  0.1997 0.2021 -1.2 0.2107 -5.5 
2

1  

(rad/s) 
0.9930 0.9925 0.5 0.9930 0 

2

2  

(rad/s) 
3.9896 3.9896 0 3.9896 0 

2

3  

(rad/s) 
8.0027 8.0026 0.001 8.0028 -0.001 
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3.7 Chapter summary 

In this chapter, an introduction to the stochastic FE model updating has been 

provided. The methods are generally categorized into two groups, i.e. probabilistic 

methods and non-probabilistic methods. At present, the existing widespread used 

stochastic FE model updating methods that incorporate statistics are probabilistic 

perturbation method, and Bayesian model updating method, which are described 

in detail in this chapter. The non-probabilistic FE stochastic model updating 

methods including the interval model updating methods and the fuzzy model 

updating methods are also briefly described. 

In addition, by applying the probabilistic perturbation method, and Bayesian model 

updating method to a three degree of freedom mass-spring system. It is found that 

these two methods are all applicable to the problem of model updating in the 

presence of uncertainty in this three degree of freedom mass-spring system with 

high accuracy. However, the running time of conducting Bayesian model updating 

when combined with the MH algorithm is much longer than the probabilistic 

perturbation method. 

It is also important for Bayesian FE model updating methods combined with 

advanced MCMC methods described in section 3.4.2 and surrogate model 

techniques described in chapter 4 and 5 in order to solve a computationally 

intensive model updating task (e.g. the DLR AIRMOD structure). 
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4 Gaussian process emulation 

4.1 Surrogate modelling 

Simulators or computer codes are often used to model physical processes in science 

and engineering [81]. In practice, simulators which model complex physical 

phenomena with high-fidelity are usually computationally expensive. That is, a 

single input-output evaluation of the given computer codes takes a long time to 

prohibit statistically meaningful ensembles of experiments to be run in a practical 

amount of time.  

In order to alleviate the cost of the expensive models, a stochastic representation 

of model outputs can be utilized. These approximations are called metamodels or 

surrogate models [82]. In the recent years, many kinds of surrogate models have 

been used in different research fields. These approaches include response surface 

methods [83], Taylor expansions [84], artificial neural networks [85], radial basis 

functions [86], support vector machines [87] and polynomial chaos expansions 

[88]. Metamodels have their own merits and disadvantages. However, none of 

these methodologies is statistical in its nature and is thus unable to provide an 

estimation of the uncertainty introduced while using the surrogate models without 

employing additional tools. 

The Gaussian process emulator (GPE), also called Bayesian emulator or Kriging 

[89], in contrast, is a statistical surrogate model. It works by using the Bayesian 

principle: for fixed sample points in the input domain, it consists in assigning a 

prior distribution to the model output and updating it with more observed data, 

which results in a predictive posterior distribution for the model outputs. This 

produces not only an expectation but also a variance, which quantify the 

uncertainty of an emulator's approximation for the model outputs. 

4.2 A brief history of Gaussian processes 

The Gaussian process (GP) is a general class of probability distribution on 

functions. By viewing this general setting, the well known Wiener process [90] is 

actually a particular type of Gaussian process. Gaussian processes were first used 
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for time series prediction could date back to the 1940s [91]. Gaussian processes 

have been widely used since the 1970s in the fields of geostatistics and 

meteorology. In geostatistics, Gaussian processes prediction is termed Kriging, 

(after the South African mining engineer D. G. Krige) by Matheron [92]. The 

inputs to the process are only two or three dimensions. 

In 1978, O’Hagan [93] first applied the GPs to slightly more general multivariate 

input regression problems in spatial statistics. After that, the GPs was described by 

Williams and Rasmussen in 1996 [94] to the machine learning community. At that 

time the neural networks by Bishop [95] were in vogue as general purpose function 

approximators, Williams and Rasmussen’s work [94] were partly inspired between 

GPs and neural networks. 

Over the past decade, the work for Gaussian processes has been actively developed 

and extended both in statistics and machine learning communities. In machine 

learning communities, the tasks are broadly divided into three fundamental classes: 

supervised learning, unsupervised learning, and reinforcement learning [96]. The 

most widely studied class is supervised learning, which concerns about learning a 

relationship from inputs to outputs. The supervised learning may be further 

subdivided into two primary tasks: classification and regression. Moreover, In 

classification, the outputs are discrete labels, whereas in regression the outputs are 

continuous variables.  

The GPE is built in the form of a full probabilistic Bayesian model. By defining a 

probability distribution on functions ( )p f  , which is used as a prior for the 

regression, then Bayesian inference is used to make predictions of the function 

output given a dataset D  by Bayes’ theorem as: 

 
( | ) ( )

( | )
( )

p f p f
p f

p
=

D
D

D
  (4.1) 

This is a relatively high level of description of how a GP solves the regression task 

described above, which allow us to have probabilistic predictions of possible 

interpolating functions f . 

4.3 Gaussian process emulation 

The GPE, also called Bayesian emulator [89] or Kriging, is a stochastic 

approximation that links complex simulators. This means that a GPE is capable of 
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quantifying the uncertainty about the underlying function which arises from the 

fact that the output of the simulator has not been observed at all locations of interest. 

In a Bayesian setting for constructing the GPE, the uncertainty about parameters 

is represented through probability distributions. This results in a full probabilistic 

model that takes into account uncertainty in the parameters and in the data 

generating process. 

4.3.1 Surrogate model construction 

By assuming the outputs are noise-free, observed from an underlying functional 

mapping ( ) x , the GPE provides an interpolator, which is of the form 

 ( ) ( ) ( )Th Z = +x x β x   (4.2) 

where ( ) ph    is any real-valued function that maps p q→ . It consists in

q  known regression functions of x , and is chosen to incorporate the beliefs that 

we have about ( ) x  . β   is a vector of unknown coefficients and ( )Z x   is a 

Gaussian process with zero mean and covariance 2 '( , ; )c x x   where 2   is a 

scalar parameter and    is a set of parameters describing behavior for the 

correlation function ( , ; )c   . 

Definition 2.1 (Gaussian stochastic process) For dx  , GP ( )  is a Gaussian 

stochastic process if for any 1d   and any choice from 1, , dx x , the vector 

1( ), , ( )
T

dZ Z  x x  has a multivariate Gaussian distribution. 

A zero mean multivariate Gaussian distribution can be expressed as follows 

 

1 11 1

1

( ) 0

,

( ) 0

n

n n nn

Z k k

N

Z k k

     
     
     
          

x

x

  (4.3) 

And the covariance matrix can be expressed as a scalar parameter 2  times the 

correlation matrix C expressed as  

 

2 2 2

1 2 1

2 2

2 2 1

2 2

1

( , ) ( , )

( , )

( , )

n

n

c c

c

c

  

 


 

 
 
 =
 
 
  

x x x x

x x
C

x x

  (4.4) 

Since any finite collection of points from a Gaussian process is distributed as a 
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multivariate Gaussian distribution, the distribution of the outputs at unobserved 

input values *
x , given already obtained datasets must follow 

 * * * *( ) | ( ( ), ( , ))N m c x D x x x   (4.5) 

with some kinds of mean and covariance functions. 

Attention needs to be paid to  

 2 2| , ( , )N y β Hβ C   (4.6) 

where 
1( ( ), , ( ))T

nh h=H x x   leads to the notation that in order to obtain a 

distribution for the output of simulator unconditional on the GPE parameters in Eq. 

(4.2), the values need to be estimated from datasets. The regression coefficients β  

and the scalar parameter, 2  can be obtained analytically. The parameters for the 

correlation function,   , which is implied through the correlation matrix C can 

be estimated using optimization algorithms [104-106]. 

In Eq.(4.6), the likelihood of β  and 2 can be expressed as 

 
1

2

2 /2 1/2 2

1 ( ) ( )
( | , ) exp[ ]

(2 ) | | 2

T

n
p 

 

−− −
= −

y Hβ C y Hβ
y β

C
  (4.7) 

The posterior distribution of the parameters conditioned on a dataset can be 

obtained using the following procedure. Assuming a weak prior for the joint 

distribution of β  and 2 , which implies that for any x , the variance of ( ) x  is 

infinite [99].  

 2

2

1
( , )p 


β    (4.8) 

This prior is known as a Jeffreys prior [97], which has a convenient feature that is 

invariant under reparameterization and proportional to the square root of the 

determinant of the Fisher information matrix [98], and in this case, it is 

proportional to 2 − . Based on the Eq. (4.6), the posterior distribution of β  and 

2 are expressed as follows [99] 

 2 2 2( , | ) ( | , ) ( , )p p y p  β y β β   (4.9) 

 1 1 1ˆ ( )T T− − −=β H C H H C y   (4.10) 

Separating from the distribution of β  and combining terms results in an inverse 

gamma posterior distribution for 2  with an unbiased estimator 

 
1 1 1 1 1

2 ( ( ) )
ˆ

2

T T T

n q


− − − − −−
=

− −

y C C H H C H H C y
  (4.11) 
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By combing Eq. (4.6), Eq. (4.10) and Eq. (4.11), which gives posterior predictive 

distributions for outputs conditional on the observed datasets expressed as follows 

 * 2 * * *ˆ( | , , ) ( ( ), ( , ))D N m c x β x x x   (4.12) 

with posterior predictive mean 

 1ˆ ˆ( ) ( ) ( ) ( )Tm h   −= + −x x β t x C y Hβ   (4.13) 

and posterior predictive covariance expressed as 

 

' 2 ' 1

1 2

1 1 ' ' 1

ˆ( , ) [ ( , ) ( ( ) ( ) )

( ) ( ( ) ( )( ( ) ) ]

T T

T T T T

c c h

h h

      −

− −    −

= + −

 −

x x x x x t x C H

H C H x t x x C H
  (4.14) 

With 
2c  given by 

 ' ' 1 '

2( , ) ( , ) ( ) ( )Tc c     − = −x x x x t x C t x   (4.15) 

From Eq. (4.13) to Eq. (4.15), n nC   is such that ˆ( , ; )ij i jc =C x x  . 

( ) n t  such that 
1

ˆ ˆ( ) ( ( , ; ), , ( , ; ))T

nc c  =  t x x . 

The GPE provides both a metamodel for the function and plausible uncertainty 

bounds. More details on the general procedure of constructing the GPE under the 

assumption that outputs are noise-free observed from an underlying functional 

mapping ( ) x  can be found in [99, 100] from a Bayesian standpoint. 

Figure 4.1 shows five sample GP functions draw from the GP prior in Eq. (4.2), 

which allows all properties of Gaussian distributions to be used. Figure 4.2 gives 

the corresponding five sample GP functions draw from GP posterior and the GPE 

also provides both a surrogate for the functions and plausible uncertainty bounds 

after combining five noise-free observations ( [ 4, 3, 2, 1,1]T= − − − −x  , 

[0.7568, 0.1411, 0.9093, 0.8415,0.8415]T= − − −y ). 
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Figure 4.1 Five sample GP functions draw from Z(𝐱). The light blue are indicates 

the 95% credible interval. 

 

 

 

 

Figure 4.2 Five sample GP functions draw from GP posterior conditioned on five 

observations(noise free). The light blue area indicates the 95% credible 

interval. 
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An important assumption in the engineering literature is that the GPE is formulated 

on the premise that the true engineering function to be approximate is smooth and 

continuous. However, function evaluations are always scattered about this smooth 

trend due to errors in the physical experiments or the computer simulations used 

to calculate the functions.  

If the outputs are noise polluted observed from an underlying functional mapping 

( ) x , a noise term 2

noise can be added. As a consequence, the GPE is no longer 

an interpolator but a regressor. In order to consider the influences of the noise, a 

regression constant 2

noise  can be added to the leading diagonal of C  [101]. That 

is, the C  in Eq. (4.6) becomes 2

noise+C I ( I  is an n n  identity matrix). This 

way, ( )t  is never a column of C  (if 
* =x x , the posterior predictive variance for 

the observed input values x  is not zero anymore, which means the datasets are 

not interpolated). Using the same method of derivation as for interpolating GPE as 

described above, the regression GPE posterior predictive distributions for outputs 

conditional on the noised observed datasets expressed as follows 

 
* 2 * * *ˆ( | , , ) ( ( ), ( , ))r r rD N m c x β x x x   (4.16) 

with posterior predictive mean 

 
2 1ˆ ˆ( ) ( ) ( ) ( ) ( )T

r noisem h    −= + + −x x β t x C I y Hβ   (4.17) 

and posterior predictive covariance expressed as 

 

' 2 ' 2 1

1 2

2 1 1 ' ' 2 1

ˆ( , ) [ ( , ) ( ( ) ( ) ( ) )

( ( ) ) ( ( ) ( )( ( ) ( ) ) ]

T T

r r noise

T T T T

noise noise

c c h

h h

 

 

      −

− −    −

= + − +

 + − +

x x x x x t x C I H

H C I H x t x x C I H
  (4.18) 

With 2rc  given by 

 ' ' 2 1 '

2( , ) ( , ) ( ) ( ) ( )T

noisec c      − = − +x x x x t x C I t x   (4.19) 

 

In Figure 4.3, through five noisy observations ( [ 4, 3, 2, 1,1]T= − − − −x  , 

[0.7568, 0.1411, 0.9093, 0.8415,0.8415]T= − − −f  , 2, (0,0.05 )y f N = +  ), 

which gives the corresponding 5 sample GP functions drawn from GP posterior 

and the GPE also provides both a surrogate for the functions and plausible 

uncertainty bounds. It is worth noting that the observations are not interpolated 

anymore. 



 

54 

 

 

Figure 4.3 Five sample GP functions draw from GP posterior conditioned on five 

observations(noised). The light blue area indicates the 95% credible 

interval. 

 

4.3.2 Covariance parameter estimation 

In the procedure of specifying a particular GP prior in Eq. (4.2), the important 

quantity is the covariance matrix C   with ˆ( , ; )ij i jc =C x x  . The particular 

choice of covariance function determines the properties of the sample functions 

drawn from the GP prior (e.g. smoothness, amplitude, etc.). Therefore, selecting 

an appropriate covariance function in GPE for particular uncertainty quantification 

problems is important. In this chapter, two well known and widely used stationary 

covariances will be used and discussed. 

 

I. The squared exponential (SE) covariance 

The SE covariance function is the most used function in various fields (e.g. 

geostatistics, machine learning, etc.). It gives very smooth sample functions, which 

are infinitely differentiable 

 
2

' 2

2
( , ; ) exp( );  ={ , }

2
SE

r
c u u  


= −x x   (4.20) 

where 'r = −x x . The two hyperparameters  and u   govern the properties of 

sample functions. The term u  controls the typical amplitude and   controls the 

lengthscale of variation.  
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Figure 4.4 Eight sample GP functions with SE covariance (left) and the SE prior 

covariance matrix for equally spaced ordered points (right). 

 

The left plot in Figure 4.4 shows the 8 sample GP functions with SE covariance 

with the hyperparameter values 1u =   and 5 =  . It can be seen that the 

smoothness of the sample functions arises from the form of Eq. (4.20). Function 

variables close in input space are highly correlated, whereas far apart relative to 

the lengthscale   are uncorrelated. 

The structure of SE covariance can also be understood visually by plotting the 

values in the covariance matrix as colors shown on the right in Figure 4.4. The 

region of high covariance appears as a diagonal constant width band, which reflects 

the local stationary nature of the SE covariance. In addition, increasing the 

lengthscale   increase the width of the diagonal band and points further away 

from each other become correlated. 

A criticism about using SE covariance functions is that it may be unreasonable 

smooth for some realistic regression tasks due to its infinitely differentiable 

property. For this reason, many researchers prefer using Matérn class of covariance 

functions. 

 

II. The Matérn class of covariance  

The Matérn class of covariance functions can be expressed as follows 

 
1

' 2 2
( , ; ) ( 2 ) ( 2 );  ={ , }

( )

v

Mat v

r r
c u K u



    
  

−

=x x   (4.21) 

where 'r = −x x  . v   and    are positive parameters,    is gamma function, 

vK is the modified Bessel function of the second kind. In addition, the   controls 

[ 10,10]x −
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the degree of smoothness . 

In fact, for v =  , we regain the SE covariance function in Eq. (4.20). Especially, 

when 
1

2
v = , we have the Matérn class of covariance functions expressed as 

 ' 2

1/2

 C ( , ; ) exp( )Mat
v

r
ulim 

=

= −x x   (4.22) 

And, 
3

2
v =  we have the Matérn class of covariance functions expressed as 

 ' 2

3/2

3 3
 C ( , ; ) (1 )exp( )Mat

v

r r
ulim 

 =

= + −x x   (4.23) 

The Matérn covariance functions are isotropic and again hyperparameters u  and 

  control the amplitude and lengthscale, respectively. v  controls how smooth 

the sample functions are. 

The special case of 
1

2
v =   and 

3

2
v =   for Matérn prior covariance function 

shown in Figure 4.5 and Figure 4.6 using the the same values in amplitude and 

lengthscale of SE covariance in Figure 4.4. By comparing theses figures, we can 

see how much rougher functions the Matérn covariance functions can produce. 

 

 

Figure 4.5 Eight sample GP functions with Matérn (𝑣 =
1

2
) covariance (left) and 

the Matérn (𝑣 =
1

2
)  prior covariance matrix for equally spaced 

ordered points (right). 

 

 

[ 10,10]x −
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Figure 4.6 Eight sample GP functions with Matérn (𝑣 =
3

2
) covariance (left) and 

the Matérn (𝑣 =
3

2
) prior covariance matrix for equally spaced 

ordered points (right). 

 

Due to the fact that hyperparameters    which play an important role in the 

predictive capacity of the GPE, their accurate estimation is very important. In 

general, the optimal value   is taken as the one that maximizes Eq. (4.7), the 

natural logarithm of the likelihood is used to improve the stability [102], which 

results in the log-likelihood function 

 

2 2

1

2

In ( | , ) In(2 ) In( ) In(| |)
2 2 2

( ) ( )

2

T

n n n
f   



−

  = − − − 

− −
−

y β C

y Hβ C y Hβ
  (4.24) 

By substituting Eq. (4.10) and Eq. (4.11) into Eq. (4.24) yields the concentrated 

log-likelihood function in which constant terms are already removed 

 2 2ˆIn ( | , ) In( ) In(| |)
2 2

n n
f     − − y β C   (4.25) 

Eq. (4.25) is used in computational implementations of MLE to increase the 

efficiency of the procedure [103]. In order to maximize the log-likelihood function 

in Eq. (4.25), some direct search algorithms can be employed to search the optimal 

values of    such as Nelder-Mead simplex method [104], simulated annealing 

algorithm [105], genetic algorithm (GA) [106] and among others. The GA, which 

is an algorithm commonly applied in complex optimization problems, is employed 

in this implementation. 

 

[ 10,10]x −
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4.3.3 Surrogate model training 

Design and analysis of computer experiments [107] is about exploring optimal 

strategies in selecting a combination of predictive values, to determine the 

variation in the response of a dependent variable. Since the cost of running a 

simulator is likely to restrict the number of available evaluations, n  , the training 

samples should be chosen such that it explores the input space uniformly to make 

the training design to be space-filling in all dimensions. More details on the use of 

space-filling sampling plan can be found in [108]. 

Latin hypercube sampling (LHS) [109] is a statistical method for generating a near-

ranodm samples of parameter values from a multidimensional distribution, This 

method is applied in the thesis to efficiently explore the input space due to its 

space-filling property. This is because a good space-filling LHS produces samples, 

which are evenly spread on every dimension to make the corresponding projections 

approximately follow uniform distributions. 

 

 

Figure 4.7 The uniform random sampling technique with the number of data 

points n = 20. 
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Figure 4.8 The LHS technique with the number of data points n = 20. 

 

Figure 4.7 and Figure 4.8 show the uniform random sampling and the LHS 

strategies in terms of investigating individual variable ranges and samples 

distributions, which demonstrates the ability of the LHS to distribute the samples 

evenly along each dimension. 

Choosing the size of the training samples is another aspect of GPE training. 

Loeppky et al. [110] provided a criterion for the number of training samples, n  

is related to the dimensionality of the problem, d  as 10n d= . In the thesis, the 

training sample size is selected not only considering this kind of rule of thumb but 

also depending on the complexity of model construction. 

4.3.4 Diagnostics 

Due to some assumptions and additional uncertainties (e.g. inappropriate choice of 

estimation of parameters, inappropriate choice of correlation functions, etc.), the 

surrogate models might fail to construct an approximation to the output of the 
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simulator. Therefore, an emulator needs to be tested and validated. 

There exist some methods to provide complete diagnostics to help with assessing 

the quality of the GPE predictions [111]. A diagnostic used in the thesis, which 

utilizes complete information provided by the GPE is the set of individual 

prediction errors (IPE) expressed as 

 
( ) |

( ) |

i i

i

i

y
I









 −  
=

  

x y

x y
  (4.26) 

where ( ) |i   x y   and ( ) |i   x y   are the expectation and variance of the 

posterior predictive distributions of the surrogate model, respectively. For a 

reliable GP emulator, the IPE [111] should follow a Student-t distribution and 95% 

of validated points located in the interval  2,2−  . Using Eq. (4.26), the IPE 

distribution can be visualized and studied to detect problems with emulators and 

ensure that, the quality of the GPE is acceptable. 

In the following section, we are going to present an application of GPEs to a case 

of engineering reference. That is using GPEs to model the dynamic behaviors of 

steel skeleton reinforced concrete materials in the Split Hopkinson Pressure Bar 

test. 
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4.4 Analysis of steel skeleton reinforced concrete 

materials 

4.4.1 Background description 

In recent decades, increasingly severe challenges have arisen for modern concrete 

materials due to the construction of large-scale and complicated infrastructures, 

extreme service environments and multi-factor coupling actions [112, 113]. These 

facilities not only have to bear normal design loads (e.g. quasi-static loads, creep 

loads and among many others) but also may be exposed to short strong dynamic 

loads such as explosions and impacts under some extreme conditions. Therefore, 

investigations of the dynamic mechanical behavior of concrete are important and 

essential to provide valuable information about the structural designs. 

It is well known that dynamic concrete material properties are different from their 

quasi-static conditions. In the early stage of research for concrete, the effect of 

strain rate on its compressive strength is at first drawn researchers’ attention. 

Abrams [114] conducted concrete compression experiments at a strain rate 

42 10 / s −=    and 68 10 / s −=   . The results suggested the compressive 

strength of concrete has strain rate sensitivity property. Bresler and Bertero [115] 

used a hydraulic testing system to load the concrete specimens, the strain rate 

reached at 1/ s = . Hughes and Gregory [116] used drop weight impactor and its 

strain rate reached at 10 / s = . Watstein [117] conducted drop weight impactor 

tests to the cylindrical concrete specimen and found that in the range of strain rate 

at 10 / s = , the dynamic compressive strength went up about 70% . Malvern, et 

al. [118] conducted 76mm=   SHPB tests to concrete specimens and results 

suggest the dynamic compressive strength at a strain rate 118 / s =  , which is 

2.2   times larger to the value of static strength. A classical review of concrete 

material on dynamic behavior under high stain rate through various testing 

methods is given by Bischoff and Perry [119]. After that, the research into putting 

steel fibers as dispersed reinforcement for concrete (FRC) became popular since 

Roumaldi and Batson [120] first proposed the idea of combining steel fibers and 

concrete together. A classical review of the strain rate effects on FRC material 

properties by impact and impulsive loading is given by [121]. 

Most of the research on dynamic materials properties of FRC is based on 

experimental tests. The testing instruments include drop weight impactor [122], 
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Split Hopkinson Pressure Bar (SHPB) [123] and detonation of explosives. FRC 

was found to be more strain rate sensitive than concrete and made with higher 

fibers content supposed to show larger strain rate sensitivity. Brandt [124] studied 

many types of fibers including high modulus steel, glass, carbon and asbestos of 

different shapes and in general, through fibers addition, the compressive strength 

was increased. Xu, et al. [125] conducted drop weight impactor tests on concrete 

specimens with seven different types of fibers and conclude that the FRC with 

spiral-shaped steel fibers is performed better than any other six fiber types in terms 

of ultimate compressive strength, post failure strength and energy absorption 

capacity. The energy absorption ability of concrete is also affected by steel fiber 

volume fraction as the strain rate is higher than 100 / s . The experimental results 

of Sun et al. [126] indicated that the strain-rate strengthening effect of concrete is 

reduced with the increase of steel fiber volume fraction. Hou, et al. [127] and Li, 

et al. [128] investigated the dynamic compressive behavior of reactive powder 

concrete (RPC) with 2%  and 5%  steel fiber at the strain rate range from 75 / s  

to 274 / s   . It was concluded that the dynamic elastic modulus of concrete is 

sensitive to both steel fiber volume fraction and strain rate. Su, et al. [129] observed 

that the dynamic behavior of ultra-high-performance concrete containing 3%  

nanomaterial by weight has a strong dependency on the steel fiber. Soufeiani, et al. 

[130] summarized previous researches about the effect of steel fiber shape and 

volume fraction on the dynamic behavior of concrete. 

Despite the general literature review above, however, the research of steel skeleton 

reinforced concrete (SSRC), which is also considered as a very important 

engineering composite material, under impact loadings, is limited. In this section, 

a series of experimental tests are therefore processed to investigate mechanical 

properties of SSRC materials. Quasi-static and dynamic compression tests are 

carried out by using WWJ-2008B material testing machine and split Hopkinson 

pressure bar (SHPB) system, respectively.  

Three different longitudinal steel arrangements are considered: 0  , 3 3  , 3 4  , 

which have a volume fraction of steel 0% , 1.91%  and 2.94%  named Concrete, 

SSRC33, and SSRC34, respectively. For the dynamic compression tests, the SHPB 

tests achieve strain rate from 30 / s   to 100 / s  . The stress/strain equilibrium is 

examined. In addition, the strain rate sensitivity on the compressive strength and 
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Young’s modulus is discussed. The dynamic increase factor (DIF) for compressive 

strength and Young’s modulus relations for SSRC specimens are constructed 

probabilistically through Gaussian process emulation (GPE) in Bayesian 

framework. 

4.4.2 Experimental program 

All specimens are designed to have a dimension of 75 35mm=   ( /L D  is 0.5) 

which is proposed by Bertholf and Karnes [131] to eliminate the effects of the axial 

inertia in high-speed impact tests. Moreover, in all tests, grease is spread at both 

sides of specimens in order to minimize the end friction confinement due to the 

interaction between the specimen and instruments. For the arrangement of steel 

skeletons, the longitudinal steel is all 25mm  in length and arranged in a stratified 

array, the transverse steel adopts two layers of the orthogonal arrangement, the 

space between the layers is 15mm , the diameter of steel is 2mm , which is shown 

in Figure 4.9. 

 

 

Figure 4.9 Steel skeleton arrangement with SSRC33 (left) and SSRC34(right). 

 

The cement used to prepare the specimens is the ordinary Portland cement, the 

maximum coarse aggregate is 10mm , the detailed mixtures for concrete are given 

in Table 4.1. All specimens are designed to have a dimension of 75 35mm=   

( /L D  is 0.5) and mixed into steel molds and ensure all the steel skeletons are not 

exposed to air. The specimens are being carefully cured for 24   hours after 

demolded and then placed into normal temperature water for 28   days curing. 

After 28  days, both end surfaces of specimens were smoothed, dried and tested. 

A total number of 60  specimens were prepared for quasi-state and SHPB tests, 

2 x 13 mm

steel

3 x 13 mm

steel
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with 20  specimens for Concrete, SSRC33, SSRC34, respectively. The prepared 

specimens and a typical steel skeleton of 3 3   are shown in Figure 4.10. The 

relations of longitudinal steel array and volume fraction of steel are given in Table 

4.2. 

 

 

Figure 4.10 Steel skeleton (left) and the specimens (right). 
 

Table 4.1 Mix proportions of specimens 

Mixes 
(%)  W/C 

fV  

(%)   

Mix proportions 3( / )kg m   

Water Cement 10mm   7mm  5mm  sand  

Concrete 0.36  0  200  556.2  567.1 425.25  141.95  509.6  

SSRC33 0.36  1.91 200  556.2  567.1 425.25  141.95  509.6  

SSRC34 0.36  2.94  200  556.2  567.1 425.25  141.95  509.6  

W/C: Water to cement ratio. 

fV : Volume fraction of steel. 

 

 

Table 4.2 Longitudinal steel ratio 

Longitudinal steel array 
fV (%)  

Concrete 0  

SSRC33 1.91 

SSRC34 2.94  

fV : Volume fraction of steel. 

 

The quasi-static compression tests were conducted by using WWJ-2000B material 

test machine at national high-speed railway construction technology laboratory in 

the Central South University (CSU) in China in 2015 shown in Figure 4.11. The 

WWJ-2000B material test machine used a closed circuit electro-hydraulic system 

to make sure the load could be compensated quickly to guarantee the whole testing 

Steel Skeleton 3X3

Specimens
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process stable. The vertical loads and displacement versus time were recorded by 

the data processing system. In each test, the grease was spread on the interfaces 

between specimens and instruments to minimize the influence of friction. 

 

 

Figure 4.11 Quasi-static compression experiment instruments. 

 

The dynamic impact compression tests were conducted by using the SHPB test 

system at the Hefei University of Technology in China in 2015. Its setup is shown 

in Figure 4.12.  

The SHPB system was a variable cross-section type test system with 74mm= . 

The striker bar had a diameter of 37mm=  and length of 800mm , the incident 

bar was a variable cross-section bar, the large side had a diameter of 74mm=  

and the small side had a diameter of 37mm= . The transition length from small 

side to large side was 420mm , the overall length of the incident bar was 3061mm  , 

the length of the transmission bar was 1797mm  with a diameter of 74mm= . 

 

 

Data process 

system

Dynamic strain 

indicator

specimen

Material test machine
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Figure 4.12 SHPB dynamic compression experiment instruments. 

 

Before doing SHPB tests, a waveform shaper was used, which had the power to 

initiate a half-sine loading waveform which could eliminate violent oscillation and 

dispersion is illustrated in Figure 4.13. The strain gauges were placed at the middle 

surface of incident and transmission bars. The bars were made of stainless steel 

with density 37850 /kg m  , Young’s modulus 210GPa   and Poison’s ratio 0.25  . 

The elastic wave velocity were 5172 /m s . In order to eliminate errors as much as 

possible, each specimen was carefully prepared by smoothing and grinding to 

guaranty both two sides were parallel. Moreover, the roughness on surfaces was 

controlled to be less than 0.02mm . A typical signal from SHPB tests can be seen 

in Figure 4.13. In the tests, even with the help of waveform shaper, it is hard to 

find a relative stability region used as an average strain rate when the peak value 

in stress history is used. This is caused by different sources of uncertainty such as 

tested materials, geometrical properties et al [133]. Under these conditions, the 

value of strain rate was chosen by the peak stress (compressive strength). 
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Figure 4.13 The representative signals of SSRC34 from SHPB experiment 

measured at the strain gauge in Figure 4.12. 
 

4.4.3 Experiment results analysis 

(1) Quasi-static compression tests 

The typical results of Concrete, SSRC33, and SSRC34 under quasi-static loadings 

are given in Table 4.3. It is obvious that the compressive strength is improved when 

the steel skeletons are being inserted into the plane concrete specimens. 

 

Table 4.3 Material properties in Quasi-static condition 

 Dry density 
3( / )kg m   

Compression 

strength ( )MPa   

Young’s modulus 

( )GPa   

Concrete 2250   47.52  31.44  

SSRC33 2279  54.68  32.35  

SSRC34 2293  56.03  32.76  

 

(2) SHPB compression tests 

The SHPB compression tests were conducted for the specimens: Concrete, 

SSRC33, and SSRC34. The computation is based on one-dimensional stress wave 

propagation theory. Eq. (4.27) was used to calculate the stress, strain and strain 

ratio of specimens [133]. 
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where E , A  are Young’s modulus and cross-section area of pressure bars. sA  and 

sl  are the cross-section area and length of test specimens. ( )i t  and ( )t t  are the 

measured incident and transmitted strain data. 0C  is the elastic wave velocity of 

pressure bars. 

During the SHPB tests, the longitudinal strain/stress equilibrium has to be achieved 

[134]. Eq. (4.28) is used to check the dynamic strain/stress equilibrium. In addition, 

Figure 4.14 gives an example of signals taken from SSRC33 for strain/stress 

equilibrium checkout. The time lags have already been moved for clear comparison. 

For each test, the strain/stress equilibrium status must be achieved which means 

the results of SHPB impact compression tests are proved to be validated. 

 ( ) ( ) ( )i r tt t t  + =   (4.28) 

 

Figure 4.14 Strain/stress equilibrium verification of SSRC33. 

 

Figure 4.15 shows the typical stress-strain curve of all specimens at 35 / s = . 

Generally, the maximum compressive stress is largely enhanced by the insertion 

of specific steel skeletons. 
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Figure 4.15 Typical stress-strain curves at 35 / s =  for Concrete, SSRC33 and 

SSRC34. 

4.4.4 Strain rate effects and GP emulation of DIFs on 

compressive strength and Young’s modulus 

The effect of strain rate on compressive strengths of all specimens is illustrated in 

Figure 4.16 The dynamic increase factor (DIF) for compressive strength is 

calculated by the dynamic compressive strength normalized by the average static 

compressive strength of the same type of specimen listed in Table 4.3. 

 

Figure 4.16 DIFs for compression strength (Concrete-15 points (specimens), 

SSRC33- 15 points (specimens) and SSRC34-15 points (specimens) 

taken from Table 4.4-4.6). 

Moreover, the DIF results of all specimens for compressive strength and Young’s 

modulus are listed from Table 4.4 to Table 4.6. In Figure 4.16, it is obvious that 

the compressive strength of all specimens is sensitive to strain rate. Compared with 



 

70 

 

the scatter values of DIF on Concrete specimens, the SSRC33, SSRC34 show a 

similar strain rate sensitivity trend and indicate more strain rate sensitive than the 

Concrete under SHPB tests. 

Table 4.4 DIFs summary for Concrete 

 
Strain rate (1/ )s  

DIFs for 

compressive 

strength 

DIFs for Young’s 

modulus 

1 31 10−   0.98 0.99 

2 38.21 1.10 1.03 

3 39.66 1.14 0.98 

4 41.05 1.12 1.03 

5 46.32 1.18 1.01 

6 46.78 1.21 1.00 

7 47.40 1.19 1.02 

8 50.27 1.22 1.04 

9 51.66 1.34 1.06 

10 53.07 1.28 1.04 

11 70.11 1.41 1.08 

12 72.67 1.43 1.07 

13 73.06 1.47 1.09 

14 90.12 1.52 1.11 

15 91.67 1.49 1.10 

The effect of strain rate on Young’s Modulus of all specimens is illustrated in 

Figure 4.17. The dynamic increase factor (DIF) for Young’s Modulus is calculated 

by Young’s Modulus under dynamic compression normalized by the average static 

Young’s Modulus of the same type of specimen listed in Table 4.3. In Figure 4.17, 

the DIFs for the SSRC33 and SSRC34 are higher than Concrete and seem to follow 

a similar trend compared to Concrete. 

 

Figure 4.17 DIFs for Young’s modulus(Concrete-15 points (specimens), SSRC33- 

15 points (specimens) and SSRC34-15 points (specimens) taken from 

Table 4.4-4.6). 
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Finding the best-fit DIF relations for the compressive strength and Young’s 

modulus of SSRC specimens with different steel skeletons is important. Because 

these relations can be used to estimate DIFs of SSRC materials in numerical 

prediction of SSRC structure responses to other untested high-rate loadings. 

Researchers such as Xu Z, et al. [136], Y. Hao, et al. [137] used deterministically 

polynomial fitting techniques to do the curve fitting. However, these 

methodologies are limited in the sense that, being deterministic, are unable to 

account for the uncertainty present in the experiment and due to the fact that it is 

expensive to run such experiments.  

Table 4.5 DIFs summary for SSRC33 

 
Strain rate (1/ )s  

DIFs for 

compressive 

strength 

DIFs for Young’s 

modulus 

1 31 10−   0.99 1.01 

2 34.14 1.17 1.18 

3 34.99 1.20 1.19 

4 36.07 1.24 1.16 

5 42.31 1.30 1.20 

6 42.54 1.29 1.24 

7 43.66 1.34 1.26 

8 50.18 1.42 1.27 

9 50.66 1.40 1.30 

10 52.17 1.44 1.31 

11 71.62 1.52 1.33 

12 72.03 1.54 1.30 

13 73.44 1.51 1.35 

14 81.41 1.64 1.36 

15 82.07 1.62 1.34 

 

Table 4.6 DIFs summary for SSRC34 

 
Strain rate (1/ )s  

DIFs for 

compressive 

strength 

DIFs for Young’s 

modulus 

1 31 10−   1.00 0.98 

2 32.99 1.22 1.27 

3 34.66 1.25 1.31 

4 35.77 1.29 1.30 

5 40.12 1.32 1.29 

6 41.33 1.37 1.32 

7 44.62 1.40 1.33 

8 55.16 1.47 1.35 

9 55.77 1.43 1.32 

10 57.03 1.45 1.34 

11 72.11 1.50 1.44 
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12 73.66 1.54 1.46 

13 75.03 1.51 1.42 

14 84.19 1.66 1.48 

15 86.75 1.72 1.49 

 

GPE described in detail in section 4.3 is a modelling process based on statistical 

learning theory which has drawn a growing interest in solving uncertainty 

quantification problems, computationally intensive problems in various fields such 

as climate prediction [138], deterministic structural dynamics [139], stochastic 

structural dynamics [140], test crash modelling [141] and among many others.  

Since the training process is done not by running a numerical model, but by 

observing experiments datasets, then a noise term has to be added to the covariance 

matrix C  in Eq. (4.6), which described in detail in section 4.3, The GPE is then 

constructed based on the measurements to train with the SE covariance functions. 

In addition, in order to train the GP emulator, 10 measured points were selected 

across the input domain according to J. Loeppky, et al. [110] who justify that the 

number of measured training points, n  , that is required related to the 

dimensionality of the problem d  and a practical rule is that n  should be about 

10n d= . 

The GPEs for DIF relations to the compressive strength and Young’s modulus of 

the plane Concrete, SSRC33 and SSRC34 are constructed described in section 4.3. 

The GP predictive mean curves and corresponding predictive 95% confidence 

intervals of all specimens for compressive strength and Young’s modulus are 

shown in Figure 4.18, Figure 4.20, and Figure 4.22. 

For a reliable GP emulator, the IPE [111] should follow a Student-t distribution 

and 95% of validated points located in the interval  2,2− . The IPE is used to 

validate the GPE. Figure 4.19, Figure 4.21 and Figure 4.23 show IPEs of all 

specimens for compressive strength and Young’s modulus with only 5 points to 

validate since making such experiments is expensive. It can be observed that the 

validated points lie in the desired region, which illustrates the well-trained GPE 

could be used to estimate DIFs of SSRC in numerical prediction of SSRC structure 

responses to other different impact loadings. It is also worth noting that obtaining 

more validation points means conducting more experiments, which is expensive. 
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Figure 4.18 GP emulation of DIFs for compressive strength (left) and Young’s 

modulus (right) in Concrete (10 specimens used for training). 

 

Figure 4.19 IPE of Concrete for compression strength(left) and Young’s modulus 

(right) (5 validation specimens). 

 

Figure 4.20 GP emulation of DIFs for compressive strength (left) and Young’s 

modulus (right) in SSRC33 (10 specimens used for training). 

 

Figure 4.21 IPE of SSRC33 for compression strength (left) and Young’s modulus 

(right) (5 validation specimens). 
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Figure 4.22 GP emulation of DIFs for compressive strength (left) and Young’s 

modulus (right) in SSRC34 (10 specimens used for training). 

 

Figure 4.23 IPE of SSRC34 for compression strength(left) and Young’s modulus 

(right) (5 validation specimens). 

 

4.4.5 Discussion 

Section4.4 presents some useful results from quasi-static and SHPB tests for three 

types of specimens: Concrete, SSRC33, and SSRC34. The plain Concrete 

specimens are regarded as control samples for comparison. It is observed that 

under quasi-static tests, the compressive strength is improved from Concrete to 

SSRC34. For SHPB tests, a typical stress-strain curves of all specimens at certain 

strain rate indicates that the maximum compressive stress are largely enhanced by 

the insertion of steel skeletons compared to the plain concrete. The GPE is 

employed to obtain the relations of DIFs for compressive strength and Young’s 

modulus from different strain rates. The well-trained GPE is validated by 

individual prediction errors (IPE) diagnostics. In addition, DIFs of the compressive 

strength and Young’s modulus show increasing rate sensitivity to strain rate from 

Concrete to SSRC34. More experimental tests are suggested to conduct in the 

future to have more validation points to validate the trained GPE and considering 

other kinds of arrangements of steel skeletons in order to have a more 
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comprehensive understanding of the dynamic mechanical behaviors of this 

composite material is also recommended. 

4.5 Chapter summary 

This chapter gives an introduction of surrogate modeling techniques (emulation). 

The theory behind GPE and the relevant notations are discussed in detail. The 

procedure of construct the GPE considering the noise-free observations and noised 

observations, respectively are given and discussed. 

The GPEs introduced in this chapter, are the most important ingredient in the 

uncertainty quantification analysis performed in this thesis. The analysis of SSRC 

materials under quasi-static tests and SHPB tests is discussed. The GPEs are 

employed to obtain the relations of DIFs for compressive strength and Young’s 

modulus from different strain rates under impact loadings. In the following chapter 

5, the computational efficient Gaussian processes are built based on the standard 

GPE described in this chapter. In addition, the GPEs are also used in chapter 6 to 

carry out model updating using the modular Bayesian approach. 
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5 Sparse Gaussian process emulation 

5.1 Computational efficiency Gaussian processes 

It is a problem particularly apparent in the structural dynamics and engineering 

field where relatively large datasets are available. When processing the large 

datasets, applying the full GPE can be computationally challenging. This is due to 

the following. The full procedure of GPE construction consists of two stages which 

called training and prediction. For the hyperparameters’ estimation using Eq. 

(4.24) in the training stage, each search computation requires the inversion of the 

covariance matrix 
2

C Inoise +   and hence cost will be scaled as 3( )N  where 

N  is the number of data points. In addition, in the prediction stage for test points, 

the prediction cost will be scaled as 2( )N . 

In fact, the reason for both the GPE training and prediction stage to be prohibitively 

expensive is due to the poor scaling when N  is large. The poor scaling is caused 

by the nonparametric nature of the Gaussian process itself. In the past decades, 

some research was done that attempts to address the computational problem by 

developing efficient approximations to the full GPs. An overview of this is given 

in this section. 

5.2 Sparse Gaussian process approaches 

5.2.1 Subset of data 

When facing big datasets, the most desirable way to reduce the complexity may be 

to design a method or criterion in order to discard the data we cannot afford to 

process. When data is redundant, most of the available information can be obtained 

in some selected subset. 

In fact, if all the data points are equally informative, this kind of subset can be 

selected randomly, but there is usually an advantage to more sophisticated selection 

techniques. Several greedy selection criteria have been proposed, such as 

informative vector machine [142] and information Gain [143]. In both cases, 

samples added into the subset are chosen to maximize some measure of the 
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information held into it, e.g. a differential entropy score for subset information. 

The sample selection does not increase the overall computational complexity of 

sparse regression due to the relevant matrices are incrementally grown using low-

rank updates. 

5.2.2 The Nystrom method 

Using the Nystrom method for efficient Gaussian process regression was proposed 

by Williams and Seeger [144]. A few columns of the covariance matrix are used to 

approximately obtain its eigenvectors and eigenvalues, which are in turn used to 

reconstruct the full matrix. The low-rank approximation to the covariance matrix 

is expressed as 

 
1 T

m mm m   

− =C L C C C   (5.1) 

where m  are called inducing variables. For the Nystrom  method, m  is a subset 

of   with size M N . The set of inputs X X  corresponding to m  is called 

the active set. The 
mC  refers to the covariance matrix between the elements from 

  and m . 

Replacing C   with low-rank matrix L   in the Eq. (4.17) and Eq. (4.18), 

makes the training be performed as scaled as 2( )M N  and predictions for new 

test samples are scaled as ( )N  for the mean and ( )MN  for the variance. But 

it is worth noting that this is a numerical approximation with no probabilistic 

foundation and can produce meaningless results. The effective joint prior for 

training and test dataset is  

 
*

* *

* ***

( , | , ) ( | 0, )p N
 




 



  
=   

   

L C
x x

C C
  (5.2) 

where the exact prior covariance for the training dataset has been replaced with the 

Nystrom method, whereas the remaining prior covariances are kept exact. Doing 

so yields an inconsistent joint probability distribution whose prior covariance is 

not even guaranteed to be positive definite. The approximate posterior cannot be 

regarded as GP and absurd results such as negative predictive variances can occur. 

5.2.3 Sparse pseudo-input Gaussian processes 

The sparse pseudo-input Gaussian processes (SPGP) model was introduced by 
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Snelson and Ghahramani [145]. One of the novelties of this model is the constraint 

that the samples of an active set, which are also called pseudo-inputs, must be 

selected among the training datasets is relaxed. This allows both pseudo-inputs and 

hyperparameters to be selected in a joint continuous optimization and increase 

flexibility. 

The key idea of SPGP is to augment the existing training datasets with a noiseless  

pseudo datasets { , }m m=D X   with pseudo inputs  1, , M=X x x   and pseudo 

outputs  1, , Mm m m=  ( )M N  and assume that all the latent variables are 

conditionally independent given the pseudo datasets. By performing a gradient-

based optimization, the covariance matrix of the full Gaussian process regression 

model is parameterized by the locations of M  pseudo input points. This kind of 

sparse approximation is equivalent to a standard GP with covariance function 

expressed as 

 ' '

' 1 ' '( , ) ( ) ( )(1 ) ( , )T

SPGP SPGP m mm mc c C c −= = − +
xx xx

x x t x t x x x   (5.3) 

where Kronecker delta '
xx

 equals one if 
'=x x  and zero otherwise. 

The prediction equations can be expressed as 
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  
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
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  (5.4) 

where 
1 2diag( )T

m m   −= − +y yΛ C C Λ C I . 

The computational complexity for the training stage is scaled as 2( )NM  and 

prediction stage scaled as 2( )M  for SPGP. This approach turns the inducing 

inputs into additional hyperparameters, which can increase flexibility when we fit 

the data, but it can also lead to overfitting since the approximate marginal 

likelihood is not a lower bound when we optimize with respect to all unknown 

hyperparameters. 

5.3 Variational sparse Gaussian process emulation 

The variational sparse Gaussian process (VSGP) model is used and implemented 

in the thesis, which is built on the notion of VSGP method proposed by Titsias 

[146]. This method is also closely related to the techniques described in [147, 148]. 



 

80 

 

The key property of this method is that the inducing inputs are defined to be 

variational parameters which are selected by minimizing the Kullback-Leibler (KL) 

divergence, as detailed in Appendix B, between the variational distribution and the 

exact posterior distribution over the latent function values. 

Defining mf  as the vector of true function values at the sparse points in mX , a 

prior ( , )mp f f  and likelihood ( | , )mp y f f  gives the posterior expressed as 

 
( | , ) ( , )

( , | )
( )

m m
m

p p
p

p
=

y f f f f
f f y

y
  (5.5) 

Utilizing the optimum choice of mf  lead to ( | , ) ( | )m mp p=y f f y f , Eq. (5.5) is 

also expressed as 
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p p
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f f f y f f
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  (5.8) 

 ( | ) ( | )m mp p= f f f y   (5.9) 

Using variational inference, as detailed in Appendix C, to select a variational 

distribution ( , )mQ f f   we try to minimize the KL divergence between ( , )mQ f f  

and the posterior ( , | )mp f f y . 

Noting that minimizing 

 ( ( , ) ( , | ))m mKL Q pf f f f y   (5.10) 

is equivalent to maximizing 
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( , ) log  
( , )
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m m
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p
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f f y
f f f f

f f
  (5.11) 

Then enforcing the factorization property of ( , ) ( ) ( | )m m mQ p=f f f f f , we have 
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f f f y f f f
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f f y f f

  (5.12) 

Using Gaussian distribution identities, as detailed in Appendix A, the ( | )mp f f  is 

given by 

 1 1( | ) ( ; , )m nm mm m nn nm mm mnp N − −= −f f f C C f C C C C   (5.13) 
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and logG  can be expressed as [8] 

 1 2 1

2

1
log log( ( ; , )) ( )

2
nm mm m nn nm mm mnG N Tr



− −= − −y C C f I C C C C   (5.14) 

Eq. (5.12) can also be expressed as 
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Then reverse Jensen’s inequality, as detailed in Appendix D, to maximize with 

respect to ( )m f , we can finally calculate a low bound on L  

 2 1 1

2

1
log ( ;0, ) ( )

2
lb nm mm mn nn nm mm mnL N Tr



− − = + − − y I C C C C C C C   (5.16) 

The quantity in Eq. (5.16) is computed as scaled as 2( )NM  for training and 

2( )M   for prediction. The inducing inputs are defined by minimizing KL 

divergence between a variational Gaussian process and the true posterior Gaussian 

process, which allows avoiding overfitting and to rigorously approximate the exact 

GP by minimizing a distance between the sparse model and the exact one. 

The selection of the inducing inputs and hyperparameters can be achieved using a 

variational EM (Expectation-Maximization) algorithm [149] where at the E step 

we greedily select the inducing inputs from the training data and at the M step we 

update the hyperparameters. 

5.4 Benchmark studies 

In this section, two numerical examples are provided to illustrate the application 

of VSGP emulation in this research. 

5.4.1 An illustrative example of one dimension  

In this numerical example, we suppose that we have a training dataset 

( )
1

,  where 100
n

i i i
x y n

=
= , which has the noisy realizations of the latent function 

sin( )f x x=  . Therefore, each scalar value iy   can be expressed by adding a 

Gaussian noise term to ( )f x   at input ix  (i.e. i i iy f = +   where 

2(0,0.2 )i N ). 
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Figure 5.1 presents the standard (full) GPE of the latent function sin( )f x x= by 

the training datasets shown as red dots. The gray area is the 95%   predictive 

confidence interval and the black line indicates the predictive mean values of the 

GPE.  

 

 

Figure 5.1 The standard Gaussian process emulation of latent function with f =
x sin( x). 

 

As described in detail in the section 5.2.3  for the VSGP emulation, we try to 

select inducing variables ( )m n  between  2,9−  to construct the GP emulator, 

which has the ability to replace the standard GP emulator with approximately the 

same behaviors for predictions at untrained data points. In Figure 5.2, as a result, 

only 10  sparse inducing variables are selected to construct the VSGP emulator 

shown in green dots. The 95%   predictive confidence intervals and predictive 

mean values of standard GP emulation and VSGP emulations are represented by 

color with black and blue, respectively. 
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Figure 5.2 The variational sparse Gaussian process emulation versus standard 

Gaussian process emulation of latent function with f = x sin( x). 

In addition, in order to explore the degree of approximation between the standard 

GP emulator and VSGP emulator, one quantitative performance measure called the 

predictive standard deviation diagnostics is used. In Figure 5.3, it is obvious that 

the values of predictive standard deviation for the standard GP emulator and VSGP 

emulator in  2,9−  are getting the closest. But this value is overestimated outside 

the support of inducing variables. 

 

Figure 5.3 The predictive standard deviation diagnostics for VSGPE (Blue) and 

standard Gaussian process emulation (Black) (both models are 

obtained through training and prediction). 
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5.4.2 An illustrative example of two dimensions  

In the following example, we assume that the explicit form of input-output 

mapping is not known and it is considered as a ‘Black-box’ model. In fact, Black-

box models are ubiquitous in engineering (e.g. FE model solvers, computational 

fluid dynamics tools, climate models and among many others). In this case, only 

the mapping of inputs 75 2X , and outputs 75 1Y  are available. Figure 5.4 

shows the standard GPE of the ‘Black-box’ model with the mapping relations of 

inputs and outputs for the response surface. In addition, the corresponding contour 

figure with 75  training points and the predictive standard deviation diagnostics 

are given in Figure 5.5. The value of negative log marginal likelihood (nlml) to 

training datasets, which is employed as another quantitative performance measure, 

is 91.5294 . 

 

 

Figure 5.4 The standard Gaussian process emulation of underlying function 

treated as ‘Black-box’ model for response surface. 
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Figure 5.5 Contour display (left) and predictive standard deviation diagnostics 

(right) for standard GP emulation. 

 

In Figure 5.6, the response surface of the ‘Black-box’ model is constructed using 

the VSGP emulation with 15 sparse inducing variables. The contour display is 

given on the left in Figure 5.7 with 15  sparse inducing points in blue dots. it seems 

that there are not many differences for the response surface constructed by the 

standard GP model and VSGP model with 15 sparse inducing variables, 

respectively. But if we compare the predictive standard deviation diagnostics 

figure shown on the right in Figure 5.7 to the same index by standard GP emulation 

shown on the right in Figure 5.5, they do have big differences, which indicates a 

bad VSGPE to be built. In addition, the value of nlml is 93.1725, a relatively large 

deviation from the value by standard GP emulation. As a consequence, the 

constructed VSGP emulator by 15 sparse inducing variables cannot be used to 

replace the standard GP emulator for the response surface of the ‘Black-box’ model. 

 

 



 

86 

 

 

Figure 5.6 The VSGP emulation of underlying function treated as ‘Black-box’ 

model for response surface with 15 sparse inducing variables. 

 

 

Figure 5.7 Contour display (left) and predictive standard deviation diagnostics 

(right) for VSGP emulation with 15 sparse inducing variables. 

 

As described in detail in section 5.3, therefore, we increase the inducing inputs 

begins from 15 sparse points in the training data to build VSGPE. In Figure 5.8, 

the response surface of the ‘Black-box’ model is constructed using the VSGP 

emulation with 19 sparse inducing variables. The contour display is given on the 

left in Figure 5.9 with 19  sparse inducing points in blue dots. it seems that the 

response surface constructed by the standard GP model and VSGP model with 19 

sparse inducing variables respectively are almost the same. In addition, there are 

also not big differences for figures of predictive standard deviation diagnostics by 

the standard GP emulator and VSGP emulator with 19 sparse inducing variables, 

1x
2x
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respectively. The value of nlml is 91.5677 compared with 91.5294 by standard GP 

emulator. As a result, this well constructed VSGP emulator by 19 sparse inducing 

variables can be used to represent the standard GP emulator for the response 

surface prediction of the ‘Black-box’ model.  

 

 

Figure 5.8 The VSGP emulation of underlying function treated as ‘Black-box’ 

model for response surface with 19 sparse inducing variables. 

 

 

Figure 5.9 Contour display (left) and predictive standard deviation diagnostics 

(right) for VSGP emulation with 19 sparse inducing variables. 
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5.5 The DLR AIRMOD structure 

5.5.1 Background description 

Applying Bayesian FE model updating framework, as detailed in chapter 3, 

combined with the surrogate model techniques, as detailed in chapter 4 and 5, to 

the DLR-AIRMOD experimental structure is analyzed in this section. The DLR-

AIRMOD structure is a replica of GARTEUR SM-AG19 benchmark, proposed by 

Balmes, et al. [150] and described in detail in references [151, 152]. This structure 

consists of 6   beam like components which are connected to each other with 

bolted joints shown in Figure 5.10. 

 

( )a  

 

      ( )b             ( )c              ( )d              ( )e  

Figure 5.10 DLR-AIRMOD structure (a) and beam joints (b)-(e) [152]. 

 

The modes used in model updating were the lower modes with simpler shapes 

shown in Figure 5.11. In order to assess the variability in the measured data, a 

1p

2p

3p

4p

5p

6p 7p

8p

9p

10p

11p

12p

13p

14p
15p

16p

17p 18p
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series of modal tests are carried out with the bolted joints disassembled and 

reassembled 130  times, producing a maximum of 260  modal test datasets from 

single point excitation at two locations at 626z  and 627y  shown in Figure 5.12. 

  

   Mode 1: RBM Yaw     Mode 2: RBM Roll     Mode 3: RBM Pitch  

  

  Mode 4: RBM Heave     Mode 5: 2n Wing        Mode 6: 2n Wing  

                            Bending                Bending   

  

Mode 7: Anti-symm     Mode 8: Symm Wing    Mode 10: 4n Wing 

      Wing Torsion          Torsion               Bending   

 

  

   Mode 11: 1n Wing     Mode 12: 2n Wing     Mode 14: VTP Torsion  

         Force-Aft             Force-Aft 

 

Mode 19: HTP Bending    Mode 20: HTP Force-Aft 

Figure 5.11 Mode shapes used in model updating [152]. 

 

 

file:///e:/Promotion/AIRMOD_smu/EMA/PICS/gif_DLR_logo/01%20-%20A-C%20Yaw.gif
file:///e:/Promotion/AIRMOD_smu/EMA/PICS/gif_DLR_logo/02%20-%20A-C%20Roll.gif
file:///e:/Promotion/AIRMOD_smu/EMA/PICS/gif_DLR_logo/03%20-%20A-C%20Pitch.gif
file:///e:/Promotion/AIRMOD_smu/EMA/PICS/gif_DLR_logo/04%20-%20A-C%20Heave.gif
file:///e:/Promotion/AIRMOD_smu/EMA/PICS/gif_DLR_logo/05%20-%202nWingBending.gif
file:///e:/Promotion/AIRMOD_smu/EMA/PICS/gif_DLR_logo/06%20-%203nWingBending.gif
file:///e:/Promotion/AIRMOD_smu/EMA/PICS/gif_DLR_logo/07%20-%20WingTorsionAnti.gif
file:///e:/Promotion/AIRMOD_smu/EMA/PICS/gif_DLR_logo/08%20-%20WingTorsionSym.gif
file:///e:/Promotion/AIRMOD_smu/EMA/PICS/gif_DLR_logo/10%20-%204nWingBending.gif
file:///e:/Promotion/AIRMOD_smu/EMA/PICS/gif_DLR_logo/11%20-%201nWingForeAft.gif
file:///e:/Promotion/AIRMOD_smu/EMA/PICS/gif_DLR_logo/12%20-%202nWingForeAft.gif
file:///e:/Promotion/AIRMOD_smu/EMA/PICS/gif_DLR_logo/14%20-%20VtpTorsion.gif
file:///e:/Promotion/AIRMOD_smu/EMA/PICS/gif_DLR_logo/19%20-%202nHtpBending.gif
file:///e:/Promotion/AIRMOD_smu/EMA/PICS/gif_DLR_logo/20%20-%20HtpForeAft.gif
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              ( )a                               ( )b                    

Figure 5.12 The finite element model and exciter locations of the AIRMOD 

structure [152]. 

 

The modal test results in statistics used for model updating with lower modes are 

shown in Table 5.1. From 130 samples, sample 82 was identified as an outlier 

which could be detected by a frequency drop for all extracted modes of that sample. 

Furthermore a system change took place between sample 43 and 44 resulting in a 

frequency shift of the first bending mode. The exact reason for this effect could not 

be determined because the data analysis was not conducted immediately after 

acquiring the time data. Therefore, 86 samples starting with sample 44 to 130  

could be used. Nevertheless, some modes have been identified less than 86 times 

which is due to the automatic identification and correlation process. Govers, et al. 

[153] demonstrate the manufacturing variability is not reducible and should be 

categorized to the aleatory uncertainty for model updating. This subject has also 

attracted great attention described by Simoen, et al. [154] for damage assessment. 

 

Table 5.1 Statistics of identified frequency 

Mode Description ( )meanf Hz  ( )stdf Hz  (%)CoVf  Samples 

1 RBM Yam 0.23 0.006 2.41 41 

2 RBM Roll 0.65 0.019 2.89 81 

3 RBM Pitch 0.83 0.017 1.99 83 

4 
RBM 

Heave 
2.17 0.024 1.11 86 

5 
2n Wing 

Bending 
5.50 0.004 0.07 86 

6 
3n Wing 

Bending 
14.91 0.017 0.12 86 

7 

Wing 

torsion 

(anti) 

31.96 0.020 0.06 86 
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8 

Wing 

torsion 

(symm) 

32.33 0.017 0.05 86 

10 
4n Wing 

Bending 
43.89 0.015 0.03 86 

11 
1n Wing 

force-aft 
46.71 0.149 0.32 86 

12 
2n Wing 

force-aft 
51.88 0.012 0.02 86 

14 
VTP 

Torsion 
65.93 0.274 0.42 86 

19 
2n HTP 

bending 
205.89 1.023 0.50 86 

20 
HTP force-

aft 
219.07 1.663 0.76 86 

 

The FE model of AIRMOD shown in Figure 5.12 is built in MSC/NASTRAN 

consists of a variety of element types described in detail in Table 5.2. The selected 

parameters, both mass, and stiffness are listed in Table 5.3. The mass parameters 

8 13(  to )p p  are represented to the position of cable bundles, screws, and glue after 

each reassembly of the AIRMOD structure. The stiffness parameters are divided 

into two groups, namely support stiffness 1 5(  to )p p   and joint stiffness 

6 7 14 18( ,  and  to )p p p p  . These selected updating parameters are chosen after a 

detailed sensitivity analysis in [152]. 

 

Table 5.2 Details of Finite element model 

Element type Number 

CHEXA 1440 

CPENTA 6 

CELAS1 561 

SMASS1 55 

CONM2 18 

CROD 3 

 

 

Table 5.3 List of updating parameters 

 Type Location Description Init. Val Unit 

1p   Stiffness 
Front bungee 

cord 

Elastic 

modulus 
1.80E+03 2/N m   

2p  Stiffness 
Rear bungee 

cord 

Elastic 

modulus 
7.50E+03 2/N m  
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3p  Stiffness 
VTP/HTP 

joint 

Sensor 

cable 

arness-y 

dirn 

1.30E+02 /N m  

4p  Stiffness 
Wing/fuselage 

joint 

Sensor 

cable 

arness-y 

dirn (top) 

7.00E+01 /N m  

5p  Stiffness 
Wing/fuselage 

joint 

Sensor 

cable 

arness-y 

dirn (bottm) 

7.00E+01 /N m  

6p  Stiffness 
VTP/HTP 

joint 

Joint 

stiffness-

x,y 

directions 

1.00E+07 /N m  

7p  Stiffness 
VTP/HTP 

joint 

Joint 

stiffness-z 

direction 

1.00E+09 /N m  

8p  Mass 
VTP/HTP 

joint 

Sensor 

cables 
2.00E-01 kg  

9p  Mass 
Wingtip right 

wing 

Screws and 

glue 
1.86E-01 kg  

10p  Mass 
Wingtip left 

wing 

Screws and 

glue 
1.86E-01 kg  

11p  Mass 
Wingtip left 

wing  

Sensor 

cable on 

wings 

1.50E-02 kg  

12p  Mass 
Outr wing 

left/right 

Sensor 

cable on 

wings 

1.50E-02 kg  

13p  Mass 
Innr wing 

left/right 

Sensor 

cable on 

wings 

1.50E-02 kg  

14p  Stiffness 
Wing/fuselage 

joint 

Joint 

stiffness-x 

direction 

2.00E+07 /N m  

15p  Stiffness 
Wing/fuselage 

joint 

Joint 

stiffness-y 

direction 

2.00E+07 /N m  

16p  Stiffness 
Wing/fuselage 

joint 

Joint 

stiffness-z 

direction 

7.00E+06 /N m  

17p  Stiffness 
VTP/ fuselage 

joint 

Joint 

stiffness-x 

direction 

5.00E+07 /N m  

18p  Stiffness 
VTP/ fuselage 

joint 

Joint 

stiffness-y 

direction 

1.00E+07 /N m  
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5.5.2 Stochastic finite element model updating 

Constructing the validated surrogate models to represent the computationally 

expensive FE models when carrying out the Bayesian FE model updating 

procedure described in chapter 3, which should be constructed beforehand. Since 

the parameter dimensionality increases to 18 and the big differences in value 

magnitude between them so that the available data will become sparse. This 

sparsity is problematic for a method that requires statistical significance. Therefore, 

all the training datasets are designed to be normalized [155] to guarantee the 

numerical stability of surrogate modeling to the AIRMOD structure in this section. 

Through running the full FE model 2000  times, we have 1800  training points 

and 200  separately validation points by Latin Hypercube Sampling (LHS). 

In order to explore the influence of different covariance functions on the predictive 

responses of surrogate models, three different covariance functions (kernels) (i.e. 

SE, Matérn 
1

2
v
 

= 
 

 , and Matérn 
3

2
v
 

= 
 

) are considered in this section. The 

final validation results in 200   separately validation points indicate that the 

standard GPE with SE and Matérn 
3

2
v
 

= 
 

 covariance functions are well trained 

and validated through IPE diagnostics. However, the standard GP emulators with 

Matérn 
1

2
v
 

= 
 

  covariance functions result in 8   of 14   surrogate models 

failed to validated by IPE diagnostics to frequency responses. The failure 

validation for 4f  and 11f  by IPE diagnostics are selected to display in Figure 5.13. 

In Figure 5.13, a large number of individual values, with absolute values larger 

than 2 which indicate a conflict between the simulator and the emulator. As a result, 

the other two covariance functions (SE and Matérn 
3

2
v
 

= 
 

 ) are chosen to 

construct the VSGPE. 
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Figure 5.13 The IPE of standard GP emulation with Matérn (v =
1

2
) kernel for 

f4 and f11. 

 

In order to construct the surrogate models-VSGPE described in detail in section 

5.3, the performance measure called Negative Log Marginal Likelihood (nlml), 

also refers to the negative log probability of the training data described in section 

5.4, is employed. If the trained VSGPE could represent the corresponding full 

standard GP models with certain inducing variables, the values of nlml between 

them have to be infinitely close or even identical. In addition, The VSGPE 

construction procedure indicates that the number of inducing variables for VSGP 

metamodels with SE covariance function to 14   natural frequency responses is 

between 350  and 600  instead of original 1800  training points and the number 

of inducing variables for of VSGP metamodels with Matérn 
3

2
v
 

= 
 

 covariance 

function to 14  natural frequency responses is between 350  and 450  instead of 

original 1800   training points. Figure 5.14 and Figure 5.15 show VSGPE for 

natural frequency responses with SE and Matérn 
3

2
v
 

= 
 

 kernels with selected 

certain inducing variables respectively, which are assessed by performance 

measure (nlml). All the VSGP metamodels with certain inducing variables to 14 

frequency responses by SE and Matérn 
3

2
v
 

= 
 

 kernels are constructed and a 

further validation process namely IPE, which is supposed to carry out. 

 



 

95 

 

 

 

Figure 5.14 The performance measure of VSGP emulation with SE kernel for 1f  

2f  6f  and 7f . 
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Figure 5.15 The performance measure of VSGP emulation with Matérn (v =
3

2
) 

kernel for 
1f  

2f  
6f and 

7f . 

 

When these two types of VSGP emulators are validated to represent the full FE 

model by IPE, Bayesian model updating procedure is processed to the AIRMOD 

structure. Figure 5.16 and Figure 5.17 present the IPE to VSGPE with SE and 

Matérn 
3

2
v
 

= 
 

 kernels for 1f , 6f , 7f  and 19f , respectively. In addition, it can 

be seen from Figure 5.16 and Figure 5.17, the validation performance of Matérn 

3

2
v
 

= 
 

 kernel under IPE diagnostics for certain natural frequency performances 

is better than SE kernel as fewer validation points are outside the region  2,2− . 
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Figure 5.16 The IPE of VSGP emulation with SE kernel for f1, f6, f7 and f19. 

 

 

 

 

Figure 5.17 The IPE of VSGP emulation with Matérn (v =
3

2
) kernel for f1, f6 

f7 and f19. 

 

After the two types of well-trained VSGPE with SE and Matérn 
3

2
v
 

= 
 

 

covariance functions respectively, which are built, the Bayesian FE model 
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updating procedure using TMCMC described in chapter 3 are then conducted. For 

both situations, a uniform prior is used within the range of 5% 200%−  for the 

initial parameter values, to indicate virtually no knowledge of the AIRMOD 

physics [156], and the updated results are in principle entirely dependent upon the 

test data. All the updated values of 18 parameters are shown in Table 5.4 and the 

posterior distribution of selected updated parameters through Bayesian FE model 

updating is estimated by kernel density estimation technique [157] shown in Figure 

5.18. In Figure 5.18, the red line represents posterior distribution for certain 

updating parameters with Matérn 
3

2
v
 

= 
 

  covariance function, the blue line 

represents posterior distribution for certain updating parameters with SE 

covariance function, and the black dotted line is initial parameter value. In addition, 

the red and blue dotted line indicates mean values of the posterior distribution for 

certain parameters with Matérn 
3

2
v
 

= 
 

 and SE kernels, respectively. 
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Figure 5.18 Results of selected updating parameters of AIRMOD structure. 

 

The detailed results for all the updated parameters are shown in Table 5.4. In Table 

5.4, the mean value meanu , the 5th and the 95th percentiles 5 95,p p    for posterior 

distributions of updated parameters are given. The KL divergence is used to 

compare two distributions of updating parameters for SE kernel and Matérn 

3

2
v
 

= 
 

 kernel, respectively. In Table 5.4, it is concluded that the relative large 

difference for KL divergence is found in 6 7 12 15 17 18, , , ,  and p p p p p p . 

In addition, the overall number of selected inducing variables to construct the 

VSGPE with Matérn 
3

2
v
 

= 
 

  kernel is between  300,450   for each of 14 

frequency responses, that is fewer than the number of selected inducing variables 

to construct the VSGPE with SE kernel between  350,600 . It indicates a relative 

less computational cost is required for Matérn 
3

2
v
 

= 
 

 kernel. 

Table 5.4 List of updating parameters 

 Init. Val Unit 

SE kernel 

(updated) 

Matérn 
3

2
v
 

= 
 

kernel 

(updated) 

KL 

Div 

meanu   
5 95,p p    meanu  

5 95,p p     

1p  
1.80E+0

3 
2/N m  

2.06E+0

3 

 1.61,3.36

E+03 

1.90E+0

3 

 1.62,2.32

E+03 

4.48

J 

2p  
7.50E+0

3 
2/N m  

7.28E+0

3 

 4.17,8.56

E+03 

7.73E+0

3 

 6.72,8.51

E+03 
4.02 

3p  
1.30E+0

2 
/N m  

1.51E+0

2 

 1.22,1.63

E+02 

1.43E+0

2 

 1.21,1.80

E+02 
4.40 
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4p  
7.00E+0

1 
/N m  

4.61E+0

1 

 0.91,8.34

E+01 

4.56E+0

1 

 0.60,8.03

E+01 
3.39 

5p  
7.00E+0

1 
/N m  

3.96E+0

1 

 0.73,6.98

E+01 

4.58E+0

1 

 1.30,8.47

E+01 
4.76 

6p  
1.00E+0

7 
/N m  

1.36E+0

6 

 1.07,1.87

E+06 

1.55E+0

6 

 1.10,2.89

E+06 
24.9 

7p  
1.00E+0

9 
/N m  

1.11E+0

9 

 0.31,1.92

E+09 

1.32E+0

9 

 0.58,2.19

E+09 
49.8 

8p  
2.00E-

01 
kg  2.30E-

01 

 1.90,2.53

E-01 

2.20E-

01 

 1.86,2.46

E-01 
0.18 

9p  
1.86E-

01 
kg  2.04E-

01 

 1.81,2.23

E-01 

2.00E-

01 

 1.71,2.21

E-01 
0.86 

10p  
1.86E-

01 
kg  1.99E-

01 

 1.81,2.23

E-01 

2.00E-

01 

 1.77,2.29

E-01 
0.21 

11p  
1.50E-

02 
kg  1.50E-

02 

 1.23,2.04

E-02 

1.47E-

02 

 1.17,1.71

E-02 
1.71 

12p  
1.50E-

02 
kg  1.09E-

02 

 0.41,1.70

E-02 

1.17E-

02 

 0.36,1.76

E-02 
17.1 

13p  
1.50E-

02 
kg  1.80E-

02 

 0.20,3.07

E-02 

1.27E-

02 

 0.20,3.03

E-02 
5.11 

14p  
2.00E+0

7 
/N m  

3.59E+0

7 

 2.87,4.09

E+07 

3.38E+0

7 

 1.88,4.04

E+07 
3.91 

15p  
2.00E+0

7 
/N m  

1.53E+0

7 

 1.23,1.87

E+07 

1.71E+0

7 

 1.37,2.27

E+07 
28.9 

16p  
7.00E+0

6 
/N m  

2.97E+0

6 

 2.44,3.43

E+06 

2.92E+0

6 

 2.55,3.23

E+06 
1.91 

17p  
5.00E+0

7 
/N m  

4.51E+0

7 

 0.56,10.5

E+07 

4.02E+0

7 

 0.92,9.97

E+07 
30.2 

18p  
1.00E+0

7 
/N m  

6.70E+0

7 

 1.40,11.0

E+07 

5.73E+0

7 

 0.69,10.9

E+07 
18.6 

 

The correlation matrix, which is calculated based on the Pearson correlation 

coefficient definded as 
( , )

XY

X Y

cov X Y


 
=   for updating parameters with Matérn 

3

2
v
 

= 
 

, which is given in Figure 5.19. It is concluded that the relative strong 

correlations are always to be found between parameters located at the same joint. 

For example, 4p   and 5p   which are the sensor harness stiffness at the wing-

fuselage connection indicate the strongest correlation. Mode 19 (2n HTP bending) 

is seen in Table 5.1 to have large coefficient of variation (CoV) and is sensitive to 



 

101 

 

parameter 6p ( joint stiffness-x,y directions), 7p ( joint stiffness-z direction), 17p

( joint stiffness-x direction), 18p (joint stiffness-y direction), which are shown to 

have large percentile 5 95,p p    in Table 5.4. Similarly, mode 20 (HTP force-aft) is 

strongly affected by parameter 17p ( joint stiffness-x direction). It is seen in Table 

5.4 that 17p   has large percentile 5 95,p p     and the the mode with highest 

variability in Table 5.1 is mode 20. 

 

 

Figure 5.19 Updated parameter correlation matrix with Matérn (𝑣 =
3

2
) kernel. 

 

Figure 5.20 and Figure 5.21 show frequency distributions under Bayesian FE 

model updating using SE and Matérn 
3

2
v
 

= 
 

 covariance functions, respectively. 

It can be seen from the Figure 5.20 and Figure 5.21 that the general performance 

of frequency distributions by VSGP emulators using Matérn 
3

2
v
 

= 
 

 kernels is 

better than the corresponding SE kernels since the 95% confidence region (ellipse) 

of updated frequency responses marked by blue get closer to the test datasets 

marked by red. In addition, it is also worth noting that, in Figure 5.20 and Figure 

5.21 with higher modes, especially 14f  , 19f  , 20f  , the 95% confidence region 

(ellipse) of the frequency distributions from the Bayesian model updating are not 

replicated closely from the test datasets. But, the performance of VSGP emulators 
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with Matérn 
3

2
v
 

= 
 

 covariance functions is still better than the SE covariance 

functions. 

The reasons to cause discrepancies for higher modes ( 14f , 19f  and 20f ) come from 

many aspects. For example, the uniform priors for updating parameters maybe not 

appropriate which should be incorporated with some strong information. Model 

discrepancy [158], as another very important kind of modeling uncertainty, is not 

being considered in this application. However, it is an important topic in 

uncertainty quantification and some insight will be given in chapter 6.  
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Figure 5.20 Frequency distributions using VSGP emulation with Matérn 

3

2
v
 

= 
 

 kernel versus measurement data. 
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Figure 5.21 Frequency distributions using VSGP emulation with SE kernel versus 

measurement data. 
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The training time for the single independent output from VSGP metamodel of the 

full FE model (excluding the cost of running the full FE model 2000  times) is 

around 39  seconds of CPU time which compared to 157  seconds for standard 

full GP metamodels training and 172  seconds for ANNs [159]. The well-trained 

metamodel (VSGP) with relatively small inducing variables at around 375  

( )375 1800   that allows the reduction of the training cost scaled from 

3(1800 )   to 2(1800 375 )   and prediction cost from 2(1800 )   to  

2(375 )  for each test case. As the results obtained so far, it is concluded that 

applying Bayesian FE model updating combined VSGP surrogate models with 

Matérn 
3

2
v
 

= 
 

 covariance functions using TMCMC [70] is an efficient model 

updating method to the DLR-AIRMOD structure. 

5.5.3 Results discussion 

In this section, Bayesian FE model updating framework combined with high-

fidelity, less time-consuming surrogate models called VSGP metamodels are 

presented. Two case studies were carried out. The first case was two numerical 

examples to illustrate the formulation of VSGPE. The second case is putting this 

kind of metamodels into a Bayesian model updating framework to do model 

updating to a complex experimental structure DLR-AIRMOD. The computational 

cost for this real-time application of Bayesian model updating is a hard requirement 

and the problem has been solved effectively using the well-constructed VSGP 

surrogate models and parallel computing strategy (20 cores of a multi-AMD 

Opteron processor 6168 system). In addition, the presented Bayesian model 

updating procedure is implemented in the open source software Open-COSSAN 

[160, 161]. 

Three different kinds of covariance functions are employed and analyzed in order 

to obtain high-fidelity surrogate models. By conducting updating parameter results 

comparison for the AIRMOD structure between two different covariance functions 

(Matérn 
3

2
v
 

= 
 

 and SE kernels), it is concluded that using Matérn 
3

2
v
 

= 
 

 

covariance functions to build the metamodels is more favorable than the SE 

covariance function. The proposed Bayesian FE model updating framework 
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combined with VSGP surrogate models and parallel computing strategy, which 

was proved to be effective and far less computationally intensive compared to 

using other standard surrogate modeling techniques to the DLR-AIRMOD 

structure. More importantly, this Bayesian model updating framework also 

enriches the theory of stochastic model updating to large scale complex 

engineering structures. 

5.6 Chapter summary 

In this chapter, a brief literature review of the computationally efficient GPEs was 

described. The Bayesian FE model updating was then carried out to the DLR 

AIRMOD structure. This Bayesian model updating method combined surrogate 

modeling techniques named the VSGPE, which is built based on the notion of 

standard GPE, the TMCMC method described in chapter 3 and parallel computing 

strategy to improve the updating efficiency. Two numerical examples were 

provided to illustrate the application of VSGPE. In addition, the SE covariance 

function and Matern 
3

2
v
 

= 
 

 covariance functions are employed and analyzed 

in order to obtain high-fidelity surrogate models to the AIRMOD structure 

updating. It was found that using Matern 
3

2
v
 

= 
 

 covariance functions to build 

the VSGPE is more favorable than the SE covariance function to do the Bayesian 

model updating to AIRMOD structure. 

 



 

107 

 

6 The importance of model discrepancy 

6.1 Introduction 

In chapter 5, the model discrepancy was briefly mentioned and this chapter will 

give some insight on how this can be used in model updating. 

In recent years, there has been a lot of research in design under uncertainty, which 

has, in fact, drawn attention in engineering design field [162, 163]. The inverse 

problem in uncertainty analysis is considered as a hard task, in which experimental 

datasets are used to learn about modeling of uncertainty sources such as calibration 

parameters of a computer model and computer model discrepancy, defined as the 

difference between reality and the simulator output. This topic is receiving 

increased attention in recent years because quantifying these modeling 

uncertainties and the resulting system response prediction is essential for reliable 

design decision making. 

Carrying out the uncertainty quantification analysis for inverse problems, which is 

typically implemented in a model updating process. Kennedy and O’Hagan [164] 

defined the calibration parameter as any physical parameter that can be specified 

as an input to the computer model and that is unknown or not measurable when 

conducting the physical experiment. 

Within the existing model updating techniques, the concept of calibration is used 

to adjust or tune the calibration parameters θ  , and an additive discrepancy 

function ( ) x   is used to present the model discrepancy. The majority of the 

approaches for model updating consider either calibration only [165, 166] or 

discrepancy function only [167] and few consider both calibration parameters and 

discrepancy functions together [164, 168]. 

The model updating formulation in [164] is one such approach, which incorporates 

both the calibration parameters and discrepancy function, and it is considered as 

the most applicable method to tackle the inverse problem analysis under 

uncertainty in diverse fields, such as ecology [169], health science [170] and 

climate modelling [171]. 
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6.2 Sources of uncertainty 

Following the important work by Kennedy and O’Hagan [164], several different 

sources of uncertainty are considered for model updating. 

(1) Parameter uncertainty.  

The parameter uncertainty derives from model calibration parameters that are 

inputs to a computer model but that are unknown and cannot be measured in 

physical experiments. In addition, the set of calibration parameters can be selected 

properly based on prior expert knowledge and parameter screening techniques 

[172]. 

(2) Model uncertainty 

The model uncertainty (commonly termed model discrepancy), which results from 

underlying missing physics, numerical approximations and other inaccuracies of 

computer models (simulators) even if all the parameters are known. 

(3) Code uncertainty 

The code uncertainty [173] results from having only a finite set of simulations and 

experiment datasets collected at discrete input settings, in which case, one can 

make interpolation and regression analysis to predict the response at other input 

settings. 

(4) Experimental uncertainty 

The experimental uncertainty (commonly termed experimental measurement error) 

comes from a physical experiment. This represents any variability in the 

experimental response that would happen if the experiment were repeated many 

times, even using the same settings for all of the design variables. 

Before illustrating the model updating formulation proposed in [164], the other 

two formulations considered various uncertainties had been reviewed. 

The first model updating formulation considers a discrepancy function with no 

calibration parameters [174], which can be expressed as 

 ( ) ( ) ( )e cy   = + +x x x   (6.1) 

where ( )ey x  is the physical experiment response, ( )c x  is the computer model 

response, ( ) x  is the discrepancy function and   accounts for the experimental 

uncertainty and typically assumed to follow a normal distribution with mean 0  
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and variance 2 . 

The advantage of only considering the discrepancy function is that a Bayesian 

closed form solution exists. The obvious limitation of the Eq. (6.1) is that it cannot 

account for the effects of unknown calibration parameters. 

The second model updating formulation incorporates the calibration parameters 

with no discrepancy functions [175], which is expressed as 

 ( ) ( , )e cy  = +x x θ   (6.2) 

where ( , )c 
x θ   is the computer model response, 

θ   is the true values of the 

unknown calibration parameters. Many instances of this approach [166, 175] only 

consider the calibration parameters and omit x  when fitting the model. 

Kennedy and O’Hagan [164] has combined the above two approaches into one 

model updating formulation, which is expressed as 

 ( ) ( , ) ( )e cy   = + +x x θ x   (6.3) 

The discrepancy function ( ) x  in Eq. (6.3) is a function of x . The design inputs 

x  are variables that can be controlled and set by the user during the experiments. 

The discrepancy function is defined as the difference between the experimental 

response ( )ey x  and the computer model response ( , )c 
x θ  at the true values of 


θ . 

The code uncertainty and model discrepancy is quantified by the GPE discussed in 

section 4.3. Because the GPE can give a reliable estimate of their own uncertainty 

and model an infinite set of random variables with the property that any finite 

subset has a multivariate normal distribution it be used to model the errors (can be 

positive or negative values). In order to quantify the uncertainty in the calibration 

parameters and discrepancy function, the modular Bayesian model updating stages 

are provided in section 6.3 since the Eq. (6.1) accounts for these uncertainties 

which is viewed as a comprehensive and applicable model updating approach. 

 

6.3 The modular Bayesian approach 

In this section, the modular Bayesian model updating approach in [164] is 

discussed. The GPE models discussed in section 4.3 are created for both the 

computer model and the discrepancy function to interpolate the limited datasets 

from the computer models and physical models.  
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In Figure 6.1, the GPE formulating process is visualized. It depicts the changes of 

posterior distributions of the responses with assigned hyperparameters after 

collecting 4 observations (b), 8 observations (c) and 15 observations (d). This 

example illustrated an attractive characteristic of the GPE model, which has the 

ability to provide a reasonable predicted response that interpolates the observed 

data points (shrinks to 0 at the observed data points). 

 

 

            (a)                              (b)               

 

            (c)                              (d)               

Figure 6.1 Description by (a) the prior distribution of a GP model with constant 

mean 0 and constant variance. (b), (c) and (d) the predictive posterior 

distribution for the same GP model after collecting response 

observations (red dots) with 4,8, and 15. The deep orange solid line is 

the predicted mean values and the sky blue shaded region indicates a 

95% confidence interval. 

 

The uncertainty in the prediction of ( )y x  , expressed in the form of 95%  

confidence interval is given as the sky blue shaded regions. The black solid line in 
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Figure 6.1 is expressed with the objective function 2sin(2 /10)y x x=  . It is 

obvious that as the limited observations increased from 4 to 15, the GPE tends to 

approximate exactly the objective function.  

In Figure 6.2, a modular Bayesian approach is given. It separates the estimation of 

the GP model hyperparameters for both computer model and the discrepancy 

function (modulus 1 and 2 in Figure 6.2) and the posterior distribution of the 

calibration parameters, the discrepancy function is calculated from the modular 

Bayesian approach (modulus 3 in Figure 6.2). the details of each modulus are 

expressed in the following sections. 

 

Figure 6.2 The modular Bayesian approach flowchart. 

 

6.3.1 Gaussian process for the simulator model (module 1) 

A GP is used to infer the computer model output by using the simulation data. The 

prior of the GP model is defined as 

 2( , ) ( ( , ) , (( , ), ( , )))c c T c c

cGP h c β   (6.4) 

where the prior mean function comprised the unknown coefficients c
β  and the 

known regression function ( , )c Th x θ . The prior covariance function is the product 

of an unknown constant 2

c  and a correlation function ' '(( , ), ( , ))cc x θ x θ , where 
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' '( , ) and ( , )x θ x θ   denotes two sets of computer model inputs, and the chosen 

Gaussian correlation function is used. The hyperparameters 2[ , , ]c c c

c  = β  can 

be estimated by maximizing the multivariate normal log-likelihood function for 

the simulation datasets c  collected at a limited set of input sites 
c

x  and c
θ . 

After obtained the estimates of the hyperparameters of the Gaussian process model 

for the computer model, the next stage is to estimate the hyperparameters of the 

Gaussian process model for the discrepancy function. 

6.3.2 Gaussian process for the discrepancy function (module 2) 

A GP model is adopted for the discrepancy function. The prior is expressed as 

 2( ) ( ( ) , ( , ))TGP h c  

 β   (6.5) 

where the mean function comprised the unknown coefficients 
β  and the known 

regression function ( )Th
x , The covariance function is the product of an unknown 

constant 2

   and a correlation function '( , )c x x  . Following the work of 

Kennedy and O’Hagan [164], we assume the computer model, the discrepancy 

function and the experimental uncertainty are prior statistically independent. This 

kind of assumptions simplifies many of the calculations required in the modular 

Bayesian approach. 

As a consequence, the priors for computer model in Eq. (6.4) and the discrepancy 

function in Eq. (6.5) are combined to form the prior for the experimental response 

GP, which is expressed as 

 
' ' 2 ' ' 2 ' 2

( ) | ( ( , ), (( , ), ( , )))

( , ) ( , ) ( )

(( , ), ( , )) (( , ), ( , )) ( , )

e e e

e c T c T

e c

c

y GP m

m h h

c c

 



  

= +

= + +

θ C

x θ x θ β x β

C x θ x θ x θ x θ x x

  (6.6) 

Since Eq. (6.6) depends on the calibration parameters θ , the problem now is to 

estimate the hyperparameters of the discrepancy function Gaussian process 

without knowing the true value of θ . 

Kennedy and O’Hagan [164] developed a procedure to obtain the MLEs of the 

hyperparameters    using only the prior distribution for the calibration 

parameters. In addition, Kennedy and O’Hagan in [176] also provide a closed form 

solution for the likelihood function under the conditions of Gaussian correlation 

functions, constant regression functions. 
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6.3.3 The calibration parameters posterior distribution (module 

3) 

This module calculates the posterior distribution of the calibration parameters and 

predictions of experimental responses and discrepancy function based on the 

simulations, the experimental datasets, and the estimated hyperparameters from 

module 1 and 2. The posterior distribution of the calibration parameters can be 

expressed as  

 ˆ ˆ( | , ) ( | , ) ( )p O p O p θ θ θ   (6.7) 

where ̂  are the MLEs of [ , ]c   =  , O   denotes all response observations 

and ( )p θ   is the prior of the calibration parameters. The likelihood function 

ˆ( | , )p O θ  is multivariate normals. Section 4.4 of [164] gives detailed equations 

for the likelihood function. 

After obtained the simulation and experimental datasets and estimating the 

hyperparameters in module 1 and 2, given a specific value of θ , the conditional 

posterior distribution of experimental response can be calculated at any location 

x , with mean and covariance similar to Eq. (4.13) and Eq. (4.14) (Section 4.6 

of [164] for detailed equations). The unconditional distribution of the experimental 

response is then obtained by marginalizing the conditional distribution with respect 

to the posterior distribution of the calibration parameters. As a result, the 

marginalized posterior distribution of the experimental response accounts for 

parameter uncertainty, model discrepancy, code uncertainty, and experimental 

uncertainty.  
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6.4 An illustrative example of a cantilever beam 

An illustrative example is presented to conduct the calibration parameter 

identification by putting the model discrepancy into consideration using the 

modular Bayesian approach described in section 6.3. The example here is a 

cantilever beam system shown in Figure 6.3. The ‘true’ beam structure is presented 

in Figure 6.3 (b) with a semi-rigid cantilever connection modeled using a rotational 

spring, which has a stiffness parameter K . The Young’s modulus 
*E  along this 

beam has a value of 370 10 MPa  . The vertical force applied to its end is 

35 10F N=  . 

 

(a) 

 

(b) 

Figure 6.3 The idealized and true cantilever beams. The calibration parameter to 

be identified is Young’s modulus (E). 

 

In order to be representative of the full-scale situation where it is not possible to 

capture reality in a model. An idealized beam is shown in Figure 6.3 (a), which is 

used to model the ‘true’ beam system shown in Figure 6.3 (b). This idealized 

structure does not include the partial rigidity of the cantilever beam connection. 

 

 
 

       

      

 
 
 
  
 

The idealized cantilever beam

 

 

       

      

 
 
 
  
 

The true cantilever beam
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The calibration parameter E  , Young’s modulus, assigned as the calibration 

parameter which has a possible range of values   335,140 10 MPa  

corresponding to the 5% 200%−  of the initial parameter value. To be consistent 

with the notation used in section 6.3. the parameter to be identified is denoted as 

E = . 

The beam is 3000mm  long and has a square cross-section of 2300 300mm . Its 

inertia I  is 8 46.75 10 mm . The vertical displacement ( )D x  of the cantilever 

beam at any location  0, ( 3000 )x l l mm =  is given by 

 
2 (3 )

( )
6

Fx l x
D x

EI

−
=   (6.8) 

For any location x  , the error introduced by the idealized beam model is 

( )
Flx

x
K

 = − . The simulated measured values ( )y x  are obtained according to 

 *( ) ( ) ( )y x D x x = − +   (6.9) 

where *( )D x  is the displacement computed with the correct parameter value 
*E  

and   is a realization of 2( , )e eN u  , a Gaussian random variable indicates 

the experimental uncertainty. 

The number of measurement mn  is selected starting by 10n d=  according to 

Loeppky, et al. [30], and finally, 25 measurements are chosen in order to have a 

good interpolation for GPE. For each value of mn , the displacement is evaluated 

at ( ) / , {1, , }start start m mx x i l x n i n= + −    . By using Eq. (6.9), the minimal 

distance from the cantilever support designed to have the value of 500srartx mm= . 

In this example, the magnitude of the distance is chosen as the design variable x  

and refer to Table 6.1 for the notation of this example. 

Table 6.1 Notation of the cantilever beam example 

Variable Description 

x  
the magnitude of the distance along the 

beam  500,3000 mm  

  

Young’s modulus E ( 310 MPa ) on the 

range of   335,140 10 MPa , 
* 370 10 MPa =   is the true value 

( , )c x   ( , )D x  calculated using Figure 6.3 (a) 

( )ey x  ( )y x  calculated using Figure 6.3 (b) 
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  
Experimental uncertainty with 

2(0,0.02 )N  

 

The first prior distribution for the calibration parameter is a uniform prior over the 

range   335,140 10 MPa . The prior distribution is chosen to be wide in order to 

minimize the effect of the prior on the posterior distributions. To infer the 

calibration parameter and the discrepancy function, we use the modular Bayesian 

approach described in section 6.3. Figure 6.4 (a) and Figure 6.5 (a) show the 

posterior distribution of discrepancy function and calibration parameter, 

respectively. In addition, collecting additional ‘measured’ observations helps little 

to the performance for the posterior distribution of discrepancy function and 

calibration parameter. 

 

                (a)                              (b)               

 

(c) 

Figure 6.4 The posterior distribution for the discrepancy function for the three 

prior distributions of the calibration parameter (a)uniform 

(b)N(105*103, 10.332) (c)N(85*103, 3.52). 
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      (a) Posterior distribution               (b) Posterior distribution 

       N(149.78*103, 39.952).                 N(90.43*103, 8.252).   

 

(c) Posterior distribution 

N(72.05*103, 3.352). 

Figure 6.5 Posterior distribution for the calibration parameter E for the three 

prior distributions (a)uniform (b)N(105*103, 10.332) (c)N(85*103, 

3.52). 

In order to improve the identifiability, Liu, et al. [16] suggested using an 

informative prior distribution for the calibration parameters, or the discrepancy 

function. To illustrate how this assumption improves the identifiability, more 2 

cases are conducted using 2 different normal prior distributions for  , each with 

different mean and variance. 

The second prior distribution for the calibration parameter assumes a less 

informative prior distribution with prior mean 3105 10 MPa  and prior standard 

deviation (SD) 10.33  . Figure 6.4 (b) and Figure 6.5 (b) show the posterior 

distribution for the discrepancy function and calibration parameter. The posterior 

distribution for the calibration parameter E  with a mean value 390.43 10 MPa  

True calibration parameter  

Posterior PDF of  

True calibration parameter  

Posterior PDF of  

True calibration parameter  

Posterior PDF of  
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and SD 8.25 . In this case, the posterior distribution for the calibration parameter 

is not precise, which indicates a lack of accuracy. 

The last prior distribution for the calibration parameter is therefore assigned an 

informative prior distribution (small SD) with prior mean 385 10 MPa  and prior 

SD 3.5 . Figure 6.4 (c) and Figure 6.5 (c) show the posterior distribution for the 

discrepancy function and calibration parameter. The posterior distribution for the 

calibration parameter E   with a mean value 372.05 10 MPa   and SD 3.35  . In 

this case, it is evident that the posterior distribution for the calibration parameter 

E  is more precisely relative to the previous cases, results in an identifiable system. 

In conclusion, despite the difficulty of quantifying the model discrepancy, 

choosing informative priors does help to obtain the true posterior distribution of 

the calibration parameter E in this example. 

6.5  Chapter summary 

This chapter gives an introduction of model updating framework considering 

several different sources of uncertainty namely parameter uncertainty, model 

discrepancy, code uncertainty, and experimental uncertainty, which is proposed by 

Kennedy and O’ Hagan. The GPEs are used to model the simulator model and 

discrepancy function, respectively. 

In order to have a better understanding of this model updating procedure to a 

cantilever beam. We first show that the calibration parameters E   and the 

discrepancy function are not be identified when given a uniform prior distribution 

to the calibration parameter E  . After that, two other prior distributions to the 

calibration parameter E  are applied, it is found that using an informative prior 

distribution for the calibration parameter, which can improve the identifiability. 

The challenge with incorporating model discrepancy in statistical model updating 

is being confounded with calibration parameters, which will be solved with 

informative priors. For our cantilever beam example, the model discrepancy is 

modeled via GPE, and demonstrate that using the informative priors on the 

calibration parameters, which helps to obtain the true posterior distribution of the 

calibration parameter E .
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7 Conclusion and future work 

7.1 Summary of completed work  

This dissertation has presented the work, which focuses on the uncertainty 

quantification and stochastic model updating for structural dynamics. 

In chapter 1, the motivation and background to the scope of the work were 

provided. In Chapter 2, a literature review of deterministic FE model updating 

methods including direct methods, iterative methods, and computational 

intelligence methods were described. The advantages and disadvantages of these 

methods were also discussed. 

In chapter 3, the notion of stochastic FE model updating methods was introduced 

as the variability inevitably exists in the measured data and had to be considered 

in the model updating procedure. In practical model updating the measured data 

were often imprecise, incomplete and variable. Therefore, it was very important to 

put statistical techniques into consideration to improve updating performance. The 

stochastic FE model updating methods were generally categorized into two 

categories: probabilistic methods and non-probabilistic methods. The 

representative existing stochastic model updating methods: probabilistic 

perturbation method and the Bayesian model updating method were described in 

detail. The non-probabilistic stochastic model updating including the interval 

model updating methods and the fuzzy model updating methods were also briefly 

discussed. The performance of these two stochastic model updating methods was 

discussed with illustrative examples. 

In chapter 4, the concept of GPE was introduced, together with relevant supporting 

theory and methodologies. Aspects concern about the GPE construction process, 

optimizing GPEs and validate their qualities were described and discussed. In 

addition, the GPEs were employed to model the relations of DIFs in SSRC 

specimens for compressive strength and Young’s modulus from different strain 

rates in SHPB tests. 

Chapter 5 described the importance of employing the computational efficient GPEs 

to do the stochastic model updating. Several sparse GP approaches were described. 
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The VSGPE was given in detail as this modeling technique had been used to do 

the Bayesian model updating to the AIRMOD structure. The Bayesian model 

updating method combined surrogate modeling techniques of VSGPE, which was 

built based on the notion of standard GPE, TMCMC method described in chapter 

3 and parallel computing strategy to improve the updating process efficiency. In 

addition, by using two different covariance functions namely SE kernel and Matérn 

3

2
v
 

= 
 

  kernel to do the model updating performance comparison of the 

AIRMOD structure, which was discussed in detail. 

In chapter 6, an introduction of model updating framework considering several 

different sources of uncertainty namely parameter uncertainty, model discrepancy, 

code uncertainty, and experimental uncertainty was provided. The comprehensive 

model updating formulation under uncertainty was expressed and applied to a 

cantilever beam example using modular Bayesian approach. Some useful 

conclusions and challenges were provided and discussed. 

7.2 Summary of contributions 

The main contributions of this dissertation are the following: 

For deterministic FE model updating, A novel iterative method formulated based 

on the classic sensitivity method is proposed. The efficiency and advantages of this 

method are verified by using two numerical examples, named the three degree of 

freedom mass-spring system and the six storey bare frame. It is concluded that the 

proposed iterative method is more accurate and efficient than the traditional 

sensitivity method especially when the changes for the parameters of the model in 

need of correction are relatively large. This improved iterative method also 

enriches the theory of deterministic model updating. In addition, the proposed 

method is applicable to determined or overdetermined mode updating problems 

and need to improve to solve undetermined model updating problems (Chapter 2). 

 

The probabilistic perturbation method and Bayesian model updating method are 

implemented to a three degree of freedom mass-spring system to carry out a 

performance comparison analysis. It is found that these two methods are all 

applicable to the problem of model updating in the presence of uncertainty with 

high accuracy. It is found that the time of conducting Bayesian model updating 
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when combined with the MH algorithm is much longer than the probabilistic 

perturbation method (Chapter 3). 

 

The theory and procedure of constructing the GPE considering the noise-free 

observations and noisy observations respectively are systematically described. 

Some useful conclusions from quasi-static and SHPB tests for three types of 

specimens: Concrete, SSRC33, and SSRC34 are given. It is observed that under 

quasi-static tests, the compressive strength is improved from Concrete to SSRC34. 

For SHPB tests,a typical stress-strain curves of all specimens under certain strain 

rate indicates that the maximum compressive stress are largely enhanced by the 

insertion of steel skeletons compared to the plain Concrete. The GPEs is employed 

to obtain the relations of DIFs for compressive strength and Young’s modulus from 

different strain rates. The well-trained GPE is validated by individual prediction 

errors (IPE) diagnostics. In addition, DIFs of the compressive strength and Young’s 

modulus show increasing rate sensitivity to strain rate from Concrete to SSRC34. 

(Chapter 4)  

 

A Bayesian FE model updating framework combined with high-fidelity, less time-

consuming surrogate models called VSGP metamodels is proposed to a complex 

experimental structure DLR-AIRMOD for model updating. The computational 

cost for this real-time application of Bayesian model updating is a hard requirement 

and the problem has been solved effectively by using a parallel computing strategy 

and the well-constructed VSGP surrogate models together. In addition, the SE 

covariance function and Matern 
3

2
v
 

= 
 

 covariance functions are employed to 

implement performance comparison analysis in order to obtain high-fidelity 

surrogate models to the AIRMOD structure updating. It is found that using Matern 

3

2
v
 

= 
 

 covariance functions to build the VSGPE is more favorable than the SE 

covariance function (Chapter 5). 

 

By examining the existing most comprehensive model updating formulations 

considering all sources of uncertainties namely parameter uncertainty, model 

discrepancy, code uncertainty, and experimental uncertainty to an illustrative 
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example of a cantilever beam and using GPEs to model the simulator model and 

discrepancy function, respectively. It is found that using an informative prior 

distribution for the calibration parameter E  , which helps to obtain the true 

posterior distribution of the calibration parameter E (Chapter 6). 

7.3 Research outlook 

The work conducted in this dissertation leads to several research directions, which 

can be considered in the future.  

Firstly, implementing the proposed iterative method to do model updating for 

industrial complex structures to assess its performance since the examples used to 

demonstrate in the thesis are simplified numerical models.  

Secondly, considering other kinds of arrangements of steel skeletons in order to 

have a more comprehensive understanding of the dynamic mechanical behaviors 

of this composite material under uncertainties. More experimental tests are 

suggested to conduct in the future to have more validation points to validate the 

trained GPE to do uncertainty quantification analysis in SHPB tests. 

Thirdly, the Bayesian FE model updating framework is employed to do the 

stochastic model updating to the AIRMOD structure in success. However, the 

frequency distributions especially 14f  , 19f   and 21f  from the test is still not 

replicated closely enough by the results of Bayesian model updating. The reason 

to cause this discrepancy is that by constructing VSGPE with multiple inputs and 

only one output is not appropriate, especially for 14f , 19f  and 21f . Considering 

these three frequency responses correlated to build the VSGPE for stochastic 

model updating is suggested in the future. 

Finally, research and develop the model updating formulation in chapter 6 to put 

all sources of uncertainty into consideration to do model updating is important 

since the analysis of uncertainty in the subject of structural dynamics in model 

updating is a challenging problem. As long as we have the developed model 

updating formulation, exploring the uncertainty of structural parameters 

(calibration parameters) under model discrepancy in order to have better 

parametric identifiability can be investigated and analyzed. 
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Appendix A 

Gaussian identities 

A.1 Multivariate Gaussian distribution 

A random vector x  is said to have a normal multivariate distribution with mean 

μ  and covariance matrix C  if and only if 

1/2 11
( ) ( | , ) | 2 | exp ( ) ( )

2

Tp N  − − 
= = − − − 

 
x x μ C C x μ C x μ  

A.2 Marginal and conditional distributions 

Given a joint Gaussian multivariate distribution 

1 1

1 2

2 2

( , ) ( | , )
T

p N
     

=      
    

x μ A C
x x

x μ C B
 

the marginal distribution of 1x  is  

1 1 1( ) ( | , )p N=x x μ A  

and the distribution of 1x  conditioned on 2x  is 

1

1 2 1 1 2 2( | ) ( | ( ), )p N −= + − -1 T
x x x μ CB x μ A -CB C  

A.3 Integral of the product of two Gaussians 

The following identity 

( | ) ( ) ( | )N N d N= x a,A a | b,B a x b,A +b  

is useful to compute marginal likelihood ( )p x   from likelihood ( )p x | a   and 

prior ( )p a , when both are Gaussian distributions. 

A.4 Gaussian likelihood with linear parameter 

If the mean of a Gaussian depends linearly on some parameter with Gaussian prior, 

it is possible to obtain and posterior probabilities in closed form. Assume the 
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following parameterization for the likelihood and the prior 

( ) ( )

( ) ( )

p N

p N

=

=

y

w

y | w,x y | xw,C

w w | a,C
 

The joint distribution is then ( ) ( ) ( )p p p=y,w | x y | w,x w . This product can be 

conveniently arranged as 

( ) ( | , )p N
    

=     
     

T

y w w

T

w w

y xa C + xC x xC
y,w | x

w a C x C
 

The marginal likelihood of y  is contained in the previous expression due to the 

marginalization property of Gaussian distribution (A. 2). The posterior 

distribution over w  given y  and x  is obtained applying (A. 3) to (A. 5) 

( ) ( )p N=

=

w|y w|y

T T -1

w|y w y w

-1 T -1 -1

w|y w y

w | y,x w | μ ,C

μ a + C x (C + xC x ) (y - xa)

C = (C + x C x)

 

A.5 Linear transformations 

If x  is a random vector following a multivariate Gaussian distribution 

( ) ( )p N=x x | μ,C  

The linear transformation = +T
y R x r  is also Gaussian distribution 

( ) ( )p N= T T
y y | R μ+r,R CR  
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Appendix B 

Kullback-Leibler Divergence 

The Kullback-Leibler (KL) divergence between two distributions ( )p x   and 

( )q x  is defined as 

( )
( || ) ( ) log

( )

p
KL p q p d

q
= 

x
x x

x
 

It is easy to show that ( || ) 0KL p q  , with equality if p q= . 
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Appendix C 

Variational inference 

In variational inference, the posterior distribution over a set of unobserved 

variables 1{ , , }nM M=M given some data x  is approximated by a variational 

distribution ( )Q M  

( ) ( )p QM | x M  

The distribution ( )Q M   is restricted to belong to a family of distributions of 

simpler form than ( )p M | x  , selected with the intention of making ( )Q M  

similar to the true posterior ( )p M | x . 

The lack of similarity is measured in terms of a dissimilarity function ( ; )d Q p  and 

hence inference is performed by selecting the distribution ( )Q M  that minimizes 

( ; )d Q p . 
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Appendix D 

Jensen’s inequality 

Jensen's inequality, named after the Danish mathematician Johan Jensen, relates 

the value of a convex function of an integral to the integral of the convex function. 

When making the form involving a probability density function, suppose   is a 

measurable subset of the real line and ( )f x  is a non-negative function such that 

( ) 1f x dx


−
=  

f  is a probabilistic density function. 

Jensen’s inequality becomes the following statements: 

If g  is any real-valued measurable function and   is convex over the range of 

g , then 

( ( ) ( ) ) ( ( )) ( )g x f x dx g x f x dx 
 

− −
   

If ( )g x x= , then this form of inequality reduced to a commonly used special 

case: 

( ( ) ) ( ) ( )xf x dx x f x dx 
 

− −
   
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