
Bayesian Inference for
Supervised Machine Learning:
Algorithms and Applications

Thesis submitted in accordance with the requirements of the
Univeristy of Liverpool for the degree of

Doctor of Philosophy
by

Paul Byrnes

August 2019

Le mo cuisle Laura agus mo thuismitheoirì . . .

Declaration

I, Paul Byrnes, declare that this thesis titled Bayesian Inference for Supervised
Machine Learning: Algorithms and Applications, and the work presented in it are
my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research
degree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has
been clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always give.
With the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where this thesis is based on work done by myself jointly with others, I
have made clear exactly what was done by others and what I contributed
myself.

August 2019

Acknowledgements

Firstly, I would like to thank my supervisor Dr. Alejandro Diaz De la O. Without
his help and guidance none of this work would have been possible. His ability to
explain complex topics in a concise manner has resulted in new lines of research
while his constant encouragement has provided motivation throughout. For this I
am extremely grateful.

To my colleagues at the Risk Institute, I would like to express my gratitude
for the help and advice received during my studies. I also want to gratefully
acknowledge the support of the Engineering and Physical Science Research Council
(EPSRC) and the Economic Social Research Council (ESRC) for funding my PhD
studies.

Many thanks go to Dr. Maria Gabrani of IBM Research Zürich who kindly
allowed me to undertake placement as part of her research group. This experience
has been fundamental for both the progress of this research and my personal
development. I would also like to thank Dr. Roberto Perdisci for hosting me
during my research stay at the University of Georgia.

To my parents Kathleen and Paddy, the support received from day one has
allowed me to proposer and achieve beyond what I thought was possible. Thank
you for everything! And to my siblings Gemma, Caroline and Patrick for providing
valuable advice and more importantly quality entertainment.

Finally, the work undertaken over the past years would not have been possible
without the love and support of my dearest Laura. Her ability to make me smile
and laugh has made all the work worthwhile.

Abstract

Advances made in computer development along with the curiosity regarding the
use of data in the world around us has resulted in machine learning becoming an
area of much interest in recent decades. Its capabilities in automating processes
such as face recognition at airport security or self-driving vehicles has highlighted
the potential positive influence it could have on society. Behind many of these
processes are statistical models which identify patterns in data sets to allow for a
decision making process to be formed. However, such models require the compu-
tation of unknown parameters which directly impact their predictive capabilities.
This dissertation explores the development and application of Bayesian inference
frameworks suitable for parameter identification for supervised machine learning
methods. A recent analogy has opened up the possibility of interpreting Bayesian
inference as rare event simulation. Bayesian Updating with Structural reliability
methods (BUS), exploits the low acceptance rate in rejection based sampling, al-
lowing for techniques from reliability analysis to solve the Bayesian updating task.
A key principle for the BUS framework in terms of sample quality and sampler
efficiency is the question of the termination of simulation. Currently, this is done
through the use of a computationally expensive automatic stopping condition.
To improve computational efficiency, two new stopping criteria are introduced.
Aside from this reduction in cost, the proposed approaches not only simplify
the implementation of the framework for the practitioner in terms of coding and
theoretical understanding but also offer statistical guarantees of sampling from
the correct distribution. With the emergence of large data sets has come the need
for scalable algorithms which offer efficient solutions. To improve the suitability of
BUS to such tasks, Support Vector Machines (SVM) are integrated into the BUS
approach to allow for a reduction in total model evaluations in the presence of a
large number of data observations. Additionally, the capabilities of the methods
developed during this dissertation are illustrated on two real life breast cancer
classification tasks. The first concerning the identification of cancerous tissue in

viii

biopsy samples and the second the identification of relapse rates from patient
molecular data. Aside from the suitability of the Bayesian inference frameworks
to such problems, the potential of supervised machine learning in improving the
diagnosis process for cancer patients is also discussed.

Table of contents

List of figures xiii

List of tables xvii

1 Introduction 3
1.1 Motivation . 3
1.2 Aims and Objectives . 7
1.3 Thesis Outline . 8

2 Machine Learning 11
2.1 Introduction . 11
2.2 Supervised Learning . 14

2.2.1 Regression . 15
2.2.2 Classification . 17
2.2.3 Performance Evaluation 33

2.3 Chapter Summary . 37

3 Bayesian Inference 39
3.1 Introduction . 39
3.2 The Posterior Distribution . 41

3.2.1 Model Class Selection . 43
3.2.2 Predictive Posterior . 45

3.3 Methods for Bayesian Inference 46
3.3.1 Maximum A Posteriori (MAP) Estimation 46
3.3.2 Rejection Sampling . 47
3.3.3 Markov Chain Monte Carlo 50
3.3.4 Gibbs Sampling . 51
3.3.5 Metropolis Hastings . 55

x Table of contents

3.4 Advanced MCMC Methods . 60
3.4.1 Adaptive MCMC . 60
3.4.2 Auxiliary MCMC . 63
3.4.3 Annealing Methods . 65
3.4.4 Model Evidence Estimation 68

3.5 Chapter Summary . 69

4 Bayesian Updating with Structural reliability methods (BUS) 71
4.1 Reliability Analysis . 71

4.1.1 Transformation of Input Variables 73
4.2 Subset Simulation . 74

4.2.1 Subset Simulation: The Role of MCMC 78
4.3 BUS . 82

4.3.1 Adaptive BUS (aBUS) . 85
4.3.2 Nested BUS (nBUS) . 86

4.4 Stopping Criteria . 88
4.4.1 aBUS and BUS . 88
4.4.2 nBUS . 92

4.5 Numerical Applications . 97
4.5.1 Benchmark Problems . 97
4.5.2 Statistical and Evidence Estimation 99
4.5.3 Computational Expense 103
4.5.4 Hand Written Digits and Image Classification 105

4.6 Chapter Summary . 111

5 New BUS Stopping Conditions 113
5.1 Direct Stopping . 114

5.1.1 Progression of Likelihood Multiplier 116
5.1.2 Sampling Error . 118

5.2 Robust Stopping . 121
5.2.1 Bayesian Post Processor for Subset Simulation 121
5.2.2 Bayesian Post Processor with BUS 129
5.2.3 BUS Variations . 134

5.3 Numerical Applications . 135
5.3.1 Computational Expense 136
5.3.2 Statistical and Evidence Estimation 144

Table of contents xi

5.3.3 Hand Written Digits and Image Classification 148
5.4 Comments on Sampler Convergence 149
5.5 MCMC Schemes: Influence on Efficiency 153
5.6 Chapter Summary . 160

6 BUS for Big Data 163
6.1 Introduction . 163

6.1.1 Problem Formulation . 165
6.2 SVM Inspired Reliability Samplers 167

6.2.1 2SMART Method Overview 167
6.2.2 Observations and Potential Improvements 172
6.2.3 Remaining Issues . 177

6.3 BUS with Support Vector Machines 178
6.3.1 Controlling the Error of SVM 181
6.3.2 Selection of q . 183
6.3.3 Potential Computational Cost of The Surrogate 188

6.4 Numerical Applications . 189
6.4.1 Inter-Story Stiffness Parameters 190
6.4.2 Mixture of Gaussians . 194
6.4.3 Supervised Machine Learning 198

6.5 Chapter Summary . 202

7 Breast Cancer Detection 203
7.1 Classification in Healthcare . 203

7.1.1 Breast Cancer Biopsy Samples 205
7.1.2 Incorrect Labels . 212

7.2 Breast Cancer Biomarker Identification 218
7.2.1 Gaussian Process Classification: Model Evidence Estimation221

7.3 Chapter Summary . 229

8 Summary and Conclusions 231
8.1 Summary of Completed Work . 231
8.2 Summary of Contributions . 233
8.3 Research Outlook . 235
8.4 Published Work . 236

8.4.1 Conference Papers . 236

xii Table of contents

8.4.2 Awards . 237
8.5 Work Under Review . 237

Appendix A 239
A.1 Logistic Regression Log-Likelihood 239
A.2 Log-Likelihood First Derivative 240
A.3 Log-Likelihood Second Derivative 240

Appendix B 241
B.1 Influence of Likelihood Multiplier 241
B.2 nBUS Characteristic Trends Derivations 243

B.2.1 Probability of Failure . 243
B.2.2 Model Evidence . 243

B.3 Computational Expense of Numerical Examples 245

Appendix C 249
C.1 Proof of Corollary 1 . 249
C.2 Derivations of CDF and PDF of a Log Transformed Beta Distribution251
C.3 MAP Derivation of Log Transformation 252
C.4 Computational Expense of Numerical Examples 254

Bibliography 257

List of figures

2.1 Breakdown of sub categories of machine learning. 14
2.2 One dimensional example of regression analysis. 17
2.3 Influence of parameter identification on predictive performance. . 22
2.4 Comparison of decision boundaries between logistic regression and

a Gaussian processes classifier. 25
2.5 Computation of the margin for a Support Vector Machine (SVM)

classifier. 27
2.6 Linear SVM versus kernel SVM. 30
2.7 Example of a binary classification decision tree for cancer diagnosis. 32
2.8 ROC curve analysis. 36

3.1 Bayesian updating simple illustration. 42
3.2 Rejection sampling for one dimensional example. 49
3.3 Illustration of the sampling capabilities of the Gibbs sampler. . . 54
3.4 Illustration of the sampling capabilities of the Gibbs sampler on a

problem with highly correlated parameters. 55
3.5 Comparison of the sample progression of the Gibbs and MH sampler. 56
3.6 Influence of the proposal distribution on MH sampling. 59

4.1 Subset Simulation sample generation. 77
4.2 MMH Sample Generation. 81
4.3 nBUS characteristic trends. 87
4.4 BUS and aBUS sample generation. 89
4.5 Bias in simulated expectation of the posterior. 100
4.6 Bias in simulated standard deviation of the posterior. 101
4.7 Comparison of posterior sample generation of each sampler. . . . 102
4.8 Bias in simulated model evidence for aBUS and nBUS. 103
4.9 Total Model Evaluations for aBUS and nBUS. 105

xiv List of figures

4.10 USPS classification data set. 106
4.11 Image classification data set. 107
4.12 Comparison of posterior accuracy on the USPS data set. 108
4.13 Comparison of predictive performance. 110

5.1 Illustration of stopping simulation prior to all samples satisfying
the rejection principle. 117

5.2 Influence of parameters on the beta PDF. 128
5.3 Progression of the intermediate threshold. 130
5.4 Total Model Evaluations for aBUS, nBUS, nBUSD and BUS+. . 137
5.5 BUS+ sample progression trends. 138
5.6 BUS+ progression of δm. 139
5.7 Robustness of BUS+ using example 4. 140
5.8 Progression of Am in nBUSD for example 4. 141
5.9 Progression of hm for nBUSD. 142
5.10 Comparison of intermediate thresholds of nBUSD and BUS+. . . 143
5.11 Bias in the mean of the posterior samples generated with nBUS8,

nBUSD and BUS+. 145
5.12 Bias in the standard deviation of the posterior samples generated

with nBUS8, nBUSD and BUS+. 146
5.13 Bias in the estimated evidence with nBUS8, nBUSD and BUS+. 147
5.14 Comparison of predictive performance. 149
5.15 Convergence investigation of BUS+. 152
5.16 Convergence investigation of nBUSD. 153

6.1 Influence of regularization parameter on SVM boundary. 175
6.2 Influence of the regularization and kernel parameters on the SVM

decision boundary. 176
6.3 Influence of the regularization and kernel parameters on SVM

accuracy. 177
6.4 BUSSV M decision boundary. 180
6.5 Sensitivity study of q and statistical estimation by BUSSV M 191
6.6 Mode population by BUSSV M and BUS+. 192
6.7 Marginal distribution estimation by BUSSV M and BUS+. 193
6.8 Empirical CDF of θ1 for BUSSV M 194
6.9 Sensitivity study of q and statistical estimation by BUSSV M 196

List of figures xv

6.10 Population of a mixture of 20 Gaussians. 197

7.1 Whole slide images of breast tissue biopsy samples. 206
7.2 WSI classification performance. 209
7.3 WSI predictive contour. 210
7.4 Tissue sample proliferation scores. 211
7.5 Predictive probabilities for WSI. 216
7.6 False negative rates in the presence of incorrect training labels. . . 217
7.7 Comparison of inference frameworks in terms of predictive accuracy

and computational expense. 220
7.8 Comparison of the log evidence for different inference methods on

cohort one. 223
7.9 Comparison of the log evidence for different inference methods on

cohort five. 225
7.10 Number of false negatives from varying hyperparameter values on

cohort one. 227
7.11 Number of false negatives from varying hyperparameter values on

cohort five. 228

B.1 Total Model Evaluations for aBUS and nBUS for example 2. . . 245
B.2 Total Model Evaluations for aBUS and nBUS for example 3. . . 246
B.3 Total Model Evaluations for aBUS and nBUS for example 4. . . 247

C.1 Total Model Evaluations for BUS+ and nBUSD for example 1. . 254
C.2 Total Model Evaluations for BUS+ and nBUSD for example 2. . 254
C.3 Total Model Evaluations for BUS+ and nBUSD for example 3. . 255

List of tables

2.1 Confusion matrix. 34

4.1 Reference solutions for the benchmark problems. 99
4.2 Performance metrics of MH, LA, aBUS, nBUS8 for the USPS and

image data set problems. 111

5.1 Summary of BUS variations. 135
5.2 Performance metrics of nBUS8, nBUSD and BUS+ on the USPS

and image data sets. 148
5.3 Performance comparison for MCMC variants using BUS+. 160

6.1 Classification benchmark data sets. 199
6.2 Experimental results for the 10 benchmark data sets. 201

7.1 WSI data set details. 207

List of Acronyms

2SMART . . . Subset simulation by Support vector Margin Algorithm for
Reliability esTimation

aBUS Adaptive BUS

AIS Annealed Importance Sampling

aCS Adaptive Conditional Sampling

AUC Area Under the Curve

BUS Bayesian Updating using Structural reliability methods

BUSSV M . . . BUS with Support Vector Machines

BUS+ BUS with Post Processor

c.o.v Coefficient of Variation

CDF Cumulative Density function

DMC Direct Monte Carlo

DDMH Delayed Modified Metropolis Hastings

FN False Negative

FP False Positive

HMC Hybrid Monte Carlo

LA Laplace Approximation

LHS Latin Hypercube Sampling

nBUS Nested BUS

nBUSD Nested BUS Direct

MAP Maximum A Posteriori

MCMC Markov Chain Monte Carlo

2 List of tables

MH Metropolis Hastings

MMH Modified Metropolis Hastings

MLE Maximum Likelihood Estimation

PDF Probability Density Function

ROC Receiver Operating Characteristic

SuS Subset Simulation

SuS − Inf . . Subset Simulation Infinity

SVM Support Vector Machine

TMCMC . . . Transitional Markov Chain Monte Carlo

TME Total Model Evaluation

TN True Negative

TP True Positive

V I Variational Inference

WSI Whole Slide Image

Chapter 1

Introduction

1.1 Motivation

The generation of massive amounts of data combined with advances in compu-
tational power has resulted in accelerated research around machine’s ability to
learn. One of the early milestones of research in computerising a learning process
was a study using the game of checkers [193], where it was hypothesised that a
computer could be programmed to learn how to play a better game of checkers
than the person who wrote the program. While the potential of devising a learning
scheme which can outperform a humans actions was highlighted, given the era
(1950’s) of this work, the learning framework was not yet feasible in economic
terms to be applied to real life problems. Modern society has evolved into an
environment enriched with automation from personal assistance applications on
smart phones recognizing voice commands to streaming services learning to suggest
films [27, 147]. The field of pattern recognition is concerned with the automatic
discovery of regularities in data [34]. With these regularities being used to take
actions such as classifying the data into different categories. Behind many of
these processes are numerical models that identify data patterns to allow for
a decision making process to be formed. On a basic level, the model learns a
function which maps an input to a desired output. With the accuracy of the
functional approximation of the relationship between the model’s input and output
determined by the degree of correctness of the decision taken.

Built upon assumptions compensating for limited knowledge and imprecise
understanding of the world around us, the model is uncertain. A considered
model could be a finite element analysis [137] applied within a computational

4 Introduction

fluid dynamics model [224] or a model for simulating biochemical pathways for
biochemical processes in systems biology [91]. In practice, regardless of the models
accuracy or complexity, different sources of uncertainty appear during its formation.
As only a finite data set has been observed, limited information about the data
generation process’ are available. Given the models assumptions, approximation
error contributes to uncertainty between the true underlying process and the
model. Establishing a model with outputs consistent with the real world outcomes
requires unknown inputs referred to as parameters to be estimated. The inability to
describe the inherent possible variability of these parameters introduces additional
uncertainty. For a further discussion on different sources of uncertainty the reader
is referred to [121].

Evidently, a numerical model is susceptible to uncertainties while explicitly
accounting for these significantly increases the required computational budget.
Uncertainty quantification is the general term for a group of methods that are
used to analyse and make inferences about the output of a numerical model.
Uncertainty quantification in numerical modelling may be categorised into two
different types of problems [205]. Forward uncertainty quantification concerns
the task of propagating the uncertainty in the model input through the model
to predict the overall uncertainty in the model’s output. The second problem
is referred to as inverse uncertainty quantification. Solving an inverse problem
involves making inferences about a physical system from data generated by that
system [197]. Consider the task of classifying whether or not a patient partaking
in a clinical trial has received the trial drug or a placebo replacement. In this
setting, an example of an inverse problem would be the identification of the
classification model’s parameters based on observed clinical data. Once estimated,
the parameter values may be used for forecasting drug allocation on future patients.
The work presented during this dissertation primarily focuses on the latter type
of uncertainty problem and in particular model parameter identification.

Bayesian inference [81, 83, 143] allows for unknown model parameters to be
identified and updated based on some observed data. Even though Bayes’ theorem
[24] stems from the axioms of probability [126], the use of Bayes requires the
specification of a prior distribution along with a particular view of uncertainty
aswel as the observed data. As such, a prior distribution is specified representing
current beliefs about the unknown parameters. Through the use of Bayes’ theorem,
these prior beliefs are updated with this updated knowledge being encapsulated in

1.1 Motivation 5

a probability distribution referred to as the posterior. The posterior is a conditional
probability distribution that allows for prior knowledge and information contained
in observed data to be combined in order to infer the values of the unknown
parameters. Due to the mathematical expression of the posterior, it is often the
case that an analytical solution is unattainable and therefore cannot be computed.
Aside from inferring parameter values, the expression of the posterior by Bayes’
theorem allows for competing models to be compared against one another through
a quantity referred to as the model evidence. The model evidence may be viewed
as the plausibility of a model given in the presence of the observed data. Evidently,
the posterior is a powerful probability distribution that in most cases is required
to be computed using numerical methods. Such methods for Bayesian inference
ideally not only estimate unknown model parameters but also compute the model
evidence as a by product of simulation. Methods should also be suitable to a wide
range of problems in terms of different data properties (e.g. dimensionality) and
complexity of the posterior distribution (e.g. multi-modal distributions). While
statistical guarantees of convergence to the correct posterior distribution with a
reasonable computational cost for a given problem should also be given.

A proportion of numerical approaches for Bayesian inference view the task
of computing the posterior distribution as an optimization problem. The idea
is to approximate the potentially complex posterior distribution using the best
distribution from a family of distributions (e.g. Gaussian). In this case the best
distribution may refer to the distribution which minimizes the Kullback–Leibler
(KL) divergence [35] with the posterior. As an approximation to the posterior
is identified, these methods produce approximate samples. While often lauded
for their computational efficiency, their inability to efficiently deal with multi-
modal distributions (e.g. Laplace approximation [215]), the lack of guarantee of
convergence (e.g. expectation propagation [151]) and the sensitivity of the sample
quality to initial distribution choice (e.g. variational inference [35]) highlight some
of the outstanding issues with these approaches.

An alternative to the above is to produce draws from the posterior. Rejection
sampling offers a simplistic solution for generating samples directly from a proba-
bility distribution but quickly becomes inefficient in the presence of a large number
of uncertain parameters. Rendering it unsuitable for many practical problems.
Prior to drawing samples from the posterior, rejection sampling requires a prudent
choice of an input parameter. This parameter directly influences the distribution

6 Introduction

of the samples while also being responsible for the samplers efficiency. Choosing
this parameter however has in general remained an open question [67].

Markov Chain Monte Carlo (MCMC) [79, 86] approaches consist of a widely
implemented group of methods that produce draws from the posterior distribution.
Initializing a Markov chain with the posterior as its stationary distribution allows
for posterior samples to be generated as a sequence of the chain. The Metropolis
Hastings (MH) [105] algorithm may be viewed as a pillar of MCMC [81]. In its
standard form however, many obstacles may appear for the MH sampler. The first
being the requirement of a sample burn in phase to ensure that the stationary
distribution of the Markov chain is indeed the posterior. While there exists
diagnostics for determining the length of the burn in period [79], in general it is a
non-trivial task. Another issue with MH, is the inability to efficiently cope with
problems with a large number of uncertain parameters. This is in contrast to Gibbs
sampling [84] which explores the posterior in a component wise manner. However,
due to its sampling updating process, the Gibbs sampler can become inefficient if
the parameters of the posterior are highly correlated. Some specialized MCMC
algorithms [106, 70] can cope with such high dimensions, however they require
the posterior gradient to be computed for every generated sample. The choice
of proposal distribution in MH directly impacts the samplers ability to populate
parameter spaces that contain multiple regions of high probability. A number of
frameworks have been proposed [85, 54, 124] to populate multi-modal distributions
but with them have come new challenges. For example, the careful selection of
additional parameters which influence algorithmic efficiency [150, 3]. As with
MH, the majority of these samplers are primarily focused on sampling from the
posterior distribution and are unable to offer estimates of the model evidence.
This has lead to the development of MCMC based samplers with the estimation
of the model evidence being the primary quantity of interest [204, 95, 22].

Recent work in [208] has addressed each of the above issues of MH in a single
sampling algorithm. Through the interpretation of Bayesian inference as rare
event simulation, Bayesian Updating with Structural reliability methods (BUS)
enable frameworks from reliability engineering to solve the Bayesian inference
problem. An advantage of BUS is that rare event simulation techniques already
exist in the reliability literature and can be readily applied to Bayesian inference
problems. One such technique, Subset Simulation (SuS) [11] is an advanced
MCMC algorithm which is suitable to high dimensional problems and avoids the

1.2 Aims and Objectives 7

requirement of a sample burn in period through its nested architecture. Aside
from addressing sample burn in and dimensionality issues, BUS with SuS can
efficiently populate multiple modes of complex distributions by using multiple
Markov chains for exploration of the parameter space. Additionally, in contrast
to many of the above referenced MCMC methods, BUS also offers an estimate of
the model evidence. In its original form BUS, like rejection sampling requires
choosing a parameter prior to simulation that dictates the distribution of the
generated samples. If incorrectly chosen, a new choice of parameter must be made
and the sampler is re-run. As expected, in the presence of a computationally
expensive model this is not feasible. This parameter not only directly influences
the distribution of samples but also the estimation of the model evidence. Like any
algorithm, correct termination of simulation is crucial as it ensures the quantity of
interest has been accurately computed. In terms of a stopping condition, posterior
samples are conditional on a quantity assumed to be deterministic at termination
but in truth is stochastic. This results in the samples not being truly conditional
on the event that ensures they have been generated form the posterior distribution.

A reformulation named nested BUS (nBUS) [67], has been proposed which
automatically learns the input parameter required under rejection sampling during
simulation. This avoids any potentially unnecessary additional sampler runs while
allowing for the model evidence to be computed. Given BUS is MCMC based, the
samples are not independent. To protect against a potentially deteriorating sample
quality and to ensure the samples are truly distributed according to the posterior,
an automatic stopping condition is implemented. This takes the form of a nested
loop which gives name to the reformulated framework. The stopping condition
ensures that the correct probability distribution is being sampled from while
also offering statistical assurances of any potential sampling errors. Performing
correct stopping however comes at a cost in terms of computational efficiency.
The nested loop requires the execution of a computationally intensive function
with a numerical cost being dependent on the size of the data set. Rendering
nBUS unsuitable to problems with large amounts of data.

1.2 Aims and Objectives

The aim of this dissertation is the development of efficient Bayesian inference
methods for computing unknown parameters for statistical models used in the

8 Introduction

area of supervised machine learning. Specifically, to maintain algorithmic stability
and accuracy while reducing computational expense in the presence of large data
sets. To satisfy this the following objectives are addressed in this dissertation.

1. The identification of the suitability of existing reliability inspired Bayesian
inference frameworks to supervised machine learning problems. An analysis
in terms of parameter and model evidence estimation is also included.

2. The development of alternative stopping conditions which reduce com-
putational cost and improve sample quality of nBUS. Where statistical
guarantees of sampling from the correct probability distribution are offered.

3. The development of methods which address the scalability issues of nBUS for
parameter identification in problems requiring large data sets. A supervised
machine learning algorithm is used as an approximation to the underlying
computational expensive function. Reducing the computational expense
will improve the suitability of the developed methods to a wider range of
problems.

4. The implementation of the developed methods to problems concerning breast
cancer detection. Two different data types are addressed to establish the
capabilities of the frameworks on real world problems in terms of parameter
estimation, model evidence estimation and predictive prowess. The potential
of supervised machine learning as a tool for increasing diagnosis efficiency
and quantifying uncertainty between practitioner’s recommended diagnosis
is also addressed.

1.3 Thesis Outline

The structure of this dissertation is as follows. In Chapter 2, a brief overview of ma-
chine learning is provided with a particular emphasis placed on three classification
methods used during this thesis. The impact of accurate parameter estimation on
predictive capabilities is highlighted. Bayesian inference is introduced in Chapter
3, where numerous existing methods for estimating unknown model parameters are
reviewed. A reliability analysis based approach named BUS which is suitable for
high dimensional and multi-modal problems is discussed in Chapter 4. To reduce
the computational cost of the framework while maintaining sampling accuracy,

1.3 Thesis Outline 9

two new stopping conditions are presented in Chapter 5. The first which takes
advantage of aspects of rejection sampling and the second involving properties of
the model evidence. In Chapter 6, Support Vector Machines (SVM) are integrated
into the BUS approach to ensure scalability to problems involving a large number
of data observations. Through the use of SVM, the number of required calls to a
computationally expensive function is reduced during a model run. To analyse
the suitability of each of the developed frameworks to problems involving different
data types, two real life problems from breast cancer detection are investigated in
Chapter 7. The first concerning the identification of cancerous tissue in biopsy
samples and the second the identification of relapse rates from patient molecular
data. Different aspects of the potential of supervised machine learning for disease
identification are also considered. Finally, Chapter 8 provides conclusions and
outlines a number of future directions of research.

Chapter 2

Machine Learning

Advances made in computer development along with the curiosity regarding the use
of data in the world around us has resulted in machine learning becoming an area
of much interest in recent decades. Its capabilities in automating processes such
as face recognition at airport security or self driving vehicles has highlighted the
potential positive influence it could have on society. Behind many of these processes
are statistical models which identify patterns in data sets to allow for a decision
making process to be formed. This chapter broadly introduces machine learning
with a particular emphasis placed on supervised learning approaches. Additionally,
three classification models implemented during this thesis are discussed in detail.

2.1 Introduction

The possibility of programming computers to learn and enabling them to improve
their decision making over time has highlighted their potential in becoming
ubiquitous in every day life and a vital component in industry. Developing a
successful understanding of how to best allow computers to learn would allow
increased efficiency in many everyday tasks. Though the extent to which their
learning compares to that of humans has not been identified, the potential is clear.
Learning is required in cases where a computer program to solve a given problem
cannot be directly written but instead requires examples of past experiences or
data [2, 200]. The field of machine learning is concerned with the question of how
to construct computer programs that automatically improve with experience [153].
Originally stemming from the area of computer science, machine learning offers a

12 Machine Learning

group of algorithms which analyse data in order to make decisions. In some cases,
the use of an algorithm in isolation however, is not enough.

Consider an example of the problem of disease identification in tissue samples.
The desired algorithmic output is the indication of whether or not the sample is
contaminated with traces of the disease. We are unable to transform the input
(tissue sample) to the desired diagnosis in pure algorithmic terms as the disease
identification markers vary from specimen to specimen. With the introduction
of data containing instances of both contaminated and uncontaminated tissue
samples, what we lack in knowledge can be compensated for in terms of learning
what constitutes the presence of the disease.

The introduction of data allows machine learning algorithms to make informed
decisions based on the information available. Unknowingly, we are surrounded by
examples of machine learning based technology. Personal assistance applications
on smart-phones learn to recognize voice commands [147], allowing hands-free
usage of a mobile phone in the event of an emergency. Streaming services learn to
suggest films [27] to users based on their film choice history. In airport security,
automatic passport control learns to detect faces [194]. This reduces potential
passenger congestion whilst also increasing the capabilities of the airport security
forces. In terms of autonomous vehicles, machine learning has enabled them to
recognize objects [131]. This is paramount to human safety in the event that
autonomous vehicles become a permanent fixture in society.

While in each application, there has been relative success, the effectiveness
of a machine learning algorithm commonly depends on the quality of data used
[155]. In truth, data driven models are only as good as the data which they
were built with. As such, before the implementation of an algorithm, some data
pre-processing steps may be required [182, 62]. Machine learning can typically be
expressed in terms of three categories: unsupervised learning, supervised learning
and reinforcement learning.

Unsupervised learning, also referred to as knowledge discovery [157], applies
when the data consists of input instances only. The goal is to uncover interesting
patterns or trends in the data. Given the practitioner is unaware of what pattern to
look for along with no error metric being available, it is somewhat of a non-trivial
task. Consider the case when the data set consists of tissue samples taken from
a group of patients. This group consists of both healthy and infected subjects.
However, no information regarding which specimens are infected is provided. For

2.1 Introduction 13

this binary case, unsupervised learning groups the respective specimens into two
categories based on their similarities and dissimilarities. This particular approach
is commonly referred to as clustering [4, 119, 225] .

In contrast, supervised learning applies when both the algorithmic input and
output are readily available. Consider the case when the data set consists of tissue
samples taken from a group of patients. This group consists of both healthy and
infected subjects. Each specimen is labelled as being either healthy or infected. In
this case, a mapping is learned from the input (specimen) to the output (diagnosis)
given a labelled dataset. As the output is readily available, supervised algorithms
offer a diagnosis based on the observed tissue samples. This concept is discussed
in more detail in Section 2.2.

A branch of machine learning which exists at the intersection of both unsu-
pervised and supervised learning is referred to as semi-supervised learning [232].
Semi-supervised learning concerns both labelled and unlabelled instances and may
be best used in problems where labelled data is expensive to obtain. In this case
expensive may refer to the monetary costs or time costs associated with attaining
class labels for data. An example would be identifying Edwards syndrome [213] in
unborn children. This involves removing and testing cells from amniotic fluid by
the insertion of a needle through the abdominal wall, with a major risk being the
possibility of miscarriage. In this scenario, theoretically semi-supervised learning
could use past cases to identify whether an unborn child has Edwards syndrome
without requiring the testing procedure. In this setting, the expense being avoided
is the potential danger to the unborn child.

The final category of machine learning is reinforcement learning [209]. This is
concerned with machines ability to automatically determine the ideal behaviour
for a specific task in order to maximize its performance. In this case of Edwards
syndrome, a reinforcement learning system could be introduced in the form of
surgical robots which would assist the practitioner during the procedure. The
remainder of this dissertation is primarily concerned with supervised learning. For
further information on unsupervised, semi-supervised or reinforcement learning,
the reader is referred to the aforementioned references. Figure 2.1 offers a broad
overview of the three categories along with their respective sub categories. The
schematic breakdown of each category into subcategories can be much more
detailed, but for this dissertation the highlighted subcategories are of great
importance.

14 Machine Learning

Machine
Learning

Supervised
Learning

RegressionClassification

Reinforcement
Learning

Unsupervised
Learning

Clustering

Se
m

i-
Su

pe
rv

ise
d

Figure 2.1: A schematic overview of the three main categories of machine learning
along with their subcategories.

2.2 Supervised Learning

This section presents an initial introduction to supervised learning and its two
sub-areas in regression and classification. Given this dissertation is concerned with
the development of Bayesian inference methods for the estimation of unknown
parameters of classification models, three classification methods implemented in
later chapters are discussed in detail. This is followed by a brief overview of other
existing approaches.

Let X ∈ Rn×d be a data matrix with n observations and d features. A feature
is an individual descriptive characteristic of a phenomenon being observed. In

2.2 Supervised Learning 15

the case of determining the presence of a tumour in a tissue sample, the feature
set could contain the size and colour of the specimen. Let Y ∈ Rn×1 be a vector
representing the target output and D = {(xi, yi)}n

i=1 the corresponding dataset.
Supervised learning is concerned with modelling a functional relationship by
inferring a mapping from the data input to the output. Initially, D is partitioned
into two subsets for training and testing. To avoid model over-fitting in the sense
of being biased towards the training set, numerous techniques exist ensuring a
generalized model performance can be fairly evaluated. Widely applied methods
include the hold-out method [123] and k-fold cross validation [211]. The former
simply entails dividing the data set into a training and testing set. With the
percentage of observations in each set specified by the practitioner. Commonly
used ratios are 80% for training and 20% for testing [123]. The cross validation
approach randomly splits the data set into k subsets and trains the model on the
k − 1 folds before testing on the remaining fold. This process is repeated k times
with the average error computed using the individual error on each held out fold.

The model parameters are estimated during the training phase for the target
functional mapping to be learned. Additionally, competing models varying in
parameter choice may be compared using the training data in terms of some
specified criterion. Once trained, the corresponding model is implemented on
the previously unseen test data for predictive purposes. In turn, allowing for the
quality of the mapping to be verified. As was outlined in Figure 2.1, supervised
learning models may be further expressed in terms of two subcategories, namely
regression and classification. While both utilize information from training data to
learn an approximated function, the nature of the output differs.

2.2.1 Regression

Regression analysis is concerned with learning a real valued function. The learning
task is to approximate y = f(x), where y in this case is a continuous quantity. The
target function f is assumed to be unknown and is estimated using the observed
training data. In reality, many real data sets contain individual observations
which are corrupted with random noise. This noise may stem from a stochastic
process or due to sources of variability, which themselves are unobserved [34]. As
such, the learning task may be defined as

y = f(x) + ϵ (2.1)

16 Machine Learning

The noise term ϵ, is introduced to represent the deviation between the true function
f and approximated function f̂ . This ϵ noise term for example could be modelled
as a zero mean Gaussian random variable. Consider a data instance xi with the
respective observational output response given by

yi = θ0 + θ1xi,1 + · · · + θdxi,d + ϵi = xT
i θ + ϵi (2.2)

with θ denoting a vector of unknown model parameters. This is a linear regression
[199] which assumes that the output is linear in the parameters θ. To construct
an approximation of the target function as in Eq. 2.2, appropriate values of θ are
learned using data observations. An in depth discussion of how such parameters
may be computed is presented in Chapter 3. Intuitively, θ should be estimated to
best fit the training data or to ensure a chosen error criterion is minimized.

Consider a one dimensional example for which a simple model y = sin(x) as
in Figure 2.2 (a) is defined with the input assumed to be uniformly distributed on
[0, 4π]. If y(x) is considered to be computationally expensive to evaluate, one is
more likely to be presented with a finite collection of data observations such as
those in Figure 2.2 (b) rather than a continuous curve. It is clear that a linear
regression would not be suitable for this particular set of data observations (black
circles). A polynomial regression requires the order m of the polynomial to be
specified such that

yi = θ0 + θ1xi,1 + · · · + θdx
m
i,d + ϵi = xmT

i θ + ϵi (2.3)

Note that even though yi is a non-linear function of xi, it is a linear function of
the parameter vector θ. The influence of selecting m is evident from Figure 2.2
(c), where polynomials with m = 1, m = 3 and m = 6 approximate the output of
sin(x). In Figure 2.2 (d), the true function (blue) is approximated by the output
of the 6th order polynomial regression model (red) fitted using the error sum of
squares (SSE).

SSE =
n∑

i=1
(yi − ŷi)2 (2.4)

In practical terms, a regression problem could be the prediction of a patients age
based on their blood pressure and cardiac cycle timing. A cardiac cycle refers
to the time taken for the heart to complete a relaxation and contraction of both

2.2 Supervised Learning 17

the atria and ventricles. Here, f corresponds to the doctor’s knowledge and ϵ

for example whether or not they have made a mistake. For a comprehensive
overview of existing regression models and their applications, the reader is referred
to [199, 50, 68, 104, 18].

(a) (b)

(c) (d)

Figure 2.2: Panel (a) presents the underlying function with the available data
observations given in panel (b). Three different orders of polynomial with m = 1,
m = 3 and m = 6 are shown in panel (c). Panel (d) illustrates the comparison of
m = 6 and the underlying function.

2.2.2 Classification

In line with regression analysis, classification aims to infer a function mapping
based on training data. However, in this case the desired output is discrete. In
classical terms, classification is a pattern recognition problem which assigns each

18 Machine Learning

{xi}n
i=1 to one of y ∈ {1, ..., c} classes, where c denotes the number of classes. The

data set D = {(xi, yi)}n
i=1 now consists of observations and class labels. During

the training phase, the classifier learns a decision rule from the observations and
labels. The subsequent process extracts information from this data to establish
characteristics of each class membership. Allowing for future test data to be
allocated a class label based on this information. The case of c = 2, is referred to
as binary classification in which y ∈ {0, 1} while c > 2 is referred to as multi-class
classification. For the purpose of this dissertation we are concerned purely with
problems which are mutually exclusive in the output i.e. each input can only be
assigned one class label. The scenario of the classes not being mutually exclusive
is referred to as multi-label classification [157].

Given the suitability of supervised learning to tasks from different domains,
a number of classification approaches varying in their theoretical underpinnings
have been developed. The remainder of this section provides a detailed overview
of three methods used during this thesis as classification models. The discussed
methods are Logistic Regression, Gaussian Processes (GP) and Support Vector
Machines (SVM). Additionally, a brief overview of alternative approaches is also
provided.

Logistic Regression

In Section 2.2.1, the concept of linear regression aimed at predicting continuous
quantities was discussed. Logistic regression [107, 148] offers a method for mod-
elling the conditional distribution of the output variable when the response is
discrete. A relationship is formed between the observed data and the subsequent
model through the introduction of a conditional likelihood function.

L(D|θ) =
n∏

i=1
pyi

i (1 − pi)1−yi (2.5)

which assumes independence between all data observations. The relationship
between θ and the data is represented as a linear combination with the probability
of class membership denoted by

pi = p(yi = 1|xi,θ) = 1
1 + e−xT

i θ
(2.6)

2.2 Supervised Learning 19

The likelihood function is a crucial ingredient of statistics and its role is discussed
in detail in Chapter 3. Formally, Eq. 2.6 is commonly referred to as the logit
function and is widely applied in different areas of machine learning for mapping
the output of regression functions onto the unit interval [183, 176, 207]. As is
evident from Eq. 2.5, the logistic regression model is a binary classifier. Along
with its simplicity, an advantage of this approach over competing models is its
ability to quantify its degree of certainty of class membership through the use of
probabilities. The purpose of the training set is for the best possible approximated
function to be learned to allow for accurate future predictions to be confidently
made. A crucial aspect of this is the estimation of the unknown model parameters.
The unknown parameter vector θ, is learned from the training data. In essence, the
resultant parameters help guide the model to make decisions once new previously
unseen data or test data becomes available.

Typically the method of maximum likelihood estimation (MLE), which may
viewed as the engine of classical statistics, has been implemented to estimate
the subsequent parameter values [43, 61, 57, 160]. MLE seeks the value of the
parameters for which, given the observed data, the probability of having observed
that data is maximized. Finding the values of θ for maximizing the likelihood,
corresponds to establishing the critical points of a function when the first derivative
equals 0. In the case of the second derivative evaluated at a given point being
less than 0, the maximum point has been identified. Thus, finding the maximum
likelihood estimate requires computing the first and second derivatives of the
likelihood function. Direct differentiation of Eq. 2.5 can be a difficult task due to
the multiplicative terms. Fortunately, a log transformation allows for this task to
be simplified. Given that the logarithm is a monotonic function, any maximum of
the likelihood function will also be a maximum of the log likelihood function and
vice versa. Taking the log of Eq. 2.5 yields

log(L(D|θ)) =
n∑

i=1
yilog(pi) + (1 − yi)log(1 − pi)

=
n∑

i=1
[−log(1 + exT

i θ) + yi · xT
i θ] (2.7)

20 Machine Learning

The first derivative of the log-likelihood with respect to θ is given by

∂log(L(D|θ))
∂θ

= ∂

∂θ

n∑
i=1

[−log(1 + exT
i θ) + yi · xT

i θ]

=
n∑

i=1
[yi − pi]xi (2.8)

In terms of the second derivative with respect to θ and Eq. 2.8, the Hessian
matrix is given by

∂2log(L(D|θ))
∂2θ

= −
n∑

i=1
xT

i xipi[1 − pi] (2.9)

Full derivations are included in Appendix A. Solving the maximization problem
requires approximate numerical techniques as a direct numerical solution is not
feasible. A number of frameworks which efficiently solve the optimization problem
have been implemented [116]. MLE seeks to find

θ̂ = arg maxθ L(θ, D) (2.10)

Certain limitations in the MLE estimate are prevalent. Firstly, the maximum
likelihood estimator may not exist or may not be unique [136, 234]. The likelihood
function may contain several local maxima, whereby a maximum found by a
numerical method may not be the global maximum. This means that additional
steps are required to verify if this is the case. In terms of uncertainty quantification,
identifying a point estimate results in no additional information regarding the
choice of parameter being available. As such, indications of the quality of the
estimate, nor how well one can make predictions based on the estimate are not
provided.

To illustrate the importance of accurate parameter estimation, Figure 2.3
presents a toy example. The problem concerns a synthetic binary response data
set generated from two different Gaussian distributions namely N (−2, 0.9) and
N (3, 1.5). The data set consists of 80 observations with each class being equally
represented in the training data. Class 0 (blue) is the target predictive class. Three
scenarios are simulated whereby model parameters are firstly poorly estimated
(Figure 2.3 (a)), then the case of parameters which help identify a suitable
function approximation for the classifier (Figure 2.3 (b)) through a point estimate
and finally the case of generating a probability distribution under the Bayesian

2.2 Supervised Learning 21

paradigm for the estimated parameters (Figure 2.3 (c)). Bayesian inference which
is introduced in Chapter 3, allows for the quantification of the uncertainty in the
parameter estimates through the extraction of information from observed data.
From Figure 2.3 (a), poorly estimated parameters have resulted in a classifier of
random guessing with the model assigning a probability of 0.5 across the entire
domain. By using point estimation an improvement can be seen in Figure 2.3
(b). A functional mapping has been successfully learned which identifies areas
of the domain that signify potential class membership. Close to class 0, the
model has correctly assigned a probability of 1 while the same can be said for
class 1 with a probability of 0. However, the point estimate has resulted in
straight lines as the predictive contours. These result in the model incorrectly
assigning a high probability to class 0 for example in regions far away from
the class observations. The advantage of generating a probability distribution
over the unknowns is clear from Figure 2.3 (c). Similar to the point estimates,
the model has correctly identified the target class with high probability. More
importantly, the regions between classes and further away from the observations
are now assigned probabilities closer to 0.5. The classifier stemming from the
point estimates may be interpreted as being over confident while the introduction
of a probability distribution has allowed for uncertain regions of the domain to
be assigned appropriate values. Efficient frameworks for incorporating parameter
uncertainty for classification tasks are presented in Chapter 5 and 6. For further
information on the influence of parameter estimation on classifier quality please
refer to [34, 151, 44, 165, 132].

22 Machine Learning

(a) (b)

(c)

Figure 2.3: Influence of parameter identification on predictive performance. The
predictive abilities of the logistic regression model differ greatly in the case of
poorly estimated parameters (a), point estimates (b) and the incorporation of
parameter uncertainty (c). The advantage of quantifying the uncertainty in the
estimated values can be seen in panel (c) where appropriate probability values
have been assigned to regions far away from the data observations.

Gaussian Processes

Unlike logistic regression, Gaussian processes are applicable to problems where
the target variable is continuous or discrete. The focus of this section is solely on
the discrete case and in particular binary classification. The Gaussian process is a

2.2 Supervised Learning 23

stochastic process such that

f(·) ∼ GP (m(·), k(·, ·)) (2.11)

where f(·) is a function drawn from the multivariate Gaussian distribution with
mean m(·) and covariance k(·, ·). This means that, the Gaussian process is totally
summarised by its mean and covariance functions. The reference to stochastic
process in this case refers to the set of random variables being indexed by the set
of all possible inputs as opposed to time. A Gaussian process may be viewed as a
collection of random variables, any finite number of which have a joint Gaussian
distribution [183]. The covariance function encodes the assumptions about the
function which the practitioner seeks to learn. It characterises the dependencies
between function values for any pair of inputs. A multitude of possible covariance
functions exist with the majority requiring a prudent choice of hyperparameters
denoted by the vector ϕ [183]. A common choice of covariance function is the
squared exponential [165, 34, 183]:

k(x, x′) = σ2
fexp

 − 1
2l2 ||x− x

′||2
 (2.12)

Here σf denotes the signal variance and l the length scale parameter of the
covariance. The length scale is a measure of how smooth f is, with small values
representing a function that changes quickly and large values a function that
changes slowly. The signal variance represents the variation of f with respect to
its mean with small values characterizing a function which stays close to its mean.

In a regression setting, the use of Gaussian likelihood function ensures the com-
putations of predictions is straightforward as the relevant integrals are Gaussian
and as such are computed analytically. For classification however, non-Gaussian
likelihoods present the issue of having to approximate or sample from the rele-
vant conditional probability distribution referred to as the posterior. A detailed
overview of how to draw realizations from this distribution is offered in the fol-
lowing chapter. Given f , the class labels y are independent Bernoulli variables
allowing for the joint likelihood function to be factorized as:

L(y|f) =
n∏

i=1
p(yi|fi) (2.13)

24 Machine Learning

This likelihood function depends on f only through its value at the corresponding
observed inputs. For example, by using the cumulative distribution function
(CDF) of the Gaussian distribution Φ(·) the individual likelihood terms become
p(yi|fi) = Φ(yifi). Often in a binary setting since neither of the class labels is
more probable, the mean of the prior over f is set to zero [165]. The combination
of the zero mean function and the covariance function defines the Gaussian
process. Using Bayes’ rule, the posterior distribution over f for a given vector of
hyperparameters ϕ becomes

P (f |D,ϕ) = N (f |0, k)
P (D|ϕ)

n∏
i=1

Φ(yifi) (2.14)

which is non-Gaussian. In order to predict the class label y∗ for the unseen test
inputs x∗, the distribution of the latent function value can be marginalised such
that:

P (f ∗|D,ϕ, x∗) =
∫
P (f ∗|f,D,ϕ, x∗)P (f |D,ϕ)df (2.15)

where f ∗ denotes a test value of the latent function. To obtain the predictive
distribution the expectation of the above may be taken resulting in

P (y∗|D,ϕ, x∗) =
∫
P (y∗|f ∗)P (f ∗|D,ϕ, x∗)df ∗ (2.16)

Unfortunately, neither the denominator in Eq. 2.14 or the predictive distribution
of Eq. 2.16 may be computed analytically. Unlike logistic regression, Gaus-
sian processes are non-parametric methods that offer great flexibility in terms
of capturing non-linear decision boundaries between classes. To illustrate these
properties, consider again the binary classification example concerning data ob-
servations drawn from two Gaussian distributions previously discussed for the
logistic regression classifier. Figure 2.4 provides a visual comparison between the
logistic regression (a) and Gaussian process classifier (b) decision boundaries. The
ability of the Gaussian process classifier in producing a more appropriate class
decision boundary is evident. As with logistic regression, the Gaussian process
assigns a probability of approximately 0.5 in regions where class membership is
uncertain. In terms of hyperparameter selection for the covariance function, a grid
search was implemented whereby the negative log likelihood was maximized for
each combination of the squared exponential hyperparameters considered. Figure

2.2 Supervised Learning 25

2.4 (c) illustrates the distribution of the log likelihood with the hyperparame-
ters producing the maximum negative log likelihood identified. The resulting
hyperparameter values were used for the classification task in Figure 2.4 (b).

(a) Logistic Regression Predictions. (b) Gaussian Process Predictions.

(c) Gaussian Process Log Likelihood.

Figure 2.4: The predictive capabilities of the logistic regression model (a) and
a Gaussian process classifier (b) differ greatly in terms of the treatment of the
decision boundary between classes. The advantage of the Gaussian process is
evident from its ability to capture a highly non-linear decision boundary through
the use of the chosen covariance function. Panel (c) illustrates the distribution of
the log likelihood with the hyperparameter combination producing the maximum
negative log likelihood identified.

26 Machine Learning

The non-parametric nature of the Gaussian process results in potential disad-
vantages in terms of computational expense in the presence of a large number of
observations when computing the covariance function. The computation involves
inverting a matrix as large as the number of training points and as the number of
these grow, the problem becomes more and more expensive. Sparse extensions
of the Gaussian process have been developed to allow for this issue to be solved,
however they are not addressed in this study [183, 135]. For more information on
the Gaussian process classification model the reader is referred to [132, 165].

Support Vector Machines

Similar to Gaussian processes, Support Vector Machines (SVM) [58, 219] are a
non-parametric method but differ in that they are deterministic in their output.
Assume that the labelled classes are perfectly separated by a (d− 1) dimensional
hyperplane. SVM focuses on the task of identifying the optimal separating
hyperplane between the two classes. Consider the decision function to be a
separating hyperplane

f(x) = ⟨θ, x⟩ − a = 0 (2.17)

where both θ and bias term a ∈ R are unknown parameters of the SVM model
and ⟨·, ·⟩ denotes the vector dot product. SVM proposes to identify the largest
distance between the two observation classes. In essence, the goal is to maximize
this distance to allow for a greater geometric separation between class observations.
Consider the vector of unknown θ to be perpendicular to Eq. 2.17. Conceptually
the dot product enables the projection of x onto θ, allowing for the identification
of which side of the hyperplane the observation is on i.e. the identification of
class membership. Many possible values of θ exist, therefore constraints are
required to ensure the correct choice. The model takes the form of an optimization
problem the aim of which is to maximize the distance in the margin subject to
the constraints

⟨θ, x⟩ − a ≥ 1, if yi = +1 (2.18)

⟨θ, x⟩ − a ≤ −1, if yi = −1 (2.19)

2.2 Supervised Learning 27

which can be compactly put in the form

yi(⟨θ, xi⟩ − a) ≥ 1 (2.20)

The solution to this classification problem is uniquely defined by selecting the SVM
classifier which is furthest from the training points. A rescaling of the problem
is applied such that the closest points to the separating hyperplane satisfy the
equation

yi(⟨θ, xi⟩ − a) − 1 = 0 (2.21)

Allow for the largest distance between the two observation classes to be referred
to as the margin. That is, any x satisfying Eq. 2.21 is located on the margin and
is referred to as a support vector. To formulate an expression for the desired width
of the margin, consider two training points x1 and x2 as illustrated in Figure
2.5. Where x1 is located on the support vector of the positive class and x2 the
negative.

(a) (b)

Figure 2.5: Two training points located on the support vectors of the positive
class (x1) and the negative class (x2) as given in the left panel. Taking the dot
product between the difference of x1 and x2 and a normalised vector allows for
an expression for the width between the two support vectors to be derived. This
distance is referred to as the margin.

By normalising θ and considering its perpendicular properties to the hyper-
plane, the margin width in terms of x1 and x2 is denoted by

w = ⟨(x1 − x2),
θ

||θ||
⟩ (2.22)

28 Machine Learning

Which is simply the dot product between the two vectors and the normalised
parameter vector. Using Eq. 2.21 and substituting in the expressions for x1 and
x2 result in the margin width being given by

w = θx1 − θx2

||θ||
= 1 + a− a+ 1

||θ||
= 2

||θ||
(2.23)

The optimal linear classifier is obtained by maximizing the margin under the
constraint of correct classification of the training observations. Reformulating
and defining the margin in quadratic programming form produces the following
optimization task.

minθ,a
||θ||2

2 s.t yi(⟨θ, xi⟩ − a) ≥ 1 for i = 1, ..., n (2.24)

A convenient approach to solve for n linear constraints is the use of Lagrange
multipliers

L(θ, a, α) = ||θ||2

2 −
n∑

i=1
αi[yi(⟨θ, xi⟩ − a) − 1] (2.25)

where α = (α1, ..., αn)T contains the n Lagrange multipliers with αi ≥ 0 for
i = 1, ..., n. Hence, the problem is to minimize the loss function with respect
to the hyperplane parameters while maximizing it with respect to the Lagrange
multipliers. The saddle point solution to Eq. 2.25 implies obtaining the partial
derivatives of both unknown parameters resulting in

∂L(θ, a, α)
∂a

=
n∑

i=1
αiyi (2.26)

∂L(θ, a, α)
∂θ

= θ −
n∑

i=1
αiyixi (2.27)

The partial derivative with respect to θ is defined as a linear sum of the training
observations whose α are strictly positive. Such points are referred to as the
support vectors and may be viewed as the points which are most difficult to
classify. This allows for the unknown parameters of the hyperplane to be given by

θ =
S∑

j=1
αjyjxj (2.28)

2.2 Supervised Learning 29

where S is the number of support vectors. Intuitively, this is indicating that the
equation of the optimal hyperplane can be defined in terms of training observations
which are close to it. Essentially the decision function is defined purely in terms
of its support vectors. This property makes SVM a viable model for problems
with limited amount of data. Utilizing this functional form and substituting into
Eq. 2.25 allows for the optimization problem in terms of the Lagrange multipliers

L(α) =
n∑

i=1
αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyj⟨xi, xj⟩ (2.29)

The final classification function may be expressed as

y(x) = sgn(f(x)) = sgn

 n∑
i=1

αiyi⟨xi, x⟩ − a

 (2.30)

The main concepts of SVM and derivation details have stemmed from the assump-
tion that the classes are linearly separable. By using kernel transformations SVM
can easily be extended to non-linear scenarios. Based on the so-called kernel trick,
the input data is mapped into some other possibility infinite dimensional space
sometimes called a feature space [201]. A non-linear projector ϕ, acts as the feature
map with k(·) denoting the kernel. Under this transformation, the classification
problem only changes in the relationship between the training observations. With
the updated expression given by

y(x) = sgn(f(x)) = sgn

 n∑
i=1

αiyi(k⟨xi, x⟩) − a

 (2.31)

Figure 2.6 presents a toy example for the comparison between the linear and kernel
SVM. The data set consists of 200 observations with each class containing 100
instances. Class 1 (red) is generated uniformly on a unit disk with radius r1 =

√
u

where u ∼ [0, 1]. The angle t is uniformly distributed on [0, 2π] resulting in each
data observation with coordinates (r · cos(t), r · sin(t)). Class −1 differs only in
the radius given by r2 =

√
3 · u+ 1. Figure 2.6 (a) illustrates the shortcomings of

linear SVM when dealing with non-linearly separable data sets. Figure 2.6 (b)
capitalizes on the advantages of introducing a non-linear operator to the classifiers
decision making process. For this example the chosen kernel is the Gaussian radial

30 Machine Learning

basis function (RBF).

k(x1, x2) = exp
 − 1

2σ2 ||x1 − x2||2
 (2.32)

where σ denotes the hyperparameter required to be carefully chosen by the
practitioner. The flexibility of SVM is evident with the introduction of a kernel
function allowing for highly non-linear datasets to be accurately classified. For
further details on choosing kernel functions and there subsequent hyperparameter
values please refer to [31, 49, 155, 183].

(a) (b)

Figure 2.6: Comparison of linear SVM (a) and kernel SVM (b).

It is worth noting that their exists a Bayesian interpretation of SVM referred
to as Relevance Vector Machines (RVM) [216]. The RVM may be viewed as a
special case of a Gaussian process with a sparse inducing prior. This choice of
prior make it suitable to data sets with a large number of observations.

Alternative Machine Learning Approaches

Aside from the aforementioned methods used in this thesis, a number of alternative
machine learning methods are worth mentioning. Note that some of the methods
are applicable to both classification and regression tasks. However given the
scope of this thesis, the focus is on classification variants. Neural networks
[93] are at present one of the most well known learning models in machine
learning applications. The term neural network has its origins in attempts to find

2.2 Supervised Learning 31

mathematical representations of information processing in biological systems [218].
This method takes inspiration from the interaction of neurons in the brain. The
general idea is that the n input values are combined to create a response. The
simplest form of neural network can be defined by

f(x) =
n∑

i=1
αiψ(θT

i x+ bi) (2.33)

where αi is the coefficient associated with neuron i and ψ(·) a sigmoidal function
with parameters θ and bi. If this response exceeds a threshold bi the neuron emits
a signal with the final prediction comprising of a linear combination of the signals
from the collection of neurons. Layers of neurons between the input and output
layer may be sequentially added to the neural network architecture. Thus, the first
layer receives the inputs {xi}n

i=1 while the final layer emits a linear combination
of the signals received from the second to last layer to make predictions. For
classification tasks, the final layer of the neural network is a mapping onto the unit
interval. This for example could be done using the sigmoid logit function specified
in logistic regression. Although neural networks have seen success in computer
vision [56], reinforcement learning [202] and speech recognition [26] aswel as other
areas, disadvantages arise with their lack of interpretability as the number of layers
increases along with the task of pre-specifying the network architecture. Note
that their exists a theoretical connection between neural networks and Gaussian
processes whereby [161] showed that a neural network with a single hidden layer
converges to a Gaussian process as the number of neurons increases.

Classification and Regression Trees (CART) [42] are decision tree based meth-
ods which may be utilized for different predictive tasks depending on the nature
of the target variable. These methods aim to predict the value of a target variable
by learning simple decision rules inferred from the features of the training data. A
tree structure is created whereby every node of the tree represents a feature, each
branch represents a decision rule and each leaf represents an outcome. Figure
2.7 illustrates an example of a binary classification tree for the problem of cancer
diagnosis. At the initial node, it is checked whether or not a lump has been
detected in the initial examination of the patient. If so, the lump is further
examined to establish whether or not abnormalities are present. If irregularities
in the lump are found, a tissue sample through a biopsy is taken for further
examination. The resulting examination will determine if the cells in the tissue

32 Machine Learning

sample are benign (non-cancerous) or malignant (cancerous). For more complex
decision tree structures, metrics such as the information gain [142] are utilized to
determine the progression of the tree at each node.

Lump Detected

Re-Examine in
Six Months

Signs of
Abnormalities?

Biopsy

Benign Malignant

No Biopsy

Figure 2.7: Example of a binary classification decision tree for cancer diagnosis.
At each node, the tree is split depending on a binary choice. This is carried out
sequentially until the resulting class nodes have been reached.

CART models may be easy to interpret and scale well to large data sets,
however, they generalize poorly due to the greedy nature of the decision tree
construction. One way to reduce the variance of predictions is to average together
many predictions. There exists a group of ensemble methods [34] which aggregate
multiple outputs made by a diverse set of individual decision trees. One such
method, namely a random forest [138] is made up of many decision trees. This
approach uses two key concepts that gives it the name random. Firstly, during
training each tree in a random forest learns from a random sample of the training
data. The idea is that by training each tree on different samples, although each
tree might have high variance with respect to a particular set of the training data,
overall, the entire forest will have lower variance but not at the cost of increasing
the bias. Secondly, only a subset of the entire feature set is considered for splitting
each node of each decision tree. The reason for doing this is the correlation of the
trees in an ordinary bootstrap sample. If one or a number of features are very
strong predictors for the target variable, these features will be selected in many
trees, causing them to become correlated. Therefore, this step may be viewed as
a de-correlation process. Overall, the random forest fits an individual decision
tree to each of these smaller data sets and aggregates the predictions of the set of
decision trees. This approach is particularly useful for problems with unbalanced
data sets [138].

2.2 Supervised Learning 33

An alternative to the random forest is the Bayesian Additive Regression Trees
(BART) approach proposed in [55]. As opposed to viewing the data as random as
is the case with the random forest, BART treats the observed data as being fixed
and the parameters characterizing the ensemble of trees as being random. BART
can be distinguished from other ensemble-of-trees models due to its underlying
probability model. As a Bayesian model, BART consists of a set of priors for the
tree structure and the leaf parameters and a likelihood for the data in the nodes.
The aim of the priors is to provide regularization, preventing any single tree from
dominating the total fit while a tailored MCMC scheme is utilized to sample from
the resulting posterior distribution of the generated trees. For more information
on these methods, the reader is referred to the aforementioned references.

Aside from the above another notable classification model is the naive Bayes
[34] classifier. Naive Bayes is a probabilistic classifier which assumes conditional
independence between every pair of features given the class variable. Using Bayes’
rule discussed in Chapter 3, the conditional probability of class membership can
be decomposed as

P (y|x1, ..., xn) ∝ Q(y)
n∏

i=1
p(xi|y) (2.34)

where Q(y) is the prior probability of membership of class y and p(xi|y) the
likelihood of the class label having generated the input features. The assumptions
of independence allows for the likelihood function to be expressed as a product of
individual likelihood terms. The resulting classification rule is given by:

y = arg maxy Q(y)
n∏

i=1
p(xi|y) (2.35)

In spite of its apparently over-simplified assumptions, the naive Bayes classifier has
worked quite well in many real-world situations, famously document classification
and spam filtering [195]. The reader is referred to the aforementioned references
for further information on the above methods.

2.2.3 Performance Evaluation

As previously mentioned, the classifier approximates a function which to the best
of the model’s knowledge appropriately assigns unseen data to their respective
classes. In order to evaluate the quality of the function approximation, this

34 Machine Learning

section introduces widely applied performance metrics for classification tasks. A
confusion matrix, also referred to as a contingency table, is a visualization of the
performance of a supervised algorithm. A given problem with c classes, produces a
c× c confusion matrix with the rows representing the actual class and the columns
the predicted class. It allows for a visualization of the model performance based
on a set of test data for which the true class labels are known. In a binary setting,
allow for the two classes to be denoted as the positive and negative class. In a
confusion matrix, TP is the number of positive observations correctly identified as
being positive, TN is the number of negative observations correctly identified as
being negative, FP is the number of negative observations incorrectly identified as
being positive and FN is the number of positive observations incorrectly identified
as being negative. An example of a confusion matrix can be seen in Table 2.1.

P+ P−

A+
True
Positive

False
Negative

m1

A−
False
Positive

True
Negative

m0

n0 n1

Table 2.1: Confusion matrix where A+ represents the actual positive class, A−
the actual negative class, P+ the predicted positive class and P− the predicted
negative class. Define m0 as the sum of the number of false positives and true
negatives, m1 as the sum of the number of true positives and false negatives, n0
as the sum of the number of true positives and false positives and n1 as the sum
of the number of false negatives and true negatives.

The target objective of a classification task varies from problem to problem.
In cancer diagnosis for example, ones goal would be the minimization of the
false negative rate. The case of informing a potentially ill patient that they
are not infected, could result in much graver consequences than that of the
opposite scenario. For such tasks, the confusion matrix provides a degree of clarity

2.2 Supervised Learning 35

surrounding a models performance. This summary of the model output allows for
the following terms to be derived

• Sensitivity = P (A+|P+) = T P
T P +F N

= T P
m1

• Specificity = P (A−|P−) = T N
T N+F P

= T N
m0

• FPR = P (A+|P−) = F P
T N+F P

= F P
m0

• FNR = P (A−|P+) = F N
T P +F N

= F P
m1

Aside from the ease of interpretation, the confusion matrix allows for both the
accuracy and error rates to be computed.

Accuracy = TP + TN

TP + TN + FP + FN
(2.36)

Due to its simplicity and ease of interpretation, accuracy has been a widely adopted
measure of performance. In practice however, accuracy can produce misleading
results in the case of highly imbalanced data sets [130, 222]. Consequently, it
is important to implement a number of difference performance metrics in order
to establish a fair indication of the models predictive capabilities. The Area
Under the Curve (AUC) from the Receiver Operating Characteristic (ROC) curve
analysis, is a widely used metric for interpreting predictive performance in two
class problems. ROC analysis was first developed during World War 2 for the
analysis of radio signals. The AUC is achieved by plotting the True Positive Rate
(TPR), also known as the sensitivity, versus the False Positive Rate (FPR). For
classifiers which output a probability of class membership, the misclassification
threshold chosen to separate the classes is t ∈ [0, 1] [47]. Considering all possible
values of t allows the ROC curve to be plotted. For a given event G and chosen
threshold t let

TPR(t) = P (G ≥ t|P+) (2.37)

FPR(t) = P (G ≥ t|P−) (2.38)

with the corresponding ROC curve defined as

ROC(·) = {(g, f(g)), g ∈ [0, 1]} (2.39)

36 Machine Learning

Here, f(·) denotes the ROC function. The resulting area under the curve is given
by

AUC =
∫ 1

0
f(g)dg (2.40)

As a demonstration, ROC curves for three different models are displayed in Figure
2.8. The optimal classifier produces a curve close to the top left corner, with a
small false positive rate and large true positive rate having a theoretical maximum
of 1. Whereas a curve along the diagonal reflects a classifier purely random in its
predictions with a AUC of 0.5.

Figure 2.8: ROC curve comparison of three competing classification models.

Given Eq. 2.40 is a point estimate, [102] define an expression for the standard
error of the empirical AUC by

SE(ˆAUC) =

√√√√Â(1 − Â) + (y1 − 1) · (Q1 − Â2) + (y0 − 1) · (Q2 − Â2)
y0 · y1

Q1 = Â

2 − Â
, Q2 = 2 · Â2

1 + Â
(2.41)

with Â denoting the AUC, y0 the number of negative class labels and y1 the
number of positive class labels. The ˆAUC can be thought of as an estimate for
AUC. With the true AUC quantity obtained with an infinite sample size. For a

2.3 Chapter Summary 37

comprehensive overview of ROC curve analysis and its theoretical underpinnings,
the reader is referred to [13, 103, 94].

2.3 Chapter Summary

Motivated by the research presented in this dissertation, this chapter provides a
broad overview of machine learning with a particular emphasis placed on super-
vised learning. Section 2.2.2 discusses classification along with the introduction of
three classification methods applied in this dissertation. A proportion of classifi-
cation models, are probabilistic and require the identification of unknown model
parameters. The importance of which for predictive performance was illustrated
using logistic regression [107, 148]. One approach for computing these parameters,
namely maximum likelihood estimation (MLE), was derived. However, the need
for a numerical optimization framework combined with the absence of uncertainty
quantification estimates, highlight the requirement for a robust framework which
offers statistical assurances regarding the estimated parameters. In the following
chapter, a statistical inference approach named Bayesian inference is introduced.
Bayesian inference allows for the quantification of parameter uncertainties and for
predictions to be made.

Unlike logistic regression, the ability of Gaussian processes to address classifi-
cation problems containing non-linear decision boundaries is discussed. A margin
based model aiming to identify an optimal separating hyperplane between two
classes is also introduced. Support Vector Machines (SVM) interpret this as an
optimization task, allowing for an observation to belong to a given class once the
side of the hyperplane which it belongs has been identified. However while SVM
are suitable to large data sets due to the sparse inducing dual representation of the
optimization problem, unlike Gaussian processes they are deterministic in their
output. Aside from the three presented approaches, a brief overview of alternative
existing classification methods is also provided. Additionally, different metrics for
analysing classifiers predictive performance were also discussed along with the
importance of quantifying variation in metric point estimates highlighted.

Chapter 3

Bayesian Inference

This chapter introduces the concept of Bayesian inference. As discussed in
Chapter 2, accurate identification of model parameter values directly influences
the predictive capabilities of a classification model. Bayesian statistics allows for
the identification of model parameters along with the uncertainty in the subsequent
estimations to be quantified. In order to do so, a complex probability distribution
referred to as the posterior, is required to be computed. The mathematical
formulation of which however, in most cases does not have an analytical solution.
Aside from parameter identification, the posterior distribution allows for the
relative evidence for a number of competing models to be assessed along with
model predictions to be made. Techniques for sampling from the posterior which
provide the basis for frameworks developed in this dissertation, are discussed
along with their corresponding shortcomings in their current form highlighted.

3.1 Introduction

Extracting information from data through computer modelling has become com-
mon in science and engineering. In terms of data, the world around us is being
captured in everyday tasks, such as medical appointments and banking transactions.
As discussed in Chapter 1, constructing a model which is a fair representation of
reality however, often results in different sources of uncertainties appearing. By
adopting probability as the language of uncertainty, statistical inference provides a
framework for measuring these uncertainties, allowing the practitioner to reliably
evaluate possible outcomes in terms of probability statements [156]. Probability
theory is said to have been inspired by games of chance in 17th century France

40 Bayesian Inference

and initiated by the Fermat-Pascal correspondence [167]. In this sense, it has
been a relative latecomer in relation to the historical development of other areas
of mathematics.

Numerous schools of thought co-exist in terms of what probability actually
means. The frequentist interpretation of probability associates the probability
of an event with the frequency of the event out of a number of simulated trials.
An issue of this interpretation highlighted by [19], lies in the finite set of trials.
Therefore, in practice the exact frequency of the event of interest cannot be
observed. Motivated by problems arising in quantum mechanics, propensity
probability [101] interprets probability as physical disposition. It can be thought
of as a tendency of a given type of physical property to yield an outcome of
a certain kind [174, 178]. In this work, uncertainties are represented under a
Bayesian interpretation of probability where probabilities represent a degree of
belief in a proposition. The most apparent difference between the Bayesian and
frequentist schools of thought is the attribution of randomness in a statistical
model. From a Bayesian point of view, probabilities may represent uncertainties
about quantities which are not directly observable e.g. parameters of a model.
On the other hand, advocates of the frequentist approach affirm that only the
data is random. Subsequently, values of the parameters are fixed and therefore
should not be considered random variables. For an in depth discussion on the
interpretations of probability theory, the reader is referred to [101].

In terms of general uncertainty quantification, Bayesian inference encapsulates
a solid mathematical foundation for probability models to be updated in the
presence of data. Consequently, such models represent a degree of belief in the
data, resulting in the appearance of conditional probabilities. The term Bayesian
was first coined in honour of a British mathematician, Reverend Thomas Bayes
[24]. Bayes wrote a manuscript detailing a framework, which was later generalized
by Laplace [133], to be known as Bayes’ theorem. The use of Bayes requires the
specification of a prior distribution along with a particular view of uncertainty.
Typically, the Bayesian interpretation of probability can be expressed in terms of
two subgroups: objectivity and subjectivity, which differ in their understanding
of probability. The subjective school of thought regard probability as a personal
belief, with the degree of belief regarding an event stemming directly from the
decision maker. In contrast, the objective school of thought interpret probability
purely based on the knowledge of the observed event. In theory, in the event that

3.2 The Posterior Distribution 41

the same information is available to various decision makers, they would all reach
the same conclusions [180]. However, no general consensus exists regarding the
true definition or aim of objective Bayesian analysis [29].

3.2 The Posterior Distribution

Let θ ∈ Rd represent a set of unknown model parameters which we seek to
make inference about based on an observed dataset D. Here θ is a vector of
unknown parameters with the values of θ being a subset of the sample space Θ.
Prior knowledge of θ may be characterised by a probability distribution Q(θ).
Through the construction of a probabilistic model referred to as the likelihood
function L(D|θ), the observed data is embedded in the Bayesian framework. The
likelihood function represents the plausibility of observing D given a certain θ.
Bayes’ theorem allows for the prior beliefs about θ to be updated by

P (θ|D) = Q(θ)L(D|θ)
PD

(3.1)

where P (θ|D) denotes the posterior distribution and PD the evidence of the data.
The posterior distribution combines Q(θ), L(D|θ) and D to characterise the
updated beliefs of the unknown θ. If θ is continuous the evidence or marginal
likelihood is given by

PD =
∫
Q(θ)L(D|θ)dθ (3.2)

Eq. 3.2 acts as a normalizing constant ensuring P (θ|D) is a valid Probability
Density Function (PDF). The synonym marginal likelihood refers to the interpre-
tation that PD is obtained by marginalising over the unknown model parameters.
The computation of PD generally proves challenging, due to the potentially high
dimensional integral being analytically infeasible. In many applications it is
possible to compute L(D|θ) point wise but its dependence on θ is intractable.
This results in an analytical solution of P (θ|D) being unattainable. A simple one
dimensional illustration of the Bayesian updating process is shown in Figure 3.1.

42 Bayesian Inference

Figure 3.1: One dimensional example of L(D|θ) and Q(θ) being combined to
produce P (θ|D) .

The choice of prior distribution has remained a key research question in
Bayesian statistics. The prior allows for the practitioner to incorporate expert
information (if available) into the modelling process by reflecting pre-data under-
standing of θ. In reality, prior beliefs or knowledge of an event may vary from
problem to problem. In the case of expressing ignorance towards θ, a noninfor-
mative prior can be chosen. In general, such a choice results in an expression
for the posterior which is dominated by the likelihood function by ’letting the
data speak for itself’ [228]. Both Bayes and Laplace, performed Bayesian analysis
using a constant prior distribution for θ, although the motivations of each in
doing so were considerably more sophisticated than simply stating each possible
value of θ should receive equal prior weighting. Common choices include the
uniform distribution [133] and Jeffrey’s prior [114]. There exists the possibility
for the practitioner to express one’s personal probability that θ lies in a given
subset of Θ through the use of a subjective prior [28]. For these expert beliefs
surrounding θ to be quantified, questions of the practitioner must be asked. In
practice, given the complexity of statistical models, it has been noted [226] that
a strict methodology for the elicitation of subjective prior probabilities can be
extremely difficult. Frameworks for allowing an expert to quantity ones beliefs are
given in [80]. Yuen et al. [230] argue that the use of a noninformative prior may
not significantly influence the parameter identification process but can greatly

3.2 The Posterior Distribution 43

influence the model evidence used for model class selection as discussed in Section
3.2.1.

The likelihood function is a key ingredient of any Bayesian framework by
creating a link between the model (M) and the data D. Intuitively, the name
likelihood function stems from the unknown parameter for which L(D|θ) is large
is more ’likely’ to have generated D than a θ for which L(D|θ) is small. The
likelihood function forms a key concept of the likelihood principle, which makes
explicit the natural conditional idea that only the actual observed D should be
relevant to conclusions or evidence about θ. Unlike a probability however, it is
not clear if L(D|θ) has any particular meaning in isolation [28]. Berger et al.
[30] attain that the likelihood principle does not inform the practitioner of how
to approach interpretation unless viewed through the use of a ’Bayesian filter’.
Interpreting probability as the language of uncertainty, allows for uncertainty
reflected in L(D|θ) to be expressed probabilistically. Furthermore, the use of
L(D|θ) in this setting allows for subsets of Θ to be compared in terms of some
method of averaging over L(D|θ). This is in contrast to the so called ’adhockeries’
introduced for non Bayesian approaches to averaging the likelihood function [92].
In the event of θ being extremely large, a criticism of the likelihood principle
may stem from the failure of L(D|θ) to provide clearly interpretable information.
Instead, [30] views this as an indication that prior information must be used in such
situations. Assuming the observations x, in the observed data are independent,
the resultant likelihood function may be expressed as

L(D|θ) =
n∏

i=1
p(xi|θ) (3.3)

For the remainder of this dissertation, it is assumed unless otherwise stated the
likelihood function is of this form. In this case, the posterior distribution may be
viewed as a weighted likelihood function with the weighting being imposed by the
chosen prior distribution.

3.2.1 Model Class Selection

Aside from inferring the values of model parameters, the posterior may be used
for rating competing models against one another. In this section allow for the
models to refer to physical models governed for example by partial differential
equations [224]. This process termed, Bayesian model class selection, is essentially

44 Bayesian Inference

Bayesian updating at the model class level for comparing competing models [142]
by choosing the model which provides the most evidence in line with the data.
The issue of model selection occurs when one must choose from a variety of
competing model structures. This is complicated by the fact that models with
more parameters will likely be able to better replicate some training data than
models with less parameters. However, this may result in a model which is over
complex and is referred as being overfitted. In the event that different model
structures are available, one may use Bayes’ theorem to express the probability
that a model Mi from a finite set of models {Mi, i = 1, ...n} is suitable given the
data D.

P (Mi|D) = P (D|Mi)Q(Mi)
P (D) (3.4)

where Q(Mi) represents ones prior beliefs and P (D|Mi) the likelihood of Mi

generating the observed data. Bayesian model class selection is not to be confused
with model averaging which involves estimating the same quantity with a variety
of models before averaging the estimates to establish how likely each model is.
A trade-off exists in statistical modelling whereby, a slight increase in model
performance due to a great increase in model complexity can be detrimental
to predictive performance due to an over reliance on the observed data [115].
Therefore, in model class selection it is important to penalize complicated models
[21]. Pioneering work on Bayesian methods by [115], highlighted the need for a
quantification of Ockhams razor which has roughly been translated by [203] to ’It
is vain to do with more what can be done with fewer’. Ockham’s razor states that
an explanation of facts should be no more complicated than necessary. In terms
of model class selection, this philosophy highlights that the chosen model should
fit the observed data well yet be as simple as possible.

Edwards [73] states that ’within the framework of a statistical model, all of
the information which the data provided concerning the relative merits of two
hypotheses is contained in the likelihood ratio of those hypotheses’. In other words,
evidence between two competing hypotheses exists if the probability of D under
one hypothesis is greater than the probability of D under another. Note that
in this context the evidence referred to is the evidence which exists within a
particular dataset. The Bayesian approach to hypothesis testing was developed
by [115] allowing for competing models to be ranked against one another while

3.2 The Posterior Distribution 45

incorporating subsequent uncertainties. The so called Bayes’ factor utilizes the
model evidence between two competing models to compare how well each predicts
the data.

For a correct interpretation of Bayesian model class selection, it is vital to
acknowledge that if all models contained in the class of models {Mi, i = 1, ...n}
are inadequate or of poor quality, the best model among these models will be
chosen. By inspecting the posterior plausibility of the individual classes this will
become adherent. To aid analysis, [118] suggests the inclusion of a relative simple
model among the class of individual models. By checking whether the posterior
plausibility of the simple model are relatively small in comparison to the largest
posterior plausibilities, it may be inferred that the overall performance of the
considered class of models could be poor.

3.2.2 Predictive Posterior

Aside from inferring the unknown parameters of a model and allowing for com-
peting models to be compared in an intuitive manner, the posterior distribution
can also be used in a predictive setting. In terms of machine learning discussed
in Chapter 2, consider again the training data set D = {(xi, yi)}n

i=1, where x
are the given data observations and y the corresponding class labels. Let x∗

denote an unseen data observation for which class membership y∗ is required to
be determined. For the desired predictive quantity to be computed, the posterior
distribution is marginalised in terms of θ as:

P (y∗|D) =
∫
P (y∗|D,θ)P (θ|D)dθ (3.5)

This distribution is commonly referred to as the predictive posterior. The predictive
distribution is weighted by how plausible the parameters are based on the training
dataset. In the case of the logistic regression model discussed in Chapter 2, this
predictive quantity may be expressed by

P (y∗|D) ≈
∫
σ(x∗T θ)P (θ|D)dθ (3.6)

where σ(·) denotes the aforementioned logit function. Due to the requirement of
taking a product of sigmoid functions, this expression is analytically intractable.

46 Bayesian Inference

In summary, Bayesian inference offers a robust framework to quantify the
uncertainty in estimating model parameters, model selection and making predic-
tions. Due to the presence of a high dimensional integral, the posterior cannot be
computed by conventional numerical means. There exists a family of approaches
[151, 215] which approximate P (θ|D) by a Gaussian distribution. Commonly,
converging to a solution through a pre-specified number of iterations or by compar-
ison of the difference in the generated moments with a chosen threshold. Although
the practice of approximating P (θ|D), using a family of standard distributions
ensures computational efficiency, in the event that the target density is highly
non-Gaussian or of a complex topology, problems may occur. Under Laplace
Approximation (LA) for example, sample accuracy has an inverse relationship
with the number of uncertain parameters, whilst the convergence of Expectation
Propagation (EP) is not always guaranteed [34, 151]. For the purpose of this
dissertation, focus is placed on methods which sample from the posterior as
opposed to approximating the posterior.

3.3 Methods for Bayesian Inference

Having discussed the importance of parameter estimation under the Bayesian
paradigm, this section presents a number of approaches for identifying their
unknown values. A Bayesian framework for point estimation is firstly discussed
before three widely applied approaches which produce independent and dependent
samples from the posterior distribution are introduced. The chosen sampling
methods are reviewed as they will be of particular importance in subsequent
chapters.

3.3.1 Maximum A Posteriori (MAP) Estimation

The maximum a posteriori (MAP) is a point estimate of the mode of the posterior
and may be given by:

θ̂ = arg maxθ P (θ|D) (3.7)

This selects the parameter that produces the highest posterior density (the mode).
Observe that since P (θ|D) ∝ Q(θ)L(D|θ), then the MAP estimate coincides
with the MLE in Chapter 2 when the prior distribution is uniform. While the

3.3 Methods for Bayesian Inference 47

advantage of the MAP is its ability to incorporate prior information into the
estimated parameter, it is by no means a full Bayesian treatment of the posterior
distribution. As Bayesian methods are traditionally characterised in terms of
entire distributions which summarize the data and draw inferences, a single
point estimate may not fairly represent all of the information contained in the
distribution. As the MAP value does not consider the uncertainty regarding θ̂

into the estimate, in some cases it may be sufficient to specify a credible interval.
For which it may be deduced that the true parameter values lies within a given
range [a, b] with a specified probability p. Aside from the lack of information
regarding the uncertainty in θ̂, like MLE the MAP may identify a local maximum
as opposed to a global while the issue of taking the derivative of a potentially
high dimensional complex distribution must also be addressed. As an alternative,
two methods which allow for samples to be generated from the entire posterior
distribution are discussed in the following sections.

3.3.2 Rejection Sampling

Rejection sampling is a resampling method which allows the generation of in-
dependent draws of any distribution that is defined in terms of its density [79].
Resampling methods may be described as generation techniques which require
draws of random variables in more than one step. This section discusses a specific
form of rejection sampling algorithm which utilizes a scaled version of the prior
distribution for the proposal of samples. This type of rejection sampler provides
the basis for the Bayesian inference methods discussed in this thesis and as such is
of great importance. For an overview of more general forms of rejection samplers,
the reader is referred to [79, 81].

Let the potentially unnormalized distribution π(θ|D) be the target posterior,
with the relationship between the normalized and unnormalized posterior be given
by P (θ|D) ∝ π(θ|D). Let Q(θ) represent the normalized prior distribution from
which independent samples are readily available. Rejection sampling proposes
selecting a positive constant k ∈ R such that

π(θ|D) ≤ kQ(θ) (3.8)

ensures θ ∼ π(θ|D). Independent samples are generated as outlined in Algorithm
1.

48 Bayesian Inference

Algorithm 1 Rejection Sampling
1: Define Q(θ) and k

2: Generate u uniformly with support [0, 1] independently of θ

3: Generate θ ∼ Q(θ)
4: r = π(θ|D)

kQ(θ)
5: if u < r then
6: Accept θ

7: else
8: Reject θ

9: end if

Let u be a uniform random variable on [0, 1], r the sample acceptance ratio
and pA the probability of a sample being accepted. Algorithm 1 is an iterative
procedure in that Q(θ) is repeatedly sampled from until θ is accepted with respect
to r and u. To prove that the rejection algorithm produces samples from π(θ|D),
simply requires to show that the conditional density P (θ|u < r) is π(θ|D).

P (θ|u < r) =
∫ 1

0
P (θ, u|u < r)du =

∫ 1
0 P (θ, u)P (u < r|θ)du

pA

By the independence between θ and u, P (θ, u) = Q(θ)P (u). Allowing for the
conditional distribution to be

P (θ|u < r) = Q(θ)
pA

∫ 1

0
P (u)I[u < r]du

where I[·] is referred to as the indicator function equalled to 1 if the argument is
true and 0 otherwise. For u ∈ [0, 1], P (u) = 1. While the likelihood of θ resulting
in sample acceptance is the ratio r given in Algorithm 1.

P (θ|u < r) = Q(θ)
pA

· π(θ|D)
kQ(θ) = π(θ|D)

kpA

(3.9)

The efficiency of rejection sampling is determined by the probability of sample
acceptance

pA =
∫ ∫ 1

0
q(θ)P (u)I[u < r]dudθ =

∫
Q(θ)π(θ|D)

kQ(θ) dθ = 1
k

∫
π(θ|D)dθ (3.10)

3.3 Methods for Bayesian Inference 49

Substituting Eq. 3.10 into Eq. 3.9 yields

P (θ|u < r) = π(θ|D)∫
π(θ|D)dθ (3.11)

Therefore on average k samples of θ are required in order to have one accepted
sample θ ∼ π(θ|D). Eq. 3.10 reveals that for a large k the computational costs
to generate independent samples from the target distribution will increase. Great
care must be taken when choosing k, especially in the case of higher dimensional
distributions. Its value should be chosen small enough to ensure θ ∼ π(θ|D) but
large enough to allow for efficient sampling.

Figure 3.2 presents a one dimensional example of direct sampling in the case
of a tractable posterior distribution versus rejection sampling for the intractable
case. In the case of rejection sampling, samples are drawn uniformly under kq(θ)
as in Algorithm 1, while samples above π(θ|D) such as (θi, ui) are rejected. Figure
3.2 (b) highlights the influence of choosing k appropriately with the optimal value
denoted by k∗. By choosing a value too large, samples can potentially be proposed
in the regions further away from π(θ|D) in comparison to selecting k∗. While the
more closely Q(θ) matches π(θ|D), the lower the rejection rates can be made.

(a) (b)

Figure 3.2: Rejection sampling one-dimensional example. In the case of possible
direct sampling (a), sample locations can potentially be taken as points drawn
uniformly under the target distribution. For rejection sampling (b), samples are
drawn uniformly under kQ(θ) as in Algorithm 1. With samples above π(θ|D)
such as (θi, ui) being rejected.

50 Bayesian Inference

To alleviate the issue of algorithmic inefficiency, adaptive rejection samplers
that increase the acceptance rates by taking advantage of particular properties
of the posterior density have been proposed [89, 146]. However, such techniques
require guarantees of the posterior being log-concave or unimodal. In a different
approach, [75] aim to reduce sample rejection rates through the introduction of
kernel methods to construct a problem dependent proposal distribution. The
authors however, acknowledge issues in problems beyond a moderate number of
dimensions along with the case that the majority of the mass of the distribution
is based around the mode.

Eq. 3.8 may be reformulated to allow for the rejection principle to be derived.
Let the relationship between the normalized and possibly unnormalized posterior
be given by P (θ|D) ∝ π(θ|D).

π(θ|D) ≤ kQ(θ)

=⇒ π(θ|D)
kQ(θ) ≤ 1

=⇒ Q(θ)L(D|θ)
kQ(θ) ≤ 1

=⇒ cL(D|θ) ≤ 1 (3.12)

with c = k−1 being referred to as the likelihood multiplier and for any θ which
satisfies Eq. 3.12, θ ∼ P (θ|D). The issue of selecting c along with rejection
samplings low sample acceptance rates forms the basis of a Bayesian inference
framework discussed in Chapter 4.

3.3.3 Markov Chain Monte Carlo

In the previous section, the low sample acceptance rates along with the task
of carefully choosing the likelihood multiplier highlighted potential difficulties
encountered in the rejection sampling algorithm. As an alternative, Markov
Chain Monte Carlo (MCMC) methods can be used to sample from probability
distributions that are complex and have unknown normalization. This is achieved
by relaxing the requirement that the samples should be independent.

Let θ1,θ2, ...,θn be a sequence where, θi ∈ Rd for all i ∈ {1, 2, ..., n} and d the
dimension of the vectors. This sequence is called a Markov chain if the following

3.3 Methods for Bayesian Inference 51

rule holds for the joint PDF of any θi

P (θi|θi−1, ...,θ1) = T (θi|θi−1) (3.13)

That is, a Markov chain is a stochastic process having the property that, given the
present state, the future states are conditionally independent of the past states.
The Markov chain generates a correlated sequence of states with each step in the
sequence being drawn from a transition operator T (θ′|θ) giving the probability of
moving from state θ to state θ′. According to the Markov property, the transition
probabilities depend only on the current state θ. A basic requirement for T (θ′|θ)
is the property of stationary such that given θ ∼ π(θ)

π(θ′) =
∫
T (θ′|θ)π(θ)dθ (3.14)

If Eq. 3.14 holds, π(·) is referred to as the stationary PDF with transition PDF
T (θ′|θ). Ensuring that any Markov chain beginning with a sample from the
stationary distribution will return a sample from the same stationary distribution.
Such a Markov chain holds the properties of irreducibility and aperiodicity [214].
An initial burn in period allows for the sequence of samples to be distributed
according to the desired stationary distribution. Identifying the length of this
burn in period and general chain convergence is a non-trivial task with various
strategies being discussed in [86, 117, 185]. A sufficient condition to show that
π(·) is the stationary distribution of the Markov chain is to prove that the detailed
balance equation exists.

T (θ′|θ)π(θ) = T (θ|θ′)π(θ′) (3.15)

Which states that a step starting at equilibrium and transitioning under T (θ′|θ)π(θ)
has the same probability ’forwards’ θ → θ′ and ’backwards’ θ′ → θ.

3.3.4 Gibbs Sampling

One of the most widely used MCMC methods is Gibbs sampling [84]. The
intuition behind Gibbs sampling is to represent the vector θ = {θ1,, θd} in
terms of its components and to iteratively update each component of θ whilst
holding all other components constant. Each step of the Gibbs sampling procedure
involves replacing the value of one of the d parameters by a value drawn from the

52 Bayesian Inference

distribution of the chosen component conditioned on the values of the remaining
components. This procedure is repeated either by cycling through the components
in a particular order or by choosing the components to be next updated at random.
A generic Gibbs sampling algorithm is given in Algorithm 2.

Algorithm 2 Gibbs Sampling
1: Initialize θ = {θ0

1,, θ0
d}

2: for i = 1, ..., t do
3: θi

1 ∼ π(θi
1|θi−1

2 , ..., θi−1
d)

θi
2 ∼ π(θi

2|θi
1, ..., θi−1

d)

...

θi
d ∼ π(θi

d|θi
1, θi

2, ..., θi
d−1)

4: end for

At each of the t iterations of the Gibbs sampler, their are d steps. At each t,
an ordering of the vector components is chosen and the conditional densities are
sampled from. The availability of Just Another Gibbs Sampler (JAGS) [177] and
Bayesian inference Using Gibbs Sampling (BUGS) [141] software packages has
helped increase the usage of Gibbs sampling across the wider scientific community.
To illustrate the capabilities of the Gibbs sampler, consider the following example
concerning a bivariate Gaussian distribution. The target distribution is given by
π(θ) ∼ N (µ,Σ) with θ = {θ1, θ2} and

µ = [µ1, µ2]

Σ =

 1 ρ1,2

ρ2,1 1

 (3.16)

The vector µ denotes the mean, Σ the covariance matrix and ρ the correlation
between parameters. Before implementing the Gibbs sampler, the conditional
distributions for θ1 and θ2 must be available. Let the respective conditional

3.3 Methods for Bayesian Inference 53

distributions be expressed as

π(θt
1|θt−1

2) = N (µ1 + ρ2,1(θt−1
2 − µ2),

√
1 − ρ2

2,1)

π(θt
2|θt

1) = N (µ2 + ρ1,2(θt
1 − µ1),

√
1 − ρ2

1,2) (3.17)

Let t denote the current state of the parameters as outlined in Algorithm 2. Both
conditional distributions are univariate Gaussians with means dependent on the
most recent state of the conditioning parameter and a variance dependent on the
target distributions covariance matrix. Figure 3.3 presents an example of how the
Gibbs sampler progresses. For this problem, µ = [0, 0] and ρ1,2 = ρ2,1 = 0.1. The
sequential update of samples at each iteration is evident from Figure 3.3 panel (b).
For this two dimensional problem, a horizontal and vertical movement is required
in the parameter space for every sample drawn. The resulting posterior samples
are illustrated in Figure 3.3 (c). Due to the representation of θ in terms of its
d components, Gibbs sampling is a viable approach for high dimensional tasks.
However, the nature of the sample updates as highlighted in Figure 3.3 (b) renders
the algorithm inefficient when the parameter components are highly correlated. To
illustrate this, consider again the above example but with ρ1,2 = ρ2,1 = 0.9. The
increased correlation between parameters will ensure that the target distribution
is more skewed. Figure 3.4 (b) reveals the difficulties of the Gibbs sampler
when dealing with highly correlated parameters. The sampler is less effective
in comparison to the lowly correlated parameter problem in Figure 3.3 (b) as
the sequential updates in terms of moments along the x and y axes for every
sample drawn results in an inefficient exploration of the target distribution. This
drawback can result in the Gibbs sampler becoming very inefficient when drawing
samples from the target distribution.

54 Bayesian Inference

(a) Target Distribution. (b) Gibbs Sampler Progression.

(c) Posterior Samples.

Figure 3.3: Illustration of the sampling capabilities of the Gibbs sampler. Panel
(a) presents the target distribution while the progression of the Gibbs sampler is
highlighted in panel (b). Panel (c) presents the resulting posterior samples.

3.3 Methods for Bayesian Inference 55

(a) Target Distribution. (b) Gibbs Sampler Progression.

(c) Posterior Samples.

Figure 3.4: Illustration of the sampling capabilities of the Gibbs sampler on
a problem with highly correlated parameters. Panel (a) presents the target
distribution while the progression of the Gibbs sampler is highlighted in panel (b).
Panel (c) presents the resulting posterior samples.

3.3.5 Metropolis Hastings

Unlike the Gibbs sampler, the Metropolis Hastings (MH) [105] algorithm allows
for more flexibility with respect to the behaviour of the sample update in the
parameter space. By simulating a Markov chain with a specified target density as

56 Bayesian Inference

the stationary distribution, MH generates state θ′ from the previous state θ as in
Algorithm 3 with the introduction of an acceptance/rejection step.

Algorithm 3 Metropolis-Hastings
1: Draw a sample v from a proposal distribution S(·|θ)
2: Generate u uniformly with support [0, 1]
3: r(v) = π(v)

π(θ) · S(θ|v)
S(v|θ)

4: if u > r(v) then
5: θ′ = v

6: else
7: θ′ = θ

8: end if

Consider v to be a sample generated from the proposal distribution S(·|θ).
MH either accepts or rejects v to be the updated state θ′ of the Markov chain.
The random walk nature of MH in comparison to the sequential updating of Gibbs
sampling is apparent in Figure 3.5. For the highly correlated parameter example
discussed in Section 3.3.4, the ability of MH to explore a greater proportion of the
region of the target distribution in a more efficient manner is evident from the
sample progressions. For a further discussion on this topic the reader is referred
to [34].

(a) MH Sampler. (b) Gibbs Sampler.

Figure 3.5: Comparison of the sample progression of the Gibbs and MH sampler.
Panel (a) presents the random walk nature of the MH algorithm and panel (b)
the sequential update of the Gibbs sampler.

3.3 Methods for Bayesian Inference 57

To show that MH fulfils detailed balance, it needs to be shown that Eq. 3.15
is satisfied. Consider again Eq. 3.15 and the two possible updates for θ′. If the
proposed v is rejected and θ′ = θ then detailed balance is trivial. In the case of
θ′ ̸= θ consider the transition operator,

T (θ′|θ) = min

1, π(θ′)
π(θ) · S(θ|θ′)

S(θ′|θ)

 · S(θ′|θ) (3.18)

Correspondingly,

T (θ|θ′) = min

1, π(θ)
π(θ′) · S(θ′|θ)

S(θ|θ′)

 · S(θ|θ′) (3.19)

Using the relation min(1, a
b
)=min(1, b

a
)a

b
for all a, b ∈ R+

T (θ|θ′) = min

1, π(θ′)
π(θ) · S(θ|θ′)

S(θ′|θ)

 · S(θ′|θ) · π(θ)
π(θ′) (3.20)

Rearranging allows for the relationship to be expressed as

min

1, π(θ′)
π(θ) · S(θ|θ′)

S(θ′|θ)

 = T (θ|θ′)
S(θ′|θ) · π(θ′)

π(θ)

T (θ′|θ)π(θ) = T (θ|θ′)π(θ′) (3.21)

Therefore, any Markov chain generated by MH with π(·) as the stationary distri-
bution produces samples from π(·). It is worth noting that in rejection sampling
proposals are repeatedly made until one is accepted, whereas for MH only one
proposal is made, if it is not accepted, the Markov chain of the standard MH
algorithm stays in its current state. Let the sample acceptance rate pA, in Algo-
rithm 3 be defined as the average of min[r(·), 1] for all proposed samples. In some
respects, pA represents the efficiency of MH sampling [79, 117].

The proposal governs the distribution of the sample and directly influences
the transition of the Markov chain from one state to another. Great care must be
taken when choosing S(·). MH is valid for any S(·) but appropriate choices would
ensure the rapid exploration of π(·). One could choose a proposal based on some

58 Bayesian Inference

data D, but under MH, using past information for S(·) would result in a chain
which was not Markov. One common choice is a Gaussian centred at the current
state θ.

The question of sample dependence and how one would control the rate of
correlation may also be linked to the proposal. The spread of S(·) refers to
a measure of dispersion of S(·) e.g. standard deviation or variance. Sample
dependence along with the rate of efficient exploration of the parameter space
is influenced by the spread. Choosing a value too small will allow for a high
pA but an increased dependence due to the geometric location of the proposed
sample with respect to the current one. While a value too large will diminish pA,
producing a greater number of repeated samples which again will result in an
increased sample dependency. One strategy is to choose the spread of S(·) to be
of the same order as the spread of π(·) if this quantity is accessible [12].

To illustrate the importance of appropriate spread choice, consider a simple
one dimensional example for which MH generates samples from a distribution
which is a mixture of two Gaussians, each with a standard deviation of 100 and
means of −40 and 0 respectively. Investigating the influence of the proposals
standard deviation, three different values were chosen, σ = {1, 500, 8}. Figure 3.6
presents each scenario with the sample progressions (black), target distribution
(red) and the MH approximations (blue). For the case of σ = 1 (Figure 3.6 (a)),
only one of the modes is explored. This may suggest that as previously stated,
the proposed value is too small. The case of σ = 500 (Figure 3.6 (b)), reveals that
samples are remaining in the same state for many successive iterations, which
increases the sample dependence. Lastly, in the case of σ = 8 (Figure 3.6 (c)),
an appropriate balance between exploration and repeated samples appears in the
sample progression. This is highlighted in the approximation to the posterior
density which accurately captures the multi model nature of the distribution. As
such, for this example an appropriate choice of standard deviation for the proposal
distribution is σ = 8.

3.3 Methods for Bayesian Inference 59

(a) σ = 1 (b) σ = 500

(c) σ = 8

Figure 3.6: Influence of the proposal distributions standard deviation on the
MH sampling scheme. The target distribution is outlined in red, distribution
of samples in blue and sample progression in black. In the case of σ = 1 (a),
the sampler becomes trapped at one of the modes while for σ = 500 (b) many
repeated samples are generated during the iterations. Using a spread of σ = 8
(c) results in an accurate approximation to the posterior distribution while also
striking a balance between exploration and sample efficiency. The plots in this
example were achieved using a MATLAB® toolbox given in [157].

60 Bayesian Inference

When the proposal distribution is symmetric, S(θ′|v) = S(v|θ′), r(v) in
Algorithm 3 is simplified to r(v) = π(v)/π(θ′). This is the Metropolis algorithm
of which MH is a generalization [166].

3.4 Advanced MCMC Methods

The MCMC algorithms described in Section 3.3.3 are designed to generate samples
from the posterior distribution by letting it equal the stationary distribution of the
Markov chain. As previously discussed, such MCMC methods in there standard
form run into a series of issues such as: potential inefficient exploration of the
parameter space, sampling inefficiency in high dimensions (e.g. MH), becoming
trapped at local modes in a multi-modal distribution and the lack of an estimate
of the model evidence. As large body of literature exists to address each of these
drawbacks. this section provides an overview of various advanced MCMC methods.
In line with the notation used in previous sections allow for the unnormalized
density to be given by π(θ) = Q(θ)L(D|θ).

3.4.1 Adaptive MCMC

As outlined in Section 3.3.5, the parameters of the MCMC proposal distribution
directly influence the efficiency of the sampler. Tuning of associated parameters
such as proposal variances is crucial to achieve efficient mixing, but can also be very
difficult. As the Markov chain progresses, adaptive MCMC algorithms attempt
to deal with this problem by automatically learning better proposal distribution
parameters. In a pioneering paper by [99] an Adaptive Metropolis (AM) algorithm
is introduced. AM proposes to define a Gaussian proposal distribution with a
covariance matrix calibrated using the sample path of the MCMC chain. A crucial
point of AM is how the covariance of the proposal depends on the history of the
chain. After an initial non-adaption period, the Gaussian proposal is centred at
the current sample θi of the Markov chain with a covariance Σ of:

Σ = sdCov(θ0, ...,θi−1) + sdϵId (3.22)

where sd is a parameter that depends on the dimensionality d, ϵ a constant chosen
very small, Id the d-dimensional identity matrix and Cov denoting the sample
covariance. The role of ϵ is to ensure that Eq. 3.22 does not become singular while

3.4 Advanced MCMC Methods 61

setting the scaling parameter as sd = 2.42

d
has been shown to optimize chain mixing

when the target distribution is Gaussian [82]. As Eq. 3.22 may initially be a
poor approximation for the optimal proposal covariance, the chain may be require
additional states [191] before adapting the covariance structure. As such, an initial
non-adaption period t is defined. Let Σi denote the updated covariance structure
of the ith sample and Σ0 a covariance matrix chosen prior to the Markov chain
being initialized. At the ith state of the Markov chain, the proposal covariance Σ
is chosen as follows:

Σ =

Σ0, i ≤ t

Σi, i > t
(3.23)

Therefore, the covariance is only updated once the number of generated states of
the Markov chain is greater than t. A similar Adaptive Proposal (AP) approach
has been proposed in [98] using the same concept of updating the covariance
structure based on the progression of the Markov chain. AM was later extended to
include component wise moves suitable for high dimensional problems [100] while
also being combined with delayed rejection to continuously alternate between
larger and smaller steps in the Markov chain [97]. However, as highlighted in [220],
the covariance adaption strategy utilized in AM and AP works well in relatively
simple problems but can become inefficient and unreliable when confronted with
posteriors with heavy tails or complex topologies. Along another line of thought,
the seminal papers of Roberts et al. [187, 188] have resulted in a spate of literature
that uses information from the sample acceptance rate to tune the spread of the
proposal distribution. In these papers, a theoretical and exhaustive investigation
is presented concerning the estimation of the correlation structure of the target
distribution and incorporation of this information when choosing the proposal. By
defining optimal scaling as a function of the sample acceptance rate, appropriate
scaling that minimizes the first order autocorrelation of the sampler achieves an
optimal acceptance rate proved to be 0.234. This coincides with the rate first
suggested by [82]. It is worth noting that this was proved under the assumption
that d → ∞. For one dimensional increments, numerical studies in [188] reveal
that the optimal acceptance rate is approximately 0.44. This optimal reference
value has been used for adaptive scaling of the proposal for component wise
MH methods [172]. Using the findings of [187, 188], Atchade and Rosenthal [9]
adopt the stochastic approximation algorithm by Robbins and Monro [184] to

62 Bayesian Inference

automatically find the spread of the proposal. The resulting sampler, named
Adaptive Random Walk Metropolis (ARWM) interprets the task of finding an
optimal spread as a root finding problem. ARWM iteratively updates the spread
such that the asymptotic rate of acceptance is approximately 0.234. The Robbins
and Monro method is a well known recursive algorithm of the form

θi+1 = θi + γi(h(θi) + ϵi+1) (3.24)

where γ is a sequence of positive step sizes subject to constraints highlighted
in [184]. This approach is typically used to solve the equation h(θ) = 0 when
the function h is unknown or difficult to compute but can be estimated with a
noise ϵ. For ARWM, let the covariance of the proposal distribution be defined
by Σ = σ2Id, where like before, Id is the d-dimension identity matrix. ARWM
interprets the task of updating σ as follows:

σi+1 = σi + γi(r(vi+1) − 0.234) (3.25)

with r(·) denoting the sample acceptance ratio from MH in Algorithm 3 and v

the proposed value for the parameter update of the Markov chain in Algorithm
3. In order to approximate the optimal spread value, it is assumed that its true
value lives in the set Aσ = {σ : ϵ ≤ σ ≤ a}. This assumption functions on the
premise that ϵ is chosen to be very small and a sufficiently large. The generation
of samples in ARWM coincides with those in MH with σ updated by Eq. 3.25 after
the proposed sample of the Markov chain has either been accepted or rejected.
In the event that σi+1 < ϵ, σi+1 is assigned a default value of ϵ and accordingly
if σi+1 > a, σi+1 is assigned a default value of a. The purpose of keeping σ

inside the set Aσ is to avoid degeneracy of the algorithm. However, the method
will be unable to find the optimal value of σ if the set is misspecified. Similar
stochastic approximation approaches have been utilized to improve the scalability
of MCMC methods to large data sets [223, 52]. Alternative adaptive approaches
in the literature include the use of multiple chains to explore the parameter space
for appropriate proposal choices [51, 87] and regeneration algorithms that seek
to approximate the proposal using a mixture of components [88, 159, 192]. In
practice, these methods either require significant memory storage or complicated
fittings of high dimensional mixture distributions. Although much focus has
been placed on improving the efficiency of MCMC through adaptively tuning the

3.4 Advanced MCMC Methods 63

proposal distribution, [6, 74] highlight that adaptation needs to be done carefully
to ensure that sampling is from the correct ergodic distribution. Further discussion
on this can be found in [5, 186].

3.4.2 Auxiliary MCMC

Auxiliary MCMC methods concern the introduction of an additional variable which
helps improve the efficiency of the exploration of the sample space. It is often easer
to sample from an augmented probability distribution than the original distribution
of the parameter of interest. This section discusses two such frameworks which
do not require a proposal distribution to be specified. Hamiltonian Monte Carlo
(HMC) [70] is a MCMC sampler that borrows theories from physics to incorporate
information about the gradient of the target distribution to improve mixing.
Hamiltonian dynamics is one way that physicists describe how objects move
throughout a system by describing an object’s motion in terms of its location and
momentum at some time. HMC introduces an additional random vector v ∈ Rd

referred to as a momentum variable. The joint distribution by HMC is defined by
means of the energy function:

H(θ,v) = −logπ(θ,v)

= −logπ(v|θ) − logπ(θ)

= K(θ,v) + V (θ) (3.26)

where K(·) and V (·) are interpreted as the kinetic and potential energies of a
Hamiltonian system. HMC alternates between generating random momentum
variables v and simulating the Hamiltonian dynamics of the system by solving

dθ

dt
= ∂H

∂v

dv

dt
= −∂H

∂θ
(3.27)

where t represents some point in time of a continuous time process. Conceptually,
HMC utilizes Hamiltonian dynamics as a proposal function for a Markov chain
in order to explore the target distribution. At each time step, the momentum
and parameter variables are updated with a Metropolis ratio computed using the

64 Bayesian Inference

proposed values. This process is continued iteratively until termination. In general
Eq. 3.27 does not usually have an analytical expression and as such there exists no
general methodology for producing this continuous time process. However, there
does exist a discretization technique that produces a Markov chain and is well
suited to Hamiltonian equations as it preserves the stationary distribution [52].
The leap-frog method updates the parameters at different time steps with the
length of the time steps being a crucial ingredient for the success of the sampler.
Suitable time step sizes are required for accurate simulation of the Hamiltonian
dynamics [70]. A very small stepsize leads to random walk behaviour. This causes
the Markov chain to evolve slowly, thus having highly correlated samples which
do not explore the support efficiently. On the other hand, a poorly chosen stepsize
leads to inaccurate simulation of the Hamiltonian dynamics, thus introducing
numerical errors in the proposal for the Markov chain. Appropriate choices for
the step size has been studied in the literature with the state of the art being the
No-U-Turn-Sampler (NUTS) variant [106]. Additionally, the requirement of the
calculation of the target distributions derivative hinders its general applicability.
As computing this derivative is a non-trivial task, stochastic approximation
methods have been suggested to address this issue [52]. Implementations of both
HMC and NUTS are readily available in the probabilistic programming language
STAN [48]. Aside from HMC, slice sampling [163] is an alternative auxiliary
MCMC sampler. The basic idea of slice sampling is to augment the sample space
with the introduction of an auxiliary variable v ∈ V ⊆ R. Allow for the joint
probability distribution P (v,θ) to be expressed as follows:

P (v,θ) =

1
Z
, if 0 < v < π(θ)

0, Otherwise
(3.28)

where Z =
∫
π(θ)dθ and π(θ) is the target distribution of θ. Slice sampling firstly

generates v from the conditional distribution specified as a uniform on the interval
(0, π(θ)).

P (v|θ) = V [0,π(θ)](v) (3.29)

3.4 Advanced MCMC Methods 65

Following this, the conditional distribution with support Av = {θ : v < π(θ)} is
addressed as:

P (θ|v) = V Av(θ) (3.30)

Since the marginal satisfies
∫
P (v,θ)dv = π(θ), samples from the target distribu-

tion can be recovered by disregarding the auxiliary component of the joint samples.
Therefore, to sample for θ one can jointly sample for (v,θ) and marginalize v. In
practice, generating independent draws uniformly over A may be a difficult task
and as such an iterative Gibbs sampler may be used to draw pairs of samples
from the joint density. An advantage of slice sampling over Gibbs however, is that
it does not require the specification of the full conditionals [158].

3.4.3 Annealing Methods

The influence of the proposal spread on the MH algorithms ability to populate
multiple modes was discussed in Section 3.3.5. Originally proposed as an opti-
mization method, simulated annealing [124] avoids becoming trapped at local
modes of the parameter space by expressing the target distribution as a sequence
of intermediate distributions. When specifically sampling from the posterior,
simulated annealing involves targeting

πβj
(θ) = L(D|θ)βjQ(θ) (3.31)

where βj is referred to as a cooling schedule such that 0 = β0 < β1 < ... < βJ = 1,
L(D|θ) the likelihood function and Q(θ) the prior distribution. For βj = 0,
the sampling process is akin to drawing from the prior distribution. For an
increase in j, the influence of the likelihood function on the target distribution
becomes greater and greater before the distribution being sampled is the posterior
for βj = 1. The sequence of cooling values directly influences the sampling
process. A cooling schedule which increases too quickly may result in the Markov
chain becoming trapped in local modes while a slow cooling schedule will incur
unnecessarily large computational costs. The selection of the cooling schedule
has resulted in many algorithmic developments based on the simulated annealing
process. One such sampler, Transitional Markov Chain Monte Carlo (TMCMC)
[54] proposes to select βj+1 based on βj. This is done by ensuring the change

66 Bayesian Inference

between two adjacent intermediate PDF’s is made small such that it is possible to
smoothly transition the samples. Given N samples {θi

j}N
i=1 ∼ πβj

(θ), the sample
set {θi

j+1}N
i=1 is obtained by resampling {θi

j}N
i=1. This resampling is done by a

sequence of importance weights.

wi
j = L(D|θi

j)βj+1−βj i = 1, ..., N (3.32)

The resampling can be easily done by setting the resampled sample to be θi
j with

probability

ŵi
j =

wi
j∑N

i=1 w
i
j

(3.33)

with ŵi
j being the normalized importance weight. To avoid the degeneracy problem

[63] of few highly weighted samples dominating the set of samples, a Markov chain
uses each resampled θi

j as a seed. TMCMC utilizes the MH algorithm with each
chain having πβj+1(θ) as the target distribution. To ensure a smooth transition
between the intermediate PDFs, [54] suggest choosing βj adaptively such that the
coefficient of variation (c.o.v) of the importance weights at a given intermediate
PDF is equal to 100%. Additionally, TMCMC simulates an estimate for the model
evidence through the importance weights by:

PD ≈
J∏

j=0
(1
N

N∑
i=1

wi
j) (3.34)

Although TMCMC has proved popular amongst the engineering community [96],
it has been argued that TMCMC requires a burn in period as it does not ensure
that the initial seeds of the Markov chains equal the target stationary distribution
[53]. Another approach to combining MCMC and annealing is to run multiple
chains in parallel at different temperatures. Metropolis-Coupled MCMC (MC3)
[210, 85] also referred to as replica exchange or parallel tempering [71], simulates
J + 1 independent Markov chains with each chain having a different temperature.
MC3 proceeds by running one chain at each of the J + 1 values of β. Again a
sequence of tempered distributions πβj

(θ) with 0 ≤ βJ < βJ−1 < ... < β0 = 1 for
j = 0, ..., J is defined. The product of the resulting J + 1 sampled distributions

3.4 Advanced MCMC Methods 67

may be given by:

π(θ) =
J∏

j=0
πβj

(θj) (3.35)

The β0 chain has the stationary distribution πβ0(θ0) = π(θ). Therefore, after a
long run of samples, θ0 should approximately be drawn from the target distribution.
The idea is that the chains corresponding to smaller β and have higher temperatures
can mix more easily. This mixing information can then be ’transferred’ to the
β0 chain. This allows for an increase in the speed of convergence of θ0 to the
distribution π(θ). MC3 exhibits two different types of dynamics during chain
progression. On some iterations, a within temperature move is attempted by
updating each θj by some type of MCMC update. This update for example could
be in the form of MH with πβj

(θj) being the stationary distribution. On other
iterations a temperature swap is attempted. This involves choosing two different β
values, say βk and βl and then proposing to swap their respective chain values, i.e.
to interchange the current values of θk and θl. This proposed swap is accepted
according to a typical Metropolis step with an acceptance ratio of:

min
1, πβl

(θk)πβk
(θl)

πβl
(θl)πβk

(θk)

 (3.36)

Otherwise it is rejected and the values of θk and θl remain unchanged. Successfully
swapping states allows a chain that is otherwise stuck on one mode of the parameter
space to explore other modes. In general the rejected values are discarded, however
some works have attempted to make additional use of them [64]. Though MC3

allows good mixing with multi-modal target distributions, the mixing properties
of the sampler depend strongly on the temperature schedule [150]. Both [125]
and [127] link the mean acceptance rate of temperature swaps to the choice of
temperature schedule. Similarly, coinciding with the work discussed in Section
3.4.1, [8] later proposed to space the temperatures such that the proportion of
temperature swaps is approximately 0.234. This is extended further in [150] by
adapting the temperature continuously during the simulation. Other suggestions
for setting the temperature schedule can be found in [71]. Aside from the choice
of temperature schedule, MC3 can suffer in terms of execution time if the number
of chains bing simulated is very large. A parallel MC3 algorithm [3] retains the

68 Bayesian Inference

ability of MC3 to populate multiple modes while maintaining a fast execution
time. The framework makes use of two widely applied parallel programming
models in message passing and shared memory. Empirical findings in [3] claim
to indicate a linear speed improvement over MC3. Alternative parallelization of
MCMC in non-annealing based methods include the Multiple-try MH sampler
[140] and the generalized MH sampler [46]. It is worth noting that a coherent way
of dealing with annealing in MCMC simulations was independently discovered
under the name simulated tempering [145]. Simulated tempering interprets the
temperature schedule itself as a random variable while unlike simulated annealing
allowing its value to either increase or decrease. A Metropolis step to compute the
temperature schedule is introduced during simulation by augmenting the parameter
space. However, the extra computational costs of the algorithm stemming from
dynamically selecting the temperature value is dependent on the fraction of time
spent at each temperature level of the intermediate PDF’s. For more information
the reader is referred to [145].

3.4.4 Model Evidence Estimation

Aside from TMCMC and Simulated Tempering another suitable method for model
evidence estimation is nested sampling [204]. Nested sampling is predominantly
concerned with the estimation of the model evidence as in Eq. 3.2. As a by-
product, the method produces a set of weighted samples from the posterior. In
nested sampling, define X:

X(λ) = pΘ(L(D|θ) ≥ λ)

=
∫

L(D|θ)≥λ Q(θ)dθ (3.37)

as the cumulant prior mass covering all likelihood values greater that λ. As λ
increases, the enclosed mass X decreases from 1 to 0. Let L(X) be the inverse
function of X(λ). It is assumed that there exists a function L(X) such that if one
is given X, L(X(λ)) ≡ λ. Adopting this expression for the inverse function allows
for the model evidence to become a one dimensional integral over the unit range.

PD =
∫ 1

0
L(X)dX (3.38)

3.5 Chapter Summary 69

The Nested sampling algorithm begins with N samples {θi}N
i=1 from the prior

Q(θ). The sample θj which resulted in the smallest likelihood value λmin is
identified while the corresponding value of X(λmin) is estimated. The sample θj

is replaced by a sample drawn from Q(θ) subject to satisfying L(D|θ) ≥ λmin. In
practice, the target distribution conditional on L(D|θ) ≥ λmin may be sampled
from via MCMC sampling. This process is repeated until a series of X values and
the corresponding L(X) have been obtained. Similar to many MCMC approaches,
there is no clear stopping condition for nested sampling. Skilling [204] defined a
possible termination after completing a pre-specified number of steps or when the
largest current likelihood value would not increase the estimate evidence by more
than some small threshold ϵ. However this choice of ϵ will directly impact the level
of bias within the estimated evidence. Aside from nested sampling, other notable
methods capable of estimating the model evidence include Reversible Jump MCMC
(RJMCMC) [95] and Asymptotically Independent Markov Sampling (AIMS) [22].
However, nested sampling is included in this overview as the Bayesian updating
methods developed during this thesis are also dependent on nested architectures.

3.5 Chapter Summary

This chapter has introduced Bayesian inference. The theory behind Bayesian
inference along with the importance it holds in numerical simulation has been
discussed. Bayesian inference provides a solid mathematical framework for the
updating of probability models in the evidence of data. The posterior distribution
allows for the quantification of updated beliefs regarding model parameters,
competing models in the presence of data to be compared against one another and
for predictions to be made. The mathematical expression however, is rendered
analytically intractable due to the presence of a high dimensional integral. A
selection of methods which offer a solution by directly sampling from the posterior
have been discussed.

Rejection sampling allows for the generation of independent and identically
distributed samples from a posterior distribution. However, it is known to become
highly inefficient in the presence of a large number of uncertain variables while an
input parameter which directly influences the distribution of the samples is also
required to be chosen. These shortcomings provide the basis of an alternative
Bayesian updating framework presented in Chapter 4. Markov Chain Monte Carlo

70 Bayesian Inference

(MCMC) allows for the samples generated as a sequence of a Markov chain to
be distributed according to a specified probability distribution. Although widely
considered a benchmark method in terms of sampling accuracy, difficulties lie in
identifying when samples have reached their desired stationary distribution. The
Metropolis Hastings (MH) algorithm may be viewed as a pillar of MCMC but
as discussed in Section 3.3.5 becomes inefficient in high dimensions along with
struggling to draw samples from distributions with multiple modes. Section 3.4
provided an overview of advanced MCMC methods which seek to address these
issues.

A framework stemming from the area of reliability analysis is presented in
Chapter 4 as an alternative solution for Bayesian inference problems. This
MCMC based technique allows for the efficient generation of samples in the
presence of many uncertain variables while guaranteeing the correct target posterior
distribution has been reached. Additionally, the model evidence is automatically
computed as a by product of simulation, allowing for model class selection to be
implemented.

Chapter 4

Bayesian Updating with
Structural reliability methods
(BUS)

In the previous chapter, the importance of computing the posterior distribution
along with the difficulty in doing so was discussed. Two methods for solving
the Bayesian inference problem, in rejection sampling and Metropolis Hastings,
were reviewed while their respective shortcomings highlighted. This chapter
introduces an advanced MCMC based method which solves the inefficiency of
rejection sampling while also addressing the issues of standard MCMC. Originally
stemming from an area of engineering referred to as reliability analysis, the
framework allows for problems with multi modal and high dimensional inferential
tasks in Bayesian inference to be efficiently addressed through rare event simulation.
Additionally, it also holds the capabilities of automatically computing the model
evidence at no additional computational cost.

4.1 Reliability Analysis

Reliability analysis aims to evaluate the probability of failure of a system of interest.
Traditionally, these are representations or abstractions of physical systems. In
engineering, this could mean an aircraft (or some of its components), a structure
such as a bridge amongst many other examples. Failure in a system occurs when
a state of unacceptable performance has been reached, which often stems from
the demand exceeding the systems capacity. The response of a system can be

72 Bayesian Updating with Structural reliability methods (BUS)

represented by a limit state function g(θ). Let the limit state function represent
the relationship between θ and the output response. It contains all available
information of a systems behaviour such as material properties, loads etc. The
failure domain F is defined as

F = {θ ∈ Rd : g(θ) > b} (4.1)

The failure domain is populated by the values of θ such that the output of
g(θ) exceeds a critical threshold b. Let θ = (θ1, ..., θd) be a vector of uncertain
parameters distributed as π(θ). The probability of failure pF can be expressed by

pF = p(θ ∈ F) =
∫

F
π(θ)dθ (4.2)

The dimensionality of θ renders the numerical treatment of the integral in Eq. 4.2
difficult. In order to understand why it is difficult to solve this, consider Direct
Monte Carlo (DMC). Through the introduction of an indicator function, Eq. 4.2
is given by

pF =
∫
I[g(θ) > b]π(θ)dθ (4.3)

where I[·] denotes the indicator function defined as

I[θ] =

1 if g(θ) > b

0 Otherwise
(4.4)

The idea behind DMC is a straight forward application of the law of large numbers
that states if the values of θ are i.i.d samples from the PDF π(θ), then the
empirical average converges to the true value of the target quantity as N goes
to infinity. Using this property, DMC approximates the integral in Eq. 4.2 as a
finite sum of N samples.

p̂DMC
F = 1

N

N∑
i=1

I[θi] (4.5)

This estimate of pF is determined purely by the output of I[·] by identifying the
number of failure occurrences out of the total number of samples. Given the
stochastic nature of the DMC estimator, in reliability analysis a standard measure

4.1 Reliability Analysis 73

of accuracy of the estimator is the coefficient of variation (c.o.v), δ(p̂F) which is
defined as the ratio of the standard deviation to the expected value of p̂F . With
the c.o.v of the DMC estimate given by

δ(p̂DMC
F) =

√√√√1 − p̂DMC
F

N · p̂DMC
F

(4.6)

Eq. 4.6 reveals that DMC depends solely on p̂DMC
F andN , whilst being independent

of the parameter input space. As such, the estimators accuracy does not suffer
from the so called curse of dimensionality. This term was first introduced by Dr.
Richard Bellman [25] to describe phenomena that arise when analysing data in
high dimensional spaces that do not occur in low dimensional settings. In the
case of small failure probabilities, DMC requires a large number of limit state
function evaluations which typically rely on the computation of a cost intensive
computer model such as a finite element analysis. Eq. 4.6 illustrates that in
this case, the number of N samples required to achieve an acceptable level of
accuracy is inversely proportional to pF and therefore very large. As such, DMC
is not a feasible solution in terms of computational demands for these types of
problems. This deficiency of DMC has motivated research to develop advanced
simulation algorithms capable of efficiently estimating small failure probabilities
representing rare events. It is worth noting that, even though the computational
costs associated with DMC are restrictive for many problems, it is a very robust
method and is often used as a benchmark for other reliability methods [234].

4.1.1 Transformation of Input Variables

Many reliability methods choose to express Eq. 4.2 in terms of a vector e ∈ Rd

distributed according to a standard Normal distribution. The coefficients of e

are assumed to be independent, in contrast to the possibly dependent parameter
vector θ. This assumption however, is not a limitation, since in simulation one
may start from independent parameters to generate dependent parameters [234].
There exists a transformation Γ−1 which maps the standard normal e to the
physical parameter space θ. Consider the simple case of θ ∼ N (·|µi, σ

2
i) , with µi

and σ2
i denoting the mean and variance of θi. The necessary pre processing step

74 Bayesian Updating with Structural reliability methods (BUS)

is standardization

ei = θi − µi

σ2
i

(4.7)

In terms of reliability analysis the subsequent transformation of the limit state
function g(e) = g(Γ−1(θ)) allows for the failure probability to be given by

pF =
∫
I[g(e) > b]π(e)de (4.8)

where π(e) denotes the standard normal PDF. In practice, a transformation
can be performed in several ways depending on the available information. Two
common approaches for parameter transformation are the Rosenblatt [190] and
Nataf transformations [66].

4.2 Subset Simulation

In well designed and complex structures, the likelihood of a rare event occurring
is extremely small, meaning rare event simulation techniques which alleviate
the shortcomings of DMC are required. Subset Simulation (SuS) [11] offers
an efficient solution to the engineering reliability problem by expressing F as a
series of intermediate failure events. SuS approximates Eq. 4.2 by generating a
sequence of random samples of θ conditional on increasingly rare failure events
F = Fm ⊆ ... ⊆ F2 ⊆ F1. Each intermediate failure event in the sequence is
defined as

Fi = {g(θ) > bi} (4.9)

where {bi}m
i=1 is an increasing sequence of threshold values adaptively chosen

during a simulation run, g(·) representative of the limit state function and m the
number of intermediate failure events. In practical cases it is difficult to make a
rational choice of the bi values in advance, so the bi are chosen adaptively such
that b1 < ... < bm−1 < bm = b, with b representing the target critical threshold
[233]. By the product rule, SuS approximates pF by exploiting the conditional
dependence on intermediate failure levels

pF ≈ p̂F = p(F0)
m∏

i=1
p(Fi|Fi−1) (4.10)

4.2 Subset Simulation 75

with F0 being a rather frequent event and each Fi progressively more rare. Choosing
p(Fi|Fi−1) in the correct manner, allows pF to be calculated through simulation.
Hence, the original rare event problem is broken down into a series of nested failure
events. Instead of solving a single reliability problem, a series of intermediate
reliability problems are solved and combined analytically to provide an estimate
for pF . The algorithm initializes simulation in the following manner.

Let p0 ∈ [0, 1] be the level probability which in essence governs how many
intermediate failure thresholds are required to reach the failure domain F . A
prudent choice of level probability is required with the optimal value shown to
satisfy p0 ∈ [0.1, 0.3] [235]. Let N ∈ N be the total number of generated samples at
each level. Beginning at level0, the algorithm probes the input space generating N
i.i.d samples {θi

0}N
i=1 by DMC from the prior PDF. Next, the limit state function

g(θ) is evaluated for all {θi
0}N

i=1. The limit state function evaluations {gi
0}N

i=1

and {θi
0}N

i=1 are placed in descending order with respect to {gi
0}N

i=1. The number
of failure samples nF (0) is identified for level0 as those for which {gi

0}N
i=1 > b is

true. Here b represents the critical threshold corresponding to the final failure
probability and is given as an input into SuS. If nF (0)/N > p0, simulation is
terminated and SuS reduces to DMC. For this reason, it has been found that
SuS is best suited to rare events with pF < 10−3 [12]. If nF (0)/N < p0, the
algorithm proceeds to level1. At level1, an intermediate failure threshold b1 is
computed such that nc = p0 ·N values of {gi

0}N
i=1 exceed its value. The purpose

of this is to identify the samples from level0 to be used as seeds to populate F1.
The resulting sample set chosen based on {gi

0}nc
i=1 is {θi

0}nc
i=1. Each sample in

this set is used as a seed for an individual Markov chain to populate F1 through
a specialized component-wise MH algorithm as outlined in Algorithm 5. This
sampler is discussed in detail in Section 4.2.1. Having the seeds inside the target
region F1, allows one to discard any burn in period usually required in MCMC
simulations to grow a single Markov chain. Each of the nc independent Markov
chains contains ns = p−1

0 states including the initial seed values. This ensures
that N samples {θi

1}N
i=1 from π(θ|F1) are drawn. As each of the nc chain seeds

are already located in F1 by choice of b1, in total N − nc samples are generated
at level1. A detailed discussion of the component-wise MH algorithm and the
role of MCMC in SuS is given in Section 4.2.1. Similar to level0, the limit
state function g(θ) is evaluated for all {θi

1}N
i=1. The evaluations of {gi

1}N
i=1 and

{θi
1}N

i=1 are again placed in descending order with respect to {gi
1}N

i=1. The stopping

76 Bayesian Updating with Structural reliability methods (BUS)

criterion is checked to establish whether nF (1)/N > p0. If so, simulation stops
and pF ≈ p1

0(nF (1)/N). If not, the algorithm continues to level2 and proceeds in
the same manner as outlined for level1. SuS sequentially generates intermediate
levels until the number of failure samples at any given level is greater than p0. A
pseudo code for SuS is provided in Algorithm 4.

Algorithm 4 Subset Simulation
1: Define N , p0, nc = p0N , ns = p−1

0 and b

2: Initialize m = 0, where m is the current simulation level

3: Generate N samples {θi
m}N

i=1 from the input PDF π(·)

4: For each {θi
m}N

i=1 evaluate gi
m

5: Sort the N values of gi
m and the corresponding {θi

m}N
i=1 in descending order with respect

to gi
m

6: Set nF (m) =
∑N

i=1(gi
m > b)

7: while p0 > nF (m)/N do

8: m = m + 1

9: Calculate bm = gnc
m−1+gnc+1

m−1
2

10: Store the first nc samples of the ordered set {θi
m−1}N

i=1 as ’seeds’

11: Using {θj
m−1}nc

j=1 draw the remaining N −nc samples from π(·|Fm) via MCMC as follows:

12: for j = 1, ..., nc do

13: Starting with {θj
m−1} as an initial seed, generate {θk

m}ns−1
k=1 ∼ π(·|Fm) states of

a Markov chain using the Modified Metropolis Hastings in Algorithm 5. In this

algorithm, the sample acceptance criteria involves evaluating gm with respect to bm

for each generated sample.

14: end for

15: Sort the N values of gi
m and the corresponding {θi

m}N
i=1 in descending order with respect

to gi
m

16: Calculate nF (m) =
∑N

i=1(gi
m > b)

17: end while

18: Return pF ≈ pm
0

nF (m)
N

Figure 4.1 presents a 2-dimensional example taken from [38] illustrating the
sampling process of SuS. This problem analyses a series system composed of four
limit state functions each dependent on θ = {θ1, θ2}.

4.2 Subset Simulation 77

g(θ) = min

h+ 0.1 · (θ1 − θ2)2 − (θ1+θ2)√
2

h+ 0.1 · (θ1 − θ2)2 + (θ1+θ2)√
2

(θ1 − θ2) + j√
2

(θ2 − θ1) + j√
2

(4.11)

The parameters h and j are set equal to 3 and 7 respectively [59]. SuS sequentially
generates samples until the number of failure samples (red) according to the
stopping criterion of Algorithm 4 has been satisfied. It is evident that SuS
identifies the multi-modality of the failure domain after level1 before stopping
simulation after level3. With 23 samples belonging to the final intermediate
failure domain, SuS estimates pF by p̂F = 2.3 · 10−3 with the reference solution
pF = 2.2 · 10−3 [59].

Figure 4.1: SuS performed with N = 1000 and p0 = 0.1. Samples generated
at level0 (orange), level1 (blue), level2 (green) and level3 (red) are shown. SuS
iteratively generates samples which gradually approach the failure domain. The
multi modality of the failure domain stemming from the limit state function
expression is evident and is identified by SuS after level1. The final critical
threshold b3 before termination is represented by a black line.

78 Bayesian Updating with Structural reliability methods (BUS)

4.2.1 Subset Simulation: The Role of MCMC

The generation of samples at every intermediate level of SuS results in the efficiency
of SuS relying heavily on the chosen MCMC sampling scheme. Conditioning the
sample on the current intermediate failure domain, modifies the MCMC strategy
discussed in previous chapters. Let θ represent the current state of the chain
and θ′ the proposed sample of the transition to the next state. Consider the
stationary distribution π(θ|Fi) and the transition operator T (θ|θ′) with the target
distribution for a proposed candidate sample given by

π(θ′|Fi) =
∫
T (θ′|θ)π(θ|Fi)dθ (4.12)

Generating a sample from the proposal S(·|θ), the probability of sample acceptance
may be computed as the minimum value between 1 and

r(θ′) = π(θ′|Fi)
π(θ|Fi)

· S(θ|θ′)
S(θ′|θ)

=
π(θ′)IF (θ′)

pF i

π(θ)IF (θ)
pF i

· S(θ|θ′)
S(θ′|θ)

= π(θ′)
π(θ) · IF (θ′)

IF (θ) · S(θ|θ′)
S(θ′|θ) (4.13)

Seeing as the current state of the Markov chain already follows the target distri-
bution, the acceptance ratio is simplified to

r(θ′) = min

1, π(θ′)
π(θ) · S(θ|θ′)

S(θ′|θ)

 · IF (θ′) (4.14)

This simplification of the acceptance probability results in a candidate sample
being either accepted or rejected in a two stage approach. At the first step, a
sample is generated from S(·|θ) with the above acceptance probability. Secondly,
it is checked whether the proposed sample lies in Fi. The standard MH algorithm
suffers in high dimensions due to the increase in rejection rates at the first step for
an increasing number of uncertain variables. A modified MH (MMH) algorithm

4.2 Subset Simulation 79

[11] has been proposed which allows SuS to efficiently generate samples in high
dimensions.

MMH differs from the original MH in the manner in which the proposed
candidate state is generated. Let levelm represent the current intermediate level
and bm the subsequent intermediate threshold. Consider the current state of the
Markov chain to be θ = {θ1, ..., θd}. Instead of using a d-variate proposal PDF to
directly obtain the candidate state v = {v1, ..., vd} as in MH, MMH expresses the
proposal as a product of independent univariate PDFs. As outlined by Eq. 4.14,
the sample generation is a two step process. Firstly, a pre-candidate sample wj is
drawn from a univariate proposal Sj(·|θj) dependent on the component θj of the
current state. The univariate proposal is user defined with common choices being
a Gaussian or uniform [12]. The Metropolis ratio for wj is then computed.

r(wj) = π(wj)
π(θj)

· Sj(θj|wj)
Sj(wj|θj)

(4.15)

If wj is accepted with respect to r(wj), vj is set to wj . Otherwise vj is set to θj i.e
the jth component of the current state of the Markov chain. Consequently every
time a wj is rejected, vj is assigned a component of a sample which already lives
in the target failure domain. This process is repeated until all d components of v

have been specified. Next, a check is made to identify whether v ∈ F through
g(v) > bm. If the candidate sample belongs in the failure domain it is accepted as
the next state of the Markov chain and θ′ = v. If not, the next state of the Markov
chain is θ′ = θ. To summarize, the MMH proceeds as follows in Algorithm 5:

80 Bayesian Updating with Structural reliability methods (BUS)

Algorithm 5 Modified Metropolis-Hastings
1: Define the intermediate critical threshold bm from the current intermediate levelm

2: Define the current state of the Markov chain θ = {θ1, ..., θd}
3: Define the univariate proposal PDFs Sj(·|θj) for j = 1, ..., d

4: for each j = 1, ..., d do
5: Generate a pre-candidate wj from Sj(·|θj)
6: Generate uj uniformly on [0, 1]
7: r(wj) = π(wj)

π(θj) · Sj(θj |wj)
Sj(wj |θj)

8: Accept vj = wj if uj < r(wj), otherwise vj = θj

9: end for
10: v = {v1, ..., vd}
11: Compute g(v) for the proposed candidate sample v

12: if g(v) > bm then
13: θ′ = v

14: else
15: θ′ = θ

16: end if

An illustration of the sampling process of the MMH sampler in the context
of SuS is provided in Figure 4.2. In this case, N = 10 and p0 = 0.2 resulting
in nc = 2 and ns = 5. At level0 the initial samples generated from the prior
distribution are denoted in blue. At level1, the red dots represent the samples
generated at level0 that have exceeded b1. These samples are used as seeds to
generate individual states of Markov chains denoted in green. This process is
continued until termination at levelm. Examples of a rejected pre-candidate
sample wj (purple) and a proposed sample rejected by the second rejection event
v (black) at level2 are also shown. Note that in practice the progression of the
Markov chain may not be as direct in terms of movements as shown in Figure 4.2.
The purpose of this plot is to provide the reader with a visual depiction of the
sampling process.

4.2 Subset Simulation 81

Figure 4.2: Illustration of the sample generation process by MMH. At level0 the
initial samples generated from the prior distribution are denoted in blue. At
level1, the red dots represent the samples generated at level0 that have exceeded
b1. These samples are used as seeds to generate individual states of Markov chains
denoted in green. This process is continued until termination at levelm. Examples
of a rejected pre-candidate sample (purple) and a sample rejected by the second
rejection event (black) at level2 are also shown.

Numerous methods have since been proposed aimed at further improving the
sampling procedure in SuS [10, 172, 149, 196]. For a detailed comparison on
performance, the reader is referred to [172]. The construction of SuS as a nested
sequence of failure events addresses some of the important issues which arise in
MCMC as discussed in Chapter 3. By choosing the seeds of the Markov chain
as samples which exceed the critical threshold at a given intermediate level, the
resultant chains produce samples which follow the desired stationary distribution.
This concept directly alleviates the requirement for a sample burn in period. The
task of identifying convergence in MCMC methods has also been rectified by the
combination of this seed choice along with the implementation of the stopping
criterion in Algorithm 4. As discussed in section 4.1.1, SuS operates in standard
normal space and requires a transformation of the generated samples to the
physical parameter space. Allowing for the development of SuS tailored MCMC
schemes which enable the framework to be robust to the number of uncertain
parameters. In turn, ensuring that SuS is suitable for estimating the probability

82 Bayesian Updating with Structural reliability methods (BUS)

of rare events in problems in high dimensions. This property, is a key principal
for the SuS based Bayesian inference scheme presented later in this chapter.

4.3 BUS

Bayesian Updating with Structural reliability methods (BUS) [208] opens up
the possibility of evaluating posterior densities through the use of engineering
reliability methods. Consider a reliability problem with uncertain parameters
(θ, u) independent of one another with their joint PDF given by Q(θ)P (u). Define
the target failure event by

F = {θ ∈ Rd : u− cL(D|θ) ≤ 0} (4.16)

where u ∼ P (u) with support [0, 1] and acknowledging that P (u) = 1. Suppose
by some means (e.g. SuS), a failure sample distributed as Q(θ)P (u) conditional
on the failure event F can be obtained. The subsequent PDF is

P (θ, u|F) = Q(θ)I[u− cL(D|θ) ≤ 0]
pF

(4.17)

Integrating out the uniform random variable from the PDF of the failure sample
yields

P (θ|F) =
∫ 1

0
P (θ, u|F)du

= Q(θ)
pF

∫ 1

0
I[u < cL(D|θ)]du

= Q(θ)cL(D|θ)
pF

= Q(θ)cL(D|θ)∫
Q(θ)cL(D|θ)dθ (4.18)

P (θ|F) ∝ Q(θ)cL(D|θ) (4.19)

This is the distribution of the sample conditional on the failure event in Eq. 4.16.
Similarly, consider again the sample acceptance step from rejection sampling in

4.3 BUS 83

Chapter 3 which determines whether or not θ ∼ P (θ|D). Let π(θ|D) be the
potentially unnormalized posterior, with the relationship between the normalized
posterior and unnormalized posterior be given by P (θ|D) ∝ π(θ|D). Let u ∼ P (u)
with support [0, 1].

u <
π(θ|D)
kQ(θ)

=⇒ u <
Q(θ)L(D|θ)

kQ(θ)

=⇒ u < k−1L(D|θ)

=⇒ u− cL(D|θ) < 0 (4.20)

with c = k−1. While again acknowledging that P (u) = 1, under rejection sampling
the PDF conditional on Eq. 4.20 for θ and u is

P (θ, u|u− cL(D|θ) < 0) = Q(θ)I[u− cL(D|θ) < 0]
pA

(4.21)

Integrating out the uniform random variable from the PDF of the failure sample
yields

P (θ|u− cL(D|θ) < 0) = Q(θ)
pA

∫ 1

0
I[u < cL(D|θ)]du

= Q(θ)cL(D|θ)
pA

= Q(θ)cL(D|θ)∫
Q(θ)cL(D|θ)dθ (4.22)

P (θ|u− cL(D|θ) < 0) ∝ Q(θ)cL(D|θ) (4.23)

Therefore, the choice of limit state function in Eq. 4.16, results in the PDF of the
samples conditional on the specified failure event being equivalent to the PDF
of the posterior distribution for rejection sampling. This means that samples
conditional on the failure domain in Eq. 4.16 are distributed according to the

84 Bayesian Updating with Structural reliability methods (BUS)

posterior distribution. Through the definition of the limit state function as

g(θ, u) = u− cL(D|θ) (4.24)

BUS augments the sample space of θ with the introduction of a uniform variable
u on [0, 1]. This allows for the rejection sampling strategy presented in Chapter 3
to be combined methods from reliability engineering to provide an efficient solution
to the Bayesian updating problem. By interpreting the sampling inefficiency of
rejection sampling as a rare event, BUS acknowledges that the probability of
sample acceptance pA under rejection sampling is equivalent to the probability
of failure pF in reliability analysis when a uniform random variable on [0, 1] is
added to the sample space of the uncertain parameter. This is prevalent from
the denominators of the expressions in Eq. 4.18 and Eq. 4.22, whereby pF

and pA don’t influence the distribution of the parameters but rather ensure the
distribution is a valid PDF which integrates to 1. In BUS, pF from Eq. 4.18 is
directly linked to the model evidence PD through c:

pF =
∫
Q(θ)cL(D|θ)dθ

= cPD (4.25)

Therefore, obtaining an appropriate value of c and computing pF allows for the
estimation of PD as a by product of simulation. The link between the failure
domain and the actual Bayesian updating task is that the samples which belong
in the failure region follow the posterior distribution. With such samples being
generated once an intermediate threshold less than 0 is produced. Consequently,
the interest is in the samples conditional on F . While BUS is not constrained
to any particular reliability method, for this study SuS is chosen. In terms of
parameter estimation, as outlined in Section 4.2.1, SuS with BUS offers many
advantages over MCMC.

In line with rejection sampling, difficulty lies in correctly selecting a suitable
likelihood multiplier c for BUS. An appropriate choice of c in rejection sampling
ensures the subsequent samples are distributed according to the posterior. Given
the limit state function is dependent on c, the multiplier value is required to be

4.3 BUS 85

known prior to simulation. From the rejection principle

cL(D|θ) ≤ 1 (4.26)

the largest acceptable value of c is given by

cmax = 1
L(D|θ)max

(4.27)

In the case of the value being greater than cmax, Eq. 4.26 is not satisfied resulting
in incorrect samples being generated. A proof of this is contained in Appendix B.
BUS provides an efficient solution to Bayesian updating tasks once c is chosen
appropriately with respect to L(D|θ)max. However, in many cases this quantity is
unknown in advance and as such, c cannot be computed. Two strategies developed
to resolve this issue are discussed in the following.

4.3.1 Adaptive BUS (aBUS)

An adaptive strategy (aBUS) which selects a new value of c at each intermediate
level of SuS has been proposed [33]. Adopting a modification firstly proposed
in [67], [32] later introduced the natural logarithm to the limit state function of
aBUS.

g(θ, u) = ln(u) − ln(c) − lnL(D|θ) (4.28)

The reasoning of which is discussed in more detail in Section 4.3.2. This updated
aBUS focuses solely on the selection of c, with the final multiplier value selected
as

c = e−L(D|θ)max (4.29)

Utilizing information from the likelihood evaluations, c is set equal to the largest
likelihood value generated from the set of samples. At the end of a subset level,
it is checked whether a likelihood larger than the current value of c has been
produced. If so, the current value of c is set equal to the largest observed likelihood.
While [33] and [32] differ in two aspects: (i) the adoption of the natural logarithm
and (ii) a minor correction of the intermediate threshold, both forms of aBUS
adopt the same stopping criterion as BUS. Under aBUS, the model evidence is

86 Bayesian Updating with Structural reliability methods (BUS)

expressed by

PD = pFL(D|θ)max (4.30)

In the event of the likelihood function reaching the theoretical maximum, the
model evidence will be equivalent to the probability of failure. Given the finite
nature of the sample set generated in a model run, it is highly unlikely that the
true maximum of the likelihood function for a given problem will be simulated.
Meaning, in the case of L̂(D|θ)max < L(D|θ)max with L̂(·) denoting simulated
likelihood function, the model evidence will be under estimated. This would have
a further knock on effect in terms of model class selection whereby the model
evidence will not accurately reflect the plausibility of the chosen model.

4.3.2 Nested BUS (nBUS)

A nested BUS formulation (nBUS) [67], rectifies the issue of multiplier choice by
re-expressing the failure event of interest as follows. Consider again the acceptance
criterion from rejection sampling.

cL(D|θ) > u (4.31)

Expressing Eq. 4.31 on the natural log scale and rearranging yields:

ln(cL(D|θ)) > ln(u)

lnL(D|θ) − ln(u) > −ln(c) (4.32)

This reformulation of the failure event results in the critical threshold b = −lnc
being expressed in terms of the likelihood multiplier. As SuS calculates this
threshold adaptively at each intermediate level, its value is automatically computed.
Let g(θ, u) = lnL(D|θ) − ln(u), which is no longer dependent on the multiplier.
In contrast to aBUS and BUS, the task for nBUS is to identify the minimum
number of levels required to stop simulation. The details of which are discussed
in Section 4.4. For a large enough intermediate threshold, the model evidence
under nBUS is given by

PD = ebpF b > bmin (4.33)

4.3 BUS 87

where bmin represents the minimum required level for θ ∼ P (θ|D). In contrast
to aBUS, the evidence estimated by nBUS is not dependent on the likelihood
function but on the intermediate critical threshold. Therefore it does not suffer
from the potential of not reaching the true maximum of the likelihood when using a
finite sample size. The natural logarithm aids computational efficiency by ensuring
that g(θ, u) is a well defined random variable whilst also ensuring a smoother
transition between intermediate levels. Additionally, it forms the basis of an
automatic stopping condition on the premise of identifying the minimum required
number of levels to draw samples from the posterior distribution. Examining the
functional behaviour of ln(pF) reveals a function with a slope equal to −1 for
b > bmin. Similarly, ln(PD) goes from a linearly increasing function as b increases
through a transition stage to remaining constant equal to ln(PD) once b > bmin.

Derivations for the characteristic trends illustrated in Figure 4.3 are given in
Appendix B. In reality, the stochastic nature of nBUS results in the trends being
available on a sample basis only. As such, they contain statistical errors which
in general decrease for an increasing number of samples. Given the sensitivity
to this parameter, visual inspection of the characteristic trends based on the
aforementioned functional behaviour is not enough to confidently conclude the
generated samples are distributed according to the posterior

(a) (b)

Figure 4.3: Characteristics trends of ln(pF) (left) and ln(PD) (right).

88 Bayesian Updating with Structural reliability methods (BUS)

4.4 Stopping Criteria

The manner of termination of the sampling process directly influences sample
quality and computational expense. This section provides an overview of existing
stopping conditions for BUS, aBUS and nBUS.

4.4.1 aBUS and BUS

At termination, both BUS and aBUS generate θ ∼ P (θ|{g(θ, u) ≤ 0}). Given
the stochastic nature of b, generating samples truly conditional on b = 0 is highly
unlikely. To illustrate this sampling process consider a 2-dimensional problem
with a parabolic limit state function. This example concerns the physical sample
generation with respect to the limit state function. Figure 4.4 (a) presents the
generated samples truly conditional on b = 0 with the final intermediate threshold
given by the red parabola. In a single aBUS run, suppose the final b = −0.5 is
given by the black parabola. From Figure 4.4 (b) it is evident that a proportion
of samples (green) located between the two boundaries are excluded from the
posterior set conditional on b = 0. Where the true samples conditional on b = −0.5
(Figure 4.4 (c)) are the chosen posterior samples. Once an intermediate threshold
value smaller than 0 is generated, it is suggested to stop simulation and rescale to
b = 0, resulting in the chosen posterior samples not truly being conditional on the
specified failure event, where a proportion of true posterior samples (green) have
been excluded from the final set. Algorithm 6 provides a pseudo code for aBUS.
Recall under aBUS that c is chosen as

c = e−L(D|θ)max (4.34)

resulting in

g(θ, u) = ln(u) − ln(c) − lnL(D|θ)

= ln(u) − ln(e−L(D|θ)max) − lnL(D|θ)

= ln(u) + L(D|θ)max − lnL(D|θ)

= ln(u) + l − lnL(D|θ) (4.35)

4.4 Stopping Criteria 89

(a) Samples conditional on b = 0. (b) Samples excluded from posterior set.

(c) Samples conditional on b = 0

Figure 4.4: Example of the sample generation process by aBUS using a parabolic
limit state function. Panel (a) illustrates the true posterior sample set with b = 0.
Using a threshold of b = −0.5, panel (b) highlights the samples (green) which are
excluded from the true posterior set by terminating simulation once a threshold
less than b = 0 has been computed. Panel (c) shows the sample set conditional
on b = −0.5 and assumed under aBUS and BUS to be the true posterior set.

where l denotes L(D|θ)max. At level0 N samples are drawn from the input PDF
and at step 5 in Algorithm 6 the maximum of the likelihood function evaluated for
all N samples is identified and l0 = {{L(D|θi

0)}N
i=1}max. The limit state function

{gi
0}N

i=1 is evaluated for all N samples using l0. The limit state function evaluations
{gi

0}N
i=1 and {θi

0, u
i
0}N

i=1 are placed in descending order with respect to {gi
0}N

i=1.
At level1, an intermediate failure threshold b1 is computed such that nc = p0 ·N
values of {gi

0}N
i=1 exceed its value. The purpose of this is to identify the samples

90 Bayesian Updating with Structural reliability methods (BUS)

from level0 to be used as seeds to populate F1. The resulting sample set chosen
based on {gi

0}nc
i=1 is {θi

0, u
i
0}nc

i=1. Each sample in this set is used as a seed for an
individual Markov chain to populate F1 through the MMH sampler previously
discussed. For each of the generated samples in the MMH sampler, the limit state
function is evaluated using the updated value of l1 = max(l0, {{L(D|θi

1)}N
i=1}max).

If b1 < 0 the sampler stops and the samples generated at level1 are taken as those
from the posterior. If not, aBUS proceeds to level2. Simulation proceeds in the
same manner as above until the computed intermediate threshold at any given
levelm is less than zero. The estimated model evidence is computed using the
final lm value and given by PD ≈ p̂F lm.

4.4 Stopping Criteria 91

Algorithm 6 aBUS

1: Define N , p0, nc = p0N and ns = p−1
0

2: Initialize m = 0, where m is the current simulation level

3: Initialize bm = ∞

4: Generate N samples {θi
m, ui

m}N
i=1 from the input PDF π(·)

5: Set lm = {{L(D|θi
m)}N

i=1}max

6: For each {θi
m, ui

m}N
i=1 evaluate gi

m = ln(ui
m) − lnL(D|θi

m) + lm

7: Sort the N values of gi
m and the corresponding {θi

m, ui
m}N

i=1 in ascending order with respect

to gi
m

8: while bm > 0 do

9: m = m + 1

10: Calculate bm = gnc
m−1+gnc+1

m−1
2

11: Store the first nc samples of the ordered set {θi
m−1, ui

m−1}N
i=1 as ’seeds’

12: Using {θj
m−1, uj

m−1}nc
j=1 draw the remaining N − nc samples from π(·|Fm) via MCMC

as follows:

13: for j = 1, ..., nc do

14: Starting with {θj
m−1, uj

m−1} as an initial seed, generate {θk
m, uk

m}ns−1
k=1 ∼ π(·|Fm)

states of a Markov chain using the Modified Metropolis Hastings in Algorithm 5. In

this algorithm, the sample acceptance criteria involves evaluating gm with respect to

bm for each generated sample.

15: end for

16: Sort the N values of gi
m and the corresponding {θi

m, ui
m}N

i=1 in descending order with

respect to gi
m

17: Set lm = max(lm−1, L(D|θi
m)max)

18: if bm < 0 then

19: Set bm = 0

20: pm =
∑N

i=1
(gi

m<bm)
N

21: else

22: pm = p0

23: end if

24: end while

25: p̂F =
∏m

i=1 pm

26: Return θ ∼ P (θ|D) & PD ≈ p̂F lm

92 Bayesian Updating with Structural reliability methods (BUS)

4.4.2 nBUS

To ensure certainty that the minimum level has been surpassed, nBUS proposes
an automatic stopping condition. As the intermediate levels progress, the quality
of samples decrease due to an increased correlation stemming from the MCMC
process. Therefore, N generated posterior samples does not suggest N pieces
of information are being received. nBUS protects against this deterioration in
sample quality by determining the probability of generating a sample from outside
the posterior distribution. nBUS proposes to compute this probability at every
intermediate level. Once this probability is zero, the sampler stops as the generated
samples are distributed according to the posterior. Recalling that b = −lnc, the
rejection principle from Chapter 3 may be expressed as:

e−bL(D|θ) ≤ 1 (4.36)

For any levelm such that bm < bmin, where bmin is the minimum required threshold,
nBUS seeks to estimate the probability of θ being in the set Am(θ).

Am(θ) = {θ : e−bmL(D|θ) > 1} (4.37)

In this case Am(θ) may be viewed as the set of inadmissible samples. Where the
use of inadmissible refers to those which have not satisfied the rejection principle
and are thus outside the posterior set. Regarding Am(θ), consider the following
theorem as presented in [67].

Theorem 1. [67] There exists constants e−bm and a monotone decreasing sequence
hm, such that

limm→∞ hm = 0 (4.38)

where hm is the prior probability of the set Am(θ) = {θ : e−bmL(D|θ) > 1}.

Theorem 1 reveals that for a large enough number of intermediate levels, the
probability of generating a sample belonging outside the posterior set will decrease
before converging to zero. By the definition of the set Am(θ) as in Eq. 4.37,
Ac

m(θ) is defined as:

Ac
m(θ) = {θ : e−bmL(D|θ) ≤ 1} (4.39)

4.4 Stopping Criteria 93

This means that Ac
m(θ) contains all samples which satisfy the rejection principle

in Eq. 4.36. Once hm has converged to zero, Am(θ) is the empty set and the
samples drawn by nBUS at levelm belong in the set Ac

m(θ). By rearranging the
expression for hm in Theorem 1, allow for this probability measure to be expressed
as:

hm = pθ(L(D|θ) > ebm) (4.40)

The evaluation of Eq. 4.40 requires the computation of a high dimensional integral.
Additionally, as its value will become increasingly small for an increasing number
of intermediate levels, SuS is proposed to compute hm. However as the samples
generated during nBUS are given by the limit state function

g(θ, u) = lnL(D|θ) − ln(u) (4.41)

these samples cannot be used to compute hm as the limit state function for
computing hm is given by

g(θ) = L(D|θ) (4.42)

As the limit state functions differ, a separate implementation of SuS is required
to generate the conditional failure samples needed for estimating hm. This results
in the algorithmic structure of nBUS being nested. The automatic stopping
condition of nBUS proposes to compute hm by SuS at every intermediate level
of nBUS until it has converged to zero. Once this has occurred, the samples
generated at levelm of nBUS are taken as those drawn from the posterior. A
pseudo-code for nBUS is given in Algorithm 7. At level0, h0 is not computed as
the sample set {θi

m, u
i
m}N

i=1 is drawn from the prior and as such a default value of
h0 = 1 is initialized. Seeing as hm→0 for an increasing m, in reality a very small
tolerance ϵ must be chosen with a suggested value of ϵ = 10−8 given in [67]. At
level0 N samples are drawn from the input PDF and the limit state function
{gi

0}N
i=1 is evaluated. The limit state function evaluations {gi

0}N
i=1 and {θi

0, u
i
0}N

i=1

are placed in descending order with respect to {gi
0}N

i=1. At each intermediate
level the stopping rule checks whether or not hm < ϵ. As h0 > ϵ nBUS proceeds
to level1. At level1, an intermediate failure threshold b1 is computed such that
nc = p0 ·N values of {gi

0}N
i=1 exceed its value. The purpose of this is to identify

94 Bayesian Updating with Structural reliability methods (BUS)

the samples from level0 to be used as seeds to populate F1. The resulting sample
set chosen based on {gi

0}nc
i=1 is {θi

0, u
i
0}nc

i=1. Each sample in this set is used as a
seed for an individual Markov chain to populate F1 through the MMH sampler
previously discussed. For each of the generated samples in the MMH sampler, the
limit state function is evaluated {gi

1}N
i=1. At step 17 in Algorithm 7 nBUS enters

an inner loop to compute h1 via SuS in Algorithm 8.

Algorithm 7 nBUS- Outer Loop
1: Define N , p0, nc = p0N , ns = p−1

0

2: Define the stopping tolerance ϵ

3: Initialize m = 0, where m is the current simulation level

4: Initialize hm = 1

5: Generate N samples {θi
m, ui

m}N
i=1 from the input PDF π(·)

6: For each {θi
m, ui

m}N
i=1 evaluate gi

m = lnL(D|θi
m) − ln(ui

m)

7: Sort the N values of gi
m and the corresponding {θi

m, ui
m}N

i=1 in descending order with

respect to gi
m

8: while hm > ϵ do

9: m = m + 1

10: Calculate bm = gnc
m−1+gnc+1

m−1
2

11: Store the first nc samples of the ordered set {θi
m−1, ui

m−1}N
i=1 as ’seeds’

12: Using {θj
m−1, uj

m−1}nc
j=1 draw the remaining N − nc samples from π(·|Fm) via MCMC

as follows:

13: for j = 1, ..., nc do

14: Starting with {θj
m−1, uj

m−1} as an initial seed, generate {θk
m, uk

m}ns−1
k=1 ∼ π(·|Fm)

states of a Markov chain using the Modified Metropolis Hastings in Algorithm 5. In

this algorithm, the sample acceptance criteria involves evaluating gm with respect to

bm for each generated sample.

15: end for

16: Sort the N values of gi
m and the corresponding {θi

m, ui
m}N

i=1 in descending order with

respect to gi
m

17: Compute hm as in Algorithm 8.

18: end while

19: Return θ ∼ P (θ|D) & PD ≈ ebmpm
0

4.4 Stopping Criteria 95

Allow for the vector of uncertain parameters used to compute h1 to be denoted
v ∈ Rd. Let the limit state function lnL(D|v) to be denoted y(v) and the
intermediate thresholds to be tm. The reason for this is to avoid any potential
confusion in terms of notation with quantities computed in the outer loop of
Algorithm 7. In Algorithm 8, v may be viewed as an auxiliary variable with its
sole purpose being for the estimation of h1. The posterior samples θ are generated
in the outer loop of Algorithm 7 only. As in SuS, in Algorithm 8 N samples
{vi

0}N
i=1 are drawn from the prior before nc members of {vi

0}N
i=1 are selected as

seeds for nc independent Markov chains used for generating {vi
1}N

i=1. At level1,
the intermediate threshold t1 is computed using {yi

0}N
i=1. The samples {vi

1}N
i=1 are

drawn using the {vi
0}nc

i=1 samples as seeds for the MMH sampler. This step involves
the evaluation of {yi

1}N
i=1 for identifying whether or not a proposed sample belongs

in F1. Next, the number of failure samples at level1, nF (1) = ∑N
i=1(yi

1 > eb1)
is identified where the target critical threshold b1 is the current intermediate
threshold from Algorithm 7. The value of h1 = p1

0(nF (1)/N) is then estimated.
The samples {vi

1}N
i=1, the subsequent {yi

1}N
i=1 and the estimated h1 are returned to

Algorithm 7. If h1 < ϵ the N samples generated at level1 of the nBUS outer loop
in Algorithm 7 are drawn from the posterior. If not, nBUS proceeds to level2.
The reasoning for returning {vi

1}N
i=1 and {yi

1}N
i=1 at level1 from Algorithm 8 is for

computing h2. When computing h2, nc samples from {vi
1}N

i=1 are used as seeds for
the subsequent Markov chains to produce {vi

2}N
i=1. As before, once {vi

2}N
i=1 are

drawn the number of failure samples at level2, nF (2) = ∑N
i=1(yi

2 > eb2) is identified
where the target critical threshold b2 is the current intermediate threshold from
Algorithm 7. The quantity h2 = p2

0(nF (2)/N) is then estimated and it is checked
whether h2 < ϵ. If so, simulation stops and the samples θ generated at level2 in
the outer loop of nBUS are taken as the posterior set. If not, nBUS progresses
to level3. For all levelm where m > 1, Algorithm 8 proceeds in the same manner
as above until hm has converged below the chosen stopping tolerance ϵ and the θ

drawn at levelm on the outer loop are the posterior samples. Overall, the nested
nature of nBUS results in the posterior samples θ being produced in the outer
loop (Algorithm 7) and hm in the inner loop (Algorithm 8).

96 Bayesian Updating with Structural reliability methods (BUS)

Algorithm 8 nBUS- Inner Loop
1: Define the current intermediate levelm

2: Input the current intermediate threshold value bm from Algorithm 7
3: if m = 1 then
4: m = m − 1
5: Generate N samples {vi

m}N
i=1 from the input PDF π(·)

6: For each {vi
m}N

i=1 evaluate the limit state function yi
m = lnL(D|vi

m)
7: Sort the N values of yi

m and the corresponding {vi
m}N

i=1 in descending order with respect
to yi

m

8: m = m + 1
9: Calculate tm = ync

m−1+ync+1
m−1

2

10: Store the first nc samples of the ordered set {vi
m−1}N

i=1 as ’seeds’
11: Using {vj

m−1}nc
j=1 draw the remaining N −nc samples from π(·|Fm) via MCMC as follows:

12: for j = 1, ..., nc do
13: Starting with {vj

m−1} as an initial seed, generate {vk
m}ns

k=1 ∼ π(·|Fm) states of
a Markov chain using the Modified Metropolis Hastings in Algorithm 5. In this
algorithm, the sample acceptance criteria involves evaluating ym with respect to tm

for each generated sample.
14: end for
15: Sort the N values of yi

m and the corresponding {vi
m}N

i=1 in descending order with respect
to yi

m

16: Set nF (m) =
∑N

i=1(yi
m > ebm)

17: else if m > 1 then
18: Define the current intermediate levelm

19: Input the current intermediate threshold value bm from Algorithm 7
20: Input {vi

m−1}N
i=1 and yi

m−1

21: Calculate tm = ync
m−1+ync+1

m−1
2

22: Store the first nc samples of the ordered set {vi
m−1}N

i=1 as ’seeds’
23: Using {vj

m−1}nc
j=1 draw the remaining N −nc samples from π(·|Fm) via MCMC as follows:

24: for j = 1, ..., nc do
25: Starting with {vj

m−1} as an initial seed, generate {vk
m}ns−1

k=1 ∼ π(·|Fm) states of
a Markov chain using the Modified Metropolis Hastings in Algorithm 5. In this
algorithm, the sample acceptance criteria involves evaluating ym with respect to tm

for each generated sample.
26: end for
27: Sort the N values of yi

m and the corresponding {vi
m}N

i=1 in descending order with respect
to yi

m

28: Set nF (m) =
∑N

i=1(yi
m > ebm)

29: end if
30: Compute hm = pm

0
nF (m)

N

31: Return hm, {vi
m}N

i=1 and {yi
m}N

i=1 to Algorithm 7.

4.5 Numerical Applications 97

4.5 Numerical Applications

This section presents numerical applications of both nBUS and aBUS. Each
inference framework is firstly implemented on four benchmark examples taken
from [32], before being used to estimate classification model parameters for high
dimensional problems. The frameworks are analysed in terms of computational
expense, posterior statistical estimation and model evidence estimation. The aim
of this exercise is two-fold. Firstly, to compare nBUS and aBUS in terms of
accuracy and computational efficiency. Secondly, to identify the sensitivity of the
performance of nBUS to different stopping tolerances. The stopping tolerances
represent the value below which hm must be for the nBUS sampler to terminate.
The chosen values are ϵ = 10−4, ϵ = 10−6 and ϵ = 10−8. For ease of representation
each tolerance is denoted by nBUS4, nBUS6 and nBUS8. The level probability
p0 is varied on the interval [0.1, 0.3]. The number of samples N is varied on the
interval [102, 104], with its value incrementally increasing. N is initialized as 102

and for each subsequent sampler run, N is increased by 102 samples before taking
a final value of N = 104. This results in each sampler being implemented for 99
different values of N .

4.5.1 Benchmark Problems

For the sampler comparison, define E[θ̂1|D] and σ[θ̂1|D] as the expectations of the
posterior mean and posterior standard deviation respectively and let P̂D represent
the estimated evidence. The quantities were achieved through a large number of
independent runs of each sampler. To aid the analysis of performance, consider
the following metrics.

• eN = | P̂D−PD

PD
|

• mN = |E[θ̂1|D]−E[θ1|D]
E[θ1|D] |

• kN = |σ[θ̂1|D]−σ[θ1|D]
σ[θ1|D] |

Let eN , mN and kN denote the bias in the estimated model evidence, mean and
standard deviation using a set of N posterior samples. Note that eN , mN and kN

are random variables for finite N . The bias represents the ratio of deviation of the
estimated quantity with respect to the reference value. For the experimental set
up, p0 was varied in the interval [0.1, 0.3] as suggested in [235]. While the number

98 Bayesian Updating with Structural reliability methods (BUS)

of samples was incrementally increased from 102 to 104. The following introduces
each benchmark example.

1. Consider two separate 1-dimensional problems. The first with a prior on θ

chosen as Q(θ) ∼ N (0, 1) and the likelihood given by N (3, 0.3).

2. The second of which defines Q(θ) ∼ N (0, 1) but with a likelihood of
N (5, 0.2). The choice of prior and likelihood ensure an analytical solution
is available to provide reference values for the analysis of statistical moment
generation during simulation.

3. This problem concerns a posterior distribution which is represented by a
12-dimensional random vector. The prior distribution is Q(θ) is chosen as a
multivariate standard normal distribution. The likelihood function may be
expressed as

L(D|θ) =
d∏

i=1

1
σ
τ

(
θi − µ

σ

)
(4.43)

where σ = 0.6, µ = 0.462 and τ is the PDF of the univariate standard
normal distribution. Given that both the prior and likelihood are Gaussian,
the first and second moments of the posterior are analytically tractable.

4. As previously discussed in [67, 208] this problem investigates the application
of BUS to a two-storied building which is represented by a two-degree-of
freedom shear building model. The objective of BUS is to identify the inter
story stiffness parameters θ1 and θ2 which allows for the structural response
of the mechanical model to be updated. The problem as originally presented
in [20] using MH, models the prior distributions of θ1 and θ2 as the product
of two Log normal distributions with modes 1.3 and 0.8 respectively, along
with a unit standard deviation. The first and second story masses are given
by 16.5 · 103 kg and 16.1 · 103 kg. Inter story stiffness’s are specified as
k1 = θ1k̄1 and k2 = θ2k̄2, where the nominal stiffness values are given by
k1 = k2 = 29.7 · 106 N/m. Bayesian updating is carried out having observed
the modal data to be f̃1 = 3.13Hz and f̃2 = 9.83Hz. The likelihood function
is formalised as

L(D|θ) = exp
−J(θ)

2ϵ2

 (4.44)

4.5 Numerical Applications 99

where ϵ represents the standard deviation of the prediction error and modal
measure of fit (J(θ)) is given by

J(θ) =
2∑

j=1
λ2

j

f 2
j (θ)
f̃ 2

j

− 1
]2

(4.45)

Where, λ1 and λ2 are weights and f1(θ) and f2(θ) are the modal frequencies
predicted by the corresponding finite element model.

Table 4.1 contains the reference solutions for each problem. All reported results
are taken as averages from 100 simulations.

Example 1 Example 2 Example 3 Example 4

PD 6.16 · 10−3 2.36 · 10−6 1 · 10−6 1.52 · 10−3

E[θ1|D] 2.75 4.81 0.34 1.12

σ[θ1|D] 0.287 0.196 0.51 0.66

Table 4.1: Reference solutions for the four benchmark problems taken from [32].

4.5.2 Statistical and Evidence Estimation

Figure 4.5 and Figure 4.6 present the bias in the expectation and standard
deviation of the posterior samples for θ̂1. For examples 1, 2 and 4, nBUS4 (blue)
introduces the largest error rate in statistical estimation. By selecting the stopping
tolerance too large (ϵ = 10−4), it is apparent that nBUS4 is terminating simulation
too early, resulting in the quality of samples produced deteriorating. This indicates
that the probability of drawing a sample from outside the posterior set has not
converged to a small enough value when simulation has been terminated. Whereas
nBUS8 (green), produces the smallest level of bias in the generated samples.
Aside from nBUS4 there is a general decrease in the level of bias in both the
expectation and standard deviation for each of the other BUS frameworks for
an increasing number of samples. It is worth noting the superior performance of
nBUS8 over aBUS (black) for 3 of the 4 benchmark problems.

100 Bayesian Updating with Structural reliability methods (BUS)

(a) Example 1. (b) Example 2.

(c) Example 3. (d) Example 4.

Figure 4.5: Bias in the mean of the posterior samples generated with using aBUS
(black), nBUS4 (blue), nBUS6 (purple) and nBUS8 (green).

4.5 Numerical Applications 101

(a) Example 1. (b) Example 2.

(c) Example 3. (d) Example 4.

Figure 4.6: Bias in the standard deviation of the posterior samples generated with
using aBUS (black), nBUS4 (blue), nBUS6 (purple) and nBUS8 (green).

To investigate the influence of ϵ on the sample generation process of nBUS,
Figure 4.7 presents the generated posterior samples by each of the four samplers
for numerical example 4. It is evident that the reasoning behind the high level
of bias in the posterior standard deviation estimate by nBUS4 stems from its
inability to identify the bi-modal nature of the posterior distribution. In contrast
each of aBUS, nBUS6 and nBUS8 acknowledge the two modes of the distribution.
This highlights the drawback of selecting ϵ too large.

102 Bayesian Updating with Structural reliability methods (BUS)

(a) Posterior samples of nBUS4. (b) Posterior samples of nBUS6.

(c) Posterior samples of nBUS8. (d) Posterior samples of aBUS.

Figure 4.7: Example of sample generation on example 4 for N = 5000 and p0 = 0.1.
Panel (a) reveals that nBUS4 has terminated the sampling process before the
bi-modal nature of the target distribution has been realised. This is the reason for
a large level of bias in the estimated standard deviation of the samples. In contrast,
nBUS6 (Panel (b)), nBUS8 (Panel (c)) and aBUS (Panel (d)) all populate the
two modes of the posterior.

In terms of the model evidence which allows for competing models to be
compared against under a Bayesian framework, Figure 4.8 compares the estimated
evidence of aBUS against nBUS8. For numerical examples 1, 2 and 4, the
model evidence estimated by nBUS8 contains the smaller level of bias. While
for numerical example 3 (Figure 4.8 (c)) the level of bias for both samplers
is comparable. There is a general decreases in bias for an increasing number
of samples. The coefficient of variation (c.o.v) of the model evidence was also
computed which also showed a general decrease for an increase in the number of

4.5 Numerical Applications 103

samples. The analysis of this however, is omitted from this chapter. From both
the statistical moment estimation and model evidence estimation for the problems
considered, it is apparent that nBUS results in a smaller degree of error in the
posterior sample generation. This may stem from conditioning the final samples
on the true target failure event.

(a) Example 1. (b) Example 2.

(c) Example 3. (d) Example 4.

Figure 4.8: Bias in the estimated model evidence using aBUS (black) and nBUS8
(green).

4.5.3 Computational Expense

The number of likelihood evaluations acts as a measure of computational expense
of the BUS approach. Intuitively, the computational cost of the BUS posterior
sampling becomes greater with increasing intermediate levels due to the require-
ment of evaluating L(D|θ) for each proposed sample during the MCMC step. As
such, one aims to sample from the correct probability distribution at the cheapest

104 Bayesian Updating with Structural reliability methods (BUS)

possible cost. Total Model Evaluations (TME) represents the number of likelihood
function evaluations and acts as a measure of the cost associated with sampling. As
the computational cost of each evaluation of the likelihood function increases with
the size of a data set, a desirable sampler will require the fewest TME whilst also
maintaining accuracy in drawing samples from the posterior. Figure 4.9 presents
the number of TME for each of the four samplers using numerical example 1. Note
that p0 is varied on the interval [0.1, 0.3] and N on the interval [102, 104] with an
incremental increase of 102 samples. In the case of N = 5 × 103, the TME for
each framework is aBUS = 2.15 × 104, nBUS4 = 3.87 × 104, nBUS6 = 6.09 × 104

and nBUS8 = 8.57 × 104. Intuitively, the smaller the stopping tolerance the
more intermediate levels are simulated. Though a smaller tolerance ensures a
greater level of confidence of not generating a sample from outside the posterior
distribution, Figure 4.9 highlights the added computational expense in doing so.
Further plots for the TME required for numerical example 2, 3 and 4 are given in
Appendix B. The results however coincide with the findings from example 1.

The nBUS sampler requires the most TME for each chosen stopping tolerance
due to the nested nature of the stopping condition. At each intermediate level,
samples from the failure domain are generated in the outer loop using the limit
state function dependent on the rejection principle. Once all N have been drawn,
additional TME are required for the inner SuS loop where the probability of
producing a draw from outside of the target set is computed. This involves the
computation of a separate limit state function. Although this forms a robust
stopping criterion, a clear trade off in terms of computational expense appears.

4.5 Numerical Applications 105

(a) Number of TME for aBUS. (b) Number of TME for nBUS4.

(c) Number of TME for nBUS6. (d) Number of TME for nBUS8.

Figure 4.9: Illustration of the required TME for aBUS, nBUS4, nBUS6 and
nBUS8 for drawing posterior samples in example 1. Each value of TME was
achieved as an average from 100 independent runs of each sampler.

4.5.4 Hand Written Digits and Image Classification

In order to investigate the applicability of BUS frameworks to examples differing
in both dimensionality and the number of available data observations, both
nBUS8 and aBUS are applied to two benchmark binary classification tasks. The
classification model used is the logistic regression discussed in Chapter 2. The
first problem uses the United States Postal Service (USPS) data set [69] as seen
in Figure 4.10. This concerns the digital recognition of numbers on hand written
envelopes. The data set consists of 10 individual classes in 256 dimensions with
1540 data observations. Each digit is represented by a 16 × 16 pixelated image.
To transform the image pixels into a usable format for logistic regression, the
pixel representation is given in vector form of length 162 = 256. Therefore each

106 Bayesian Updating with Structural reliability methods (BUS)

observation of a digit is represented in 256 dimensions. As the digits range from
0 − 9, a binary sub-problem from the USPS digit data is defined by considering
the problem of discriminating images showing the digits 3 and 5.

Figure 4.10: Examples of handwritten digits from the USPS data set [69].

The second problem deals with the classification of a data set containing 5
different class of image: (i) Hat (ii) Screwdriver (iii) Torch (iv) Rubik Cube and
(v) Playing Cards (Figure 4.11). The data set consists of 75 observations, each
represented by 4096 dimensions. Pre-processing of the images was carried out in
the same manner as the USPS dataset. As the images in this data set are in colour,
a colour normalization framework discussed in [173] was utilized to transform
them to greyscale format. Each image was made up by 64 × 64 pixels and is
expressed in terms of a vector of length 642 = 4096. For this example the chosen
target class is torch. For both examples 5-fold cross validation is implemented.
The chosen classifier is the logistic regression model as discussed in Chapter 2.
With the misclassification threshold set to 0.5.

4.5 Numerical Applications 107

Figure 4.11: Examples of images from the 5 classes taken from [65].

This example compares the quality of parameter estimation of Metropolis
Hastings (MH), Laplace Approximation (LA) [215], aBUS and nBUS8 for the
logistic regression classifier. The proposal for the MH sampler was chosen as
a Gaussian centred at the current state of the Markov chain along with a unit
step length. Similarly, the component-wise proposals for aBUS and nBUS8

were chosen as univariate Gaussian distributions centred at the current state
of the respective Markov chains with a unit variance as suggested in [12]. The
Raferty-Lewis metric [48] was implemented to establish a suitable sample burn in
period for MH. The resultant burn in length for the USPS set was approximately
1200 samples while the image dataset did not show signs of convergence. The
stopping tolerance for Laplace approximation was chosen as 10−3. That is once
the change in the moments of the Gaussian approximation between successive
iterations is smaller than 10−3, the algorithm stops and draws samples from
a Gaussian with moments equal to the final approximated value. Figure 4.12
presents samples drawn by each method from the posterior marginals of θ2 for
the USPS data set. The sample distributions of Laplace and MH are more well
peaked and symmetrical in comparison to aBUS and nBUSD. However, overall
there is a general agreement between the distribution of samples drawn by all four
algorithms. In each case 1000 samples were drawn for the marginals.

108 Bayesian Updating with Structural reliability methods (BUS)

(a) aBUS. (b) nBUS8.

(c) Laplace. (d) MH.

Figure 4.12: A comparison of samples generated from the posterior for θ2 using
the USPS data set. Each of the panels represent the marginal samples drawn by
each of the four samplers. Panel (a) presents aBUS, panel (b) nBUS8, panel (c)
Laplace and panel (d) MH.

Let x∗ denote the test observations and y∗ the test observation class labels.
Figure 4.13 investigates the predictive performance of the logistic regression model
with parameters estimated by the four different samplers on the USPS dataset.
Figure 4.13 (a) presents the ground truth of the test observations of the USPS data
set. Using 5-fold cross validation and given that the USPS data set contains 1540
observations, the resulting test set consists of 308 observations. Figure 4.13 (b)
presents the predictive probabilities for the logistic classifier using MH. Each of the
remaining samplers is compared using MH as a reference benchmark. It is evident
that the predictive probabilities of Laplace (Figure 4.13 (c)) differ greatly from
MH. In comparison, aBUS (Figure 4.13 (d)) forms a more accurate representation
while the predictions of the classifier with parameters estimated by nBUS8 (Figure

4.5 Numerical Applications 109

4.13 (d)) closely follow MH. In Table 4.2, the predictive performance is compared
in terms of the Area Under the Curve (AUC) performance metric (see Chapter 2).
The term in brackets denotes the standard error and CI the subsequent confidence
interval. The quality of performance of each method is comparable. For the USPS
data set, LA produces the largest standard error value which reveals that the
variation in AUC for each cross validation fold is representative of the classification
models lack of confidence in assigning class labels. Focusing on the performance
of the BUS frameworks, with respect to aBUS, nBUS8 results in a marginal
better AUC rate and results in a better general predictive performance as shown
in Figure 4.12. In terms of computational expense for USPS, aBUS requires
2.8 × 103 TME with nBUS8 requiring 1.3 × 104. In the case of the image problem,
the TME are 4.9 × 103 and 1.3 × 104 for aBUS and nBUS8 respectively.

110 Bayesian Updating with Structural reliability methods (BUS)

(a) Correct Classification. (b) MH.

(c) Laplace. (d) aBUS.

(e) nBUS8.

Figure 4.13: Predictive performance of logistic regression on the USPS data set
using the four different samplers for parameter estimation. Panel (a) shows the
ground truth, panel (b) MH, panel (c) Laplace, panel (d) aBUS and panel (e)
nBUS8.

4.6 Chapter Summary 111

USPS Images

aBUS 0.96 (0.08) 0.94 (0.01)

CI (0.82, 0.99) (0.91, 0.98)

LA 0.96 (0.59) 0.94 (0.02)

CI (0.79, 1) (0.91, 0.95)

MH 0.98 (0.02) 0.93 (0.08)

CI (0.88, 1) (0.90, 0.95)

nBUS8 0.97 (0.08) 0.95 (0.01)

CI (0.85, 1) (0.93, 0.98)

Table 4.2: Performance metrics of MH, LA, aBUS, nBUS8 for the USPS and
image data set problems.

4.6 Chapter Summary

This chapter introduces reliability analysis along with the BUS framework for
Bayesian updating tasks. BUS acknowledges the shortcomings of the rejection
sampling algorithm discussed in Chapter 3, to efficiently sample from posterior
distributions using rare event simulation techniques such as SuS. In its original
form however, an input parameter which directly determines the distribution of
the samples is required to be determined prior to simulation. Two solutions in the
form of adaptive BUS (aBUS) and nested BUS (nBUS) have been presented
which differ in both input parameter choice and stopping criteria.

Although nBUS conditions the samples on the true failure event along with
avoiding underestimating the model evidence, the automatic nested stopping
criterion presents two issues. Firstly, choosing a stopping tolerance for the
probability of generating a sample outside the target set requires careful thought
as illustrated in Figure 4.5 and Figure 4.6. If chosen too large nBUS will terminate
simulation too early whilst a value too small will result in additional intermediate
levels being required for simulation.

112 Bayesian Updating with Structural reliability methods (BUS)

Secondly, the current stopping criteria greatly increases the computational
cost of a sampler run. Solving two different reliability problems results in the
subsequent θ in the inner and outer SuS loops being conditional on different
failure events. This means that the requirement of the nested SuS loop to compute
additional L(D|θ) evaluations hinders the computational efficiency of the approach
in comparison to aBUS as seen by Figure 4.9 and the machine learning application.
To allow for nBUS to retain its advantages over aBUS while also being scalable
to real life machine learning tasks, two new stopping criteria aimed at reducing
the number of likelihood evaluations in a sampler run are proposed in Chapter 5.

Chapter 5

New BUS Stopping Conditions

Having theoretically and numerically investigated the advantages of nested BUS

(nBUS) over adaptive BUS (aBUS) in terms of sample quality and model
evidence estimation, the added computational expense stemming from the nested
stopping condition remains a major issue. To alleviate the increased number
of model evaluations required for a sampler run along with maintaining the
frameworks advantages, two alternative stopping criteria are presented in this
chapter. The first criterion concerns the direct application of the rejection principle
in areas of the sample space which are outside the target failure domain. In turn,
reducing the number of likelihood evaluations by ensuring the nested loop is not
computed at each intermediate level. The second criterion, totally avoids the use
of the nested loop by exploiting the transition in the relationship between the
model evidence and failure probability as discussed in Chapter 4. By accounting
for the stochastic nature of the model evidence through the introduction of an
entire distribution representing the probability of failure, BUS is not required to
be run several times to confidently ensure simulation is correctly terminated. Both
criteria are compared against nBUS with a stopping tolerance of 10−8 (nBUS8).
Numerical experiments are performed using the benchmark and machine learning
examples presented in Chapter 4. As the MCMC scheme implemented in BUS

directly influences sample quality and the efficiency of sample generation, to further
improve the sampling process a comparison of the performance of a number of
MCMC variants specifically designed for SuS is also presented.

114 New BUS Stopping Conditions

5.1 Direct Stopping

The first proposed stopping criterion reduces the number of likelihood function
calls through the direct application of the rejection principle. At levelm of nBUS
consider the rejection principle to be:

e−bmL(D|θ) ≤ 1 (5.1)

As discussed in Chapter 4, the task required by nBUS is to identify when the
generated intermediate threshold level bm is large enough resulting in θ ∼ P (θ|D).
Consider again the inadmissible set of samples generated at levelm of nBUS.

Am(θ) = {θ : e−bmL(D|θ) > 1} (5.2)

Where Am(θ) is the sample set outside the posterior set. It is observed in [67],
that given an increasing sequence of failure levels, the sequence of inadmissible
sets is monotone decreasing.

Am ⊃ Am+1 ⊃ ... ⊃ ∅ (5.3)

Meaning for a large enough number of intermediate levels, the set of generated
samples belonging outside the posterior will be empty. The original nBUS
stopping criterion exploits this property by computing hm = pθ(L(D|θ) > ebm) at
each intermediate level. Once this probability has converged to a value lower than
a very small tolerance ϵ, nBUS generates θ ∼ P (θ|D). As discussed in Chapter
4, calculating hm involves solving a separate reliability problem which can become
very expensive to compute for a complex model. To alleviate this issue, consider
the inequality determining membership of set Am(θ).

e−bmL(D|θ) > 1 (5.4)

Eq. 5.4 indicates that any sample satisfying this inequality has violated the
rejection principle in Eq. 5.1 and is thus outside the posterior set. For an
increasing number of intermediate levels, it is known that the number of samples
satisfying Eq. 5.4 will be zero once the posterior distribution has been reached.

5.1 Direct Stopping 115

For all {θi
m}N

i=1, the proposed stopping criterion directly computes the following:

Am =
N∑

i=1
(e−bmL(D|θi

m) > 1) (5.5)

If all N samples are rejected by Eq. 5.4, Am will be zero and the subsequent
samples will be from the posterior set. The resulting sampler is termed BUSD

due to the direct application of the rejection principle. Algorithm 9 presents
a pseudo-code of BUSD. At level0, A0 is assigned a default value of N as the
samples are drawn from the prior. Next, the limit state function for the N samples
is evaluated and the sampler progresses to level1. Once N samples at level1 are
generated via the MMH algorithm, A1 = ∑N

i=1(e−b1L(D|θi
1) > 1) is computed at

step 16 for all {θi
1}N

i=1 . If A1 = 0, simulation stops as all N samples generated
at level1 have been rejected as being members of the inadmissible set of samples.
If A1 > 0, BUSD progresses to level2. The simulation of intermediate levels of
BUSD is continued until Am = 0. Once Am = 0 for a given levelm the sampler
returns θm ∼ P (θ|D).

116 New BUS Stopping Conditions

Algorithm 9 BUSD

1: Define N , p0, nc = p0N and ns = p−1
0

2: Initialize m = 0, where m is the current simulation level

3: Initialize Am = N

4: Generate N samples {θi
m, ui

m}N
i=1 from the input PDF π(·)

5: For each {θi
m, ui

m}N
i=1 evaluate gi

m = lnL(D|θi
m) − ln(ui

m)

6: Sort the N values of gi
m and the corresponding {θi

m, ui
m}N

i=1 in descending order with

respect to gi
m

7: while Am > 0 do

8: m = m + 1

9: Calculate bm = gnc
m−1+gnc+1

m−1
2

10: Store the first nc samples of the ordered set {θi
m−1, ui

m−1}N
i=1 as ’seeds’

11: Using {θj
m−1, uj

m−1}nc
j=1 draw the remaining N − nc samples from π(·|Fm) via MCMC

as follows:

12: for j = 1, ..., nc do

13: Starting with {θj
m−1, uj

m−1} as an initial seed, generate {θk
m, uk

m}ns−1
k=1 ∼ π(·|Fm)

states of a Markov chain using the Modified Metropolis Hastings in Algorithm 5. In

this algorithm, the sample acceptance criteria involves evaluating gm with respect to

bm for each generated sample.

14: end for

15: Sort the N values of gi
m and the corresponding {θi

m, ui
m}N

i=1 in descending order with

respect to gi
m

16: Am =
∑N

i=1(e−bmL(D|θi
m) > 1) for all {θi

m}N
i=1

17: end while

18: Return θ ∼ P (θ|D) & PD ≈ ebmpm
0

5.1.1 Progression of Likelihood Multiplier

This section discusses the behaviour of the samples generated at each intermediate
level of BUSD prior to the target distribution being reached. By

e−bmL(D|θ) > 1 (5.6)

samples generated at levelm will either be accepted or rejected with respect to
e−bm . To illustrate this property, consider benchmark problem 4 discussed in
Chapter 4 concerning the identification of stiffness parameters of an inter story

5.1 Direct Stopping 117

building. This posterior distribution is known to be bi-modal. Figure 5.1 contains
the samples drawn at levelm. Given that a proportion of samples are accepted
(black) while the remaining being rejected (grey), another intermediate level is
required. The minimum acceptable intermediate threshold bmin for all θ to ensure

Figure 5.1: Samples generated by BUSD for benchmark example 4 from Chapter
4. The bi-modal nature of the samples is beginning to appear with the rejected
and accepted samples being represented by grey and black respectively.

the rejection principle holds is given by

bmin = ln(L(D|θ)max) (5.7)

Define levelmin as the minimum required level to generate samples from the
posterior. For any levelm < levelmin, given that bm < bmin the following holds:

bm < ln(L(D|θ)max) (5.8)

Simply put bm has not yet converged to a value large enough to satisfy the rejection
principle for all θ. Therefore, for any levelm < levelmin we know that the selected
bm is too small. The samples rejected at each level prior to levelmin belong in
the region of the highest likelihood. Under BUSD one would expect an increase
in intermediate levels to result in an increase in L(D|θ) as we tend towards the
target failure domain. Stemming from the gradual approach of SuS towards the

118 New BUS Stopping Conditions

failure domain, the generated θ have an increasing probability of having generated
the data with the theoretical maximum given by L(D|θ)max = 1.

Consider the set of samples generated at levelm as in Figure 5.1. Seeing as
those which best describe the data have not satisfied Eq. 5.6, bm is deemed too
small. This results in the set of rejected samples containing bias. Regarding
the accepted samples satisfying Eq. 5.6, they have done so with an inadequate
choice of bm. Meaning the subsequent θ are incorrectly accepted too often as
the conditional failure distribution is too close to the prior. Despite Eq. 5.6
holding for some θ, the intermediate failure threshold has yet to converge to a
large enough value. In this scenario, additional intermediate levels are required
until all samples have been rejected with respect to Eq. 5.6.

5.1.2 Sampling Error

By identifying bm > bmin, BUSD ensures all N samples generated at levelm satisfy
the rejection principle. A possible drawback of BUSD however is the finite nature
of the sample set. Suppose due to sampling error and unknown to the sampler, the
(N + 1)th sample to be drawn at levelm will not satisfy the rejection principle for
the selected bm . In its current form BUSD provides no information beyond the
finite set of samples. As such, the direct application of the rejection principle does
not offer statistical guarantees that any subsequent samples beyond the current
generated sample set will also follow the posterior distribution. To address this
issue, the direct criterion is merged with the nested loop of nBUS presented in
Section 4.4.2. At levelm, as with BUDD

Am =
N∑

i=1
(e−bmL(D|θi

m) > 1) (5.9)

is computed for all {θi
m}N

i=1. Once Am = 0, BUSD is deemed to be generating
posterior samples. To offer statistical assurances in terms of possible sampling
error of BUSD, once Am = 0 it is proposed to compute hm.

hm = pθ(L(D|θ) > ebm) (5.10)

As previously outlined in Chapter 4, computing hm at every intermediate level
is computationally expensive. By only computing hm once Am = 0, additional
unnecessary likelihood function calls have been avoided for all levels prior to

5.1 Direct Stopping 119

levelm. While Am may be viewed as a computationally cheap proxy for hm, the
nested loop in return provides a robust assurance of stopping by computing Eq.
5.10. Then as with nBUS, if hm < ϵ where ϵ is the chosen stopping tolerance,
simulation stops as the probability of generating a sample from outside the target
set is extremely small. If this is not the case, additional levels are generated
until hm < ϵ holds true. The subsequent stopping criterion is named nBUSD.
A pseudo-code for nBUSD is given in Algorithm 10. At level0, as the samples
are drawn from the prior, hm is assigned a default value of 1 and Am a default
value of N . At level1, the sampler generates N samples in F1 by MMH. Next, it
is checked whether {θi

1}N
i=1 have resulted in A1 = 0 in step 19. If A1 = 0, h1 is

computed in the same manner as in nBUS as outlined previously in Algorithm
8. It is then checked whether or not h1 < ϵ. If so, {θi

1}N
i=1 are returned as the

posterior set and if not nBUSD progresses to level2. This is continued until for
any m, hm < ϵ. Had A1 > 0, the computation of h1 would have been avoided
and nBUSD would have proceeded directly to level2. Therefore, hm is is only
computed once Am = 0.

120 New BUS Stopping Conditions

Algorithm 10 nBUSD

1: Define N , p0, nc = p0N , and ns = p−1
0

2: Define the stopping tolerance ϵ

3: Initialize m = 0, where m is the current simulation level

4: Initialize Am = N

5: Initialize hm = 1

6: Generate N samples {θi
m, ui

m}N
i=1 from the input PDF π(·)

7: For each {θi
m, ui

m}N
i=1 evaluate gi

m = lnL(D|θi
m) − ln(ui

m)

8: Sort the N values of gi
m and the corresponding {θi

m, ui
m}N

i=1 in descending order with

respect to gi
m

9: while hm > ϵ do

10: m = m + 1

11: Calculate bm = gnc
m−1+gnc+1

m−1
2

12: Store the first nc samples of the ordered set {θi
m−1, ui

m−1}N
i=1 as ’seeds’

13: Using {θj
m−1, uj

m−1}nc
j=1 draw the remaining N − nc samples from π(·|Fm) via MCMC

as follows:

14: for j = 1, ..., nc do

15: Starting with {θj
m−1, uj

m−1} as an initial seed, generate {θk
m, uk

m}ns−1
k=1 ∼ π(·|Fm)

states of a Markov chain using the Modified Metropolis Hastings in Algorithm 5. In

this algorithm, the sample acceptance criteria involves evaluating gm with respect to

bm for each generated sample.

16: end for

17: Sort the N values of gi
m and the corresponding {θi

m, ui
m}N

i=1 in descending order with

respect to gi
m

18: Am =
∑N

i=1(e−bmL(D|θi
m) > 1) for all {θi

m}N
i=1

19: if Am = 0 then

20: Compute hm as in Algorithm 8

21: else

22: hm = 1

23: end if

24: end while

25: Return θ ∼ P (θ|D) & PD ≈ ebmpm
0

5.2 Robust Stopping 121

5.2 Robust Stopping

Having reduced the computational expense associated with nBUS through the
introduction of nBUSD, this section aims to further enhance algorithmic efficiency
by avoiding the computation of the nested loop at all simulation levels. Recall
that the relationship between the model evidence PD and failure probability pF

for nBUS

PD = ebmpF bm > bmin (5.11)

holds only in the event of an intermediate threshold at levelm greater than
the minimum required value being generated. The proposed stopping criterion
exploits this relationship by tracking the model evidence produced by nBUS at
each intermediate level. Once the relationship is satisfied, the resulting samples
are conditional on the target failure event. As highlighted in Chapter 4 however,
this quantity is available on a sample basis only, and as such contains statistical
error.

PD ≈ P̂D = ebmpm
0 (5.12)

Furthermore, pF in SuS is a point estimate with no uncertainty measurements
readily available. To address this issue, [235] proposed a Bayesian approach to
generate a posterior PDF for pF using sample information at each intermediate
level. The subsequent PDF quantifies the uncertainty in the SuS estimations
of the probability of failure. This uncertainty takes into account both prior
information and information contained in the samples produced.

5.2.1 Bayesian Post Processor for Subset Simulation

Under SuS the failure probability is represented as a product of conditional
probabilities pm = p(Fm|Fm−1), each of which is estimated by

pm ≈ p̂m = 1
N

N∑
i=1

I[θ(i)
m−1] (5.13)

At the end of simulation, SuS combines the intermediate probabilities to form an
estimate for the sample failure probability. Given bm is chosen such that nc limit
state function outputs exceed its value, allow the indicator sum in Eq. 5.13 to be

122 New BUS Stopping Conditions

replaced by {p0 ·N}. The final pF estimate is given by

pF ≈ p̂F =
m∏

i=1
p̂m = (p0)m (5.14)

Zuev et al. [235] substitute the frequentist estimates of Eq. 5.13 and Eq. 5.14 by
their Bayesian counterparts. The prior is chosen as a uniform on [0, 1] while a
sensible choice of likelihood from the indicator function is the binomial distribution.
Conditioning the intermediate probabilities on information contained in the number
of failure sample results in a beta distribution with parameters α and β.

P (pm|Dm−1) = pp0·N
m (1 − pm)N−p0·N

B(p0 ·N + 1, N − p0 ·N + 1) (5.15)

where Dm−1 is the observed failure sample data from levelm−1 and B(·) the beta
function. The MAP value (or mode) of this beta PDF is given by

P (pm|Dm−1)MAP = p0 ·N + 1 − 1
p0 ·N + 1 +N − p0 ·N + 1 − 2

= p0 (5.16)

This is simply the level probability. It is worth noting that Eq. 5.15 assumes the
subsequent MCMC samples are independent. Since m is the total number of SuS
levels, constructing a distribution to replace Eq. 5.14 requires taking the product
of m beta distributions. An exact representation for the PDF of a product of
independent beta variables had been proposed [212]. However, this derivation
requires the computation of an infinite sum which must be approximated. An
alternative route is to approximate the product of m independent beta variables
with a single beta variable such that the corresponding moments match by choice
of the beta shape parameters α and β [217]. This simplified approach has been
shown [76] to accurately approximate the target density even if the product of
beta variables does not itself follow a beta distribution. The authors of [76] proved
this by the following theorem.

Theorem 2. [76] Let X1, ..., Xm be independent beta variables, Xi ∼ B(αi, βi)
and PF = ∏m

i=1 Xi. PF is approximately distributed as P̂F ∼ B(α, β) with α and

5.2 Robust Stopping 123

β given by

α = µ1
µ1 − µ2

µ2 − µ2
1

β = (1 − µ1)
µ1 − µ2

µ2 − µ2
1

µ1 = E[P̂F] =
m∏

i=1

αi

αi + βi

µ2 = E[P̂ 2
F] =

m∏
i=1

αi(1 − αi)
(αi + βi)(αi + βi + 1)

A proof of Theorem 2 is outlined in [76]. Using the result of Theorem 2, Zuev et
al. later derived expressions for α and β in the context of SuS [235] where P̂F is
the posterior PDF of the failure probability and P̂F ∼ B(α, β) . The resulting α
and β expressions for generating a posterior distribution of the failure probability
are given by

α =
(p0·N+1

N+2)m · (1 − (p0·N+2
N+3)m)

(p0·N+2
N+3)m − (p0·N+1

N+2)m

β =
(1 − (p0·N+1

N+2)m) · (1 − (p0·N+2
N+3)m)

(p0·N+2
N+3)m − (p0·N+1

N+2)m
(5.17)

With m denoting the number of intermediate levels of SuS, N the number of
samples and p0 the level probability. To ensure that the beta PDF defined by
these expressions will be bounded, the following presents a proposition which
proves that both α and β in Eq. 5.17 are greater than 1.

Proposition 1. If P̂F ∼ B(α, β) with α and β defined as

α =
(p0·N+1

N+2)m · (1 − (p0·N+2
N+3)m)

(p0·N+2
N+3)m − (p0·N+1

N+2)m
β =

(1 − (p0·N+1
N+2)m) · (1 − (p0·N+2

N+3)m)
(p0·N+2

N+3)m − (p0·N+1
N+2)m

then α and β are both greater than 1.

To prove α > 1 and β > 1, it is suffices to show that the numerator is greater
than the denominator in the expressions of Eq. 5.17. Consequently for α it is
required to prove that

(
p0·N+1

N+2

)m
·

(
1 −

(
p0·N+2

N+3

)m)
> (p0·N+2

N+3

)m
−

(
p0·N+1

N+2

)m
(5.18)

124 New BUS Stopping Conditions

Similarly for β it is required to prove that

(
1 −

(
p0·N+1

N+2

)m)
·

(
1 −

(
p0·N+2

N+3

)m)
>

(
p0·N+2

N+3

)m
−

(
p0·N+1

N+2

)m
(5.19)

In terms of notation in the proof, let the LHS denote the left hand side of the
expressions of Eq. 5.18 and Eq. 5.19. Specifically when proving α > 1 LHS refers
to the left hand side of Eq. 5.18 and for β > 1 LHS refers to the left hand side of
Eq. 5.19. Similarly, when proving α > 1 RHS refers to the right hand side of Eq.
5.18 and for β > 1 RHS refers to the right hand side of Eq. 5.19. Let N denote
the number of generated samples, p0 the level probability and m the number of
intermediate levels.

Proof. Firstly, consider the case of α. Let the LHS be given by

LHS =
(

(p0·N+1)(N+3)
(N+2)(N+3)

)m
−

(
(p0·N+1)(p0·N+2)

(N+2)(N+3)

)m
(5.20)

On the other hand let the RHS be given by,

RHS =
(

(p0·N+2)(N+2)−(p0·N+1)(N+3)
(N+2)(N+3)

)m
(5.21)

To prove that the numerator is indeed greater than the denominator of the α
expression, setting the LHS > RHS and using the above expressions implies that

(
(p0·N+1)(N+3)

(N+2)(N+3)

)m
−

(
(p0·N+1)(p0·N+2)

(N+2)(N+3)

)m
>

(
(p0·N+2)(N+2)−(p0·N+1)(N+3)

(N+2)(N+3)

)m
(5.22)

Given all quantities in the denominator are positive this expression may be
simplified to

(
(p0 · N + 1)(N + 3)

)m −
(
(p0 · N + 1)(p0 · N + 2)

)m

>
(
(p0 · N + 2)(N + 2) − (p0 · N + 1)(N + 3)

)m

=⇒ 2 · ((p0 · N + 1)m · (N + 3)m) > (p0 · N + 2)m · (N + 2)m

+(p0 · N + 1)m · (p0 · N + 2)m

=⇒ 2 · ((p0 · N + 1)m · (N + 3)m) > (1 + (p0·N+1)m

(N+2)m) (5.23)

5.2 Robust Stopping 125

Introducing the logarithm for computational convenience expresses this as

log(2 · ((p0 · N + 1)m · (N + 3)m)) > log(1 + (p0·N+1)m

(N+2)m) (5.24)

For x > −1 we know that x ≥ log(1 + x). Therefore, to prove that α is greater
than 1, it suffices to show that

log(2 · ((p0 · N + 1)m · (N + 3)m)) > (p0·N+1)m

(N+2)m

=⇒ log(2) + mlog(p0 · N + 1) + mlog(N + 3) > (p0·N+1)m

(N+2)m (5.25)

Given all components on the LHS are individually and collectively greater than 1
while the RHS ≈ 0, for the expression given by the post processor, it suffices that
α > 1 for all N and p0. Similarly for β, it is enough to show that the numerator
is greater than the denominator for the post processor expression. Using the same
approach as with α consider

LHS =
((

N+2
N+2

)m −
(p0·N+1

N+2
)m)

·
((

N+3
N+3

)m −
(p0·N+2

N+3
)m)

(5.26)

Expanding this expression results in the LHS being

LHS =
((N+2)(N+3)

(N+2)(N+3)
)m −

((p0·N+1)(N+3)
(N+2)(N+3)

)m −
((p0·N+2)(N+2)

(N+2)(N+3)
)m +

((p0·N+2)(p0·N+1)
(N+2)(N+3)

)m

(5.27)

Similarly, consider the RHS of the beta expression to be given by

RHS =
((p0·N+2)(N+2)−(p0·N+1)(N+3)

(N+2)(N+3)
)m (5.28)

To prove that the numerator is indeed greater than the denominator of the α
expression, setting the LHS > RHS and using the above expressions implies that

((N+2)(N+3)
(N+2)(N+3)

)m −
((p0·N+1)(N+3)

(N+2)(N+3)
)m −

((p0·N+2)(N+2)
(N+2)(N+3)

)m

+
((p0·N+2)(p0·N+1)

(N+2)(N+3)
)m

>
((p0·N+2)(N+2)−(p0·N+1)(N+3)

(N+2)(N+3)
)m (5.29)

Given all quantities in the denominator are positive this expression may be
simplified to

(N + 2)m · (N + 3)m − (p0 · N + 1)m · (N + 3)m − (p0 · N + 2)m · (N + 2)m

+(p0 · N + 2)m · (p0 · N + 1)m > (p0 · N + 2)m(N + 2)m − (p0 · N + 1)m(N + 3)m

126 New BUS Stopping Conditions

=⇒ (N + 2)m · (N + 3)m + (p0 · N + 2)m + (p0 · N + 1)m

> 2 · ((p0 · N + 2)m · (N + 2)m) (5.30)

Similar to α, for ease of computation the logarithm is introduced resulting in

mlog(N + 2) + mlog(N + 3) + mlog(p0 · N + 2) + mlog(p0 · N + 1)

> log(2) + mlog(p0 · N + 1) + mlog(N + 2)

=⇒ mlog(N + 3) + mlog(p0 · N + 2) > log(2) (5.31)

Since all components are greater than 1 while the arguments on the LHS > RHS
for all N and p0, it is concluded that β > 1.

Allow for the process of generating a beta distribution of the failure probability
defined in terms of α and β to be referred to as the post processor. Let P+

F represent
the posterior distribution of the failure probability generated through the post
processor and P̂+

F the subsequent approximation by a single beta distribution.
Proposition 1 provides a significant consequence in proving both α and β are
greater than 1 ensures that the beta PDF P+

F will be bounded. If P̂+
F ∼ B(α, β)

and α and β are given by Eq. 5.17, the first two moments of P+
F and P̂+

F are
equivalent. In turn resulting in an approximation, the details of which are further
discussed in [76, 235]. In terms of the relationship between the SuS probability
of failure estimate (p̂F) and P̂+

F , it can be shown that the MAP estimate of P̂+
F

(i.e. P̂+
MAP), is equivalent to p̂F . Given the mode of a product of independent

distributions is equal to the product of the modes and the MAP expression of
each intermediate level beta distribution defined in Eq. 5.16, the MAP of the post
processor is

P̂+
MAP =

m∏
i=1

P (pi|Di−1)MAP

= (p0)m (5.32)

This is equivalent to the expression for p̂F in Eq. 5.14. Therefore, the post
processor applies a Bayesian approach to quantify the uncertainty in the initial
p̂F SuS estimate. By extracting information from the number of failure samples
at a given level, a single beta PDF (P̂+

F) is generated of which the MAP value
coincides with p̂F .

5.2 Robust Stopping 127

The beta PDF is defined in terms of the shape parameters α and β. From Eq.
5.17, the expressions for α and β depend on the SuS parameters N , p0 and m.
Figure 5.2 investigates the influence of the parameter settings on the shape of the
beta PDF. As the probability of failure estimate corresponds to the mode of the
beta distribution, for m = 1 the distribution will have a mode located at p0. This
stems from the choice of b at every level to ensure p0 ·N samples belong in the
intermediate failure domain. Intuitively, selecting a larger p0 results in a greater
number of generated samples belonging to the intermediate failure domain. The
distributions become increasingly positively skewed for an increase in m. This
may be explained by the expressions for α and β given in Eq. 5.17. The following
corollary reveals that for p0 < 0.5, β > α. A derivation of corollary 1 is given in
Appendix C.

Corollary 1. Let P+
F ∼ B(α, β) with α > 1 and β > 1. Then for any p0 < 0.5,

β > α.

In Figure 5.2, for a greater number of samples the probability density increases
for all p0 considered. This means that their is an increased likelihood of the sample
event (i.e. failure) occurring within this neighbourhood. Intuitively, this coincides
with the concept of the Direct Monet Carlo (DMC) estimator which stated that
the empirical average of the probability of failure tends towards its true value as
N increases to infinity.

128 New BUS Stopping Conditions

(a) m = 1 , N = 1000 (b) m = 1 , N = 10000

(c) m = 2 , N = 1000 (d) m = 2 , N = 10000

(e) m = 3 , N = 1000 (f) m = 3 , N = 10000

Figure 5.2: Influence of the choice of N , p0 and m on the beta PDF using the
shape parameters defined by the post processor.

5.2 Robust Stopping 129

5.2.2 Bayesian Post Processor with BUS

This section introduces a stopping condition for nBUS which makes use of the
post processor discussed in the previous section. Consider the expression for the
estimation of the log evidence produced by nBUS.

ln(P̂D) = bm +m · ln(p0) bm > bmin (5.33)

This stopping criterion proposes to track the progression of ln(P̂D) at each in-
termediate level to identify when Eq. 5.33 holds i.e. bm > bmin. As previously
discussed, at a given levelm the limit state function values {gi

m−1}N
i=1 are placed

in descending order with the critical threshold bm chosen by

bm = gnc
m−1 + gnc+1

m−1

2 (5.34)

Where as before nc = p0 · N . Given that nc samples are chosen as seeds for
Markov chains to generate N samples at levelm, the respective limit state function
values of these samples {gj

m−1}nc
j=1 have exceeded bm. Using Eq. 5.34, for each

pair of limit state function evaluations in {gj
m−1}nc

j=1 it is possible to compute a
sequence of failure thresholds beyond bm.

bj
m = gj

m−1 + gj+1
m−1

2 for j = 1, ..., nc (5.35)

With the final value of the sequence bnc
m denoting the original critical threshold

value assigned at each level as in Eq. 5.34. An illustration of the progression of
the critical threshold at levelm is provided in Figure 5.3. Note that as previously
outlined the limit state function values are placed in descending order prior to the
computation of the intermediate failure threshold. Consider the case of N = 1000
and p0 = 0.1 with nc = 100. The blue line represents the sequence of critical
thresholds computed using {gj

m−1}N
j=nc+1. The black line denotes bnc

m as in Eq. 5.34.
The sequence {bj

m}nc
j=1 is given by the red line and is computed using {gj

m−1}nc
j=1.

The proposed criterion examines the behaviour of the log evidence using this
sequence of critical thresholds.

ln(P̂D)j
m = bj

m +m · ln(p0) for j = 1, ..., nc (5.36)

130 New BUS Stopping Conditions

Figure 5.3: Illustration of the critical threshold progression at levelm for N = 1000
and p0 = 0.1. The blue line represents the sequence of critical thresholds computed
using {gj

m−1}N
j=nc+1. The black line denotes bnc

m as in Eq. 5.34. The sequence
{bj

m}nc
j=1 is given by the red line beyond bnc

m and is computed using {gj
m−1}nc

j=1.

Eq. 5.36 represents the trend of the log evidence for the sequence of bj
m at

levelm. Given that bj
m is a stochastic quantity the resulting ln(P̂D)j

m will also
be stochastic. To account for this stochasticity, the Bayesian post processor
discussed in the previous section is introduced. Due to the characteristic trends
discussed in Chapter 4 being in log space, the post processor PDF must be
transformed. As previously discussed, SuS simulates a sequence of intermediate
failure events which have a decreasing likelihood of occurrence. Resulting in
the subsequent failure probability estimates becoming smaller and smaller. In
terms of the post processor, this entails that theoretically the failure PDF P̂+

F

will become increasingly positively skewed as the algorithm progresses. The
introduction of the log transformation results in this extremely skewed beta
distribution becoming more symmetrical. Derivations of the log transformation
of the PDF and Cumulative Distribution Function (CDF) of P̂+

F are given in
Appendix C. At levelm, Eq. 5.36 is computed for all nc values of ln(P̂D)j

m. Next,
ln(P̂D)j

m is compared against the MAP of the log transformed beta distribution

5.2 Robust Stopping 131

ln(P̂+
F) which is derived in Appendix C.

ln(P̂+
MAP) = ln

 α

(α + β − 1)

 (5.37)

With α and β being chosen as expressed in Proposition 1. Though it was shown in
the previous section that p̂F = P̂+

MAP , working with P̂+
MAP results in information

regarding the uncertainty in the estimated probability of failure being readily
available. It is proposed to take advantage of this information to allow for
statistical error stemming from the log evidence to be accounted for. At every
intermediate level, the criterion generates ln(P̂+

MAP) using the post processor. To
allow for the stochastic behaviour of the log evidence, a 99% credible interval of
the distribution ln(P̂+

F) is defined. If all ln(P̂D)j
m for j = 1, ..., nc evaluations lie

within this interval, the transition in the relationship between the model evidence
and probability of failure has occurred i.e. bm > bmin. Indicating the minimum
required level to draw samples from the posterior distribution has been reached.
Let δm represent the proportion of log evidence evaluations out of a possible nc
lying within the specified credible interval.

δm =
∑nc

j=1(a ≤ ln(P̂D)j
m ≤ h)

nc
(5.38)

Let [a, h] denote the range of the 99% credible interval of ln(P̂+
F). In the case

that δm = 1, the log evidence is approximately equal to ln(P̂+
MAP) as all ln(P̂D)j

m

lie within the specified credible interval and the samples generated at levelm are
taken as the posterior set. For δm < 1, a proportion of log evidence evaluations are
outside the credible interval so another intermediate level is required. In practice,
to account for potential sampling error, a tolerance t is chosen whereby if δm > t

simulation terminates. The authors recommend a value of t = 0.95 i.e. 95% of log
evidence evaluations lie in the specified credible interval of ln(P̂+

F). In this case, if

δm > 0.95 (5.39)

the samples generated at the corresponding levelm have been drawn from the
target density. The proposed stopping condition is referred to as BUS+ due to the
application of the post processor along with the avoidance of computing the nested
loop. This is summarised in Algorithm 11. At level0, δ0 is set a default value

132 New BUS Stopping Conditions

of 0 as samples are being drawn from the prior. At level1 the sequence {bj
1}nc

j=1

is computed with the value bnc
1 being equivalent to the original intermediate

threshold specified in nBUS. Samples are generated via MMH, where bnc
1 is used

to determine whether a proposed sample is accepted or rejected. Once the N
samples at level1 have been drawn, {ln(P̂D)j

1}nc
j=1 is evaluated for all {bj

1}nc
j=1 at

step 19. At step 20, the beta distribution parameters α and β are computed before
being used to compute ln(P̂+

MAP). Once the credible interval has been computed
in step 22, δ1 is evaluated for all {ln(P̂D)j

1}nc
j=1. If δ1 > t, simulation stops and

the samples drawn at level1 are taken as those from the posterior. If not, BUS+

progresses to level2 and sequentially generates intermediate levels in the same
manner as the above steps until δm > t holds.

5.2 Robust Stopping 133

Algorithm 11 BUS+

1: Define N , p0, nc = p0N and ns = p−1
0

2: Define the tolerance t

3: Initialize m = 0, where m is the current simulation level

4: Initialize δm = 0

5: Generate N samples {θi
m, ui

m}N
i=1 from the input PDF π(·)

6: For each {θi
m, ui

m}N
i=1 evaluate gi

m = lnL(D|θi
m) − ln(ui

m)

7: Sort the N values of gi
m and the corresponding {θi

m, ui
m}N

i=1 in descending order with

respect to gi
m

8: while δm < t do

9: m = m + 1

10: for j = 1, ..., nc do

11: Calculate: bj
m = gj

m−1+gj+1
m−1

2

12: end for

13: Store the first nc samples of the ordered set {θi
m−1, ui

m−1}N
i=1 as ’seeds’

14: Using {θj
m−1, uj

m−1}nc
j=1 draw the remaining N − nc samples from π(·|Fm) via MCMC

as follows:

15: for j = 1, ..., nc do

16: Starting with {θj
m−1, uj

m−1} as an initial seed, generate {θk
m, uk

m}ns−1
k=1 ∼ π(·|Fm)

states of a Markov chain using the Modified Metropolis Hastings in Algorithm 5. In

this algorithm, the sample acceptance criteria involves evaluating gm with respect to

bnc
m for each generated sample.

17: end for

18: Sort the N values of gi
m and the corresponding {θi

m, ui
m}N

i=1 in descending order with

respect to gi
m

19: For each bj
m evaluate ln(P̂D)j

m = bj
m + m · ln(p0)

20: Compute α = (p0·N+1
N+2)m·(1−(p0·N+2

N+3)m)
(p0·N+2

N+3)m−(p0·N+1
N+2)m

and β = (1−(p0·N+1
N+2)m)·(1−(p0·N+2

N+3)m)
(p0·N+2

N+3)m−(p0·N+1
N+2)m

21: Compute ln(P̂ +
MAP) = ln(α

(α+β−1))

22: Compute the credible interval: 0.99 = p(a ≤ ln(P̂ +
MAP) ≤ h) with a ≤ h. Where [a, h] is

referred to as the range of the 0.99 credible interval.

23: Compute δm =
∑nc

j=1
(a≤ln(P̂D)j

m≤h)
nc

24: end while

25: Return θ ∼ P (θ|D) & PD ≈ ebnc
m pm

0

134 New BUS Stopping Conditions

In terms of added computational expense, {ln(P̂D)j
m}nc

j=1 is computed as a by
product of simulation, while the post processor involves generating a single beta
PDF using the readily available data. This ensures that the task of computing
ln(P̂+

MAP) in terms of additional cost is negligible. The use of the post processor
also ensures that the algorithm is not required to be run a large number of times
in order to obtain an average of the log evidence characteristic trend. Utilizing
the uncertainty information regarding the probability of failure estimate allows
for this to be achieved with confidence in a single run of the sampler.

5.2.3 BUS Variations

Table 5.1 provides an overview comparison between the variations of the BUS
frameworks presented in this Chapter and Chapter 4. In terms of the limit state
function Y , each of the modified BUS frameworks introduce the natural logarithm
as first proposed by [67], to provide numerical stability and aid the transition
between intermediate levels. Aside from the original BUS algorithm, both aBUS
and nBUS compute the likelihood multiplier c during simulation. aBUS relates
the final c to the maximum of the likelihood evaluations observed during a sampler
run such that c = e−L(D|θ)max . Given the finite choice of sample size N , this
empirical solution raises the question of how likely is it that the true likelihood
maximum will be reached. nBUS reformulates the failure event, allowing for c to
be expressed in terms of the failure threshold b = −lnc. As b is computed during
a sequentially during a sampler run, identification of the likelihood multiplier is
no longer an issue.

In terms of stopping criteria, BUS and aBUS terminate simulation once an
intermediate threshold less than zero has been produced. The stochastic nature of
b however, results in the samples not being conditional on the true failure event.
In contrast, nBUS ensures all samples are conditional on the true failure event
but requires the minimum level to generate posterior samples to be identified. The
nested loop stopping criterion presented in [67], terminates once the probability of
drawing samples hm from outside the target density is less than a small tolerance
ϵ. The computation of hm results in a large number of additional likelihood
evaluations which greatly affect model efficiency.

To rectify this issue, nBUSD, combines the nested architecture in [67] with
the direct application of the rejection principle to reduce the number of required
likelihood evaluations. Through the direct use of the rejection principle, the inner

5.3 Numerical Applications 135

loop of nBUS is only called upon once all samples have been accepted. This allows
for the likelihood of generating a sample outside the posterior to be quantified
while unnecessary likelihood functions calls in areas of the input space far away
from the failure domain are avoided.

To further reduce computational expense, BUS+ proposes utilizing a Bayesian
interpretation of the probability of failure to identify when the relationship with
the model evidence has transitioned. By accounting for the statistical variation
in the model evidence, BUS+ avoids the requirement of running nBUS multiple
times in order to achieve an average of the log evidence characteristic trend. In
turn, this ensures a robust estimate is computed in a single sampler run. The two
criteria presented reduce the computational expense of nBUS while providing
statistical assurances of concluding simulation.

Model Limit State Function Likelihood Multiplier Criterion

BUS u− cL(D|θ) bm ≤ 0

aBUS ln(u) − ln(c) − ln(L(D|θ)) e−L(D|θ)max bm ≤ 0

nBUS ln(L(D|θ)) − ln(u) e−bm hm < ϵ

nBUSD ln(L(D|θ)) − ln(u) e−bm Am = 0 & hm < ϵ

BUS+ ln(L(D|θ)) − ln(u) e−bm δm > t

Table 5.1: Comparison of different BUS frameworks in terms of the limit state
function, computed likelihood multiplier and stopping criterion.

5.3 Numerical Applications

In this section, nBUSD and BUS+ are implemented on the four benchmark
problems and supervised machine learning task discussed in Chapter 4. The
computational costs are firstly compared against nested BUS with a stopping
tolerance of ϵ = 10−8 (nBUS8) and adaptive BUS (aBUS). In line with nBUS8,
the stopping tolerance for nBUSD is also set to ϵ = 10−8. The ratio of log evidence
evaluations lying within the post processor credible interval for BUS+ is selected
as t = 0.95. The experimental set up and performance metrics are the same

136 New BUS Stopping Conditions

as those used in Chapter 4. The level probability p0 is varied on the interval
[0.1, 0.3]. The number of samples N is varied on the interval [102, 104], with its
value incrementally increasing. Initially N is set to 102. For each subsequent
sampler run, N is increased by 102 samples before taking a final value of N = 104.
This results in each sampler being implemented for 99 different values of N .

5.3.1 Computational Expense

The main focus for the development of nBUSD and BUS+ was the reduction in
the required computational cost of nBUS for drawing samples from the posterior.
As such, the first comparison of the numerical experiments is in terms of the
number of total model evaluations (TME) of each sampler. Both nBUSD and
BUS+ result in a reduction in the number of likelihood function calls with respect
to nBUS8 for all numerical examples. With respect to nBUS8, for N = 5 × 103,
the average reduction in TME is 50% for nBUSD and 73% for BUS+. Figure
5.4 presents the number of TME for each sampler for example 4. From Figure
5.4 (a) and (c) it is apparent that the both aBUS and nBUSD require a similar
number of TME for the p0 and N considered. Similarly, BUS+ exhibits similar
behaviour in terms of TME up to N = 9 · 103. For N ∈ [9 · 103, 104] however,
BUS+ requires 10% fewer TME for p0 = 0.1 in comparison to aBUS and nBUSD.
While for p0 = 0.3, the reduction is approximately 18% with respect to aBUS
and nBUSD. In terms of nBUS8, nBUSD and BUS+ require 54% and 49%
less TME than nBUS8. This added computational cost of nBUS8 stems from
the computation of hm at each intermediate level. From a comparison between
aBUS, nBUSD and BUS+ it is noted that the difference in computational cost
between each frameworks varies from example to example. However, avoiding the
nested architecture of nBUS at every level guarantees a more efficient framework
by using either nBUSD or BUS+. Further plots for the TME required by each
sampler for numericals example 1, 2 and 3 are given in Appendix C.

5.3 Numerical Applications 137

(a) Number of TME for aBUS. (b) Number of TME for nBUS8.

(c) Number of TME for nBUSD. (d) Number of TME for BUS+.

Figure 5.4: Illustration of the required TME for aBUS, nBUS8, nBUSD and
BUS+ for drawing posterior samples in example 4. Each value of TME was
achieved as an average from 100 independent runs of each sampler.

To further investigate the behaviour of BUS+ consider the histograms of log
evidence evaluations produced for example 4 in Figure 5.5. As the levels progress,
the distribution of the sample evaluations of the log evidence becomes closer
and closer to lnP̂+

MAP (red) before remaining settled inside the chosen credible
interval (black). The credible interval allows for the statistical variation in the log
evidence. For an increase in N or p0, a larger number of log evidence evaluations
are required to fall within this interval. From the experimental results in Figure
5.4, it is noted that the rate of increase of the number of TME became much larger
in the case of N = 104 and p0 = 0.3. This increase in computational cost stems
from a greater number of levels required to ensure all log evidence evaluations

138 New BUS Stopping Conditions

are captured by the credible interval. This may suggest that BUS+ may be best
suited with smaller level probabilities in the presence of a very expensive model.

(a) Level 0. (b) Level 1.

(c) Level 2. (d) Level 3.

Figure 5.5: Log evidence progression using example 4 for level0−3 (a)-(d). The
chosen parameters being N = 1000 , p0 = 0.1, 99% credible interval and a sample
ratio of 0.95. A histogram of the log evidence evaluations is denoted in blue, MAP
of the post processor in red and the subsequent credible interval in black.

Figure 5.6 examines the behaviour of the ratio of log evidence evaluations
δm within the specified credible interval for an increasing p0 for example 4. For
p0 ∈ [0.1, 0.3], as expected δm increases for a growing number of intermediate
levels. In each case, δm surpasses the ratio threshold t = 0.95 prior to stopping
the sampling process. Notably for p0 = 0.3, the rate of increase of δm is much
slower in comparison to p0 ∈ [0.1, 0.2]. As a greater number of intermediate levels
is generated, the behaviour of δm for p0 = 0.3 coincides with the above point

5.3 Numerical Applications 139

raised regarding the increase in the number of TME required for drawing posterior
samples.

(a) p0 = 0.1. (b) p0 = 0.2.

(c) p0 = 0.3.

Figure 5.6: BUS+ progression of δm for varying p0 and N = 1000 for example
4. As expected, all panels show an increase in δm as the number of intermediate
levels progresses. For each value of p0, δm surpasses the chosen threshold t = 0.95
before stopping the sampling process.

The use of the credible interval avoids the requirement of having to run BUS+

a large number of times to achieve an average for the log evidence. Figure 5.7
shows multiple log evidence realisations from 100 independent runs of BUS+ for
example 4. As expected, the variation in estimates falls within the credible region
of a single sampler run which terminated using the same number of levels. The
advantage of allowing for sampling error is highlighted by a proportion of the log

140 New BUS Stopping Conditions

evidence evaluations from the sampler runs falling outside the credible interval
upper bound.

Figure 5.7: Log evidence estimates from 100 independent runs of BUS+. The
majority of estimates fall within the credible interval of a single sampler run
which terminated using the same number of intermediate levels. This avoids the
requirement of running the model a large number of times to achieve an average
for the log evidence.

In terms of nBUSD, Figure 5.8 investigates the behaviour of the number of
samples within the inadmissible set Am with respect to p0 for example 4 using
N = 1000.

Am =
∑N

i=1(e−bmL(D|θi
m) > 1)

N
(5.40)

Here Am is expressed as a proportion of the total N samples generated at levelm.
As a reminder, Am = 0 indicates the N generated samples have been rejected
as being members of the inadmissible set of samples. Panels (a)-(c) of Figure
5.8 present the trends of Am for p0 = 0.1, p0 = 0.2 and p0 = 0.3. As expected,
for an increasing number of intermediate levels, Am decreases before converging
to zero. The rate of decrease in Am slows down for an increase in p0, where
p0 = 0.3 requires the greatest number of intermediate levels. This coincides with
the behaviour of δm for BUS+ and the general architecture of SuS, whereby

5.3 Numerical Applications 141

an increase in p0 results in a greater number of TME for a sampler run. With
nBUSD once Am = 0, hm is computed via the nested loop of nBUS.

(a) p0 = 0.1. (b) p0 = 0.2.

(c) hm for p0 = 0.3.

Figure 5.8: Progression of Am in nBUSD for example 4. Panel (a) shows the
behaviour of Am for an increase in the number of intermediate levels with p0 = 0.1.
As expected, Am decreases before converging to 0 at level4. Panel (b) shows the
behaviour of Am for p0 = 0.2 where sampling stops at level5. Panel (c) shows the
behaviour of Am for p0 = 0.3 where sampling stops at level8.

Figure 5.9 (a) presents the trend of hm for each intermediate level using
p0 = 0.3. In practice, though hm is not computed at levels prior to Am = 0, the
purpose of this plot is to illustrate the behaviour of hm for an increase in m. As
Am = 0 at level8 as shown in Figure 5.8 (c), in practice hm would be computed
at level8. For a chosen stopping tolerance of ϵ = 10−8, Figure 5.9 (b) shows that

142 New BUS Stopping Conditions

hm transitions to a value lower than ϵ at level8. Therefore the samples drawn at
level8 by nBUSD are taken as those from the posterior distribution.

(a) (b)

Figure 5.9: Progression of hm in nBUSD for p = 0.3 and N = 1000 in example 4.
Panel (a) shows the behaviour of hm for an increase in the number of intermediate
levels. As expected, hm decreases at each level before falling below the desired
threshold of ϵ = 10−8 at level8 as shown in panel (b). The resulting samples
generated at level8 are taken as those from the posterior.

In terms of the progression of the intermediate failure thresholds during a
sampler run, Figure 5.10 provides a comparison between nBUSD and BUS+

using N = 1000 for all four examples. Note that these trends were achieved
as averages from 100 independent runs of each sampler. Firstly considering
p0 = 0.1, for examples 1 and 2 both nBUSD and BUS+ require the same number
of intermediate levels. As the underlying sampling process between nBUSD and
BUS+ does not change, one would expect the deviation in trends produced to
be down to the treatment of bm as a stochastic term. The manner in which
the two samplers differ in how they terminate the sampling process is visible in
examples 3 and 4 whereby both nBUSD and BUS+ require a different number
of intermediate levels. For p0 = 0.3 the mentioned points also hold true in terms
of trend similarity and also the possibility of a differing number of intermediate
levels.

5.3 Numerical Applications 143

(a) Example 1. (b) Example 2.

(c) Example 3. (d) Example 4.

Figure 5.10: Comparison of intermediate thresholds of nBUSD and BUS+. Each
of the samplers is implemented for N = 1000 while using p0 = 0.1 and p0 = 0.3.
Panel (a) contains the trends for example 1, panel (b) example 2, panel (c) example
3 and panel (d) example 4. All trends were achieved as an average from 100
independent runs of each sampler.

In summary, the findings in this section reveal the computational savings
achieved using nBUSD and BUS+ over nBUS. By avoiding the computation of
the nested loop at every intermediate level, nBUSD and BUS+ result in a large
decrease of TME for each of the four considered numerical examples. In terms of
BUS+, an investigation of the behaviour of δm highlights the added computational
cost associated with an increase of p0. Additionally, the advantage of using the
credible interval to avoid running BUS+ a large number of times to estimate the
average log evidence was also discussed. Similar to δm, for an increasing p0 the
quantity Am in nBUSD requires a greater number of levels to converge. The

144 New BUS Stopping Conditions

computation of hm once Am = 0 provides assurances that the samples generated
at levelm are indeed distributed according to the posterior.

5.3.2 Statistical and Evidence Estimation

Given the clear computational savings over nBUS8, both proposed stopping
criteria are compared against the nested framework in terms of statistical moment
and model evidence estimation. A comparison with aBUS is omitted due to the
superior performance of nBUS8 in Chapter 4. Figure 5.11 presents the bias in
the expectation of the posterior samples for θ̂1. An inverse relationship between
the number of samples and the level of bias in the expectation for BUS+ (yellow)
is apparent for the considered examples. For an increase in N , the bias in the
estimated expectation decreases. This coincides with numerical investigations
presented in [32] that reveal that the level of bias in the posterior estimates of
BUS is directly influenced by the number of generated samples. For each of the
numerical examples there is a level of bias still present in the estimates to the mean
of the posterior once they have terminated according to there respective stopping
conditions. On this point, it is noted in [20] that even if the generated samples
were distributed exactly as the posterior distribution, discrepancies between the
moment estimations would still be apparent due to the finite number of samples
drawn. However, as an in increase in sample size requires additional likelihood
evaluations, a balance between an acceptable level of bias and computational cost
is needed. In general, the difference in the level of bias between nBUSD (red)
and nBUS8 (green) is insignificant.

5.3 Numerical Applications 145

(a) Example 1. (b) Example 2.

(c) Example 3. (d) Example 4.

Figure 5.11: Bias in the mean of the posterior samples generated with nBUS8,
nBUSD and BUS+.

The bias in the standard deviation of the posterior samples is depicted in
Figure 5.12. In this case, the level of bias in the standard deviation of the BUS+

samples is comparable with both nBUSD and nBUS. Again with an improvement
in accuracy with an increase in N . All be it the relationship is not as extreme in
the case of the expectation.

146 New BUS Stopping Conditions

(a) Example 1. (b) Example 2.

(c) Example 3. (d) Example.4

Figure 5.12: Bias in the standard deviation of the posterior samples generated
with nBUS8, nBUSD and BUS+.

Allowing for nBUSD and BUS+ to generate samples within the nBUS frame-
work ensures as outlined in Chapter 4, that the model evidence estimation does
not suffer from possible finite sample size of likelihood function evaluations as
is the case with aBUS. Instead, the model evidence is directly influenced by
the final critical threshold value used to generate posterior samples. Figure 5.13,
presents their performance in estimating the model evidence. For an increase in
N , as there are a greater number of limit state function evaluations available, one
would expect a more accurate evidence estimate due to the accuracy of the final
critical threshold. Their is a general agreement between the three frameworks
in terms of the accuracy of the estimated quantity. In the case of example 3 in
Figure 5.13 (c), it is apparent that for up to 103 samples the bias in the model
evidence of nBUSD decreases before remaining approximately equal to the same
level of bias for the remaining sample sizes considered. Further examination of

5.3 Numerical Applications 147

the final critical threshold used for N > 103 revealed that it had not converged
to a large enough value at termination of nBUSD. Consequently, the bias in the
estimated evidence fails to decrease for an increasing N . In example 4 in Figure
5.13 (d) a sudden drop in the amount of bias for nBUSD and BUS+ appears
within a similar range of sample sizes. Given the expression for the estimated log
evidence takes pF ≈ pm

0 , further analysis showed that both nBUSD and BUS+

terminated simulation at the same number of levelm. In this case however, m
appeared to have been too small for the bias in the evidence to decrease. Once
N > 7 · 102, nBUSD and BUS+ take a greater number of intermediate levels
and thus the bias decreases as a more appropriate levelm has appeared to have
been reached. This further emphasises the influence of N on the accuracy of all
BUS samplers. The coefficient of variation was also computed for all N and p0

combinations, showing a similar decrease in the variation of evidence values for
an increase in N .

(a) Example 1. (b) Example 2.

(c) Example 3. (d) Example 4.

Figure 5.13: Bias in the estimated evidence with nBUS8, nBUSD and BUS+.

148 New BUS Stopping Conditions

5.3.3 Hand Written Digits and Image Classification

Table 5.2 presents the classification predictions using the high dimensional USPS
and image data sets discussed in Chapter 4. The pre-processing of the images
is done in the same manner as outlined in Chapter 4. Logistic regression is the
chosen classification model and a misclassification threshold of 0.5 is used. For
each data set 5- fold cross validation is used. In table 5.2 the AUC is reported with
the standard errors in brackets. Let CI denote the subsequent confidence intervals.
The AUC values predicted by nBUSD and BUS+ are similar to nBUS8 with
slight variations in the standard error. For the USPS, the TME were 1.3 × 104,
1.1 × 104 and 2.8 × 103 for nBUS8, nBUSD and BUS+. While for the image data
set, the respective TME were 1.3 × 104, 1.2 × 104 and 3.7 × 103. This shows a
vast reducton in computational expense.

USPS Images

nBUS8 0.97 (0.08) 0.95 (0.01)

CI (0.85, 1) (0.93, 0.98)

nBUSD 0.97 (0.01) 0.98 (0.15)

CI (0.95, 0.99) (0.84, 1)

BUS+ 0.98 (0.001) 0.98 (0.07)

CI (0.97, 1) (0.84, 1)

Table 5.2: Performance metrics of nBUS8, nBUSD and BUS+ on the USPS and
image data sets.

Let x∗ denote the test observations and y∗ the test observation class labels.
Figure 5.14 further investigates the predictive performance of the logistic regression
model with parameters estimated by BUS+ and nBUSD. Figure 5.14 (a) presents
the ground truth of the test observations of the USPS data set. Figure 4.13
(b) presents the predictive probabilities for the logistic classifier using MH (red),
BUS+ (green) and nBUSD (purple). It is evident that there is more variation in
the difference of predictive probabilities between MH and nBUSD in comparison
to MH and BUS+. This also reveals that the classification accuracy of nBUSD for

5.4 Comments on Sampler Convergence 149

this example would be more sensitive to the choice of misclassification threshold as
a smaller proportion of test predictions have been mapped to the extrema values
of 0 and 1.

(a) Correct Classification. (b) Classification Comparison.

Figure 5.14: Predictive performance of logistic regression on the image dataset
using the four different samplers for parameter estimation. Panel (a) shows the
ground truth, panel (b) shows a comparison between MH, BUS+ and nBUSD.

5.4 Comments on Sampler Convergence

The stopping conditions proposed in this chapter aim to reduce the computational
burden of nBUS while also offering statistical guarantees of sampling from the
correct probability distribution. In terms of convergence, the sample sets generated
by both samplers may contain a degree of bias due to the nature of the conditions
themselves. Firstly, nBUSD makes use of the nested loop of nBUS once the set
of inadmissible samples is empty at any given levelm. Theorem 1 discussed in
Chapter 4 and presented in [67] proves that as m → ∞ the probability measure
hm tends to zero. Therefore each sample is drawn from the posterior with
certainty as the sampler has converged to the correct distribution. As previously
discussed however, in practice due to the increased correlation among samples for
an increasing m along with the precision restrictions of computing programmes, a
very small stopping tolerance ϵ is chosen. The larger the choice of ϵ the greater
the difference between ϵ and zero becomes i.e. |ϵ− 0|. As nBUSD makes use of
the nested loop, the choice of ϵ directly influences the sampler for any ϵ > 0. This
means that like nBUS, a degree of bias may be present in the sampling process
for any ϵ > 0. By the nBUS formulation, it is known that once a bm has been

150 New BUS Stopping Conditions

generated such that bm > bmin, the samples are always distributed according to
the target posterior distribution [67]. With respect to BUS+, the generation of
intermediate levels is halted once a transition in the relationship between the
model evidence and probability of failure has occurred. This signifies that at
levelm bm > bmin. The use of the post processor in BUS+ enables simulation to be
terminated with statistical assurances of bm > bmin. The ratio threshold t chosen
allows for potential sampling error to be accounted for. However with this comes
the introduction of bias into the posterior set. The larger the value, theoretically
the smaller the level of bias but the larger the potential computational cost.
However a smaller value of t will introduce a larger level of bias into the sampling
process. While t < 1, in principle BUS+ will not offer exact perfect sampling of
the posterior distribution. An investigation of the sampling quality of nBUSD

and BUS+ with respect to the values of ϵ and t is presented in the following.
Consider the target distribution as a mixture of 20 bivariate Gaussian’s.

fΘ(θ) =
20∑

i=1

wi

2πσ2 e

(
−1
2σ2 (θ−µi)T (θ−µi)

)
(5.41)

where {µ1, ...µ20} are specified in [129]. Each mixture component is assigned a
weight w of 0.05. Unlike in [129], a variance 0.09 is assigned to the first four
Gaussians and 0.025 to the remainder. The reasoning for this is to establish the
performance of BUS+ and nBUSD with respect to t and ϵ on a multi-modal
distribution with varying supports. Firstly consider the case for BUS+ using
N = 5000 and p0 = 0.1. Figure 5.15 presents the samples produced by BUS+

using t = 0.5 and t = 1. It is evident that for t = 1, a larger proportion of
samples are concentrated within the individual contour plots of the posterior
distribution. Whereas for t = 0.5 the majority of samples appear to lie outside
the target density regions. To establish the proportion of samples within each
mode, a variation of the mode-coverage metric presented in [231] is implemented
for quantitative purposes. This is defined as once the number of samples falling
within a specified radius of the mode centre is greater than a predefined threshold,
the mode is considered covered. Given the equal weightings of each mixture
component, a threshold of N/20 is proposed, where N is the number of generated
samples. In line with [231] the radius value is set to 0.25. If each mode has an
equal proportion of the generated samples, all modes are considered to have been
adequately populated. A value of 0 denotes no mode has been fully populated

5.4 Comments on Sampler Convergence 151

and a value of 1 that each mode contains an equal number of samples. For
t = 0.5 the total mode coverage is 0. Even though a large proportion of samples
have populated each mode, the samples Figure 5.15 (a) are widely dispersed. In
contrast, t = 1 the total mode coverage is 0.75. This is evident from Figure
5.15 (b) where the majority of samples are concentrated at the individual modes.
Further analysis of the samples are presented in Figure 5.15 (c) and Figure 5.15
(d) for the mode located closest to the origin of the sample space. Evidently for
t = 0.5 a large proportion of samples lie outside the supports of this posterior
mode. This is an indication that additional levels of BUS+ are required to ensure
the vast majority of samples lie within the density region. In contrast, BUS+

with t = 1 required an additional intermediate level with the samples presented
Figure 5.15 (d).

152 New BUS Stopping Conditions

(a) Posterior samples using t = 0.5. (b) Posterior samples using t = 1.

(c) Analysis of mode using t = 0.5. (d) Analysis of mode using t = 1.

Figure 5.15: Generation of posterior samples with BUS+ using different values
for t. Panel (a) and panel (b) present the posterior samples for t = 0.5 and t = 1.
Panel (c) and panel (d) present the population of posterior samples located in the
mode closest to the origin of the sample space.

Figure 5.16 presents the behaviour of the sampling process in nBUSD for a
varying ϵ. As previously discussed, once the set of inadmissible samples is empty
at any given level hm is computed with respect to ϵ. For ϵ = 10−4, the average
mode coverage is 0 while for ϵ = 10−8 the average mode coverage is 0.79. Note
that for ϵ = 10−8 nBUSD required an additional intermediate level as even though
the inadmissible set of samples was empty, hm was larger than ϵ = 10−8. The
influence of this additional level can be seen in the sampling accuracy in Figure
5.16 (d) in comparison to Figure 5.16 (c).

5.5 MCMC Schemes: Influence on Efficiency 153

(a) Posterior samples using ϵ = 10−4. (b) Posterior samples using ϵ = 10−8.

(c) Analysis of mode using ϵ = 10−4. (d) Analysis of mode using ϵ = 10−8.

Figure 5.16: Generation of posterior samples with nBUSD using different values
for ϵ. Panel (a) and panel (b) present the posterior samples for ϵ = 10−4 and
ϵ = 10−8. Panel (c) and panel (d) present the population of posterior samples
located in the mode closest to the origin of the sample space.

From the above it is evident that the choices of t and ϵ directly influences
the sampling convergence properties of BUS+ and nBUSD. For a larger t and
smaller ϵ, each sampler becomes more and more accurate. However this comes at
a cost of an increased number of TME.

5.5 MCMC Schemes: Influence on Efficiency

Aside from the stopping criterion, the generation of samples at each interme-
diate level of BUS greatly influences the efficiency and sample quality of the
framework. In general, as a Markov Chain progresses, the correlation between
samples increases and thus less information may be extracted from the generated

154 New BUS Stopping Conditions

posterior samples. To protect against this potential loss of information, aside from
identifying the minimal required level to sample from the correct distribution, an
efficient exploration of the failure domain is also of great importance. As outlined
in Chapter 4, the sample generation in SuS may be carried out in a two step
process. At the first step, a sample is proposed being either rejected or accepted.
While at the second step, it is checked whether the sample is indeed a failure
sample.

As discussed in Chapter 4, the original MCMC framework proposed for SuS
(MMH) [11] allows for the efficient generation of samples in high dimensions
by assigning a one dimensional proposal PDF to the proposed sample for each
dimension. MMH generates sample candidates using proposal PDFs whose mean
values change corresponding to the last accepted sample. The candidate being
accepted if the output of the limit state function is greater than the corresponding
intermediate threshold. A number of alternative MCMC methods for SuS have
been developed. Designed to avoid low acceptance rates while achieving an efficient
exploration of the failure domain, the methods differ in their treatment of the
candidate sample.

To investigate the potential of further enhancing the performance of BUS,
three MCMC frameworks are compared against the MMH algorithm. As outlined
in Chapter 3, the choice of proposal distribution directly influences the efficiency of
MH based samplers. Delayed rejection essentially finds new proposals and amends
the Metropolis acceptance ratio accordingly to obtain more efficient mixing [97].
Suppose the initial pre-candidate sample rejected in the SuS MCMC process,
the first method concerns repeated pre-candidate generation. In the event that
the initial pre-candidate sample is rejected, the Delayed MMH (DMMH) [149]
algorithm generates a second pre-candidate from an updated proposal distribution.
This updated proposal is conditioned on the first pre-candidate sample which
has been rejected. Therefore, reducing chain correlation since fewer repeated
pre-candidate samples will occur. Consider the current state of the Markov chain
to be θ = {θ1, ..., θd}. As with MMH the proposal distribution is expressed as a
product of independent univariate PDFs to directly obtain the candidate state
v = {v1, ..., vd}. Firstly, a pre-candidate sample wj is drawn from a univariate
proposal Sj(·|θj) dependent on the component θj of the current state. The
Metropolis ratio r(wj) is computed with wj either being accepted or rejected as
the pre-candidate sample. If wj is accepted with respect to r(wj), vj is set to wj.

5.5 MCMC Schemes: Influence on Efficiency 155

Otherwise a second pre-candidate sample wj,2 is drawn from Sj(·|θj, wj) Again a
Metropolis ratio r(wj,2) is computed with wj,2 either being accepted or rejected
as the pre-candidate sample. If wj,2 is accepted vj is set to wj,2. Otherwise vj is
set to θj i.e the jth component of the current state of the Markov chain. Once
all j components of v have been populated, it is checked whether v ∈ F . If the
candidate sample belongs in the failure domain it is accepted as the next state
of the Markov chain and θ′ = v. If not, the next state of the Markov chain is
θ′ = θ. By repeating the sample generation at the first step of the MCMC process
for SuS, no additional calls to the likelihood function are required. Similar to
MMH, DMMH adopts the component wise update of the parameter vector with
the only difference being this repeated pre-candidate generation. A pseudo-code
for DMMH is provided in Algorithm 12.

Algorithm 12 Delayed Modified Metropolis-Hastings [149]
1: Define the current state of the Markov chain θ = {θ1, ..., θd}

2: Define the univariate proposal PDFs Sj(·|θj) for j = 1, ..., d

3: for each j = 1, ..., d do

4: Generate a pre-candidate wj from Sj(·|θj)

5: Generate uj uniformly on [0, 1]

6: r(wj) = π(wj)
π(θj) · Sj(θj |wj)

Sj(wj |θj)

7: if uj < r(wj) then

8: Accept vj = wj

9: else

10: Generate a pre-candidate wj,2 from Sj(·|θj , wj,1)

11: Generate uj,2 uniformly on [0, 1]

12: r(wj,2) = π(wj,2)
π(θj) · Sj(wj |wj,2)

Sj(wj |θj) · Sj(θj |wj ,wj,2)
Sj(wj,2|θj ,wj) · 1−r(wj ,wj,2)

1−r(wj)

where r(wj , wj,2) = π(wj)
π(wj,2) · Sj(wj,2|wj)

Sj(wj |wj,2)

13: Accept vj = wj,2 if uj,2 < r(wj,2), otherwise vj = θj

14: end if

15: end for

16: v = {v1, ..., vd}

17: Accept θ′ = v if v ∈ F , otherwise θ′ = θ

As discussed in the section on adaptive MCMC methods in Chapter 3, a
proportion of developed MCMC algorithms make use of the findings in [188, 187]
regarding the optimal sample acceptance rate in MH. In a similar fashion, Adaptive

156 New BUS Stopping Conditions

Conditional Sampling (ACS) [172], adaptively scales the standard deviation of the
proposal distribution for each proposed sample. As MMH updates the parameter
vector in a component wise manner, ACS adaptively tunes the univariate proposal
distributions to ensure that the sample acceptance rate of the Markov chain is close
to 0.44. In [187] it was shown that 0.44 is the optimal acceptance rate for Markov
chains with one dimensional Gaussian proposal distributions. Directly utilizing
this optimal acceptance rate, ACS nullifies the requirement for defining the spread
of a proposal distribution through the use of information contained in the standard
deviation of the samples. Consider the current state of the Markov chain to be
θ = {θ1, ..., θd}. As with DMMH and MMH the proposal distribution is expressed
as a product of independent univariate PDFs to directly obtain the candidate
state v = {v1, ..., vd}. ACS seperates the set of nc seeds for the independent
Markov chains of SuS into smaller subsets of seeds for the sample generation
process. Firstly, a pre-candidate sample wj is drawn from a univariate Gaussian
proposal Nj(ρ · θj, z) where ρ is a correlation parameter and z the distributions
standard deviation. Next, wj is accepted as vj. Once all j components of v have
been populated, it is checked whether v ∈ F . If the candidate sample belongs in
the failure domain it is accepted as the next state of the Markov chain and θ′ = v.
If not, the next state of the Markov chain is θ′ = θ. The standard deviation z

and correlation parameter ρ of the proposal distribution is then updated with
the above process repeated for the remaining number of Markov seeds. As the
parameters of the proposal distribution are tuned on the fly, the pre-candidate
acceptance/rejection step of MMH is no longer required. Therefore, ACS draws a
sample in a component wise manner from a sequence of adaptively tuned proposal
distributions before checking whether or not the proposed sample belongs in the
failure domain. A pseudo-code for ACS is provided in Algorithm 13.

5.5 MCMC Schemes: Influence on Efficiency 157

Algorithm 13 Adaptive Conditional Sampling [172]
1: Define the current state of the Markov chain θ = {θ1, ..., θd}

2: Define the length of each chain to be updated: Na = pa · nc, where pa ∈ [0.1, 0.2] [172] and

nc = p0N as in SuS

3: Define the initial proposal distribution standard deviation: z0 = 1

4: Define the correlation parameter scaling parameter: λ = 0.6

5: Compute the proposal distribution standard deviation: z = min(λz0, 1)

6: Define the Gaussian univariate proposal PDFs Nj(θj , z) for j = 1, ..., d

7: Compute the correlation parameter: ρ =
√

1 − z2

8: Permute randomly the nc seeds into R groups each containing Na seeds

9: for each r = 1, ..., R do

10: for each j = 1, ..., d do

11: Generate a pre-candidate wj ∼ Nj(ρ · θj , z)

12: Accept vj = wj

13: end for

14: v = {v1, ..., vd}

15: Accept θ′ = v if v ∈ F , otherwise θ′ = θ

16: Compute the average chain acceptance rate: A = 1
Na

∑Na

j=1 IF [θr]

17: Update the scaling parameter: λ = 10(log10(λ)+r−0.5(A−0.44))

18: Update the standard deviation: z = min(λz0, 1)

19: Update the correlation parameter: ρ =
√

1 − z2

20: end for

Like ACS, the final MCMC variant to be considered introduces a user defined
standard deviation to control the individual spreads of the one dimensional
proposal distributions. Subset Infinity (SuS-Inf) [10], expresses the candidate
sample as a Gaussian vector whose statistics depend on the last accepted sample.
As SuS functions in standard normal space, SuS-Inf takes advantage of the
property that a linear combination of Gaussian variables is simply a Gaussian.
The name of the sampler stems from the possible infinite number of Gaussian
univariate PDFs being combined to produce a Gaussian proposal distribution.
Unlike ACS however, the spread of the proposal PDFs in SuS-Inf are user defined
with the mean of the proposals adaptively defined with respect to the current
state of the Markov chain. Consider the current state of the Markov chain to
be θ = {θ1, ..., θd}. As with DMMH, MMH and ACS, the proposal distribution
is expressed as a product of independent univariate PDFs to directly obtain the

158 New BUS Stopping Conditions

candidate state v = {v1, ..., vd}. Firstly, a pre-candidate sample wj is drawn
from a univariate Gaussian proposal Nj(t · θj, z) where t is a scaling parameter
and z the distributions standard deviation. Next, wj is accepted as vj. Once
all j components of v have been populated, it is checked whether v ∈ F . If the
candidate sample belongs in the failure domain it is accepted as the next state
of the Markov chain and θ′ = v. If not, the next state of the Markov chain is
θ′ = θ. Unlike ACS, SuS-Inf requires a user defined standard deviation z. Note
that the scaling parameter t is equivalent to the correlation parameter in ACS.
The difference is that in SuS-Inf z does not change from its user defined value. As
with ACS, no pre-candidate acceptance/rejection step is required. A pseudo-code
for SuS-Inf is provided in Algorithm 13.

Algorithm 14 Subset Simulation Infinity [10]
1: Define the current state of the Markov chain θ = {θ1, ..., θd}

2: Define the proposal distribution standard deviation: z = 0.5 [10]

3: Define the Gaussian univariate proposal PDFs Nj(θj , z) for j = 1, ..., d

4: Compute the scaling parameter for the mean of the proposal distribution: t =
√

1 − z2

5: for each j = 1, ..., d do

6: Generate a pre-candidate wj ∼ Nj(tj · θj , z)

7: Accept vj = wj

8: end for

9: v = {v1, ..., vd}

10: Accept θ′ = v if v ∈ F , otherwise θ′ = θ

It is worth noting that all MCMC variants discussed, adopt the same second
step of MCMC for SuS by checking whether the candidate sample belongs in the
failure domain. They are primarily concerned with improving the sample quality
and acceptance efficiency. The issue of potentially reducing computational cost
through the limit state function at the second step is addressed in Chapter 6. The
study in [45] is extended to analyse the performance of the MCMC schemes in
BUS. The quality of performance is measured in terms of TME, posterior sample
correlation and the number of effective independent samples. The expression in
SuS for the correlation between samples is given by [12]

γm = 2
Ns−1∑
i=1

(
1 − i

Ns

)
Ri

m

R0
m

(5.42)

5.5 MCMC Schemes: Influence on Efficiency 159

Ri
m = E[Im(θ(1)(k)

m−1)Im(θ(1+i)(k)
m−1)] − p2

0 (5.43)

where Ri
m is the auto-covariance between samples at lag i, k the number of

Markov chains in the MCMC phase and m the number of required levels. In
SuS literature [235] it is widely acknowledged that the smaller the γ the more
information contained in the samples and thus the higher the model efficiency.
As expected, the greater the number of levels the higher the correlation between
samples. To capture the number of effectively independent samples (Neff) [32]
the following metric is used

Neff = N

1 + γm

(5.44)

In the event of samples having a correlation of 0, Eq. 5.44 reduces to N . In
general, the smaller the Neff the greater the sample dependence. Table 5.3
presents a comparison study for each MCMC variant for all six examples discussed
in this chapter. The results were achieved using BUS+ with N = 1000 and
p0 = 0.1 averaged over a large number of independent runs. The term in brackets
for the sample correlation represents the respective c.o.v.. Stemming from the
delayed acceptance of a candidate sample at the first step of sampling, DMMH
requires a similar number of TME with respect to MMH. Overall the difference in
computational expense for all methods appears negligible. This is expected as
they primarily differ in the initial generation of the candidate sample. In terms of
correlation, DMMH outperforms MMH for examples (1-4) in small dimensions
but the performance deteriorates for the higher dimensional cases. In all cases,
ACS and SuS-Inf produce a greater number of effectively independent samples,
which stems from the lower correlation between the posterior set. It should be
noted, given the spread of the proposal distribution is initialized by a user defined
standard deviation z in SuS-Inf, the resulting sample acceptance rate is highly
influenced by the chosen value. ACS relates the proposal distribution to the
optimal acceptance of 0.44 [187, 188]. With respect to this and the similarity of
the experimental results between the two methods, ACS is recommended to be
implemented in conjunction with BUS to avoid the issue of selecting a standard
deviation value for SuS-Inf which directly influences the algorithms efficiency.

160 New BUS Stopping Conditions

Metric Ex 1 Ex 2 Ex 3 Ex 4 USPS Images

TME 8.5 × 103 8.2 × 103 5.9 × 103 3.5 × 103 1.5 × 104 1.3 × 104

MMH γ 3.95(0.1) 2.22(0.2) 3.88(0.1) 9.53(0.1) 4.71(0.2) 4.26(0.3)

Neff 202 310 170 95 175 190

TME 8.6 × 103 8.3 × 103 5.9 × 103 3.6 × 103 1.5 × 104 1.4 × 104

DMMH γ 2.84(0.2) 2.17(0.1) 3.17(0.3) 8.81(0.2) 4.81(0.3) 4.35(0.3)

Neff 260 315 240 102 172 187

TME 8.2 × 103 8.7 × 103 5.4 × 103 4.3 × 103 1.1 × 104 1.2 × 104

ACS γ 1.76(0.3) 2.09(0.2) 2.12(0.2) 5.12(0.2) 4.29(0.1) 3.87(0.3)

Neff 362 323 320 164 189 205

TME 8.1 × 103 8.5 × 103 5.6 × 103 4.3 × 103 1.2 × 104 1.2 × 104

SuS-Inf γ 1.66(0.2) 1.78(0.3) 2.57(0.1) 5.41(0.1) 4.52(0.2) 5.72(0.2)

Neff 375 360 280 156 181 149

Table 5.3: Performance comparison for MCMC variants using BUS+ with N =
1000 and p0 = 0.1. All results were achieved using 100 independent model runs.

5.6 Chapter Summary

Motivated by the added computational expense stemming from the nested loop
stopping criterion presented in Chapter 4, this chapter presents two alternative
stopping criteria which provide statistical assurances of termination. Both methods
are aimed at reducing the number of Total Model Evaluations (TME) to solve the
Bayesian updating task, while retaining the sample and model evidence correctness
of nBUS.

The first criterion, adopts the direct application of the rejection principle in
areas of the parameter space which are far away from the target domain. By
doing so, avoiding the computation of additional likelihood function calls. To

5.6 Chapter Summary 161

account for the potential sampling error stemming from the finite set of generated
samples, once all samples at a given level have been accepted as being conditional
on the target failure event, the nested loop stopping condition is implemented.
This in turn provides a sense of statistical assurance around the sampling process.
The resultant framework is termed nBUSD.

The second criterion, takes advantage of a transition in the relationship
between the probability of failure and model evidence to identify when generated
samples are from the posterior distribution. Through the introduction of a
Bayesian interpretation of the probability of failure, stochastic variation in the
model evidence along with possible sampling error is accounted for, allowing for
simulation to be terminated with a degree of confidence. In turn, ensuring that a
large number of sampler runs are not required in order to compute an average of
the log model evidence. The resulting framework is termed BUS+. Both methods
were found to perform comparably well in terms of statistical estimation and
model evidence estimation with respect to nBUS while drastically reducing the
cost of a model run.

Aside from determining the level of termination within BUS, the choice of
MCMC method directly influences sample quality and the efficiency of sample
generation. Three alternative MCMC schemes specifically designed for SuS were
compared against MMH to identify any further potential efficiency advances when
used with the proposed stopping criteria. It was found that for the examples
considered, ACS proved to be the most efficient sampling scheme along with SuS-
Inf. However, given the dependence of SuS-Inf on choice of proposal distribution
spread, ACS is the preferred MCMC scheme implemented for the remaining
chapters of this dissertation.

With respect to the BUS sampling process, is noted that the reformulated
MCMC schemes for SuS primarily focus on the first stage of sampling to improve
sample quality and overall model efficiency. As previously discussed however, the
majority of computational expense in BUS stems from the number of limit state
function calls. Similar to general MCMC frameworks, this involves the computation
of the likelihood function for each proposed sample using the available data. In the
presence of large data sets, the computational time for each likelihood calculation
increases greatly, resulting in MCMC based methods becoming very expensive to
estimate model parameters. The following chapter presents an approach, aimed
at making BUS more scalable to such problems.

Chapter 6

BUS for Big Data

The stopping criteria proposed in the previous chapter improve the computational
efficiency of nBUS whilst providing statistical guarantees. In its current form,
the computation of the likelihood function for each proposed sample renders
the framework unsuitable for large datasets. To improve its scalability to such
scenarios, Support Vector Machines (SVM) as discussed in Chapter 2 are integrated
into the BUS approach. The proposed method reduces the computational expense
by treating the engineering reliability problem as a binary classification problem.
For the benefit of the reader, some concepts previously discussed are reintroduced
in this chapter.

6.1 Introduction

Advancements in computational resources have allowed for MCMC sampling to
become a practical strategy for Bayesian computation. The emergence of large
datasets however, has decreased the suitability of MCMC based methods. Each
proposed candidate sample requires an evaluation of the likelihood function for
the entire data set. This means that for a large number of observations, many
individual computations are required to gain one bit of information, namely
whether to accept or reject the sample. This issue arises in BUS at the second
step of the MCMC sampling strategy, where in order to determine whether a
sample belongs in the failure domain, the likelihood function for the entire training
set is required to be computed.

In the past decade, interest in the area of scalable MCMC algorithms has
grown immensely. One line of research has focused on the interpretation of

164 BUS for Big Data

MCMC sampling as a stochastic optimization problem which directly removes the
computation of the ratio of likelihood functions at a cost of producing approximate
samples [223, 52]. The majority of methods however, can be broadly categorized
in terms of divide-and-conquer and sub-sampling approaches [15]. A natural
way to approach the MCMC challenge is to divide the dataset into a series of
batches, run MCMC on each batch separately and then combine results [198, 164].
However, the question of how the batch posterior approximations can be efficiently
combined remains a challenge. Sub-sampling approaches are primarily concerned
with reducing the number of data observations required to compute a value of
the likelihood function for each sample. By incrementally sampling random mini
batches of the data, these methods aim to provide a degree of confidence that the
error between the computed likelihood and true likelihood is very small [128, 14].
However, the amount of data consumed for the likelihood computation from mini
batch to mini batch varies significantly.

Differing from standard MCMC methods, the two step sampling process in
BUS results in the computational expense stemming from the evaluation of the
limit state function. To address this issue, a widely adopted approach in reliability
analysis is to introduce a function approximation referred to as a surrogate. A
surrogate may be viewed as an approximation of the underlying function of interest
aimed at mimicking the behaviour of the true function as closely as possible while
greatly reducing computational expense. It should be noted that the area of
surrogate models in reliability analysis is vast and as such the focus of this chapter
is primarily on methods which increase computational efficiency with a particular
emphasis placed on SVM (see Chapter 2) inspired approaches. The pioneering
work of [189] and [111] has resulted in the application of machine learning methods
to reliability tasks. By outlining a clear analogy between a binary classification
problem and the engineering reliability problem, methods such as SVM may be
used as approximations to the costly limit state function. In turn, allowing for
non-expensive approximates of the probability of failure to be obtained.

An importance sampling and SVM inspired framework has been proposed [112],
aimed at reducing the number of limit state function evaluations. SVM is utilised
to select samples evaluated with the true function while importance sampling
narrows the region of interest in the input domain. Simulation is terminated once
the variation between successive probability of failure estimates is below a chosen
tolerance. In line with [112], [169] extract information contained in the samples

6.1 Introduction 165

belonging in the margin of the SVM, before an adaptive strategy using Latin
Hypercube Sampling (LHS) is implemented. The stopping criterion is dependent
on the number of samples located within the margin. A similar adaptive strategy
is proposed in [72] with an adaptive support vector regression framework presented
in [39].

To enable the application of SVM to problems with disjoint failure domains,
[17] combine LHS with K-means clustering to allow for SVM to be trained in
different locations within the input domain. The kernel parameter is estimated
using a grid search scheme, while an appropriate training set size is considered
using an information metric. In terms of quantifying the uncertainty in the SVM
output, [16] address the short comings of [176] probabilistic extension of SVM for
reliability analysis tasks. By considering the spatial variation between samples,
[16] present a modification allowing for the probability of misclassifying the class
membership of samples to be estimated.

Aside from SVM, numerous machine learning techniques have been integrated
into reliability analysis frameworks. In particular but not limited to, Gaussian
processes [59, 23, 108], neural networks [171, 170, 90] and clustering [229]. A
number of authors have provided comparisons between different surrogate model
approaches [111, 181]. Given the relative infancy of the application of reliability
methods to Bayesian updating tasks, the vast majority of pattern recognition
based surrogates have been developed with the primary quantity of interest being
the probability of failure. Taking advantage of the interpretation of the engineering
reliability problem as a classification problem, a surrogate based framework which
approximates the limit state function is proposed in this chapter. SVM are
integrated into the BUS sampling scheme to reduce the required number of
likelihood evaluations for a given problem.

6.1.1 Problem Formulation

As previously discussed in Chapter 4, the engineering reliability problem can be
formulated by a limit state function which represents the behaviour of a complex
system. The system’s reliability is studied through the characterisation of a failure
domain. In this context, the failure domain is defined as the system response
exceeding a given capacity. The objective is the estimation of the probability of the
system being in a state of unacceptable performance (i.e. failure). Despite SuS
bringing significant improvements in comparison to Direct Monte Carlo (DMC)

166 BUS for Big Data

in terms of computational cost and required sample size, direct evaluation of the
limit state function can still be quite expensive. For example, in the case of a
complex finite element model. In the context of BUS, as stated in Chapter 5, each
call of the limit state function requires an evaluation of the likelihood function.
The cost of this is dependent on the size of the underlying observed data set. As
such, the computational complexity of identifying appropriate parameter values
increases with the number of data observations. To reduce the cost of the limit
state function evaluation, an approximation to the response output can be made.

The identification of a system’s state can be interpreted as a binary response
of being either acceptable (safe) or unacceptable (failure). This observation allows
for the estimated p̂F to be expressed in terms of an indicator function I[·]. Recall
from Chapter 4, the expression for the limit state function g(θ) with the estimated
p̂F given by

p̂F = 1
N

N∑
i=1

I[g(θi) < b] (6.1)

This indicator function I[·] is equal to 1 if the argument is true and 0 otherwise.
The formulation of the failure probability in Eq. 6.1, suggests that the outcome
of the calculation is dominated by the sign of the limit state function. Adopting
this viewpoint has enabled the reliability problem to be interpreted as a binary
classification task [189, 111]. This observation has widened the spectrum of
methods suitable for reliability analysis.

The classical interpretation of the reliability engineering problem estimates
the probability of the limit state output response being less than or equal to zero,
that is p(g(θ) ≤ 0). In essence, the optimal threshold boundary is at exactly zero.
Hurtado et al. [111] acknowledge that a margin based classifier such as SVM for
which the optimal hyperplane equals zero forms the basis of a natural function
approximation for the engineering reliability problem. Interpreting the failure
domain as a binary task with the safe domain defines a classification function of
the form

c(θ) = sgn(g(θ)) (6.2)

In which the sign of the limit state function is equal to 1 for the safe domain and
−1 for the failure domain. The subsequent implementation of SVM to estimate

6.2 SVM Inspired Reliability Samplers 167

the probability of failure relies on the sign of the approximated performance
function i.e. whether or not the input has resulted in failure in the output.
By constructing a boundary between the two classes, Hurtado [110] showed the
suitability of SVM to reliability analysis over other classification techniques for
numerous reasons. The definition of the margin allows for a natural relationship
with reliability analysis to be formed. Maximization of the margin may be treated
as a quadratic programming problem (see Chapter 2), which can be solved through
standard techniques. This is in contrast to neural networks which require non-
linear optimization techniques to compute model weights. SVM are also scalable
to high dimensions while they offer flexibility in terms of kernel choice to allow
for non-linear limit state functions to be approximated.

6.2 SVM Inspired Reliability Samplers

The following section discusses the possibility of SVM reducing the computational
cost of the BUS samplers. Firstly an existing SVM-SuS framework for reliability
analysis is reviewed. The method, termed Subset simulation by Support vector
Margin Algorithm for Reliability esTimation (2SMART) [40] makes use of SVM
to replace the computationally intense limit state function evaluations in SuS. At
every intermediate level of SuS, 2SMART trains a large number of SVM classifiers
to replace the limit state function evaluation of new proposed samples in the
MCMC process. By defining selection criteria for training sets, it is argued in [40]
that 2SMART forms an accurate surrogate while reducing computational cost in
comparison to SuS. A detailed description and a critical appraisal of 2SMART
is offered. As an alternative to 2SMART, a new sampling algorithm termed
BUSSV M for Bayesian inference tasks is presented. Unlike 2SMART, BUSSV M

trains a single SVM classifier at each intermediate level of SuS and offers the use
of the automatic stopping conditions presented in Chapter 5 to correctly stop
the sampling process. Additionally, BUSSV M significantly simplifies the coding
implementation aspect of the sampler.

6.2.1 2SMART Method Overview

In this section, properties of 2SMART are discussed and potential improvements
are identified for the application to Bayesian updating. 2SMART seeks to build
an analytical surrogate to the limit state function g(θ) through the SVM output

168 BUS for Big Data

ĝ(θ). Under SuS, it is very unlikely that samples which constitute a rare event
will be generated at level0 [108]. As such, a data driven surrogate like SVM may
not be of sufficient quality around the estimated failure regions. Under 2SMART
the failure event of interest is

F = {θ ∈ Rd : ĝ(θ) ≤ b} (6.3)

where ĝ(θ) is the output of the SVM and b the target failure threshold. By
assuming that their exists a perfect classifier at ĝ(θ) = b, 2SMART iteratively
generates an approximation to the limit state function at each intermediate level
of SuS to estimate p̂F . A pseudo-code for the 2SMART framework is presented
in Algorithm 15. At level0 akin to SuS, {θi

0}Nn
i=1 samples are drawn from the

input PDF π(·) while {ei
0}Nu

i=1 samples are drawn uniformly from a d-dimensional
sphere centred at (0, 0). The variable e may be viewed as an auxiliary variable
generated to act as a space filling strategy. The parameter of interest for the
calculation of p̂F is θ. The parameters Nn and Nu are user defined sample sizes
with values chosen as Nn = 100 and Nu = 50 in [40]. For each {θi

0}Nn
i=1 and

{ei
0}Nu

i=1 the limit state function g(θ0) and g(e0) is evaluated. In 2SMART the
intermediate failure threshold bm is chosen in the same manner as SuS by using
the output of g(θ) only. A training set D0 is defined with {θi

0}Nn
i=1 and {ei

0}Nu
i=1

representing the training observations. The subsequent training labels are given
by sgn(g(θ0)) and sgn(g(e0)) with the sgn determined with respect to b0. Using
D0, the first SVM classifier ĝ0 at level0 is trained. Once trained, ĝ0 is iteratively
updated over a predefined number of iterations k3 = 16 + 12 · (d

2)0.2, where d
denotes the dimensionality of the parameter vector θ. The expression for k3 is
defined arbitrarily with no theoretical justification given in [40].

6.2 SVM Inspired Reliability Samplers 169

Algorithm 15 2SMART
1: Define Nn, Nu and p0

2: Initialize m = 0, where m is the current simulation level

3: Define the maximum number of iterations as k3 = 16 + 12 · (d
2)0.2, where d is the dimension

of the parameter space

4: Initialize bm = ∞

5: while bm > 0 do

6: Generate Nn samples {θi
m}Nn

i=1 from the input PDF π(·)

7: Generate Nu samples {ei
m}Nu

i=1 uniformly from a d-dimensional sphere centred at (0, 0)

8: For each {θi
m}Nn

i=1 and {ei
m}Nu

i=1 evaluate g(θi
m) and g(ei

m)

9: Calculate bm = g(θm)p0·Nn +g(θm)p0·Nn+1

2

10: Dm = {{θm, em}, {sgn(g(θm)), sgn(g(em))}}

11: Train a SVM classifier ĝm on Dm

12: for k = 1 : k3 do
13: Retrain ĝm over the predefined number of iterations k3 to generate samples from the

intermediate failure domain using Algorithm 16. The number of failure samples nF (m)
is computed during this step.

14: end for

15: if bm > 0 then
16: m = m + 1
17: end if

18: end while
19: Return pF ≈ pm−1

0 · nF (m)

170 BUS for Big Data

The updating process of ĝ0 is presented in Algorithm 16. Updating in this
sense refers to the addition of new training points to D0 for training a new classifier
at each iteration. As iterations progress 2SMART increases the number of samples
being generated (N) and the size of the training set D0. For iteration k at level0,
N samples {θi

0,k}N
i=1 are drawn from the input PDF π(·) and evaluated using

the trained SVM classifier ĝ0. Next, training points are selected from {θi
0,k}N

i=1

to be added to D0. These training points fall into the following three different
categories:

1. Margin Points (mA). The set of samples belonging in the margin (mA).

mA = {θ ∈ Rd : −1 < ĝ(θm,k) < 1} (6.4)

2. Distance to Hyperplane (hD). The second category concerns ordering
samples {θi

m,k}N
i=1 in terms of Euclidean distance to the hyperplane.

3. Switching Points (sP). The final category concerns samples {θi
m,k}N

i=1

assigned different class labels between iterations k and k + 1 i.e. samples
assigned class 1 by ĝ0,k and class −1 by ĝ0,k+1. It is argued in [40] that these
samples represent areas of the sample space where the limit state function
has been poorly approximated. Therefore, they are used to retrain the SVM
classifier.

As outlined in step 9 of Algorithm 16, the number of training points (TP) identified
for updating the training set D0 increases with each iteration. The training points
{θi

0,k}T P
i=1 consist of samples belonging in the categories mA, hD and sP selected

from {θi
0,k}N

i=1. Note that each of the TP training points are chosen as cluster
centres from mA, hD and sP by k-means clustering. Once {θi

0,k}T P
i=1 has been

identified, the true limit state function g is evaluated for each {θi
0,k}T P

i=1 with the
subsequent training set updated by D0,k = D0 ∪ {θi

0,k, sgn(gi
0,k)}T P

i=1 for training
ĝ0,k. At each iteration k of level0, the above process is repeated with the training
set D0,k being updated with the chosen TP training points and there subsequent
limit state function evaluations. At the final iteration k3 at level0, the trained
classifier ĝm,k3 is taken as the approximation to the limit state function at level0
with the sample set {θi

m,k3}N3
i=1 the generated failure samples at level0. The number

of failure samples at level0 is computed as nF (0) =
∑N3

i=1 ĝ(θi
0,k3

)≤0
N3

and are returned
to Algorithm 15.

6.2 SVM Inspired Reliability Samplers 171

Algorithm 16 Iterative Updating of the SVM Training Set
1: Input ĝm and Dm

2: Define k1 = 6 · (d
2)0.2, k2 = 12 · (d

2)0.2 and k3 = k2 + 16

3: for k = 1 : k3 do

4: Define the number of samples:

N =

N1, if k < k1

N2, if k1 ≤ k < k2

N3, if k2 ≤ k ≤ k3

In [40] N1 = 104, N2 = 5 · 104 and N3 = 2 · 105

5: Generate N samples {θi
m,k}N

i=1 from the input PDF π(·)

6: For each {θi
m,k}N

i=1 evaluate ĝi
m,k

7: Identify samples from {θi
m,k}N

i=1 ∈ mA, hD and sP

8: Define the number of training points to be selected:

TP =

3 + k−1

k1−1 ·
√

d, if k < k1

4 + k−1
k2−1 ·

√
d, if k1 ≤ k < k2

5 ·
√

d, if k2 ≤ k ≤ k3

9: From each sample categories mA, hD and sP identified in step 8 select TP training
points {θi

m,k}T P
i=1 as cluster centres by k-means clustering

10: Evaluate the true limit state function gi
m,k for all {θi

m,k}T P
i=1

11: Update the training set: Dm,k = Dm ∪ {θi
m,k, sgn(gi

m,k)}T P
i=1

12: Train a SVM classifier ĝm,k on Dm,k

13: end for
14: Store p0 · N3 samples as seeds for levelm+1

15: nF (m) =
∑N3

i=1
ĝ(θi

m,k3
)≤0

N3

16: Return ĝm,k3 , nF (m) & {θi
m,k3

}p0·N3
i=1

For all level1,...,m, simulation proceeds in the same manner as above with the
only difference the use of an adjusted Modified Metropolis Hastings (AMMH)
sampler to generate samples in step 6 of Algorithm 16. At the final iteration k3

at levelm, p0 ·N3 samples are stored as seeds for the AMMH sampler to generate
samples at levelm+1. The AMMH sampler is given in Algorithm 17. AMMH uses
a scaling factor λ defined by the practitioner, to increase the probability of the
pre-candidate sample being accepted. The authors in [40] argue that decreasing λ
for an increasing k avoids an extremely high repeated pre-candidate generation

172 BUS for Big Data

rate. While the trained SVM classifier is used to determine whether or not the
proposed samples belongs in the subsequent failure domain.

Algorithm 17 Adjusted Modified Metropolis-Hastings
1: Input ĝm,k and bm

2: Define the current state of the Markov chain θ = {θ1, ..., θd}
3: Define the univariate proposal PDFs Sj(·|θj) for j = 1, ..., d

4: Select a scaling factor such that:

λ =

7, if k < k1

3.5, if k1 ≤ k < k2

1, if k2 ≤ k ≤ k3

5: for each j = 1, ..., d do
6: Generate a pre-candidate wj from Sj(·|θj)
7: Generate uj uniformly on [0, 1]
8: r(wj) = π(wj)

π(θj) · Sj(θj |wj)
Sj(wj |θj)

9: Accept vj = wj if uj < λr(wj), otherwise vj = θj

10: end for
11: v = {v1, ..., vd}
12: if ĝm,k(v) ≤ bm then
13: Accept θ′ = v

14: else
15: Accept θ′ = θ

16: end if

In line with standard BUS, simulation in 2SMART progresses as in Algorithm
15 and 16 before terminating at levelm once bm < 0. Overall 2SMART relies on
the training of a large number of SVM classifiers at each intermediate level to
replace the computationally expense limit state function evaluations.

6.2.2 Observations and Potential Improvements

The computational savings of 2SMART over SuS stem from the limit state
function being evaluated only on the selected training points of each iteration at
every level. To help aid performance for the use of 2SMART in the context of
BUS, some modifications are proposed.

6.2 SVM Inspired Reliability Samplers 173

Observation 1: Sample Size and Selection of Training Points

At the final iterations k2 ≤ k ≤ k3, the suggested value for N given in [40] is 2 ·105.
Large values for N are justified to ensure each of the three category points mA,
hD and sP are readily available in the sample space. However, this poses problems
for the AMMH step implemented from level1. The first problem is computational
expense in terms of pre-candidate sample generation for each sample of each chain.
To alleviate the potential computational cost of generating a large number of
samples, each chain could be sent to an individual computing cluster for sample
generation. This could allow for a decrease in the wall clock time of simulation.

The second problem concerns sample correlation. Consider the case of N =
2 · 105, where a selection of p0 · N seeds is required. Intuitively, having a large
number of chains may help distribute the samples more evenly in the failure
domain. In reality, the correlation between chains along with the correlation
between samples at successive levels will increase. Essentially, the large choice of
sample size acts as a type of space filling strategy. The obvious remedy would
be to reduce the number of samples. However, with this comes the possibility
of not all category of training points existing in the sample space. With respect
to those switching classes between iterations, a decrease in sample size reduces
the likelihood of these unstable data points existing. In this case the 2SMART
framework will not work. As such for smaller sample sizes, it is proposed to remove
this category of training point and replace them by additional points which lie in
the margin set.

mA = {θ ∈ Rd : −1 < ĝ(θ) < 1} (6.5)

Observation 2: Hyperparameter Selection

As discussed in Chapter 3, the SVM class decision rule is given by the following.
For the ith instance let xi denote the data observation, yi the corresponding
class label, θ the unknown parameter, a the bias term and ⟨·, ·⟩ the dot product
operation.

yi(⟨θ, xi⟩ − a) ≥ 1 (6.6)

To allow for potentially misclassified points, a penalty term named a slack variable
ξi ≥ 0 where i = 1, ..., n is considered [58]. The slack variable represents the

174 BUS for Big Data

distance of the misclassified observation to the hyperplane. The further the
misclassified data observation is from the hyperplane, the greater the penalty.
These are defined as ξi = 0 for data observations on or inside the correct margin
boundary and ξi = |yi − ⟨θ, xi⟩ − a| for other observations. Thus, an observation
located on the separating hyperplane will have ξi = 1 and points with ξi > 1 will
be misclassified. The reformulated optimization problem is

minθ,b,ξ W
n∑

i=1
ξi + ||θ||2

2 s.t yi(⟨θ, xi⟩ − a) ≥ 1 − ξi for i = 1, ..., n (6.7)

with the parameter W > 0 referred to as the regularization parameter. As the
slack variable is sensitive to outliers, W controls the trade-off between minimizing
training errors and controlling model complexity. From Eq. 6.7, values of W will
influence the margin width in different ways. A small W decreases the influence
of the constraints which leads to a large margin. Whereas, a larger value for W
increases the influence of the constraints and results in a small margin. Assigning
the regularization parameter W a default value of infinity ensures all constraints
are strictly enforced.

To investigate the importance of choosing parameters appropriately, consider a
two dimensional example using the iris flower data set [69] as presented in Figure
6.1. Selecting the length and width of the flower petals as features, the binary
classification task is to distinguish between an iris sertosa (red) and iris veriscolor
(black). The chosen kernel is the RBF kernel given by

k(x1, x2) = exp
 − 1

2σ2 ||x1 − x2||2
 (6.8)

Figure 6.1 highlights the influence of W on the margin width.

6.2 SVM Inspired Reliability Samplers 175

(a) W = ∞ (b) W = 10−2

Figure 6.1: Influence of W on the margin width.

As outlined in Chapter 2, SVM offers the advantage of flexibility through the
use of kernel functions k(·, ·). Non-linear kernel mappings enable the SVM to
approximate different limit state function behaviours accurately. Such functions
require the estimation of hyperparameters from the available data. One strategy
for performing hyperparameter selection as adopted in [40], is by an exhaustive grid
search. The practitioner manually specifies an interval of possible hyperparameter
values with the performance of the interval values recorded by some performance
criterion. In machine learning, typically this is cross validation.

Figure 6.2 reveals the influence of W and the hyperparameter σ on the SVM
decision boundary. The shape of the decision boundary (green) of the target class
veriscolor (black) varies greatly. An appropriate class separation is achieved in
Figure 6.2 (a), while the parameter settings in Figure 6.2 (d) have resulted in the
classifier incorrectly allocating veriscolor class membership to the entire sample
space. In the case of W = ∞ in Figure 6.2 (b), the decision rule has been learned
to an extent that it lacks generalization properties. Consequently, for this example
such a value for W results in the model being susceptible to over-fitting.

176 BUS for Big Data

(a) W = 102 , σ = 101 (b) W = ∞ , σ = 10−1

(c) W = 103 , σ = 101 (d) W = 10−1 , σ = 10−1

Figure 6.2: Influence of W and kernel hyperparameters on the SVM decision
boundary.

Figure 6.3 highlights the influence of W and the RBF kernel parameter
σ on the SVM accuracy for the iris example. This example emphasises the
importance of selecting problem dependent parameter values for a SVM classifier.
Currently in 2SMART a default value of W = ∞ and choosing σ via a grid search
method present the potential issues of over-fitting the margin width and assigning
inappropriate decision boundaries. This directly influences the quality and the
accuracy of the surrogates constructed at each iteration for every intermediate
level. To achieve a balance in the choice of W and hyperparameters, we propose
the implementation of a Bayesian optimization scheme [206] for determining
appropriate parameter values in 2SMART.

6.2 SVM Inspired Reliability Samplers 177

Figure 6.3: Influence of the regularization parameter W and kernel parameter σ
on SVM accuracy.

Observation 3: MCMC Sampling

The final observation regards the choice of MCMC scheme. In Algorithm 17,
λ is defined by the practitioner. The purpose of this is to increase the sample
acceptance ratio r(wj) for a pre-candidate sample wj. This scaling factor directly
influences the entire sampling process. As the sensitivity of the MCMC scheme to
λ is unknown, we propose the use of the adaptive Conditional Sampling (ACS)
[172] method. As discussed in Chapter 5, ACS avoids the pre-candidate step by
adaptively scaling the standard deviation of the sample proposal distribution.

6.2.3 Remaining Issues

Having identified improvements for the 2SMART method to be applicable to
Bayesian updating problems, shortcomings of the framework are still present.
Firstly, surrogate modelling is predominately required to form a computationally
cheap approximation to an otherwise computationally expensive function. By
introducing SVM, 2SMART seeks to decrease the number of TME in a model run
by forming an approximation to the limit state function. The assumption is often
made however, that training many surrogate models is preferable over the direct
computation of the initial expensive function. 2SMART requires the training of

178 BUS for Big Data

m · k3 SVM models, where m is the number of required intermediate levels. While
this strategy results in a decreased number of TME, a subsequent negative effect
on simulation running time is potentially apparent. Additionally, no theoretical
justification is given for the choice of k3, the number of training points (TP) or
the sample sizes.

Secondly, by a combination of a training point selection strategy involving
clustering methods along with a specified number of iterations in terms of the
dimensionality of the data, the accuracy of the surrogate is assumed to be at a
satisfactory level once simulation terminates according to the choice of intermediate
threshold. Without any modelling error control mechanism, errors in the surrogate
model will be propagated throughout the entire sampling process. Given that the
primary interest is in the samples conditional on failure as opposed to the failure
probability, sample quality is of paramount importance in this work.

Finally, in line with the outlined potential for deterioration in sample qual-
ity, stopping conditions which guarantee convergence to the correct posterior
distribution (Chapter 5) are required.

6.3 BUS with Support Vector Machines

This section presents an alternative SVM-inspired SUS framework aimed at
adopting some of the modifications suggested in Section 6.2.2 while also addressing
the issues outlined in Section 6.2.3. The method is a combination between SVM
and BUS, termed BUSSV M and is developed for solving Bayesian updating
problems on large data sets. BUSSV M initializes simulation in the same manner
as nBUS at level0 through the generation of N i.i.d samples from the input PDF
π(·) by Direct Monte Carlo (DMC) using the limit state function

g(θ, u) = lnL(D|θ) − ln(u) (6.9)

As with BUS+ and nBUSD, nc = p0 ·N seeds are identified from {θi
0, u

i
0}N

i=1 for
sample generation at level1 by choice of level probability p0. Under this framework,
a total of N TME are required at level0. For level1,...,m, with m being the final
level, a single SVM surrogate is constructed at each level. The SVM output ĝ(θ, u)
is used as an approximation for the true lnL(D|θ) − ln(u) for identifying whether
or not a proposed sample belongs in the failure domain. In line with BUS+

6.3 BUS with Support Vector Machines 179

and nBUSD the intermediate failure thresholds bm are chosen as an increasing
sequence resulting in the intermediate failure event being

Fm = {ĝ(θm, um) > bm} (6.10)

By the definition of Eq. 6.10 and through placing g(θm−1, um−1) in descending
order, the resulting intermediate failure thresholds computed at each intermediate
level form an increasing sequence. To reduce the total TME, a user defined
parameter q is introduced during the modelling process, where q ∈ [0, 1]. The
purpose of this parameter is to determine the number of training points to be
generated by the chosen MCMC scheme using {θi

0, u
i
0}nc

i=1 as seeds. At level1 the
training points and their corresponding class labels for the training set D1 are
given by

D1 = {{θi
1, u

i
1}, sgn(g(θi

1, u
i
1))}

q·N
i=1 (6.11)

Figure 6.4 illustrates the training process on the benchmark example 4 problem
from Chapter 5. The red points are samples which constitute the safe domain
and the black the failure. The subsequent SVM decision boundary learned is
represented by the green surface. Common practice in surrogate modelling for
reliability analysis is the use of clustering methods to identify disjoint failure
domains or in this case multi-modal distributions. Clusters are identified in the
training points before surrogates are locally trained on each cluster [90, 59]. In
contrast, BUSSV M extracts information contained within the training points to
identify different modes. An advantage of treating the reliability problem as a
classification task, is the ability to identify strict boundaries between domains
and in turn class labels. By initially populating the sample space using MCMC, a
single SVM is trained to identify different class regions as highlighted in Figure
6.4.

Having discussed the importance of hyperparameter selection in Section 6.2.2,
hyperparameters of the chosen kernel (if any) and the penalty term W , are tuned
using a Bayesian optimization scheme termed expected improvement (EI) [206, 154].
For large data sets, the direct computation of the objective function can be highly
computationally intensive. Bayesian optimization techniques deploy surrogate
models aimed at finding a global optimum of the objective function in a minimum
number of steps. In this case, a Gaussian process [183] is used as an approximation

180 BUS for Big Data

Figure 6.4: SVM training process using q = 0.5 and N = 1000 for benchmark
example 4. Samples in the safe domain are represented in red and samples in the
failure domain in black. The decision boundary formed by the SVM is given by
the green contours. The RBF kernel is used for this example.

for the specified objective function. EI directly samples from the Gaussian process
function in areas where an improvement over the current best observation is likely.
EI balances exploitation of the Gaussian process predictions and exploration at
the locations where the predictions uncertainty is high. The classification error
rate is chosen as the objective function to be minimized. The correct tuning of
W allows for regularization, in turn preventing the SVM from over-fitting. The
convex optimization problem (Chapter 2) is solved using Sequential Minimal
Optimization (SMO) [175].

Once training is complete, the samples in D1 are used as seeds for the generation
of the remaining {θj

1, u
j
1}

N−q·N
j=1 samples at level1. Whether or not a generated

MCMC sample belongs in F1 is determined by

sgn(ĝ(θ1, u1)) =

−1, if ĝ(θ1, u1) > b1

1, Otherwise
(6.12)

This entire process is repeated for level2,...,m. In terms of stopping simulation,
BUSSV M proposes the use of the stopping criteria presented in Chapter 5. The
total number of TME will be N +m · q ·N with m being the required number of
levels.

6.3 BUS with Support Vector Machines 181

6.3.1 Controlling the Error of SVM

Training a SVM on points from the true intermediate conditional distributions is
not enough to confidently ensure Eq. 6.12 makes the correct decision. A series of
precautionary steps are taken to control the level of error in the decision making
process.

1. SVM Output. For a proposed sample {θ
′
, u

′} to be accepted, the value
of ĝ(θ′

, u
′) is checked to verify whether its predicted value is within the

95% quantile of D = {{θi, ui}, sgn(g(θi, ui))}q·N
i=1 denoted D0.95. This rule

aims to control the error in the sampling procedure and the subsequent
sample acceptance rate of the MCMC mechanism [7, 139]. Consider the
Metropolis step for SuS as discussed in Chapter 4. Let S(·) denote the
proposal distribution, {θ, u} the current state of the Markov chain, {θ

′
, u

′}
the proposed sample and π(·) the target density. The acceptance ratio for
{θ

′
, u

′} is given by

r(θ′, u
′) = min

1, π(θ′, u
′)

π(θ, u) · S(θ, u|θ′, u
′)

S(θ′, u′|θ, u)

 · IF (θ′, u
′) (6.13)

BUSSV M approximates the limit state function such that the sample accep-
tance ratio becomes

r(θ′, u
′) = min

1, π(θ′, u
′)

π(θ, u) · S(θ, u|θ′, u
′)

S(θ′, u′|θ, u)

 · ÎF (θ′, u
′) (6.14)

where ÎF (θ′, u
′) represents the process of checking whether the proposed

{θ
′
, u

′} is accepted with respect to the SVM approximation. The indicator
function may be interpreted as a binary variable, equal to 1 if {θ

′
, u

′} ∈ F

and 0 otherwise. By adopting the initial Metropolis ratio

min

1, π(θ′, u
′)

π(θ, u) · S(θ, u|θ′, u
′)

S(θ′, u′|θ, u)

 (6.15)

and only targeting IF (θ′, u
′) this represents a valid Metropolis step. Checking

whether ĝ(θ′, u
′) ∈ D0.95 allows for the potential sampling error to be

controlled. Additionally, accurately identifying whether {θ
′
, u

′} ∈ F at

182 BUS for Big Data

intermediate levels of SuS helps maintain the samplers property that no
burn in period is required to initialize the Markov chains at each level.

2. Markov Chain Seeds. At levelm, the nc samples to be chosen as seeds
from {θj

m−1, u
j
m−1}N

j=1 are identified. To ensure that errors are not propa-
gated between levels by means of incorrect initiation of the Markov chains,
the seeds are re-evaluated by the true limit state function g. This allows for
an accurate intermediate threshold to be identified.

bm = g(θnc
m−1, u

nc
m−1) + g(θnc+1

m−1 , u
nc+1
m−1)

2 (6.16)

Recomputing the true limit state function for the nc sample seeds allows for
the final samples being conditional on the true failure event. Additionally
the model evidence estimate is dependent on bm.

PD ≈ P̂D = pm
0 e

bm bm > bmin (6.17)

At levelm the maximum added computational expense for re-evaluating the
true limit state function is nc additional TME. However, apriori it is not
known whether all nc sample seeds will require to be re-evaluated by the
true limit state function g. Seeing as the limit state function evaluations are
placed in descending order for computing the intermediate failure threshold,
a proportion of the nc evaluations may have already been evaluated by g at
the second step of the MCMC process in BUS when generating the training
set Dm. Therefore only the samples in the set of seeds accepted using the
SVM approximation ĝ are required to be re-evaluated by g. To quantify the
additional computational cost allow

rm =
nc∑

j=1
I(θj

m−1, u
j
m−1) (6.18)

to represent the number of seeds which were evaluated with the SVM
approximation ĝ at levelm i.e. the samples for which g is required to be
re-evaluated. Therefore for m intermediate levels let the total computational
cost of BUSSV M be given by

N +m · q ·N +R (6.19)

6.3 BUS with Support Vector Machines 183

where R = ∑m
i=1 ri. At any given level there is the possibility of a maximum

of nc additional TME stemming from the step of re-evaluating the Markov
chains seeds. The variable R controls the number number of additional
TME in the final computational cost of BUSSV M . In the unlikely event that
R = 0 no additional TME are required.

Unlike probabilistic models such as logistic regression, SVM is deterministic in its
class prediction. A post processing extension to SVM has been proposed [176],
which allows for posterior probabilities to be attached to the classifiers output. By
mapping the model output to the unit interval by means of the sigmoid function
and a prudent choice of parameters, class conditional probabilities are derived. It
has been noted however [216], that the implementation of such a post processing
step is an unreliable representation of the desired posterior probability and as such
is not introduced to this model. This is another reason for the implementation of
the above rules aimed at controlling errors.

6.3.2 Selection of q

This section discusses the constraints on the choice of q to ensure BUSSV M is
computationally cheaper than its BUS competitors. Recall that the total TME
for a single run of BUS+ is N + m · (N − nc). Note that the total TME for
nBUSD will vary as it is dependent on whether or not the nested loop is required
to be computed at additional levels beyond levelm. To investigate the influence of
q on the computational savings of BUSSV M over BUS+ consider Proposition 2.

Proposition 2. Let p0 denote the level probability and q a scaling parameter
introduced to identify the number of training points for BUSSV M . Let m denote
the total number of intermediate levels, N the number of generated samples and R
the number of additional total model evaluations for all levels. For BUSSV M to
require fewer total model evaluations than BUS+, q must be chosen such that

1 − q > p0 − R

N ·m
(6.20)

holds.

Assuming that both BUSSV M and BUS+ terminate at the same levelm, prov-
ing Proposition 2 allows for constraints on the selection of q to be established.

184 BUS for Big Data

This in turn ensures that the total number of TME for a single run of BUSSV M

N +m · q ·N +R (6.21)

is less than the total number of TME for a single run of BUS+

N +m · (N − nc) (6.22)

In terms of notation let N represent the number of samples, m the number of
intermediate levels, p0 the level probability and q a scaling parameter introduced
to identify the number of training points for BUSSV M . Also allow for nc = p0 ·N .

Proof.

N +m · (N − p0 ·N) > N +m · q ·N +R

=⇒ m · (N − p0 ·N) > m · q ·N +R

=⇒ m ·N − p0 ·N ·m > m · q ·N +R

=⇒ 1 − q > p0 + R

N ·m
(6.23)

Therefore to ensure that BUSSV M is computationally cheaper than BUS+, q needs
to be chosen according to Proposition 2. The values of R and m are unknown
when selecting q prior to simulation. For m = 1, and considering the maximum
value of R = (m− 1) ·N · p0 Eq. 6.23 becomes

1 − q > p0 (6.24)

6.3 BUS with Support Vector Machines 185

For m > 1 Eq. 6.23 becomes

1 − q > p0 + (m− 1) ·N · p0

N ·m

=⇒ 1 − q > p0 + m ·N · p0 −N · p0

N ·m

=⇒ 1 − q > p0 + m · p0 − p0

m

=⇒ 1 − q > p0 + m · p0

m
− p0

m

=⇒ 1 − q > 2 · p0 − p0

m
(6.25)

For an increase in m the right hand side of Eq. 6.23 becomes larger and larger,
resulting in a smaller q being able to be selected. As m is unknown prior to
simulation, for the work in this thesis q will be selected such that

1 − q > 2 · p0 (6.26)

holds. This is chosen under the assumption that R takes its maximum value
during simulation. Assuming that q is chosen according to Proposition 2, the
reduction of TME by using BUSSV M over BUS+ is

N +m · (N − p0 ·N) − (N +m · q ·N +R)

=⇒ N +m · (N − p0 ·N) −N −m · q ·N −R

=⇒ m · (N − p0 ·N − q ·N) −R (6.27)

A pseudo-code for BUSSV M using the stopping condition from BUS+ is shown
in Algorithm 18. Firstly q and p0 are selected such that Proposition 2 holds.
Level0 progresses in the same manner as BUS+. At level1, the sequence {bj

1}nc
j=1 is

computed with the value bnc
1 being equivalent to the original intermediate threshold

specified in nBUS. Next, as nc seeds are already in F1, q · N − nc samples are
drawn by the chosen MCMC sampler in step 16. Once {θi

1, u
i
1}

q·N
i=1 have been

drawn, the training set D1 is specified with {θi
1, u

i
1}

q·N
i=1 denoting the training

observations and the subsequent {sgn(gi
1)}q·N

i=1 the class labels. Note that {gi
1}

q·N
i=1

is computed as part of the MCMC sampling process in step 16. Using D1, a SVM

186 BUS for Big Data

classifier ĝ1 is trained as an approximation to the underlying limit state function.
As the training observations {θi

1, u
i
1}

q·N
i=1 already belong in F1, they are used as

seeds to generate the remaining {θi
1, u

i
1}

N−q·N
i=1 at level1 in step 22 via Algorithm

19. In this sampler ĝ1 is used to identify whether or not proposed samples belong
in F1. As in BUS+, once all N samples at level1 have been generated, the post
processor quantities are next computed and it is checked whether δ1 > t. If so,
{θi

1}N
i=1 are returned as the posterior samples. If not, rm is computed and the

resulting samples are re-evaluated using the true limit state function g. Next,
BUSSV M progresses to level2 and continues simulation as outlined above until
for any levelm δm > t is true.

6.3 BUS with Support Vector Machines 187

Algorithm 18 BUSSV M

1: Define N , p0, nc = p0N , ns = p−1
0 and q

2: Initialize m = 0, where m is the current simulation level
3: Initialize δm = 0
4: Define the tolerance t

5: Generate N samples {θi
m, ui

m}N
i=1 from the input PDF π(·)

6: For each {θi
m, ui

m}N
i=1 evaluate gi

m = lnL(D|θi
m) − ln(ui

m)
7: Sort the N values of gi

m and the corresponding {θi
m, ui

m}N
i=1 in descending order with

respect to gi
m

8: while δm < t do
9: m = m + 1

10: for j = 1, ..., nc do
11: Calculate: bj

m = gj
m−1+gj+1

m−1
2

12: end for
13: Store the first nc samples of the ordered set {θi

m−1, ui
m−1}N

i=1 as ’seeds’
14: Using {θj

m−1, uj
m−1}nc

j=1 draw q · N − nc samples from π(·|Fm) via MCMC as follows:
15: for j = 1, ..., nc do
16: Starting with {θj

m, uj
m} as an initial seed, generate {θk

m, uk
m}q·ns

k=1 ∼ π(·|Fm) states of
a Markov chain using the chosen MCMC sampler from those discussed in Chapter 5.
In this algorithm, the sample acceptance criteria involves evaluating gm with respect
to bnc

m for each generated sample.
17: end for
18: Dm = {{θi

m, ui
m}, sgn(gi

m)}q·N
i=1

19: Train a SVM ĝm using Dm

20: Using {θj
m, uj

m}q·N
j=1 as seeds draw the remaining N − q · N samples from π(·|Fm) via

MCMC as follows:
21: for j = 1, ..., nc do
22: Starting with {θj

m−1, uj
m−1} as an initial seed, generate {θk

m, uk
m}ns−q·ns

k=1 ∼ π(·|Fm)
states of a Markov chain using Algorithm 19. In this algorithm, the sample acceptance
criteria involves evaluating ĝm with respect to bnc

m for each generated sample.
23: end for

24: Sort {gi
m}q·N

i=1 ∪ {ĝi
m}N−q·N

i=1 and the corresponding {θi
m, ui

m}N
i=1 in descending order with

respect to {gi
m}q·N

i=1 ∪ {ĝi
m}N−q·N

i=1

25: For each bj
m evaluate ln(P̂D)j

m = bj
m + m · ln(p0)

26: Compute α = (p0·N+1
N+2)m·(1−(p0·N+2

N+3)m)
(p0·N+2

N+3)m−(p0·N+1
N+2)m

and β = (1−(p0·N+1
N+2)m)·(1−(p0·N+2

N+3)m)
(p0·N+2

N+3)m−(p0·N+1
N+2)m

27: Compute ln(P̂ +
MAP) = ln(α

(α+β−1))
28: Compute the credible interval: 0.99 = p(a ≤ ln(P̂ +

MAP) ≤ h) with a ≤ h. Where [a, h] is
referred to as the range of the 0.99 credible interval.

29: Compute δm =
∑nc

j=1
(a≤ln(P̂D)j

m≤h)
nc

30: if δm < t then
31: rm =

∑nc
j=1 I(θj

m, uj
m)

32: Re-evaluate gi
m for all rm

33: else
34: rm = 0
35: end if
36: end while
37: Return θ ∼ P (θ|D) & PD ≈ ebnc

m pm
0

188 BUS for Big Data

Algorithm 19 presents a pseudo-code example for MMH under the BUSSV M

framework. Note that as before, the space of the parameter vector θ in BUS is
augmented by a uniform random variable such that the parameter vector θ ∈ Rd+1.
The sampler progresses in the same manner as MMH before differing in the process
of checking whether the proposed sample v belongs in the failure domain. At
step 11, it is checked whether ĝ(v) > bnc

m . If this is the case and ĝ(v) ∈ D0.95 the
next state of the Markov chain is θ′ = v. If this is not the case the next state
of the Markov chain equals the current state θ′ = θ. These steps capture the
computational savings in BUSSV M by using the approximated ĝ over g. Note that
any of the SuS tailored samplers discussed in Chapter 5 can be easily modified in
the same manner. MMH was chosen to illustrate the differences with adjusted
MMH (AMMH) in 2SMART.

Algorithm 19 Modified Metropolis-Hastings for BUSSV M

1: Input Dm, ĝm, gm and bnc
m

2: Define the current state of the Markov chain θ = {θ1, ..., θd+1}
3: Define the univariate proposal PDFs Sj(·|θj) for j = 1, ..., d + 1
4: for each j = 1, ..., d + 1 do
5: Generate a pre-candidate wj from Sj(·|θj)
6: Generate uj uniformly on [0, 1]
7: r(wj) = π(wj)

π(θj) · Sj(θj |wj)
Sj(wj |θj)

8: Accept vj = wj if uj < r(wj), otherwise vj = θj

9: end for
10: v = {v1, ..., vd+1}
11: if ĝ(v) > bnc

m & ĝ(v) ∈ D0.95 then
12: Accept θ′ = v

13: else
14: Accept θ′ = θ

15: end if

6.3.3 Potential Computational Cost of The Surrogate

The computational expense associated with the likelihood function within BUS

stems from the requirement to make n computations for every proposed sample
to identify whether it belongs in the failure domain. This results in a total of
N · n computations at each intermediate level. In studies which introduce a
surrogate to replace a computationally intensive function, it is often the case
that the computational savings in the underlying function are highlighted while

6.4 Numerical Applications 189

the computational expense of using a surrogate is neglected [39, 170, 40]. An
example of this can be seen in running a SVM a large number of times in 2SMART.
For BUSSV M , the choice of q dictates the size of the training set for the SVM
approximation. Intuitively, the larger the selected value, the greater number of
calls to the true limit state function are made. By construction, the number of
likelihood function evaluations has an inverse relationship with the number of
training instances. Non-linear mappings raise the issue of computing a n × n

kernel. When n is large, it can be computationally expensive. For the case of
BUSSV M this involves a (N − q · N) × (N − q · N) matrix. Therefore, finding
a balance between the computational expense of the surrogate, the number of
likelihood functions calls and the surrogate accuracy is paramount. To avoid this
scenario, it has been argued if the number of dimensions in a given problem is
large, one may not need to map the data to a higher dimensional space [109].
Whereas in this case, the linear kernel may be used. On the other hand, it has
been shown that the linear kernel is a degenerate version of the RBF kernel and
hence is never more accurate than a properly tuned RBF [120]. This may suggest
that the use of a non-linear kernel within BUSSV M may be dependent on both
the dimensionality and number of observations of a given data set.

6.4 Numerical Applications

The purpose of this section is to numerically illustrate the capabilities of BUSSV M

in comparison to BUS+. The first problem concerns the identification of the inter
story stiffness parameters for example 4 discussed in Chapter 4 and 5. The second
problem aims to sample from a posterior distribution consisting of a mixture of 20
Gaussian distributions, in order to identify the ability of BUSSV M in populating
multiple modes with an equal number of samples. The final problem is a binary
classification task using 10 data sets varying in dimensionality and the number of
observations. The capabilities of BUSSV M is illustrated against BUS+ in terms of
predictive accuracy, TME and wall clock time. For each problem, the RBF kernel
is used while all results are taken as averages from a large number independent
model runs unless otherwise stated.

190 BUS for Big Data

6.4.1 Inter-Story Stiffness Parameters

The first problem concerns the identification of the inter story stiffness parameters
as discussed in example 4 in Chapter 4. In line with the experimental set up in
previous chapters, the bias in the quantities of interest are used as metrics for
model accuracy. The parameters of BUSSV M are chosen as N = 103 and p0 = 0.1.
As the number of likelihood function calls is dependent on q, careful selection
is required. To investigate the influence of q, the top two panels of Figure 6.5
presents a sensitivity study for q with values ranging from [0.2−0.9]. Even though
q must be chosen such that Proposition 2 holds and this entails that 1 − q > 0.2
(i.e. the largest possible value is less than 0.8), the interval [0.2 − 0.9] is chosen
to examine the behaviour of the quantities of interest. Both the expectation and
standard deviation of θ̂1 are compared against the respective reference values. For
an increase in q, it is apparent that a trend in the variation of values is not present.
Remembering that an increase in q reduces the proportion of samples from N

generated by means of SVM, one might have expected a decrease in the variation
of values. With respect to the reference values, for this problem an appropriate
value for q is in the interval [0.4 − 0.6] which coincides with the constraints placed
on q by Proposition 2. For this purpose, q is set to 0.5 while BUS+ is used as a
benchmark for performance. In terms of computational savings, BUSSV M results
in a reduction of TME of 61% and 59% for 103 and 104 respectively for q = 0.5. For
inspection of statistical estimation, the bottom two panels of Figure 6.5 illustrates
a general decrease in the variation of estimates for both BUSSV M (blue) and BUS+

(orange) as the number of MCMC samples increases. For N < 103 the variation
in the estimated expectation by BUSSV M is less than that of BUS+. Closer
inspection of Figure 6.5 (d) shows that BUSSV M appears to be underestimating
the standard deviation for all N considered. Further analysis revealed that this
underestimation stemmed from the quality of learning of BUSSV M at individual
modes of the posterior distribution.

6.4 Numerical Applications 191

(a) (b)

(c) (d)

Figure 6.5: The top row shows the sensitivity in the estimates of the expectation
(a) and standard deviation (b) for an increasing q. The bottom row compares
BUSSV M (blue) and BUS+ (orange) for estimating the expectation (c) and
standard deviation (d). The reference solutions 1.12 and 0.66 are given by the
corresponding red lines.

To further investigate the quality of learning of BUSSV M at individual modes,
the geometrical behaviour of the samples drawn from the posterior are analysed.
Figure 6.6 presents the generated posterior parameter samples in lognormal space.
BUSSV M has successfully identified the bi-modal distribution while populating
the posterior regions to the same extent as BUS+.

192 BUS for Big Data

(a) (b)

Figure 6.6: Posterior samples in the lognormal space for the stiffness parameters
generated using BUSSV M (a) and BUS+ (b).

The target marginal distributions for both parameters in Figure 6.7, were
obtained by numerically integrating the expression for the posterior PDF, which
is still feasible for this two-dimensional example. The histogram of samples for
BUSSV M and BUS+ are comparable with their numerical counterparts. In the
case of θ̂1 however, the samples of BUSSV M fail to populate the modal region to
the same extent as BUS+. It is noted in [20] that even if the generated samples
were distributed exactly as the posterior distribution, discrepancies between the
numerical marginals would still be apparent due to the finite number of sample in
the approximation.

6.4 Numerical Applications 193

(a) (b)

(c) (d)

Figure 6.7: Posterior marginal PDFs for θ1 and θ2 with there respective estimations
using BUSSV M (blue) and BUS+ (orange).

Similar to the marginal PDF, the marginal CDF for θ̂1 is computed via
numerical integration as outlined in Figure 6.8 (red) along with the empirical
results from 100 independent sampler runs of BUSSV M (blue). The numerical
CDF can be seen as being much smoother than its PDF counterpart as the
integration step has removed some of the error in the estimation.

194 BUS for Big Data

Figure 6.8: Empirical CDF estimate of θ1 using BUSSV M . CDF estimates from a
large number of independent sampler runs are outlined in blue with the reference
solution in red.

6.4.2 Mixture of Gaussians

Traditional MCMC methods tend to cope poorly with multi-modal distributions
as they can become stuck at the local minimum of a single mode. By utilizing SuS,
which can efficiently explore disjoint failure domains, BUS+ is in turn suitable
for problems involving complex multi-modal distributions. A variant of the multi-
modal example discussed in Chapter 5 for sampler convergence is considered
to benchmark BUSSV M against BUS+. Consider the target distribution as a
mixture of 20 bivariate Gaussians.

fΘ(θ) =
20∑

i=1

wi

2πσ2 e

(
−1
2σ2 (θ−µi)T (θ−µi)

)
(6.28)

where {µ1, ...µ20} are specified in [129]. However, each mixture component is
assigned a weight w of 0.05 and equal variance 0.001. Under this scenario, the
modes are well separated where most of the modes are more than 15 standard
deviations apart. This makes it challenging for standard MCMC algorithms
to explore all of the modes. The reference solutions for the statistical moment
estimation are given by E[θ̂1|D] = 4.48, E[θ̂2|D] = 4.91, σ[θ̂1|D] = 2.36 and

6.4 Numerical Applications 195

σ[θ̂2|D] = 3.14. Similar to the example discussed in Section 6.4.1, for an increase
in q no trend in the variation of moments values is apparent from Figure 6.9
(a)-(b). As such, q is selected as 0.5.

Boxplots of the estimated expectation and standard deviation of θ in Figure
6.9 (c)-(f) illustrate the ability of BUSSV M in estimating the distribution of
parameters which contain multiple modes. For each quantity, the variation in the
estimations by BUSSV M is greater than BUS+ for all N considered while again
for both frameworks the uncertainty in the estimates decreases for an increasing
N . For N = 103 and N = 104, BUSSV M with q = 0.5 requires 49% and 36% less
TME than BUS+.

Figure 6.10 (a) presents the posterior samples (red) generated by BUSSV M

with contours of the mixture of Gaussian’s in black. Each of the distribution modes
appears to be populated by the samples. Aside from a qualitative inspection of the
ability of BUSSV M to populate individual modes. As before, the mode coverage
metric is considered whereby once the number of samples falling within a specified
radius of the mode centre is greater than a predefined threshold, the mode is
considered covered. To identify whether each mode is adequately populated, the
mode coverage is computed for an increasing number of samples. A value of
0 denotes no mode has been fully populated and a value of 1 that each mode
contains an equal number of samples. It is worth noting that the interpretation
of this metric changes in the case that the mixture of Gaussian’s are not equally
weighted. From Figure 6.10 (b) as expected, the percentage of mode coverage
increases for an increase in N . The mode coverage of BUS+ (orange) is greater
than BUSSV M (blue). However, with respect to the computational savings in
terms of TME the difference is deemed negligible. For 104 samples, both methods
adequately populate approximately 50% of the modes. The five modes which the
framework had difficulty in populating in terms of mode coverage are denoted by
blue crosses in Figure 6.10 (a). While the four most populated modes were those
lying closest to the origin.

196 BUS for Big Data

(a) (b)

(c) (d)

(e) (f)

Figure 6.9: Top two panels show the expectations for θ1 (a) and θ2 (b) for an
increasing q. Comparisons in moment estimation between BUSSV M and BUS+
are shown in panels (c)-(f).

6.4 Numerical Applications 197

(a)

(b)

Figure 6.10: Panel (a) presents the posterior samples (red) for the mixture of
Gaussians posterior distribution. The blue crosses denote the five modes BUSSV M

had most difficulty in populating. Panel (b) shows the trend of mode coverage for
BUSSV M (blue) and BUS+ (orange) for an increasing number of samples.

To further empirically investigate the convergence of both samplers in terms of
mode coverage, the samplers were run for increasing values of N up to a maximum
of 5 · 104. The level probability was chosen as p0 = 0.1. It was found that BUS+

198 BUS for Big Data

converged to a mode coverage of 1 with approximately N = 4.3 · 104 samples
whereas for N = 5 · 105 the maximum mode coverage achieved by BUSSV M was
0.93. Future work may entail the use of clustering methods to improve learning
at individual modes of distributions by BUSSV M .

6.4.3 Supervised Machine Learning

The purpose of developing BUSSV M is to alleviate the computational cost as-
sociated with likelihood evaluations in the presence of a large number of data
observations. In this example, 10 benchmark classification problems are considered.
Both BUS+ and BUSSV M are compared in terms of classification Area Under the
Curve (AUC), Total Model Evaluations (TME) and clock running time. To justify
the use of clock running time as a comparison metric, all experiments were run a
large number of times using the same i5 core vPro processor and programmed
in MATLAB®. Table 6.1 presents details of 8 benchmark data sets as both the
USPS and image data sets discussed in Chapter 4 are also included in this study.
The covtype [69] data set concerns the identification of forest cover type from four
different areas of the Roosevelt national forest in northern Colorado, USA. The
financial data [168] describes the financial ratios of various business firms aimed at
establishing whether or not they are credit worthy. Two different cases of whether
or not a given observation is drawn from an overlapping normal distribution is the
classification task for ringnorm and twonorm [1]. The identification of two classes
of splice junction in a DNA sequence is considered in the splice [69] example while
the waveform data set [69] concerns differentiating between two distinct wave
patterns in a signal. The analysis of the thyroid data set [69] is to determine
whether or not the gland is functioning correctly. The X-Ray problem involves the
identification of two different lung conditions from X-Rays taken at the national
institutes of health clinical centre in Maryland, USA [221]. The original dataset
consisted of several different diseases but for this study the task of simply whether
or not a patient has healthy lungs is considered.

6.4 Numerical Applications 199

Observations Features Area

Covtype (C) 495141 10 Forestry

Finance (F) 17108 93 Finance

Ringnorm (R) 7400 20 Probability Theory

Splice (S) 3190 59 Biology

Thyroid (Th) 215 5 Medicine

Twonorm (Tw) 7400 20 Signal Processing

Waveform (W) 5000 21 Probability Theory

X-Ray (X) 69908 9 Medicine

Table 6.1: Classification benchmark data sets. For space making purposes the
following data set acronyms are used: Covtype (C), Finance (F), Image (I),
Ringnorm (R), Splice (S), Thyroid (Th), Twonorm (Tw), USPS (U), Waveform
(W) and X-Ray (X).

For consistency, cross validation is used along with a misclassification threshold
of 0.5. To investigate the influence of q on larger datasets, two values of 0.2 and
0.5 are chosen for this example. For the sake of brevity let the resulting methods
be denoted by BUSSV M2 and BUSSV M5. Table 6.2 presents the results for BUS+,
BUSSV M2 and BUSSV M5. Each first row contains the AUC, the second row
TME and the final row the average wall clock time in seconds for training and
prediction. For the covtype, image, ringnorm, USPS and X-Ray datasets it is
clear that BUSSV M2 performs poorly in terms of AUC with respect to BUS+.
In all cases aside from the image data set, the standard error of the estimate is
similar to BUS+. Whereas BUSSV M5 performs comparably well with BUS+. The
reduction in the number of TME when using SVM within BUS+ is evident in all
cases. As expected, BUSSV M2 requires fewer TME than BUSSV M5. However, the
great deterioration in model accuracy reveals this comes at a cost. The trade-off
between limiting the number of TME and increasing the training set size for the
SVM is evident from the wall clock times. Even though the number of required
TME is smaller for all data sets, the running time of BUSSV M2 is greater than

200 BUS for Big Data

BUSSV M5 in each case. By decreasing the value of q, the SVM is required to
compute a larger kernel matrix. This highlights the importance of balancing the
computational savings of using a function approximation with the cost of the
function approximation itself.

6.4 Numerical Applications 201

Metric C F I R S

AUC 0.75(0.001) 0.73(0.03) 0.98(0.01) 0.77(0.01) 0.64(0.03)

BUS+ TME 4.7 × 103 4.4 × 103 3.3 × 103 4.4 × 103 3.8 × 103

Time 471.8 46.1 9.5 3.4 2.4

AUC 0.59(0.002) 0.70(0.03) 0.74(0.18) 0.61(0.02) 0.61(0.03)

BUSSV M2 TME 1.8 × 103 2.3 × 103 2.6 × 103 2.1 × 103 2.3 × 103

Time 269.8 27.5 34.2 3.1 3.2

AUC 0.73(0.001) 0.74(0.03) 0.95(0.11) 0.74(0.02) 0.76(0.03)

BUSSV M5 TME 2.2 × 103 2.5 × 103 2.6 × 103 2.2 × 103 2.5 × 103

Time 242.6 20.9 27.8 2.7 2.6

Metric Th Tw U W X

AUC 0.79(0.09) 0.99(0.01) 0.97(0.01) 0.92(0.01) 0.65(0.01)

BUS+ TME 4.7 × 103 5.1 × 103 3.× 103 4.7 × 103 4.1 × 103

Time 1.2 4.2 10.1 3.1 43.8

AUC 0.83(0.09) 0.99(0.002) 0.79(0.03) 0.87(0.02) 0.48(0.05)

BUSSV M2 TME 1.6 × 103 1.7 × 103 2.3 × 103 2.1 × 103 2.9 × 103

Time 10.1 3.1 9.6 2.9 25.8

AUC 0.85(0.08) 0.99(0.002) 0.97(0.01) 0.89(0.02) 0.62(0.008)

BUSSV M5 TME 2.1 × 103 2.2 × 103 2.5 × 103 2.9 × 103 3.2 × 103

Time 1.7 2.5 7.8 2.4 18.6

Table 6.2: Experimental results for the 10 benchmark data sets. For each method
the first row represents the AUC, the second row the number of TME and the
third row the average wall clock running time.

202 BUS for Big Data

6.5 Chapter Summary

Motivated by the task concerning MCMC methods in the presence of large data sets,
the question of improving the scalability of BUS was addressed in this chapter. By
interpreting the engineering reliability problem as a binary classification problem,
the evaluation of the likelihood function for proposed MCMC samples is replaced
by a functional approximation. Two SVM inspired frameworks are presented to
reduce the number of TME in a model run. Firstly, observations and potential
improvements for 2SMART [40] are outlined to increase its suitability for Bayesian
updating tasks along with improving algorithmic stability for smaller MCMC
sample sizes.

Secondly, a new SVM inspired method is proposed which avoids the requirement
of training multiple SVM at each intermediate level of SuS. BUSSV M selects
training points from the set of MCMC samples generated at each level based on a
user defined parameter to train a SVM model. From the numerical experiments a
suggested value of 0.5 allows for a balance between the likelihood function and
training the SVM model to be achieved. To control the error introduced by the
functional approximation, a set of rules must be followed for a candidate sample
to be accepted. The adoption of the radial basis function allows for the SVM to
accurately approximate non linear failure boundaries. However, the framework
does offer flexibility in terms of kernel choice. Numerical results illustrate the
capabilities of BUSSV M for multi-modal problems along with classification tasks
involving hundreds of thousands of observations. To establish the suitability of
BUSSV M along with BUS+ and nBUSD for different data types, the next chapter
concerns a real world application of classification for the detection of breast cancer.

Chapter 7

Breast Cancer Detection

From the outset of this dissertation, the goal was the development of BUS
techniques suitable for supervised machine learning problems varying in data
complexity. Given the theoretical underpinnings of BUS, the numerical experi-
ments discussed in previous chapters have primarily stemmed from the engineering
community. The purpose of this was to compare the accuracy and stability of
the proposed frameworks to existing methods. In this chapter, BUSSV M , nBUSD

and BUS+ are applied to two real world problems in the area of breast cancer
detection. The first problem concerns the identification of cancerous tissue in
Whole Slide Images (WSI) of patients, with the classification task whether or
not a given specimen is benign or malignant. Additionally, the scenario where
incorrect training labels have been provided by the pathologist is also considered.
The second problem focuses on the identification of molecular biomarkers for
predicting five year breast cancer relapse rates. Biomarker datasets are tradi-
tionally high dimensional and contain very few observations. Consequently, the
BUS approaches are compared against existing Bayesian inference methods to
establish their suitability in this setting. The work presented in this chapter was
undertaken whilst on placement at IBM Research Zürich.

7.1 Classification in Healthcare

As outlined in Chapter 2, classification methods have become one of the most widely
applied forms of machine learning for real world problems. In UK healthcare
for example, the National Health Service (NHS) has adopted a data driven
approach towards improving service efficiency. The creation of a machine learning

204 Breast Cancer Detection

driven phone application GP at hand, has allowed potential patients to seek
professional consultation without having to attend the practice in person. The
phone application exploits classification techniques to build an interactive chatbot
which identifies whether the prospective patient requires a consultation with a
physician or whether the symptoms may be cured with over the counter medicine.
Ensuring a reduction in the number common illnesses (flu, colds etc.) cases
required to be assessed in person allows for a physicians time to used more
optimally with patients suffering from serious illnesses. Aside from improving
general business practice in terms of efficiency, classification frameworks have
also attracted major interest for applications in cancer identification. In general,
when cancer is detected early, treatment is more effective. An on-going line of
research is investigating the potential of classification techniques in providing this
early diagnosis. At IBM Zürich, a team of scientists are actively researching the
use of machine learning techniques aimed at identifying particular cancer drivers
along with providing a tool to analyse histopathological images for breast cancer
diagnosis.

In terms of the latter, visual inspection of Whole Slide Images (WSI) is a
commonly used for the identification of cancerous cells. During this process, a
biopsy sample is acquired from a patient before being evaluated by a pathologist
through the use of a microscope. Intuitively, two issues for both patient and
practitioner arise during this process. Firstly, visual inspection is extremely time
consuming. Given the aggressive nature of the disease, time has been identified as
a key factor in improving survival rates. Theoretically if correctly implemented,
machine learning has the potential to reduce the waiting time between obtaining
the biopsy sample and returning the determined diagnosis. In turn, allowing
for possible treatments to be started at an earlier time. The second issue with
visual inspection is the possible variation in diagnosis between pathologists. Two
different types of variabilities can potentially occur. In the case of inter-variability,
suppose ten pathologists have been asked to identify potential cancerous regions
in biopsy’s taken from five different patients. Inter-variability refers to the amount
the ten observers may vary from one another in terms of their concluding remarks
on the presence of the disease in each of the patients. In the second case, consider
one of the pathologists is chosen to re-examine the same five tissue biopsys at a
later date. Intra-variability may appear in the event that the chosen pathologists
updated recommended diagnosis differs from their initial conclusions drawn. Both

7.1 Classification in Healthcare 205

inter and intra-variability result in uncertainty appearing within the diagnosis
procedure. In this aspect, probabilistic machine learning frameworks quantify the
degree of certainty surrounding the recommended diagnosis. Given the machine
learning algorithm learns a functional mapping from the tissue sample to diagnosis,
once correctly trained the resultant framework could be potentially used in an
online learning capacity. In this context machine learning offers the potential to
increase diagnosis efficiency on top of quantifying the uncertainty in the predicted
diagnosis. Note that the aim of incorporating machine learning frameworks into
the medical domain is not concerned with the removal of the practitioner from the
decision-making process, but to provide them with tools to make better informed
decisions.

7.1.1 Breast Cancer Biopsy Samples

To continue the exploration of machine learning in cancer diagnosis, the inference
frameworks presented in Chapter 5 and 6 are implemented on breast cancer WSI
data sets which were publicly released as part of the MACCAI 2016 challenge
[173]. Due to the aforementioned issues in the variability between expert diagnosis,
a voting system between multiple experts was utilized to obtain the labels for the
data set. The binary task considered is the identification of whether a given sample
is benign (non-cancerous) or malignant (cancerous). The initial dataset consisted
of 10 patients. Examples of WSI are given in Figure 7.1 (a) and (b) with the
green squares highlighting regions of interest identified by a pathologist. However,
given the small sample size and a single WSI tending to be 100, 000 × 100, 000
pixels in size, each image is discretized into a series of patches [179]. Figure 7.1
(c) and (d) present examples of benign and malignant patches respectively. The
advantage of which is creating a large data set from an initial small number of
patients.

206 Breast Cancer Detection

(a) (b)

(c) (d)

Figure 7.1: Panels (a) and (b) present examples of a WSI of a breast biopsy. The
green squares denote regions of interest identified by a pathologist. Given the size
of each image, panels (c) and (d) provide an example of a benign and malignant
patch from the same WSI.

The resulting data set details are given in Table 7.1, which also contains the
class split for each patient. Note that the number of observations represents the
number of patches for a given patient.

7.1 Classification in Healthcare 207

Patient Observations B/M

P1 4019 1110/3309

P2 2532 1243/1289

P3 3592 1702/1890

P4 2864 1459/1405

P5 2133 1184/949

P6 2468 1125/1343

P7 3029 119/2910

P8 1491 818/673

P9 1228 276/952

P10 3485 1565/1920

Table 7.1: Whole slide image data set for ten patients. Each patient differs in the
number of observations and balance of class labels. In this case the number of
observations signifies the number of patches. For this task, the class labels are
benign (B) and malignant (M).

The data pre-processing of the images was carried out in the same manner
as the image classification problems discussed in Chapter 4. As with the image
data set in Chapter 4, a colour normalization algorithm discussed in [173] was
used to convert the images to greyscale before each pixel of the WSI images was
used as a dimensions. This resulted in each observation being represented in 1024
dimensions. In turn, allowing for the performance of the BUS frameworks to be
analysed in high dimensional real life examples. As discussed in Chapter 2, the
AUC, TP (true positive), FP (false positive), TN (true negative) and FN (false
negative) rates are used as metrics for the predictive performance. For cancer
detection the risk of falsely classifying a sick patient as healthy far out weighs
that of falsely classifying a healthy patient as sick. Of course the latter scenario
has unnecessary ramifications for the patient in terms of treatment and monetary
costs. However, the main concern is correctly identifying individuals with cancer.
As such, one aims to minimize the FN rate.

208 Breast Cancer Detection

The AUC, TME and FN rates for nBUSD (blue), BUS+ (orange) and
BUSSV M (yellow) are given in Figure 7.2 (a)-(c). As expected, the number
of TME for BUSSV M is less than both nBUSD and BUS+. With BUSSV M

resulting in a reduction of 48% and 34% with respect to nBUSD and BUS+. All
results were obtained with 5-fold cross validation using the logistic regression
model. In terms of AUC, aside from patient 1, the posterior samples generated by
each inference framework produce competitive classification models. The standard
errors for the AUC were of the same order for each of the three BUS frameworks.
Each BUS approach is compared with Laplace approximation (LA), variational
inference (VI) and Metropolis Hastings (MH) in Figure 7.2 (d) for patient 5 in
terms of AUC and wall clock time in seconds. The vertical error bar represents
the AUC standard error while the horizontal error bar the variation in wall clock
time for each fold. For parameter identification, VI runs the quickest followed
closely by BUSSV M . Additional intermediate levels generated by nBUSD result
in the greatest computational time of the BUS methods. As expected, MH takes
the longest to converge to the posterior but produces the highest AUC rate. While
the usual efficiency associated with LA, suffers in the presence of the computation
of a Hessian matrix for a large number of dimensions.

7.1 Classification in Healthcare 209

(a) (b)

(c) (d)

Figure 7.2: Panels (a), (b) and (c) present the AUC, false negative rate and
TME using each BUS framework for the 10 patients in the WSI data set. Each
method performs comparably well while BUSSV M requires a fraction of the TME
to sample form the posterior of model parameters. Panel (d) benchmarks the
BUS methods against three competing inference techniques in terms of wall clock
time and AUC.

Figure 7.3 presents an example of a malignant WSI patch. The predictive
contours reveal which regions of the tissue sample that the classifier has identified
as a region of interest. Aside from high accuracy and confident decision making,
an interpretable model is highly desirable. Under visual inspection, pathologists
may identify different areas of a sample to be a region of interest based on similar
characteristics to a previously examined specimen. Classification models which
produce posterior probabilities allow for a degree of certainty to be attached to
different regions of the WSI. As the entire WSI is representative of a malignant
specimen, the classifier is correctly attaching a high level of confidence of cancer

210 Breast Cancer Detection

identification. The separation of probabilities along the diagonal of the contour
plot coincides with the morphology of this specific tissue sample. It should be
noted that an interesting future line of research may be the comparison between
what denotes a region of interest for the pathologist and what the model defines
as a region of interest. Both may come to the same diagnosis, but the information
which lead to the decision being made may differ greatly. This however, is beyond
the scope of this current work.

Figure 7.3: Predictive contour of a malignant patch. The algorithm has identified
the left area of the image as the main region of interest with a probability of
1. Given the entire image is an example of a malignant specimen, the classifier
recognizes with a high probability the presence of cancerous tissue.

Aside from the binary task of identifying whether or not a given tissue sample
is benign or malignant, in the case of a malignant sample the aggressiveness of
the disease should also be considered. A common practice for representing this
aggressiveness is by a proliferation score. A widely applied technique among
pathologists for tumour identification is mitosis counting which is dependent on
the number of overlapping cells occurring in the sample. The proliferation score
acts as a frequency metric by combining mitosis counting, comparison of tumour
cell structure and comparison of the individual cells. Each of these categories are
assigned a proliferation score ranging from 1 to 3. For example, in the case of
mitosis counting a score of 3 indicates a large number of cells are overlapping (i.e.
the cancer is extremely aggressive). On the other hand, a score of 1 indicates

7.1 Classification in Healthcare 211

a small number of overlapping cells in the sample. In essence, a score of 3 may
be viewed as a worst case scenario. For each category, the proliferation score is
computed and summed together with the total number referred to as a Nottingham
score [74]. A score of 0 − 5 is representative of grade one cancer, 6 − 7 grade two
cancer and > 8 grade three cancer.

Figure 7.4 presents examples of biopsy samples with Nottingham scores of 0−5
(a), 6 − 7 (b) and > 8 (c) respectively. Using the category of mitosis counting as a
visual aid, evidently there are a greater number of overlapping cells (dark purple
regions) in Figure 7.4 (c) in comparison to the remaining two samples. Combining
the patient data into a single data set forms a difficult binary classification task
due to the varying phenotype of a mitotic cell as this goes through a mitosis cycle
which is part of the cells life cycle. This means that observations contained in the
same class can potentially differ greatly. For the 26241 observations considered
nBUSD, BUS+ and BUSSV M produce FN rates of 0.17, 0.08 and 0.04. The
number of TME was 5.1 × 103, 3.9 × 103 and 2.4 × 103. The misclassification
threshold dictates the corresponding TP, TN, FP and FR. An advantage of which
is setting its value to minimize or maximize one of the quantities. In the interest
of fairness, for this study a threshold of 0.5 was used in all cases with no further
analysis done in terms of an optimal value for each patient.

(a) Score 0 − 5. (b) Score 6 − 7. (c) Score > 8.

Figure 7.4: Nottingham scores for the breast tissue samples with examples of a
score of 0 − 5 (a), 6 − 7 (b) and > 8 (c). For a score greater than 8 it is visually
evident that a greater number of overlapping cells are occurring. This means that
the cancer is at a more advanced stage in comparison to panel (a) and panel(b).

212 Breast Cancer Detection

7.1.2 Incorrect Labels

In healthcare, as most medical tests are not 100% accurate the resulting data
cannot be assumed to be a noise free gold standard. This issue also appears in
the case of WSI. Stemming from the aforementioned potential variation between
pathologists diagnosis, the resulting labelled set is susceptible to containing noise.
A noisy label is one which has been incorrectly assigned a given class label.
Supervised machine learning functions on the assumption that the labelled data
is a correct representation of reality. However, reliably labelled data are often
expensive and time consuming to obtain. With the increase in the application of
machine learning techniques to solve real world problems has come the need to
incorporate such uncertainties into models. Corruption of the instances themselves
often referred to as feature noise, results in the input data not being a fair
representation of reality. The importance of label noise over feature noise has been
highlighted in [77] whom argue that there may be many features in a data set but
only one class label. As such, the importance of each feature varies whereas the
class labels always play a major role on model training.

Numerous approaches varying in theoretical underpinnings, have been proposed
to address the issue of class label noise. Classification filtering, concerns the
identification of possible noisy labels through model predictions [122, 113, 152].
A classifier is learned using the training data, resulting in the removal of all
misclassified instances from the test set. As the noise identification is dependent
on the classifier itself, deleting instances and labels from the training data in such
a manner may result in vital information being removed. Forming an unsupervised
task has also been addressed whereby clusters are defined representing a new set
of class labels [41, 78, 227].

Probabilistic approaches have been developed [134, 37, 36], which incorporate
label noise into the modelling process through the use of probability tables.
Although similar in their theoretical foundations, each of the approaches are
aimed at specific classification models. The use of unreliable labels, directly
influences the set of generated posterior samples. As the likelihood function,
represents the probability of θ generating the observed D, in the event of the data
containing incorrect labels, this relationship will change. The estimated parameter
values will be incorrect due to the information contained in D. A method is
presented which incorporates the uncertainty surrounding the class labels into
the Bayesian inference framework by the alteration of the likelihood function.

7.1 Classification in Healthcare 213

Consequently, the framework is flexible in terms of both inference methods and
classification models.

Suppose y is randomly corrupted with noise which results in D̂ = {(x, ŷ)}
being generated as the training dataset. In this context ’noise’ refers to the
mislabelling of data instances due to for example administrative errors during data
collection or lack of information leading to inter-variability between pathologist
diagnosis. The noise is treated as a stochastic process which is independent of
the input data. Under this framework the assumption regarding the label noise
is that the true value has been ’flipped’ to the opposing value randomly with a
uniform probability across the entire label set.

Under a Bayesian approach, a latent variable z is introduced which represents
the likelihood of noise being present in the training set. The prior distribution
over z is assumed to be a beta distribution with parameters, α and β, which are
chosen prior to simulation. The assumption that the training set contains a small
level is noise is made by choosing β >> α. In this case, the beta distribution is
a sensible choice as its values are bounded on [0, 1] along with the distribution
parameters allowing for flexibility in terms of shape. In a binary setting, with
the class labels being discrete quantities, the Bernoulli distribution is assigned
as the likelihood function, resulting in the distribution P (z|ŷ) representing the
presence of noise in the training set. Accordingly, as new data becomes available,
the distribution over the noisy labels is updated.

In the case of allowing for noise to be incorporated into the modelling process
the likelihood function

L(D|θ) =
n∏

i=1
p(xi, yi|θ) (7.1)

is required to be modified. In a noisy setting however it is assumed that y
has been corrupted and is represented by ŷ. Thus the relationship between
the unknown parameters and the input data has changed and consequently the
likelihood function to include the possibility of noise being present must be altered
appropriately.

L(D̂|θ, z) =
n∏

i=1
p(xi, ŷi|θ, zi) (7.2)

214 Breast Cancer Detection

This incorporates an individual label noise term zi for each data observation.
Adopting this modified likelihood function, the posterior distribution for learning
both z and θ based on observing D̂ may be given by

P (θ, z|D̂) = L(D̂|θ, z)Q(θ)L(ŷ|z)Q(z)
PD̂

(7.3)

where Q(z) denotes the beta prior over z and PD the model evidence. As a first
step the placement partners sought a simplistic framework which provided a global
summary of the labels potentially being incorrect. Given this, the use of Eq. 7.3
was not desirable from the placement advisors point of view. However, for future
work a full Bayesian approach of jointly learning z and θ would be of great interest.
Instead, P (z|ŷ) was directly utilized for this preliminary study. For the purpose
of the placement visit and as a preliminary step of modelling potentially noisy
labels, it was assumed that the noisy labelled set had been generated by some
predictive process. In this case, the human pathologist is viewed as a predictive
classification model with their corresponding diagnosis’ the potentially noisy class
labelled set. Following this a confusion matrix may be formed which summarises
pathologists’ predictions. In the case of class 1, to incorporate this information
directly into the likelihood function, a flipping factor is introduced as:

Ĝ1 = E[P (z|ŷ = 0)]
E[P (z|ŷ = 0)] + (1 − E[P (z|ŷ = 0)]) (7.4)

This quantity may be viewed as the false negative rate. In the case of class 0, to
directly incorporate this information into the likelihood function, a flipping factor
is introduced as:

Ĝ0 = E[P (z|ŷ = 1)]
E[P (z|ŷ = 1)] + (1 − E[P (z|ŷ = 1)]) (7.5)

This quantity may be viewed as the false positive rate. For the sake of brevity
consider the log likelihood to be given by

log(L(D̂|θ)) =
n∑

i=1
ŷilog(p(ŷi = 1|xi,θ)) + (1 − ŷi)log(p(ŷi = 0|xi,θ)) (7.6)

7.1 Classification in Healthcare 215

This line of thought results in the log likelihood function being expressed as follows

log(L(D̂|θ, z)) =
n∑

i=1
ŷilog(p̂1) + (1 − ŷi)log(p̂0) (7.7)

where

p̂1 = (1 − Ĝ1)p(ŷi = 1|xi,θ) (7.8)

p̂0 = (1 − Ĝ0)p(ŷi = 0|xi,θ) (7.9)

In the case of Ĝ1 = 1, all observed labels with class 1 are assumed to be incorrect.
This means that p̂1 reduces to 0, allowing for p(ŷ = 0|x,θ) to be computed. Note
that (1 − Ĝ1) may be viewed as the true positive rate or sensitivity. This measures
the proportion of actual class 1 labels that are correctly identified as such i.e. if
equalled to 0, p̂1 reduces to 0 as none of the class 1 labels have been correctly
assigned. Similarly, (1 − Ĝ0) may be viewed as the true negative rate or specificity.
This measures the proportion of actual class 0 labels that are correctly identified
as such i.e. if equalled to 0, p̂0 reduces to 0 as none of the class 0 labels have been
correctly assigned.

It should be noted that the flipping factor is not updated for each observation
but computed globally. With respect to the Bayesian inference step, the proposed
framework is flexible in terms of implementation with different methods. By
introducing uncertainty into the relationship between the parameters and the
observed data, the confidence in assigning a probability of class membership
changes. Predictive probabilities for the test set of patient 2 as shown in Figure
7.5, reveal the influence of the flipping probability on the resulting classifiers
decision making. For the 352 test observations, the robust step for label noise
(orange) results in 11% more observations not being assigned a probability of 1
or 0 in comparison to standard inference (blue). The introduction of the flipping
factors directly reduce the likelihood of the model parameters generating the
data in the event that noise is deemed present in the data set. This in turn
reduces the level of confidence in assigning an observation to a given class labels
in the presence of potentially incorrect training labels. The aim of incorporating
uncertainty regarding the class labels is to slow down the rate of deterioration of
classifier performance for increasingly noisy labelled sets.

216 Breast Cancer Detection

Figure 7.5: Predictive probabilities for the test set of patient 2. A larger proportion
of predictions based on standard inference (blue) have been mapped to the
probability upper and lower bounds. The introduction of the robust step (orange)
results in a reduction in the classifiers confidence in assigning class labels in the
presence of potentially incorrect training labels. The misclassification threshold of
0.5 is denoted by the red line.

Using the standard inference approach as a benchmark, the proposed robust
inference framework is applied on three of the patient data sets along with the
entire combination of WSI. Each test set remains untouched and not contaminated
with noise in order to allow for the approaches to be validated. For an increasing
level of noise the output of each classifier using both inference approaches are
compared. It is worth noting that the aim of this exercise is not to optimize the
classifier performance but to illustrate the potential advantages of utilizing the
proposed approach in the presence of label noise. The label noise for this study
is uniformly distributed across both class with each selected label ’flipped’ with
equal probability. Unknown to the classifier, a predefined number of observation
labels were changed for the noise generation process. Figure 7.6 presents the
competing FN rates between the robust (blue) and standard inference frameworks
using logistic regression along with BUS+. In the case of patient 2 (a), patient 3
(b) and the entire combined patient database (d), for an increasing proportion
of noisy training labels, the introduction of the robust approach has resulted in
lower false negative rates. For patient 4 (c), the change in false negative rates

7.1 Classification in Healthcare 217

is negligible. Similar to the experimental set up in Section 7.1.1, all values were
taken as averages from a large number of simulations each using 5 fold cross
validation. The sample standard deviations of the values were all of the order
10−1.

(a) (b)

(c) (d)

Figure 7.6: False negative rates for increasing levels of incorrect training labels for
patient 2 (a), patient 3 (b), patient (4) (c) and combined patient data sets (d).

In summary, the introduction of the flipping probabilities results in label
uncertainty being incorporated into the model. Altering the relationship between
the data and model through a revision of the likelihood function influences the
resultant model parameter values learned during the training phase. The frame-
work offers flexibility in terms of implementation alongside different inference
schemes, while the choice of prior distribution and likelihood function for the
flipping probabilities ensures the added computational cost to simulation is negli-
gible. Given the importance of modelling label uncertainty in applications such

218 Breast Cancer Detection

as WSI detection, we acknowledge work is required to allow for a more useful
robust approach to be formed. In particular the use of Eq. 7.3 for a full Bayesian
treatment of noise in the labelled data. The details are outlined in Chapter 8

7.2 Breast Cancer Biomarker Identification

Aside from the identification of breast cancer through the analysis of WSI, another
on-going line of research at IBM Research Zürich is the investigation of the possible
use of biomarkers for establishing cancer relapse rates. The identification of
molecular biomarkers play an important role in clinical genomics [60]. Stratification
of patients according to their clinical prognosis is a desirable goal in cancer
treatment in order to achieve better personalized medicine. Modern technologies
such as DNA microarrays measure thousands of gene expression profiles at a
time, allowing for the potential of using this information for the identification of
patterns in gene activity that might provide criteria for individual risk assessment
in cancer patients. While reliable predictions on the basis of gene signatures could
support doctors on selecting the right therapeutic strategy, biomarker discovery
poses a great challenge in bioinformatics due to the very high dimensionality of the
data combined with a typically small number of observations. For this purpose,
the BUS frameworks are implemented on 5 separate microarray gene expression
cohorts which concern the relapse rates in breast cancer patients. The classification
task considered is the identification of gene signatures which constitute a relapse
within 5 years of initial diagnosis. Each of the data sets taken from [144], are
in 12442 dimensions with the largest number of observations in a given data set
being 286. Having identified the suitability of BUSSV M to data sets with a large
number of observations, the purpose of this exercise is to identify which of the
methods is best suited to sparse data.

Each BUS approach is compared with LA, VI and MH for the given data
sets with the experimental set up the same as in Section 7.1.1. Using MH as
a benchmark, Figure 7.7 presents a comparison of the methods in terms of the
AUC and running time. As expected, for 4 of the 5 data sets, MH requires
the largest computational budget. The limitations of LA can again be seen
through the requirement of inverting a Hessian matrix which for these datasets is
extremely expensive to compute. Therefore in the likely event of having limited
computation time for a given task, LA is not a suitable method for such problems.

7.2 Breast Cancer Biomarker Identification 219

The performance of VI is comparable to that of the BUS methods in terms of
predictive accuracy. However, for all datasets BUS+ converges quicker than VI
with a reduction in running time of 81% for Figure 7.7 (e). Interestingly, the
performance between nBUSD and BUS+ differs greatly in terms of running time.
For all examples considered, BUS+ terminated simulation in the shortest amount
of time. In Figure 7.7 (b), the convergence of the probability of generating a sample
from outside the posterior set being below 10−8 resulted in a large number of
intermediate levels for nBUSD. In terms of BUSSV M , for the examples considered
it is apparent that the trade off between the computational savings of the true
model and the computational costs of training a surrogate are prevalent. In the
case of Figure 7.7 (e), using BUS+ over BUSSV M reduces the running time by
85%. This may indicate that BUSSV M may be best suited to problems which are
moderately high dimensional and contain many data observations as considered
in Section 7.1.1. The standard errors of all methods considered are all less than
2 · 10−1.

220 Breast Cancer Detection

(a) Cohort 1 (b) Cohort 2

(c) Cohort 3 (d) Cohort 4

(e) Cohort 5

Figure 7.7: Comparison of inference frameworks in terms of predictive accuracy
and wall clock time for each of the biomarker datasets. The standard errors of
the AUC are given by the vertical error bars.

7.2 Breast Cancer Biomarker Identification 221

7.2.1 Gaussian Process Classification: Model Evidence
Estimation

As outlined in Chapter 4 and 5, aside from predictive capabilities through pa-
rameter estimation, BUS also provides estimates for the model evidence. To
investigate the accuracy of the BUS methods for model estimation on high di-
mensional real life data, the Gaussian process classification model discussed in
Chapter 2 is applied to the biomarker data set. The reason for doing is twofold.
Firstly, to compare the respective model evidence estimations made by different
inference approaches in terms of hyperparameter selection for the Gaussian process
covariance function. Secondly, to allow for a non-linear decision boundary.

Finding the optimal hyperparameter values for the covariance function under
a Bayesian approach may entail minimizing an objective function such as classifi-
cation accuracy. For the purpose of this study the identification of the optimal
hyperparameter values is not of interest but the estimation of the model evidence
for each inference framework with respect to changes in the hyperparameters.
Given that MH does not provide an estimate for the model evidence, in line with
[132] and [165], Annealed Importance Sampling (AIS) [162] is used as a benchmark.
For this study, the chosen covariance function is the squared exponential

k(x, x′) = σ2
fexp

 − 1
2l2 ||x− x

′||2
 (7.10)

with σf denoting the signal variance and l the length scale parameter of the
covariance. Note that for many classification tasks it may be reasonable to use
an individual length scale parameter for every input dimension, for example an
automatic relevance determination (ARD) [183] function. However, for the sake of
presentability the above covariance function is used. For this example the chosen
likelihood function is that of the cumulative Gaussian distribution also termed
the probit model. The Gaussian process was chosen for this example due to the
low number of observations in the data sets. Similar to non-linear SVM models,
the Gaussian process can suffer in terms of computational expense in the presence
of a large number of observations when computing the covariance function. The
computation involves inverting a matrix as large as the number of training points
and as the number of these grow, the problem becomes more and more expensive.
Sparse extensions of the Gaussian process have been developed to allow for this

222 Breast Cancer Detection

issue to be solved, however they are not addressed in this study [183, 135] . For
this reason, it was not implemented on the WSI data set.

An exhaustive investigation on a 16 × 16 grid of values for the log hyper-
parameters is carried out. The log is introduced to allow for a more peaked
distribution to aid visual comparisons. For each hyperparameter combination, the
approximated log evidence by AIS , BUS+, EP, LA and VI is computed. The
method of Expectation Propagation (EP) [151] has been highlighted to perform
comparably well to AIS for Gaussian process models [132] and as such is also
introduced for performance comparison. Given the optimal performance of BUS+

over nBUSD and BUSSV M on the biomarker data set, the latter methods are
omitted from this study. Figure 7.8 presents the estimated log evidences for the
first dataset of the biomarker study. Using panel (a) (AIS) as the benchmark it
is apparent that the largest log evidences for this example have stemmed from
hyperparameter values roughly in the intervals 2 ≤ log(σf) ≤ 7 and 2 ≤ log(l) ≤ 7.
It is visually apparent that BUS+ (b) shows a general agreement with AIS, with
a slight variation in values towards the highest point of the distribution. Both LA
(d) and VI (e) produce extremely skewed approximations and underestimate the
model evidence.

7.2 Breast Cancer Biomarker Identification 223

(a) AIS (b) BUS+

(c) EP (d) LA

(e) VI

Figure 7.8: Comparison of the log evidence for AIS (a), BUS+ (b), EP (c), LA
(d) and VI (e) using the first data set from the breast cancer biomarker problem.

In terms of the fifth biomarker dataset, Figure 7.9 reveals a flatter distribution
of values in comparison to Figure 7.8. As before, BUS+ (b) follows the contours

224 Breast Cancer Detection

of the AIS (a) estimates closely while again EP (c) proves more accurate than
LA (d) and VI (e). Again both LA and VI produce a skewed distribution with
the model evidence being underestimated. This is in line with results in [165]
and [132] who acknowledge the same shortcomings with LA. In the case of BUS+

and AIS the optimal hyperparameter values in terms of evidence supporting
the observed data were found to belong on the intervals 4 ≤ log(σf) ≤ 5 and
4 ≤ log(l) ≤ 6. From the visual inspection of the model evidence with varying
hyperparameter values, its is apparent that BUS+ produces a similar level of
evidence in support of the respective model with respect to AIS. Each subsequent
optimal hyperparameter pairing which produced both the highest and lowest model
evidence values were identified and used for making predictions. As expected,
all inference methods resulted in a classifier of random guessing with respect to
poorly selected hyperparameters. In terms of the optimal paring, where optimal in
this case refers to the best performing pairing of the observed values, all methods
resulted in AUC values greater than 0.90 and standard errors of the order of
10−1. This is a much better performance than the logistic regression model as is
discussed in Section 7.2.

7.2 Breast Cancer Biomarker Identification 225

(a) AIS (b) BUS+

(c) EP (d) LA

(e) VI

Figure 7.9: Comparison of the log evidence for AIS (a), BUS+ (b), EP (c), LA
(d) and VI (e) using the fifth data set from the biomarker problem.

As previously discussed, in terms of the classification task, the minimization
of FN is of great importance due to the potential ramifications for the patient.

226 Breast Cancer Detection

To investigate the sensitivity of this measure to the choice of hyperparameters,
Figures 7.10 and 7.11 present the number of false negatives for each combination of
hyperparameters. The results are presented in this format following work carried
out in [183]. Despite the variation in model evidence estimation between inference
methods, in all cases the same regions of the hyperparameter space result in low
and high false negative rates. With FN rates reaching maxima of approximately
57% in Figure 7.10 and 61% in Figure 7.10. In the case of Figure 7.11, the
hyperparameter intervals highlighted previously for producing the highest model
evidence values also correspond to the smallest number of FN for BUS+ and
AIS. For all inference approaches, the sensitivity of the FN rate to the selection
of log(σf) is evident through the drastic increase in rates for −1 ≤ log(σf) ≤ 4.
Particularly for 3.5 ≤ log(σf) ≤ 4, where FN rates decrease by 33% and 48% for
each data set. Whereas, the predictive capabilities of the model appear invariant
to the choice of log(l) with respect to log(σf) for the chosen examples.

7.2 Breast Cancer Biomarker Identification 227

(a) AIS (b) BUS+

(c) EP (d) LA

(e) VI

Figure 7.10: Comparison of the number of false negatives for each combination
of hyperparameters for AIS (a), BUS+ (b), EP (c), LA (d) and VI (e) using the
first data set from the biomarker problem

228 Breast Cancer Detection

(a) AIS (b) BUS+

(c) EP (d) LA

(e) VI

Figure 7.11: Comparison of the number of false negatives for each combination
of hyperparameters for AIS (a), BUS+ (b), EP (c), LA (d) and VI (e) using the
fifth data set from the biomarker problem.

7.3 Chapter Summary 229

7.3 Chapter Summary

Motivated by the potential of machine learning techniques in the area of breast
cancer detection, this chapter has presented in-depth applications of the methods
developed during this dissertation. Two cancer detection tasks were considered,
with both data sets differing greatly in dimensionality and number of observations.
The first problem concerns WSI of breast tissue samples. The analysis of tissue
biopsies has traditionally been done through visual inspection with a microscope.
In its current form however, this method is inefficient in terms of diagnosis turn
around time and suffers from variations in the diagnosis itself. Regarding the
latter, two forms of variability can occur among pathologists which result in
uncertainty appearing in the suggested diagnosis. To illustrate the potential
of probabilistic classifiers in offering a degree of confidence to biopsy diagnosis,
the BUS frameworks are implemented in conjunction with logistic regression
using data from ten different patients. Each of BUS+, nBUSD and BUSSV M

are compared in terms of predictive performance, computational expense and
against other widely applied inference approaches. Results highlight the suitability
of BUSSV M over BUS+ and nBUSD to problems containing a large number of
observations.

Aside from uncertainty in the model parameters and predictive output, the
case incorporating uncertainty of the observation class labels is also considered.
Given the aforementioned potential variation between pathologists recommended
diagnosis, the possibility of incorrectly labelled data arises. Inspired by this, a
probabilistic approach which incorporates uncertainty into the parameter esti-
mations is discussed. To protect against the rate of deterioration in classifier
performance for an increasing number of incorrect labels, the relationship between
the model parameters and observed data is altered resulting in a more robust
decision making process. In its current form however, only probabilities of in-
correct labels for the entire training set are provided. The authors acknowledge
that future work is required to ensure a realistic application in the area of cancer
diagnosis.

The second classification task studied, concerns the identification of five year
breast cancer relapse rates based on molecular biomarkers. Biomarker discovery
poses a great challenge in bioinformatics due to the very high dimensionality of
the data combined with a typically small number of observations. In practice, a
Bayesian inference method has to satisfy a wide range of requirements. From the

230 Breast Cancer Detection

experimental results, if runtime and predictive accuracy are a major concerns, then
VI and BUS+ should be considered. Gaussian process classifiers were introduced
to investigate the estimation of the model evidence of each inference method. By
varying the values of the covariance function hyperparameters, a distribution of
the estimated model evidences is generated. If model evidence estimation is of
concern, then BUS+ has been shown to perform comparably well to AIS, while
both LA and VI appear to underestimate this quantity. In terms of false negative
rates, the importance of choosing appropriate hyperparameter values has also
been highlighted.

Chapter 8

Summary and Conclusions

The work carried out in this dissertation was motivated by the requirement of
supervised machine learning algorithms to have unknown parameters which are
representative of the data generation process as inputs. The importance of this can
be seen in the surge of interest in supervised machine learning as a viable solution to
difficult real world problems. In reality, tasks involve different forms of data, some
contain many observations while others expressed in very high dimensions. As
such, the computational efficiency of the modelling process is paramount to ensure
that supervised machine learning is a realistic aid for tasks which are otherwise
done through human interaction. Efficient Bayesian inference methods suitable for
identifying unknown parameters have been proposed. Moreover, a probabilistic
framework has been discussed which accounts for incorrectly labelled data which
directly influences the unknown parameter values. This chapter provides an
overview of the developed ideas, main findings, potential future research avenues
and a summary of publications and awards stemming from this work.

8.1 Summary of Completed Work

Chapter 2 provided an overview of machine learning with a particular emphasis
placed on supervised learning. Supervised learning extracts information from a
training dataset, in order to infer a function which maps the inputs to the desired
outputs. The form of output differs in terms of being discrete or continuous with
classification a representation of the former and regression the latter. Focusing on
the task of classification, the influence of poor parameter estimation on model
accuracy was highlighted.

232 Summary and Conclusions

In Chapter 3, the concept of Bayesian inference as a tool for measuring
uncertainties in model parameters was introduced. While providing a solid
mathematical framework for updating probabilities which are representative of
the parameter uncertainties, a conditional probability distribution referred to as
the posterior is required to be computed. The posterior is a powerful distribution
which allows for unknown parameters to be identified, competing models to be
compared against one another based on the underlying data and predictions to be
made. Due to the complex mathematical formulation of the posterior, sampling
methods like rejection sampling and Markov Chain Monte Carlo (MCMC) have
been used for this computation. The advantages and shortcomings of both methods
were discussed.

In Chapter 4, a framework stemming from an area of engineering referred to
as reliability analysis, was presented for sampling from the posterior distribution.
Through the use of an advanced MCMC method termed Subset Simulation
(SuS), Bayesian Updating using Structural reliability methods (BUS) offers
a robust solution which is suitable to high dimensional tasks and can handle
multi-modal distributions. BUS takes advantage of the low sample acceptance
rates in rejection sampling to interpret the Bayesian updating task as a rare
event. Like rejection sampling, BUS requires the prudent choice of a an input
parameter prior to simulation which dictates both sampling efficiency and the
distribution of the generated samples. A reformulation termed nested BUS

(nBUS) relaxes this constraint by learning the parameter automatically during
simulation. Additionally, automatic stopping is performed to protect against
a deterioration in sample quality. A numerical investigation using engineering
and classification examples reveal the added computational cost associated with
nBUS.

To address this issue, two new stopping criteria which greatly reduce the
number of Total Model Evaluations (TME) during a model run while offering
statistical guarantees of convergence to the posterior distribution are proposed in
Chapter 5. The first criterion, allows for the direct computation of the rejection
principle in regions of the sample space far away from the target domain before
computing the probability of generating a sample from outside the posterior set
once the posterior has been judged to have been reached. In turn, avoiding
extra calls of the likelihood function at every intermediate level. The resulting
method is named nBUSD. The second condition exploits a transition in the

8.2 Summary of Contributions 233

relationship between the probability of failure and model evidence to identify
when to terminate simulation. A distribution is generated for the probability of
failure to allow for the statistical variation stemming from the stochastic nature
of the model evidence. Once all evaluations of the model evidence belong in
a specified interval the algorithm stops. The resulting model is named BUS+.
Computational savings over nBUS along with the proposed methods ability to
maintain sample quality are shown using several benchmark problems.

The emergence of large data sets has reduced the suitability of MCMC based
frameworks to such Bayesian inference tasks. In Chapter 6, Support Vector
Machines (SVM) are incorporated into the BUS framework to reduce the number
of likelihood function evaluations required during a model run. Modifications for
an existing framework named 2SMART which has been developed for reliability
analysis tasks have been proposed while a novel BUSSV M method is presented.
The ability of which to maintain sampling accuracy while requiring fewer TME is
illustrated on problems of complex topology.

To identify the suitability of the developed methods to different data set types,
real life data from problems concerning breast cancer detection are addressed
in Chapter 7. The importance of correctly labelled data is highlighted resulting
in the formulation of a probabilistic approach for incorporating uncertainty sur-
rounding the class labels into the posterior samples. All methods are compared
against widely applied Bayesian inference techniques using a number of different
classification models.

8.2 Summary of Contributions

• Observations of nBUS. As discussed in Chapter 4, the correct choice of
stopping tolerance for the nested loop stopping condition is vital. If chosen
too large, simulation can be terminated before the posterior distribution
is reached. While a value too small, may result in added computational
expense. Additionally, adaptive Conditional Sampling (ACS) is determined
to be the preferred MCMC scheme. This is due to its ability to automatically
tune the standard deviation of the proposal distribution.

• New Stopping Criteria. To alleviate the computational cost associated
with nBUS, two methods referred to as nBUSD and BUS+ are proposed
in Chapter 5. In both cases the requirement to compute additional like-

234 Summary and Conclusions

lihood function calls at every level is avoided while statistical guarantees
of termination are offered. From the numerical experiments in Chapter 7,
in terms of computational expense both methods are best suited to very
high dimensional examples with small numbers of data observations. It is
revealed that BUS+ is the method of choice as nBUSD may require addi-
tional intermediate levels due to satisfying the chosen tolerance of sampling
error.

• Scalability for Large Data Sets. Through the introduction of Sup-
port Vector Machines (SVM), the added computational expense of using
MCMC based methods on large datasets is addressed in Chapter 6. Firstly,
modifications are proposed for the Subset simulation by Support vector
Margin Algorithm for Reliability esTimation (2SMART) method to improve
algorithmic stability and sampling accuracy for Bayesian inference tasks.
Secondly, a new SVM inspired method named BUSSV M is presented. From
the numerical experiments in Chapter 7, in terms of computational expense
BUSSV M is identified as being best suited to data sets containing a large
number of observations.

• Dealing with Incorrectly Labelled Data. A preliminary probabilistic
approach which introduces uncertainty surrounding the class labels of the
data set is discussed in Chapter 7. The framework updates the relationship
between the data and unknown parameters to allow for the posterior samples
to be informed about the possibility of incorrect labels being present in the
data.

• Potential of Machine Learning in Breast Cancer Detection. An in
depth analysis of Whole Slide Image (WSI) and biomarker identification for
breast cancer detection is presented in Chapter 7. Aside from illustrating the
capabilities of the frameworks developed in this dissertation, the potential of
models which are probabilistic in there output for addressing the uncertainty
in predictions done by traditional means is also highlighted. An exhaustive
investigation of model evidence estimation in terms of hyperparameter choice
for Gaussian process classification models reveals the ability of BUS+ in
estimation accuracy with respect to MCMC.

8.3 Research Outlook 235

8.3 Research Outlook

Several research directions can be followed from the work presented in this
dissertation. In the case of BUS, a potential third stopping condition could be
formulated based on the computation of the gradient of the log evidence. As this
quantity becomes constant once the minimum required level has been surpassed,
identifying when the slope is zero would ensure termination of simulation. Given
the stochastic nature of the log evidence, methods from the area of stochastic
optimization [184] would be required to compute the respective approximation.

In terms of the post processor of SuS, relaxing the independent assumption
between the product of beta variables would in theory allow for a more accurate
representation of the uncertainty surrounding the probability of failure estimate.
This may first involve sorting out the potential dependency between the seeds
at each intermediate level. This could potentially allow for the sampling ratio
accounting for sampling error in the credible interval of BUS+ to be relaxed.

Improvements to sample quality will primarily stem from the chosen MCMC
scheme. The possibility of further reducing correlation between generated samples
or developing an analogous framework which efficiently produces independent
samples from the target posterior distribution would be advantageous. With
respect to algorithmic efficiency, alternative approaches for reducing the computa-
tional cost of the likelihood function for large datasets would allow BUS to be
further scalable to such problems. The incorporation of methods existing within
the area of stochastic MCMC [128, 15] may provide the basis for future research.
The highly parallelisable nature of sequential monte carlo (SMC) [63] methods, if
integrated into BUS may also allow for savings in terms of wall clock time.

It is worth noting that BUS with SuS has some similarities with nested
sampling [204] discussed in Chapter 3. Notably, in both algorithms sampling is
performed by means of nested subsets, starting from the prior distribution. Nested
sampling focuses on shrinking intermediate subsets of the prior domain that are
nested. Unlike BUS, nested sampling does not augment the parameter space and
directly operates in the space spanned by the uncertain parameter vector θ while
the manner in which they each estimate the model evidence also differs. Future
work could possibly include a combination of the BUS and nested sampler but is
beyond the scope of this thesis.

A number of extensions to BUSSV M could be made. Firstly, aside from relying
on the class labels to guide the SVM for learning in disjoint areas of the sample

236 Summary and Conclusions

space, the identification of individual clusters and subsequent learning of an
SVM on each cluster could improve localised surrogate quality. Secondly, an
investigation into the suitability of relevance vector machines [216] (RVM) to
replace SVM would allow the uncertainty in the sample acceptance step to be
quantified. Thirdly, automatic choice of parameter which dictates the surrogates
training set size.

The issue of mislabelled training data is clearly a very exciting area of research
in terms of application to cancer diagnosis. A full Bayesian framework, which
learns a local flipping probability parameter during simulation for each data
observation would improve the practicality of the proposed method. By having
the ability to compute local flipping estimates instead of a single global estimate,
potentially mislabelled WSI could be re-analysed by the pathologist.

8.4 Published Work

The following literature and awards were generated from the present dissertation.

8.4.1 Conference Papers

1. P.G.Byrnes, F.A.DiazDelaO, Bayesian Updating for Probabilistic Classi-
fication Using Reliability Methods, Proceedings of the 2nd International
Conference on Uncertainty Quantification in Computational Sciences and
Engineering, UNCECOMP, Rhodes Island, Greece, June 15th − 17th, 2017.

2. P.G.Byrnes, F.A.DiazDelaO, Reliability Based Bayesian Inference for Prob-
abilistic Classification: An Overview of Sampling Schemes, Proceedings of
the 37th International Conference on Innovative Techniques and applications
of Artificial Intelligence, Cambridge, UK, December 12th − 14th, 2017.

3. P.G.Byrnes, F.A.DiazDelaO, Efficient Bayesian Inference by Reliability
Methods: Applications in Supervised Machine Learning, Proceedings of the
International Conference on Pattern Recognition and Artificial Intelligence,
PRAI, New York, USA, August 15th − 17th, 2018.

4. P.G.Byrnes, F.A.DiazDelaO, Kernel Logistic Regression: A Robust Weighting
for Imbalanced Classes with Noisy Labels, Proceedings of the 4th International

8.5 Work Under Review 237

Conference on Machine Learning and Data Engineering, iCMLDE, Sydney,
Australia, December 3rd − 7th, 2018.

8.4.2 Awards

1. Awarded " University of Georgia, USA /University of Liverpool, UK, Doctoral
Student Short-Term International Research Fellowship" April 2018. Hosted
by Dr. Roberto Perdisci at the Department of Computer Science.

2. "Runner Up Best Student Paper Award" for Kernel Logistic Regression: A
Robust Weighting for Imbalanced Classes with Noisy Labels, Proceedings of
the 4th International Conference on Machine Learning and Data Engineering,
iCMLDE, Sydney, Australia, December 3rd − 7th, 2018.

8.5 Work Under Review

1. P.G.Byrnes, F.A.DiazDelaO, Stopping Criteria for Bayesian Inference by Re-
liability Methods, Under Review in Computer Methods in Applied Mechanics
and Engineering .

2. P.G.Byrnes, F.A.DiazDelaO, Scalable Bayesian Inference by Support Vector
Machines, In Preparation.

Appendix A

A.1 Logistic Regression Log-Likelihood

For the derivations in the Appendix allow for some of the notation used during
this dissertation to be reintroduced for the convenience of the reader. Let D =
{(xi, yi)}n

i=1 denote the observed data set comprising of observations x and class
labels y. Let θ denote the unknown model parameters to be inferred and pi the
probability of observation i belonging to class 1. Let the log likelihood of the
logistic regression model be given by

log(L(D|θ)) =
n∑

i=1
[yilog(pi) + (1 − yi)log(1 − pi)] (A.1)

Reintroducing the expression for class membership in terms of the sigmoid function
yields

log(L(D|θ)) =
n∑

i=1

yilog
 1

1 + e−xT
i θ

 + (1 − yi)log
 e−xT

i θ

1 + e−xT
i θ

=
n∑

i=1

log
 e−xT

i θ

1 + e−xT
i θ

 + yi

log
 1

1 + e−xT
i θ

 − log
 e−xT

i θ

1 + e−xT
i θ

=
n∑

i=1

log
 1

1 + exT
i θ

 + yi

log
 1

1 + e−xT
i θ

=
n∑

i=1
[−log(1 + exT

i θ) + yi · xT
i θ] (A.2)

240

A.2 Log-Likelihood First Derivative

For the derivation of the log likelihood taking the gradient with respect to θ yields

∂log(L(D|θ))
∂θ

= ∂

∂θ

n∑
i=1

[−log(1 + exT
i θ) + yi · xT

i θ]

=
n∑

i=1

 − exT
i θ

1 + exT
i θ
xi + yixi

=
n∑

i=1

xi

yi − 1
1 + e−xT

i θ

=
n∑

i=1
(xi[yi − pi]) (A.3)

A.3 Log-Likelihood Second Derivative

For the second derivative it is required to compute the gradient of the above
expression.

∂2log(L(D|θ))
∂2θ

= ∂

∂θ

n∑
i=1

(xi[yi − pi])

= −
n∑

i=1

xi
∂

∂θ
pi

= −
n∑

i=1
xT

i xipi[1 − pi] (A.4)

Appendix B

B.1 Influence of Likelihood Multiplier

In this section, the distribution of samples violating the rejection principle is
derived. Let u be a uniform random variable with support [0, 1], c be the likelihood
multiplier and pA the probability of θ being accepted via the rejection principle.
As outlined in Chapter 3, θ and u are only returned in the event of step 2 of the
rejection sampling algorithm being satisfied. By Bayes theorem let the posterior
distribution of a sample being accepted by the rejection algorithm be given by

P (θ, u|cL(D|θ) > u) = Q(θ)I[cL(D|θ) > u]
pA

(B.1)

Marginalising to isolate θ yields

P (θ|cL(D|θ) > u) = Q(θ)
∫ 1

0 I[cL(D|θ) > u]du
pA

= Q(θ)cL(D|θ)
pA

(B.2)

since
∫ 1

0 I(cL(D|θ) > u)du = cL(D|θ) when cL(D|θ) ≤ 1 for all θ. In the event
of the rejection principle being satisfied, the generated θ is distributed according
to the target posterior distribution. Consider a set A which contains all samples
violating the rejection principle for a given c.

A = {θ ∈ Rd : cL(D|θ) > 1} (B.3)

242

In the case of θ ∈ A, for any θ the sample will be accepted and the indicator
function will equal 1. Meaning that the distribution of θ is given by

P (θ|cL(D|θ) > u) = Q(θ)
∫ 1

0 I[cL(D|θ) > u]du
pA

= Q(θ)
pA

∝ Q(θ) (B.4)

Therefore, for the case of a generated θ violating the rejection principle, the
distribution of the resulting sample is proportional to the prior. This highlights
the influence of choosing c correctly. A value of c greater than the reciprocal
of the maximum of the likelihood function causes the distribution of θ to be
proportional to the prior. While choosing an appropriate value of c ensures the
rejection principle is satisfied, meaning samples are being drawn from the correct
distribution. Therefore a prudent choice of likelihood multiplier is required.

B.2 nBUS Characteristic Trends Derivations 243

B.2 nBUS Characteristic Trends Derivations

The characteristic trends discussed in Chapter 4, may act as an indication that
the minimum required intermediate level has been generated by nBUS. The
following presents derivations of the trends.

B.2.1 Probability of Failure

Firstly, consider the probability of failure pF . Examining the functional behaviour
of ln(pF) reveals a transition which occurs for b > bmin. Let pF be expressed in
terms of the model evidence PD and the failure threshold b.

pF = e−bPD b > bmin (B.5)

The introduction of the natural logarithm yields

ln(pF) = ln(PD) − b (B.6)

Substituting the expression for PD into the above

ln(pF) = ln
e−b

∫
Q(θ)L(D|θ)dθ

 + b− b

= ln(e−b) + ln
 ∫

Q(θ)L(D|θ)dθ
 (B.7)

Taking the gradient of ln(pF) with respect to b reveals

∂ln(pF)
∂b

= −1 (B.8)

Therefore, for any b such that b > bmin the log of the probability of failure exhibits
a trend with a slope of −1.

B.2.2 Model Evidence

From Chapter 4, it was noted that ln(PD) goes from a linearly increasing function
as b increases through a transition stage to remaining constant equal to ln(PD) once
the samples are distributed according to the posterior. For the sake of simplicity
let J(b) represent ln(PD). Firstly, in the case of an intermediate threshold not

244

surpassing the minimum required level, let the gradient of the log evidence for
b < bmin be given by

J(b) = b+ ln(pF), b < bmin (B.9)

At the left tail of the CCDF (Complementary CDF) the pF ≈ 1. Resulting in
ln(pF) = 0 + b. Taking the gradient of J(b) with respect to b

∂J(b)
∂b

= 1 (B.10)

For the case of b > bmin

J(b) = b+ ln
e−b

∫
Q(θ)L(D|θ)dθ

 (B.11)

Computing the gradient of J(b) with respect to b results in

∂J(b)
∂b

= 1 + ∂

∂b
ln(e−b) + ∂

∂b
ln

 ∫
Q(θ)L(D|θ)dθ

= 1 + ∂

∂b
(−b) + 0 = 0, b > bmin (B.12)

Therefore, for any b > bmin, the slope of the log model evidence is 0 as the
generated samples are now distributed according to the posterior while the log
model evidence remains constant.

B.3 Computational Expense of Numerical Examples 245

B.3 Computational Expense of Numerical Ex-
amples

(a) Number of TME for aBUS. (b) Number of TME for nBUS4.

(c) Number of TME for nBUS6. (d) Number of TME for nBUS8.

Figure B.1: Illustration of the required TME for aBUS, nBUS4, nBUS6 and
nBUS8 for drawing posterior samples in example 2.

246

(a) Number of TME for aBUS. (b) Number of TME for nBUS4.

(c) Number of TME for nBUS6. (d) Number of TME for nBUS8.

Figure B.2: Illustration of the required TME for aBUS, nBUS4, nBUS6 and
nBUS8 for drawing posterior samples in example 3.

B.3 Computational Expense of Numerical Examples 247

(a) Number of TME for aBUS. (b) Number of TME for nBUS4.

(c) Number of TME for nBUS6. (d) Number of TME for nBUS8.

Figure B.3: Illustration of the required TME for aBUS, nBUS4, nBUS6 and
nBUS8 for drawing posterior samples in example 4.

Appendix C

C.1 Proof of Corollary 1

Let N denote the number of generated samples, p0 the level probability and m

the number of intermediate levels. Let RHS denote the right hand side of an
expression. The following illustrates that for any p0 < 0.5, the beta PDF of pF

becomes increasingly skewed for an increasing number of intermediate levels. Let
P+

F ∼ Be(α, β) with α > 1 and β > 1. Then for any p0 < 0.5, β > α. Consider
the expressions for β > α to be

(1 − (p0·N+1
N+2)m) · (1 − (p0·N+2

N+3)m)
(p0·N+2

N+3)m − (p0·N+1
N+2)m

>
(p0·N+1

N+2)m · (1 − (p0·N+2
N+3)m)

(p0·N+2
N+3)m − (p0·N+1

N+2)m
(C.1)

Rearranging these expressions allows for them to be simplified to

1 − (p0N+1
N+2)m > (p0N+1

N+2)m (C.2)

Regarding the RHS, given p0 ∈ [0, 1] the expression is less than 1 for all N .
Consequently, satisfying this inequality is equivalent to showing

0.5 > (p0N+1
N+2)m (C.3)

Given the upper bound of the RHS is 1, with respect to m the following holds:

(p0N+1
N+2)1 > (p0N+1

N+2)2 > ... > (p0N+1
N+2)m (C.4)

250

Therefore it is enough to show that the RHS is less than 0.5 in the case of m = 1.

0.5 > p0N+1
N+2 (C.5)

Rearranging these expressions produces

0.5N + 1 > p0N + 1 (C.6)

which holds for any p0 < 0.5. Therefore for any p0 < 0.5, the beta PDF becomes
increasingly skewed as the intermediate levels of BUS+ progress.

C.2 Derivations of CDF and PDF of a Log Transformed Beta Distribution 251

C.2 Derivations of CDF and PDF of a Log Trans-
formed Beta Distribution

As the characteristic trend for the model evidence is in log space, transformations
of the beta PDF and CDF are required. Firstly, consider the case of the CDF.
Let Y = ln(X), where X ∼ B(α, β) and ln the natural logarithm. The CDF is
expressed as

FY (y) = P (Y < y) = P (ln(X) < y) = P (X < ey) (C.7)

From the fundamental theorem of calculus, integrating the PDF of a random
variable produces the subsequent CDF.

FY (y) =
∫ ey

0

1
B(α, β)X

(α−1)(1 −X)(β−1)dy (C.8)

Inversely, the PDF may be derived by differentiating the CDF. Let g−1(y) = ey

and | · | denote the absolute value. The transformed PDF is given by

fY (y) = fX(g−1(y)) | ∂g
−1

∂y
| (C.9)

Replacing the arguments of the standard beta PDF with ey and taking the
derivative of g−1(y) results in the following log transformation

fY (y) = 1
B(α, β)e

y(α−1)(1 − ey)(β−1)ey

= eαy(1 − ey)(β−1)

B(α, β) (C.10)

252

C.3 MAP Derivation of Log Transformation

Having identified in Chapter 5 that the MAP (mode) of the post processor PDF
is equivalent to the pF estimate in standard SuS, the derivation of the MAP of
the log transformed PDF is required. Consider z = y + b, where b ∈ R. Using the
above derivations, for z ≥ b

fZ(z) = eα(z−b)(1 − e(z−b))(β−1)

B(α, β) (C.11)

Letting L(z) represent the numerator while omitting the normalizing constant
and introducing the natural logarithm yields

ln(L(z)) = α(z − b) + (β − 1)ln(1 − e(z−b)) (C.12)

The MAP occurs at the maximum point of the PDF i.e. where the slope is 0.
Consequently, differentiating L(z) with respect to z yields

∂ln(L(z))
z

= α + (β − 1) · −e(z−b)

(1 − e(z−b))

= α− e(z−b)α− e(z−b)β + e(z−b)

(1 − e(z−b))

= α− e(z−b)(α + β − 1)
(1 − e(z−b)) (C.13)

This quantity represents the MAP if and only if it equals 0

α− e(z−b)(α + β − 1) = 0 (C.14)

Simplifying and expressing in terms of z allows for the MAP of the log transformed
beta PDF to be defined.

−e(z−b)(α + β − 1) = −α

=⇒ e(z−b) = α

(α + β − 1)

C.3 MAP Derivation of Log Transformation 253

=⇒ z = ln
 α

(α + β − 1)

 + b (C.15)

In practice, b represents the intermediate threshold of BUS+.

254

C.4 Computational Expense of Numerical Ex-
amples

(a) Number of TME for BUS+. (b) Number of TME for nBUSD.

Figure C.1: Illustration of the required TME for BUS+ and nBUSD for drawing
posterior samples in example 1.

(a) Number of TME for BUS+. (b) Number of TME for nBUSD.

Figure C.2: Illustration of the required TME for BUS+ and nBUSD for drawing
posterior samples in example 2.

C.4 Computational Expense of Numerical Examples 255

(a) Number of TME for BUS+. (b) Number of TME for nBUSD.

Figure C.3: Illustration of the required TME for BUS+ and nBUSD for drawing
posterior samples in example 3.

Bibliography

[1] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. García, L. Sánchez,
and F. Herrera. KEEL Data-Mining Software Tool: Data Set Repository,
Integration of Algorithms and Experimental Analysis Framework. Journal
of Multiple-Valued Logic and Soft Computing, 17:255–287, 2011.

[2] E. Alpaydin. Introduction to machine learning. MIT Press, 2004.

[3] G. Altekar, S. Dwarkadas, J. P. Huelsenbeck, and F. Ronquist. Parallel
Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic
inference. Bioinformatics, 20(3):407–415, feb 2004.

[4] M. Anderberg. Cluster Analysis for Applications,. Technical report, Defense
Technical Information Center, 1973.

[5] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan. An Introduction to
MCMC for Machine Learning. Machine Learning, 50(1/2):5–43, 2003.

[6] C. Andrieu and É. Moulines. On the ergodicity properties of some adaptive
MCMC algorithms. The Annals of Applied Probability, 16(3):1462–1505,
aug 2006.

[7] P. Angelikopoulos, C. Papadimitriou, and P. Koumoutsakos. X-TMCMC:
Adaptive kriging for Bayesian inverse modeling. Computer Methods in
Applied Mechanics and Engineering, 289:409–428, jun 2015.

[8] Y. F. Atchadé, G. O. Roberts, and J. S. Rosenthal. Towards optimal scaling
of metropolis-coupled Markov chain Monte Carlo. Statistics and Computing,
21(4):555–568, oct 2011.

[9] Y. F. Atchadé and J. S. Rosenthal. On Adaptive Markov Chain Monte
Carlo Algorithms.

[10] S. Au and E. Patelli. Rare Event Simulation in Finite-Infinite Dimensional
Space. Reliability Engineering and System Safety, 148:66–77, 2015.

[11] S. K. Au and J. Beck. Estimation of Small Probabilities in High Dimensions
by Subset Simulation. Probabilistic Engineering Mechanics, 16(4):263–277,
2001.

[12] S. K. Au and Y. Wang. Engineering risk assessment and design with subset
simulation. Wiley, 2014.

258 Bibliography

[13] D. Bamber. The area above the ordinal dominance graph and the area
below the receiver operating characteristic graph. Journal of Mathematical
Psychology, 12(4):387–415, nov 1975.

[14] R. Bardenet, A. Doucet, and C. Holmes. An Adaptive Subsampling Approach
for MCMC Inference in Large Datasets. In International Conference of
Machine Learning, 2014.

[15] R. Bardenet, A. Doucet, and C. C. Holmes. On Markov chain Monte Carlo
methods for tall data. Journal of Machine Learning Research, 18:1–43, 2017.

[16] A. Basudhar and S. Missoum. Reliability assessment using probabilistic
support vector machines. International Journal of Reliability and Safety,
7(2):156, 2013.

[17] A. Basudhar, S. Missoum, and A. Harrison Sanchez. Limit state function
identification using Support Vector Machines for discontinuous responses and
disjoint failure domains. Probabilistic Engineering Mechanics, 23(1):1–11,
jan 2008.

[18] D. Bates and D. Watts. Nonlinear regression analysis and its applications.
Wiley, 1988.

[19] J. Beck. Bayesian System Identification and the Bayesian Ockham Razor. In
Eurodyn 2014 proceedings of the 9th International Conference on Structural
Dynamics, Porto, Portugal, 30 June - 2 July 2014, pages 185–192. Faculty
of Engineering], 2014.

[20] J. Beck and S. Au. Bayesian Updating of Structural Models and Reliability
using Markov Chain Monte Carlo Simulation. Journal of Engineering
Mechanics, 128(4):380–391, 2002.

[21] J. L. Beck and K. Yuen. Model Selection Using Response Measure-
ments: Bayesian Probabilistic Approach. Journal of Engineering Mechanics,
130(2):192–203, 2004.

[22] J. L. Beck and K. M. Zuev. Asymptotically Independent Markov Sampling:
a new MCMC scheme for Bayesian Inference. oct 2011.

[23] J. Bect, L. Li, and E. Vazquez. Bayesian Subset Simulation *. arXiv, 2017.

[24] D. R. Bellhouse. The Reverend Thomas Bayes, FRS: A Biography to
Celebrate the Tercentenary of His Birth. Statistical Science, 19(1):3–43,
2004.

[25] R. Bellman. Dynamic programming. Dover Publications, 2003.

[26] Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, J. U. Ca, J. Kandola,
T. Hofmann, T. Poggio, and J. Shawe-Taylor. A Neural Probabilistic
Language Model. Technical report, 2003.

[27] J. Bennett and S. Lanning. The Netflix Prize. Technical report, Netflix,
2007.

Bibliography 259

[28] J. O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer
New York, 1985.

[29] J. O. Berger. The case for objective Bayesian analysis. Bayesian Analysis,
1(3):385–402, sep 2006.

[30] J. O. Berger and R. L. Wolpert. Institute of Mathematical Statistics LEC-
TURE NOTES-MONOGRAPH SERIES The Likelihood Principle (Second
Edition). Institute of Mathematical Statistics, 1988.

[31] J. Bergstra and Y. Bengio. Random Search for Hyper-Parameter Optimiza-
tion. Journal of Machine Learning Research, 13(Feb):281–305, 2012.

[32] W. Betz, I. Papaioannou, J. Beck, and D. Straub. Bayesian inference with
Subset Simulation: Strategies and improvements. Computer Methods in
Applied Mechanics and Engineering, 331(1):72–93, 2018.

[33] W. Betz, I. Papaioannou, and D. Straub. Adaptive variant of the BUS ap-
proach to Bayesian Updating. In 9th International Conference on Structural
Dynamics, EURODYN,Porto,Portugal, 2014.

[34] C. Bishop. Pattern Recognition and Machine Learning. Springer, New York,
2006.

[35] D. Blei, A. Kucukelbir, and J. McAuliffe. Variational Inference: A Review for
Statisticians. Journal of the American Statistical Association, 112(518):859–
877, apr 2017.

[36] J. Bootkrajang and A. Kabán. Multi-class Classification in the Presence
of Labelling Errors. In Proceedings of European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning, pages
345–350, 2011.

[37] J. Bootkrajang and A. Kabán. Label-Noise Robust Logistic Regression and
Its Applications. Machine Learning and Knowledge Discovery in Databases,
Springer B:143–158, 2012.

[38] A. Borri and E. Speranzini. Structural reliability analysis using a standard
deterministic finite element code. Structural Safety, 4:361–382, 1997.

[39] J.-M. Bourinet. Rare-event probability estimation with adaptive support vec-
tor regression surrogates. Reliability Engineering & System Safety, 150:210–
221, jun 2016.

[40] J.-M. Bourinet, F. Deheeger, and M. Lemaire. Assessing small failure
probabilities by combined subset simulation and Support Vector Machines.
Structural Safety, 33(6):343–353, sep 2011.

[41] C. Bouveyron and S. Girard. Robust Supervised Classification with Mixture
Models: Learning from Data and Uncertain Labels. Pattern Recognition,
42(11):306–313, 2009.

260 Bibliography

[42] L. Breiman. Classification and regression trees. Chapman & Hall, 1993.

[43] N. E. Breslow and R. Holubkov. Maximum Likelihood Estimation of Logistic
Regression Parameters Under Two-Phase, Outcome-Dependent Sampling.
Journal of the Royal Statistical Society, 59(2):447–461, 1997.

[44] P. G. Byrnes and F. A. DiazDelaO. Bayesian Updating for Probabilistic
Classification using Reliability Methods. Eccomas Proceedia UNCECOMP,
pages 339–349, 2017.

[45] P. G. Byrnes and F. A. DiazDelaO. Reliability Based Bayesian Inference
for Probabilistic Classification: An Overview of Sampling Schemes. Interna-
tional Conference on Innovative Techniques and Applications of Artificial
Intelligence, 34:250–263, 2017.

[46] B. Calderhead. A general construction for parallelizing Metropolis-Hastings
algorithms. Proceedings of the National Academy of Sciences of the United
States of America, 111(49):17408–17413, dec 2014.

[47] C. Calì and M. Longobardi. Some mathematical properties of the ROC
curve and their applications. Research of Matematica, 64(2):391–402, 2015.

[48] B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betan-
court, M. Brubaker, J. Guo, P. Li, and A. Riddell. Stan : A Probabilistic
Programming Language. Journal of Statistical Software, 76(1):1–32, jan
2017.

[49] G. C. Cawley and N. L. C. Talbot. Preventing Over-Fitting during Model
Selection via Bayesian Regularisation of the Hyper-Parameters. Journal of
Machine Learning Research, 8(Apr):841–861, 2007.

[50] S. Chatterjee and A. Hadi. Regression analysis by example. Wiley, 2012.

[51] D. Chauveau and P. Vandekerkhove. Improving Convergence of the Hastings-
Metropolis Algorithm with an Adaptive Proposal.

[52] T. Chen, E. Fox, and C. Guestrin. Stochastic gradient hamiltonian monte
carlo. In Proceedings of the 31st International Conference on Machine
Learning, pages 1683–1691, 2014.

[53] J. Ching and J.-S. Wang. Application of the transitional Markov chain
Monte Carlo algorithm to probabilistic site characterization. Engineering
Geology, 203:151–167, mar 2016.

[54] S. Ching and Y. Chen. Transitional Markov Chain Monte Carlo Method
for Bayesian Model Updating, Model Class Selection, and Model Averaging.
Journal of Engineering Mechanics, 133(7):816–832, 2007.

[55] H. A. Chipman, E. I. George, and R. E. Mcculloch. BART: Bayesian
Additive Regression Trees. Technical report, 2008.

Bibliography 261

[56] D. Cireşan, U. Meier, J. Masci, and J. Schmidhuber. Multi-column deep
neural network for traffic sign classification. Neural Networks, 32:333–338,
aug 2012.

[57] D. Cook, P. Dixon, W. M. Duckworth, M. S. Kaiser, K. Koehler, W. Q.
Meeker, and W. R. Stephenson. Binary Response and Logistic Regression
Analysis. Technical report, Iowa State, 2001.

[58] C. Cortes. Support-Vector Networks. Machine learning, 20(3):273–297,
1995.

[59] F. Cui and M. Ghosn. Implementation of machine learning techniques into
the Subset Simulation method. Structural Safety, 79:12–25, 2019.

[60] Y. Cun and H. Fröhlich. Prognostic gene signatures for patient stratification
in breast cancer - accuracy, stability and interpretability of gene selection
approaches using prior knowledge on protein-protein interactions. BMC
Bioinformatics, 13(1):69, dec 2012.

[61] S. A. Czepiel. Maximum Likelihood Estimation of Logistic Regression
Models: Theory and Implementation. Technical report, Direct Partners,
2011.

[62] T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning.
Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., Hoboken,
NJ, USA, may 2003.

[63] P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers.
Journal of the Royal Statistical Society: Series B (Statistical Methodology),
68(3):411–436, jun 2006.

[64] J.-F. Delmas and B. Jourdain. Does Waste Recycling Really Improve
the Multi-Proposal Metropolis–Hastings algorithm? an Analysis Based on
Control Variates. Journal of Applied Probability, 46(4):938–959, dec 2009.

[65] J. Deng, W. Dong, R. Socher, L. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009.

[66] A. Der Kiureghian and P. Liu. Structural Reliability under Incomplete
Probability Information. Journal of Engineering Mechanics, 112(1):85–104,
jan 1986.

[67] F. A. DiazDelaO, A. Garbuno-Indigo, S. Au, and I. Yoshida. Bayesian
Updating and Model Class Selection with Subset Simulation. Computer
Methods in Applied Mechanics and Engineering, 317:1102–1221, 2017.

[68] N. Draper and H. Smith. Applied Regression Analysis. John Wiley & Sons,
1998.

[69] D. Dua and C. Graff. UCI Machine Learning Repository. arXiv, 2019.

262 Bibliography

[70] S. Duane, A. Kennedy, B. Pendleton, and D. Roweth. Hybrid Monte Carlo.
Physics Letters B, 195(2):216–222, 1987.

[71] D. J. Earl and M. W. Deem. Parallel tempering: Theory, applications, and
new perspectives. Physical Chemistry Chemical Physics, 7(23):3910, nov
2005.

[72] B. Echard, N. Gayton, and M. Lemaire. AK-MCS: An active learning
reliability method combining Kriging and Monte Carlo Simulation. Structural
Safety, 33:145–154, 2011.

[73] A. W. Edwards. Likelihood. Johns Hopkins University Press, 1992.

[74] R. Ellsworth, J. Hooke, B. Love, D. Ellsworth, and C. Shriver. Molecular
Changes in Primary Breast Tumors and the Nottingham Histologic Score.
Pathology & Oncology Research, 15(4):541–547, dec 2009.

[75] A. Erraqabi, M. Valko, A. Carpentier, and O.-A. Maillard. Pliable rejection
sampling. ICML 2016, jun 2016.

[76] D. Y. Fan. The distribution of the product of independent beta variables.
Communications in Statistics - Theory and Methods, 20(12):4043–4052, 1991.

[77] B. Frenay and M. Verleysen. Classification in the Presence of Label Noise:
A Survey. IEEE Transactions on Neural Networks and Learning Systems,
25(5):845–869, 2014.

[78] D. Gamberger, N. Lavrav, and S. Dzeroski. Noise elimination in inductive
concept learning: a case study in medical diagnosis. In Proceedings of
7th International Workshop Algorithmic Learning Theory, Sydney:199–212,
1996.

[79] D. Gamerman and H. F. Lopes. Markov chain Monte Carlo : stochastic
simulation for Bayesian inference. Taylor & Francis, 2006.

[80] P. H. Garthwaite, J. B. Kadane, and A. O’hagan. Statistical Methods
for Eliciting Probability Distributions. Journal of the American Statistical
Association, 100(470):680–701, 2005.

[81] A. Gelman, J. Carlin, S. Stern, and D. Rubin. Bayesian Data Analysis.
Taylor and Francis, Florida, 2014.

[82] A. Gelman, G. Roberts, and W. Gilks. Efficient Metropolis Jumping Rules.
Bayesian Statistics, 5:599–607, 1996.

[83] A. Gelman and A. Rubin. Inference from Iterative Simulation Using Multiple
Sequences. Statistical Science, 7(4):457–472, 1992.

[84] S. Geman and D. Geman. Stochastic Relaxation, Gibbs Distributions, and
the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-6(6):721–741, nov 1984.

[85] C. J. Geyer. Markov Chain Monte Carlo Maximum Likelihood. 1991.

Bibliography 263

[86] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov chain Monte
Carlo in practice. Chapman & Hall, 1996.

[87] W. R. Gilks, G. O. Roberts, and E. I. George. Adaptive Direction Sampling.
The Statistician, 43(1):179, 1994.

[88] W. R. Gilks, G. O. Roberts, and S. K. Sahu. Adaptive Markov Chain Monte
Carlo through Regeneration. Journal of the American Statistical Association,
93(443):1045–1054, sep 1998.

[89] W. R. Gilks and P. Wild. Adaptive Rejection Sampling for Gibbs Sampling.
Applied Statistics, 41(2):337, 1992.

[90] D. Giovanis, I. Papaioannou, D. Straub, and V. Papadopoulos. Bayesian
updating with subset simulation using artificial neural networks. Computer
Methods in Applied Mechanics and Engineering, 319:124–145, 2017.

[91] M. Girolami. Bayesian inference for differential equations. Theoretical
Computer Science, 408(1):4–16, nov 2008.

[92] I. J. Good. The Bayesian Influence, or How to Sweep Subjectivism under
the Carpet. In Foundations of Probability Theory, Statistical Inference,
and Statistical Theories of Science, pages 125–174. Springer Netherlands,
Dordrecht, 1976.

[93] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning.

[94] D. M. Green and J. A. Swets. Signal detection theory and psychophysics.
Peninsula Pub, 1988.

[95] P. J. Green. Reversible jump Markov chain monte carlo computation and
Bayesian model determination. Biometrika, 82(4):711–732, dec 1995.

[96] P. L. Green and K. Worden. Bayesian and Markov chain Monte Carlo
methods for identifying nonlinear systems in the presence of uncertainty.
Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 373(2051):20140405, sep 2015.

[97] H. Haario, M. Laine, A. Mira, and E. Saksman. DRAM: Efficient adaptive
MCMC. Statistics and Computing, 16(4):339–354, dec 2006.

[98] H. Haario, E. Saksman, and J. Tamminen. Adaptive proposal distribution
for random walk Metropolis algorithm. Computational Statistics, 14(3):375,
1999.

[99] H. Haario, E. Saksman, and J. Tamminen. An Adaptive Metropolis Algo-
rithm. Bernoulli, 7(2):223, apr 2001.

[100] H. Haario, E. Saksman, and J. Tamminen. Componentwise adaptation
for high dimensional MCMC. Computational Statistics, 20(2):265–273, jun
2005.

264 Bibliography

[101] A. Hajek. Interpretations of Probability. Stanford encyclopedia of philosophy.,
1(1), 2002.

[102] J. A. Hanley and B.Mcneil. The Meaning and Use of the Area Under a
Receiver Operating Characteristic (ROC) Curve. Radiology, 143(1):29–36,
1982.

[103] J. A. Hanley and B. J. McNeil. A method of comparing the areas under re-
ceiver operating characteristic curves derived from the same cases. Radiology,
148(3):839–43, sep 1983.

[104] W. Hardle. Applied nonparametric regression. Cambridge University Press,
1990.

[105] W. Hastings. Monte Carlo Sampling Methods Using Markov Chains and
Their Applications. Biometrika, 7(1):97–109, 1970.

[106] M. D. Hoffman and A. Gelman. The No-U-Turn Sampler: Adaptively
Setting Path Lengths in Hamiltonian Monte Carlo. Journal of Machine
Learning Research, 15:1593–1623, 2014.

[107] D. Hosmer, S. Lemeshow, and R. X. Sturdivant. Applied logistic regression.
Wiley-Interscience, 2013.

[108] P. Hristov, F. DiazDelaO, U. Farooq, and K. Kubiak. Adaptive Gaussian
process emulators for efficient reliability analysis. Applied Mathematical
Modelling, 71:138–151, jul 2019.

[109] C.-W. Hsu, C.-C. Chang, and C.-J. Lin. A Practical Guide to Support
Vector Classification. arXiv, 2003.

[110] J. E. Hurtado. An examination of methods for approximating implicit limit
state functions from the viewpoint of statistical learning theory. Structural
Safety, 26(3):271–293, jul 2004.

[111] J. E. Hurtado. Structural reliability : statistical learning perspectives.
Springer, 2004.

[112] J. E. Hurtado. Filtered importance sampling with support vector margin:
A powerful method for structural reliability analysis. Structural Safety,
29(1):2–15, jan 2007.

[113] P. Jeatrakul, K. Wong, and C. Fung. Data cleaning for classification using
mislcassification analysis. Journal of Advanced Computational Intelligence
and Intelligent Informatics, 14(3):297–302, 2010.

[114] H. Jeffreys. An invariant form for the prior probability in estimation prob-
lems. Proceedings of the Royal Society of London. Series A. Mathematical
and Physical Sciences, 186(1007):453–461, sep 1946.

[115] H. Jeffreys. Theory of probability. Clarendon Press, 1998.

Bibliography 265

[116] R. I. Jennrich and P. F. Sampson. Newton-Raphson and Related Algorithms
for Maximum Likelihood Variance Component Estimation. Technometrics,
18(1):11, feb 1976.

[117] R. E. Kass, B. P. Carlin, A. Gelman, and R. M. Neal. Markov Chain Monte
Carlo in Practice: A Roundtable Discussion. The American Statistician,
52(2):93, may 1998.

[118] R. E. Kass and A. E. Raftery. Bayes Factors. Journal of the American
Statistical Association, 90(430):773, jun 1995.

[119] L. Kaufman and P. Rousseeuw. Finding groups in data : an introduction to
cluster analysis. Wiley, 1990.

[120] S. Keerthi and C. Lin. Asymptotic Behaviors of Support Vector Machines
with Gaussian Kernel. Neural Computation, 15(7):1667–1689, jul 2003.

[121] M. C. Kennedy and A. O’Hagan. Bayesian calibration of computer models.
Journal of the Royal Statistical Society: Series B (Statistical Methodology),
63(3):425–464, aug 2001.

[122] M. Khoshgoftaar T. and Rebours P. Generating Multiple Noise Elimination
Filters with the Ensemble-Partitioning Filter. In Proceedings of IEEE
International Conference on Information Reuse and Information for Data
Science, Las Vegas:369–375, 2014.

[123] J. Kim. Estimating classification error rate: Repeated cross-validation,
repeated hold-out and bootstrap. Computational Statistics & Data Analysis,
53(11):3735–3745, sep 2009.

[124] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science (New York, N.Y.), 220(4598):671–80, may 1983.

[125] D. A. Kofke. On the acceptance probability of replica-exchange Monte Carlo
trials. The Journal of Chemical Physics, 117(15):6911–6914, oct 2002.

[126] A. Kolmogoroff. Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer
Berlin Heidelberg, 1933.

[127] A. Kone and D. A. Kofke. Selection of temperature intervals for parallel-
tempering simulations. The Journal of Chemical Physics, 122(20):206101,
may 2005.

[128] A. Korattikara, Y. Chen, and M. Welling. Austerity in MCMC Land:
Cutting the Metropolis-Hastings Budget. In International Conference of
Machine Learning, 2014.

[129] S. C. Kou, Q. Zhou, and W. H. Wong. Equi-energy sampler with applications
in statistical inference and statistical mechanics. The Annals of Statistics,
34(4):1581–1619, aug 2006.

[130] B. Krawczyk. Learning from imbalanced data: open challenges and future
directions. Progress in Artificial Intelligence, 5(4):221–232, 2016.

266 Bibliography

[131] M. Kuderer, S. Gulati, and W. Burgard. Learning driving styles for au-
tonomous vehicles from demonstration. In 2015 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 2641–2646. IEEE, may
2015.

[132] M. Kuss and C. E. Rasmussen. Assessing Approximate Inference for Binary
Gaussian Process Classification. Journal of Machine Learning Research,
6(Oct):1679–1704, 2005.

[133] P. Laplace. A Philosophical Essay on Probabilities. Dover Publications Inc,
New York, 1814.

[134] N. D. Lawrence and B. Schölkopf. Estimating a Kernel Fisher Discriminant
in the Presence of Label Noise. In Proceedings of the 18th International
Conference on Machine Learning, San Franci:306–313, 2001.

[135] N. D. Lawrence, M. Seeger, and R. Herbich. Fast sparse Gaussian process
methods: the informative vector machine. In Proceedings of the 15th In-
ternational Conference on Neural Information Processing Systems, pages
625–632, 2002.

[136] R. Levy. Probabilistic Models in the Study of Language. Technical report,
University of California San Diego, 2012.

[137] S. Li and W. K. Liu. Meshfree and particle methods and their applications.
Applied Mechanics Reviews, 55(1):1–34, jan 2002.

[138] A. Liaw and M. Wiener. Classification and regression by randomForest,
2007.

[139] L. Lin, K. F. Liu, and J. Sloan. A noisy Monte Carlo algorithm. Physical
Review D, 61(7):074505, mar 2000.

[140] J. S. Liu, F. Liang, and W. H. Wong. The Multiple-Try Method and Local
Optimization in Metropolis Sampling. Journal of the American Statistical
Association, 95(449):121–134, mar 2000.

[141] D. Lunn, D. Spiegelhalter, A. Thomas, and N. Best. The BUGS project:
Evolution, critique and future directions. Statistics in Medicine, 28(25):3049–
3067, nov 2009.

[142] D. J. C. MacKay. Information theory, inference, and learning algorithms.
Cambridge University Press, 2003.

[143] D. Malakoff. Bayes offers a ’new’ way to make sense of numbers. Science
(New York, N.Y.), 286(5444):1460–4, nov 1999.

[144] M. Manica, J. Cadow, R. Mathis, and M. Rodríguez Martínez. PIMKL:
Pathway-Induced Multiple Kernel Learning. npj Systems Biology and Appli-
cations, 5(1):8, dec 2019.

[145] E. Marinari and G. Parisi. Simulated Tempering: A New Monte Carlo
Scheme. Europhysics Letters (EPL), 19(6):451–458, jul 1992.

Bibliography 267

[146] L. Martino and J. Míguez. A generalization of the adaptive rejection
sampling algorithm. Statistics and Computing, 21(4):633–647, oct 2011.

[147] I. McGraw, R. Prabhavalkar, R. Alvarez, M. Arenas, K. Rao, D. Rybach,
O. Alsharif, H. Sak, A. Gruenstein, F. Beaufays, and C. Parada. Personalized
speech recognition on mobile devices. In 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 5955–5959.
IEEE, mar 2016.

[148] S. W. Menard. Applied logistic regression analysis. Sage Publications, 2002.

[149] F. Miao and M. Ghosn. Modified subset simulation method for reliability
analysis of structural systems. Structural Safety, 33(4-5):251–260, jul 2011.

[150] B. Miasojedow, E. Moulines, and M. Vihola. An Adaptive Parallel Tempering
Algorithm. Journal of Computational and Graphical Statistics, 22(3):649–
664, jul 2013.

[151] T. P. Minka. Expectation Propagation for approximate Bayesian inference.
In Proceedings of the Seventeenth Conference on Uncertainty in Artificial
Intelligence (UAI2001), 2001.

[152] L. Miranda A., P. Garcia L., C. Carvalho A., and C. Lorena A. Use of
Classification Algorithms in Noise Detection and Elimination. In Proceed-
ings of 4th International Conference Hybrid Artificial Intelligence Systems,
Spain:417–424, 2009.

[153] T. M. Mitchell. Machine Learning. McGraw-Hill Book Company Inc., 1997.

[154] J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian methods
for seeking the extremum. Towards Global Optimization, 2:117–129, 1978.

[155] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine
learning. MIT Press, 2012.

[156] A. M. Mood. Introduction to the Theory of Statistics. McGraw-Hill Book
Company Inc., 1950.

[157] K. P. Murphy. Machine learning : a probabilistic perspective. MIT Press,
2012.

[158] K. P. Murphy. Machine learning : a probabilistic perspective. MIT Press,
2012.

[159] P. Mykland, L. Tierney, and B. Yu. Regeneration in Markov Chain Samplers.
Journal of the American Statistical Association, 90(429):233, mar 1995.

[160] I. J. Myung. Tutorial on maximum likelihood estimation. Journal of
Mathematical Psychology, 47:90–100, 2003.

[161] R. M. Neal. Bayesian Learning for Neural Networks, volume 118 of Lecture
Notes in Statistics. Springer New York, New York, NY, 1996.

268 Bibliography

[162] R. M. Neal. Annealed importance sampling. Statistics and Computing,
1(11):125–139, 2001.

[163] R. M. Neal. Slice sampling. The Annals of Statistics, 31(3):705–767, jun
2003.

[164] W. Neiswanger, C. Wang, and E. P. Xing. Asymptotically Exact, Embar-
rassingly Parallel MCMC. In Proceedings of the conference on Uncertainty
in Artificial INtelligence, 2014.

[165] H. Nickisch and C. E. Rasmussen. Approximations for Binary Gaussian
Process Classification. Journal of Machine Learning Research, 9(Oct):2035–
2078, 2008.

[166] N.Metropolis, A.W.Rosenbluth, M.N.Rosenbluth, A.H.Teller, and E.Teller.
Equations of state calculations by fast computing machines. The Journal of
Chemical Physics, 21(6):1087–1092, 1953.

[167] O. Ore. Pascal and the Invention of Probability Theory. The American
Mathematical Monthly, 67(5):409–419, may 1960.

[168] J. Pacheco, S. Casado, and L. Núñez. A variable selection method based on
Tabu search for logistic regression models. European Journal of Operational
Research, 199(2):506–511, dec 2009.

[169] Q. Pan and D. Dias. An efficient reliability method combining adaptive
Support Vector Machine and Monte Carlo Simulation. Structural Safety,
67:85–95, jul 2017.

[170] V. Papadopoulos, D. G. Giovanis, N. D. Lagaros, and M. Papadrakakis.
Accelerated subset simulation with neural networks for reliability analysis.
Computer Methods in Applied Mechanics and Engineering, 223-224:70–80,
jun 2012.

[171] M. Papadrakakis, V. Papadopoulos, and N. D. Lagaros. Structural reliability
analyis of elastic-plastic structures using neural networks and Monte Carlo
simulation. Computer Methods in Applied Mechanics and Engineering,
136(1-2):145–163, sep 1996.

[172] I. Papaioannou, W. Betz, K. Zwirglmaier, and D. Straub. MCMC algorithms
for Subset Simulation. Probabilistic Engineering Mechanics, 41:89–103, 2015.

[173] P. Pati, S. Andani, M. Palhares Viana, M. Gabrani, P. Wild, J. H. Ruschoff,
and M. Pediaditis. Deep positive-unlabeled learning for region of interest
localization in breast tissue images. In M. N. Gurcan and J. E. Tomaszewski,
editors, Medical Imaging 2018: Digital Pathology, page 3. SPIE, mar 2018.

[174] C. S. Peirce. Notes on the Doctrine of Chances. In Dispositions, pages
237–245. Springer, Dordrecht, 1978.

[175] J. C. Platt. Sequential Minimal Optimization: A Fast Algorithm for Training
Support Vector Machines. Technical report, Microsoft Research, 1998.

Bibliography 269

[176] J. C. Platt. Probabilistic Outputs for Support Vector Machines and Com-
parisons to Regularized Likelihood Methods. Advances in Large Margin
Classifiers, pages 61—-74, 1999.

[177] M. T. Plummer. JAGS: A program for analysis of Bayesian graphical models
using Gibbs sampling, 2003.

[178] K. R. Popper. The Propensity Interpretation of the Calculus of Probability,
and the Quantum Theory. The Colston Papers, 9:65–70, 1957.

[179] P.Pati, S.Andani, M.Pediaditis, M.P.Viana, J.H.Ruschoff, P.Wild, and
M.Gabrani. Deep positive-unlabeled learning for region of interest localiza-
tion in breast tissue images. In Medical Imaging 2018: Digital Pathology,
volume 10581, page 1058107, 2018.

[180] S. J. Press. Subjective and objective Bayesian statistics : principles, models,
and applications. Wiley-Interscience, 2003.

[181] N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and
P. Kevin Tucker. Surrogate-based analysis and optimization. Progress in
Aerospace Sciences, 41(1):1–28, jan 2005.

[182] E. Rahm and H. Hai Do. Data Cleaning:Problems and Current Approaches.
Bulletin of the Technical Committee on Data Engineering, 23(4):1—-42,
2000.

[183] C. Rasmussen. Gaussian Processes in Machine Learning. In Gaussian
Processes in Machine Learning, pages 63–71. Springer, Berlin, Heidelberg,
2004.

[184] H. Robbins and S. Monro. A Stochastic Approximation Method. The Annals
of Mathematical Statistics, 22(3):400–407, sep 1951.

[185] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer
New York, 2004.

[186] C. P. Robert, V. Elvira, N. Tawn, and C. Wu. Accelerating MCMC
algorithms. Wiley Interdisciplinary Reviews: Computational Statistics,
10(5):e1435, sep 2018.

[187] G. O. Roberts, A. Gelman, and W. R. Gilks. Weak convergence and optimal
scaling of random walk Metropolis algorithms. The Annals of Applied
Probability, 7(1):110–120, feb 1997.

[188] G. O. Roberts and J. S. Rosenthal. Optimal scaling for various Metropolis-
Hastings algorithms. Statistical Science, 16(4):351–367, nov 2001.

[189] C. M. Rocco and J. A. Moreno. Fast Monte Carlo reliability evaluation
using support vector machine. Reliability Engineering & System Safety,
76(3):237–243, jun 2002.

[190] M. Rosenblatt. Remarks on a Multivariate Transformation. The Annals of
Mathematical Statistics, 23(3):470–472, sep 1952.

270 Bibliography

[191] J. Rosenthal. Optimizing and Adapting the Metropolis Algorithm. In
Statistics in Action. Chapman and Hall/CRC, mar 2014.

[192] S. K. Sahu and A. A. Zhigljavsky. Self-regenerative Markov chain Monte
Carlo with adaptation. Bernoulli, 9(3):395–422, jun 2003.

[193] A. L. Samuel. Some Studies in Machine Learning Using the Game of
Checkers. IBM Journal of Research and Development, 3(3):210–229, jul
1959.

[194] J. Sanchez del Rio, D. Moctezuma, C. Conde, I. Martin de Diego, and
E. Cabello. Automated border control e-gates and facial recognition systems.
Computers & Security, 62:49–72, sep 2016.

[195] Sang-Bum Kim, Kyoung-Soo Han, Hae-Chang Rim, and Sung Hyon Myaeng.
Some Effective Techniques for Naive Bayes Text Classification. IEEE
Transactions on Knowledge and Data Engineering, 18(11):1457–1466, nov
2006.

[196] A. Santoso, K. Phoon, and S. Quek. Modified Metropolis–Hastings algorithm
with reduced chain correlation for efficient subset simulation. Probabilistic
Engineering Mechanics, 26(2):331–341, apr 2011.

[197] J. A. Scales and L. Tenorio. Tutorial Prior information and uncertainty in
inverse problems. Technical Report 2.

[198] S. L. Scott, A. W. Blocker, F. V. Bonassi, H. A. Chipman, E. I. George,
and R. E. McCulloch. Bayes and big data: the consensus Monte Carlo
algorithm. International Journal of Management Science and Engineering
Management, 11(2):78–88, apr 2016.

[199] G. A. F. Seber and A. J. Lee. Linear regression analysis. Wiley-Interscience,
2003.

[200] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning :
from theory to algorithms. University Cambridge Press, 2014.

[201] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis.
Cambridge University Press, 2004.

[202] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui,
L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis. Mastering
the game of Go without human knowledge. Nature, 550(7676):354–359, oct
2017.

[203] D. S. Sivia and J. J. Skilling. Data analysis : a Bayesian tutorial. Oxford
University Press, 2006.

[204] J. Skilling. Nested sampling for general Bayesian computation. Bayesian
Analysis, 1(4):833–859, dec 2006.

Bibliography 271

[205] R. Smith. Uncertainty quantification : theory, implementation, and applica-
tions.

[206] J. Snoek, H. Larochelle, and R. Adams. Practical Bayesian optimization
of machine learning algorithms. In Proceedings of the 25th International
Conference on Neural Information Processing Systems, pages 2951–2959,
2012.

[207] D. F. Specht. Probabilistic neural networks. Neural Networks, 3(1):109–118,
jan 1990.

[208] D. Straub and I. Papaioannou. Bayesian Updating with Structural Reliability
Methods. Journal of Engineering Mechanics, 141(3):455–461, 2015.

[209] R. Sutton and A. Barto. Reinforcement learning : an introduction. MIT
Press, 1998.

[210] R. H. Swendsen and J.-S. Wang. Replica Monte Carlo Simulation of Spin-
Glasses. Physical Review Letters, 57(21):2607–2609, nov 1986.

[211] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to data mining.
Pearson Addison Wesley, 2005.

[212] J. Tang and A. K. Gupta. On the distribution of the product of independent
beta random variables. Statistics & Probability Letters, 2(3):165–168, 1984.

[213] A. I. Taylor. Autosomal trisomy syndromes: a detailed study of 27 cases of
Edwards’ syndrome and 27 cases of Patau’s syndrome. Journal of medical
genetics, 5(3):227–52, sep 1968.

[214] L. Tierney. Markov Chains for Exploring Posterior Distributions. The
Annals of Statistics, 22(4):1701–1728, dec 1994.

[215] L. Tierney and J. B. Kadane. Accurate Approximations for Posterior
Moments and Marginal Densities. Journal of the American Statistical
Society, 81(393):82–86, 1986.

[216] M. E. Tipping. Sparse Bayesian learning and the relevance vector machine.
Journal of machine learning research, 1(Jun):211–244, 2001.

[217] J. W. Tukey and S. Wilks. Approximation of the Distribution of the Product
of Beta Variables by a Single Beta Variable. The Annals of Mathematical
Statistics, 17(3):318–324, 1946.

[218] C. Van Der Malsburg. Frank Rosenblatt: Principles of Neurodynamics:
Perceptrons and the Theory of Brain Mechanisms. In Brain Theory, pages
245–248. Springer Berlin Heidelberg, Berlin, Heidelberg, 1986.

[219] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer New
York, 1995.

272 Bibliography

[220] J. A. Vrugt, C. ter Braak, C. Diks, B. A. Robinson, J. M. Hyman, and D. Hig-
don. Accelerating Markov Chain Monte Carlo Simulation by Differential
Evolution with Self-Adaptive Randomized Subspace Sampling. International
Journal of Nonlinear Sciences and Numerical Simulation, 10(3), jan 2009.

[221] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers. ChestX-
ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-
Supervised Classification and Localization of Common Thorax Diseases. In
Computer Vision and Pattern Recognition, pages 3462–3471, may 2017.

[222] G. M. Weiss. Mining with Rarity: A Unifying Framework. SIGKDD Explor.
Newsl., 6(1), 2004.

[223] M. Welling and Y. Teh. Bayesian learning via stochastic gradient langevin
dynamics. Proceedings of the 28th International Conference on International
Conference on Machine Learning, pages 681–688, 2011.

[224] J. F. Wendt, J. D. Anderson, and Von Karman Institute for Fluid Dynamics.
Computational fluid dynamics : an introduction. Springer, 2008.

[225] D. Wilks. Cluster Analysis. International Geophysics, 100:603–616, jan
2011.

[226] D. Williamson and M. Goldstein. Posterior Belief Assessment: Extracting
Meaningful Subjective Judgements from Bayesian Analyses with Complex
Statistical Models. Bayesian Analysis, 10(4):877–908, 2015.

[227] R. Xu and I. Wunsch D. Survey of Clustering Algorithms. IEEE Transactions
on Neural Networks, 16(3):645–678, 2005.

[228] R. Yang and J. O. Berger. A Catalog of Noninformative Priors. Technical
report, Duke University, 1998.

[229] C. Yin and A. Kareem. Computation of failure probability via hierarchical
clustering. Structural Safety, 61:67–77, jul 2016.

[230] K. Yuen. Bayesian Methods for Structural Dynamics and Civil Engineering.
John Wiley & Sons, 2010.

[231] R. Zhang, C. Li, J. Zhang, C. Chen, and A. G. Wilson. Cyclical Stochastic
Gradient MCMC for Bayesian Deep Learning. arXiv, 2019.

[232] X. Zhu. Semi-Supervised Learning Literature Survey. Technical report,
Univeristy of Wisconsin-Madison, 2006.

[233] K. Zuev. Subset Simulation Method for Rare Event Estimation: An Intro-
duction. Technical report, ZuevSuSIntro.

[234] K. Zuev. Statistical Inference. SSRN Electronic Journal, feb 2018.

[235] K. Zuev, J. Beck, S. K. Au, and L. S. Katafygiotis. Bayesian post pro-
cessor and other enhancements of Subset Simulation for estimating failure
probabilities in high dimensions. Computers and Structures, 92-93:283–296,
2012.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Aims and Objectives
	1.3 Thesis Outline

	2 Machine Learning
	2.1 Introduction
	2.2 Supervised Learning
	2.2.1 Regression
	2.2.2 Classification
	2.2.3 Performance Evaluation

	2.3 Chapter Summary

	3 Bayesian Inference
	3.1 Introduction
	3.2 The Posterior Distribution
	3.2.1 Model Class Selection
	3.2.2 Predictive Posterior

	3.3 Methods for Bayesian Inference
	3.3.1 Maximum A Posteriori (MAP) Estimation
	3.3.2 Rejection Sampling
	3.3.3 Markov Chain Monte Carlo
	3.3.4 Gibbs Sampling
	3.3.5 Metropolis Hastings

	3.4 Advanced MCMC Methods
	3.4.1 Adaptive MCMC
	3.4.2 Auxiliary MCMC
	3.4.3 Annealing Methods
	3.4.4 Model Evidence Estimation

	3.5 Chapter Summary

	4 Bayesian Updating with Structural reliability methods (BUS)
	4.1 Reliability Analysis
	4.1.1 Transformation of Input Variables

	4.2 Subset Simulation
	4.2.1 Subset Simulation: The Role of MCMC

	4.3 BUS
	4.3.1 Adaptive BUS (aBUS)
	4.3.2 Nested BUS (nBUS)

	4.4 Stopping Criteria
	4.4.1 aBUS and BUS
	4.4.2 nBUS

	4.5 Numerical Applications
	4.5.1 Benchmark Problems
	4.5.2 Statistical and Evidence Estimation
	4.5.3 Computational Expense
	4.5.4 Hand Written Digits and Image Classification

	4.6 Chapter Summary

	5 New BUS Stopping Conditions
	5.1 Direct Stopping
	5.1.1 Progression of Likelihood Multiplier
	5.1.2 Sampling Error

	5.2 Robust Stopping
	5.2.1 Bayesian Post Processor for Subset Simulation
	5.2.2 Bayesian Post Processor with BUS
	5.2.3 BUS Variations

	5.3 Numerical Applications
	5.3.1 Computational Expense
	5.3.2 Statistical and Evidence Estimation
	5.3.3 Hand Written Digits and Image Classification

	5.4 Comments on Sampler Convergence
	5.5 MCMC Schemes: Influence on Efficiency
	5.6 Chapter Summary

	6 BUS for Big Data
	6.1 Introduction
	6.1.1 Problem Formulation

	6.2 SVM Inspired Reliability Samplers
	6.2.1 2SMART Method Overview
	6.2.2 Observations and Potential Improvements
	6.2.3 Remaining Issues

	6.3 BUS with Support Vector Machines
	6.3.1 Controlling the Error of SVM
	6.3.2 Selection of q
	6.3.3 Potential Computational Cost of The Surrogate

	6.4 Numerical Applications
	6.4.1 Inter-Story Stiffness Parameters
	6.4.2 Mixture of Gaussians
	6.4.3 Supervised Machine Learning

	6.5 Chapter Summary

	7 Breast Cancer Detection
	7.1 Classification in Healthcare
	7.1.1 Breast Cancer Biopsy Samples
	7.1.2 Incorrect Labels

	7.2 Breast Cancer Biomarker Identification
	7.2.1 Gaussian Process Classification: Model Evidence Estimation

	7.3 Chapter Summary

	8 Summary and Conclusions
	8.1 Summary of Completed Work
	8.2 Summary of Contributions
	8.3 Research Outlook
	8.4 Published Work
	8.4.1 Conference Papers
	8.4.2 Awards

	8.5 Work Under Review

	Appendix A
	A.1 Logistic Regression Log-Likelihood
	A.2 Log-Likelihood First Derivative
	A.3 Log-Likelihood Second Derivative

	Appendix B
	B.1 Influence of Likelihood Multiplier
	B.2 nBUS Characteristic Trends Derivations
	B.2.1 Probability of Failure
	B.2.2 Model Evidence

	B.3 Computational Expense of Numerical Examples

	Appendix C
	C.1 Proof of Corollary 1
	C.2 Derivations of CDF and PDF of a Log Transformed Beta Distribution
	C.3 MAP Derivation of Log Transformation
	C.4 Computational Expense of Numerical Examples

	Bibliography

