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Abstract 12 
Multivariate information of soil parameters is quite important for the design and risk assessment of 13 
geotechnical engineering problems. It is necessary to have an accurate and realistic statistical multivariate 14 
model for representing the soil properties and thus evaluating the soil conditions. Thus, advanced 15 
multivariate modeling of soil parameters could help to improve the geotechnical engineering practice. In 16 
this paper, the asymmetric copulas are introduced to model the geotechnical soil data. Compared to 17 
extensive previous research on the use of symmetric copulas on the modeling of engineering data, this study 18 
is focusing on capturing asymmetric dependencies among the natural soil parameters, which are critical for 19 
engineering design. A copula-based multivariate probabilistic model is built based on a set of collected 20 
samples from a granite residual soil from Portugal. Several asymmetric copula functions, capable of 21 
capturing nonlinear asymmetric dependence structures, are tested and analyzed. The fundamental 22 
information on tail dependencies and measures of asymmetric dependencies are also exploited. To 23 
demonstrate the advantages of asymmetric copulas, its concept is compared with the traditional copula 24 
approaches for modeling site soil data. The performance of these asymmetric copulas is discussed and 25 
compared based on data fitting and extreme value characterizations.  26 
Keywords: geotechnical analysis, asymmetric copula, soil properties, joint distribution, multivariate 27 
analysis 28 
 29 
1. Introduction 30 
Geotechnical engineering problems involve frequently multivariate data analysis. To consider multiple 31 
variables in a geotechnical design, a multivariate probabilistic model is usually required. This enables an 32 
application of well-developed joint statistical models to represent and, eventually, to evaluate uncertain 33 
results of the problem due to geotechnical random parameters. In this context, the dependencies among 34 
various soil parameters play an important role. Deficiencies in modeling their joint relationship may largely 35 
contribute to wrongly estimate the failure probability of geotechnical structures, hence may lead to 36 
expensive engineering loss (Angeli et al. 2000; Harris et al. 2008). 37 

In real practice, the soil parameters are often observed to be dependent. For instance, the test results 38 
for the soil such as standard penetration test (SPT) and piezocone test (CPTU) tend to be physically related. 39 
However, the question is about how to define this relationship between the soil data. The definition of 40 
“dependencies” in this context can have various meanings. When addressing different dependencies for the 41 
soil parameters, the typical concept of correlation is commonly used to construct the joint distribution 42 
models. The applicability of this concept may be problematic when the dependencies are not perfectly linear. 43 
Many former works have addressed this issue (Vanapalli et al., 1996; Robertson, 2009; L’Heureux & Long, 44 
2017). Still, many multivariate models have been developed adopting this concept (Yan et al., 2009; Sideri 45 
et al., 2014; Zhu et al., 2017).  46 

It should be noted that in most cases, in geotechnical engineering practice, the joint cumulative 47 
distribution function (CDF) or joint probability density function (PDF) is often unknown due to limited data 48 
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from field tests, laboratory tests or other resources (Beer et al, 2013; Li et al., 2012). Nevertheless, in recent 49 
years several works were published with presentation of multivariate information (Santoso et al., 2013; 50 
Zhang et al., 2018; Tang & Phoon, 2018). The most popular studies are related to clay parameters (Phoon 51 
& Kulhawy, 1999) or regarding the Mohr Coulomb failure envelope, and the negative correlation between 52 
cohesion, c’, and the friction angle, φ’ (Phoon & Kulhavy, 1999; Duncan, 2000; Forrest & Orr, 2010; Tang 53 
et al., 2013; Zhang et al., 2018). Although Tang et al. (2013) and Li et al. (2015) investigated the influence 54 
of different copulas on the probability of failure of some simple geotechnical structures, examples applied 55 
to real data continue to be relatively scarce. From a geotechnical point of view, the topic attracts more 56 
attention is to achieve consistency between geotechnical and structural-based design (Phoon et al., 2016). 57 

In contrast to the traditional joint model, the copula model has shown its advantage and attracted 58 
significant attention from many geotechnical engineering researchers (Wu, 2013, Tang et al., 2015). The 59 
key feature of a copula approach is its flexibility in modeling the dependence structure, which can be 60 
separated from the modeling of individual behavior. Such prominent characteristic is highly desirable in 61 
geotechnical engineering as most soil data exhibit non-obvious dependencies. Moreover, it was also found 62 
by utilizing the copula model, that the accuracy of reliability analysis of a geotechnical engineering problem 63 
can be largely improved (Li et al., 2015). In general, from the recent advances in geotechnical engineering, 64 
it is now widely recognized that the copula model is a very accurate and efficient tool in modeling 65 
multivariate soil data. However, there are various types of complicated dependencies and potential biases 66 
that could affect the quality of a multivariate model. Specifically, the uncertainties related to asymmetric 67 
dependencies are one of the most influencing factors. It was realized that an accurate modeling of the 68 
asymmetric dependences for soil data is still one of the most difficult tasks, and the statistical modeling of 69 
the multivariate soil data remains quite challenging. Fortunately, asymmetric copulas which were developed 70 
only recently provide a feasible solution to this problem (Kazianka & Pilz, 2010). The use of asymmetric 71 
copulas can significantly improve the functionality of traditional copula approaches in fitting the 72 
asymmetrically dependent variables. Nevertheless, the modeling of soil data using the asymmetric copula 73 
has never been studied in detail. The theoretical concepts and procedures of how to construct a reliable 74 
asymmetric copula for soil data have not yet been investigated. Therefore, this work aims to close this gap 75 
providing a real case study for demonstrating and highlighting the merits, as well as limitations, regarding 76 
the use of asymmetric copulas. 77 

This paper is divided into seven sections. A general literature review of the existing techniques and 78 
former works on the modeling of multivariate soil data is presented in Section 2. Section 3 then reviews the 79 
fundamental copula theory and highlights the issues of basic dependence measures. Section 4 explains the 80 
detailed information of asymmetry measures as well as the procedures of constructing asymmetric copula 81 
models. A set of soil data is then analyzed through the use of asymmetric copulas. Section 5 provides the 82 
detailed information of the collected soil data. A comparative study between symmetric and asymmetric 83 
copula approaches for modeling the collected soil data is presented in Section 6. This includes the discussion 84 
on the quality of model fitting, tail dependence characterization and extreme value prediction. The final 85 
concluding remarks are summarized in Section 7. 86 

2．Literature review of multivariate distributions for soil parameters 87 

The variability of soil parameters is admittedly higher than for the remaining construction materials. 88 
Additionally, it presents local characteristics, creating obstacles to the generalization of results. In any case, 89 
since the 90s, efforts have been done to estimate the variability of design soil parameters, in order to develop 90 
a sound Reliability-Based Design (Duncan, 2000; Baecher & Christian, 2003; Forrest & Orr, 2010). Initially, 91 
the characterization of the variability of the parameters was completed through their coefficient of variation 92 
and the determination of the correlation between parameters was mainly a process to transform the test 93 
measurements in design parameters.  94 

Ching & Phoon (2014) presented an example of multivariate distribution, applied to some clay 95 
parameters, that, as the correlation coefficient, may be applicable to site-specific data and used as a prior 96 
model that may be updated via, for example, Bayesian updating. As an example of this, the work of Zhang 97 
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et al. (2018) is a worthy illustration. With the use of the multivariate distribution, the entire probability 98 
distribution of a design parameter may be updated covering all data, which represents an obvious advantage 99 
compared with the popular pairwise regression, where updates of the design parameter result from a single 100 
value of another parameter. 101 

The copula theory (Nelsen, 2006) has found widespread applications in the last years and there are 102 
also recent examples of its application to geotechnical problems, as is the case of the pioneering works of 103 
Li et al. (2012) and Tang et al. (2013). Tang et al. (2013) studied the application of several types of copulas 104 
to the cohesion and friction angle data from four different sites. Zhang et al. (2014) clearly stated that 105 
previous probability models used in geotechnical engineering, such as multivariate normal distribution, is 106 
indeed based on the Gaussian copula, which can only consider the linear dependence relationship between 107 
random variables and may not always be optimal. Therefore, it is important to consider other copula 108 
functions for constructing probability models in geotechnical reliability analysis. The copula theory 109 
provides thus an advanced tool to model geotechnical problems more realistically (Tang et al., 2013; Li et 110 
al., 2015; Zhang & Lam, 2016). Particularly when using the Mohr-Coulomb failure criteria for soils, 111 
described by the two parameters, cohesion, c’, and friction angle, φ’. It is widely accepted that there exists 112 
a negative correlation between them, which results from the linearization of the failure envelope. Tang et al. 113 
(2013) presented a list of correlation coefficients between these two parameters found by several authors, 114 
but also stated that the Gaussian copula is commonly adopted without rigorous validation. There are also 115 
recent tentative to adjust non Gaussian dependence, though not abundant (Wang & Li, 2017). 116 

Residual soils are cemented materials but have low cohesion values. Having in mind that the 117 
cohesion is always positive, this can create an asymmetry in the distribution, and thus asymmetric copulas 118 
might arise as an interesting solution to cope with real data. Additionally, the fact real data is used to test 119 
several copula constitutes an enormous advantage to evaluate the advantages of using asymmetric copula.  120 
 121 
3．Copula theory and dependence measures 122 
As mentioned in the previous section, copula models provide an alternative way to model the multivariate 123 
soil data. The concept of copula theory has already been used for modeling a wide range of engineering data, 124 
for example, in reliability studies (see, Noh et al., 2009; Wang et al., 2017), as well as offshore engineering 125 
(Zhang et al., 2015; 2018). Several former works have provided a thorough survey: for the theoretical 126 
background see Nelsen (2006), and Joe (2014); for the practical applications see Genest and Favre (2007), 127 
Salvadori and De Michele (2007), and Hong et al. (2015). 128 
3.1 Definition and basic properties 129 
The theoretical definition of a copula can be specified by the marginal distributions as introduced in Sklar’s 130 
theorem (Sklar, 1959): 131 
Sklar’s Theorem: Let F be an n-dimensional distribution function with marginal distributions F1, …, Fn.  132 
A copula C is therefore defined as an n-dimensional distribution function such that for all x ∈ Rn  133 

  ( ) ( ) ( )( )1 1 1, , , ,n n nF x x C F x F x=     (1) 134 
If F1, …,Fn are all continuous, then C should be unique. Conversely, if C is a copula and F1, …, Fn are all 135 
continuous marginal distribution functions, then the distribution function F must be a multivariate 136 
distribution function with marginal distributions F1, …, Fn.     137 

Compared to the other joint distribution models, the copula approach has the freedom of selecting 138 
any marginal distributions for the variables which makes this approach much more flexible in characterizing 139 
individual variable’s behaviors. Many existing copula functions have been formulated in the literature, see 140 
e.g. (Hutchinson and Lai 1990; Trivedi & Zimmer, 2007). Each specific copula could characterize a certain 141 
kind of dependence in the multivariate data.  142 
3.2 Dependence measures 143 
In order to emphasize the significance of the copula approach in modeling geotechnical data, the dependence 144 
concepts are interpreted with details herein. It is said the key characteristic of a copula model is its 145 
dependence structure. Traditionally, the Pearson’s correlation coefficient ρ is used as the most common and 146 
convenient way for measuring the data dependence. Because of its ease of handling, it is widely adopted in 147 
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many statistical approaches. However, the weakness of ρ is also obvious and many researchers tend to 148 
criticize it. For instance, it is realized the linear correlation coefficient is invariant with respect to linear 149 
transformations of the variables. But it is not invariant to strictly increasing nonlinear transformations. The 150 
property of linear dependency may not be preserved through such transformations. Therefore, based on 151 
these concerns, other concepts of dependencies have been developed in the literature such as Kendall’s τk 152 
and Spearman’s ρs. Kendall’s τk is a measure of the possible excess of concordance/discordance in the 153 
sample, and Spearman’s ρs measures the “distance” between the chosen copula and the one modeling 154 
independent variables (see Salvadori et al. ,2007). These two measures are also known as the most well-155 
established concordant measures of rankings among the variables. The concepts of Kendall’s τk and 156 
Spearman’s ρs are well integrated in a copula model. For example, for any bivariate copula, these two 157 
coefficients can be directly linked to the copula function as 158 

( ) ( )
1 1

1 2 1 20 0
, 4 ,k u u C u u dCτ = ∫ ∫     (2) 159 

( ) ( )
1 1

1 2 1 20 0
, 12 , 3s u u C u u dCρ = −∫ ∫    (3) 160 

where ui=Fi(Xi). This linkage provides a feature in copula model that can describe various kinds of 161 
dependencies, including association concepts such as concordance, linear correlation and other related 162 
measures.  163 

However, the traditional copulas have many weaknesses (e.g. Archimedean copulas) when they are 164 
applied to model soil parameters. A key drawback is that most well established copulas can only model 165 
symmetric dependent variables whereas the soil data usually display non-symmetric dependencies. For 166 
example, the feasible domain of soil parameters restricted by the physical phenomenon is a major reason 167 
for asymmetric dependencies. For instance, a large value of soil cohesion strength is unlikely to be 168 
accompanied by a large value of friction angle because of the physical limit. Negative values for cohesion 169 
are not physically possible. In other words, the realization of some variable combinations should not exist 170 
in the real nature. This effect can be illustrated by means of an example scatter plot as shown in Fig. 1. As 171 
demonstrated in the figure, it is impossible to have observations in the right-lower region (marked with a 172 
cross), while observations can be available in the left-upper region (marked with a tick). In other words, 173 
implicit physical phenomena could exert limit of occurrence for some data combinations. Thus, the feasible 174 
domain reduces and becomes asymmetric. More typical examples can be illustrated by Fig. 2 which show the 175 
scatter plot of soil data from the database provided by TC304 webpage. The dependences among the chosen soil 176 
parameters undrained shear strength su, preconsolidation stress σ’p and vertical effective stress σ’v are not perfect 177 
linear. In fact, they are inherently dependent on the liquid limit and overconsolidation ratio which makes their 178 
dependences quite complex. From these scatter plots, it can be observed that no data is distributed in the upper-179 
lower domain (as marked by the red star symbol). This generally means the considered bivariate dataset has a 180 
restricted domain which can only allow data to be distributed asymmetrically. Therefore, considering this 181 
physical feature in the multivariate soil data modeling, especially copula approach, is not straightforward 182 
and still needs further development. 183 

 184 
Figure 1 Asymmetric domain of soil data caused by physical phenomenon. 185 

Soil parameter 1 

Soil 
parameter  
2 

Physical limit 



5 
 

0 100 200 300

0

300

600

σ' p(k
Pa

)

σ'v(kPa)

(a) σ'v vs σ'p

 
0.0 0.5 1.0

0.0

0.5

1.0 (a) CDF(σ'v) vs CDF(σ'p)

CD
F(

σ' p)

CDF(σ'v)  186 

0 60 120 180
0

30

60

90

s u(k
Pa

)

σ'v(kPa)

(b) σ'v vs su

0.0 0.5 1.0
0.0

0.5

1.0

(b) CDF(σ'v) vs CDF(su)

CD
F(

s u)

CDF(σ'v)  187 

0

80

160

240

0 30 60 90
su(kPa)

σ' p(k
Pa

)

(c) su vs σ'p

0.0 0.5 1.0
0.0

0.5

1.0
(c) CDF(su) vs CDF(σ'p)

CD
F(

σ' p)

CDF(su)  188 
Figure 2 Examples of soil data having asymmetric domain (data retrieved from Ching and Phoon, 189 

(2012), Ching et al. (2014), D’Ignazio et al. (2016) and Zhang et al. (2019)) 190 

However, these effects can be frequently observed in most collected soil datasets. The ignorance of 191 
such asymmetric dependencies in the multivariate modeling might create some unreliable estimates for the 192 
design. More advanced statistical techniques are therefore required on the improvement of traditional copula 193 
model to further enhance this approach.  194 

4．Asymmetric copulas 195 

In order to have a more accurate modeling of asymmetrically dependent variables, several groups of 196 
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asymmetric copulas as well as the basic concepts in measuring the asymmetry of a copula model are 197 
introduced herein.  198 
4.1 Measure of asymmetry and tail dependency 199 
The fundamental definition of symmetry in a copula model can be defined as following. For a given copula 200 
𝐶𝐶(𝑢𝑢1, … ,𝑢𝑢𝑛𝑛), if      201 
  ( )1 1,..., ,..., ,..., ( ,..., ,..., ,..., )i j n j i nC u u u u C u u u u=  is true for any pair 𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑗𝑗 ∈ 𝐈𝐈, 202 

then we can say ui and uj are exchangeable within the copula 𝐶𝐶(𝑢𝑢1, … ,𝑢𝑢𝑛𝑛) and this copula is said to be 203 
symmetric (Genest and Nešlehová, 2013). Therefore, if this copula function cannot satisfy the above 204 
condition, it is believed to be asymmetric. Following this idea, a measure of asymmetry in a copula model 205 
can be formulated by the following equation (Klement and Mesiar, 2006)  206 

( ) ( ) ( ){ }1/1 1

1 2 2 1 1 20 0
, ,

p
p

p C C u u C u u du duη = −∫ ∫    (4) 207 

where p is a factor which can be set at any value greater than or equal to 1, 𝑝𝑝 ≥ 1. In other words, the 208 
function calculates the distance between C and its transpose CT, like the norm. Usually, it is more convenient 209 
to set the value of p to infinity for calculating the measure of asymmetry. This gives a simplified formula as 210 

( )
( ) [ ]

( ) ( )
2

1 2

1 2 2 1
, 0,1
sup , ,

u u
C C u u C u uη∞

∈

= −     (5) 211 

Therefore, if the value of this measure is too large, the copula is considered to be asymmetric. Meanwhile, 212 
when it is applied to bivariate data, the measure of asymmetry as calculated by Eq. (5) has the same meaning 213 
of a measure of exchangeability for the data.   214 

Another indicator that can be used to detect the asymmetric characteristics is the tail dependencies. 215 
Based on the concept of tail dependence, four coefficients are defined to describe the tail dependences, 216 
namely, lower-lower, lower-upper, upper-lower, upper-upper tail dependence coefficients. For example, for 217 
a bivariate copula 𝐶𝐶(𝑢𝑢1,𝑢𝑢2), the tail dependence coefficients can be calculated by (Nelsen 2006) 218 

( ) ( ) ( )( ) ( ), 1 1
1|2 1 1 2 20 0

,
lim | liml l

u u

C u u
C P x F u x F u

u
λ − −

→ + → +
= ≤ ≤ =    (6) 219 

( ) ( ) ( )( ) ( ), 1 1
1|2 1 1 2 20 0

,1
lim 1 | 1 liml u

u u

C u u
C P x F u x F u

u
λ − −

→ + → +

−
= ≥ − ≤ = −   (7) 220 

( ) ( ) ( )( ) ( ), 1 1
1|2 1 1 2 20 0

1 ,
lim | 1 1 limu l

u u

C u u
C P x F u x F u

u
λ − −

→ + → +

−
= ≤ ≥ − = −   (8) 221 

( ) ( ) ( )( ) ( ), 1 1
1|2 1 1 2 20 0

1 1 ,1
lim 1 | 1 2 limu u

u u

C u u
C P x F u x F u

u
λ − −

→ + → +

− − −
= ≥ − ≥ − = −  (9) 222 

where 𝐹𝐹1−1(. )  and  𝐹𝐹2−1(. )  are the inverse marginal distribution functions for x1 and x2. Therefore, these 223 
equations provide measures of the tail dependence for the two variables in four different extremes. The tail 224 
coefficients have a value range between 0 and 1, where a value of 0 indicates asymptotical independence.  225 

Tail dependencies can provide useful information about the dependences of extreme values from 226 
the intrinsic information. It gives a measure for relating one margin exceeding a certain quantile threshold 227 
while the other has already exceeded that quantile threshold. The lower-upper and upper-lower tail 228 
coefficients are especially useful for assessing the asymmetry of a copula. If these coefficients are observed 229 
to be different, the copula is generally an asymmetric one.  230 
4.2 Asymmetric copulas constructed by products 231 
There are various ways of constructing asymmetric copulas. Many recent works have been done in this 232 
direction (Grimaldi and Serinaldi, 2006; Mesiar and Najjari, 2014; Mazo et al., 2015). Plenty of techniques 233 
able to capture the asymmetric dependencies in the multivariate data are utilized in the copula function 234 
establishment (Patton, 2006). Nevertheless, not all the asymmetric copulas are really useful in practice. 235 
Some asymmetric copulas may need very sophisticated extra functions to characterize the asymmetric 236 
dependencies which are quite cumbersome for the calculation. A typical example could be the Archimax 237 
copula which requires complex statistical derivations for obtaining the Pickhands dependence function for 238 
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its construction (Charpentier et al. 2014). Therefore, from the engineering point of view, we choose to 239 
review the most popular and practical alternatives among these asymmetric copulas in this study. Meanwhile, 240 
this work tends to focus on the asymmetric copula families that can be built based on the traditional 241 
symmetric copulas, e.g. Archimedean copulas. Therefore, the asymmetric copulas with a very complicated 242 
mathematical formulation would not be discussed in the present study. 243 

One of the most popular ways of constructing asymmetric copulas is by means of a product of 244 
copulas (Liebscher, 2008). The general form for constructing this type of asymmetric copula is given as 245 
following 246 

( ) ( ) ( )( )1 1 1
1

,..., ,...,
m

product n i i in n
i

C u u C f u f u
=

= ∏ ,   (10) 247 

where 𝐶𝐶1, … ,𝐶𝐶𝑚𝑚 are all copulas for the n-dimensional variables,  𝑓𝑓𝑖𝑖𝑖𝑖: [0,1] → [0,1] for i=1,…,m, j=1,…,n 248 
are the individual functions for describing the individual variable’s behavior which should be strictly 249 
increasing or identically equal to 1. To guarantee Eq. (10) is also a copula, the individual functions 𝑓𝑓𝑖𝑖𝑖𝑖 must 250 
satisfy the following additional properties: 251 

1. 𝑓𝑓𝑖𝑖𝑖𝑖(1) = 1 and 𝑓𝑓𝑖𝑖𝑖𝑖(0) = 0, 252 

2. 𝑓𝑓𝑖𝑖𝑖𝑖 is continuous on ]0,1], 253 

3. If there are at least two functions 𝑓𝑓𝑖𝑖1𝑗𝑗 ,𝑓𝑓𝑖𝑖2𝑗𝑗  with 1 ≤ 𝑖𝑖1, 𝑖𝑖2 ≤ 𝑚𝑚 which are not identical and equal to 1, 254 
then 𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥) > 𝑥𝑥 holds for 𝑥𝑥 ∈ (0,1), i=1,…,m. 255 

From the above formulation, it is easy to see the constructed copula could be asymmetric if the 256 
individual functions are different for the variables. Each individual functions 𝑓𝑓𝑖𝑖𝑖𝑖  characterizes a specific 257 
property of the variables in the asymmetric dependence modeling. The idea of this construction is also 258 
known as an extension of Khoudraji’s device (1995). For instance, by adopting type I individual function in 259 
constructing the asymmetric copula (see Table 1) and setting m, n=2, Eq. (10) becomes exactly the Khoudraji 260 
copula. On the other hand, various groups of parametric copulas can be selected for the n-dimensional 261 
copulas 𝐶𝐶1, … ,𝐶𝐶𝑚𝑚, e.g. Archimedean copulas. As for the individual functions 𝑓𝑓𝑖𝑖𝑖𝑖, many candidate functions 262 
which are suitable for the copula construction have been proposed by Liebscher (2008) - see Table 1. Moreover, 263 
it is also possible to choose the number and type of individual copulas.  264 
Table 1 Examples of individual functions 265 

Individual function Parameters Value range 

I. ( ) ij
ijf u uθ=  

1
1

m
iji

θ
=

=∑  [ ]0,1ijθ ∈  

II. ( ) ( )1ij iju
ijf u u eθ α−=  

1
1

m
iji

θ
=

=∑ , 
1

0
m

iji
α

=
=∑  ( )0,1ijθ ∈ , ( ),1ijα ∈ −∞ , 0ij ijθ α+ ≥  

III. * ( ) ( )2
1 exp lnj j jf u uθ θ= − + , 

( ) 2
2 exp( ln )j j jf u u uθ θ= − + +  

{ }1,...,j for j nθ ∈  1
2jθ ≥  

*Note: type III individual functions can only be used for the asymmetric copula having two individual copulas 266 
(e.g. m=2). 267 
4.3 Asymmetric copulas constructed by linear convex combinations 268 
Another way of constructing an asymmetric copula could be done through the linear convex combinations 269 
of copulas. However, it should be noted the direct linear convex combination of copulas is not able to create 270 
asymmetric copulas. The main reason is most fundamental copulas are symmetric. Such linear convex 271 
combination of these copulas could not change their dependence characteristics and would also only produce 272 
symmetric copulas. One way to change the symmetric dependence characteristics is to modify the 273 
fundamental copulas to account for asymmetric properties (Wu, 2014). A change on the new kind of copula 274 
is proposed as: 275 
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( ) ( ) ( )1 1 1 1 1 1 1,..., ,..., ,1, ,..., ,..., ,1 , ,...,h n h h n h h h nC u u C u u u u C u u u u u− + − += − −


 (11) 276 
where C(.) is the original n-dimensional base copula. It is easy to see that any variable uh in the copula model 277 
is not exchangeable with other variables. Such developed model is also called flipped copula as mentioned 278 
in the literature (Nelsen 2003). Therefore, the flipped copula can be used to fit data exhibiting unequal tail 279 
dependencies. By combining all the possible flipped copulas, one may use the following copula to model 280 
asymmetric properties in multiple variables: 281 

     ( ) ( )1 10
,..., ,...,

n
addition n h h nh

C u u p C u u
=

= ∑


   (12) 282 

where 𝑝𝑝ℎ is a weighting factor which needs to satisfy the conditions 0 ≤ 𝑝𝑝ℎ ≤ 1 and ∑ 𝑝𝑝ℎ𝑛𝑛
ℎ=0 = 1. And 283 

when h=0, the flipped copula downgraded to the original one, e.g. 𝐶̆𝐶0(𝑢𝑢1, … ,𝑢𝑢𝑛𝑛) = 𝐶𝐶(𝑢𝑢1, … ,𝑢𝑢𝑛𝑛). Same as 284 
the copula in Section 4.2, various types of copula families can be utilized as the base copula 𝐶𝐶(𝑢𝑢1, … ,𝑢𝑢𝑛𝑛). 285 
When it is applied for the bivariate data, Eq. (12) can be expressed as following 286 

( ) ( )1 1 2 2 1 2, 1 ,C u u u C u u= − −


,     (13) 287 

( ) ( )2 1 2 1 1 2, ,1C u u u C u u= − −


,    (14) 288 
where we can also call Eq. (13) and Eq. (14) the horizontal-flipped and vertical-flipped copulas (Salvadori 289 
et al. 2007). A typical bivariate asymmetric copula in this case can be given as  290 

( ) ( ) ( ) ( )1 2 0 1 2 1 1 1 2 2 2 1 2, , , ,additionC u u p C u u p C u u p C u u= + +
 

  (15) 291 
where 𝑝𝑝0,𝑝𝑝1,𝑝𝑝2 ≥ 0 and 𝑝𝑝0 + 𝑝𝑝1 + 𝑝𝑝2 = 1. The asymmetric properties of the bivariate data can be simply 292 
modeled by adjusting the values of weight factors assigned to each base copula in this formula. That is, the 293 
flipped copula 𝐶̆𝐶1(𝑢𝑢1,𝑢𝑢2) or 𝐶̆𝐶2(𝑢𝑢1,𝑢𝑢2) are used to model the asymmetry in each of the variables. This is 294 
also the main difference between the current construction method and Liebscher’s method. The current 295 
method constructs asymmetric copulas by modeling the asymmetric property for variables each at a time. 296 
However, on the other hand, Liebscher’s method constructs the asymmetric copulas for variables all at a 297 
time.  298 
4.4 Skewed copula 299 
Despite the algebraic construction methods, another convenient way of constructing asymmetric copulas is 300 
by means of the skewed copula. The idea of this approach is from the skewed multivariate Guassian 301 
distribution which allows non-zero skewness. The general concept is to transform a multivariate Gaussian 302 
distribution to an asymmetric one by introducing a parameter (Kollo et al., 2013). The most famous and 303 
commonly adopted one is the skewed Gaussian copula. 304 

The skewed Gaussian copula originates from the the Gaussian copula. By definition, an n-305 
dimensional Gaussian copula is expressed by 306 

( ) ( ) ( )( )1 1
1 1,..., ,..., ;Gaussian n n nC u u u u− −= Φ Φ Φ Σ   (16) 307 

Where Φn(.) represents the n-dimensional normal distribution function, Φ-1(.) denotes the inverse of the 308 
standard normal distribution function, and ∑ stands for the covariance matrix. In the skewed Gaussian 309 
copula, the basic formula is modified to account for asymmetries by adding the shape parameter. A general 310 
n-dimensional skewed Gaussian copula can be written as 311 

( ) ( ) ( )( )1, 1,
1 1

1 , 1 1 1,..., ; , , ; ,1, ,..., ; ,1, ; , ,skew skewskew Gaussian n n skew n n nC u u F F u F uµ β µ β µ β µ− −
− Σ = Σ β  (17) 312 

where 𝐹𝐹𝑛𝑛,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(. ) is the n-dimensional skew normal distribution with mean parameter μ,  𝐹𝐹1,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
−1 (. ) is the 313 

inverse of the univariare skew normal distribution SN(μi, 1, βi), β are the shape parameters and  ∑ is the 314 
covariance matrix. Therefore, the density function of a multivariate skewed Gaussian copula for n-315 
dimensional random variables can be given by 316 

( ) ( ) ( )1 1 1,..., ; , 2 ,..., ; , ,..., ; ,T
n n n n n nf u u u u u uµ β φ µ µΣ, = Σ Φ Σβ   (18) 317 

where 𝜙𝜙𝑛𝑛(. )  and 𝛷𝛷𝑛𝑛(. )  are the probability density function and cumulative distribution function for n-318 
dimensional Gaussian distribution (Azzalini and Valle, 1996). In this constructed asymmetric copula, the 319 
asymmetric property results from the shape parameters. For example, when β=0, the skewed Gaussian 320 
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copula downgrades to the standard Gaussian copula with no skewness. If β increases, the skewness of the 321 
skewed Gaussian copula increases.  322 

Moreover, it should be pointed out the skewed Gaussian copula is in fact a special case of the 323 
constructed copulas as given in Section 4.2. Compared to the copula constructed by Eq. (10), the skewed 324 
Gaussian copula is a special one with only one individual copula (m=1). This base copula (Ci) are all skewed 325 
Gaussian distributions. Nevertheless, it is still worth to see the performance of skewed copulas compared to 326 
the other approaches. There are no previous works done on its application in the modeling of real collected 327 
soil data. The following will provide a case study to demonstrate the key advantages of using the asymmetric 328 
copulas in modeling soil data.  329 

 330 
5．Case Study – Site Soil Data 331 
The soil data used in this paper results from tests performed in a residual soil from Porto granite. Pinheiro 332 
Branco (2011) and Pinheiro Branco et al. (2014) conducted an extensive characterization of a localized area 333 
of residual soil, collecting more than 40 samples in an area of approximately 1 m2. Detail of the area where 334 
the samples were collected is shown in Fig. 3. 335 

 336 
Figure 3 Detail of the area where the samples were collected 337 

All the samples were carefully collected in situ, by cutting the residual soil around the sampler 338 
(0.1×0.1×0.03 m3), isolated and transported to the geotechnical laboratory. For all the specimen, the dry unit 339 
weight (γd), the water content (w), the void ratio (e) and subsequently the saturated unit weight (γsat) were 340 
all measured (Pinheiro Branco et al., 2014). For three representative samples the granulometric curve of the 341 
material (Fig. 4), as well as the unit weight of the soil particles (γs), were also determined.  342 

All the samples were subjected to direct shear tests, with different normal stresses: 25 kPa, 50 kPa, 343 
75 kPa, and 100 kPa. The normal stresses were intentionally low, in order to avoid particle breaking or 344 
sample disturbance during the installation of the initial stress. The in situ vertical stress where the samples 345 
were located was approximately 120 kPa. In such conditions all the tests were performed with normal 346 
stresses lower than the in situ vertical stress. The consolidation time was established as 1 hour. After several 347 
minutes there were no additional vertical settlements which allowed to conclude that there was no further 348 
consolidation. The shear rate of the tests was 0.03 mm/min. This reduced shearing rate guarantees no excess 349 
water pressures appear during shear, corresponding to drained conditions. 350 

The 40 samples were divided into 10 samples for each stress level. During each shear test, the peak 351 
shear stress τp, the residual shear stress τr, and the dilation angle ψ were measured. The residual strength 352 
was simply defined by the constant volume friction angle, φ’cv. The peak strength was defined by a unique 353 
friction angle, φ’s, although its value is dependent on the normal stress of the test.  Table 2 presents the 354 
complete list of variables measured or calculated for the 40 samples, during the direct shear tests. 355 

The parameters presented in Table 2 correspond to each individual sample. In geotechnical practice, 356 
the peak strength is usually defined as the Mohr-Coulomb failure criteria, namely the cohesion, c’p, and the 357 
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peak friction angle, φ’p. To determine these parameters, soil data samples have to be grouped and utilized to 358 
estimate them from Mohr-Coulomb circle. With this purpose, the 40 samples were combined in groups of 359 
3, resulting the 40 values of the Mohr-Coulomb parameters presented in Table 3. 360 

 361 
Figure 4 Granulometric curves of the tested soil samples 362 

Table 2 Collected soil property data from the site 363 

σ’(kPa) φ'cv(0) φ's(0) e γ (kN/m3) γd (kN/m3) ψ(0) 

25.0 39.35 53.45 0.578 19.19 16.37 13.55 
25.0 41.96 49.00 0.574 19.41 16.41 8.72 
25.0 36.42 50.46 0.573 19.44 16.42 14.68 
25.0 34.78 47.53 0.558 19.52 16.58 16.20 
25.0 41.19 41.80 0.640 18.29 15.75 3.03 
25.0 41.11 47.18 0.568 19.03 16.47 13.85 
25.0 35.87 50.15 0.453 20.27 17.78 14.28 
25.0 39.83 47.32 0.551 19.10 16.66 14.93 
25.0 40.46 40.46 0.694 17.23 15.25 7.88 
25.0 38.70 53.61 0.525 19.19 16.94 19.20 
50.0 39.30 46.61 0.717 17.72 15.05 6.80 
50.0 38.36 47.83 0.574 19.29 16.42 10.95 
50.0 38.10 50.98 0.577 19.27 16.39 11.01 
50.0 39.14 52.34 0.530 19.20 16.88 14.15 
50.0 40.37 50.67 0.589 18.87 16.26 8.82 
50.0 38.61 47.24 0.543 19.23 16.74 7.77 
50.0 37.78 48.51 0.489 19.87 17.35 13.12 

FINE COARSE

0.
84

1

90
10

50

SAND

10

1

20

0.
07

5

60

14
0

ASTM
Sieve

100

0.
18

0

MEDIUM

0.
42

0

COARSE

20
80

40

0.001

9.
51

GRAVEL

0

10

25
.4

30

20
0

50
.8

70

FINE

80

MEDIUM

40

%
 P

AS
SE

D

70

4.
76

CLAY

30

0.01
0

%
 R

ET
AI

N
ED

100

40

80

Opening (mm)

MEDIUM

0.
25

0

FINE

100

2.
00

60

4

SILT

20

0.1

19
.1

10

38
.1

50

0.
10

5

76
.1

90

Sieve number

COARSE

60



11 
 

50.0 37.43 44.88 0.530 19.07 16.88 12.33 
50.0 35.96 41.02 0.649 17.78 15.66 4.43 
50.0 38.20 41.96 0.589 18.35 16.26 8.13 
75.0 37.20 45.51 0.571 19.40 16.45 9.32 
75.0 42.57 51.28 0.575 19.40 16.41 10.66 
75.0 37.33 47.89 0.557 19.57 16.59 14.54 
75.0 38.49 45.89 0.567 19.43 16.48 10.22 
75.0 38.74 38.74 0.581 19.06 16.34 0.53 
75.0 38.40 40.77 0.609 18.50 16.05 3.76 
75.0 38.12 47.08 0.499 19.58 17.23 6.76 
75.0 37.86 45.22 0.625 18.02 15.90 7.23 
75.0 40.03 48.67 0.517 19.30 17.02 11.24 
75.0 37.45 39.74 0.663 17.46 15.53 2.79 
100.0 36.33 44.57 0.611 18.96 16.03 8.23 
100.0 37.59 40.42 0.576 19.20 16.40 4.41 
100.0 33.22 40.16 0.581 19.02 16.33 8.74 
100.0 38.30 43.45 0.599 19.11 16.15 3.14 
100.0 35.44 39.97 0.588 18.78 16.27 4.57 
100.0 37.95 46.16 0.549 19.22 16.68 8.89 
100.0 33.46 40.02 0.563 18.86 16.53 6.32 
100.0 39.00 46.03 0.562 18.70 16.54 5.25 
100.0 36.67 38.73 0.599 18.14 16.16 2.86 
100.0 36.53 45.70 0.479 19.81 17.46 6.34 

 364 

Table 3 Estimated friction angle and cohesion 365 
c'p (kPa) tan(φp') c'p (kPa) tan(φp') c'p (kPa) tan(φp') c'p (kPa) tan(φp') 
11.68 0.85 14.61 0.76 10.89 0.75 1.22 1.01 
10.91 0.87 55.00 0.32 1.96 1.02 30.38 0.68 
12.04 0.86 6.44 1.00 0.00 1.19 0.00 1.19 
36.69 0.58 12.34 0.85 34.14 0.60 2.98 0.77 
0.00 1.19 5.56 0.91 5.00 1.01 5.23 0.85 
13.79 0.73 53.75 0.37 16.23 0.69 33.74 0.53 
13.84 0.82 10.03 0.75 14.04 0.76 18.65 0.56 
47.85 0.45 10.95 0.76 48.22 0.38 5.16 0.94 
5.62 1.05 1.40 0.81 2.36 0.96 8.60 0.86 
18.93 0.68 51.12 0.25 0.17 1.02 22.79 0.70 

 366 
6．Data Analysis 367 
The total sample size of 40 soil data is selected for the analysis in this study. All of these data are obtained 368 
from the same site and therefore are believed to have the same statistical characteristics. To understand 369 
the statistical properties of the collected data, a general statistical summary of 𝑐𝑐´𝑝𝑝, tan(φ´𝑝𝑝), tan(φ´𝑠𝑠), 370 
tan(φ´𝑐𝑐𝑐𝑐 ), e, γ, γd and ψ is provided in Table 4. It can be seen the variations in 𝑐𝑐´𝑝𝑝  is much higher 371 
compared to other soil parameters. The mean and variations of the friction angle are generally small, 372 
particularly for tan(φ´𝑐𝑐𝑐𝑐). However, the differences between tan(φ´𝑝𝑝), tan(φ´𝑠𝑠) and tan(φ´𝑐𝑐𝑐𝑐) are very 373 
obvious. The statistical values of the unit weight and dry unit weight are quite close. Individual 374 
characteristics of the soil parameters 𝑐𝑐´𝑝𝑝 , tan(φ´𝑝𝑝 ), tan(φ´𝑠𝑠 ), tan(φ´𝑐𝑐𝑐𝑐 ), e, γ, γd and ψ  have to be 375 
investigated separately. 376 
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Table 4 Statistical summary of the collected soil data 377 
 Number of data Mean Standard 

deviation 
Minimum Maximum 

𝑐𝑐´𝑝𝑝(kPa) 40 16.35 16.38 0 54.99 
tan(φ´𝑝𝑝) 40 0.78 0.23 0.25 1.19 
tan(φ´𝑠𝑠) 40 1.03 0.15 0.80 1.35 
tan(φ´𝑐𝑐𝑐𝑐) 40 0.78 0.05 0.65 0.91 

e 40 0.57 0.05 0.45 0.71 
γ (kN/m3) 40 18.97 0.66 17.23 20.27 
γ𝑑𝑑(kN/m3) 40 16.42 0.54 15.04 17.78 

ψ (o) 40 8.99 4.38 0.53 19.2 
As an initial step in the copula statistical analysis, the marginal distribution functions are determined for all 378 
the soil parameters. For example, in order to make a fair comparison, we choose a group of parametric 379 
statistical models to fit the collected data. For this list, we include Weibull, Normal, Lognormal, Logistic, 380 
Extreme value, Exponential and Gamma models. To compare all the candidate models, the standard Akaike 381 
Information Criterion (AIC) is utilized herein as a reference. The calculation of AIC is generally given by 382 

( )AIC 2 2l p p= − +      (19) 383 
where p is the number of parameters used in each statistical model, and l(p) is the maximized log-likelihood 384 
for that model. Generally speaking, the concept of AIC takes into account both the simplicity of the model 385 
and the goodness-of-fit. A smaller AIC value implies a better model. 386 
 Table 5 summarizes the calculated AIC values for each of the parametric models. From the results, 387 
the best models are Gamma for 𝑐𝑐´𝑝𝑝 , Extreme Value for tan(φ´𝑝𝑝 ), Lognormal for tan(φ´𝑠𝑠 ), Normal for 388 
tan(φ´𝑐𝑐𝑐𝑐), Lognormal for e, Weibull for γ, Normal for γd and Weibull for ψ.  Based on the selected models, 389 
the statistical model parameters are estimated by the maximum likelihood method. The results of these 390 
parameter estimates, including the statistical errors are presented in Table 6. As indicated by the model 391 
parameters, e, γd and ψ are quite symmetric in the distribution density function,  γ and 𝑐𝑐´𝑝𝑝 have quite high 392 
skewness. The good thing is, in the copula model, all these parameters will be converted to their CDF values 393 
based on marginal distributions. Therefore, after the transformation, the individual parameters will all be 394 
uniformly distributed variables between 0 and 1. Thus, the individual behavior could be removed at this 395 
initial step before the copula modeling. The following would be mainly focusing on the dependence 396 
characterizations.  397 
Table 5 Calculated AIC statistics for the marginal distribution model fitting (Chi square test p-value with 398 
significance level of 5% are provided in the bracket) 399 

 Weibull Normal Lognormal Logistic Extreme 
value 

Exponential Gamma 

𝑐𝑐´𝑝𝑝(kPa) 299.8 
(0.172) 

340.2 
(0.009) 

329.2 
(0.127) 

339.1 
(0.133) 

356.3 
(0.141) 

303.5 
(0.130) 

295.2* 
(0.199) 

tan(φ´𝑝𝑝) -0.8646 
(0.679) 

0.0341 
(0.556) 

10.21 
(0.060) 

0.6868 
(0.759) 

-0.8672* 
(0.277) 

63.01 
(0.005) 

5.404 
(0.244) 

tan(φ´𝑠𝑠) -30.04 
(0.3199) 

-32.51 
(0.298) 

-33.18* 
(0.264) 

-30.02 
(0.301) 

-28 
(0.341) 

86.92 
(0.007) 

-33.18 
(0.276) 

tan(φ´𝑐𝑐𝑐𝑐) -135.4 
(0.103) 

-140.3* 
(0.371) 

-139.7 
(0.349) 

-139.4 
(0.513) 

-133.1 
(0.076) 

63.08 
(0.001) 

-139.9 
(0.371) 

e -151.2 
(0.003) 

-151.9 
(0.036) 

-152.5* 
(0.173) 

-150.1 
(0.155) 

-149.8 
(0.001) 

39.64 
(0.001) 

-151.1 
(0.043) 

γ(kN/m3) 51.36* 
(0.090) 

52.12 
(0.089) 

55.62 
(0.056) 

54.92 
(0.029) 

53.74 
(0.062) 

319.4 
(0.001) 

54.4 
(0.074) 

γ𝑑𝑑(kN/m3) 49.48 
(0.003) 

36.38* 
(0.082) 

38.86 
(0.080) 

38.76 
(0.278) 

50.84 
(0.001) 

307.92 
(0.001) 

37.02 
(0.091) 

ψ (o) 188.7* 
(0.822) 

189.9 
(0.825) 

201.5 
(0.001) 

190.5 
(0.793) 

189.1 
(0.297) 

259.6 
(0.001) 

196.2 
(0.294) 

*The lowest AIC indicates the best model. 400 
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Table 6 Estimated model parameters for the best marginal distribution model for each soil parameter (standard 401 
errors are provided in the bracket) 402 

 𝑐𝑐´𝑝𝑝(kPa) tan(φ´𝑝𝑝) tan(φ´𝑠𝑠) tan(φ´𝑐𝑐𝑐𝑐) e γ  
(kN/m3) 

γ𝑑𝑑 
(kN/m3) 

ψ (o) 

Parameter 
Estimates 

a=0.5477 
(0.0094)  
b=29.8625   
(8.4622) 

k=-0.4184 
(0.181) 
σ=0.2442 
(0.0031) 
µ=0.7228 
(0.0425) 

µ=0.0256  
(0.0007) 
σ=0.1500 
(0.0004) 

µ=0.7854 
(0.0006) 
σ=0.0576  
(0.0046) 

µ=-0.5563 
(0.0083) 
σ=0.0619 
(0.0061) 

A=19.1829  
(0.0666) 
B=48.1434     
(5.7492) 

µ=16.4277  
(0.0581) 
σ=0.3673 
(0.0419) 

A=9.8905   
(0.3834) 

B=4.2735    
(0.5455) 

In order to have a full understanding of the relationships among all the soil parameters, the dependence 403 
measure concepts including Kendall’s tau, Spearman’s rho and correlation coefficient are calculated for 404 
each of the dataset and recorded in Table 7. As can be seen from the table, the dependences between several 405 
pairs of data are quite strong, namely, (𝑐𝑐´𝑝𝑝, tan(φ´𝑝𝑝)), (tan(φ´𝑠𝑠), tan(φ´𝑐𝑐𝑐𝑐)), (e, ψ) and (γ, γd). For the other 406 
pairs of data, the dependence is not very strong. From a statistical point of view, if the dependence is very 407 
weak, a multivariate modeling is not very meaningful. Thus, the following study will be limited to the 408 
datasets (𝑐𝑐´𝑝𝑝, tan(φ´𝑝𝑝)), (tan(φ´𝑠𝑠), tan(φ´𝑐𝑐𝑐𝑐)), (e, ψ) and (γ, γd) for the asymmetric copula modeling. 409 
Table 7 Summary of the dependences among collected soil data 410 

Pearson Correlation 
 𝑐𝑐´𝑝𝑝(kPa) tan(φ´𝑝𝑝) tan(φ´𝑠𝑠) tan(φ´𝑐𝑐𝑐𝑐) e γ (kN/m3) γ𝑑𝑑 (kN/m3) ψ (o) 

𝑐𝑐´𝑝𝑝(kPa) - -0.91353 - - - - - - 
tan(φ´𝑝𝑝) -0.91353 - - - - - - - 
tan(φ´𝑠𝑠) - - - 0.36488 -0.44835 0.54173 0.44988 0.78078 
tan(φ´𝑐𝑐𝑐𝑐) - - 0.36488 - 0.15556 -0.09402 -0.15627 0.05931 

e - - -0.44835 0.15556 - -0.87407 -0.99857 -0.58744 
γ(kN/m3) - - 0.54173 -0.09402 -0.87407 - 0.8677 0.61339 
γ𝑑𝑑(kN/m3) - - 0.44988 -0.15627 -0.99857 0.8677 - 0.57945 

ψ (o) - - 0.78078 0.05931 -0.58744 0.61339 0.57945 - 
Spearman’s ρs 

 𝑐𝑐´𝑝𝑝(kPa) tan(φ´𝑝𝑝) tan(φ´𝑠𝑠) tan(φ´𝑐𝑐𝑐𝑐) e γ (kN/m3) γ𝑑𝑑 (kN/m3) ψ (o) 

𝑐𝑐´𝑝𝑝(kPa) - -0.9116 - - - - - - 
tan(φ´𝑝𝑝) -0.9116 - - - - - - - 
tan(φ´𝑠𝑠) - - - 0.37317 -0.50544 0.59981 0.50544 0.78837 
tan(φ´𝑐𝑐𝑐𝑐) - - 0.37317 - 0.08818 -0.11445 -0.08818 0.06323 

e - - -0.50544 0.08818 - -0.86224 -0.99872 -0.58819 
γ(kN/m3) - - 0.59981 -0.11445 -0.86224 - 0.85366 0.6081 

γ𝑑𝑑(kN/m3) - - 0.50544 -0.08818 -0.99872 0.85366 - 0.58037 
ψ (o) - - 0.78837 0.06323 -0.58819 0.6081 0.58037 - 

Kendall’s τ 
 𝑐𝑐´𝑝𝑝(kPa) tan(φ´𝑝𝑝) tan(φ´𝑠𝑠) tan(φ´𝑐𝑐𝑐𝑐) e γ (kN/m3) γ𝑑𝑑 (kN/m3) ψ (o) 

𝑐𝑐´𝑝𝑝(kPa) - -0.77864 - - - - - - 
tan(φ´𝑝𝑝) -0.77864 - - - - - - - 
tan(φ´𝑠𝑠) - - - 0.26667 -0.31282 0.39744 0.31282 0.57692 
tan(φ´𝑐𝑐𝑐𝑐) - - 0.26667 - 0.05641 -0.08974 -0.05641 0.03333 

e - - -0.31282 0.05641 - -0.67318 -0.97378 -0.41115 
γ (kN/m3) - - 0.39744 -0.08974 -0.67318 - 0.66382 0.42598 
γ𝑑𝑑(kN/m3) - - 0.31282 -0.05641 -0.97378 0.66382 - 0.40519 

ψ (o) - - 0.57692 0.03333 -0.41115 0.42598 0.40519 - 
 411 
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A general feeling of the data scatterness can be seen in Fig. 5. The figure indicates the datasets 412 
(tan(φ´𝑠𝑠), tan(φ´𝑐𝑐𝑐𝑐)) and (γ, γd) are having positive dependence while (𝑐𝑐´𝑝𝑝, tan(φ´𝑝𝑝)) and (e, ψ) are having 413 
negative dependence. This agrees well with the results in Table 7. From the plot we can see that the 414 
dependences of these four paired datasets are not perfectly linear. Especially, the paired dataset (γ, γd) has 415 
some particular concentrations in its domain (around the mean). The dependence of dataset (𝑐𝑐´𝑝𝑝, tan(φ´𝑝𝑝)) 416 
is also observed to be quite high when 𝑐𝑐´𝑝𝑝 is close to zero which was resulting from the physical limitation 417 
imposing positive values for the cohesion. To better understand the dependences among the soil parameters, 418 
the datasets are transformed into the copula domain for the analysis. Figure 6 presents the scatter plot of 419 
these transformed soil data in the copula domain. As expected, the transformed paired soil data in the copula 420 
domain are not perfectly symmetric. From the density plot it can be observed that the probability density of 421 
(tan(φ´𝑠𝑠 ), tan(φ´𝑐𝑐𝑐𝑐 )) centralizes at several parts in the copula domain which is quite asymmetric. The 422 
probability density of (𝑐𝑐´𝑝𝑝, tan(φ´𝑝𝑝)) also shows a much higher concentration at the minimums compared to 423 
the maximums. This also causes asymmetric dependences in the copula domain.   424 
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Figure 5 Scatter plot of (𝑐𝑐´𝑝𝑝, tan(φ´𝑝𝑝)), (tan(φ´𝑠𝑠), tan(φ´𝑐𝑐𝑐𝑐)), (e, ψ) and (γ, γd) 426 

To further investigate the asymmetric dependence, the measure of the asymmetry as introduced in 427 
Section 4.1, is computed for the paired data and presented in Table 8. Here, the value of p is set to be infinity in 428 
the calculation of the measure of asymmetry as given by Eq. (5). The results show that the dataset (tan(φ´𝑠𝑠), 429 
tan(φ´𝑐𝑐𝑐𝑐)) has a larger asymmetric dependence compared to the others. This may be explained by the fact the 430 
secant friction angle φ´𝑠𝑠  is dependent of the normal stress, as previously referred, while φ´𝑐𝑐𝑐𝑐  does have this 431 
dependency.  432 

Another way of depicting this asymmetric dependence can be done by checking the tail dependence 433 
coefficients. By utilizing the concepts of tail dependence, the upper-lower and lower-upper tail dependence 434 
coefficients are calculated for the paired data based on Eqs. (7)-(8). The results are plotted in Fig. 7. It is seen 435 
that the upper-lower (λu,l) and the lower-upper tail (λl,u) dependence coefficients have some differences for 436 
all the considered datasets when the quantile values are close to zero (e.g. u → 0). Generally, if any 437 
differences between the upper-lower (λu,l) and the lower-upper (λl,u) tail dependence coefficients are 438 
observed, the bivariate data is believed to be asymmetrically dependent. Therefore, it is necessary to utilize 439 
asymmetric copulas to model the data in this case. 440 
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 441 
 442 
Figure 6 Empirical probability density of (𝑐𝑐´𝑝𝑝, tan(φ´𝑝𝑝)), (tan(φ´𝑠𝑠), tan(φ´𝑐𝑐𝑐𝑐)), (e, ψ) and (γ, γd) in the copula domain 443 
 444 
Table 8 Measure of asymmetry in the bivariate data (-𝑐𝑐´𝑝𝑝, tan(φ´𝑝𝑝)), (tan(φ´𝑠𝑠), tan(φ´𝑐𝑐𝑐𝑐)), (-e, ψ) and (γ, γd) 445 

 (-𝑐𝑐´𝑝𝑝, tan(φ´𝑝𝑝)) (tan(φ´𝑠𝑠), tan(φ´𝑐𝑐𝑐𝑐)) (-e, ψ) (γ, γd) 
Measure of asymmetry η∞ 0.011 0.033 0.009 0.012 

 446 
 447 

 448 
(-𝑐𝑐´𝑝𝑝, tan(φ´𝑝𝑝)) 449 

 450 
(tan(φ´𝑠𝑠), tan(φ´𝑐𝑐𝑐𝑐)) 451 

𝑐𝑐´𝑝𝑝 
tan(φ´𝑝𝑝) 

tan(φ´𝑠𝑠) 
tan(φ´𝑐𝑐𝑐𝑐) 

𝑒𝑒 
ψ 

γ γd 



16 
 

 452 
(-e, ψ) 453 

 454 
(γ, γd) 455 

Figure 7 Estimated empirical tail dependences for (-𝑐𝑐´𝑝𝑝, tan(φ´𝑝𝑝)), (tan(φ´𝑠𝑠), tan(φ´𝑐𝑐𝑐𝑐)), (-e, ψ) and (γ, γd) 456 
Several asymmetric copulas, as introduced in Section 4, are utilized here to model the soil data. To compare 457 

with the symmetric copula, the commonly adopted symmetric Archimedean copulas are also considered. 458 
Moreover, the combination rule allows much more possible expansions for the asymmetric copula. Thus, in 459 
order to make the problem simpler, this study will only utilize the Archimedean copulas as the base copulas 460 
for the construction of asymmetric copulas. We choose the most commonly applied Archimedean copulas 461 
that can characterize different tail dependences in this study, namely, Gumbel, Clayton and Frank copulas. 462 
Following the construction rules, the asymmetric copulas are established based on these selected copulas. 463 
More specifically, the following categories of copulas are been investigated: 464 

1. Symmetric copulas: The original symmetric Archimedean copulas are considered herein. They are one 465 
parameter copulas, Gumbel, Clayton and Frank copulas. 466 

2. Asymmetric copulas constructed by products: We adopt the Khoudraji’s device for the construction of 467 
asymmetric copulas. Following Eq. (10), we combine two base copulas from the selected Archimedean 468 
copulas. This gives three combinations namely, Gumbel-Clayton, Gumbel-Frank and Clayton-Frank. 469 
For the individual functions, the Type I function in Table 1 is selected for the asymmetric copula 470 
construction.  471 

3. Asymmetric copulas constructed by linear convex combinations: This group of asymmetric copulas is 472 
constructed by the rules introduced in Section 4.3. The selected base copulas for constructing this 473 
asymmetric copula are Gumbel, Clayton and Frank copulas. 474 

4. Skewed Gaussian copula: The last asymmetric copula has its exact formulation as given in Section 4.4. 475 
No base copulas are needed in this category.   476 

Meanwhile, it is noted the Gumbel, Clayton and Frank copulas are usually used to feature positive 477 
dependences. For bivariate data having negative dependences, the use of these copulas will have problems 478 
in the parameter estimation. Therefore, for the ease of modeling, a slight change is made to the negative 479 
dependent paired datasets (𝑐𝑐´𝑝𝑝, tan(φ´𝑝𝑝)) and (e, ψ) in the copula modeling. Instead of directly modeling the 480 
original data, the copula models are utilized to model the (-𝑐𝑐´𝑝𝑝, tan(φ´𝑝𝑝)) and (-e, ψ). As copula model is 481 
established based on variables’ cumulative distribution function values, such change of magnitude will not 482 
affect the quality of a copula model. However, the marginal distribution models for the individual variables 483 
will remain unchanged.   484 
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The results for the AIC statistics for all the considered models fitting to (-𝑐𝑐´𝑝𝑝 , tan(φ´𝑝𝑝 )), (tan(φ´𝑠𝑠 ), 485 
tan(φ´𝑐𝑐𝑐𝑐)), (-e, ψ) and (γ, γd) are reported in Table 9. The model parameters are estimated by the method of 486 
minimization of Cramer-von Mises statistic, which is explained in Appendix A. The best models among all 487 
the candidate models are marked in the tables. The results show that the best copula models for (-𝑐𝑐´𝑝𝑝 , 488 
tan(φ´𝑝𝑝)), (tan(φ´𝑠𝑠), tan(φ´𝑐𝑐𝑐𝑐)), (-e, ψ) and (γ, γd) are Gumbel-Clayton Type I, Gumbel-Frank Type I, Frank 489 
and Gumbel-Clayton Type I copulas. Generally, the asymmetric copulas show an AIC value lower than the 490 
one parameter Archimedean copulas except for the dataset (-e, ψ). For example, the dataset (-e, ψ) is very 491 
symmetric in the copula domain as indicated previously in Table 8. Thus, the use of asymmetric copulas 492 
does not show clear advantages in this case. For the other three datasets, the asymmetric copulas all showed 493 
a lower AIC value. The quality of asymmetric copulas highly relies on the utilized base copulas. For instance, 494 
in modeling the data (tan(φ´𝑠𝑠), tan(φ´𝑐𝑐𝑐𝑐)), the Gumbel and Frank copulas show better performance compared 495 
to Clayton copula when they are used as base copulas (e.g. the AIC value in either Clayton-Gumbel Type I 496 
or Clayton-Frank Type I is larger than Frank-Gumbel Type I). This indicates the dependence characteristic 497 
in Clayton copula may not be very suitable for the data (tan(φ´𝑠𝑠), tan(φ´𝑐𝑐𝑐𝑐)). Despite the selection of base 498 
copulas, the construction rules are also a dominant factor for the quality of asymmetric copulas. The AIC 499 
values show that the overall performance of asymmetric copulas constructed by Khoudraji’s device is quite 500 
prominent. However, the asymmetric copulas constructed by linear convex combinations are not very 501 
desirable as AIC values are quite large. This indicates the way of constructing the asymmetric copulas by 502 
linear convex combinations is not adequate for modeling the soil data dependences in this case. Compared 503 
to these combined asymmetric copulas, skewed Gaussian copula gives moderate performance. However, 504 
the key feature of using skewed Gaussian copula is that no base copulas are needed. It does not need to 505 
consider the selections of base copulas which might not be appropriate for the data.  506 
Table 9 Comparison of copula parameter estimates and AIC statistics to the data of (-𝑐𝑐´𝑝𝑝, tan(φ´𝑝𝑝)), (tan(φ´𝑠𝑠), 507 
tan(φ´𝑐𝑐𝑐𝑐)), (-e, ψ) and (γ, γd)  508 

Copula type AIC 

 (-𝑐𝑐´𝑝𝑝, tan(φ´𝑝𝑝)) (tan(φ´𝑠𝑠), tan(φ´𝑐𝑐𝑐𝑐))  
 

(-e, ψ) (γ, γd) 

1. One parameter 
copula 

Gumbel -63.62 6.574 1.56 -28.9 

Clayton -57.62 9.05 0.442 -33.28 

Frank -56.34 5.848 -2.504* -23.5 

2. Asymmetric 
copulas 
constructed by 
products 

Gumbel-
Clayton Type I 

-64.9* 6.502 -1.946 -35.5* 

Gumbel-Frank 
Type I 

-64.4 5.764* -0.392 -24.92 

Frank-Clayton 
Type I 

-62.96 10.312 0.358 -31.04 

3. Asymmetric 
copulas 
constructed by 
linear convex 
combinations 

Gumbel-LCC -26.8 13.198 11.336 -4.626 

Clayton-LCC -27.08 14.796 22.182 0.256 

Frank-LCC -22.94 11.428 1.822 -8.506 

4. Skewed copula Skewed 
Gaussian 

-44.02 11.936 8.61 -19.542 

*Minimum AIC value indicates the best model in each type. 509 
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To further check the quality of fitted asymmetric copulas, a comparison is made between the 510 
empirical data and the simulated data from the established models. Based on the best copula models in 511 
Tables 9-12, the simulated data for (𝑐𝑐´𝑝𝑝, tan(φ´𝑝𝑝)), (tan(φ´𝑠𝑠), tan(φ´𝑐𝑐𝑐𝑐)), (e, ψ) and (γ, γd) are plotted in Fig. 512 
8. The simulations are performed based on the method introduced in Appendix A. It can be seen the 513 
simulated data and the original data can fit each other very well in the scatter plot. The concentrations of the 514 
simulated data generally overlap the concentrations of original data in all the plots. Even the nonlinear 515 
dependences between the variables are also well handled by the asymmetric copula, see (tan(φ´𝑠𝑠), tan(φ´𝑐𝑐𝑐𝑐)). 516 
A more clearer view of the fitting quality can be seen from the contour plots of the probability densities of 517 
the empirical data and the simulated data. Generally, the contour line could be used as an indicator of the 518 
quality in predicting extreme values in the bivariate data. The selection of the most accurate multivariate 519 
model has to be made based on the tail fitting capabilities. Figure 9 shows four levels of the probability 520 
density function values for both the original data and the simulated data. As expected, the quality of the 521 
model fitting to the empirical data is decreasing with the drop of contour level values. Nevertheless, the 522 
similarities of the contour lines are still quite high in all the cases. For example, as for (e, ψ), the contour 523 
lines from both original data and the simulated data can be very well fitted even for level value equals to 524 
0.01. The rest adopted asymmetric copulas also show prominent performance in the contour fitting. These 525 
have further validated that the asymmetric copulas are very applicable to soil data modeling, and also 526 
demonstrating advantages for geotechnical reliability analysis. 527 

528 

 529 

Figure 8 Comparison of scatterplots between original data and simulated data for (𝑐𝑐´𝑝𝑝 , tan(φ´𝑝𝑝 )), (tan(φ´𝑠𝑠 ), 530 
tan(φ´𝑐𝑐𝑐𝑐)), (e, ψ) and (γ, γd) 531 
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532 

 533 

Figure 9 Comparison of contour plot between original data and best fitted copula models for (𝑐𝑐´𝑝𝑝, tan(φ´𝑝𝑝)), 534 
(tan(φ´𝑠𝑠), tan(φ´𝑐𝑐𝑐𝑐)), (e, ψ) and (γ, γd) (black line indicates the empirical data; dash line indicates the fitted model). 535 

 536 

Figure 10 Strip foundation reliability analysis  537 

In order to demonstrate the significance of using the asymmetric copulas, a reliability analysis is performed for 538 
a typical geotechnical problem by using the constructed copulas. In this example, a common strip foundation on 539 
the granite residual soil is been analyzed, see Fig. 10. The foundation is located 1 m below the ground surface, 540 
D=1 m and the width of the foundation is 2 m, B=2 m.  The filled soil has a unit weight of 17.5 kN/m3 whereas 541 
the soil cohesion 𝑐𝑐´𝑝𝑝 and friction angle tan(φ´𝑝𝑝) are assumed to be characterized by the copulas constructed in 542 
Table 9. In this example, the load exerted on the foundation is set at Q=500 kN/m. The design formula for 543 
calculating the bearing capacity of the foundation is defined as 544 

Q=500 kN/m 

D=1m 

B=2m γ=17.5 kN/m
3 

𝑐𝑐´𝑝𝑝 , tan(φ´𝑝𝑝) 
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𝑞𝑞𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑐𝑐′𝑝𝑝 ∙ 𝑁𝑁𝑐𝑐 + 𝑞𝑞′ ∙ 𝑁𝑁𝑞𝑞 + 1
2

× 𝛾𝛾 ∙ 𝐵𝐵 ∙ 𝑁𝑁𝛾𝛾   (20) 545 
where the capacity factors 𝑁𝑁𝑐𝑐, 𝑁𝑁𝑞𝑞 and 𝑁𝑁𝛾𝛾 are depending on the friction angle of the ground soil and estimated by 546 

𝑁𝑁𝑞𝑞 = 𝑒𝑒𝜋𝜋∙𝑡𝑡𝑡𝑡𝑡𝑡𝜙𝜙′𝑝𝑝 ∙ 𝑡𝑡𝑡𝑡𝑡𝑡2 �45° + 𝜙𝜙𝑝𝑝
′

2
�   (21) 547 

𝑁𝑁𝑐𝑐 = �𝑁𝑁𝑞𝑞 − 1� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙′
𝑝𝑝    (22) 548 

𝑁𝑁𝛾𝛾 = 𝑒𝑒
1
6∗�𝜋𝜋+3𝜋𝜋

2𝑡𝑡𝑡𝑡𝑡𝑡𝜙𝜙′𝑝𝑝� × �𝑡𝑡𝑡𝑡𝑡𝑡𝜙𝜙′𝑝𝑝�
2𝜋𝜋

5�    (23) 549 
The effective stress at the base of the foundation ′ , in the present case, is calculated by 550 

𝑞𝑞′ = D × 𝛾𝛾      (24) 551 
where D is the depth of the footing and γ is the unit weight of the residual soil. Thus, the ultimate vertical load 552 
strength of the foundation is determined by 553 

𝑄𝑄𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑞𝑞𝑢𝑢𝑢𝑢𝑢𝑢 × 𝐵𝐵      (25) 554 
Therefore, the overall performance function can be formulated by the following equation. 555 

𝐺𝐺 = 𝑄𝑄𝑢𝑢𝑢𝑢𝑢𝑢 − 𝑄𝑄      (26) 556 
In reliability calculations, Monte Carlo simulations with 106 samples are performed to calculate the failure 557 

probability of Eq. (26). The associated copulas as listed in Table 9 are utilized in the reliability analysis separately. 558 
In order to show the significance of using the asymmetric copulas, a comparison is made on the failure probability 559 
between using the symmetric copulas and asymmetric copula. The computed results is shown in Table 10. It can 560 
be seen the failure probabilities differs quite a lot among the constructed copulas. The highest failure probability 561 
is 2.59∙10-3 in Gumbel copula and the lowest failure probability is 3.05∙10-5 in Clayton copula. The asymmetric 562 
copula produces a failure probability of 1.44∙10-4 which is a moderate value among all the copulas. However, it 563 
is noted the asymmetric copula could produce a failure probability that is very different from the symmetric 564 
copulas. The results of failure probability is very sensitive to the adopted copula. Therefore, even the goodness-565 
of-fit statistics (e.g. AIC) is very close, it could not simply imply a similar value in the failure probability. Either 566 
symmetric or asymmetric dependences could have great influences in the safety assessment.  567 
Table 10 Comparison of the failure probability using different copulas (B=2 m) 568 

 Gaussian Gumbel Clayton Frank Gumbel-Clayton Type I 

Failure 
probability 

9.05∙10-4 2.59∙10-3 3.05∙10-5 2.49∙10-3 1.44∙10-4 

In the final part of this study, a short reference is made to discuss the possibility of extending the current 569 
bivariate asymmetric copulas to multivariate ones. This extension can be achieved with the aid of “pair 570 
copula construction (PCC)” techniques. There is an extensive literature on PCC techniques and their 571 
properties, for example, see Joe (2014), Bedford and Cooke (2001) and Aas et al. (2009). The key idea is to 572 
derive a general principle for decomposing a multivariate distribution into bivariate copulas and the 573 
distribution margins. The most common way is to utilize the conditional distributions in relating the 574 
multivariate distribution to bivariate distributions. However, the accuracy of a multivariate model highly 575 
relies on the choices of copulas in each step. A “clever choice” would make the multivariate model much 576 
more adequate. For more advanced techniques in PCC, one can refer to some technical books in discussing 577 
the construction of vine copulas, for example, see (Matthias and Mai, 2017). 578 

It should be pointed out the results obtained from the present study can only be interpreted for the 579 
collected soil data. The soil parameter may exhibit different dependences in other situations when 580 
geological/geotechnical conditions change. Moreover, it also should be realized the sample size in this study 581 
is quite small. Such small sample size dataset sometimes may not be enough to represent the soil parameters. 582 
Thus, the conclusions may be distorted in other situations. For more references discussing the influence of 583 
data scarceness uncertainties to the multivariate modeling, one can read Ching et al. (2010), Beer et al. 584 
(2013), Ching and Phoon (2014a,b) and (Ching and Phoon 2015). In fact, in this study, the asymmetric 585 
copulas are only proved to be more accurate in depicting the data when they are asymmetrically dependent. 586 
In this context, if the geotechnical data is not expected to be asymmetrically dependent, then the application 587 
of asymmetric copulas is not very necessary. Although this analysis is only valid for the selected dataset, 588 
the results can be used to explain significant features of using asymmetric copulas for modeling soil data in 589 
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general. Meanwhile, we should also note the asymmetric copulas are more flexible compared to the 590 
traditional copula models. Various types of base copulas and individual functions can be chosen and 591 
implemented for the construction of asymmetric copulas. This flexibility provides the asymmetric copula a 592 
great feature in its application to the data analysis. The findings of this study can help geotechnical engineers 593 
or researchers to have a better understanding of the soil data. The guidelines presented in this paper can 594 
support the design and analysis of geotechnical problems when considering soil dependences.  595 
 596 
7．Conclusions 597 
In this paper, the soil data have been analyzed by means of the asymmetric copulas in a multivariate 598 
setting. The fundamental formulation and theoretical basics of asymmetric copulas have been reviewed 599 
in details regarding the modeling of soil parameters. These include the concepts of measuring the 600 
asymmetric dependences and tail dependences. Several ways of constructing an asymmetric copula were 601 
introduced. These introduced asymmetric copulas were then compared with several Archimedean 602 
copulas on the modeling of soil parameters collected from a site located in Portugal. The soil parameters 603 
are divided into four groups of bivariate dataset. The copula models were constructed for each of the 604 
data group and compared based on the goodness-of-fit statistics. The results showed that the asymmetric 605 
copula can provide more appropriate characterizations of the asymmetric dependences and tail 606 
dependences in the soil data. It was found that the asymmetric copula can also provide accurate 607 
predictions of extreme values from the empirical data. However, if the soil data does not possess an 608 
obvious asymmetric dependence, the use of asymmetric copula would not be very necessary. The study 609 
also demonstrated that the asymmetric copulas can be quite powerful in capturing the extreme contours. 610 
Therefore, it is expected that asymmetric copula can contribute to improve the reliability analysis or risk 611 
assessment of geotechnical problems due to soil data modeling.  Future work seems necessary to 612 
investigate the ways of selecting base copulas and individual functions in the construction of asymmetric 613 
copulas. Also, applications of the obtained asymmetric copula to real geotechnical problems, as well as 614 
different site data, may prove to have relevant interest regarding Geotechnical Reliability Based Design. 615 
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 626 
Appendix A Parameter estimation and simulation of asymmetric copulas 627 
In this section, a brief introduction of the fundamentals of parameter estimation and simulation of 628 
asymmetric copulas is provided. For more detailed fundamental basics and theoretical proofs, one can read 629 
from Nelsen (2006). This section will provide some discussions only on a simplified bivariate problem. The 630 
same concept can be easily expanded to high dimensional models. 631 

Many parameter estimation methods have been developed by the former researchers. The most well 632 
known method is the maximum likelihood method. The concept of maximum likelihood method is to 633 
maximize the likelihood value of a distribution function when it is fitted to the empirical data. The idea of 634 
this method is quite straight forward and it has been widely used to estimate the parameters for copulas 635 
having only one parameter. However, when multiple parameters exist in the copula, the maximum likelihood 636 
method becomes quite difficult as the maximization tend to be quite tedious. The computation can become 637 
quite cumbersome for most computers. 638 

An easy way to estimate the parameters of copulas having multiple parameters can be done through 639 
the distance based estimation method. For this concern, the Cramer-von Mises statistic S can be employed 640 
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here to seek the most appropriate model parameters 𝚯𝚯 = {𝜃𝜃1, … ,𝜃𝜃𝑛𝑛} of the copula. In Cramer-von Mises 641 
statistics, S generally calculates the distances between the empirical copula distribution function and the 642 
theoretical copula distribution function. The minimization of this statistic will produce the most desirable 643 
estimates for the copula parameters. For instance, in estimating the parameters for a bivariate copula, the 644 
Cramer-von Mises statistic based estimation method can be formulated as 645 

( ) ( ){ }
1 1

2

1 2 1 2
,..., ,..., 1

arg min arg min , ,
n n

N
i i i i

empirical
i

S C u u C u u
θ θ θ θ

Θ
=

Θ = = −∑   (A.1) 646 

where N is the number of data, Cempirical is the empirical copula function, CΘ represents the fitted parametric 647 
copula and Θ stands for the set of copula parameters that need to be estimated. Thus, the concept is to 648 
minimize the distances of cumulative distribution functions by evaluating the statistic for each of the 649 
observed data point (𝑢𝑢1𝑖𝑖 , 𝑢𝑢2𝑖𝑖 ).  650 

The simulation method for asymmetric copulas can follow the traditional algorithm used for 651 
symmetric copulas. For instance, the most commonly applied simulation approach is the conditional 652 
distribution approach which is developed based on the Rosenblatt transform (Devroye 1986). Similar 653 
concepts for simulating random vectors from asymmetric copulas are also developed by other researchers 654 
(Matthias and Mai, 2017). The key weakness of the conditional distribution based simulation approach is 655 
that it requires a root finding procedure. If the conditional distribution can be easily derived from the copula 656 
function, this simulation technique can be well applied. Unfortunately, due to the complex formulation of 657 
an asymmetric copula, the derived conditional distribution is quite complicated. As such, the conditional 658 
distribution based simulation is too cumbersome. There are many other ways of simulating an asymmetric 659 
copula. Here we will introduce a simple way to simulate data from an asymmetric copula constructed by 660 
products. For example, suppose that we need to generate a set of n-dimensional multivariate data from an 661 
asymmetric copula constructed by products by two base copulas (e.g. m=2) and type I individual function 662 
(see Section 4.2): 663 

( ) ( ) ( )1 1

1 1

11
1 1 2,..., ,..., ,...,n n

n nproduct nC u u C u u C u uθ θθ θ −−= .  (A.2) 664 

Simulating these uniform variates from this copula can be accomplished through the following steps: 665 

1. Generate n uniform variates (𝑣𝑣1, … , 𝑣𝑣𝑖𝑖 , … , 𝑣𝑣𝑘𝑘) from the first base copula C1(.); 666 

2. Generate n uniform variates (𝑡𝑡1, … , 𝑡𝑡𝑖𝑖 , … , 𝑡𝑡𝑘𝑘) from the second base copula C2(.); 667 

3. Then the random data (𝑢𝑢1, … ,𝑢𝑢𝑛𝑛) from the asymmetric copula can be obtained by the following  668 

( ){ }1/ 11/max , ii
i i iu v t θθ −=    for i=1,…n.    (A.3)  669 

One can easily see that the other copulas having different number and types of base copulas can also be 670 
included in this simulation technique. With the same concept, it is straightforward to formulate the 671 
simulation algorithm for other asymmetric copulas constructed by products with different types of individual 672 
functions. 673 

Lastly, in order to facilitate the practical use of asymmetric copula for geotechnical engineers, it is 674 
worth to mention some statistical software which already contains certain simulation techniques for the 675 
asymmetric copula modeling. For example, the package named “copula” in R (Yan 2007; Hofert et al., 2014) 676 
can easily perform the simulation of Khoudraji copula. For instance, for simulating a bivariate asymmetric 677 
Gumbel-Frank Type I copula (e.g. like the one in Table 9), the following code can be directly used in R:  678 

C1 <− khoudrajiCopula (copula1=gumbelCopula(param=5), copula2=frankCopula(param=5), 679 
shapes=c(0.7,0.4))  680 
X1 <− rCopula(copula=C1,n=5000) 681 
plot(X1) 682 
contour(C1, dCopula, nlevels = 20) 683 
C2 <− khoudrajiCopula (copula1=gumbelCopula(param=5), copula2=frankCopula(param=5), 684 
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shapes=c(0.5,0.5)) 685 
X2 <− rCopula(copula=C2,n=5000) 686 
plot(X2) 687 
contour(C2, dCopula, nlevels = 20) 688 
C3 <− khoudrajiCopula (copula1=gumbelCopula(param=5), copula2=frankCopula(param=5), 689 
shapes=c(0.4,0.7)) 690 
X3 <− rCopula(copula=C3,n=5000) 691 
plot(X3) 692 
contour(C3, dCopula, nlevels = 20) 693 

A general view of the simulated data can be seen in scatter plot given in Fig. A.1.  694 

 695 
Figure A.1 Scatter plot of 5000 samples from bivariate asymmetric Gumbel-Frank Type I copula with 696 
parameters (θ1, θ2)=(0.7,0.4) (left), (θ1, θ2)=(0.5,0.5) (middle) and (θ1, θ2)=(0.4,0.7) (right) 697 
 698 

 699 
Figure A.2 Contour plot of 5000 samples from bivariate asymmetric Gumbel-Frank Type I copula with 700 
parameters (θ1, θ2)=(0.7,0.4) (left), (θ1, θ2)=(0.5,0.5) (middle) and (θ1, θ2)=(0.4,0.7) (right) 701 

 702 
The fitting of asymmetric copulas by using the Khoudraji’s device can also be done by using the “copula” 703 
package. The following code can be used to estimate the parameters for a bivariate asymmetric Gumbel-704 
Frank Type I copula: 705 

fitCopula(khoudrajiCopula(copula1 = gumbelCopula(),copula2 = claytonCopula()), start = c(4,4, 706 
0.5, 0.5), data = X1, optim.method = "Nelder-Mead") 707 

The associated likelihood values can be simply determined by typing the following code in R:  708 
loglikCopula(c(5,   5, 0.5,   0.5), u = X1, copula = C1) 709 

However, the speed of the parameter estimation calculation highly relies on the starting values. An 710 
appropriate starting value could reduce the calculation time tremendously. Meanwhile, as mentioned in 711 
Section 6, it should be emphasized the selection of the base copulas is very important in constructing the 712 
asymmetric copula. Wrong use of the base copulas may lead to undesirable results in the modeling.  713 
 714 
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