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Abstract
Adverse drug reactions are a significant burden on industry and healthcare 

providers. They account for approximately 5 % of hospital admissions and are a 

considerable cause of morbidity and mortality in patients. While it is widely 

considered that an individual's susceptibility to idiosyncratic reactions is caused 

by a variety of factors; ADRs are thought to be linked to the formation and 

accumulation of reactive drug metabolites rather than the parent drug.

Of the patients administered carbamazepine 30-50 % are subject to the 

development of some form of adverse drug reaction. Carbamazepine is 

metabolized extensively in vivo and hypersensitivity reactions have been 

hypothetically linked to the formation of chemically reactive arene oxide or 

iminoquinone metabolites. In order to understand the mechanisms behind such 

ADRs it is important to synthesize a variety of chemical probes to observe 

changes in pharmacokinetic and pharmacodynamic properties of the 

compounds.

The overall theme of this thesis is the synthesis and the examination of the 

structure-metabolism relationships for halogenated analogues of 

carbamazepine, It is divided into three main sections; a general introduction 

introduces the reader to the basics of drug metabolism from how drugs are 

metabolized to the implications of halogen substitution on the metabolism of 

drugs. It next covers the synthetic strategies employed in the formation of 

halogenated carbamazepine analogues before ending on a discussion of the key 

findings of the structure-metabolism relationships that may be derived from in 

vitro investigations
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General Introduction

Chapter 1

This general introduction is aimed at a reader with a degree in chemistry. Its aim 
is to provide the reader with the fundamentals of how drugs are metabolised to 
the metabolic implications of halogen incorporation and how this could apply to 
metabolism ofhalogenated carbamazepine analogues.
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General Introduction

1. General Introduction

1.1 Drug metabolism

Once a xenobiotic, such as a drug, is administered to an animal or man it is subject to 

transformation by a diverse range of enzymes. Primarily the role of these enzymes is 

to degrade or modify both exogenous and endogenous compounds so they are less 

toxic and more easily excreted. As a result most xenobiotics undergo such reactions 

forming new compounds known as metabolites.1

Metabolism is typically divided into two stages; Phase 1 (functionalisation) and 

Phase 2 (conjugation) and the common reactions associated with each stage are 

summarized in table 1.1. Most phase 1 and 2 reactions occur in the liver although 

some occur in plasma (suxamethonium); lungs (prostanoids); or the gut 

(salbutamol).2 The majority of hepatic drug-metabolizing enzymes (including 

cytochrome p450) are located in the smooth-endoplasmic reticulum. To reach their 

pharmacological target and to be successfully transformed by these enzymes 

xenobiotics must first cross several membranes. Except where specific transporter 

systems exist (such as for dapsone), non-polar drugs cross membranes faster than 

polar drugs, thus hepatic metabolism is less important for polar drags, which are 

rapidly excreted in urine due to their water solubility, than for non-polar which must 

be transformed to a more water soluble compound first or they remain in the blood

and tissues of the host and maintain pharmacological effects for extended periods of

. 2time.

Phase 1 metabolism consists of oxidation, reduction and hydrolysis reactions, 

although some other reactions are outlined in table 1.1 their role is to functionalise

2



General Introduction

the drug; by either revealing or introducing a chemically reactive functional group 

into the molecule where phase 2 metabolism can occur. These metabolites often lose 

the pharmacological activity of the parent compound. However their reactivity is also 

increased and so, paradoxically, a metabolite can be more toxic or carcinogenic than 

the parent compound.1,3

Table 1.1: Summary of common Phase I and phase II metabolism processes.

Phase 1 metabolism Phase 2 metabolism

Oxidation Glucuronidation
Reduction Sulfation
Hydration Methylation
Hydrolysis Acetylation
Isomeriszation Amino Acid Conjugation
Dethioacetylation Glutathione Conjugation

Phase 2 metabolism is the major detoxicating pathway and these metabolites account 

for the majority of the excreted, inactive products of the drug. Phase 2 metabolism 

occurs mainly in the liver, where water-soluble sugars, amino acids and salts are 

attached at the polar functional group that was introduced or revealed during phase 1 

metabolism. Many of the reactions of phase 1 and phase 2 may occur numerous 

times on the same substrate and so there is the possibility of interaction between 

various metabolic routes by competition for the same substrate. It is worth noting 

that although the term phase 2 implies that a phase 1 reaction must first occur, it is 

not necessarily the case and many pharmaceuticals are known to be able to undergo 

phase II conjugations directly (minoxidil).2,3

Metabolites themselves may fall into several different categories. Often

transformation of the parent compound results in the formation of inactive

3



General Introduction

metabolites, where the metabolite has lost the activity of the parent compound and 

has no effect on biological systems, such as the hydrolysis of procaine to the inactive 

metabolites j^-aminobenzoic acid and diethyethanolamine as shown in figure 1.1(a).4

N

iproniazid

p-aminobenzoic acid diethylethanolamine

desimipramine

OH
morphine

isoniazid

Figure 1.1: Some metabolites have profoundly different properties to their parent compound.

Some metabolites are able to retam similar activity to the parent drug, for example 

the demethylation of imipramine yields desimipramine (figure 1.1(b)) which is an 

equally active antidepressant.5 Occasionally a metabolite may be more potent than 

the parent drug, such as the demethylation of codeine to morphine (figure 1.1(c)).6 

Interestingly metabolites may have entirely different pharmacological activity to the
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General Introduction

parent drug such as the anti-depressant iproniazid which is dealkylated to form the 

antitubercular agent isoniazid (figure 1.1(d)).7

1.1.1 Cytochrome P450 and oxidative metabolism

Mixed function-oxidases are found in microsomes (smooth endoplasmic reticulum) 

of many cells, in particular in the liver, kidney, lungs and intestine. They perform a 

large range of functionalisations, and are major catalysts in the detoxication of 

endogenous and exogenous compounds.2 Cytochrome P450s are capable of 

reductions but then primary function is the insertion of a single oxygen atom into a 

relatively unreactive substrate, although there are exemptions to the rule. The 

overall general reaction catalyzed by P450s is that of mixed-function oxidation with 

the general formula below:9

NADPH + //+ + 02 + NADP+ + H20 + RO

While the main goal of mixed function oxygenases is the detoxication of endogenous 

and exogenous compounds, this only occurs if the formed metabolite is intrinsically 

less reactive than the parent compound. A metabolite of a compound that has direct 

toxicity, or is capable of interacting with a receptor to elicit a toxic effect, will only 

have reduced toxicity if the metabolite is less intrinsically toxic than the parent.9 For 

example, over 90 % of a therapeutic dose of paracetmol is metabolised in vivo to 

glucuronide and sulfate conjugates, a further 2-3 % remains unchanged. The 

remaining drug is converted to iV-acetyl-p-benzo-quinoneimine (NAPQI) shown in 

figure 1.2.10 Despite its presence as a minor metabolite NAPQI is significant; it is 

toxic and contributes to paracetamol hepatotoxicity. At therapeutic doses, 

paracetamol is rapidly transformed to unreactive glutathione or sulfate conjugates.

NAPQI is also subject to glutathione conjugation and is thus excreted as a non-toxic

5



General Introduction

conjugate (figure 1.2). However in overdose, although the relative quantities of the 

metabolites remain similar, there is much more NAPQI formed. In time this depletes 

glutathione in the body and NAPQI instead binds to cysteine residues of cellular 

macromolecules resulting in hepatotoxicity.3, i0

Figure 1.2: Metabolism of paracetamol at therapeutic and overdose situation resulting in either detoxication or 
toxicity.

Other mechanisms of metabolite derived chemical toxicity exist, such as 

transformation of a xenobiotic to a highly reactive intermediate capable of binding 

with macromolecules. For example the metabolism of hexane to 2,5-hexanedione, 

which can react with lysine residues of proteins to foim pyrroles,9,11 Alternatively 

these highly reactive intermediates may interact with a target to induce toxicity. 

Hydroxylation of trimethylpentane foims an alcohol that is able to strongly bind to 

microglobulins to produce droplets in kidneys of male rats which develop into 

tumours.12

1.1.2 Cytochrome P450 Catalytic cycle
The structural aspects and catalytic cycle of P450s are still not folly understood but is 

the subject of numerous reviews.13, 14 What follows is a brief discussion of the
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General Introduction

important stages of the P450 catalytic cycle which are covered more extensively 

elsewhere, as regards oxygen insertion into X-H.15’16

The core of all cytochrome P450s is the haem structure Ferriprotoporphyrin-9 (F-9) 

and is shown in figure 1.3(a).1’ ^ It is the area where iron catalyses the oxidation of 

the xenobiotic. The iron is bound by a five bond attachment to two other molecules; 

in the horizontal plane, four pyrrole nitrogens of haem, and the fifth group sulfur 

from a cysteine residue. This is known as the high-spin “pentacoordinate" state and 

is often described as the resting state of the enzyme prior to interaction with a 

substrate.

Figure 1.3: (a) Close-up of the active site of P450cam, for P450 camphor (CYP101), taken from the X-ray 
structure (pdb code: 1DZ9) of Schlichting et a/17 with key residues highlighted.16 Showing the activated oxygen 
species 7 of figure 1.4. (b) schematic representation of the hexaco-ordinated, low spin P450 with the iron lying in 
the plane of haem (c) penta co-ordinated high spin P450 with iron sitting out of plane (typically by ~ 0.3 A for 
P450cam).17

Prior to interaction with substrates, the haem iron is in equilibrium between its high- 

and low-spin states (Figure 1.3b and 1.3c respectively).lb Approach of a substrate 

disrupts this equilibrium, and although there are exceptions,19 cytochrome P450s 

predominantly bind the substrate in stage 1 (figure 1.4) with the iron in its low-spin 

state.1,20 Binding of the substrate occurs on the protein section in such a manner that

7



General Introduction

the most susceptible part of the molecule is exposed allowing rapid modification of 

the substrate with minimum energy expenditure.21 Once bound, a one-electron 

reduction, transferred from NADPH by NADPH cytochrome P450 reductase (stage 

2), ’ reduces the non to its ferrous state (Fe ). This complex is highly unstable but 

it has been observed in some microsomal P450s.9 Once reduced, ferrous ion then 

binds molecular oxygen horn the lungs (stage 3), this complex is highly unstable and 

generates fenic iron and the superoxide O2". Fe2+-02 complexes have been observed 

in some microsomal P450s23 but the characterization of intermediates beyond this 

stage are much less certain and the likeliest pathway has been detennined with 

consideration to what is possible and what has happened in terms of products which 

have been characterized: some inferences come from peroxidases and biomimetic 

metalloporphyrin models.20

ROH

7

(Fe-0)3+
RH

8y R-H 
(Fe-OH)3+ Fe3+v\ 1

Fe3+—RH

h2o

e-

\V2H'

Fe3+—RH or Fe3+—RH 
O?2" V 0.02.

NADPH 5

e-

Fe2+—RH 

■O2

Fe2+-----RH
I
02

NADPH cytochrome 
P450 reductase

)
NADPH

NADPH cytochrome 
P450 reductase

Fe3+—RH 
62-

Figure 1.4: Catalytic cycle of cytochrome P450s.
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General Introduction

Scission of oxygen at step 4 is a high energy process and is thought to initially 

involve the slow transfer of an electron from the ferrous ion to oxygen forming (V, 

and is the rate limiting step of the cycle.24 Step 5 is the key to whether or not a 

substrate is oxidized. A second electron enters the system, forming the highly 

reactive Fe2+022' species. This electron can be supplied by NADPH via NADPH 

cytochrome P450 reductase, but other enzymes are also capable of supplying this 

electron in other systems.25 This reactive species rapidly picks up two protons during 

step 6 cleaving the oxygen-oxygen bond, generating one molecule of water and a 

high valent complex often described as Fe03+. Such perferryl complexes are thought 

to be the main insertion route by P450s and are able to activate the substrate by 

proton abstraction or addition of an electron (supplied by a nitrogen atom) from the 

substrate in step 7. The hydrogen removed will be closest to the carbon to be 

oxidised, the abstracted proton then becomes bound to the perferryl complex, leaving 

the compound with a spare electron, and the subsequent radical is now much more 

likely to react with the hydroxyl group. Step 8 is the subsequent reaction between the 

formed carhon radical and the OH of the perferryl forming an alcohol (‘rebound’ 

mechanism). The compound has now changed both structurally and electronically 

such that it is no longer a good substrate for the enzyme and the product leaves the 

active site.1,3’9

1.1.3 Other forms of oxidative metabolism

Not all oxidations of xenobiotics are performed by cytochrome P450: others are 

outlined in table 2.26 Many of these enzymes are more closely concerned with the 

metabolism of a variety of endogenous compounds, and will not be discussed in

9



General Introduction

detail here. Nonetheless some of these enzymes have been demonstrated to 

metabolise some drags to potentially reactive metabolites.26

Of particular interest in this study is the amine oxidase family of enzymes. They may 

be divided into two classes: monoamine oxidases are responsible for metabolism of 

catecholamines and diamine oxidases which are able to deaminate endogenous 

diamines like histamine.1 Monoamine oxidase in particular metabolises exogenous 

amines obtained from diet, such as tyramine which is found in cheese, to the 

corresponding aldehyde as shown in table 1.21.

Table 1.2: Oxidative enzymes other than cytochrome P450.1

Enzyme_____
Alcohol
dehydrogenase
Aldehyde
dehydrogenase

Xanthine oxidase

Example
o

Amine oxidases

S-CoA

Aromatases
H20 + FADH.+ FAD

Diamine oxidases are almost exclusively involved in metabolism of endogenous 

materials, but //-oxidases are of great significance in the metabolism of drugs like 

imipramine as shown in figure 1.5.27 While these enzymes seem to require NADPH 

and molecular oxygen to function they are not mixed-function oxidases like 

cytochrome P450s — they are flavoproteins.

10



General Introduction

Figure 1.5: YV-oxidation of imipraniine by diamine oxidase.

Myeloperoxidases, a type of heme peroxidase-cyclooxygenase that are found in 

neutrophils (and in monocytes and macrophages)28 have also been theoretically 

linked to the formation of active drug metabolites of carbamazepine.29 Neutrophils 

are found in the blood stream of mammals, and are the most abundant of the white 

blood cells forming an essential part of the immune system.28 Myeloperoxidases are 

released by neutrophils during immunological response and they release several 

oxidising enzymes and compounds. The unique activity of myeloperoxidase is its 

ability to utilise chloride ions as a co-substrate with hydrogen peroxide to form the 

powerful oxidant hypochlorous acid, which is a potent antimicrobial agent.30 This 

strongly oxidising system is potentially capable of oxidizing drugs to chemically 

reactive intermediates.31 For example, the widely prescribed antiarrhythmic 

procainamide is subject to very high incidences of drug-induced lupus and 

aganulocytosis. It has been demonstrated that procainamide is metabolised in vivo to 

a nitroso- intermediate derived from a hydroxylamine intermediate,32 as shown in 

figure 1.6, that is capable of covalently binding to microsomal proteins.33

Although cytochrome p450 enzymes have been shown to activate amines to 

hydroxylamine compounds,34 it may be argued that reactive metabolites generated by 

leukocytes and myeloperoxidase in the blood stream are more likely to give rise to 

immunological responses than those generated in the liver. This is because

11



General Introduction

hydroxylamines formed in the liver are rapidly removed from circulation by 

erythrocytes, which have been shown to preferentially take up hydroxylamines and 

hence protect white blood cells from toxicity in vitro?2

nh2

spontaneous

HOCI
or

MPO/H2O2/CI-

o-Chloroprocalnamldo JV-Chloroprocalnamldc procainamide

H2O2

Ascorbic Acid

procainamide
hydroxylamine Nltroso-procainamlde Nitro-procalnamlde

Figure 1.6: Metabolism of procainamide by a myeloperoxidase system.33

R = CH2CH2N(Et)2

a = activated Leukocytes 
or MPO/H2O2 ± cr

When exposed to activated leukocytes procainamide is oxidised to nitro- 

procainamide as shown in figure 1.6. Although there was no direct observation of 

nitro-procainamide in the system, addition of ascorbate did increase the quantitiy of 

procainamide hydroxylamine.35 Model studies demonstrated the hydrogen peroxide 

was able to oxidize procainamide hydroxylamine to nitroso-procainamide and then 

nitro-procainaimide and that exposure of myeloperoxidase to hydrogen peroxide was 

also able to oxidize procainamide to the same three metabolites.35

When chloride is added to the incubations the rate of oxidation vastly increased. The 

major metabolite observed was JV-chloroprocainamide. This compound was 

relatively stable but on standing spontaneously isomerizes to o-chloroprocainaimde. 

However, although the purified vV-chloroprocainamide isomerized it is possible that 

direct chlorination of the aromatic ling foimed some of the metabolite. Reaction of 

procainamide with dilute hypochlorous acid was also able to produce the same 

chlorinated metabolites.36 Incubation of [I4C] radiolabelled procainamide with 

activated cells or the myeloperoxidase system did show binding to exogenous protein 

but although the chlorinated procainamides were reactive, their major mechanism of

12



General Introduction

action was chlorination of the protein rather than alkylation indicating that the 

hydroxylamine pathway is more efficient at protein binding.33

1.2 Carbamazepine

Carbamazepine (CBZ) is a first line drag in treatment of partial and grand mal 

epileptic seizures and trigeminal neuralgia. Additionally, it is becoming much more 

widely used in the treatment of bipolar depression.37'39 It is also widely prescribed 

“off-label” for a variety of other indications40 including; attention-deficit 

hyperactivity disorder (ADHD),41 schizophrenia,42'44 phantom limb syndrome,45 and 

post-traumatic stress disorder.46 However, its clinical use is associated with a wide 

variety of adverse drag reactions (ADRs) from common and relatively mild reactions 

such as somnolence, nausea, dizziness, and rash,47 to more severe events such as 

blood dyscrasia,48, 49 hyponotraemia,50’ 51 hepatotoxicity,52’ 53 and the rare but 

potentially fatal anticonvulsant hypersensitivity syndrome (AHS).54

Adverse drag reactions (ADRs), as defined by the world health organization (WHO), 

are harmful, unintended reactions to medicines that occur at normally therapeutic 

doses.55 As a result of evidence of toxicity, 16 of 548 (2.9 %) of new chemicals that 

were approved for the US market between 1975 and 1999 were withdrawn from the 

market and 56 out of 548 (10.2 %) were given a black box warning (a warning that 

appears on patient information leaflets that indicates the potential for ADRs).56 They 

are a significant burden on industry and health care providers as such reactions are 

difficult to diagnose early as then pathophysiology and molecular basis remain 

largely unelucidated.57 They have been reported to account for 5 % of hospital 

admissions, and are a considerable cause of morbidity and mortality in patients.58'60 

In the case of sensitivity to anti-epileptics it has been shown that ADRs account for
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approximately half all recorded treatment failures.55 Such reactions are difficult for 

physicians to diagnose as they do not have a predictable pattern of progression and 

often mimic the pathology of common ailments;61 they also have low reaction rates 

(1:1000 to 1:10,000 exposures), have variable latency periods, and are not dose- 

dependent.62

It is widely considered that an individual’s susceptibility to idiosyncratic reactions 

may be caused by several factors such as: race,63’64 genetics,64’65 age, and gender.66 

However, the cause of many ADRs has been linked to the formation and 

accmnulation of reactive drug metabolites rather than the parent drug.67,68 Between 

30-50 % of patients administered carbamazepine are subject to the development of 

ADRs. Furthermore cross-reactivity among the major anticonvulsants is not 

uncommon and pre-existing sensitization to carbamazepine will often result in more 

severe reactions upon subsequent exposures.69

1.2.1 Carbamazepine Metabolism

Whether after repeated administration or a 70single dose, carbamazepine is almost 

completely removed by metabolism as less than 5 % of the dose is excreted 

imchanged in urine. Frigero et al identified the first metabolite in 1972 and since then 

over 30 metabolites have been identified in man.71 Figure 1.7 summarizes the main 

metabolic pathways for CBZ. In particular CBZ is known to form the 10,11-epoxide 

(CBZE), 10,11-dihydrodiol (CBZDHD), N-glucuronide (CBZ-iV-glucuronide), 

glutathione conjugates (CBZSG-1 and -2) and 2- and 3-hydroxy derivatives (CBZ- 

2-OH and CBZ-3-OH) respectively. Hypersensitivity reactions have been linked 

hypothetically to chemically reactive intennediates the structures of which are 

inferred from the products such as the arene oxide (iii)72 and iminoquinone (iv).70,73
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Figure 1.7: Paths of formation of common carbamazepine metabolites.74

The highly stable CBZE is particularly important as it retains enough activity of the 

parent to be pharmacologically active and although interactions between CBZE and 

lamotrigine were known75, 76 it was, until recently, thought that CBZE was 

unreactive. Studies have shown that CBZE may be chemically reactive, as 

incubations of CBZE with glutathione in the absence of biological matrices and 

cofactors, formed two glutathione conjugates, CBZE-SG1 and CBZE-SG2, with 

retention times of ~27.5 and ~30 min respectively as shown in figure 1.8.77 Each 

peak showed m/z 560, which is consistent with a direct CBZE-glutathionyl adduct.77 

Incubation of CBZ and glutathione in HEM incubations, also yielded two 

compounds with MFf ions at m/z 560, indicating that the doublet observed in the 

HLM-CBZ incubation may be similar in nature to the chemical reaction of CBZE.77
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CBZE-SGl CBZE-SG2

Formed in the HLM incubation of 
CBZ with OSH
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CBZE with GSH
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Figure 1.8: LC-MS traces showing the two glutathione conjugates formed in HLM incubations of CBZ and GSH 
and of CBZE with GSH and the proposed fragmentation pathway of the conjugate.77

Based on the conjugation mechanism of epoxides with GSH and considering the

symmetry of CBZE it is not surprising that incubations of CBZE formed two

diastereomeric products, (S,S)-CBZE-SG and (R,R)-CBZE-SG in a 1:1 ratio in the

absence of glutathione-S-transferases (GST) as highlighted in figure 1.8. GST

however, are stereoselective in catalyzing GSH conjugation1,3 and therefore one of

two CBZE-SG conjugates should be formed preferentially if CBZE is converted by

GST to any extent. However the formation of the two adducts in the presence of

Human liver microsomes (HLMs) was mamtained in a 1:1 ratio when CBZ or CBZE

was incubated suggesting that these conjugations were not appreciably mediated by

GST.77

Epoxidation may also occur on the aromatic rings although the high instability of the 

intermediates means that they are not easily observed. Instead the structure of these 

arene oxides is inferred from the structure of the hydroxylated metabolites. 2- 

hydroxy carbamazepine (CBZ-2-OH) and 3-hydroxy carbamazepine (CBZ-3-OH) 

are the two main ring-hydroxylated carbamazepine metabolites and are thought to
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derive from a common 2,3-arene oxide intermediate as shown in figure 1.5. 

However formation of hydroxylated metabolites is not necessarily proof of formation 

of an arene oxide. Instead formation of di-hydrodiols (DHD) or dihydroxylated 

(DHOH) metabolites are more indicative of arene oxide formation.72 Madden et al 

demonstrated that carbamazepine was able to undergo activation to three glutathione 

adducts with m/z 560 which is the expected molecular ion of a dihydroxy 

carbamazepine glutathione adduct. At high cone voltages dehydration of these 

adducts was observed, with subsequent fragmentation of the tripeptide and 

carbamazepine residues.72

CBZ-2-OH has further been implicated in toxicity by formation of a highly reactive 

iminoquinone intermediate.78 Both 2-hydroxy iminostilbene (ISB-2-OH) and CBZ-2- 

OH have been detected in the mine of patients taking carbamazepine and it has been 

hypothesized that CBZ-2-OH can be oxidised to the iminoquinone intermediate as 

described in figure 1.9.78

Figure 1.9: Proposed metabolic pathway resulting in the highly reactive iminoquinone metabolite.78

They demonstrated that when exposed to HOC1 or H2O2, ISB-2-OH was oxidised 

readily to hninoquinone although at a much slower rate for H2O2. The formed 

iminoquinone was shown to be highly reactive, e. g. with GSH.78

Glucuronidation is the next major detoxicating pathway and is important, as CBZ-yV- 

glucuronide and glucuronides of the hydroxylated metabolites comprise a significant 

proportion of urinary metabolites. To date there has been no study that implicates a
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glucuronide metabolite as a cause of ADRs.79 The major glucuronidated CBZ 

metabolite is the A-glucuronide (figure 1.5) although O-glucuronides have been 

identified for all 13 hydroxylated metabolites of CBZ as highlighted in figure 1.10.80

Figure 1.10: Glucuronide metabolites found in human urine. Arrows and broken arrows indicate major and 
minor metabolites respectively.80

Activated neutrophils have been implicated in the formation of reactive metabolites 

of carbamazepine. Furst et al demonstrated that carbamazepine was converted by 

either MPO/H2O2/CI" or HOC1 to an intermediate aldehyde, acridine, acridone, and 

chloroacridone as illustrated in figure 1.11.81 9-Acridine carboxaldehyde was 

oxidised by HOC1 to acridine and acridone. Acridine itself may be further oxidised 

by HOC1 to acridone and the mono- and di-chloroacridone metabolites. Incubations 

with carbamazepine where concentrations of HOC1 were increased resulted in 

formation of two closely eluting chloroacridones (retention times of 8 and 10 min) as 

well as di-chloroacridones at later retention times of 21, 25, and 26 min.
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Carbamazepine was also metabolised to a lesser extent to acridine but no other 

metabolites were detected.

acridone acridine

Figure 1.11: Proposed metabolic pathway of sequential bioactivation of carbamazepine and iminostilbene by 
MP0/H202/Cr and HOC1.

In contrast to carbamazepine, iminostilbene (which is a potential metabolite) was 

more extensively oxidised by activated neutrophils. Observed metabolites were 

similar to those derived from carbamazepine metabolism. Incubation of 

iminostilbene with HOC1 or the MPO/H2O2/CI' system also formed the same 

metabolites.

However, the discovery that acridones and acridine may be formed outside of the 

liver in leukocytes was never confirmed or investigated in vivo. Formation of 

acridone from carbamazepine has been observed in wastewater treatment plants,82,83 

and Mathieu and co-workers investigated the minor metabolites in the blood of 

patients prescribed CBZ.84
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They found that the major metabolites observed, despite the differences in age, sex, 

and weight of the patients studied, were CBZE and its dihydroxydiol. CBZ-3-OH 

was observed more frequently than CBZ-2-OH in accordance with the observations 

of other groups70,84 and levels of acridine and acridone were of similar magnitude to 

those of CBZ-2-OH and CBZ-3-OH their magnitude was again in accordance with 

other researchers.70 Therefore acridine and acridone may be considered normal, 

minor, metabolites of CBZ in man.84

1.3 Implications of Halogen Substitution!.3.1 Physicochemical

properties of Carbon-Halogen bonds

The dependence of structure, electronics, and other physicochemical properties on 

CBZ metabolism is not understood. It is turned over by metabolic enzymes to a 

number of highly reactive metabolites which are postulated to cause ADRs yet the 

exact identity of any metabolite causing an ADR has not currently been identified. 

Chemical modification of CBZ resulting in a decrease in oxidative metabolism could 

therefore be very informative in the assessment of associated ADRs with pathways 

of bioactivation.

Halogens are routinely incorporated into a variety of drug molecules and drug 

candidates typically to exploit the steric effects of Cl, Br and I, by virtue of then- 

ability to occupy specific binding sites of a particular molecular target.85 Yet they 

have effects on processes beyond then steric influences alone. For mstance, halogen 

bonding in ligand-target complexes is recognized as a significant intermolecular 

interaction that contributes to the stability of protein-ligand complexes.86 Often 

halogens, in particular fluorine,87"89 are incorporated into drugs as they impart other 

properties such as increased lipophilicity, stability, and resistance to metabolism. Yet
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despite their properties, inclusion of these molecules into lead candidates is 

somewhat under-exploited as most structure-activity relationship (SAR) discussions 

only pertain to the steric influences of the heavier halogens.

Figure 1.12: Graph showing the percentages of halogenated drup approved by the FDA between 1988 and 2006. 
Salts and metallic complexes were not included in the research.8

Analysis of the drugs approved by the FDA between 1988 and 2006 (figure 1.12)85 

demonstrates the importance of fluorine in pharmaceutical agents: fluoro analogues 

make up over half of all approved halogenated drugs. Chlorine is the second most 

frequently incorporated atom. It has an intermediate position in the halogen series 

with respect to its steric influence shown schematically in figure 1.13, and as 

highlighted in table 1.3 intermediate with respect to its electronegativity. Unlike 

fluorine, chlorine is able to interact as a modest halogen bond acceptor. Replacing 

hydrogen with chlorine confers substantial influence on both size and shape of the 

molecule, and compounds containing chlorine may be able to enhance binding in 

deep, hydrophobic pockets of target proteins.8^
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fluorob»nz*n« chlorob«nz*n« bromob*nz*n«

Figure 1.13: Space filling model of substituted benzenes where white represents hydrogen; grey, carbon, red, 
oxygen; yellow, fluorine; green, chlorine; and brown, bromine.

Bromine and iodine are the least incorporated into drug molecules: the only iodine 

compound released during this time was the thyroid hormone thyroxine.^ Iodine 

compounds are relatively unstable, which may be rationalized by the high 

polarizability and low bond strength of the C-I bond, and as such, synthetic methods 

to make such compounds are often multistep and avoided by the pharmaceutical 

industry as the cost of producing such a drug would be prohibitive. In contrast the 

chemical procedures for producing brominated, chlorinated and fluorinated 

pharmaceuticals are well established in industrial scale production and the products 

are stable and cheaper to produce.

Table 1.3: Physicochemical properties of the carbon-halogen bond.88

Element H C O F Cl Br
Electronegativity 2.20 2.55 3.44 3.98 3.16 2.96

van der Waals radius (A)90 1.20 1.70 1.52 1.47 1.75 1.85

Bond Length (A) (H,C-X) 1.087 1.535 1.425 1.382 1.785 1.933

Bond dissociation energy (kcal/mol) 103.1 88.0 90.2 108.1 81.1 67.9

Ionization potential (kcal/mol) 313.9 259.9 314.3 402.2 299.3 272.7

Electron affinity’ (kcal/mol) 17.42 29.16 3.73 78.52 83.40 77.63
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The van der Waals radius of fluorine is particularly interesting as it is considered to 

cause minimal steric effects at receptor sites and to be a good substitute for 

hydrogen. However, as is seen in table 1.3 the van der Waals radius of fluorine (1.47 

A) lies between that of oxygen (1.52 A) and hydrogen (1.09 A). Regardless of its 

larger size relative to hydrogen there are several studies indicating the minimal steric 

demand at receptor sites of fluorine and its ability as a hydrogen mimic.87, 89, 91 

Chlorine and bromine have much larger van der Waals radii (1.75 A and 1.85 A) 

respectively and assert a greater steric demand at receptor sites. However, the 

appropriate attachment of such large atoms or groups could occupy a large 

proportion of the active site of a molecular target, including the deeper binding 

pockets as shown for the adenosine deaminase inhibitors in figure 1.14 where 

incorporation of the bulky CF3 substituent greatly enhanced binding.92

Figure 1.14: Binding mode of two adenosine deaminase (ADA) inhibitors into the ADA binding cavity. 
Incorportion of the bulky CF3 group allows interactioin with amino acid residues deeper in the protein.92

Halogen atoms are capable of short contact binding modes similar to hydrogen 

bonds. A large number of structural surveys and ab initio molecular orbital 

calculations have established that the interaction is essentially electrostatic, with 

contributions from polarization, dispersion and charge transfer.93
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As halogen bonding is an electrostatic interaction, the electrostatic potential 

surrounding the halogen is important. Figure 1.15 shows the electrostatic potential 

of methyl fluoride (a), methyl chloride (b), and methyl bromide (c): it can be clearly 

seen that there is the expected anisotropic distribution of charge with the carbon 

being more positive in character and halogen being more negative in character across 

the series. Observation of the molecule along the carbon-halogen axis reveals that the 

negative charge is unevenly distributed across the surface of the larger halogens. 

Fluorine remains almost entirely electronegative (red) but chlorine and bromine 

show increasing amounts of electropositive potential at the top of the atom (green). 

This anisotropic distribution of the electron density across the halogen atom has been 

termed the positive cap94 or as a sigma hole.9^

l
114.341
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42.208
36.142
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-15.990
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■-94.189

Figure 1.15: Ab initio calculations of methyl fluoride (a), methyl chloride (b), and methyl bromide (b) to 
compare induced negative (red), neutral (green) and positive (blue) electrostatic potential around the halogen 
surface. The energy potentials range from -175 to 114 kJ/mol. The geometry was optimised at the Hartree- 
Fock/6-31G level and the surface generated by mapping the electrostatic potential onto the surface using Spartan 
’08 vl.2.0 build 132.

It is worthy of note that generally, for any given halogen, carbon-halogen bond 

strength increases with the electron withdrawing nature of the carbon it is covalently 

bound to. Typically, this gives rise to the trend C(sp)-X > C(sp2)-X > C (sp3)-X and 

the more electron withdrawing an attached carbon is in character the more
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electropositive potential is developed at the halogen surface.96 This is illustrated in 

figure 1.16, where increasing amounts of positive charge (blue) may be seen 

appearing at the apex of the bromine atom as the attached carbon moves from sp 

hybridization to sp3. Moreover, as shown in table 1.3, bond strength decrease down 

the series (F > Cl > Br), and the size of the electropositive cap increases with the 

opposite trend (Br > Cl > F) with the increasing electropositive potential increasing 

in-line with the size and polarizability of the halogen. This further suggests that 

bromine (and iodine) will have the strongest halogen bonding interactions. In 

contrast, by virtue of its lack of electropositive potential, fluorine is much more 

likely to act as a hydrogen bond acceptor.97

Figure 1.16: Ab initio calculations of bromoethane, bromoethene, and bromoethyne, observed along a C-X axis, 
to compare the induced negative (red), neutral (green) and electropositive (blue) electrostatic potential across the 
halogen surface. The energy potential ranges from -70 to +186 kJ/mol. The geometry was optimized at the 
hartree-fock_6-31G level and the surface generated by mapping the electrostatic potential onto the surface using 
Spartan ’08 vl.2.0 build 132.

As alluded to earlier, when considering their interactions with biological targets, 

halogen atoms in bioactive compounds are usually understood to be involved in non- 

directional hydrophobic interactions, or to occupy relatively empty cavities, deep in 

binding pockets, without being involved in major stabilizing contacts.96 However, the 

complexity of biological systems, and the abundance of electron rich functional 

groups on amino acid residues (rr-systems, oxygen, nitrogen, sulfur, etc) allow 

opportunity for halogen bonding with surrounding amino acids, stabilizing molecule- 

protein substrates.96
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This effect was well illustrated by Hardegga et afb where a wide range of novel 

human Cathepsin L inhibitors (hCatL) were investigated as a comprehensive 

investigation of the importance of halogen bonding in biological environments.86 

Figure 1.17 depicts the substrate under investigation in the binding site of hCatL 

where the atom highlighted in green (x) is the atom that is most likely to participate 

in halogen bonding. The IC50 values remain largely unchanged upon switching H 

(IC50O.29 pM) to F (0.34 pM) as shown in table 1.4. This is largely attributable to 

inability of fluorine to participate in halogen binding due to the lack of c-hole (as 

shown in figure 1.15)

Glu63

Gln19

Leu69

Met161Ala214

Figure 1.17: Binding mode of covalent inhibitors at the active site of hCatL (a lysosomal cysteine protease) with 
its three pockets. The substituent which is capable of participation in halogen bonding (indicated by a dashed red 
line) is highlighted in green.86

The half-maximal inhibitory concentration (IC50) values also decreased down the 

series. Thus the iodine-substituted compound, which has the most polarisable atom, 

is the most active inhibitor within that particular class of substrates. Moreover, 

incorporation of a methyl substituent did not substantially enhance the binding 

affinity of the substrate in hCatL. As methyl substituents (1.70 A) are most similar in
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size to chlorine atoms (1.75 A) this observation further highlights the importance of 

halogen bonding in the inhibition of hCatL, as the steric influence alone was not 

enough to enhance the binding interaction.86

Table 1.4: Pharmacological properties of hCatL inhibitors.

H Me F Cl Br I

IC50(pM) 0.29 0.13 0.34 0.022 0.012 0.0065

logD 2.11 2.57 2.36 2.73 2.96 3.23

1.3,2 Metabolic dehalogenation

Studies on the dehalogenation of aliphatic-halogenated hydrocarbons demonstrated 

that the order of halogen elimination decreased in the order I > Br > Cl > F.98 This is 

concordant with the strength of carbon halogen bonds (table 1.3) which decreases 

horn fluorine to iodine. By virtue of its greater bond-strength fluorine is routinely 

incorporated into drugs and drug-like molecules to block bioactivation or 

metabolism.87 However, fluorine is an excellent nucleofuge, so much so that despite 

the relative strength of the carbon-fluorine bond, metabolic defluorination can readily 

occur during biotransformation by virtue of the formation of the stable fluoride ion.87 

If a molecule is sufficiently electrophilic to undergo direct reaction with nucleophilic 

groups present in proteins and amino acids (such as the amino group in lysine) 

defluorination may spontaneously occur.99 Such compounds are often highly toxic, 

with the type of toxicity being dependent on the target macromolecues.100 This potent 

leaving group ability is exploited in the treatment of advanced pancreatic cancer by 

gemcitabine (2,-deoxy-2,,2’difluorocytidine). Gemcitabine is a pro-drug that is 5’- 

phosphorylated in vivo. The triphosphate is an efficient DNA polymerase chain
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terminator, where the diphosphate is a suicide substrate for ribonucleotide 

reductase.101

Generation of fluoride during biological oxidation has been observed for a variety of 

drugs; such as the metabolism of 355-difluoro-4-hydroxybenzoic acid to 

fluorobenzoquinone-5-carboxylic acid and fluoride ion figure 1.18a.87 Similarly for 

the metabolism of the novel quinoxaline antiviral (S)-2-ethyl-7-fluoro-3-oxo-2,3- 

dihydro-2H-quinoxaline-carboxylic acid isopropyl ester (GW420867X) by CYP 1A2 

yielding its hydroxylated metabolite as shown in figure 1.18b.102

2,4-dinitrofluorobenzene

Figure 1.18: Examples of metabolic dehalogenation.

The antimalarial drag amodiaquine (figure 1.18c) undergoes extensive 

biotransfomiation in vivo to give a quinoneimine metabolite, excreted in bile as the
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5-glutathionyl metabolite. Attempts to block this biotransformation with fluorine 

substitution at the 5 position103 instead only formed 5-glutathionyl amodiaquine. 

Here the fluoride elimination was caused by oxidation to a quinonehnine; followed 

by subsequent Michael addition of glutathione, and then subsequent elimination of 

hydrofluoric acid to restore the aromatic system.87

Not all dehalogenation reactions are the result of oxidative-type metabolism. The 

volatile anaesthetic halo thane is subject to a number of idiosyncratic reactions, the 

most prevalent being hepatotoxicity.104,105 It is metabolised in vivo by both oxidative 

and reductive pathways.106 It is widely regarded that the oxidative metabolic pathway 

is the major detoxicating route107 for halothane but the reductive metabolism has 

been implicated as the cause of hepatotoxicity of this drug.108

As in oxidative P450 metabolism, halothane is reductively metabolised by two 

consecutive dehalogenation steps (de-bromination then de-fluorination). It has been 

shown that this type of metabolism is stimulated by enzyme induction with 

Phenobarbital which implies a central role of the P450s in the reductive 

dehalogenation of halothane and the proposed mechanistic route is shown in figure 

1.19.109
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Figure 1.19: Reductive dehalogenation of haiothane by cytochrome P450. (a) General mechanistic pathway 
forming 2-chloro-l,l,l*-trifluoroethane and 2-cliloro-1,1-ethylene, (b) Proposed catalytic pathway for cytochrome 
P450 in the dehalogenation of haiothane.98

The proposed mechanistic route98 in figure 1,19 has several features in common with 

the oxidative catalytic cycle of P450s (figure 1.4). Both schemes incorporate 

substrate binding and two successive single electron transfers. However, in anaerobic 

metabolism there is no requirement for oxygen and the reducing electrons are 

utilized in the formation of radical and carbanion complexes of haiothane rather than 

oxygen scission and activation.

Considering the high affinity of cytochrome P450 for oxygen, and that oxygen could 

actively compete for the reducing equivalents in the catalytic cycle, the lack of 

oxygen in the cycle is perhaps surprising. Yet certain cells in tissues, particularly the 

centre of liver lobules, are perfused poorly with oxygen and thus have relatively low

30



General Introduction

oxygen tensions. It is plausible then, that under these almost anaerobic conditions, 

Cyp P450 would act in a reductive mode.

1.3.3 Halogens and the National Institutes of Health (NIH) shift

In higher organisms aromatic compounds, such as carbamazepine, are transformed to

phenols, /raws-diliydrodiols, glutathione conjugates and pre-mercapturic acids from 

postulated arene-oxide intermediates.110 Stability of epoxides varies greatly yet is 

mostly dependent on the electron density of the double bond being oxidised with 

those with high electron densities being the most stable; such as CBZ-E. It is in this 

way that several epoxides with varying stabilities are formed by the same molecule. 

The distribution and nature of arene oxide derived metabolites is dependent on 

several factors:110

• The intrinsic stability of the oxide with regards to isomerisation to phenols

• Susceptibility to conversion to Prwj.s'-dihydrodiols by epoxide hydrolase 

enzymes

• Susceptibility to phase 2 metabolism (glutathione conjugation) and

• Affinity of the metabolite for nucleophilic groups of macromolecules

The isolation and identification of naphthalene-1,2-oxide in 1968 as the key 

intermediate in the hepatic metabolism of naphthalene, ended years of speculation 

over the role such unstable arene oxides played in the metabolism of aromatic 

compounds.110
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Figure 1.20: Pathways of naphthalene metabolism.

OH

major minor
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Hepatic MFOs were shown to convert naphthalene to naphthalene-1,2-oxide as 

shown in figure 1.20, This intermediate can spontaneously isomerize or undergo 

further biotransformation to /ra«5-dihydrodiols by epoxide hydrolase. It may also 

undergo conjugation reactions with glutathione by glutathione S-transferase as shown 

in figure 1.20. However, spontaneous isomerisation of deuterio-labelled 

naphthalene-1,2-oxide is accompanied by deuterium migration from the 1 to the 2 

position.110 This phenomenon became widely known as the NIH shift, named for the 

U.S. National Institutes of Health where the phenomenon was first obseived and is 

illustrated in figure 1.21.

Figure 1.21: The NIH shift in a 1,2-disubstituted benzene.87
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The NIH shift has been reported for a wide variety of substituents since its initial 

discovery including; deuterium, tritium, alkyl, and halogens. The extent to which 

these substituents are able to migrate have also been shown to be dependent upon the 

nature of the substituent itself, and the nature of other substituents present.111

The importance of the NIH shift in the metabolism of halogenated materials is still 

less well documented than for deuterated and tritiated compounds.112 In the study of 

a range of j^ra-substituted phenylalanines to theft /?«ra-hydroxylated metabolites by 

the enzyme phenylalanine hydroxylase shown in figure 1.22; bromine and chlorine 

substituents were observed to migrate, whereas iodine and fluorine substituents were 

preferentially lost from the molecule.113,114 Up until 1998 the NIH shift was virtually 

undocumented for fluorine and iodine substituents, in vitro studies of 4-fluoroaniline, 

4-fluoroacetanilide and 4-iodoanisole reported that, analogous to phenylalanine 

hydroxylase reactions, fluorine or iodine was lost from the molecule in preference to 

the halogen shift.115 However, the apparent inability of fluorine to give rise to an 

NIH shift in P450-catalysed oxidations had only been reported for 4-fluoroaniline 

and 4-fluoroacetanilide.114'116 As NIH shifting had already been shown to be 

dependent upon the type and placement of other substituents on the ring, it was 

unclear if fluorine was generally resistant to NIH shifting or if an electron donating 

substituent para to fluorine artificially enhanced the ability of fluorine to undergo 

elimination.
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O

Figure 1.22: Chemical probes used to probe NIH shifting and metabolic defluorination. When X is fluorine or 
iodine, the halogen is displaced from the molecule. When X is bromine or chlorine it is observed to shift around 
the ring.114'116

Studies by Koerts et a! compared the extent of NIH shifting of a range of di-, tri-, and 

tetra-substituted benzenes as outlined in table 1.5.114 It is clearly seen that the 

percentage of NIH shifted metabolites for the fluorinated analogues is significantly 

lower than the values for chlorinated analogues. This suggested that:

• NIH shifting was a minor process for fluorinated compounds or

• It is a significant process in vivo but the intermediates formed are lost to other, 

competing, bio transformations

Table 1.5: Percentage shifting of substituted fluoro- and chloro-benzenes observed in vivo.

Studies of 1,4-difluorobenzene showed markedly greater percentages of NIH-shifted 

metabolites in vitro than in vivo (26.8 % and 0.7 % respectively). Moreover, addition
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of glutathione to the in vitro incubations resulted in a marked decrease in the 

percentage of observed shifted metabolites, and glutathione depleted rats showed a 

four-fold increase in NIH shifted metabolites implicating glutathione conjugation as 

a competing pathway for NIH shifting.114

The earlier example of the fluorinated quinoxaline antiviral GW420897X (figure 

1.17c) was shown to undergo metabolic defluorination, which may have been 

enhanced by the para relationship with the amine.102 However, in contrast to para 

fluorinated acetanilides and anilines, GW420897X has also been shown to form NIH 

shifted metabolites as highlighted in figure 1.23.117

Figure 1.23: NIH shifted metabolite of GW420867X.

1A Conclusions
The clinical manifestations of adverse drag reactions are often highly similar to other 

diseases making their early diagnosis by physicians difficult.118 Although it is widely 

believed that the formation and accumulation of reactive drag metabolites are 

responsible for the cause of many adverse drag reactions the detailed mechanisms 

behind these effects remain largely unelucidated.56, 68 While in an ideal world the 

medicinal chemist would direct tire formation of new drag candidates to compounds 

that did not contain structural features known to be prone to cause adverse effects (so 

called “structural alerts”). However attempts to do this would be virtually impossible.
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Therefore it is important to try to determine the extent a molecule may be 

metabolized and which metabolites are responsible for adverse drug reactions.56,119, 

120 Halogens, particularly fluorine,121’ 122 have been routinely incorporated into 

molecules as a method of preventing oxidative metabolism of drug molecules and so 

strategic incorporation of fluorine, chlorine, or bromine in the 2- and 2,8- positions 

of carbamazepine may be postulated to prevent the formation of 2,3-arene oxides. 

However by virtue of the NIH shift the formation of hydroxylated metabolites may 

not be completely prevented. Furthermore, if the carboxamide moiety may be 

removed in sufficient quantities, the para relationship of the halogen substituent and 

the amide may enhance dehalogenation.

While the incorporation of these atoms may not have a direct effect on oxidations at 

the 10,11- positions: the increased steric demand of the larger halogens, and their 

potentially different binding in the P450 active site (fluorine would act as a hydrogen 

bond donor, bromine and chlorine would act more as acceptors) may reduce the 

formation of CBZE. Consequently, chemical modification of CBZ resulting in a 

decrease in oxidative metabolism could be very informative in the assessment of 

associated ADRs with pathways of bioactivation.
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Results and Discussion: Synthesis 
of Halogenated Carbamazepine

Analogues
Chapter 2

This chapter details the chemical synthesis of halogenated carbamazepine 
analogues. It includes a brief introduction to the literature precedent for the 
synthesis of such molecules, before moving on to a detailed discussion of the 
synthetic strategies employed in the formation of selectively substituted 
iminostilbenes and carbamazepine analogues.
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2. Synthesis of Halogenated Carbamazepine Derivatives

2.1. Introduction: Dibenz[b,f]azepines and related ring systems

First synthesised in 1899 by Theile and Holzinger,1 10,11 -dihydrodibenz[A/]azepine

(iminodibenzyl) was prepared from o,o -diaminobibenzyl hydrochloride as shown in 

scheme 2.1 below. Yet a further 50 years were to elapse before other derivatives of 

this ring system were prepared and characterized.2,3

Scheme 2.1: Synthesis of iminodibenzyl3 Reagents and conditions: (a) sodium ethoxide - isoamyl nitrate, (b) 
Sn/HCl, (c) heat or Polyphosphoric acid.3

Benzodiazapines are a highly significant class of therapeutic agents. 1H-3- 

Benzazepine-2-amines (figure 2.1) possess antihypertensive activity, additionally 

iminostilbenes possess some limited pharmacological potential such as antimalarial,4 

and antioxidant5 8 properties. However, their 5-substituted analogues are generally 

more potent and most similar seven-membered ring systems bearing a basic side- 

cham will have some effect on the central nervous system.9 Iminostilbenes (ISB) and 

iminodibenzyls (IDB) are present in a variety of pharmaceutical agents besides the 

antiepileptic CBZ. Almost all iminostilbenes that bear a y-dialkylaminopropyl 

substituent display antidepressant activity; depramine (iminostilbenes) and 

imipramine (iminodibenzyl) are both active anti depressants,10 similarly opipramol is 

an antidepressant11 but also displays some antipsychotic activity.12 Quinupramine13
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displays some anticholinergic and antihistamine character14 and is a weak serotonin 

and norepinephrine reuptake inhibitor. 15

1 H-3-Benzazepine-2-amine carbamazepine

quinupramine
Figure 2.1: Some pharmacologically active dibenzazepines.

depramine opipramol

imipramine

Other regio-isomers of the azepine nucleus (figure 2.2) have been shown to possess 

biological activity: Etazepine retains anticonvulsant activity;16 1 \H~ 

dibenz[A ejazepines (morphanthridine) derivative perlapine and its 2- fluoro 

analogue flupeiiapine have similar neuroleptic properties to clozapine and are 

important pharmaceuticals.17 19 Conversely, other dibenz[A ejazepines are extreme 

irritants to both skin and mucous membranes as well as powerful lachrymators and 

have been examined as chemical defense agents.20

etazepine

\

R= H perlapine 
R= F fluperlapine

dibenz[£>,f][1,4]oxazepine 
a component of tear gas

Figure 2.2: Biologically active I l//-dibenz[£>,e]azpeines and related compounds.

OH
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Other benzazepine derivatives are mainly considered from a synthetic standpoint21-23 

as many do not have known pharmacological effects. However dibenz[c,e]azepines 

have been shown to retain good anticonvulsive activity despite loss of the 

antidepressant activity.24 Some derivatives have limited effects as multi-drug 

resistance reversal agents (R4DPP).25 Other derivatives retain some limited 

beneficial pharmacological properties such as antihistamine (epinastine),26 and 

hypolipidemic (6,7-dihydro-5H-dibenz[c,e]azepine) as highlighted in figure 2.3 

below.27,28

Figure 2.3: Other heteropine derivitaves with pharmacological activity.

2.2 Synthesis of dibenzazepines by ring closing reactions

2.2.1 From bis(2-(bromomethyl)phenyl)amine

Preparation of the frilly unsaturated iminostilbene ring system by ring closing 

reactions is rare. One such example is the treatment of the unstable intermediate, 

bis(2-(bromomethyl)phenyl)amine in situ with an excess of phenyl lithium as shown
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in scheme 2,2. This forms mainly //-acetyl iminodibenzyl (66.5 %)29 with //-acetyl 

iminostilbene as a minor product (3.5 %).

Scheme 2.2: Synthesis of multi substituted iirdnostilbenes by ring-closing reaction of bis(2- 
(bromomethyl)phenyl)amine.29

Few other alternatives to this reaction exist, however as shown in scheme 2.3, 

refluxing bis(2!-formylphenyl)amine with 60 % hydrazine hydrate in acetic acid 

yields iminostilbene in excellent yield (98 %).30

Hydrazine hydrate, AcOH 
reflux

98%

Scheme 2,3: Synthesis of iminostimbene from bis(2,-formylphenyl)amine.30

2.2.2 By palladium-ligand controlled ring closure
The most recent method of ring-closing synthesis of iminostilbenes is the palladium- 

ligand controlled reaction of stable 2-chloro-N-(2-vinyl)aniline derivatives.31 

Selectivity of the ring closing reaction was demonstrated to be highly ligand 

dependent with 2-dicyclohexylphosphino-2'-(//,//-dimethylamino)biphenyl 

(DavePhos) identified as exclusively forming iminostilbene derivatives. Conversely 

[l,r-binaphthalen]-2-yldi-tert-butylphosphine (TrixiePhos) was shown to 

preferentially form 1-vinylcarbazoles and 9-methyl acridine derivatives exclusively.
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The conditions and yields of the reactions are highlighted in scheme 2.4. Use of 

other ligands in the reactions tended to give rise to mixtures of the products.31

Iminostilbene
99%

Pd2(dba)3 (0.75 mol%) 
DavePhos (2.25 mol%)

1.5 eq. NaOf-Bu3 \
1,4-dioxane, 110 °C\

Pd2(dba)3 (2.5 mol%) 
TrixiePhos (a) (7.5 mol%)

/^f.5 eq. NaOf-Bu3, 

toluene, 100 “C
9-methyl acridine 

87%

Cl
Pd2(dba)3 (0.75 moi%) / ,

TrixiePhos (b) (2.25 mol%)\ 11

1.5 eq. NaOf-Bu3 
1,4-dioxane, 110 “C 1-vinyl-9H-carbazole 

94 %

Davephos TrixiePhos (a) TrixiePhos (b)
Scheme 2.4: Pd-Ligand controlled stereoselective ring-closing cyclisations.31

Direct transformation to iminostilbene was uniquely achieved by tandem reaction of 

2-bromo-styrene with 2-chloroaniline, which proceeded in 99 % yield in the presence 

of Pd2(dba)3 and NaO/-Bit3 with the DavePhos ligand at 100-110 °C.31 All other 

ligands proceeded via the diaryl intermediate shown in the centre of scheme 2.4. The 

reaction was further shown to be reasonably general with a range of mono and di- 

substituted derivatives formed with a range of functional groups (Cl, OMe, F, CF3, 

Me) in good yields.31 However, there are no examples of brominated derivatives or 

symmetrical substituent patterns.

The currently postulated mechanism of the formation of the iminostilbene is shown 

in scheme 2.5. It is thought to be initiated by the oxidative addition of Pd(0) to the 

diarylamine intermediate.31 The carbon-carbon bond formation for iminostilbenes is 

then suggested to proceed via an eight-membered palladacycle which undergoes 

reductive elimination to liberate the product.31
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Elimination
Reductive

H

Scheme 2.5: Proposed mechanism for formation of iminostilbenes.31

2.2.3 Synthesis from iminodibenzyls
Substituted iminostilbenes may be synthesized from an appropriate iminodibenzyl. 

While the original synthesis was accomplished by heating o,o -diaminobibenzyl with 

0,0 -diaminobibenzyl hydrochloride in 80-85 % yield,1 it has since been superseded 

by other methods, such as heating over AICI3.32 Though the reported yields are 

slightly reduced (79 %), the benefit to this is the reduced reaction temperatures (280- 

290 °C), and shorter reaction times which are more tolerant of substitutions on the 

aryl rings.32

Such ring closing reactions have been exploited in the synthesis of complex 

binaphthyl derivatives as shown in scheme 2.6.33 Nitration of the binaphthyl 

derivative occurred in 31 % yield. This product was converted to the diamine and the 

cyclisation step progressed in 73 % yield in the presence of HC1.

Scheme 2.6: Synthesis of complex binapthyl derivatives. Reagents and Conditions: a) HNO3/HOAC, 30 %; b) 
Pd/C, formaldehyde; c) HC1, 73 %.33

Fluorinated iminodibenzyls have also similarly been prepared by Li et al as the key 

intermediate in the synthesis of novel analogues of imipramine as highlighted in

scheme 2.7.34
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Scheme 2.7: Synthesis of 3,7-difluoro iminodibenzyl. Reagents and Conditions: a) CHjONa, 5-15 °C, 4-5 h, 72 
%; b) Fe/HCl, 60-70 °C, 3 h, 76 %; c) 290 0C, 1 h, 5 %.

The condensation of 4-fluoro-2-nitrO“toluene in the presence of sodium methoxide 

progressed in 72 % yields. The dinitrodibenzyl was subsequently reduced to the 

diaminodibenzyl in 76 % yield. However, thermal condensation, at 290 °C for 1 h, of 

the diamine to the iminodibenzyl yielded the key iminodibenzyl in only 5 % yield as 

the reactant was largely carbonized under the reaction conditions.34

Jorgensen et «/35 have also reported the synthesis of a range of mono and di- 

substituted iminodibenzyls, which incorporates much of the chemisby discussed 

above. Among the final products synthesised was 2,8-difluoro iminodibenzyl as 

shown in scheme 2.8.

Scheme 2.8: Synthesis of 2 and 2,8-difluoro iminodibenzyls. Reagents and conditions: (a) NBS, dibenzoyl 
peroxide, CCI4, 50-100 %; (b) P(OEt)3, quantitative; (c) NaH, dimethoxyethane, 75 %; (d) Pt/C (5 %) or Rh/C, 
3:1 EtOH/MeOH, 51-98 %; (e) HCO.Na, HC02H, 79-92 %; (f) K2C03! Cu, CuBr, DMSO; (g) KOH, MeOH, 
over all yield of steps (f) to (g) 46-75 %.35

Modification of either of these methods could be usefully extended to the synthesis 

of 2- and 2,8- substituted iminostilbenes and thus, carbamazepine derivatives, as 

introduction of a double bond at Cl0,11 is plausible. However, the amine nitrogen
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must be protected which will result in long and complex reaction sequences: eleven 

steps in the case of Jorgensen, and eight in the case of Li.

As discussed earlier, the 10,11-double bond may be introduced by dehydrogenation 

of iminodibenzyls. Dehydrogenation of iminodibenzyls is the principal route to 

synthesis of iminostilbene derivatives.3 Palladium on charcoal is the most commonly 

utilized catalyst;36, 37 often by sublimation of the iminodibenzyl through an 

electrically heated glass column that has 20-30 % palladium on charcoal sprinkled on 

it.3 Alternative reagents and catalyst systems exist, such as hydrochloric acid,38 

manganese oxides,39,40 mixed catalyst systems e.g. ZnO, CaO, and Si0241 and ferric 

oxide. 42,43 Furthermore, the iminodibenzyl may be heated with the dehydrogenation 

catalyst alone,40 or in the presence of a high-boiling solvent such as diphenyl ether.44 

Industrial production is conducted in the gas-phase, at 500 °C, with a ferric oxide 

catalyst progressing in 86 % yields. However, the crude product contains acridine 

and 9-methyl acridine as by-products.3

Most of the above chemistry requires complex catalytic mixtures or high 

temperatures and so are impractical on the laboratory scale. Dehydrobromination of 

10-bromo, and 10,11-dibromo iminodibenzyls is a more suitable and practical 

alternative. It generally affords the desired iminostilbene product in good to excellent 

yields after protection of the amine and is tolerant of substituents on the aiyl ring as 

shown in scheme 2.9.2 Bromine is typically introduced into the etheno bridge by 

radical bromination, with vV-bromosuccinimide as the most common bromine 

source.2 The subsequent elimination of the bromine as hydrogen bromide is 

accomplished with potassium hydroxide,2, 45 or occasionally by means of a tertiary
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organic base, such as collidine, under more forcing conditions.46 Effective use of this 

method will be exemplified later for compounds synthesised for our study.

Br

Scheme 2.9: Dehydrobromination of iminodibenzyls. Reagens and conditions (a) KOH (aq), EtOH, 60 °CS 90 %.

2.3 Synthesis of dibenzazepines by ring expansion reactions

2.3.1 Acridine-9-methanol expansion

Wagner-Meerwein rearrangement of 9-hydroxymethyl-9,10-dihydroacridine 

(acridine methanol) is a valuable route to access highly substituted iminostilbenes 

particularly ring,4,47 and etheno bridge derivatives. 48

Formation of 2-fluoro iminostilbene from 9-chloro acridine has been reported by 

Varma 4 in 30 % yield as shown below in scheme 2.10. Thus addition of the 

chloroacridine to a solution of NaOEt and diethylmalonate, followed by ester 

hydrolysis and decarboxylation yielded the carboxylic acid which is further heated 

with NaOH to give the 9-methylacridine. Treatment of the methyl acridine with 2 

equivalents of A(7V-dimethyl-4-nitrosoaniline and piperidine yielded a nitrone. This 

sensitive intermediate is then reacted in situ with HC1 to yield the
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acridinecarboxaldehyde. This intermediate may then be esterified and then reduced 

selectively with lithium aluminium hydride.4

Scheme 2.10: Synthesis of asymmetrically substituted 2-fluoro iminostilbene by the acid catalysed ring 
expansion of acridine methanol. Reagents and conditions (a) NaOEt, diethylmalonate, EtOH/tol, (hen HCl(a(l) (18 
%), reflux, then NaOH (b) AOV-dimethyl-4-nitrosoaniline, piperidine, DMF; (c) LiAlH4; (d) PiOs, xylene, reflux, 
2 h, yield 30 %.

The synthesis of iminostilbenes by tliis method is not without its limitations as 

acridine methanols are also subject to dehydration reactions forming 9-methylene- 

9,10-dihydro acridines which can rearrange to 9-methyl acridine. 47

Work by Bowkett49 has also further shown the formation of 2-fluoro iminostilbene 

by ring expansion of the corresponding acridine methanol derived instead from 

acridine carboxylic acid as shown in scheme 2.11.

Scheme 2.11: General synthetic route of dibenzazepine formation from isatins. Reagents and Conditions a) CuO, 
Dimethylacetamide, 150 °C, 18-24 h; b) KOH, EtOH; c) thionylchloride, methanol; d) LiAlKLi; e) P2O5, heat.
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Here the acridine was formed by cyclisation of an 7V-aryl isatin which was prepared 

by reacting isatin and bromobenzene in twice stoichiometric quantities of CuO. The 

reaction progresses well in good yield, although modification of the original Copolla 

procedure was required to prevent degradation of the product at longer reaction 

times.50

2.3.2 Polyphosphoric acid cyclisation ofN-arytindoles

A-aryl indoles, which may be prepared by a variety of methods, undergo ring 

expansion in hot polyphosphoric acid to give dibenzazepines (scheme 2.12)51

polyphosphoric acid

Scheme 2.12: Polyphosphorc acid catalysed cyclisation ofN-aryl indoles.

The reaction is particularly sensitive to the position and electronic nature of 

substituents on the JV-aryl group and at the 2- and 3-positions of the indole ring.51 For 

mstance cyclisation of 3-Methyl-1 -phenyl- IFZ-indole gave rise to a mixture of 

products as shown in scheme 2.13. However, 2-methyl-Iphenyl-1 FZ-indole and 2,3- 

dimethyl-1 -phenyl- l//-indole both failed to cyclise highlighting the importance of 

non-substitution at the 2- position for the reaction to proceed.51
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3-MethyM -phenyl-1 H-indole 37% 63 %

H

1 -(m-tolyl)-l /-/-indole 0% 65%

Scheme 2.13: Polyphosphoric acid cyclisation ofN-aryl indoles giving rise to mixtures of products.51

Furthennore, cyclisation of l(w-tolyl)-17/-indole may be envisaged to form two 

potential region isomers, 1-methyl iminostilbene or 3-methyl immostilbene. 

However, as highlighted in scheme 2.13 only one isomer, 3-methyl iminostilbene, 

was isolated in good yield (65 %).52 Cyclisation of l-(p-tolyl)-!H-indole and 5- 

methyl-1-phenyl-1 H-indole both formed the same immostilbene (2-methyl 

iminostilbene) as seen in scheme 2.14,51 This allows the reaction to be optimised for 

the most convenient route of synthesis with the substituent on the indole ring or 

phenyl substituent.51

5~methyl-1 -phenyl-1 H-indole 1-(p-tolyl)-1 H-indole

Scheme 2.14: Cyclisation of two different regioisomers of N-aryl indoles forming a single iminostilbene 
derivative.51
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The nature of the substituents on the aiyl ring is also important. Rearrangement was 

not observed for highly electron withdrawing groups such as N02, and CF3,51 

whereas electron-donating substituents were observed to promote the reaction, with 

the reaction being most efficient when the aryl group was activated for electrophilic 

attack at the position ortho to nitrogen.51

Interestingly, the reaction fails in sulfuric, trifluoroacetic, and trichloroacetic acids: 

trace yields were observed for ortho phosphoric acids.51
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2.4 Synthetic project aims

The formation of selectively substituted iminostilbenes remains a challenging 

synthetic goal. While some synthetic routes are high yielding and selective31 they 

require highly specific reaction conditions and some halogenated derivatives, e.g. 

brominated, remain inaccessible. Other routes are long and complex,4,35, 49require 

high temperatures,39’40 or are poor yielding.34,53

A synthetic route to a variety of selectively substituted iminostilbenes, which may be 

generally applied, is therefore highly desirable. Furthermore, reproducibility of 

yields, ease of preparation, and safety of reagents are increasingly sought after in 

synthetic routes.

Our aim therefore was to devise a synthetic route to a variety of substituted 

iminostilbenes, and hence carbamazepines, that is; general, selective, high yielding, 

reproducible, easily accomplishable, and forming the carbamazepine in no more than 

three to four steps. Syntheses of 2-fluoro, 2-chloro, 2-bromo, 2,8-difluoro, 2,8- 

dichloro, and 2,8-dibromo iminostilbenes were successfully achieved and these 

inteimediates were converted to carbamazepines in reasonable yields. What follows 

is a discussion of the synthetic approach employed in the synthesis of these 

compounds.
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2.5 Direct Electrophilic Halogenation of Iminodibenzyl

2.5.1 Direct electrophilic bromination with N-halo succinimides 

Electrophilic brominaton:
Originally reported by Smith et al52 selective mono- and di-bromination of 

commercially available iminodibenzyl (1) shown in scheme 2.15 was successfully 

achieved by electrophilic substitution. This was accomplished with use of one or two 

equivalents of iV-bromo succinimide (NBS) in the presence of silica gel acting as a 

mild acid catalyst. In an effort to reduce over bromination 52 or uncontrolled 

bromination in the etheno bridge,54 light was excluded from the reaction.

1 2 3

Scheme 2.15: Electrophilic bromination of iniinodibenzyls with yV-brotnosuccinimklc in the presence of silica 
gel.52

Formation of 2,8-dibromo iminodibenzyl (3) was clean and high yielding, as table 

2.1 shows, although the practicalities of handling the large quantities of silica gel that 

are required to elicit the reaction on scales above 2 g is difficult. However, use of an 

overhead stirring mantle was found to be sufficient to stir the reaction efficiently.
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Table 2.1: Ratio of products isolated from the reaction of N-Bromosucciniinde and iminodibenzyl in the presence 
of silica gel.a

NBS equivalent Time to completion (h) Ratio of 1:2:3*

1 2 3

1 0.2 12 78 10

2 0.4 - 100

^Percentage of isolated solid from manual chromatography.
“Reaction conditions: Iminostilbene (5.0 mmol), jV-bromosuccinimide (10.0 mmol), silica gel (2 g per mmol), 
CHCI3.

As discussed in the original procedure by Smith,52 the reaction of iminodibenzyl and 

A-bromosuccinimide can occur in the absence of silica gel, and the acidity of the 

reaction solvent, chloroform, appeared to be sufficient for mono- and di- substitution 

to occur. However, as table 2.2 shows, the reaction is slower and the requirement for 

the addition of silica gel becomes greater as the number of substitutions on the aryl 

ring increases.52

Table 2.2: Formation of brominated iminodibenzyls with different catalysts.3

Solvent Acid Time to completion 
(10

Ratio of 1:2:3*

12 3

CHCb None 6 Trace 99+

CHCI3 Si02 0.4 100

isolated yields of product after column chromatography.
“Reaction conditions: Iminostilbene (5.0 mmol), jV-bromosuccinimide (10.0 mmol), silica (2 g per mmol), CHCI3.
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Mono-bromination of iminodibenzyl, with one equivalent of iV-bromo succinimide 

was more difficult. Mixtures of mono-, di-, and unsubstituted iminodibenzyls were 

isolated, in concordance with literature precedent52 as shown in table 2.1. 

Purification of the crude mixture by column chromatography was difficult as the 

compounds were similar in polarity but found to be possible and suitable quantities 

of 2 could be isolated in excellent purity. Previous work by Bowkett49 has 

demonstrated that Amberlyst® H+ resin is also a suitable catalyst for this reaction, 

and progresses with similar selectivity and rate to the silica method.

Electrophilic chlorination:
Similar methods of chlorination with iV-chlorosuccinimide (NCS) are rare in the 

literature.55 No specific examples of //-chlorination of iminodibenzyls by this method 

exist. The closest method, outlined in scheme 2.16, by Axtell et al56 uses terf-butyl 

hypochlorite as the chlorinating agent. The reaction was performed at -78 °C for 1 h 

before being gently warmed to room temperature overnight. The reaction was 

unselective; forming complex mixtures of mono- and di- chlorinated derivatives that 

were not isolated individually.

Scheme 2.16: Electrophilic chlorination of 9H-tribenzo[i)) J/Jazepine. Reagents and conditions: i) -78 °C, 1 h; ii) 
RT, overnight.56
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rerf-butyl hypochlorite is highly flammable, and modification of the Smith method52 

utilizing NCS as the chlorine source was considered to potentially represent a milder 

and safer alternative.

Table 2.3: Reaction of jV-chlorosuccininiide with iniinodibenzyl.a

NCS equivalent Time to completion (h) Ratio of 1:4:5

14 5

1 24 23 65 12

2 48 20 80

a Reaction conditions iminodibenzyl (5.0 mniol), iV-chlorosuccinimide (5.0-10.0 mmol), silica gel (2 g per 1
mmol NCS), CHC13.

As seen in table 2.3, compared to NBS the reaction is slower and less selective with 

NCS, Complex mixtures of mono- and di-substituted iminodibenzyls as well as 

unreacted starting material were obtained. This is partially attributable to the stronger 

N-Cl bond in comparison to N-Br.57 This observation is also in agreement with work 

by Duan and co-workers58 where halogenation of dibenz[«,c]anthracene with NBS 

was rapid and formed 9-bromo and 9,10-dibromo dibenzfa,c]anthracene in a 9:1 

ratio. Reaction with NCS was much slower and exclusively formed 9-chloro 

dibenz[<7, c]anthracene.58

It was noticed that NCS was only partially soluble in the reaction solvent chloroform, 

and so investigations into the effects of solvent were made and are summarized in

table 2.4.
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Table 2.4: Effect of solvent on the dichlorination of iminodibenzyl with NCSa

Cl'vl jj) Cl\ \ ITj0'

1 4 5

Solvent Time (h) Ratio of 1:4:5 •k

1 4 5

Acetonitrile 72 - 37 63

CHCI3 48 trace 20 80

CH2CI2 48 7 55 33

EtOAc 72 + 76 24 _
*Isolated yields determined by manual chromatography. All samples isolated after 5 days regardless of level of 
completion and their relative percentages determined.
a Reaction conditions iminodibenzyl (5.0 mmol), JV-chlorosuccinimide (5.0-10.0 mmol), silica gel (2 g per 1 
mmol NCS), CHC13.

None of the solvents studied led to exclusive formation of 5. Instead mixtures of 

varying substitution levels were obtained. As indicated in table 2.4 acetonitrile, 

chloroform, and dichloromethane all gave different mixtures of 4 and 5 with no 

unconverted starting material remaining. Chloroform gave the greatest conversion to 

5 with only trace quantities of 1 isolated from the reaction mixture. Dichloromethane 

reacted at a similar rate, although 1 was isolable from the reaction mixture in greater 

quantities. Interestingly, the selectivity of the reaction had changed and greater 

quantities of 4 were isolated in most cases. Acetonitrile gave the greatest conversion, 

with no isolation of 1, although still yielding a mixture of 4 and 5. Ethyl acetate 

showed only partial conversion of iminodibenzyl after 5 days: here 4 was formed in a 

mixture with unconverted 1. This was advantageous as the separation of 4 from 1 

was simpler than separating mixtures of the three compounds 1, 4, and 5.
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The type of acid used in the reaction had a pronounced effect on both the rate of 

reaction and the ratios of product isolated and the results are summarized in table 

2.5. In the case of chlorination, reaction in chloroform alone was not sufficient to 

elicit much reaction between TV-chlorosuccinimide and iminodibenzyl with only 

small quantities of 4 isolated after 3 days. As for bromination, the inclusion of silica 

gel was important for reducing the reaction time and, although not wholly selective 

for one product, gave reasonable yields of 4 and 5.

Table 2.5: Effect of acid on the electrophilic di-chlorination of iminodibenzyl with NCS.a

Solvent Acid Time (h)
Ratio of 1:4:5

1 4 5

CHC13 None 72 88 12 -

CHC13 sio2 48 - 20 80

CHCls Amberlyst® H+ resin (10 mol %) 48 13 24 53

CHC13 10 % TFA 36 - 31 59

CHC13 10 % HC1 (1 M) 36 26 33 41

isolated yields determined by manual chromatography. All samples isolated after 5 days regardless of level of
completion and their relative percentages determined.
a Reaction conditions iminodibenzyl (5.0 mmol), /V-chlorosuccinimide (5.0-10.0 mmol), silica gel (2 g per 1 
mmol NCS), CHCl3.

The strongly acidic ion exchange resin Amberlyst®, which has a sulfonic acid 

functional group gave mixtures of 1, 4, and 5. However, relatively small quantities of 

1 were isolable after 48 hours. Despite their low selectivity, solid-liquid reaction
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systems have significant advantage over other methods as the acid sources are easy 

to remove from the mixtures at the end of the reaction.59

Addition of small quantities of trifluroacetic acid (TFA) increased the rate of 

reaction, as did 1 M hydrochloric acid. Both were capable of generating the products 

more rapidly than the solid/liquid systems although the ratios of the isolated products 

were not always consistent and other, highly polar, components were observed to 

develop by TLC.

Figure 2.4: Olah-type electrophilic chlorination of irainodibenzyl with NCS. Reaction conditions: N- 
chlorosuccinimide (3 eq), CF3SO3H.

In an attempt to form selectively the mono-chloro derivative, acyl protection of the 

amine before reaction with A-chlorosuccinimide was considered. This substantially 

reduced the reactivity of the amine and the reaction did not readily occur under the 

same NCS/silica conditions. The use of Olah’s strongly acidic conditions,60 depicted 

in figure 2.4, was found to elicit the reaction. However, the reaction required NCS to 

be used in excess which was detrimental to the reaction selectivity, forming complex 

mixtures of products. Mass spectrometry of the product suggested a trisubstituted 

compound as a major product when three equivalents of NCS were used in the 

reaction.
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2.5.2 Incorporation of the 10,11-double bond 

Protection of the iminodibenzyl nitrogen
As discussed earlier, the incorporation of the double bond in the 10,11 position is 

most suitably conducted by radical bromination followed by elimination. Schindler et 

al first exploited this method in the synthesis of the 3,7-dichloro and 3,7-dibromo 

carbamazepines as outlined in scheme 2.17.61’62

Scheme 2.17: Synthesis of 3,7-dichloro iminostilbene. Reagents and conditions: (a) Acetyl chloride, Benzene, 
reflux, 90 %; (b) NBS 1.2 eq. hv (200 W UV lamp), CC14, 60 °C, 90 %; (c) KOH(aq), EtOH, 60 °C, 90 %; (d) 
KOH (3.5 eq), EtOH, reflux, 95 %.62

Protection of the amme nitrogen is an important step, particularly in the case of the 

mono substituted derivatives. A further equivalent of NBS is used for the radical 

bromination of the etheno-bridge. The formation of mixtures of products, as 

illustrated in figure 2.5, may be envisioned as the lone pair of the amine nitrogen 

contributes significantly to reactivity of the aryl rings. The reduction in the capacity 

of JV-acyl iminodibenzyl to undergo electrophilic halogenations under mild 

conditions was described earlier; where protection of the amme nitrogen resulted in 

no aryl chlorination with NCS except under highly forcing conditions. It was thus 

presumed that as long as the nitrogen was protected and care was taken with the
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stoichiometry of the reaction, over-bromination of the compounds would be less 

likely to occur.

Figure 2.5: Potential fonnation of mixed halogenated iminostilbenes resulting from unprotected amine.

Protection of the amine with acetic anhydride was considered to be a potentially 

efficient and high yielding method. However, reaction with 2-, and 2,8- substituted 

brominated and chlorinated iminodibenzyl analogues were low yielding as 

summarised in table 2.6.

Table 2.6: Formation of A'-acylated, halogenated iminodibenzyls.1

2 X1 = Br, X2 = H
3 X-i = X2 = Br
4 Xi = Cl, X2 = H
5 Xh = X2 = Cl

7 X-, = X2 = Br
8 X1 = Cl, X2 = H
9 X-, = X2 = Cl

Iminodibenzyl Time (h) Temperature (°C) Yield (%)
2 24 18 12
3 24 18 18
3 24 60 31
4 24 60 trace
5 24 60 9
a Reaction conditions: iminodibenzyl (0.6 mmol), Ac20 (2.5 mL).

As the protecting group needed to be inserted into the molecule in high yields, we 

chose to optimize the reaction conditions for the dibrominated derivative 3 as shown

in table 2.7.
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Table 2.7: Acyl protection of iminodibenzyl 3 under various conditions.

Acylating
agent Solvent Base/Additive Time (h) Temperature

(°C)
Yield
(%)

Ac20 Toluene - 24 100
AcCl Toluene - 24 r.t. 29
AcCl Toluene - 24 100 56
AcCl Toluene NEt3 24 r.t. 68
AcCl Toluene NEt3 24 100 71
AcCl Toluene Imidazole 24 100 50
AcCl Toluene DMAP 24 r.t. 69
AcCl Toluene DMAP 24 100 92

AcCl* - I2 6 r.t. 77
*3.5 equivalents of AcCl in the presence of a 0.1 eq I2.

Of all the transfer catalysts used in table 2.7 DMAP was the most effective, and 

when heated to near reflux temperature the yields were near quantitative. 

Triethylamine and imidazole gave reasonable yields of 7V-acetyated derivatives when 

heated.

Phukan et n/63 discovered that molecular iodine was a relatively mild and efficient 

promoter of N-acylation reactions at room temperature in solvent free conditions 

with typically one equivalent of acylating agent. The reaction was shown to be 

reasonably efficient for the protection of relatively deactivated amines such as 

diphenyl amine which formed the acylated product in 98 % yield.

This method was applied for compound 3, however I2 was found to be poorly soluble 

in AcCl and three equivalents of the reagent were required. Although the reaction of 

AcCl with an iminodibenzyl can occur' at room temperature, as shown in table 2.7, 

addition of iodme does appear to increase the rate of the reaction. Monitoring of the 

reaction by TLC showed that the reaction had progressed to completion within 6
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hours. However, while the isolated yield is good, it is significantly lower than for 

diphenylamine as studied by Phukan.63 Removal of iodine and excess acyl chloride 

from the sample was not easily accomplished and column chromatography was 

required to return the product in high purity.

2.5.3 Radical bromination of the 10-11 bond

Radical bromination at CIO was attempted with NBS and 1,1'- 

azobis(cyclohexanecarbonitrile) (ACBN) as the radical initiator as illustrated in

scheme 2.18.

Br

6X1 = Br,X2 = H ^ N-N 10a X, =Br, X2 = H 10b Xt = Br. X2 = H
7X1=X2 = Br [ F" 11aX1=X2 = Br 11bX1=X2 = Br
8X1 = CI1X2«H 12a X1=CI,X2 = H 12b ^ = Cl. X2 = H
9 X-] = X2 = Cl Azobis(cyclohexanecarbonitrile) 13a X^ = X2 = Cl X^ “ X2 = Cl

Scheme 2.18: Radical bromination of the etlieno bridge of halogenated iminodibenzyls.

As highlighted in scheme 2.18, it was obseived that as the reaction progressed the 

starting material was converted to the etheno-bridge brominated products 10-13a. 

This intermediate was found to undergo simultaneous elimination to the 10,11- 

unsaturated products 10-13b under tire reaction conditions in an approximate 3:2 

ratio with 10-13a in agreement with previous work.49

Progress of the reaction was difficult to monitor as the starting materials and both 

products all have similar polarities. Previous work by Bowkett49 demonstrated that 

the formation of the products and consumption of the starting material can be 

monitored by LC-MS. However, the two products tend to co-elute, finstrating their 

isolation as separate entities.
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As the isolation of the materials is difficult it was necessary to develop reaction 

conditions that entirely converted the starting JV-acyl iminodibenzyl to either 10-13a 

or 10-13b. However it is necessary to note here that a crude mixture of 10-13a and 

10~13b may be transformed to the respective iminostilbene in one step, without the 

requirement of isolating the //-acyl derivatives, as discussed later, i.e. complete 

consumption of starting material is most important.

It was discovered that the reaction could be more easily monitored by !H NMR 

(figure 2.6) of the crade reaction material after a suitable small scale work-up and 

evaporation of solvent. Although the detection limit for impurities in compounds in 

NMR64 are lower than those of LC-MS,65 monitoring of the reaction by NMR is 

significantly quicker.

11b

10,11

Figure 2.6: Crude reaction mixture taken after 12 h showing the transformation of 7 to 11a and lib.

It is clearly seen in figure 2.6 that the 10,11 proton shifts are highly dependent upon 

their relative substitutions. The unreacted 10,11-N acyl iminodibenzyl, highlighted in 

green, is visible at 3.38-3.25 ppm and 2.83-2.76 ppm. The protons corresponding to
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ClOa/lOb are also clearly identifiable as doublets of doublets at 3.42 (/ = 14.7, 6.3 

Hz) ppm and 3.17 (J= 14.8, 5.10 Hz) ppm, as is the proton at Cll as a complex 

multiplet at 5.79 ppm, indicated in blue. Figure 2.7, which shows an expansion of 

the 2.5-2.6 ppm region, compares the NMR traces at the start of the reaction and at 

12 hours where the removal of 7 and emergence of 11a can be clearly seen.

Figure 2.6 also further highlights the spontaneous elimination of bromine as 

hydrogen bromide (HBr) from the etheno bridge to form 11b, as a clear AB quartet 

(Av/J = 0.5) can be seen developing at 6.9-6.8 ppm and is indicated by the red arrow.

u id

10a

2.5 ppm

Figure 2.7: 'll NMR comparison of 7 and 11a at the start of the radical bromination reaction and at 12 hours.

Monitoiing of the reaction of monohalo derivatives by NMR is more difficult as 

bromine was eliminated more rapidly from the etheno-bridge. However, appearance 

of two distinct AB quartets at 7.05-6.80 ppm associated with formation of 10b could 

be observed for the reaction with 6. Observation of the AB quartets associated with 

the formation of 12b was more difficult as the peaks in that region are poorly
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dispersed, however, disappearance of the 10,11 protons of 8 could be observed, and 

then disappearance used to judge an appropriate end-point for the reaction.

Building on previous work by Bowkett49 the reaction conditions were further 

optimised for 7 in an effort to fonn exclusively the JV-acetlyated product lib. The 

key results are summarised in table 2.8 with all reactions performed in 

trifluorotoluene (PI1CF3). This solvent is used as a substitute for CCI4 as it is easier to 

obtain, and is less damaging to the environment, and it is inert to the reaction 

conditions.

Table 2.8 Optimisation of the radical bromination of 7 with ABCN to form 11a and 11b.

Azobis(cyclohexanecarbonitrile)

NBS (equiv) Radical initiator Temperature
(°C)  

Time
(h)

ratio of 11a to lib 
(determined by NMR)

1.1 hv 60 24 9:1*
1.1 ABCN (10 mol %) 110 24 3:2*
1.2 ABCN (10 mol %) 110 24 3:2*
1.2 ABCN (20 mol %) 110 24 1:1
1.5 ABCN (20 mol %) 110m ----------- 14 1:1
* Trace amounts of 7 were detectable in the 'll NMR.

Selective formation of one product was not accomplished; the use of light as the 

radical initiator was the closest result to selective formation with the products formed 

in a 9:1 ratio, however some trace amounts of starting material were still observable 

in agreement with previous work.49

There was some concern over increasing the quantity of NBS by a large amount as it 

could have yielded mixtures of compounds by further nuclear bromination: although
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we have demonstrated that iV-acetylatioii is effective at reducing the reactivity of 

iminodibenzyl the potential for mixtures of compounds, as postulated in figure 2.4, 

was still possible.

Increasing the equivalents of NBS in the reaction by small quantities did not result in 

the formation of mixtures of products with 8.49 However, it appears that reaction with 

6 is less selective and subject to the formation of isomers. This suggests that N- 

acylation is not sufficient to reduce the reactivity of 6 in the same way as it was for 8. 

The additional product from 6 was detected in !H NMR of the spectra of 2- 

bromoiminostilbene (14) after JV-deprotection as shown in figure 2.8 as a singlet at 

6.3 ppm. This could suggest the product to be either 3- or 4-bromo iminostilbene as 

both would be expected to produce a singlet C10-11 peak in !H NMR. However we 

were never able to isolate sufficient quantities of the isomer to obtain a clear !H 

NMR.

lJaJIlI
1,15 7.10 7.05 7.00 G.95 ppm 6.6 6.5 6.‘1 6.3 6.2

Jl.Jllli
jL

T-------------------- r—' .........m........................t......... ...............i -------------------- 1----- --------------- 1........ . ■ »
6 ^ 1 2 1 0 ppn

Figure 2.8: Proton NMR of 14 the expansion of the AB quartet at 6.2-6.5 ppm indicates the presence of a large 
singlet which may correspond to a regioisomer of 14. This is further supported by the presence of a shoulder on 
the NH peak at 4.9 ppm which indicates the presence of more than one amine.

Unfortunately, further optimisation of the reaction had little effect on the outcome 

with similar quantities of the isomeric product still being detectable after several
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attempts. These regioisomers could not be separated and so the possibility of 

separating them after conversion to carbamazepine derivatives (discussed in section 

2.3) was considered. The two compounds were highly similar in polarity and their 

separation was finally achieved on an analytical reverse-phase HPLC column.

TIG of+Ql: from Samplel p-Br-CBZJiewpuriOofDataSETI.wlff (Turbo Spray), Smoothed Max, 4.5e7 cps.

TIC for unpurlfied CBZ-2-Br

20 ' 22 la ‘ 40 «

XIC of+Ql: 237,0 amu from Sample 1 (2-Br-CBZ_newpurif) of DalaSETI .wiff (Turbo Spray), Smoothed

3.3s5 
3 0e5 

■« 2.565S 3.0e5 
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Figure 2.9: LC-MS trace of the product isolated after reaction of the mixture of 10a and 10b is taken through 
elimination, deprotection, and catbamylation steps to form the carbamazepine analogue 44.

Figure 2.9 depicts the total ion current (TIC) of the LC-MS analysis of 2-bromo 

carbamazepine (compound 44) with extracted ion currents (XIC) for m/z 237 and 

315. The LC-MS analysis revealed further impurities in the form of un-halogenated 

carbamazepine with ?7j/z 236 and some 2,8-dibromo carbamazepine (45). The two 

mono-brominated derivatives I and II at m/z 315 fragment differently in the mass 

spectra shown in figure 2.10. Both compounds show a parent ion at m/z 315 with the 

corresponding isotope pattern for a molecule contaming a single bromine atom. 

Product II fragmented with a mass loss of 45 amu corresponding to the loss of the 

carboxamide moiety (CONH2). Bromine was also lost from the molecule leaving 

iminostilbene with m/z 193. Product I fragmented similarly by loss of bromine to
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give the iminostilbene ion at m/z 193. However, the loss of the carboxamide moiety 

was more pronounced, although ions were detected at m/z 272, which correspond to a 

mono-brominated iminostilbene.

+Q1: 27.06310 20,030 mlnfrom Sample 1 (2-Br-CBZ_newpurl0of DataSETl.wifi(TurboSpray), subtracted(27.‘U(>to 27.696 min),Centiold.,. Max. 6.586 cps.

[M+H-CONH]'

(272-Br]

g- 120 136 140 150 160 170 1B0 190 200 210 220 230 240 250 2G0 270 280 290 300 310 320 330 340 350

jS1 +Q1: 26.94610 27.112 mlnfiom Sample 1 (2-Br-CBZ_n8wpuiIt) of DataSEmsifr(Turbo Spray), subtractad (26.528to 26.779 min). Centroid...

£ T.GbB 193.0

Max. 7.6e6 cps.

120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

Figure 2.10: Mass spectrometry the isomers I and II identified in figure 2.9.

As seen in table 2.7 increasing ABCN in the reaction was found to have the most 

pronounced effect for bromination at the etheno bridge, with increased amounts of 

the eliminated product forming. The reaction occurred in 24 horns with no trace of 

starting material detectable by 'h NMR. Increasing the equivalents of NBS further 

still to 1.5 with a larger concentration of radical initiator was not detrimental to the 

reaction for either the mono or the di- substituted derivatives 7, 8, and 9 and 

progressed slightly faster with no trace of the starting material after 14 hours.

Elimination of HBr from 10-13a could be driven to completion in the next step by 

treatment of the crude mixture with 50 % w/v KOH(aq). This reaction progressed
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cleanly and resulted in near qualitative conversions of 10-13a to 10-13b in 

agreement with previous work49 as highlighted in table 2.9.

Table 2,9: Elimination of bromine from the etheno bridge of /V-acyl iminodibenzyls to form V-acyl 
iminostilbenes.11

Br

10a X, = Br, X2= H
11a Xi =X2 = Br
12a X, = Cl, X2 = H
13a X-) = X2 = Cl

10b X! = Br, X2 = H
11b X, =X2=Br
12b X, = Cl, X2 = H
13b X, = X2 = Cl

10b Xi = Br, x2 = H
11b X1 = X2 = Br
12b X, = CI, X2 = H
13b X, =X2 = CI

Crude mixture Temperature (°C) Yield (%)b
10a + 10b 0 then it 99+
11a+lib 0 then rt 99+ (a mixture)
12a + 12b 0 then rt 99+
13a +13b 0 then rt 99+
“Reaction conditions: 50% w/v KOH^, THF:EtOH (l:l), 0 °C (l h) then 0 °C-^r.t. I h.
bCalculated with respect to the relevant V-acyl iminodibenzyl (compounds 6-9).

Deprotection of the amine was achieved with strongly basic conditions using a 0.4 M

KOH(EtOH) solution and heating to 80 °C. The reaction also progressed extremely

cleanly in near quantitative conversion in each case as shown in table 2.10.

Table 2.10: Deprotection of V-acyl iminostilbenes to iminostilbene.a

14 X, = Br, X2 = H10b X1 = Br.X2 = H

16 X, =CI.X2 = H12b X1=CI,X2=H
13bX1=X2 = CI 17X1=X2 = CI

N-acyl iminostilbene Time (li) Yield (%)
10b 12 98
lib 12 96 % (although a mixture)
12b 16 95
13b 12 96
“Reaction conditions 0.4 mM KOH(Et0H), EtOH/THF (1:1), 80 °CS 12-16 h.

79



Results and Discussion: Synthesis of Halogenated Carbamazepine Analogues.

However, as elimination of bromine from 10-13a and removal of the acyl group from 

10-13b both require KOH at differing concentrations, it was considered that a crude 

reaction mixture could be used to form the derived iminostilbene directly. Such a 

transformation would be one-step with the use of an appropriate concentration of 

KOH and solvent.

Iminostilbenes are generally inert to direct halogenation reactions and to date there 

has still been no report of effective direct halogenation of iminostilbene.3, 56 

Moreover, it was demonstrated earlier that the addition of the acyl group to the 

nitrogen reduces the capability of the aryl rings to undergo electrophilic substitution 

reactions.

One-pot elimination and deprotection was carried out at 80 °C in a 1:1 mixture of 

EtOH and THE and 50 % w/v KOH(aq). The reaction took 24 hours to progress to 

completion with the solution rapidly turning dark brown over 1 hour as HBr was 

evolved. The reaction required chromatography to remove some of the acidic by

products of the crude reaction mixture but the reaction was foimd to progress cleanly 

to near quantitative yields for all the iminostilbenes. Clearly then, this one-pot 

method has a significant advantage over the two-stage procedure as the number of 

steps in the overall reaction scheme is reduced.

2.6 Synthesis from Halogenated Building Blocks

2.6.1 Synthesis of N-aryl indoles

Ring expansion of a 9-hydroxymethyl acridine was shown to be effective for the 

synthesis of 2-fluoroiminostilbene.49 However, the reaction relies upon the 

availability of a wide variety of fluorinated isatins, which are expensive. Synthesis of
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the corresponding A-aryl isatin by the method outlined in scheme 2.11 was difficult. 

Furthermore, the iY-aryl product was found to have a similar polarity to the starting 

material making it difficult to isolate.

The difficulty in forming di-substituted precursors and the limitations set by the 

availability of fluorinated isatins prompted our investigation of vV-aryl indoles as 

precursors for iminostilbenes. JV-aryl indoles have significant advantages over 

isatins; they are more widely available, cheaper, and more literature exists on their 

preparation.

Because it was aimed to produce a wide variety of substituted TV-aryl indoles, 

building on work already begun on the formation of fluorinated iminostilbenes.49 A 

reaction that formed the desired product in high yields and purity was required. 

Furthermore, it was desirable for the reaction to be scalable to 5 g so that larger 

quantities of iminostilbene could be generated.

Initially, the palladium catalysed ,/V-arylation of indoles66,67 was investigated with the 

general reaction scheme outlined in figure 2.11. Both Old67 and Watanabe66 have 

reported the synthesis of l-4-(fluorophenyl“)lH-indole in high yields. The reaction 

uses very low catalyst loadings at 1 mol % and both proceed at reasonably low 

temperatures (85 °C), in good yields, within 24 hours.

Pd(OAc)2 (1 mol %) 
P{Bu3 (3 mol %)

Figure 2.11: Palladium catalysed coupling of A^-aryl indoles.66
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The reaction was found to be reasonably general in the formation of fluorinated N- 

arylindoles, and progressed in good to excellent yields on 1 g scales as shown in 

table 2,11. Initially we discovered that running the reaction at 85 °C resulted in 

slightly lower yields than those reported in the literature,66’ 67 but increasing the 

reaction temperature by 25 °C allowed us to obtain N-myl indoles in reasonable 

yields.

Table 2.11: Palladium catalysed coupling of iV-atyl indoles under a variety of reaction conditions.

Pd(OAc)2 (1 mol %)
PxBu3 (3 mol %) 
o-xylene, 120 °C

Indole Aryl halide Temperature
(°C)

Reaction 
scale (g)

Yield (%)

CO
H

B"0 110 1 94

00H X) 110 1 96

00
H XI 85 1 53

CO
H tx 110 1 88

”€0
H "a 110 1 73

CO
H "a 110a 5 22

'TOO
H

'Xx, 110a 5 12

a reaction left a further 24 h with incomplete conversion still observed by TLC.

However, as shown in table 2.11, scale-up of the reaction was not as successful. 

Isolated yields and purity of the product were poor on a 5 g scale. This is largely the 

result of the difficulty in handling the highly pyrophoric ligand tri-terAbutyl 

phosphine (Pt-Bus) on this relatively large scale. Exchanging the ligand for the air
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stable tri-te/t-butylphosphoniuni tetrafluoroborate salt did not aid the reaction, and 

we consider the possibility that achieving the stringently anhydrous conditions 

required for the reaction to occur, including the solvent, was difficult on that scale.

Another common method for the formation of A-aryl indoles is the use of copper (I) 

salts. Building on work performed by Bowkett49 we investigated the method of 

Chandrasekhar et «/68as outlined in figure 2.12 as a broad synthetic route to iV-aryl 

indoles in a recyclable PEG-400 solvent system.

Cul (5 mol %)
ethylene diamine (20 mol %)
K2C03l PEG400, 80 °C

H

Figure 2.12: Copper catalysed coupling of //-aryl indoles in a recyclable PEG-400 solvent system.

The reported reaction,68 although requiring greater quantities of catalyst (10 mol %), 

has advantages over the palladium methods66, 67 as the reaction should be less 

susceptible to traces of water and air. However, in order to get the reaction to 

progress in similar yields to those reported in the paper we found that both increased 

reaction temperatures and catalyst loadings were required to obtain good yields, 

table 2.12.
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Table 2.12: Copper catalysed coupling of /V-aryl indoles in a recyclable solvent system under a variety of 
conditions.

Cul (5 mol %)

F

Indole Aryl halide Temperature
(°C)

Catalyst 
loading 
(mol %)

Time
(days)

Yield (%)

CO
H

U
_

.0C
D 80 10 3 NPI

CO
H ■XX 80 10 3 NPI

CO
H BrTX 160 10 3 45

CO
H 'XX 160 20 3 59

Difficulties in isolating the TV-aryl indole from the reaction medium in significant 

quantities were encountered. This was because Et20 and the PEG 400 were found to 

be fairly miscible even when cooled Et20 was used. Exchanging the extracting 

solvent to dichloromethane allowed separation of the phases, but multiple back

washes of the organic phase were required to remove all traces of PEG 400 and 

copper catalyst.

As we considered the difficulty in isolating the product from the reaction mixture to 

be the main cause for the low yields other copper catalysed reactions were 

considered.
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CuUSmol0/,). fl i^>

L-proline (10 mol %),

K2C03 (5 eq),
DMSO, 80-90 0C, 24h

Figure 2.13: Cul-catalysed coupling reaction between indole and iodobenzene. Reaction conditions: Aryl iodide 
(2.0 mmol), indole (2.4 mmol), K2CO3 (5.0 mmol), Cut (0.2 mmol), L-proline (0.4 mmol), 4 mL DMSO.

Figure 2.13 describes the reaction conditions of Ma et al.69 This reaction appeared to

be the most general of all the reactions considered forming a wide variety of

differently substituted A-aryl indoles as shown in table 2.13. The reaction uses a

relatively low catalyst loading (10 mol %) compared to the other methods and was

high yielding on 1 g test scales with the fluorinated derivatives. It was gratifying to

discover that the reaction could further be scaled up to 5 g (with respect to indole)

and yields remained in the same range as the 1 g scale. Furthermore, the reaction was

observed by TLC to progress to completion at the reported temperature ranges of 80-

100 °C.

The reactions to form the methoxy- (26, 27, and 28) and hydroxyl- derivatives (29) 

were the most difficult of all the derivatives. This is because emulsions were formed 

when partitioning the reaction mixture between water and EtOAc, Addition of 

NH4CI to the aqueous phase assisted the separation of the two phases for the 

methoxy derivatives 26, 27, and 28. However, separation of the hydroxyl-derivative 

29 only yielded starting materials, the presence of the free phenol possibly 

contributing to the difficulty in forming and isolating the product.
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Table 2.13: Copper catalysed synthesis of yV-aryl indoles with L-proline as an additive.

Cul (5 mol %), 
L-proline (10 mol %),

K2CO3 (5 eq),
DMSO, 80-90 0C, 24 h

Indole Aryl iodide Temp (°C)
/ Time (h)

Product Product
number

Yield (%)

CO
H

90/24 CO 18 97

CO
H

100/24 CO
6

19 81

CO
H

100/28

V

ooF

60
a

20 78

60
H

100/24 21 70

'"03

H

"O 100/24 "00 22 76

fjCO
r H

'^0 100/24 F0O 23 83
LL

tx 100/24 F"0O0
24 75

FJCt>
r H

l^F 100/24 F0O
/y\

25 85

CO
H

90/36 co'

6
26 68

H

'X) 90/36
b

0
27 71
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'"0 90/36

(/0/ 28 62

6
CO '^X 80/48 a> 29 NPI

H Q
CO

H

'XXC1 80/24
OH

CO
A

30 87

clVr\ 80/24 cl'Y^Xr-\ 31 92

H U
H

'XX 80/24 C,'a> 32 85

Cl

CO
H "a., 90/36 CO 33 79

90/36 "XQ 34 83

H 6
All the fluorinated derivatives 19-25 were isolated in excellent yields, and were 

purified easily from the crude materials by column chromatography.

The reaction was further found to be applicable to the formation of chlorinated N- 

aryl indoles. Furthermore, the reaction was selective for the formation of jV-aryl 

indole 34 in excellent yields with virtually no trace of polymeric products formed. 

Formation of indole 33 was also excellent, and although small traces of what could 

have been a polymeric product were observed by TLC, none were isolated and the 

product was obtained in high purity.
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2.6.2 Polyphosphoric acid cyclisation

As alluded to in chapter 1, polyphosphoric acid cyclisation of A^-aryl indoles with 

strongly electron-withdrawing substituents (such as NO2, CF3, Cl) was reported to 

give low or zero yields of iminostilbenes.51 However, cyclisation using 

polyphosphoric acid was found by Bowkett to be satisfactory for 2-fluoro 

iminostilbene and 2,8-difluroiminostilbene,49 although fairly low-yielding as shown 

in table 2.14. That the reaction occurs with fluorine is likely due in part to the unique 

properties of fluorine, viz. back donation of its lone pans and stabilization of the 

cationic intermediates; a process that is less efficient for other groups (e.g. chlorine). 

Interestingly, it was discovered that the poor yields were, in part, due to the 

formation of 9-methylacridine;49 a side-product that was not obseived in the work of 

Tokmakov.51

Table 2.14: Cyclisation of//-aryl indoles to iminostilbenes.

N-aryl
indole

Temperature
(°C)

Time (h) Product Product Yield (%)

19 150 36

r-rCrr
H

36 38

24 150 36 41 15

It was observed early on in the study of this reaction that the presence of air or water 

is detrimental, as it has been shown that oxygen can aid the conversion of 

iminostilbenes to 9-methylacridines.3 Anhydrous polyphosphoric acid (PPA) is not
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commercially available: we were careful to ensure the PPA was thoroughly degassed 

by bubbling nitrogen or argon through gently heated PPA in a two-neck flask.

Furthermore, the yields of the 2,8-difluoroiminostilbene were low due to the 

formation of 9-methyl acridine during the reaction. Iminostilbenes are known to 

undergo cyclisation to methyl acridines in the presence of a variety of acids.3 Indeed, 

when purified 2-fluoroiminostilbene 36 or 2,8-difluoroiminostilbene 41 are added to 

hot polyphosphoric acid cyclisation to 9-methyl acridine occurs in reasonable yield. 

However, as cyclisation of A^-aryl indoles is known not to occur in other acids51 

optimization was instead focused upon time and temperature as outlined in table 

2.15.

Table 2.15: Effect of temperature on the cyclisation of 24 to 41 and 41(i) in PPA.

F
24 41 41 (i)

Temperature (°C) Time (h) Isolated yield (%)
41 41(0

150 72 15 43
130 72 22 30
100 72 66 5
90 >96 32 0

Reducing the reaction temperature to 100 °C did increase the quantity of

iminostilbene and decrease 9-methylacridine. However, the reaction is highly 

capricious and over several runs the yield of 41 isolated at this temperature is more 

consistently in the range of 35-55 %.
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The reaction still occurs at lower temperatures as can clearly be seen in table 2.15. 

More variable yields are obtained at this temperature, but the reaction occurs with 

little development of acridine byproducts. This may partially explain the difference 

in observed products between Bowkett’s reactions, performed at 150 °C,49 and 

Tokmakov’s reactions, performed at 80 °C.51

Unsurprisingly, if the reaction at 100 °C is left for longer periods of time more 9- 

methylacridine is isolable from the reaction mixture as the formed iminostilbene is 

subject to further reaction with polyphosphoric acid.

These reaction conditions were found to be reasonably general: a series of six mono- 

and di-fluorinated iminostilbenes were examined and are summarized in table 2.16.

Table 2.16: The cyclisation of various fluorinated /V-aryl indoles in PPA.
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21

22

23

24

F

25

As discussed earlier, the cyclisation of l-(/«-tolyl)-lA/-indole only yielded a single 

isomer.51 We hoped to exploit this to selectively form the 3,7-difluorinated 

iminostilbene 41. Contrary to the literature precedent however, cyclisation of 20 and 

25 yielded two distinct regioisomers as shown in figure 2.14.
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Figure 2.14: Cyclisation of 20 forms two regioisomers.

A subtle combination of steric and electronic effects was found to play some role in 

the cyclisation as the 3-F isomers 38 and 41 were repeatedly isolated in slightly 

greater yields than the 1-fluoroiminostilbene in each instance. Pleasingly, the two 

isomers could be separated by column chromatography by using a silica-to-product 

ratio of 100:1.

The C NMR of 1,7-difluoro iminostilbene aptly demonstrates the non-planar nature 

of the iminostilbenes as it contains an extra 19F-13C coupling indicated in figure 2.15. 

It is postulated that this is caused by some through-space coupling of the fluorine to 

CIO as the molecule has taken on more of a bowl shape as indicated in figure 2.15.
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CIS \ 
CU(dd)CCOif)

Chemical Shift (ppm)

Figure 2.15: Comparison 1?C NMR comparing the monosubstituted iminostilbenes 37 and 38 to 40. Conserved 
peaks between the spectra are indicated by the arrows in the respective colour of the spectra. The carbon 
assignments only correspond to 40 to simplify the spectra. Top left of the figure depicts an ab initio molecular 
modelling structure for 40, calculated as a single-point energy, Hartree-Fock_3-21G level, (MMFF, AMI) which 
illustrates the bending in the molecule. The molecule was modeled using Spartan '08, vl.1.1 build 132.

The synthesis of the two methoxy iminostilbene isomers 42 and 43 in table 2.17 was 

investigated as they may prove to be useful precursors to hydroxylated derivatives of 

carbamazepine. Since other methods are multi-step and low yielding. 0

Reaction of 26 and 27 to yield 42 progressed in good yield. We observed the reaction 

to be slightly better when the methoxy group was situated on the indole ring. Time 

precluded further study of these compounds for their potential as precursors to 

hydroxylated carbamazepine derivatives.
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Table 2.17: Reaction of other jV-aryl indoles to substituted iniinostilbenes.

yY-aryl indole Number Iminostilbene Number Yield (%)

^reaction temperature reduced to 65 °C.
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As the synthesis of chlorinated iminostilbenes was difficult by direct electrophilic 

addition of chlorine to iminodibenzyl, the possibility of extending the reaction to 

chlorinated derivatives was further examined and are summarised in table 2.17. 

Synthesis of 2-chloro iminostilbene had already been demonstrated by Tokmakov, '1 

and cyclisation of the same intermediate progressed in similar yields. However, 

reaction of the dichlorinated intermediate 32 revealed the occurrence of 

dehalogenation during the reaction: both 16 and 17 were clearly seen in the ’H NMR, 

figure 2.16.

II to II to

-I-------------1........... I ' I ' l' -----—.-I.-,.,............. ....................... , ,, ,,
10 » S 7 « 5 4 3 2 1 0 -1 ppn

Figure 2.16: Crude 'H NMR of the product isolated from the cyclisation of 32 to 17.

Comparison of the cyclisation of 30 and 31 revealed that the chlorine substituted on 

the indole ring was less prone to dehalogenation than on the aryl ring as it was
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repeatedly isolated in higher yields and with trace to zero quantities of 35 isolable 

from the reaction mixture.

Given the difficulty in isolating 14 pure, and without the presence of other isomers, 

by direct electrophilic substitution (inferred from figures 2.9 and 2.10); the reaction 

conditions were further examined for the brominated TV-aryl indoles 33 and 34. 

Disappointingly, the formation of 14 was not observed in either case when the 

reaction was performed at 100 °C. However, reduction of the reaction temperature to 

65 °C was found to be successful for 34. Reaction for 33 still failed to yield any 

quantity of 14 after several attempts, which may be the result of a more labile C-Br 

bond on the aryl ring.

2.7 Incorporation of the carboxamide moiety

2.7.1 Phosgen a tion

Industrially the production of carbamazepine is centred around the use of 

phosgene,71'74 or a phosgene source such as trichloromethylcarbonate (diphosgene)38 

or bis(trichloromethyl)carbonate (triphosgene).75'81

The liquid and crystalline phosgene equivalents, diphosgene and triphosgene 

respectively, have been extensively used as phosgene sources for chemical 

transformations.82 They offer an important advantage over gaseous phosgene as they 

are easier to both store and handle. Triphosgene on the laboratory scale provides the 

greatest degree of handling convenience, and in particular offers the greater safety 

advantage. It is much easier to handle and store and exact, stoichiometric quantities 

can be measured to perform a chemical transformation.82 As triphosgene can also
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liberate three molecules of phosgene, as shown in figure 2.17, reactions also 

typically require a third of an equivalent of triphosgene.82

triphosgene

O

Cl

diphosgene 

Cl O

cr
o
A

Cl ■''XI

Ci

o
x

CI^Xl Cl

o
Cl-^—Cl
-j-Q
Cl

Figure 2.17: Decomposition of triphosgene at high temperatures to form 3 equivalents of phosgene.82

Several one-pot procedures for the transformation of iminostilbene, through a 

phosgene equivalent, exist in patent literature.75'81 Before attempting to perform 

similar reactions on the halogenated iminostilbenes the reaction conditions were first 

optimised for unsubstituted iminostilbene. The results are summarised in table 2.18.

All reactions were carried out by adaptation of the procedure of Milanese.78 The 

reaction was easily monitored by TLC and when consumption of iminostilbene was 

complete, as indicated in table 2.18, a solution of 30 % (aq) ammonia solution was 

added and the reaction left overnight.
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Table 2.18: Study of the formation of carbamazepine with phosgene under a variety of conditions.

phosgene or 
triphosgene

Et3N

Phosgene
source

Stoichiometric
equivalents Solvent Temperature

°C

Time 
before 

addition of 
30 % NH3

(An)

Yield of 
carbamazpine

Triphosgene 0.3 THF 10-15 6 h 27%
Triphosgene 0.3 Toluene 10-15

10-15 —»

6 h 92%

Triphosgene* 0.3 Toluene
reflux

6 h NPI

Diphosgene 0.5 Toluene 10-15 8 h 79%

* no triethylamine added.

Performing the reaction in THF was low yielding for formation of carbamazepine. 

Monitoring of the reaction by TLC did show the formation of the carbonyl chloride, 

however on addition of the ammonia solution carbamazepine failed to precipitate out 

due to its greater solubility in THF. Furthennore, the water added to the reaction 

mixture enhanced the chances for hydrolysis of the carbonyl chloride to the starting 

amine. This hypothesis is supported by the quantity of iminostilbene isolated after 

the reaction.

As observed for other reactions the final product was insoluble in toluene and 

precipitated out of the reaction, the carbonyl chloride remained in solution. The clear 

advantage of removing carbamazepine from the reaction is that it was no longer 

susceptible to competing hydrolysis reactions. Furthennore, the compound was 

easier to isolate in high purity by vacuum filtration.
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The reaction conditions were also usefully extended for the reaction with diphosgene 

in good yields. The reaction took slightly longer to consume iminostilbene, as 

monitored by TLC, possibly due to enhanced difficulty liberating phosgene from the 

molecule.

Triethylamine (0.3 equivalents) was essential for the reactions, acting as a 

nucleophile to liberate the phosgene. Without triethylamine the reactions failed at the 

lower temperatures. However, thermal decomposition of both diphosgene and 

triphosgene is known as discussed earlier in figure 2.17 and vigorously refluxing the 

reaction mixture with triphosgene did indicate some reaction with the iminostilbene, 

but no product was isolated after the addition of aqueous ammonia solution.

As the procedure with triphosgene yielded the best result, and required little 

optimisation the reaction was then examined with the halogenated iminostilbene 

derivatives as summarised in table 2.19.

Table 2.19: Formation of halogenated carbamazepines with a phosgene source.

Xi

14 x1 = Br X2 = H
15 X-| = X2 = Br 
16X1 = CIX2 = H 
17 Xt = X2 = Ci 
35 X-i = F X2 = H 
39 X1 = X2 = F

44 X-| = Br X2 = H
45 X1 = X2 = Br
46 X-i = Cl X2 = H
47 X1 = X2 = Cl
48 X1 = F X2 = H
49 Xt = X2 = F

Iminostilbene 14 15 16 17 35 39
Solvent Toluene Toluene Toluene Toluene Toluene Toluene
Temperature (°C) 60 10-15 60 60 110 110
Time before NH3 addition 12 6 12 12 24 24
(h)
Yield of carbamazepine 9% 24% 8% 12% NPI NPI
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In the reaction of bromo and chloro derivatives 14, 15, 16, and 17, the depletion of 

the iminostilbene and formation of a polar compound was clearly observed TLC. 

Formation of the carbonyl chloride was also indicated by the change of colour of the 

reaction mixture from a strong yellow colour to colourless. The reaction to the 

intermediate carbonyl chloride was also observed to progress within a similar 

timescale to unsubstituted iminostilbene (table 2.18). However, with the exception of 

the formation of 45 which was low yielding at 24 %, other brominated and 

chlorinated derivatives were only isolated in trace quantities. Moreover, the 

fluorinated derivatives 48 and 49 yielded no isolated products although some 

formation of the carbonyl chloride intermediate was observed by TLC. However, 

only the starting iminostilbenes 35 and 39 were isolated from the reaction mixture 

and no precipitation of the corresponding carbamazepine observed.

This could be attributed to a significant change in solubility of the halogenated 

carbamazepine derivatives. 2,8-Dibromocarbamazepine is the least soluble of all the 

derivatives and precipitates out of solution rapidly. All the other derivatives were 

found to be more soluble than carbamazepine. This enhances the possibility of water 

hydrolysing the intermediate carbonyl chloride to the starting amine on the addition 

of aqueous ammonia.

2.7.2 Isocyanates

Previously, 2,8-dibromocarbamazepine had been synthesised by reaction with 

chlorosulfonyl isocyanate and subsequent hydrolysis of the intermediate to yield the 

product as shown in figure 2.18.49
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Figure 2.18: Formation of carbamazepine via chlorsulfonyl isocyanate.

The reaction with chlorosulfonyl isocyanate progressed reasonably well but the 

products of the reaction after hydrolysis with sodium hydrogen carbonate (NaHCOa) 

were low yielding and difficult to separate,49 although the reaction appeared to 

progress in higher yields than for the phosgene series of reactions with 50 % 

conversion observed by LC-MS.49

As the conversion of the iminostilbene with chlorosulfonyl isocyanates was poor 49 

more active isocyanates were sought to effect the transformation.

Excellent results were obtained with trichloroacetyl isocyanate for dibrominated and 

chlorinated derivatives 15 and 17 as shown in table 2.20 below. The reaction was 

observed to be almost instantaneous with the colour of the reaction solvent going 

from yellow to colourless over a period of seconds after the addition of the 

isocyanate. Precipitation of the intermediates 15a and 17a was observed after 30 

minutes and these were easily isolated by vacuum filtration.
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Table 2.20: Formation of halogenated carbamazepines via trichloroacetyl isocylanate intermediates.3

14 Xt = BrX2 = H
15 Xt = X2 = Br
16 X! = Cl X2 = H
17 Xt = X2 = Cl 
36 X-i = F X2 = H 
39 X! = X2 = F

14a X1 =BrX2 = H 
15a X! = X2 = Br 
16a X1 = Cl X2 = H 
17a X1 =X2 = CI 
36a X! = F X2 = H 
39a X1 = X2 = F

Iminostilbene Time (h) Yield
35 6 89
14 24 NPI
15 8 78
16 24 Trace
17 24 75
36 24 NPI
39 24 NPI
“reaction conditions: Trichloroacetyl isocyanate 1.2 eq, toluene, rt-0 °C.

Disappointingly, application of the same reaction conditions to the fluorinated 

analogues 35 and 39 failed to yield the desired product. As observed in the methods 

previously discussed, the fluorinated derivatives were found to be more soluble in the 

reaction making their isolation difficult: only starting materials were isolated from 

the reaction of 35 and 39 with trichloracetyl isocyanate.

The reaction progressed in reasonable yields for 15 and 17; however the 

monobrominated derivatives 14 and 16 were very low yielding. Given that this 

reaction is also dependent on the crystallisation of the intermediate out of the 

reaction mixture it can be postulated that the asymmetry of 14 and 16 frustrate their 

crystallisation, allowing them to remain in the reaction solvent for longer and making 

them more prone to hydrolysis with face water in the reaction solvent. This could be 

observed as the reaction mixture turned from bright yellow to colourless almost
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immediately as observed earlier. However, instead of precipitation of the 

intermediates 14a and 16a the reaction slowly returned to yellow. The back reaction 

of the intennediates in the reaction solvent is farther supported by the isolation of 

almost all 14 and 16 used in the reaction.

Once isolated, the question became one of selectively removing the trichloroacetyl 

group without removing the masked urea moiety entirely. Based on literature 

precedent the possibility of acid hydrolysis was considered.

However, as listed in table 2.21, the reaction was highly unselective for 

carbamazepine itself and predominately fonned the amine. The difference in the 

chemical reactivity of the two groups is slight and the success or failure of the 

deprotection is dependent on the relative ease of attack at one or the other carbonyl 

groups.

Industrially this is done by many methods, although the most common is the use of 

aqueous sodium carbonate. Mild base hydrolysis was also considered as a possible 

method for removing the trichloroacetyl protecting group. 0.1 M NaOH was as 

unselective as acid hydrolysis. However, the use of solid — liquid reaction systems 

such as sodium or potassium carbonate was more successful with up to 50 % yields 

of carbamazepine isolated from the model system.
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Table 2.21: Deprotection of the trichloroacetyl intermediate to form substituted carbamazepine analogues under 
various reaction conditions.

HN^O

CIsC^O

Reagent percentage of carbamazepine (CBZ) and 
iminostilbene (ISB) isolated

CBZ ISB

0.1 MHC1 10 90

O.lMNaOH 12 88

5 % aqNa2C03 57 33

5 % aq KC03 34 56

Unfortunately, again when applied to the halogenated carbamazepine derivatives 15a 

and 17a the reaction was not quite as selective, although up to 40-55 % yields of 45 

and 47 were isolated from the reaction mixture.

Industrially the use of sodium84,85 or potassium86,87 isocyanate (NaOCN and KOCN 

respectively) in acetic acid is used to fonn carbamazepine derivatives directly from 

the corresponding iminostilbene. This reaction has the advantage over all other 

methods of incorporating the urea that carbamazepine is formed in a single step 

rather than via an intermediate.

Moreover, sodium and potassium isocyanate are easy to handle and store and are less 

toxic than other reagents. Optimisation of the model reaction between the isocyanate 

salt and 35 in acetic acid is summarised in table 2.22.
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Table 2.22: Model reaction between 35 to form carbamazepine with sodium or potassium isocyanate.

NaOCN or KOCN 
tol, AcOH, r.t. 24 h

H

Reagent/equivalents Temperature (°C) Time (li) Yield (%)
NaOCN/1.2 r.t. 6 89
KOCN/1.2 r.t 6 83

The reaction progressed smoothly and in excellent yield and purity for NaOCN. As 

was the case for trichloroacetyl isocyanate the reaction was almost instantaneous, 

with precipitation occurring within the first half hour of the reaction. Although 

KOCN progressed in similar yields, the reaction was not as clean and the fonnation 

of several non-polar by-products was observed by TLC.

However, while the reaction progressed in good yields for the model reaction, we 

were disappointed to observe uniform failure of the reaction with the halogenated 

derivatives.

Encouragingly, transformation of diphenylamine with sodium isocyanate in the 

presence of trifluoroacetic acid has been demonstrated for highly deactivated 

amines.88 The pKa of trifluoroacetic acid is 0.3, which makes it nearly 100,000 fold 

more acidic then acetic acid with a pKa of 4.8. Given that the reaction appeared to 

work with some deactivated diphenylamines88 the possibility of a link between pKa 

and the reactivity of the amine suggested this should be a reagent of choice for halo- 

iminostilbenes.
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Table 2.23: Reaction of halogenated iminostilbene analogues with sodium isocyanate in trifluoroacetic acid.a

Xi

14 Xi = Br X2 = H
15 X! = X2 = Br
16 X1 =ClX2 = H
17 X! =X2 = CI 
35 Xi = F X2 = H 
39 X! = X2 = F

44 X1 = Br X2 = H
45 Xi = X2 = Br
46 X1 = Cl X2 = H
47 X! = X2 = Cl
48 X! = F X2 = H
49 X-, = X2 = F

Iminostilbene Temperature (°C) Time (h) Yield (%)

14 r.t 6 89 (50% pure)
15 r.t 6 87
16 r.t. 6 79
17 r.t 6 91
35 r.t 12 77
39 r.t 12 75
“reaction conditions: 1.2 eqNaOCN, toluene, Trifluoroacetic acid (2 eq), r.t.

Table 2.23 shows that the reaction with TFA was general for all the halogenated 

iniinostilbenes. In comparison to all the other methods examined the reaction was 

high yielding, and the reaction was observed to be almost mstantaneous for 14-17, 

with precipitation occurring after 30 minutes to form, carbamazepines 44-47. 

Reaction with 35 and 39 was also observed to be mstantaneous, but onset of 

precipitation of 48 and 49 was a little slower occurring after 1-2 hours. As long as a 

minimal amount of toluene was present in the reaction mixture the carbamazepine 

analogues precipitated out of the reaction and were easily isolated by vacuum 

filtration.

Once isolated each analogue was purified by reverse-phase preparative HPLC 

(except for 44 as discussed in section 2.1.6) to remove any traces of unsubstituted or 

monosubstituted derivatives that may not have been detected and removed earlier on
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in the reaction sequences. As high compound purity is required before the 

compounds can be incubated with hepatocytes as described in chapter 3.

Once the compounds were found to have greater than 99 % purity as determined by 

LC-MS and LC-UV analysis they were sent to the department of Pharmacology at 

the University of Liverpool to examine their structure-activity relationships in freshly 

isolated rat hepatocytes.
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2.8 Conclusions

Robust synthetic methods for the synthesis of halogenated carbamazepine analogues 

44-49 were devised.

Direct electrophilic halogenations of immodibenzyls to form brominated and 

chlorinated derivatives were reasonably selective, although the formation of the 

mono-brominated derivative still requires optimization to reduce the formation of 

isomeric material. This method is particularly good for the production of the di 

substituted derivatives 15 and 17 as they do not require separation from mono- and 

unsubstituted materials as is the case for the cyclisation of vV-aryl indoles.

Polyphosphoric acid cyclisation of 7V-aryl indoles yielded a wide variety of 

iminostilbenes. The reaction is reasonably general and is tolerant of fluorine, 

chlorine, and methoxy groups. No reaction was observed to occur for hydroxylated 

iV-aryl indoles and the isolated yields for brominated derivatives was poor. Although 

chlorinated and brominated derivatives were observed to undergo some de- 

halogenation during the reaction the iminostilbenes were formed in a reasonably 

efficient one-step process.

A general and efficient method for incorporating the carboxamide moiety has also 

been developed using alkali metal isocyanates and trifluoroacetic acid. The reaction 

was found to be general and high yielding in comparison to other methods.
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Chapter 3

This chapter discusses the results from the incubation of six carbamazepine 
analogues in freshly isolated rat hepatocyte suspensions. This work was performed by 
Dr. Sophie L. Regan and Dr. James L. Maggs of the department of pharmacology and 
summarizes the key observations of the study.
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3 Results and Discussion: Structure-Metabolism 
Relationships of Halogenated Carbamazepine Analogues
Note: Dr. S. L. Regan and Dr. J. L. Maggs performed work on the structure-metabolism 

relationships of the carbamazepine analogues. LC-MS identification of the metabolites 

was performed by Dr. J. L. Maggs. Isolation of hepatocytes and incubation of the 

compounds was performed by Dr. S. L. Regan. Dr. Regan further quantified all the 

metabolites by LC-UV. All metabolic work was performed at the MRC Centre for Drug 

Safety Science, School of Biomedical Science, University of Liverpool, Liverpool, L69 

3BX.

All the figures shown below are the residts from incubation 50 pM substrate after 6 h, 

because it is at this concentration that substrate turnover is greatest and metabolites are 

detected most consistently in the present investigation.

3.1 Introduction
As discussed in chapter 1 (section 1.2) the clinical use of carbamazepine has been 

frequently associated with the development of ADRs, including hepatotoxicity.1 

Metabolism of carbamazepine is complex, with the identification of over 30 metabolites 

in vivo as discussed in chapter 1 (section 1.3).2 Consequently, the bioactivation of CBZ 

has been implicated in the pathogenesis of ADRs.3,4

Exploration of the structure-metabolism relationships of xenobiotics with reference to 

the mechanism and prediction of toxicity is typically perfonned in vitro?'1 The
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homeostatic role of hepatocytes, and their ability to detoxify xenobiotics make them an 

attractive tool for in vitro investigation of phamiacotoxicology of xenobiotics.8, 9 

Hepatocytes in culture are widely agreed to be a suitable model for toxicological 

investigations.10, 11 However, the method is not without its limitations as the loss of 

specific liver functions, by a method known as cell dedifferentiation has been 

observed.12'14 Freshly isolated hepatocyte suspensions have been demonstrated to have a 

higher metabolic capacity when compared to cells in culture,15 and hence represent an 

appropriate model for the investigation of the relevance of drug bioactivation in the 

cytotoxic outcome of a xenobiotic.15 This is because suspensions may be immediately 

incubated with a drug, whereas cells in culture must be allowed to adhere for 1 -2 hours 

before dosing. Furthermore, hepatocytes in culture have been demonstrated to lose CYP 

activities.14

3.2 Project Aims
As discussed in chapter 1 section 1.2.1, CBZ metabolism is complex with over 30 

metabolites identified in animal and man. This extensive bioactivation of carbamazepine 

has led to the hypothetical linking of several reactive metabolites to the casuse of ADRs. 

However, to date no metabolite has been clearly identified as the cause of a specific 

ADR.

Characterisation of the metabolites formed in hepatocyte suspensions with the mono- 

and di- halo carbamazepine analogues, particularly hydroxylated arenes and 10,11- 

epoxidation, will enable greater understanding of the bioactivation of carbamazepine 

analogues. This knowledge could be further used to aid the development of safer drugs if
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drug efficacy can be retained and makes a contribution to our wider understanding of 

structure-reactivity effects in oxidative metabolic pathways.

3.3 Identification of CBZ Metabolites in freshly isolated hepatocyte 
suspensions

3.3.1 Rat vs. Mouse metabolism

Figure 3.1: LC UV chromatogram showing the metabolites identified in rat (A) and mouse (B) models with 50 j.lM 
substrate.16

Before the CBZ analogues may be assessed the most appropriate rodent model for CBZ 

metabolism was determined. The metabolism of CBZ was first investigated in both rat 

and mouse fresh hepatocyte suspensions, LC-UV analysis in figure 3.1 reveals a clear 

distinction between the two profiles. Rat hepatocytes (figure 3.1A) had a decreased 

turnover at higher concentrations, ranging from 64.37 ± 17.54 % (50 pM) to 17.79 ± 

4,03 % (1000 j.lM). Saturation of metabolic pathways may be the cause of the obseived 

reduction in turnover at higher concentrations.
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The major metabolite identified from the rat hepatocytes is the 10,11 epoxide (CBZE). 

Co-elution with an authentic standard confirmed the identity of CBZE and its diagnostic 

fragmentation pathway (figure 3.2). Identification of CBZE as the major metabolite is in 

agreement with previous observations in rodent and man.2,17,18

• XIC of ♦Q1:253.0 amu from Sample 1 (CBZ_50muM_ratheps_13-11-10) of DataSETl ,wiff (Turbo Spray), Smoothed M ax. 1,2e6 cps.

CBZO-$u!phonat« II 
(IM+H-SOaP)

CBZ-2-OH CBZ-3-OH

Time (min)

2.097 [m+h-nh,
236.0 '

1.0e7

m/z (amu)

Figure 3.2: Identification of oxygenated CBZ metabolites by LC-MS. Extracted Ion Current (XIC) chromatogram 
(top) //i/z 253 revealing mono-oxygenated carbamazepine metabolites and fragments of metabolites that contain a 
mono-oxygenated species. Mass Spectroscopic analysis (bottom) of the peak eluting at 18.7 min reveals the 
characteristic fragmentation of CBZE, Isolated from rat hepatocytes (50 pM substrate).

Detection of vV-glucuronide (CBZ-TV-gluc), in figure 3.3, as another major metabolite in

freshly isolated hepatocyte suspensions was also in agreement with observations in 

rodent models 19 and in man.2,18 Furthermore the iV-glucuronide of CBZE (figure 3.3) 

was also detected by LC-MS.19 However, its inconsistent appearance in the current 

investigations may be due to saturation of the glucuronidation pathway with the parent

compound. Fragments in the MS that have a star above them in figure 3.3 are fragments

observed as a result of fragmentation of the glucuronosyl side chain.

120



Results and Discussion: Structure-Metabolism Relationships of Carbamazepine
Analogues

1 XlCof ♦01: 413.0 amufrom Sample 1 (CBZ_50muM_rathep$_1 >11*10) of DataSETI wtff (Turbo Spray), Smoothed

2 0»5i c*Z/W-jlu«uronid« \

Max.2.1*3 cos

1 7e6 
„ 1 Sa6

1 9085
— 1 flaX

4 0*5 

3.0*5 

20*5 

1.0*5
20*4

9 10 11 12 13 14 15

(217-CONH,]* 237.1
CBZ W-glucuronld*182 °

16 17 18 19
Tim* (min)

20 21 22 23 24 25

[2*7-CONH]* (I*8

i.0
i

[2J7-NH,]*
220.0 (MH-1$4|* (»»5-»2r 

* *
279.1 3031

J L

(MH.H-MjOr 395,1

377.1

|mh*hT‘
413.1

(MH**!4
451.1

[MH.Nl]*| [MK*Kr
435 <889

140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520

j^ OlMKOMHr Max 4.2*5 cps.
CB2E N-glucuronid*

(210-OCH,r 
180 0

|MH»H-176r
253.1

|25
2360

[MH-134J4
•

2951

(MM+K)4
(MH.H-M ol4 IMH^-Ml4 467.1 fMKfKt4 [MM.M-M2Or411 , 429 2

L l I
120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540

me (amu)

Figure 3.3: XIC for Af-glucuronides of CBZ (top) with the mass spectra for CBZ-N-glucuronide (middle) and CBZE- 
N-glucuronide (bottom) in rat hepatocytes (50 pM substrate).

Two other mono-oxygenated derivatives were found and identified by their retention 

times (figure 3.2). They were further identified as oxygenated metabolites distinct from

CBZE by their different fragmentation pathway as seen in figure 3.4. Such 

biotransformations of the aromatic rings are known but less defined, as phenols, and the 

derivatives thereof (catechols, methyl thioethers, sulfates) have been previously 

identified in the urine of rats and humans.2
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Figure 3.4: Comparison of the mass spectra of mono-oxygenated carbamazepine metabolites: CBZE, CBZ-2-OH, and 
CBZ-3-OH detected in rat hepatocytes at 50 pM CBZ.

121



Results and Discussion: Structure-Metabolism Relationships of Carbamazepine
Analogues

The presence of CBZ-2-OH and CBZ-3-OH has been postulated to be an indicator of the 

arene-oxide pathway20 as dicussed in chapter 1 (section 1.3), which has been implicated 

in the development of ADRs.4, 21 However, as discussed, the formation of such 

metabolites does not necessarily implicate epoxide intermediates, and DHDs or DHOH 

metabolites represent stronger evidence for the presence of arene oxide intermediates.22 

As discussed earlier, two DHDs of CBZ have been observed in the urinary metabolites 

of rat and man but no DHOH.4 Only one CBZ-GSH adduct was detected (m/z 512) in the 

present investigation. It is observable in the XIC of figure 3.3 for detection of the N- 

glucuronide corresponding to a pyroglutamate fragment of the CBZ-GSH adduct. This is 

further indicated in figure 3.5 by a red arrow.

■TIC of«Q1: fromSampIel (CBi_50nntjM_ra!heps)ofDataSET}.wlfT(rurboSpray) Max. 1.2e3 cps.

Tima (min)

Figure 3.5: Detection of glutathione conjugates of CBZ in rat hepatocytes at 50 pM CBZ. The glutathione conjugate 
cannot be observed in the TIC but a fragment corresponding to a diagnostic pyroglutamate ion is observable in the 
XIC for CBZ-TV-gluc (indicated by the red arrow). Mass spectrometry of this peak (bottom) highlights two diagnostic 
fragments of a CBZ-GSH adduct: m/z 467 and m/z 413.
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This observation contrasts with the observation of Mahajan et al where four GSH 

conjugates of CBZ were observed at lower concentrations of CBZ.23 However, the 

milder work-up procedure of Mahajan, and the use of a more sensitive mass 

spectrometer may have compensated for the low concentration of CBZ in the study. 

Furthennore, this metabolite is only observed at 50 pM CBZ and was not observed at 

higher concentrations.

Finally, two sulfates of carbamazepine were detected in the hepatocyte suspensions 

(figure 3.6). These two metabolites showed similar fragmentation and may be 

considered to be structurally related. However, the limitations of mass spectrometry 

means that the structure cannot be more firmly assigned as it would be by other methods 

(such as NMR). However, given their similarity, the two compounds are postulated to be 

sulfonated derivatives of CBZ-2-OH and CBZ-3-OH.
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Figure 3.6: XIC of sulfonated metabolites of CBZ at m/z 333 (top) and the mass spectrum for each sulfonate in rat 
hepatocytes 50 pM substrate.
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Metabolism of CBZ in mouse hepatocyte suspensions (figure 3.IB) yielded a metabolic 

profile distinct from that of the rat. However, it only partly replicates the metabolism 

observed in vivo.24 Metabolism of CBZ in vivo and in vitro is not directly comparable as 

the in vitro study uses both a highly in-bred strain and the mice were pre-treated with 

CBZ.24 As CBZ is a known inducer of P450s in humans16 the same response may be 

expected in mouse models. The formation of CBZE in vitro was observed in mice as it 

was for rats, yet it was not the principal metabolite identified. Acridine (AI) was instead 

identified as the major metabolite, Formation of AI in mouse has not previously been 

reported, although, as discussed in section 1.3, the metabolite has been reported in a 

myeloperoxidase system of activated human neutrophils25,26 and is considered to be a 

minor metabolite of human CBZ metabolism.27 However no evidence of the formation 

of the carboxaldehyde intermediate (9-AC)26 was observed in mouse hepatocyte 

suspensions.28 The only metabolites detected in the mouse hepatocyte suspensions were 

CBZE, AI, and acridone (AO), which could implicate CBZE as an intermediate in the 

formation of AI. However, incubation of CBZE in mouse hepatocytes at 50 pM28 did not 

show the fonnation of any metabolite. Because CBZE has been substantially altered by 

metabolism to a more polar compound it is feasible that the structural and electronic 

changes make CBZE a poor substrate for further oxidative metabolism and saturation of 

metabolic pathways may occur. However, that CBZE was not observed to be turned over 

in the incubations is a reasonable indication that CBZE is not responsible for the 

formation of these metabolites, and indeed it may be turned over by other enzymes such 

as aldehyde oxidase.
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No evidence of GSH conjugation was found in mouse hepatocyte suspensions: this 

conflicts with previous findings in mouse liver microsomes, as protein and thiol reactive 

metabolites were identified.29 However, these studies used mice pre-treated with 

phenobarbital (PB), an inducer of P450s. Lack of induction of P450s in our chosen 

model may explain the apparent lack of GSH conjugates formed in mouse metabolites.

Metabolitei identified in rat hepatocytei

CU-N-Glucuronidt

Metabolites identified in moust hepatocytei

cOo
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/ j n Aldehyde

CYP I Oiddaa*
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At A ”cCb
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Figure 3.7: Summary and comparison of metabolites of carbamazepine identified in rat and mouse hepatocytes. CBZ- 
SG is a postulated structure.

Figure 3.7 highlights the key metabolites identified in freshly isolated rat and mouse 

hepatocytes. Because CBZ was found to be metabolised to GSH conjugates, 'N- 

glucuronide, and several mono-oxygenated species and were more representative of 

human metabolism of CBZ overall the rat was chosen for subsequent investigation of the 

structure-metabolism relationships of CBZ analogues.

3.3.2 Role of Cytochromes P450 in CBZ metabolism in hepatocyte 
suspensions
As the project is directed towards preventing formation of oxidative metabolism by 

P450 enzymes through appropriate substitution, the role of cytochrome P450
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metabolism in rat was investigated. This was accomplished by pre-incubation of the 

hepatocytes with two non-specific P450 inhibitors 1-aminobenzotriazole (ABT 1 mM) 

and Proadifen hydrochloride (SKF-525A 50 pM), which are shown in figure 3.8 below.

ABT SKF

Figure 3.8: Non-specific P450 inhibitors used to assess the role of P450 metabolism in rat and mouse hepatocyte 
suspensions.

In rat hepatocyte suspensions metabolism was found to be inhibited by both ABT and 

SKF (table 3.1), although the latter inhibited to a lesser degree. Formation of the 

oxygenated metabolites; CBZE, CBZ-2-OH, and CBZ-3-OH was found to be inhibited 

or showed significantly decreased formation. When formed, this was also found to apply 

to the GSFI conjugate, indicating a P450-mediated pathway of bioactivation to be a 

necessary step in the formation of the GSH conjugate. Glucuronidation was observed to 

be slightly decreased in the presence of ABT and SKF. In the case of ABT this may be 

attributed to ABT undergoing A-glucuronidation itself, and although the data is not 

shown here ABT was obseived to undergo significant A-glucuronidaton and N- 

acetylation in the incubations in agreement with previous observations. 28
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Table 3.1: The effect of P450 inhibitors on CBZ turnover and identified metabolites in rat hepatocytes. Values are 
the mean ±SEM of four independent isolations.28

Conditions CBZ 3-OH CBZE 2-OH CBZ-N- CBZ- Total %

(%)
CBZ
(%) (%)

CBZ
(%)

Glucuronide
(%)

SG

(%)

Turnover

500
CBZ

pM 82.96
(±4.08)

1.96
(±0.87)

5.24
(±1.70)

0.28
(±0.07)

0.84 (±0.519) 0.96
(±0.66)

17.04
(±2.41)

500
CBZ
ABT

+
98.42
(±0.6)

0.02
(±0.02)

0.04
(±0.03)

0.02
(±0.02)

0.35 (±0.24) 0(±0) 1.59
(±0.7)

500
CBZ
SKF

pM
+

94.01
(±1.24)

0.135
(±0.04)

1.09
(±0.39)

0.04
(±0.04)

0.38 (±0.26) 0.395
(±0.235)

5.99
(±1.3)

3.3.3 Structure-metabolism relationships of CBZ analogues
As discussed in chapter 1, investigation of structure-metabolism relationships is

predominantly focused upon the effects of fluorine substitution upon the xenobiotics.30’ 

31 However, discussion of the heavier halogens is typically restricted to their steric 

influences at receptor sites. In the following section, the comparative behavior of all six 

mono- and di-halogenated CBZ analogues in rat hepatocytes is discussed.

Metabolism of 2,8-difluorocarbamazepine (CBZ-2,8-F) showed a significant decrease in 

the overall turnover of substrate between CBZ 22.63 % (± 6.23) and CBZ-2,8-F at 8.67 

% (± 3.76) at 1000 pM (other concentrations are highlighted in table 3.2).
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Table 3.2: Total percentage turnover of CBZ and CBZ-2,8-F in rat hepatocytes after 6 h. Values are the mean ±SEM 
of three independent isolations.

Concentration (pM) CBZ CBZ-2,8-F

50 63.55 (±3.08) 25.35 (±1.52)

200 35.08 (±3.11) 11.24 (±3.87)

500 24.75 (±5.63) 10.73 (±4.29)

1000 22.63 (±6.23) 8.67 (±3.76)

Figure 3,9 shows the LC-UV analysis comparing the metabolites found for CBZ and 

CBZ-2,8-F at 50 pM concentrations. The principal metabolites fonned were the N- 

glucuronide and CBZ-2,8-F-A/-glucuronide with small quantities of the 10,11 epoxide 

(CBZ2,8FE) and epoxide-iV-glucuronide (CBZ-2,8-FE-vV-glucuronide) detected.
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Figure 3.9: LC-UV analysis of CBZ (upper) and CBZ-2,8-F (lower) metabolites identified in rat at 50 (.M 
concentrations after incubation for 6 h.
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As seen in figure 3.9 the latter two metabolites were barely detectable by LC-UV but 

could be more accurately detected and identified by LC-MS analysis as shown in figure 

3.10. When searching for m/z 289, which corresponds to a mono-oxygenated CBZ-2,8-F 

metabolite, two peaks are identified. The first peak at a retention time of 22.00 min was 

identified by its characteristic fragmentation pathway (illustrated in figure 3.2 and 

figure 3.4) as the 10,11-epoxide CBZ-2,8-FE. However searching for m/z 289 further 

revealed a peak corresponding to the mono-oxygenated CBZ-2,8-FE fragment of CBZ- 

2,8-FE-iV-glucuronide at 15.49 min. The presence of the CBZ-2,8-FE-7V'-glucuronide 

could be further confinned by searching the TIC for m/z 465 ([M+H] for CBZ-2,8-FE- 

N-glucuronide): this revealed a co-incident peak for the XIC at 15.49 min. No other 

mono-oxygenated species that may correspond to an arene-oxide derived metabolite 

(e.g. CBZ-2-OH) were observed, nor was metabolic de-fluorination or NIH shifting of 

the fluorine atom.

129



Results and Discussion: Structure-Metabolism Relationships of Carbamazepine
Analogues

l.StS

1.0*8

TIC of C BZ-2,8-F (50 |tM)

CBZ-2.S-FE

22 00

1

0.00

5.7tS

S.0«5

2.0cS

1.0*5

0.0

m/z 465
[M+H]*N-flueCBZ-2,S-FE

10 12 14 It It 20 22 24 26 2t SO S2
ISM .........

a /\A—a-A. a aa,a-VyVv aaa^\ AaaA a A a/aavi

10 12 14 16 IS 20 22 24 26 28 SO S2
,,00 Mix. 3.7cScpv

m/z 285 fragment
CBZ-2.8-FE

■ [M+HJ* [OJDFCBZ

CBZ-2,8-FE-«-gtuc
((M+H-176)*)

15.64
► A ~ -

i

2 4 6 S 10 12 14 16 It 20 22 24 26 28 SO 32

Tim* (min)
Figure 3.10: Identification of mono-oxygenated metabolites and fragments of CBZ-2,8-F by LC-MS after 6 h 
incubation in rat hepatocytes.

Incubation of 2,8-dichlorocarbamazepine (CBZ-2,8-Cl) revealed a similar turnover of 

the analogue to that of CBZ as highlighted in table 3.3. The difference at lower 

concentrations was more pronounced than at higher concentrations of CBZ and CBZ-

2,8-Cl.

Table 3.3: Total percentage turnover of CBZ and CBZ-2,8-Cl in rat hepatocytes after 6 h, values are the mean ±SEM 
of three independent isolations.

Concentration (jiM) CBZ CBZ-2,8-Cl

50 66.46 (±6.59) 41.37 (±1.54)

200 37.50 (±4.12) 23.38 (±4.9)

500 24.06 (±5.43) 23.31 (±7.3)

1000 20.17 (±6.60) 20.43 (±3.67)
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As was observed for CBZ-2,8-F the principal metabolites detected were the 10,11- 

epoxide (CBZ-2,8-ClE), the A-glucuronide (CBZ-2,8-Cl-/V-gluc), and the 10,11- 

epoxide-iV-glucuronide (CBZ-2,8-ClE-/V-gluc): these are shown in the LC-UV trace in

figure 3.11.

CBZ-O-sulphonates

CBZ-2-OH CBZECBZ-N-Glucuronlde
3 200- CBZ-3-OH
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10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 
Time (min)

Figure 3.11: LC-UV analysis of CBZ and CBZ-2,8-Cl metabolites identified in rat at 50 |iM concentrations after 
incubation for 6 h.

Examination of the LC-MS TIC in figure 3.12 for other mono-oxygenated species of 

CBZ-2,8-Cl at m/z 321 revealed CBZ-2,8-ClE at 27.80 min and CBZ-2,8-ClE-A-gluc at 

19.54 min. However, in contrast to CBZ-2,8-F it also revealed a small amount of a 

mono-oxygenated species that eluted at 4.01 min, although the exact identity of the 

metabolite is to be determined, this does not appear to correspond to either CBZ-2-OH 

or CBZ-3-OH derivatives which could be expected to have retention times of ~8 min. 

Further examination of the TIC at m/z 497 revealed the CBZ-2,8-Cl-Ar-gluc at 19.53 min 

which was detectable by LC-UV. Further revealed was CBZ-2,8-ClE-A-gluc at 6. 00 

min.
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Figure 3.12: Identification of mono-oxygenated metabolites and fragments of CBZ-2,8-Cl by LC-MS after 6 h 
incubation in rat hepatocytes.

2.8- Dibromocarbamazepine (CBZ-2,8-Br) also underwent a significant change in 

substrate turnover compared to CBZ as shown in table 3.4. As was the case for CBZ-

2.8- F and CBZ-2,8-Cl this difference in turnover was found to be less pronounced at 

higher concentrations.

Table 3.4: Total percentage turnover of CBZ and CBZ-2,8-Br in rat hepatocytes after 6 h. Values are the mean ±SEM 
of three independent isolations.

Concentration (jiM) CBZ CBZ-2,8-Br

50 62.92 (±25.69) 32.36 (±6.32)

200 47.61 (±19.36) 12.11 (±2.07)

500 25.67 (±9.17) 14.00 (±3.28)
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As shown in the LC-UV trace in figure 3.13 the predominant metabolites were again the 

10,11 epoxide (CBZ-2,8-BrE) and the iV-glucuronide (CBZ-2,8-Br-7V-gluc).
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Figure 3.13: LC-UV analysis of CBZ and CBZ-2,8-Br metabolites identified in rat at 50 |.iM concentrations after 
incubation for 6 h.

Presence of these metabolites was confirmed by LC-MS analysis shown in figure 3.14. 

Searching at m/z 571 confirmed the 77-glucuronide at 23.00 min. Searching at m/z 395 

([M+H]+ for CBZ-2,8-Br), identified all compounds that contained CBZ-2,8-Br as the 

parent ion or a fragment. This identified the peak at 34.60 min to be CBZ-2,8-Br, and 

further identified the CBZ-2, 8-Br fragment of CBZ-2,8-Br-77-gluc. Searching at m/z 411 

revealed a peak at 29.40 min which was identified by its fragmentation to be CBZ-2,8- 

BrE.

133



Results and Discussion: Structure-Metabolism Relationships of Carbamazepine
Analogues

TIC ef CBZ'2,8-Br (30 pM)

ia.61^ ai.9#3S?

2.9t6 

2.0s6 - 

l.OeS -

m/t 395 
IM+H]"

0.0 hi,
8 10 12

CBZ-2,8-Br-N-gluc 
[Mtl-176] V

19.10J9.89_______ 93j02______________
14 16 IS 20 22 24 26 2B

Tima (min)
30 32

34.62
1 CBZ-2,S-Br

Max, 2,9e6cps.

34 36 38 40 42

Figure 3.14: Identification of mono-oxygenated metabolites and fragments of CBZ-2,8-Br by LC-MS after 6 h 
incubation of 50 |iM substrate in rat hepatocytes.

In summary, for the dihalo carbamazepines the general trend for turnover of the 

substrate was CBZ > CBZ-2,8-Cl > CBZ-2,8-F > CBZ-2,8-Br. Reduction in the 

turnover of the substrate may further be ascribed to the reduction in the number of 

different metabolites observed in the assays with the predominant metabolic pathways 

being TV-glucuroniclation and 10,11-epoxidation. Furthermore, the differences in 

substrate turnover at low concentrations were found to be greater than at higher 

concentrations which may be the result of saturation of epoxidation and glucuronidation 

pathways.

In all cases there was an interesting shift in dominance between 7V-glucuronidation and 

10,11-epoxidation for the di-halo analogues where //-glucuronidation can be seen to 

become the principal route of dihalo CBZ metabolism. This switch in dominance is 

more prominent from fluorine to bromine which suggests that the steric as well as
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electronic influences of the halogen atoms in the 2,8-positions have a pronounced effect 

on the ability of the molecule to undergo epoxidation. Conversely JV-glucuronidation 

becomes the prominent pathway as the amide nitrogen may be considered too distant to 

be affected greatly by either the steric or electronic effects of halogen substitution in the 

2,8-position.

Fonnation of derivatives of the other mono-oxygenated metabolites CBZ-2-OH and 

CBZ-3-OH was not observed for any of the di-halo analogues. This indicates that the 

inhibition of the pathways was direct for CBZ-2-OH. This could be due to the high 

relative strength of the C-F bond in CBZ-2,8-F and possibly an alternative binding mode 

in P450s active sites for CBZ-2,8-Cl and CBZ-2,8-Br by virtue of their o-holes as 

discussed in chapter 1. Blockade of the fonnation of CBZ-3-OH is more indirect as there 

is no direct substitution in these positions. If CBZ-2-OH and CBZ-3-OH are formed via 

the postulated arene oxide intermediate then it may be argued that prevention of the 

formation of the products is linked structurally to the interference with oxygen 

attachment in the 2 and 8 positions. Importantly, the formation of the GSH conjugates 

observed for the metabolism of CBZ was not observed in the di-halo incubations 

indicating that their formation is derived from oxidation of the arene ring rather than the 

10,11-bond.

Considering now the mono-halo derivatives, 2-fluoro carbamazepine (CBZ-2-F) was 

turned over slightly less than carbamazepine by the hepatocyte suspensions (table 3.5), 

although this reduction was less marked than for any of the dihalogenated 

carbamazepine derivatives.
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Table 3.5: Total percentage turnover of CBZ and CBZ-2-F in rat hepatocytes after 6 h. Values are the mean ±SEM of 
three independent isolations.

Concentration (pM) CBZ CBZ-2-F

50 81.48 (±2.03) 69.77 (±4.57)

200 36.30 (±3.99) 22.46 (±5.61)

500 32.71 (±3.51) 21.22 (±4.45)

1000 31.40 (±5.86) 20.98 (±4.12)

As figure 3.15 shows, several more metabolites were identified by LC-UV (and LC-MS. 

Figure 3.16), than were identified in the di-halo incubations The principal metabolites 

were found to be the ubiquitous 10,11 epoxide (CBZ-2-FE), the jV-glucuronide (CBZ-2- 

F-7V-gluc), and the glucuronide of the 10,11-epoxide (CBZ-2-FE-TV-gluc).

CBZ-O-sulphonate
CBZ-2-OH

250 ' C8Z-3-OH
CBZ-N-Gluc

125 ■:

429

CBZ-2-F.OSO3

CB2-2-FE

12.0
Time (min)

Figure 3.15: LC-UV analysis of CBZ and CBZ-2-F metabolites identified in rat at 50 jiM after incubation for 6 h.

Interestingly when searching the TIC for mono-oxygenated 2-F-CBZ metabolites at m/z 

271, as shown in figure 3.16, it was discovered that 2-F-CBZ fonned an 0-sulfonate
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derivative that eluted at 17.36 min. Although no CBZ-2-OH or CBZ-3-OH type 

metabolites were identified by either LC-MS or LC-UV this compound may still be 

formed from the conjugation of a ring hydroxylated CBZ derivative.

Searching for m/z corresponding to [M+H]~ for CBZ-2-F (255) in LC-MS analysis did 

not further highlight any other metabolites of the analogue (figure 3.16).

TIC for CBZ-2-F (SO i±M)

14 | IS
fragment fragment

2-F-CBZ.OSOj

fragment

Tlme(fnin)

Figure 3.16: Identification of mono-oxygenated metabolites and fragments of 2-F-CBZ in rat hepatocytes after 6 h 
incubation with 50 pM substrate by LC-MS.

At the time of writing, analysis of CBZ-2-C1 and CBZ-2-Br are not yet complete. 

However, at 50 pM both CBZ-2-C1 (table 3.6) and CBZ-2-Br (table 3.7) are observed to 

undergo greater turnover than CBZ. At slightly higher concentrations (200 to 1000 pM), 

metabolic pathways begin to be saturated: the turnovers of CBZ-2-C1 and CBZ-2-Br are 

slightly reduced when compared to CBZ.
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Table 3.6: Total percentage turnover of CBZ and CBZ-2-C1 in rat hepatocytes after 6 h with 50 pM substrate. Values 
are the mean ±SEM of two independent isolations.

Concentration (tiM) CBZ CBZ-2-C1

50 64.85 (±15.26) 75.58 (±4.52)

200 31.50 (±1.50) 35.44 (±4.73)

500 27.22 (±1.89) 34.92 (±8.55)

1000 25.36 (±2.20) 19.46 (±9.73)

Table 3.7: Total percentage turnover of CBZ and CBZ-2-Br in rat hepatocytes after 6 h with 50 pM substrate. Value 
is the mean ±SEM of one independent isolation.

Concentration (gM) CBZ 2-Br-CBZ

50 81.09 93

200 40.48 62.12

The LC-UV traces shown in figures 3.17 and 3.18 both highlight the high turn-over of 

CBZ-2-C1 and -2-Br at 50 jjM. As in all other assays the 7V-glucuronide and 10,11- 

epoxide of each derivative were observed and characterised by LC-MS. Yet interestingly 

these two derivatives represent the greatest turnover of any of the analogues to the N- 

glucuronide. This contrasts vastly with the observations for CBZ and CBZ-2-F where 

the substrates were observed to undergo similar amounts of 10,11-epoxidation and N- 

glucuronidation. Furthermore, the formation of 2/3-OH derivatives also seems to be 

completely blocked.
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Figure 3.17: LC-UV analysis of CBZ and CBZ-2-C1 metabolites identified in rat at 50 jrM after incubation for 6 h.
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Figure 3.18: LC-UV analysis of CBZ and CBZ-2-Br metabolites identified in rat at 50 jiM after incubation for 6 h.

Such an observation for CBZ-2-C1 is in agreement with what is known about the 

metabolism of imipramine, thus the 3-chloro analogue clomipramine (figure 1.1(b), see 

chapter 1) exhibits a marked decrease in the degree of oxidative metabolism. By 

contrast, clomipramine is able to undergo oxidative metabolism on the unsubstituted 

ring in several animal models, including rat.32 CBZ-2-C1 was consequently expected to 

undergo some oxidative metabolism on the unsubstituted ring in hepatocyte suspensions. 

However no oxidative metabolism of CBZ-2-C1 was observed and while the difference
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in the position of the chlorine atom could more fully explain the differences in oxidative 

metabolism if both of the molecules were di-substituted (since both rings would be 

blocked), it does not explain why clomipramine is able to undergo oxidative metabolism 

and CBZ-2-C1 is not. Examination of the global minimum conformers for the two 

molecules (figure 3.19) shows that the two molecules adopt different conformations. Of 

the two, clomipramine shows the greater ring-puckering by virtue of the lack of 

substitution at the 10-11 position. The lack of substitution means the two arene rings are 

able to rotate away from each other, minimizing steric and electronic interactions with 

the halogen and residues in the P450 active site. Although CBZ-2-C1 is also non-planar, 

it does not show the same distortion of the 7-membered ring as clomipramine and is 

unable to adopt a variety of different confonners, indicating that it may be a poor 

substrate for oxidative metabolism.

Figure 3.19: Models showing the different preffered confonnations of CBZ-2-C1 (left) and clomipramine (right). The 
geometry was optimised at the Hartree-Fock/3-21G level with a MMFF-AM1 calculation using Spartan ’08 vl.2.0 
build 132. Hydrogens have been omitted for clarity.
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3.3.4 Investigation of the role of oxidative defluorination in CBZ-2-F
In order to investigate what may be the structural determinant of oxidative

defluorination in the hepatocytes (viz. iV-substitution) 2-fluoro iminostilbene (compound 

36) was incubated in the freshly isolated suspensions.

Although glutathione has been shown to add to ring systems such as quinones, resulting 

in a structure with glutathione directly attached to an aromatic system,33 the Michael 

addition of the glutathione in these cases results in direct formation of an aromatic 

system and does not require the loss of a small molecule to restore aromaticity.34 

However, oxidatative defluorination of fluorobenzenes can occur via initial epoxidation, 

followed by conjugate addition of gluathione, rearrangement, and defluorination; 

yielding a phenoxyl S-glutathione adduct after rearomatisation rather than a simple 

phenol derivative.34 This type of rearrangement may be considered to be initiated or 

assisted by A-oxidation in para-imine structures yielding quinone-imine intermediate 

and then a phenolic end product.35 However, the incorporation of a bulky carboxamide 

group, as is the case for CBZ, would be expected to block the quinone-imine pathway of 

oxidative defluorination.

It is clear in figure 3.9 that CBZ-2,8-F does not undergo oxidative defluorination to an 

intermediate such as CBZ-2-F-8-OH. This implies that the C-2 substitution prevents 

formation of the theoretical 2,3-epoxide precursor of CBZ-2-OH and CBZ-3-OH. 

Oxidative defluorination of CBZ-2,8-F or CBZ-2-F could occur by formation of a 1,2 or 

2,3 epoxide, but no evidence of a phenoxyl-.S'-glutathione adduct was detected. CBZ-3- 

OH has been shown to undergo rapid metabolic activation by human P450 mono-
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oxygenases,‘°'36 so the possibility of the loss of the intermediate to another metabolic 

pathway must be considered.

Metabolic excision of the carboxamide side chain of CBZ yielding 2- 

hydroxyiminostilbene (ISB-2-OH) was discussed in chapter 1 (section 1.2.1),37 and both 

iminostilbene and ISB-2-OH have been identified as minor metabolites of CBZ in 

humans.38 Formation of ISB-2-OH from carbamazepine may be oxidative, and 

dependent upon the introduction of a C-2 hydroxyl function in CBZ, and enzyme 

assisted excision of the carboxamide group38 (shown in figure 1.9 of chapter 1). Rather 

than by direct oxidation of iminostilbene.

Figure 3.20: Identification of metabolites formed from ISB-2-F after incubation in rat hepatocytes with 500 pM 
substrate.

Metabolism of ISB-2-F was much more complex than for the CBZ analogues. Figure 

3.20 shows the LC-MS data on the metabolism of ISB-2-F at 500 pM. This
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concentration was used for the identification of the metabolites rather than 50 pM as it 

was the least complex, and most consistent of all the data.

Oxidative defluorination of ISB-2-F to ISB-2-OH via a quinone-imine intermediate 

would be expected to yield an [M+H] ion of m/z 210. Three candidate peaks were 

identified by LC-MS in figure 3.20. However, each of these peaks was also associated 

with abundant m/z 208 ions. We speculate that one of these peaks may be associated 

with ISB-2-OH, but that it undergoes near quantitative oxidation in the MS source 

shown for peaks A and B in figure 3.21.

Figure 3.21: XIC chromatogram for m/z 210 (top) and mass spectra for two of the candidate peaks showing possible 
oxidation of the iminostilbene to a quinone-imine after incubation for 6 h in rat hepatocyte suspensions with 500 pM 
substrate.

One other plausible pathway of oxidative defluorination is phenolic hydroxylation or 

epoxidation: Pantarotto et al~9 identified both the 10,11 epoxide of iminostilbene and 

10,11-dihydro-10,11-dihydroxy iminostilbene following intraperitoneal administration 

of iminostilbene. The dihydrodiol was also found as a glucuronide. The epoxide-diol 

pathway of iminostilbene metabolism was also catalysed by rat liver microsomes.
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However, no ISB-2-F diol or diol glucuronide was identified in the hepatocyte 

incubations and the XIC for m/z 228 (figure 3.22).

Figure 3. 22: TIC and XIC chromatograms of ISB-2-F after incubation of 500 (iM substrate in rat hepatocytes for 6 h, 
showing the O-glucuronide and for formation of a diol m/z 228.

Again, as was the case for figure 3.20 these ions ([M+H]+) were associated closely with 

abundant -2H ions {m/z 226) which is suggestive of in-source oxidation of the 

metabolites in the MS. Formation of the JV-glucuronide of 2-F-ISB was not observed, but 

the oxygenated iminostilbene does appear to undergo glucuronidation (figure 3.22).
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3.4 Conclusions
Metabolism of CBZ in freshly isolated rat and mouse hepatocyte suspensions was 

examined to determine which animal would be a more appropriate model of CBZ 

metabolism in man. The two metabolic profiles were distinct from one another and, 

because rat hepatocytes yielded the more representative metabolites this was selected as 

the model for metabolism of the CBZ analogues.

CBZ analogues CBZ-2-F, CBZ-2,8-F, CBZ-2-C1, CBZ-2,8-Cl, CBZ-2-Br, and CBZ-2,8- 

Br, were examined for changes in metabolic profile compared to unsubstituted CBZ in 

rat hepatocytes. All of the analogues displayed a pronounced switch of dominance of the 

primary metabolic route, from 10,11-epoxidation, to iV-glucuronidation.

All the analogues except CBZ-2-F also showed no formation of 2- or 3- hydroxylated 

derivatives, by either direct hydroxylation or by prevention of formation of an arene 

oxide.

CBZ-2-F was the only derivative to undergo hydroxylation in the hepatocytes. The 

location of the sulfonated hydroxyl could not be determined by these methods, and thus 

the possibility of an NIH-sliift type fluorine migration mediated by a 2,3-epoxide 

intermediate cannot be excluded.

As all of the derivatives formed the 10,11-epoxide to some extent the inhibition of arene 

oxidation was highly selective, as not even 2,8-dibromination significantly blocked 

either 10,11-epoxidation or vV-glucuronidation.
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Chapter 4

This chapter summarises the key findings of chapter 2 and chapter 3 and discusses 
where the project could go in the future.
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Conclusions

4. Conclusions
A range of 2- and 2,8-di substituted CBZ analogues were prepared from the 

appropriate iminostilbenes. Two different strategies were employed in the synthesis 

of these analogues: Direct electrophilic halogenations of iminodibenzyl or efficient 

ring expansions of an appropriate iV-aryl indole with polyphosphoric acid. The 

strategy used to form each derivative is largely dependent upon what halogen is 

being incorporated into the molecule.

While direct electrophilic bromination of iminodibenzyl was efficient for formation 

of the di-brominated derivative, it was not so for the synthesis of the 

monobrominated derivative. Where synthesis of 2-bromo iminostilbene was subject 

to the formation of mixtures of isomers during the radical bromination step used to 

incorporate the 10,11-double bond. While time precludes further optimization of this 

procedure, the use of a more deactivating protecting group at N-5 may be more 

suitable to attenuate formation of the isomers. Nonetheless, electrophilic chlorination 

was found to be a reasonable, if slow, procedure for the synthesis of both the 2- and 

2,8-dichloro derivatives. In the case of 2-chloro the formation of isomers in a manner 

analogues to 2-bromo was not observed, and greater deactivation of the arene rings 

by chlorine is considered to be a contributing factor.1

The cyclisation of iV-aryl indoles to iminostilbenes has previously been described.2 

However, it was noted that the cyclisation of electrophilic derivatives was poor. That 

fluorine substituted JV-aryl indoles were able to undergo efficient cyclisation to 

iminostilbenes highlights the unique electronic properties of fluorine.
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This reaction was usefully extended to a wide range of differently substituted 

fluorinated iminostilbenes and separation of regioisomers, formed by some iV-aryl 

indoles, by column chromatography was found to be possible.

The reaction was also found to be usefully extended to the foimation of both 2- and 

2,8- chlorine substituted derivatives; and although dehalogenation is thought to occur 

during the reaction, the mixtures are easily separated. Furthermore the method is 

exceptionally high yielding for both derivatives and represents the more efficient 

method for fonnation of these analogues.

Given the success of the chlorinated analogues the extension of the reaction to form 

mono and di-brominated derivatives was examined. However, the reaction was veiy 

difficult to control leading to complex mixtures of products that were not easily 

separated. However isolation of a small quantity of 2-bromo iminostilbene was 

achieved with a small amount of optimization of the reaction conditions.

Incorporation of the carboxamide side-chain was not a trivial transformation. Several 

methods of incorporating this side chain into the derivatives were attempted. 

However, additional deactivation of N-5 by the incorporation of the halogens in the 

arene rings and increased solubility of the compounds reduced the suitability of 

commonly employed strategies, such as phosgenation to incorporate the side chain.

Transformation was finally achieved with alkali metal isocyanates and trifluoroacetic 

acid. This reaction was both high yielding and convenient for isolation of the 

carbamazepines for all of the derivatives. This is interesting in light of the failure of 

trichloroacetyl isocyanate to react with certain derivatives. On-balance the possibility 

of traces of trichloroacetic acid auto catalyzing the transformation and rapid
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decomposition of the reagent once exposed to air are considered to be additional 

contributing factors for the failure of this reagent to react with certain derivatives.

The compounds utilized in the structure metabolism study were designed to identify 

the minimum aryl substitution, in respect of steric bulk, required to completely 

inhibit the aromatic hydroxylation of carbamazepine, and thus the formation of 

electrophilic arene oxide precursors that have been hypothetically linked to the 

formation of ADRs.3'5

This objective was efficiently achieved with the 2-chloro and 2,8-difluoro derivatives 

without significantly affecting formation of the 10,11 epoxide. The substituent effect 

compares well with the reduction of oxidative metabolism observed by substitution 

of Cl at C-3 of imipramine. Although oxidative dehalogenation is known for many 

halogenated aromatics, both chlorinated,6 and fluorinated,7 none of the analogues 

were observed to undergo this reaction in rat hepatocytes. Remarkably, the steric 

hindrance of the 2-chloro and 2-bromo derivatives was observed to be sufficient to 

block the hydroxylation of both the unsubstituted ring and the functionalized one. 

Monohalogenation of an aromatic ring is capable of blocking hydroxylation entirely, 

yet it is not consistent across a variety of halogenated aromatic rings.8 Arene 

oxidation can occur, and in some cases extensively,7 at ling carbons adjacent to and 

more distant from fluorine- and chlorine- substituted carbons. Thus the C-3 chlorine 

of clomipramine (3-chloroimipramine) fails to prevent hydroxylation at C-2 as well 

as hydroxylation of the unsubstituted ling.9 However, only CBZ-2-F was the only 

derivative to undergo detectable hydroxylation in the hepatocytes. The exact 

stracture of this metabolite could not be detemined, and NIH-shifting of the fluorine 

intermediate may occur7,10’11 via a 2,3-arene oxide cannot be excluded. The chemical

153



Conclusions

shift of fluorine in 19F NMR is highly sensitive to its chemical environment,12 this 

coupled with the high sensitivity of 19F NMR12 could allow mdentification of an NIH 

shifted metabolite of CBZ-2-F, or and oxidatitive de-fluorination yielding fluoride 

ions. Formation of the 10,11-epoxide is the major metabolic fate of CBZ in man5 

however even incorporation of two bromine atoms into the parent structure was not 

enough to significantly block formation of this metabolite. Indicating that the 

blockade of the ring-oxygenated metabolites is selective.

Formation of the 7V-glucuronide was not significantly reduced; indeed in some cases 

the formation of the iV-glucuronide was increased. That such compounds are more 

effectively conjugated to glucuronic acid is not necessarily an indicator of an 

inherently toxic compound. Indeed, the fact that they are efficiently transfonned to 

the iV-glucuronide suggests that they may be more efficiently cleared Rom the host 

and would thus be safer pharmaceuticals, although this would be expected to have an 

adverse effect on pharmacological activity of the compound. Consequently, it is 

CBZ-2,8-F and CBZ-2-C1 that may be expected to have the minimum effect on the 

pharmacological properties compared to CBZ.
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5. Experimental Methods and Techniques: Chemistry

5.1 General Experimental
Moisture sensitive reactions were earned out in anhydrous organic solvents (purchased 

from Sigma-Aldiich™ or Fluka) under Nitrogen or Argon atmosphere using oven dried 

glassware and a vacuum manifold to maintain the atmosphere.

Halogenated indoles and benzenes were purchased from fluorochem and used as 

received. All other reagents were purchased from Sigma-Aldrich™ and used as 

received.

Thin Layer Chromatography (TLC) and Flash Chromatography

Reactions were monitored by comparative thin layer chromatography using Merck 

aluminium-backed Kieselgel 60 F254 silica plates, and were viewed with a UV lamp (A. 

254 nm) or by staining with anisaldehyde, vanillin, KMn04, iodine, or bromocresol 

green.

Preparative column chromatography was performed on VWR PROLABO® silica gel for 

flash chromatography or Sigma-Aldrich™ silica gel for flash chromatography particle 

size 40-63 A. Unless specifically stated in the text separation of compounds was 

achieved with a product to silica ratio of 1:25.

Analytical and Preparative HPLC methods

Purity analysis of carbamazepine analogues was performed by LC-MS and LC-UV 

(HPLC) methods.
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LC-MS Method

For LC-MS analysis, aliquots (10 pL) of acetonitrile solutions (0.5 mg/mL) of the 

carbamazepine derivative were injected onto the HPLC column without further 

treatment. The solutions were chromatographed at room temperature on a Phenominex 

Gemini-NX 5-pm CIS 110 A column (250 x 4.6 mm i.d.) by gradient elution with 

acetonitrile/0.1 % formic acid (15 %, 5 min; 15—>50 %, 20 min; 50—>-75 %, 3 min; 15 %, 

5 min) in 25 mM ammonium acetate, pH 3.8. The eluent flow rate was 1.0 mL/min

The LC system consisted of a PerkinElmer Series 200 pump and a PerkinEhner Series 

200 autosampler.

The flow rate of eluate to the LC-MS interface was ca. 160 pL/min. An AB Sciex API 

2000 mass spectrometer was operated with a TurboIonSpray electrospray source. The 

interface temperature was 400 °C; electrospray capillary voltage, 5.0 kV; heater gas 

(Gas2) setting, 75. The instrument was set up for full scanning (Ql) acquisitions in the 

positive-ion mode as follows: scan range m/z 100-1000, with a scan time of 5 s. 

Instnunent management and data processing was accomplished through Analyst 1.4 

software.

Preparative HPLC

For purification of samples by preparative HPLC, aliquots (800 pL) of acetonitrile 

solutions (10 mg/mL) of the carbamazepine derivative were injected onto the HPLC 

column without further treatment. The solutions were chromatographed at room 

temperature on a Knauer erurosphere 100-5 Si column (250 x 20 mm i.d.) by gradient
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elution with acetonitrile (34 %, 10 min; 34—>66 %, 15 min; 66—>75 %, 40 min; 75-34 

%, 45 min) in 25 mM ammonium acetate, pH 3.8. The eluent flow rate was 10.0 

mL/min. UV detection was set at X 254 nm. Instrument management and data processing 

was accomplished through Clarity software.

Analytical HPLC

For analytical HPLC analysis, aliquots (10 jliL) of acetonitrile solutions (0.5 mg/mL) of 

the carbamazepine derivative were injected onto the HPLC column without further 

treatment. The solutions were chromatographed at room temperature on a Phenominex 

Gemini-NX 5-pm Cl8 110 A column (250 x 4.6 mm i.d.) by gradient elution with 

acetonitrile (15 %, 5 min; 15—>50 %, 20 min; 50-^75 %, 3 min; 15 %, 5 min) in 25 mM 

ammonium acetate. The gradient was delivered with a Dionex Summit HPLC System at 

a flow rate of Iml/min through a UVD170S UV detector set at 254 nm (Dionex). 

Instrument management and data processing were accomplished through Chromeleon 

software.

IR spectroscopy

Infra red spectra were recorded on a Jasco FTIR ATR spectrometer and are recorded as a 

neat liquid, or a ground solid, except where stated in the text.

Melting points

Melting points were recorded using Bibby-Sterlin Stuart SMP3 melting point apparatus 

and are uncorrected.
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Mass Spectrometry

High resolution mass spectrometry for the N-aryl indoles and fluorinated iminostilbenes 

were performed by the National Mass Spectrometry Service based in Swansea. Analysis 

of carbamazepine analogues below molecular weight 300 were performed by the Mass 

Spectrometry Sen/ice at the University of Oxford. All other samples were obtained in 

electrospray mode (ES) with a micromass LCT mass spectrometer or a trio 1000 mass 

spectrometer in chemical ionization mode (Cl) with ammonia as the Cl gas. Mass 

spectra were recorded in the positive or negative mode as indicated in the text.

CHN Microanalysis

Elemental analyses for fluorinated N-aryl indoles and iminostilbenes were performed by 

Mr. Stephen Boyer of London Metropolitan University. Non-fluorinated samples were 

analysed by Mr. Steve Apter of the University of Liverpool.

NMR spectroscopy

]H, 13C and 19F NMR Spectra were obtained using a Bruker Avance or a braker DPX 

400 instrument operating at 400, 100 and 376 MHz respectively, spectral data are 

reported in ppm (8) relative to their residual solvent peaks.1 Coupling constants (J) are 

reported in Hz.
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5.2 Direct electrophilic halogenation:
The methods outlined below record the highest yielding large-scale preparations of 

coumpounds 2-5. Reaction conditions for the reactions to generate the tables in chapter 2 

are listed under each table.

2-bromo-10,ll-dihydro-5H-dibenz[6i/]azepine 2: Iminodibenzyl (3.624 g, 18.54

1 11 10 9 mmol) were dissolved in CHCI3 (100 mL) pre-dried silica gel

(~2,000 g per 1.0 mmol of NBS) added. The mixture was 

stirred gently with overhead stirring and the reaction vessel 

covered with foil to exclude light from the reaction. NBS (3.021 g3 16.86 mmol) as 

solution in CHCI3 (15 mL) was then added dropwise over 20 min at room temperature. 

Once addition of NBS was complete the reaction was left to stir for a further 10 min 

before vacuum filtration to remove the silica. The silica cake was then washed with 

CHCI3 (2 x 20 mL). The filtrate was washed with water (2 x 150 mL) and dried over 

Na2S049 filtered and concentrated in vacuo. The crude product was purified by column 

chromatography, with neat hexane as eluent, to return the product a white powder. 2.871 

g, 62 %; mp 102.0-103.1 °C (lit2 100-101 °C); 1HNMR(400 MHz, CDC13) 5 7.12 - 7.17 

(m, 1 H, H-C1), 7.01 - 7,11 (m, 3 H), 6.68 - 6.84 (m, 3 H), 5.96 (hr. s., 1 H, H-N), 3.00 - 

3.10 (m, 4 H2-C10’11); 13C NMR (101 MHz, CDC13) 6 142.4, 141.6, 133.0, 130.7, 129.5,

128.6, 128.5, 126,9, 119.9, 119.4, 117.9, 111.2, 34.7, 34.6; IR (cm'1) 3386.39 (w, 

secondary amine stretch), 1484 (s), 1457 (m, aromatic CH stretch), 802 (m); MS (CI+, 

m/z) 274 (100), 276 (97) [MH]+.

Spectral data in agreement with those published in2
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2,8-dibromo-l 0,1 l-dihydro-SH- dibenz \bj\ azepine 3:

Iminodibenzyl (5.018 g, 25.70 mmol) were dissolved in

CHC13 (300 mL) pre-dried silica gel (-2.000 g per 1.0 mmol of NBS) added. The 

mixture was stirred gently with overhead stirring and the reaction vessel covered with 

foil to exclude light from the reaction. NBS (9.152 g, 51.04 mmol) as solution in CHC13 

(200 mL) was then added dropwise over 1 h at room temperature. Once addition of NBS 

was complete the reaction was left to stir for a further 20 min before vacuum filtration to 

remove the silica. The silica cake was then washed with CHC13 (2 x 150 mL). The 

filtrate was washed with water (2 x 350 mL) and dried over Na2S04, filtered and 

concentrated in vacuo. The crude product was purified by column chromatography 

hexane —> 1:9 ethyl acetate/hexane to return the product as pale blue needles, 7.214 g, 

78 %, mp 153.7-154.9 °C (lit2 177-178 °C); NMR (400 MHz, CDC13) 8 7.14 - 7.18 

(dd, J = 9.1, 2.4 Hz, 2 H, H-C3’7) 7.13 (d, J = 2.4 Hz, 1 H, H-C1’9) 6.60 (d, J = 9.1 Hz, 1 

H, H-C4’6) 5.95 (br. s., 1 H, H-N5) 3.01 (s, 4 H, H-C10’11); 13C NMR (101 MHz, CDC13) 

5 141.0, 133.1, 130.4, 129.6, 119.6, 111.7, 34.3; IR (cm'1) 3402 (w, secondary amine 

stretch), 1485 (m), 1342 (m), 802 (m); MS (ES-, m/z) 350 (51), 351 (100), 353 (49) [M- 

H]'.

Spectral data in agreement with those published in 2

2-chloro-l0,1 l-dihydro-SH-dibenzITjj/]azepine 4: Iminodibenzyl (4.024 g, 20.59

mmol) was dissolved in EtOAc (300 mL), pre-dried silica gel 

(-2.000 g per 1.0 mmol of NCS) added. The mixture was stirredH

gently with overhead stirring and the reaction vessel covered with foil to exclude light 

from the reaction. NCS (3.021 g, 16.86 mmol) was added portion-wise over 40 min at
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room temperature. Once addition of NCS was complete the reaction was left to stir for 

72 h before vacuum filtration to remove the silica. The silica cake was then washed with 

EtOAc(2 x 150 mL). The filtrate was washed with water (2 x 250 mL) and dried over 

NaiSO^ filtered and concentrated in vacuo. The crude product was purified by column 

chromatography, hexane —» 1:4 ethyl acetate/hexane to return the product as a pale 

green powder, 1.013 g, 24 %, mp 89.0-89.8 °C, ‘H NMR (400 MHz, Acetone-^) § 7.73 

(br. s., 1 H, H-N5) 6.99 - 7.07 (m, 4 H,) 6.90 - 6.97 (m, 2 H) 6.65 - 6.75 (m, 1 H, H-C1) 

3.03 (s, 4 H, H-C10’11); 13C NMR (101 MHz, Acetone-^) 5 144.5, 142.9, 131.4, 131.3, 

131.1, 129.6, 129.5, 127.9, 127.8, 120.9, 120.1, 119.3, 36.3, 35.6; IR (cm'1) 3379 (w, 

secondary amine stretch); 1481 (s); 813 (m); MS (CI+, m/z) 230 (100), 232 (34) 

[M+H]+, HRMS: found, m/z 230.0734; ChHo^CIN (MH^ requires m/z 230.0707.

IjS-dichloro-lOjll-dihydro-SH-dibenzl^azepine

5: Iminodibenzyl (2.496 g, 12.80 mmol) was dissolved in 

CHCI3 (350 mL) pre-dried silica gel (~2.000 g per 1.0 mmol of NCS) added. The 

mixture was stirred gently with overhead stirring and the reaction vessel covered with 

foil to exclude light from the reaction. NCS (3.421 g, 25.61 mmol) was then added 

portion-wise over 1 h at room temperature. Once addition of NCS was complete the 

reaction was left to stir for a further 48 h before vacuum filtration to remove the silica. 

The silica cake was then washed with CHCI3 (2 x 250 mL). The filtrate was washed with 

water (2 x 500 mL) and dried over Na2S04, filtered and concentrated in vacuo. The 

crude product was purified by column chromatography hexane —> 1:9 ethyl 

acetate/hexane to return the product as pale a beige powder, 2.712 g, 80%. mp 113.7- 

114.8 °C, 1H NMR (400 MHz, Acetone-ri6) 6 7.93 (s, 1H, H-N5); 7.08-7.07 (d, 2H, /=
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2.4 Hz, H-C1’9); 7.06-7.04 (dd, 2H, 8.4, 2.5 Hz, H-C3’7); 6.97-6.95 (d, 2H, J= 8.48

Hz, H-C4’6); 2.89 (s, 4H, H-C10’11); 13C NMR (400 MHz, Acetone-^) 5 141.0, 129.4, 

130.1, 125.4, 120.9, 123.6, 32.5; IR (cm'1); 3399.9 (m, secondary amme stretch), 1484 

(s), 1330(m), 802.2 (m); MS (ES+, m/z) 263 (100), 265 (64), 266 (12) [M+H]+; HRMS: 

found, m/z 264.0341; Ci4Hi235Cl2N (MH+) requires m/z 264.0347.

5.3 General Reaction Procedure for N-acyl protection of 
imino dibenzyls
hninodibenzyl derivatives (5.00 mmol) and DMAP (5.00 mmol) were dissolved in 

toluene (25 mL), and gently heated to reflux. AcCl (6.00 mmol) was then added 

dropwise and the reaction left at reflux for 24 h. Once reaction was judged to have 

progressed to completion by TLC (1:9 EtOAc/hexane; KMn04 stains the N-acyl product 

yellow) the reaction was cooled to room temperature and partitioned between EtOAc 

and water. The aqueous phase was washed with EtOAc (2 x 50 ml) and the combined 

organic extracts backwashed with water (1 x 50 mL) saturated NaHC03(aq) (1 x 50 ml) 

and brine (1 x 50 ml) then dried over Na2S04, filtered and concentrated in vacuo to yield 

the crude material. Grade products were then purified by column chromatography 1:7 

EtOAc/Hexane to yield the purified products as colourless oils.

l-(2-bromo-10,l l-diliydro-Sll-dibciizi^/Jazepiii-S-yljethanoue 6: compound 2 (1.35 

/—\ g, 4.98 mmol) was treated according to the general method

described above to yield the product as a colourless oil, 1.224 g, 

78 %; lR NMR (400 MHz, CDC13) 5 7.46 - 6.94 (m, 7 H), 

3.52 - 3.18 (m, 2 H, H2-C10), 2.93 - 2.70 (m, 2 H, H2-C11), 2.13 - 1.82 (s, 3 H, COCH3); 

The 13C NMR of this compound is complex and does not account for the different
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conformers present in the solution: 13C NMR (101 MHz, CDC13) 8 = 170.5, 142.5, 

142.2, 139.9, 138.8, 137.7, 137.4, 137.1, 136.6, 134.4, 133.3, 132.8, 130.5, 130.3, 129.8, 

129.5, 129.2, 128.9, 128.7, 128.5, 128.4, 128.1, 127.6, 127.5, 127.4, 127.4, 127.2, 126.7, 

126.4, 125.2, 30.9, 30.1, 22.6; IR (cm'1) 3032 (w, aromatic CH stretch), 1678 (s, tertiaty 

amide CO stretch). 1550 (m), 1485 (s); MS (CI+, m/z) 346 (100), 318 (88) [MH]+.

l-(2,8-dibromo-10,ll-diIiydro-5H-dibenz[/;i/]azepin-5-yl)ethaiioiic 7: Compound 3

(1.781 g, 5.04 mmol) was treated according to the general 

method described above to yield the product as a 

colourless oil (occasionally returning as a white solid, mp 

147.9-148.6 °C) 1.834 g, 92 %; 1H NMR (400 MHz, CDC13) 5 ppm 7.28 - 7.46 (m, 4 H, 

jj_ci,3,7,9) ? 10 _ ? 22 2 H, H-C4,6) 3.32 (m, 2 H, H-Ci0) 2.69 - 2.92 (m, 2 H, H-C11)

2.01 (s, 3 H, H3CCO); 13C NMR (101 MHz, CDC13) 8 ppm 170.3, 141.3, 139.4, 138.6, 

136.3, 133.4, 132.9, 130.7, 130.3, 129.9, 129.2, 122.3, 121.2, 30.5, 29.8, 22.6; IR (cm'1) 

3032 (w, aromatic CH stretch), 1678 (s, tertiary amide C-0 stretch). 1550 (m), 1485 (s); 

MS (ES+, m/z) 394 (51), 396 (100), 398 (49) [MH]+.

l-(2-chloro-10,ll-diliydro-5H-dibenzo[b,f|azepiii-5-yl)ethanone 8: Compound 4 

_ (1.218 g, 5.30 mmol) was treated according to the general
a'~s\ JTi

‘N'x^ method outlined above to yield the product as a pale yellow oil 

1.018 g, 78 %; !H NMR (400 MHz, CDCI3) 8 6.93 - 7.38 (m, 7 

H) 3.09 - 3.54 (m, 2 H, H2-C10) 2.68 - 2.87 (m, 2 H, H2-C11) 1.99 - 2.04 (m, 3 H, 

H3CC=0); 13C NMR of this compound is complex and does not account for the different 

conformers present in the solution: 13C NMR (101 MHz, CDCI3) 8 170.8, 170.5, 142.4,
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139.7, 139.2, 138.4, 137.3, 136.2, 132.9, 130.6, 130.5, 130.1, 129.9, 129.0, 129.0, 128.8, 

128.5, 128.2, 127.7, 127.5, 126.8, 125.3, 31.0, 30.6, 30.2, 29.8, 22.7, 22.6; IR (cm'1) 

3034 (w, aromatic CH stretch), 1680 (s, tertiary amide C=0 stretch). 1554 (m), 1485 (s); 

MS (CI+, m/z) 272 (100), 274 (31) [MH]+

l-(2,8-dichloio-10,ll-diliydro-5II-dibcnzo[b,f|azepin-5-yl)ethanone 9: Compound 5 

(1.289 g, 4.88 mmol) was treated according to the general
\y js V01

N method outlined above to yield the product as a colourless oil

(occasionally returning as a white solid, mp 136.9-138.5 °C) 

1.176 g, 79 %; NMR (400 MHz, CDC13) 8 7.18 - 7.23 (m, 2 H, H-C1’3’7’9), 7.15 (d, 

J=7,9 Hz, 2 H, H4’6), 3.25 - 3.41 (m, 2 H, H2-C10), 2.75 - 2.85 (m, 2 H, H2-C11), 2.01 (s, 

3 H, HsCCO); 13C NMR (101 MHz, CDCI3) 6 = 170.6, 138.8, 138.6, 135.9, 134.7,

133.9, 133.3, 131.6, 129.8, 129.6, 129.1, 129.1, 129.1, 31.6, 29.7; IR (cm"1) 3033 (w, 

aromatic CH stretch), 1671 (s, tertiary amide G=0 stretch). 1550 (m), 1483 (s); MS 

(CI+, m/z) 306 (100), 308 (64), 310 (11) [MH]+.

5.4 General reaction procedures for incorporation of the 10,11 
double bond:

Radical bromination of the etheno bridge (C10*11)
ABCN (0.1 mmol) was dissolved in PI1CF3 (10 mL) and added dropwise to a stirred 

solution of JV-acyliminodibenzyl 5-9 (5.0 mmol) and NBS (6.0 mmol) in PhCF3 (50 

mL). The reaction was then heated to 110 °C and stirred for 14-24 hours with reaction 

monitoring by NMR spectroscopy to ensure complete conversion of the 7V-acyl 

iminodibenzyl 5-9. Once judged to have completed the reaction was cooled to room
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temperature, and partitioned between Et20 and water. The organic phase was washed 

with water (2 x 50 mL) and saturated NaHC03(aq) (1 x 50 mL), dried over Na2S04, 

filtered and concentrated in vacuo to yield mixtures of eliminated and brominated 

products 10-13 a/b as observed by ^ NMR (discussed in chapter 2 (2.5.2.1)).

hi each case the crude mixture generated from this reaction was transformed to the 

corresponding iminostilbene by either method A or method B as outlined below in 

section 5.5.

Bromine Elimination from the Etheno Bridge
The crude reaction mixture of 10-13a/b was dissolved in a 1:1 mixture of EtOH and 

THE (150 mL). With ice cooling and vigorous stining, 50 % w/v KOH(nq) (50 mL) was 

added dropwise to the mixture slowly turning the solution from orange to dark brown. 

The reaction was left at 0 °C for 1 hour and then wanned to room temperature and left 

for a further 2 hours. The reaction was then quenched by addition of water (150 mL) and 

the product extracted with CH2CI2 (2 x 100 mL). The combined organic extracts were 

dried over Na2S04, filtered and evaporated to yield the eliminated products as colourless 

to orange oils.

l-(2-bromo-5H-(libeiiz|ht/]azepiii-5-yl)eth;iiioiie 10b: Crude

reaction mixture of lOa/b was treated according to the general

method for bromine elimination as outlined above to yield the

product as a pale yellow oil 1.528 g, 99 %; 50 % pure (calculated from quantity of 

compound 5 used in the radical bromination step; 1.546 g, 4.89 mmol); ’H NMR (400

MHz, CDCI3) § = 7.57 - 7.48 (m, 1 H, H-C1), 7.47 - 7.28 (m, 6 H), 7.05 - 6.91 (m, 1 H,
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H-C10), 6.91 - 6.79 (m, 1 H} H-C11), 1.88 - 1.85 (m, 3 H, H3CC=0); 13C NMR (101 

MHz, CDC13) 5 170.3, 136.7, 135.4, 132.2, 132.0, 131.5, 130.1, 129.7, 129.5, 128.5, 

128.2, 127.9, 127.7, 77.3, 76.7, 22.0; IR (cm'1) 3010 (m, aromatic CH stretch), 1675 (s, 

tertiary amide C=0 stretch), 1489 (m), 1346 (m), 1327 (m); MS (CI+, m/z) 314 (100), 

316 (96) [MH]+.

l-(2,8-dibromo-5H-dibenzo[Z?*/]azepin-5-yl)ethaiione 11b: Crude reaction mixture of

lla/b was treated according to the general method for 

bromine elimination as outlined above to yield the product 

0 as a pale yellow oil 1.977 g, 99 % (calculated from quantity

of compound 6 used in the radical bromination step; 2.008 g, 5.08 mmol); 'll NMR (400 

MHz, CDCI3) 5 ppm 7.37 - 7.66 (m, 4 H, H-C1’3’7’9), 7.25 (dd, 11.0, 8.2 Hz, 2 H, H- 

C4’6), 6.91 (d, A ofAB, /=12.1 Hz, 1 H. H-C10) 6.85 (d, B ofAB,J= 10.9 Hz, 1 H, H- 

C11), 1.83 - 1.92 (m, 3 H, H3CCO); 13C NMR (101 MHz, CDC13) 5 170.5, 139.2,139.0, 

136.2, 135.0, 132.5, 132.5, 132.1, 132.1, 131.4, 130.1, 129.4, 129.0, 121.8, 121.3; 22.0; 

IR (cm'1) 2989 (m, aromatic CH stretch), 1673 (s, tertiary amide C=0 stretch), 1488 (m), 

1346 (m), 1326 (m); MS (ES-, m/z) 348 (51), 350 (100), 352 (49) [M-H]'.

l-(2-chloro-5H-dibenz[6Jl/]azepin-5-yl)ethanoiie 12b: Cmde reaction mixture of 12a/b

was treated according to the general method for brominein .. .
elimination as outlined above to yield the product as a pale 

yellow oil 1.393 g, 99 % (calculated from quantity of 

compound 6 used in the radical bromination step; 1.421 g, 5.23 mmol); !H NMR (400 

MHz, CDC13) 57.49 - 7.28 (m, 7 H, H-C1’3’4’6’7’8’9), 7.04 - 6.80 (m, 2 H, H-C10’11), 1.88 -
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1.85 (m, 3 H, H3C-CO). 13C NMR for this compound is complex and does not account 

for the different conformers present in solution. 13C NMR (101 MHz, CDCI3) 8 171.2, 

170.9, 140.4, 140.2, 138.9, 138.7, 136.3, 135.0, 134.4, 133.6, 133.2, 133.1, 132.9, 130.4, 

130.2, 129.8, 129.7, 129.6, 129.5, 129.2, 129.1, 128.9, 128.5, 128.1, 127.8, 127.8, 127.6, 

22.1, 22.0; IR (cm'1) 2989 (m, aromatic CH stretch), 1673 (s, tertiary amide C=0

stretch), 1488 (m), 1346 (m), 1326 (m); MS (CI+, m/z) 270 (100), 272 (34) [MH]+.

l-(2,8-dichloro-5H-dibenz[^Jl/]azepin-5-yl)ethanone 13b: Crude reaction mixture of

13a/b (13a/13b, g) was treated according to the general 

method for bromine elimination as outlined above to 

'O yield the product as a pale yellow oil 1.496 g, 99 %

(calculated from quantity of compound 6 used in the radical bromination step; 1.511 g, 

4.93 mmol) ^ NMR (CDC13,400MHz) 5 7.40 - 7.44 (m, 2 H, H-C1’8), 7.37 (dd, J=10.9,

2.3 Hz, 2 H, H-C4’6), 7.29 - 7.35 (m, 2 H, H-C3’7), 6.93 (d, A ofABJ= 11.6 Hz, 1 H, 

H2C10), 6.87 (d, B of ABJ= 11.9 Hz, 1 H, EEC10), 1.88 ppm (s, 3 H, H3CCO); 13C

NMR (101 MHz, CDCI3) 8 170.7, 138.9, 138.6, 136.0, 134.7, 134.0, 133.4, 131.6, 

130.0, 129.9, 129.6, 129.2, 129.2, 129.1, 129.0, 22.0; IR (cm'1) 2990 (m, aromatic CH 

stretch), 1673 (s, tertiary amide C=0 stretch), 1487 (m), 1345 (m), 1326 (m); MS (CI+, 

m/) [M+H]+ 304 (100), 306 (67), 307 (12) [MH]+.

5.5 Elimination and deprotection to form iminostilbenes

Method Ai Deprotection of the amine
To a solution of KOH(EtoH) (50 mL, 0.4 M) at 80 °C was added a solution of compounds 

10-13b (1.000 g) in 1:1 EtOH/THF (150 mL). The mixture was then left to stir for 12-16
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h with reaction monitoring by TLC (1:9 EtOAc/Hexane). Once complete, water (250 

mL) was added to the reaction mixture and the reaction neutralized to pH 7 by treatment 

with 1M HC1. The aqueous mixture was then extracted with EtO Ac (3 x 150 mL) and 

the combined organic extracts back washed with water (1 x 250 mL) and saturated 

sodium thiosulfate(aq). The combined organic extract was dried over Na2S04, filtered, 

and evaporated to yield the product as a yellow or orange solid after column 

chromatography with 1:9 EtOAc/Hexane.

Method B: One-pot Elimination and deprotection
Crude reaction mixture of 10-13a/b was dissolved in a 1:1 mixture of THF/EtOH (100 

mL) and cooled to 0 °C in an ice bath, 50 % (w/v) KOH(aq) (50 mL) was then added 

dropwise over an hour and the reaction left at 0 °C for a further hour. During this time 

the reaction was observed to change from orange to brown/black. The reaction was then 

gently heated to 80 °C and left for a further 12 hours with reaction monitoring by TLC 

(1:9 EtOAc/Hexane). Once complete, water (100 mL) was added to the reaction mixture 

and the reaction neutralised to pLI 7 by treatment with 1M HC1. The aqueous mixture 

was then extracted with EtO Ac (2 x 150 mL) and the combined organic extracts back 

washed with water (1 x 150 mL) and saturated sodium thiosulfate(aq) (1 x 50 mL). The 

combined organic extract was dried over Na2S04, filtered, and concentrated in vacuo to 

yield the crude product. In each case purification was performed by column 

chromatography with 1:9 EtOAc/Hexane to isolate the iminostilbene as a yellow or 

orange solid.

171



Experimental Methods and Techniques: Chemistry

l-bromo-SH-dibenzI^/lazepine 14: 10b (1.116 g, 3.67 mmol)

H
was treated according to method A to yield the product as an

orange solid, 0.925 g (95 % yield; 50 % purity). Treatment of the crude mixture lOa/b 

was accomplished by method B, to yield the product as an orange solid in near 

quantitative yields after purification by column chromatography. N-aryl indole 

cyclisation (discussed below): Cyclisation of 34 (2,010 g, 7.39 mmol) at the reduced 

temperature of 65 °C yielded the product as an orange solid after column 

chromatography (1:9 EtOAc/Hexane). 0.098 g, 5 %; mp 152.1-153.7; !H NMR (400 

MHz, CDC13) 5 7.09 (dd, J = 8.3, 2.3 Hz, 1 H, H-C4), 7.03 (ddd, J= 7.9, 5.9, 3.1 Hz, 1 

H, H-C3), 6.95 (d, J= 2.3 Hz, 1 H, H-C1), 6.82 - 6.86 (m, 3 H, H-C6’7’8), 6.46 (d, 7 = 

7.6 Hz, 1 H, H-C9), 6.30 (d, A ofAB, /= 12.0 Hz, 1 H, H-C10), 6.17 (d, B ofAB, 11.6 

Hz, 1 H, H-C11), 4.89 (br. s., 1 H, H-N5); 13C NMR (CDC13, 101 MHz) 5 148.3, 147.4, 

133.4, 132.8, 131.8, 131.7, 130.7, 130.6, 129.8, 129.3, 123.3, 120.7, 119.3, 115.3 ppm; 

MS (CI+, m/z) 272 (97), 274 (100) [MH]+; found 270.9991; Ci4HioN79Br req 270.9997.

2,8-dibromo-5H-dibenz[A1/lazepine 15: 11b (1.010 g, 2,57

mmol) was treated according to method A to yield 15 as an
H

orange solid, 0.856 g, 95 %. Crude mixture lla/b was treated according to method B to 

yield the product as an orange solid in near quantitative yields after purification by 

column chromatography. ’H NMR (400 MHz, CDC13) 8 7.12 (dd, J = 8.3, 2.3 Hz, 2 H,

H-C3’7), 6.96 (d, J= 2.3 Hz, 2 H, H-C1’9), 6.34 (d, J= 8.4 Hz, 2 H, H-C4’6), 6.21 (s, 2 H, 

H-C10’11), 4.88 (br. s., 1 H, HN5); 13C NMR (CDC13, 101 MHz) 5 147.5, 133.5, 132.6,

132.4, 131.8, 121.2, 116.1; MS (Ef, m/z) 348 (51), 350 (100), 351 (49) [M-H]‘; found 

347.9031: Ci4H8N79Br2 req 347.9023.
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2-chloro-5i/-dibenz[&l/]azepme 16:12b (1.021 g, 3.78 mmol) 

was treated according to method A to yield the product as an 

orange solid, 0.0.814 g, 95 %, Crude mixture 12a/b was reated 

according to method B to yield the product as an orange solid, in near quantitative 

yields after purification by column chromatography. N-aryl indole cyclisation 

(discussed below): Cyclisation of 30 (2.004 g, 8.80 mmol) yielded the product 16 as a 

mixture with 35.16 was isolated as a pale yellow solid after column chromatography 1:9 

EtOAc/Hexane; 0.814 g, 41 %. Cyclisaton of 31 (1.498 g, 6.58 mmol) yielding the 

product as an orange solid after column chromatography (1:9 EtOAc/Hexane) to yield 

the product as an orange solid 0.903 g, 60 %; !H NMR (400 MHz ,CDC13) 5 7.09 - 6.94 

(m, 1 H, H-C4), 6.98 (dd, 2.3, 8.3 Hz, 1 H, H-C3), 6.92 - 6.78 (m, 2 H, H-C7’8), 6.83 

(d, J= 2.1 Hz, 1 H, H-C1), 6.43 (d, 8.4 Hz, 1 H, H-C6), 6.49 (d, /= 7.8 Hz, 1 H H-

C4), 6.35 (d, A ofAB, J= 12.0 Hz, 1 H, H-C10), 6.22 (d, B ofAB, 11.7 Hz, 1 H, H- 

C11), 4.91 (br. s., 1 H, H-N5); 13C NMR (101 MHz, CDC13) 8 148.0, 146.8, 133.4, 132.1, 

131.3, 130.7, 129.9, 129.7, 129.3, 128.9, 127.9, 123.2, 120.3, 119.3; MS (CI+, m/z) 228 

(100), 230 (39) [MH]+; Found [MH]+ 228.0575 m/z C14HiiN35C1 req 228.0575.

,—. 2,8-dichloro-5JfiT-dibenz[frl/]azepme 17: 12b (1.081 g,rvci
^mmo^ was h‘eated according to method A to yield 

H
the product as an orange solid, 0.892 g, 96 % yield. 

Treatment of the crude mixture 12a/b method B yielded the product as an orange solid 

in near quantitative yield after purification by column chromatography. N-aryl indole 

cyclisation (discussed below): Cyclisation of 32 (2.508 g, 9.57 mmol) yielded the 

product 17 as a mixture with 16. The product was isolated a yellow solid after column
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chromatography (1:9 EtOAc/Hexane) 0.797 g, 32 %; mp, ; NMR (400 MHz, CDC13) 

5 ppm 6.99 (dd, J=8.4, 2.4 Hz, 2 H, H-C3’7), 6.84 (d, /= 2.5 Hz, 2 H, H-C1'9), 6.42 (d, J 

= 8.4 Hz, 2 H, H-C4j6), 6.25 (s, 2 H, H-C10’11), 4.89 (hr. s„ 1 H, H-N5); 13C NMR (101 

MHz, CDCI3) 5 146.6, 132.0, 131.0, 130.1, 129.2, 128.3, 120.4; MS Found [M+Na]+ 

262.0186; Ci4Hi0N35Cl2 req 262.0190.
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5.6 General experimental procedure for the synthesis of N-aryl 
Indoles.
N-Aryl indoles were prepared with modification of the procedure reported by Ma et a? 

as follows:

The appropriate indole (2,2 mmol), K2CO3 (5.0 mmol), Cul (0.1 mmol) and L-proline 

(0.2 mmol) were dissolved in DMSO (4 mL). The mixture was heated gently to 100 °C 

(± 5 °C) under an inert atmosphere for 10 min, then iodobenzene (2.0 mmol) was added 

dropwise over 20 min and the reaction left to stir for 24 h. Upon completion the cooled 

solution was partitioned between EtOAc and H2O and the aqueous layer extracted with 

EtOAc (2x 50 mL); the combined organic phases were washed with brine and dried over 

Na2S04, filtered and concentrated. The crude material was subsequently purified by 

column chromatography to give the pure product.

1-phenyl-lH-indole 18: colourless oil, 97 %; lU NMR (400 MHz, 

CDCI3) 5 7.67-7.64 (m, 1H, H-C7), 7.53-7.51 (m, 1H, H-C4), 7.40- 

7.34 (m, 4H, H-C2’’3’'5’’6’), 7.25-7.20 (m, 2H, H-C4’’2), 7.19- 7.11 

(m, 2H, H-C5’6), 6.62 (dd, J = 3.3, 0.7 Hz, 1H, H-C3); 13C NMR 

(101 MHz, CDCI3) 5 140.0, 136.1, 129.8, 129.6, 128.2, 126.6,

124.5, 122.6, 121.4, 120.7, 110.8, 103.9; Found: m/z 194.0963, C14H12N [MH+]req. m/z

194.0964.

Spectral data in agreement with those reported in 4
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l-(4-fluorophenyl)-XH-inclole 19: Colourless oil, (occasionally

returns as a white solid, m.p. 36.1-36.7 °C); ’H NMR (400 MHz,

CDCI3) 5 7.63 - 7.70 (m, 1 H, H-C7), 7.41 - 7.45 (m, 1 H, H-C6), 7.33

_ 7.40 (m, 2 H, H-C2,’6’), 7.21 (d, .7=3.2 Hz, 1 H, H-C2), 7.19 (d, 7=1.3 
F

Hz, 1 H, H-C5), 7.17 (dd, 7=2.6, 1.6 Hz, 1 H, H-C6), 7.10 - 7.16 (m, 2

H, H-C3’5’), 6.64 (dd, 7-=3.3, 0.8 Hz, 1 H, H-C3); 13C NMR (101 MHz, CDC13) 6 161.3 

(d, 1JCF = 246.2 Hz, C4’), 136.4, 136.2 (d, 4JCf = 3.0 Hz, C1’), 129.5, 128.3, 126.4 (d, 3JCf 

= 8.4 Hz), 122.8, 121.5, 120.7, 116.7 (d, 2JCf = 22.7 Hz), 110.5, 103.9; 19F NMR (376 

MHz, CDCI3) 8 -115.59 (s); Found: C, 79.73; H, 4.91; N, 6.14; Ci4H10FN req. C, 79.60; 

H, 4.77; N, 6.63 %; Found: m/z, 212.0873; ChHhFN [MH+] req. m/z, 212.0870.

Spectral data consistent with those reported by5'7 and the references therin

Hz, 1H, H-C2’), 6.69

l-(3-fluorophenyl)-lH-indole 20: Pale yellow oil, 78 %; (400 

MHz, CDCI3) 8 7.69-7.67 (m, 1H, H-C7), 7.59-7.57 (m, 1H, H- 

C4), 7.42 (dt, J=8.2, 6.2 Hz, 1H, H-C5’), 7.31 (d, J=3.3 Hz, 1H, 

H-C2), 7.30-7.15 (m, 4H, H-C5’6’4’’6’), 7.03 (tdd, J = 8.3, 2.5, 0.9 

(dd, J= 3.3, 0.8 Hz, 1PI, H-C3); 13C NMR (101 MHz, CDC13) 5

163.5 (d, 1 JCf = 247.5 Hz), 141.6 (d, 3JCf = 10.0 Hz), 135.9, 131.2 (d, 3JCf = 9.3 Hz), 

129.8, 127.9, 123.0, 121.6, 121.0, 120.0 (d, 4JCf= 3.1 Hz), 113.5 (d, 2JCf = 21.1 Hz), 

111.8 (d, 2JCf = 23.8 Hz), 110.7, 104.6; 19F NMR (376.46 MHz, CDC13) 5 -111.22 (s); 

Foimd: C, 79.69; H, 4.81; N, 6.52; C^HjoFN req. C, 79.60; H, 4.77; N, 6.63 %; Found: 

m/z, 212.0872; CuHnFN [MH]+req. m/z, 212.0870.
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F
4-Fluoro-l-phenyl-lJT-indole 21: Pale yellow oil, (occasionally 

returns as a white solid, mp ) 70 %; 1H NMR (400 MHz, CDC13) 8 

ppm 7.42 - 7.51 (m, 4 H, H-C2’’3’’5'’6’), 7.32 - 7.38 (m, 1 H, H-C4’), 

7.29 (dd, J=8.3, 0.4 Hz, 1 H, H-C5), 7.26 (d, J=3.3 Hz, 1 H, H-C2), 

7.10 (td, J=8.1, 5.2 Hz, 1 H, H-C6), 6.82 (ddd, J=10.2, 7.9, 0.5 Hz, 1

H, H-C7), 6.75 (dd, J=3.3, 0.8 Hz, 1 H, H-C3); 13C NMR (101 MHz, CDC13) 5 156.4 (d, 

Vcf = 248.8 Hz), 139.4, 138.4 (d, 3JCF = 11.1 Hz), 129.6, 127.9, 126.8, 124.4, 122.8 (d, 

3Jcf = 7.7 Hz), 118.3 (d, VCf = 24.5 Hz), 106.6 (d, 4/Cf = 3.5 Hz), 105.2, 105.0, 99.5, 

99.4; 19F NMR (376 MHz, CDC13) 8 -122.2 (s); Found: C, 79.73; H, 4.91; N, 6.14; 

CmHioFN req. C, 79.60; H, 4.77; N, 6.63 %. Found: m/z, 211.0798; CmHuFN [MH]+ 

req. m/z, 211.0797.

S-Fluoro-l-phenyUFT-indole 22: Pale yellow oil, 76 %; ‘H 

NMR (400 MHz, CDC13 ) 8 = 7.54- 7.43 (m, 5 H), 7.38 - 7.30 (m, 

3 H), 6.95 (dt, J= 2.5, 9.1 Hz, 1 H) and 6.63 (dd, J= 0.6, 3.2 Hz, 

1 H, H-C3); 13C NMR (101 MHz, CDC13) 8 158.1 (d, ^cf = 234.6

Hz), 139.6, 132.5, 129.7, 129.6 (d, 3JCf = 13.8 Hz), 129.4, 126.7, 124.3, 111.2 (d, VCf= 

9.6 Hz), 110.6 (d, 2/Cf = 26.1 Hz), 105.8 (d, 2JCf=23.4 Hz) and 103.4 (d, 4Jcf= 4.6 Hz); 

19F NMR (376 MHz, CDC13) 8 -122.40; Found: C, 79.70; H, 4.82; N, 6.72; CmHioFN

req. C, 79.60; H, 4.77; N, 6.63 %; Found: m/z, 212.0868; CmHuFN [U¥t] req. m/z,

212.0870.

Spectral data consistent with those reported in8
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6-Fluoro-l-phenyl-l#-ind()le 23: Pale yellow oil, 83 %; ^ 

NMR (400 MHz, CDC13) S 7.58 (dd, J= 5.4, 8.7 Hz, 1 H, H-C5), 

7.55 - 7.45 (m, 4 H, H-C2’’3’5,’6,), 7.37 (t, 7,4 Hz, 1 H, H-C4’),

7.31 (d, J = 3.3 Hz, 1 H, H-C2), 7.25 - 7.21 (m, 1 H, H-C7), 6.93

(dt, J= 2.3, 9.0 Hz, 1 H, H-C4) 6.65 (d, /= 3.3 Hz, 1 H, H-C3); 13C NMR (101 MHz, 

CDC13) 8 160.2 (d, 1JCf= 236.5 Hz), 139.4, 135.8 (d, 3JCf = 12.3 Hz), 129.7, 128.4 (d, 

Vcf = 3.8 Hz), 126.7, 125.6, 124.2, 121.8 (d, VCf= 10.0 Hz), 109.1 (d, 2JCf = 24.9 Hz), 

103.6 and 97.0 (d, 2/Cf= 26.5 Hz); 19F NMR (376 MHz, CDC13) 5 -120.65; Found: C, 

79.48; H, 4.85; N, 6.7; CmHiqFN req. C, 79.60; H, 4.77; N, 6.63 %; Found: m/z,

212.0869; CwHuFN [MH+] req. m/z, 212.0870.

5-FluoLO-l-(4-lluorophenyl)-l//-indole 24: Pale yellow oil,TT> (occasionally returns as a white solid m.p. 53.4-54.2 °C, 85% ; 'H

f \ NMR C400 MHz? CDCI3) 8 7.38- 7.43 (m, 2H, H-C), 121 - 7.36 (m,

3H), 7.15 - 7.22 (m, 2H, H-C3 j5 ), 6.94 (td, 7=9.1, 2.6 Hz, 1H, H-C7), 
F

6.61 (dd, 7=3.2, 0.7 Hz, 1H, H-C3); 13C NMR (101 MHz, CDC13) 8 

159.9 (d, 1JCf= 247.7 Hz), 157.7 (d, 17CF= 235.4 Hz), 135.6 (d, 47Cf = 2.7 Hz), 132.7, 

129.5, 129.4, 126.1 (d, 3JCf = 8.4 Hz), 116.5 (d, 2JCf = 23.4 Hz), 110.9 (d, 47Cf = 6.5 

Hz), 110.7 (d, Vcf = 23.0 Hz), 105.9 (d, 27Cf = 23.4 Hz) and 103.4 (d, 47Cf = 4.6 Hz); 

19F NMR (376 MHz, CDC13) 8 -115.3, -124.5; CmH^N req. C, 73.36; H, 3.96; N 6.11 

%; Found: m/z, 230.0777; C14H10F2N [MH+] req. m/z, 230.0776.

Spectral data consistent with those reported in5
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6-Fluoro-l-(3-fluorophenyl)-l/T-indole 25: Pale yellow oil, 

75 %; lH NMR (400 MHz, CDC13) 5 7.56 (dd, J= 8.7, 5.4 

? Hz3 1 H> H-C2’), 7.45 (dt, 8.2, 6.3 Hz, 1 H, H-C5’), 7.29 -

7.20 (m, 3 H, H-C4’’6’’2), 7.17 (td, J= 2.3, 9.7 Hz, 1 H, H-C4), 

7.05 (ddt, 7= 8.3, 2.5, 0.9 Hz, 1 H, H-C2’), 6.94 (ddd, 9.3, 8.8, 2.3 Hz, 1 H, H-C5), 

6.64 (dd, J= 3.3, 0.8 Hz, 1 H, H-C3); 13C NMR (101 MHz, CDC13) 3 163.2 (d, 1/Cf = 

248.1 Hz), 160.3 (d, 1/Cf= 238.5 Hz), 140.9 (d, VCf= 10.0 Hz), 135.6 (d, 3/Cf= 12.3 

Hz), 131.0 (d, 3JCf= 9.2 Hz), 128.0 (d, 4JCf= 3.5 Hz), 125.8, 122.0 (d, VCf= 10.0 Hz), 

119.5 (d, 4/cf= 3.1 Hz), 113.5 (d, 2JCf= 21.1 Hz), 111.3 (d, 2JCf= 23.8 Hz), 109.4 (d, 

2Jcf= 24.5 Hz), 104.3, 97.0 (d, 2/Cf= 27.2 Hz); 19F NMR (376 MHz, CDC13) 5 -110.8, - 

119.9; Found: C, 73.37; H, 4.03; N, 5.94 ; Ci4H9F2N req. C, 73.36; H, 3.96; N, 6.11 %; 

Found: m/z, 230.0772; C14H10F2N [MH+] req. m/z, 230.0776.

l-(4-methoxyplienyI)-lH-in(lole 26: Pale pink solid, 68%, mp 71- 

72 °C ‘H NMR (400 MHz, CDC13) 5 7.65 - 7.70 (m, 1 H, H-C7), 

7.45 (dd, 7=8.1, 0.7 Hz, 1 H, H-C4), 7.37 - 7.42 (m, 2 H, H-C2’’6’), 

7.27 (d, 7=3.2 Hz, 1 H, H-C2), 7.12 - 7.23 (m, 2 H, H-C5’6), 7.00 - 

7.04 (m, 2 H, H-C3'-5’), 6.65 (dd, 7=3.2, 0.7 Hz, 1 H, H-C3), 3.86 (s, 

3 H, H3C-0); 13C NMR (101 MHz, CDC13) 8 158.2, 136.3, 132.8, 128.9, 128.2, 125.9, 

122.1, 121.0, 120.0, 114.7, 110.3, 102.8, 77.3, 76.7, 55.6; Found: m/z 224.0173; 

C15H14ON [MH+] req. m/z 224.1070.

Spectral data in agreement with those reported in6 and the references therin
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5-methoxy-l-phenyl-lH-indole 27: Colourless oil, 71 %; 

NMR (400 MHz, CDC13) 8 7.70 (dd, J= 8.3, 1.1 Hz, 1 H, H-C7) 

7.44 - 7.53 (m, 3 H) 7.30 - 7.37 (m, 2 H) 7.07 - 7.16 (m, 1 H, H- 

C4) 6.88 (dd, J - 9.0, 2.5 Hz, H-C6) 6.60 (dd, 7 = 3.2, 0.7 Hz, 1 

H), 3.87 (s, 3 H,. CH3-O); 13C NMR (101 MHz, CDC13) 5 ppm 154.5, 139.9, 137.5, 

130.2, 129.8, 129.6, 128.3, 127.4, 126.2, 124.0, 112.5, 111.3, 103.2, 102.6, 55.8; Found: 

m/z 224.1076; C15H14ON [MH]+ req. m/z 224.1070

Spectral data consistent with those reported in 9

6-methoxy-l-phenyl-lH-indole 28: colourless oil, 62 %; ‘H 

NMR (400 MHz, CDC13) 5 7.48 - 7.57 (m, 5 H) 7.33 - 7.39 (m, 

1 H) 7.23 (d, .7=3.3 Hz, 1 H, H-C2) 7.05 (d, /= 2.2 Hz, 1 H, H- 

C7) 6.84 (dd, c7=8.6, 2.3 Hz, 1 H, H-C5) 6.61 (dd, J= 3.3, 0.8 

Hz, 1 H, H-C3) 3.82 (s, 3 H, H3CO); 13C NMR (101 MHz, CDC1-3) 5 ppm 156.7, 

139.9, 136.5, 129.6, 127.0, 126.4, 124.3, 123.4, 121.6, 110.2, 103.4, 94.1, 55.7; Found: 

m/z 224.1074; C^HuON [MH]+ req. m/z 224.1070.

l-(4-chloroplienyl)-lH-indole 30: Pale yellow oil, 87 %; 'H NMR

'H (400 MHz, CDCH3) 5 ppm 'H NMR (400 MHz, CDC13) 8 ppm 7.65

- 7.70 (m, 1 H, H-C7), 7.51 (dd, 7=8.1, 0.8 Hz, 2 H, H-C4), 7.46 - 7.47

(m, 2 H, H-C3’’5’), 7.43 - 7.45 (m, 2 H, H-C2’’6’), 7.28 (d, J= 3.3 Hz, 1 
ui

H, H-C2), 7.15 - 7.25 (m, 2 H, H-C5’6), 6.69 (dd, J= 3.3, 0.7 Hz, 2 H, H-C3); 13C NMR 

(101 MHz, CDCI3) 8 ppm 138.3, 135.7, 131.9, 129.7, 129.3, 127.7, 125.5, 122.6, 121.2, 

120.6, 110.2, 104.0; Found: m/z 228.0572; C14H11N Cl [M+H]+ req. m/z 228.0575.
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Spectral data in agreement with those reported in6 and the references therein.

(dd, J — 3.2, 0.6 Hz,

5-chloro-l-phenyHH-indoIe 31: Colourless oil, 92 %; !HNMR 

(400 MHz, CDC13) 8 ppm 7.62 (d, J= 2.1 Hz, 1 H, H-C4) 7.44 - 

7.50 (m, 2 H) 7.38 - 7.43 (m, 3 H) 7.30 - 7.35 (m, 1 H) 7.29 (d, J 

= 3.3 Hz, 1 H, H-C2) 7.13 (dd, 7= 8.8, 2.1 Hz, 1 H, H-C6) 6.58 

1 H, H-C3); ,3C NMR (101 MHz, CDC13) 8 139.3, 134.2, 130.3,

129.6, 129.2, 126.7, 125.9, 124.2, 122.5, 120.4, 111.5, 103.0; m/z 228.0573; C14H11NCI 

[MH]+ req. m/z 228.0575.

5-chloro-l-(4-chlorophenyl)-lH-indole 32: white solid, 85 %,

mp 65.8-66.5; ’H NMR (400 MHz, CDCI3) 8 ppm 7.63 (d, J =

2.0 Hz, 1 H, H-C4) 7.44 - 7.52 (m, 2 H) 7.36 - 7.42 (m, 3 H)

7.29 (d, J= 3.3 Hz, 1 H, H-C2) 7.17 (dd, 7= 8.8, 2.0 Hz, 1 H, H- 
C1

C7) 6.62 (dd, 7= 3.2, 0.6 Hz, 1 H, H-C3); 13C NMR (101 MHz, 

CDCI3) 8 ppm 138.3, 134.6, 132.8, 130.8, 130.3, 129.4, 126.6, 125.9, 123.3, 121.0,

111.7, 104.0; m/z 262.0183; C14H10N Cl2 [MH]+ req. m/z 232.0185.

l-(4-bromophenyl)-lH-mdole 33: Pale yellow oil, 79 %; ’H NMR

■ N (400 MHz, CDCI3) 8 ppm 7.66 - 7.70 (m, 1 H, H-C7), 7.59 - 7.65 (m,

< ^ 2 H, H-C3’’5’), 7.51 (dd, 7= 8.1, 0.7 Hz, 1 H, H-C4), 7.34 - 7.39 (m, 2

H, H-C2’6), 7.27 (d, 7= 3.3 Hz, 1 H, H-C2), 7.14 - 7.26 (m, 2 H, H- 
br

C5’6), 6.68 (dd, 7= 3.3, 0.7 Hz, 1 H, H-C3); 13C NMR (101 MHz, CDC13) 8 138.8, 135.6,

132.7, 129.4, 127.6, 125.8, 122.6, 121.2, 120.6, 119.7, 110.2, 104.1; Found: 272.0071; 

C45H1iNBr [MH]+ req. m/z 272.069.
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Spectral data consistent with those reported in9

5-bromo-l-phenyl-lH-indole 34: Colourless oil, 83 %; 'H 

NMR (400 MHz, CDC13) 5 7.80 (d, 1.9 Hz, 1 H, H-C4) 7.25

- 7.54 (m, 8 H) 6.60 (d, /= 3.2 Hz, 1 H, H-C3); 13C NMR (101 

MHz, CDC13) 5 139.3, 134.5, 130.9, 129,7, 129.1, 126.8, 125.1,

124.3, 123.5, 113.5, 111.9, 102.9; Found: m/z 272.0065; C45H1 iNBr [MH]+ req. m/z

272.06.

Spectral data consistent with those reported in 9

5.7 General experimental for iminostilbene by Polyphosphoric acid 

cyclisation10 11

Polyphosphoric acid (1 mL per 100 mg aryl indole) was purged with argon and heated to 

100 °C for 30 min. The N-aryl indole was then added to the gently stining reaction 

mixture via a syringe and the reaction mixture left to stir at 110 °C (± 5 °C) for 36 to 72 

h, with monitoring of reaction progress by partition TLC. Once judged to have reached 

completion the reaction mixture was allowed to cool slowly to room temperature, then 

poured cautiously into an ice-cold, saturated, aqueous NaHC03 solution and vigorously 

stirred for 1 h. The crude product was extracted with dichloromethane (2x100 111L), the 

combined organic phases were washed with water, NaHCCb and brine. After 

concentration in vacuo, the combined crude material was purified by column 

chromatography using EtOAc/hexane 1:9.
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11 10 Iminostilbene 35: Compound 18 (2.712 g, 14.03 mmol) was

added portionwise to hot polyphosphoric as outlined above to 

yield the product as an orange solid after column chromatography 

1:9 EtOAc/Hexane, 1.810 g, 67 %; ‘H NMR (400 MHz, CDC13) 8 7.00 - 7.06 (m, 2 H) 

6.86 (dd, J = 7.5, 1.7 Hz, 2 H) 6.80 - 6.85 (m, 2 H) 6.50 (d, J= 7.9 Hz, 2 H) 6.31 (s, 2 

H) 4.94 (br. s., 1 H); 13C NMR (101 MHz, CDC13): 8 148.3, 132.1, 130.5, 129.7, 129.4, 

123.0, 119.3.

Compomid consistent with an authentic standard.

2-Fluoro-5i7-dibenz[^/]azepiiie 36: Compound 19 (2.018 g, 

9.56 mmol) was treated as above to yield 36 after purification by 

column chromatography 1:9 EtOAc/Hexane (0.810 g, 40.1 %); Treatment of 22 (1.144 

g, 5.42 mmol) yielded 36 as a yellow/orange solid after purification by column 

chromatography 1:9 EtOAc/Hexane (0.534 g, 47 %); lH NMR (400 MHz, CDC13) 8

7.08 (dt, 1.9, 7.4 Hz, 1 H, H-C7), 6.95 - 6.86 (m, 2 H, H-C8’9), 6.76 (dt, J= 2.8, 8.3 

Hz, 1 H, H-C3), 6.62 (dd, 2.9, 9.2 Hz, 1 H, H-C1), 6.55 (dd, J= 0.4, 7.8 Hz, 1 H, H- 

C6), 6.49 (dd, J = 4.8, 8.6 Hz, 1 H, H-C4), 6.44 (d, A ofAB J = 11.8 Hz, 1 H, H-C10), 

6.30 (d, B of AB, J - 11.8 Hz, 1H, H-C11) and 4.94 (br s, 1 H, HN5); 13C NMR (100 

MHz, CDC13) 5 240.2 (d, lJCF = 240.2 Hz), 148.8, 144.5 (d, VCf = 2.3 Hz), 133.8, 131.9 

(d, 1/Cf=7.6), 131.2 (d, 4/Cf = 1.7), 130.9, 130.1, 129.9, 123.6, 120.6 (d, 3JCf= 8.2 Hz), 

119.7, 116.7 (d, VCf= 22,8 Hz) and 115.8 (d, 2JCf = 22.5 Hz); 19F NMR (376 MHz, 

CDC13) 5 = -122,78; Found: C, 79.73; H, 4.81; N, 6.60; C14H10FN requires C, 79.60; H 

4.77; N, 6.63 %; Found: m/z, 212.0879; CmHuFN [MH]+ requires nVz, 212.0876.
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Spectral data consistent with those reported in 12

1-Fluoro-5//-dibenz[£>,/| azepine 37: Prepared by the general 

method outlined using compound 21 (1.012 g, 4.77 mmol). The 

product was isolated as orange/yellow solid (0.245 g, 24 %) after 

column chromatography 1:9 EtOAc hexane; when starting from 20 (1.219 g, 5.59 

mmol), the product was formed as a mixture with 38 and was separated by gradient 

elution with hexane —» 1:4 EtOAc/hexane with a 1:50 product to silica ratio, to yield the 

product as a yellow solid, 0.223 g, 18 %; NMR (400 MHz, CDC13) 5 7.03 - 7.10 (m, 

1 H, H-C6), 6.98 (td, J= 8.1, 6.1 Hz, 1 H, H-C4), 6.84 - 6.93 (m, 2 H, H-C3’9), 6.48 - 

6.60 (m, 3 H, H-C5’6’7 ), 6.43 (d, J= 1.0 Hz, 1 H, H-C8), 6.31 (d,J= 7.4 Hz, 1 H, H-C2) 

and 5.03 (br s, 1 H, HN5); 13C NMR (101 MHz, CDC13) 8 160.7 (d, ^cf = 248.4 Hz), 

151.0 (d, 3JCf= 5.4 Hz), 148.0, 133.1 (d, 4JCf= 1.5 Hz), 130.6, 130.1 (d, 3/Cf= 10.7 Hz), 

129.8, 129.6, 123.7 (d, 3JCf= 8.4 Hz), 123.4, 119.6, 118.0 (d, 2JCf= 14.6 Hz), 114.8 (d, 

4Jcf= 2.7 Hz) 109.7 (d, 2JCf= 23.0 Hz); I9F NMR (376 MHz, CDC13) 8 -116.99; Found: 

m/z, 211.0807; ChHiqFN [M+] requires m/z, 211.0797. Combined yield with 38, 42%.

S-Fluoro-S/Z-dibenzl^/Jazepine 38: Compound 23 (1.311 g, 6.01 mmol) yielded the 

product as an orange oil after purification by column 

chromatography (1:9 EtO Ac/Hexane) 0.624 g, 48 %. Cyclisation
F H
of 20 by the method outlined yielded the product as a mixture with 37. Compound 38 

was separated by gradient elution with hexane —> 1:4 EtO Ac/hexane (1:50 silica to 

product ratio), 0.271 g (22 %); NMR (400 MHz, CDC13) 5 7.00 (ddt, 7=11.4, 7.9, 4.5, 

Hz, 1 H), 6.80 (d, 7=4.2 Hz, 2 H), 6.80 (dd, 7=8.4, 6.5 Hz, 1 H), 6.50 (td, J=8.3, 2.4 Hz, 

1 H), 6.50 (d, 7=7.8 Hz, 1 H), 6.20 (s, 2 H), 6.20 (dd, 7=9.7, 2.5 Hz, 1 H) and 4.9 (br s, 1
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H);13C NMR (101 MHz, CDC13) 5 163.9 (d, 1JCf= 247.7 Hz), 150.0 (d, VCf= 9.2 Hz), 

147.3, 131.8 (d, 3TCf = 9.6 Hz), 131.2, 131.1, 130.5, 129.6, 129.5, 125.8 (d, 4JCf = 3.5 

Hz), 123.4, 119.3, 109.3 (d, 2JC?= 21.1 Hz) and 106.5 (d, 2JCf= 24.5 Hz); 19FNMR(376 

MHz, CDCI3) 6 ppm -114.32; Found: m/z, 211.0793; C14H10FN [M+] requires m/z, 

211.0797. The combined yield with 37, when starting from 20, was 40%.

Spectral data consistent with those reported in 13

/=\ IjS-Difluoro-SEr-dibenzJ^^/lazepme 39: Cyclisation of

FYi TVF compound 24 (1.214 g, 5.34 mmol) yielded the product as an 
H

orange solid after column chromatography (1:9 EtOAc/hexane); 0.797 g, 66 %; 'H NMR 

(400 MHz, CDCI3) 6 6.77 (ddd, /= 8.5, 8.0, 2.9 Hz, 2 H, H-C3’7), 6.63 (dd, J= 9.1, 2.9 

Hz, 2 H, H-C1*9), 6.49 (dd, 8.6, 4.8 Hz, 2 H, H-C4’6), 6.38 (s, 2 H, H-C10*1) and 4.86 

(hr s, 1 H, HN5); 13C NMR (400 MHz, CDC13) 5 159.2 (d, Vcf = 240.8 Hz), 144.2 (d, 

Vcf = 2.4 Hz) 132.1 (d, 4JCf = 1.9 Hz), 131.2 (d, VCf = 7.7 Hz), 120.3 (d, 2Tcf = 8.1 Hz), 

116.4 (d, Vcf = 22.9 Hz) and 115.8 (d, 2JCf = 22.5 Hz); 19F NMR (376 MHz, CDC13) 5 

-122.31; Found: C, 73.25; H, 3.9; N, 6.0; C14H9F2N requires C, 73.40; H, 3.9; N, 6.1%; 

Found: m/z, 230.0779; C14H10F2N [MH]+ requires m/z, 230.0781.

Spectral data are consistent with those reported in 12

2,7-Difluoro-9-methyIacridine: Isolated as a by-product from 

the preparation of 39; yield variable, as demonstrated in chapter 

2; lR NMR (400 MHz, CDC13) 8 8.21 (dd,J= 5.7, 9.7 Hz, 2 H, 

H-C4’5), 7.76 (dd, /= 2.8, 10.6 Hz, 2 H H-C1*8), 7.56 (ddd, /= 9.6, 7.3, 2.7 Hz, 2 H, H- 

C3’6) and 2.98 (s, 3 H, CFb); 13C NMR (101 MHz, CDC13) 8 = 160.1 (d, ^cf = 257.6
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Hz), 145.4, 140.5, 133.2 (d, 3/Cf = 8.4 Hz), 125.9 (d, 3/Cf =10.0 Hz), 121.3 (d, 2JCf = 

28.4 Hz), 106.5 (d, Vcf = 23.0 Hz) and 14.1; 19F NMR (376 MHz, CDC13) 5 = -111.72; 

Found: m/z, 230.0777; C14H10F2N [MH]+ requires m/z, 230.0781.

Spectral data consistent with those reported in 12

l^-Difluoro-S/T-dibenzl^t/lazepiiie 40: Cyclisation of 25 (1.008

\\ II ^ g> 4.4 mmol) yielded the product as a mixture with 41 and yielded, 
•N'
H P after isolation by column chromatography with 1:9 EtOAc/Hexane 

(1:50 silica to product ratio), 40 (0.166 g, 16 %) together with 41 (35%, v. i.); JH NMR 

(400 MHz, CDCI3) 5 6.98 (td, /=8.1, 6.1 Hz, 1 H) 6.82 (dd, .7=8.4, 6.4 Hz, 1 H) 6.52 - 

6.62 (m, 2 H) 6.48 (d, 7=1.0 Hz, 1 H) 6.34 (d, 7=1.0 Hz, 1 H) 6.21 - 6.29 (m, 2 H) and 

5.01 (br s, 1 H); ,3C NMR (100 MHz, CDC13) 8164.0 (d, 1JCf = 248.7 Hz), 160.60 (d, 

17cf = 248.4), 149.9 (d, 47cF = 5.2 Hz), 149.6 (d, 37Cf= 9.1 Hz), 132.11 (s), 131.9 (d, 3JCF 

= 9.7 Hz), 130.2 (d, 37cf = 10.8 Hz), 125.8 (d, 4JCf = 3.3 Hz), 122.8 (d, 37cf = 8.2 Hz), 

122.8 (d, 37cf = 8.8 Hz), 118.0 (d, 27Cf = 14.7 Hz), 114.8 (d, VCf = 2.8 Hz), 110.1 (d, 

27cf = 23.1 Hz), 109.9 (d, 27cf = 21.2 Hz) and 106.9 (d, 27cf = 24.0 Hz); l9F NMR (376 

MHz, CDCI3) 5 ppm -113.87, -116.84; Found: C, 73.25; H, 3.9; N, 6.0; C14H9F2N 

requires C, 73.40; H, 3.9; N, 6.1%; Found: m/z, 229.0709; ChH^N [M+] requires m/z, 

229.0703.

.3,7-Difluoro-5T/-dibenz[/>*/] azepine 41: Cyclisation of 25 

(1.008 g, 4.4 mmol) yielded the product as a mixture with 40; 

after isolation by column chromatography (1:9 EtO Ac/Hexane with a 1:50 silica to 

product ratio), there was obtained 41 (0.351 g (35 %); ]H NMR (400 MHz, CDC13) 5
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6.77 (dd, J=8.4, 6.4 Hz, 2 H, H-C2’8), 6.53 (dd, /=8.9, 2.5 Hz, 2 H, H-C19), 6,21 (dd, 

7=9.7, 2.5 Hz, 2 H, H-C4’6), 6.16 (s, 2 H, H-Ci0’n) and 4.89 (br s, 1 H, HN5); 13C NMR 

(101 MHz, CDC13) 3 163.9 (d, 248.1 Hz), 152.2 (d, VCf = 3.0 Hz), 149.0 (d, 3JCf

= 10.0 Hz), 131.8 (d, Vcf = 9.6 Hz), 130.2 (s), 109.7 (d, 2JCf = 21.1 Hz) and 106.7 (d, 

27cf = 24.2 Hz); 19F NMR (376 MHz, CDC13) 5 = -114.06; Found: C, 73.30; H, 3.8; N, 

5.95; C14H9F2N requires C, 73.40; H, 3.9; N, 6.1%; combined yield with 25, 51%.

2-methoxy-5//-dibenz[^/]azepine 42: Cyclisation of 26

(2.514 g, 11.25 mmol) yielded 42 as a dark orange solid after 
H

column chromatography in 2:7 EtOAc/Hexane, 0.618 g, 25 %. Cyclisation of 27 also

yielded 42 as a dark orange solid after column chromatography, 0.420, 37 %;

lB. NMR (CDCI3,400 MHz) 5 7.05 (t, 7= 7.5 Hz, 1 H), 6.83 - 6.94 (m, 1 H), 6.62 (dd, 

7=8.1, 1.8 Hz, 1 H), 6.41 (br. s., 4 H), 6.47 (br. s., 2 H), 4.87 (br. s., 1 H), 3.73 ppm (br. 

s, 3 H);

NMR (400 MHz, DMSO-76) 5 6.97 (t, 7= 7.2 Hz, 1 H, H-C7), 6.74 - 6.79 (m, 2 H, 

H-C1’3), 6.69 (t, 7= 7.2 Hz, 1 H, H-C8), 6.62 (d, 7= 7.6 Hz, 1 H, H-C4), 6.59 (d, 7= 2.6 

Hz, 1 H, H-C9), 6.41 (d, 7= 2.1 Hz, 1 H, H-C6), 6.18 (d, A of AB, 7=11.5 Hz, 1 H, H- 

C10), 6.13 (d, B ofAB, 7=12.1 Hz, 1H, H-C11), NH unobserved, 3.63 (s, 3 H, OCH3); 13C 

NMR (DMSO-d6,101MHz): 5 = 154.7, 150.3, 142.4, 134.1, 132.7, 131.6, 130.4, 129.5, 

128.9, 121.6, 120.0, 118.9, 115.3, 114.4, 55.1 ppm; (CI+, m/z) 224 (100), 225.4 (17) 

[MH]+.

[ii NMR spectrum in CDCI3 consistent with that reported in2
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S-methoxy-S/Z-dibenzlfr/l azepine 43: Cyclisation of 28 

(1.984, 8.89 mmol) yielded the product as a pale yellow sold 

after column chromatograpy in 2:7 EtOAc/Hexane 0.430 g, 22 %; NMR (400 MHz, 

CDC13): 5 7.00 (ddd, J= 7.8, 6.1, 2.8 Hz, 1 H, H-C1), 6.79 - 6.85 (m, 2 H H-C7iS), 6.76 

(d, J= 8.4 Hz, 1 H, H-C9), 6.47 (d, J= 7.6 Hz, 1 H, H-C6), 6.36 (dd, 8.4, 2.4 Hz, 1 

H, H-C2), 6.24 QAofAB, J= 11.9 Hz, 1 H, H-C10), 6.17 (d, B ofAB, J- 11.5 Hz, 1 H, 

H-C11), 6.06 (d, J = 2.4 Hz, 1 H, H-C4), 4.91 (hr. s., 1 H, H-N5), 3.75 ppm (s, 3 H, 

CH3O); 13CNMR(101 MHz, CDCI3) 5 161.2, 152.9, 149.6, 147.5, 131.7, 130.3, 129.9, 

129.6, 129.1, 123.0, 119.2, 107.4, 105.6, 103.3, 55.3 ppm; (CI+, m/z) 224 (100), 225.4 

(17) [MH]+

Spectral data consistent with those reported in 14

5.8 Incorporation of the carbamoyl functional group.

General Reaction Procedure for Trichloroacetyl Isocyanates: Iminostilbene

analogues (12.50 mmol) were dissolved in toluene (25 mL) and trichloroacetyl 

isocyanate (15.00 mmol) added portion wise via syringe below the solvent level. The 

solution turned from yellow/orange to colourless within minutes and precipitation of a 

white solid (the product) is observed within an hour. The reaction is left for 24 hours 

with gentle stirring to allow precipitation to occur. If no precipitation occurs after 24 

hours a small quantity of hexane may be added to the reaction mixture to encourage 

precipitation. The product is then isolated by vacuum filtration, and the filter cake 

washed with ice cold water (2x15 mL) and left to dry.
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Note; obtaining good lH and I3C NMRs for these compounds is not trivial the 

compound is very unstable in solution and hydrolysis to carbamazepine and 

iminostilbene mixtures can be observed; by transformation of a colourless solution to 

yellow and within the NMR itself Samples must be run immediately if significant 

quantities of the product are to be observed by lH and BC NMR.

N-(2,2,2-trichloroacetyl)-5H-dibenzo[6/|azepme-5-carboxamide 

35a: White powder, 89 %; NMR (400 MHz, DMSO-tf6) 5 10.85 

(hr. s, 1 H, N-H) 7.06 - 7.21 (m, 4 H) 6.88 - 6.98 (m, 2 H) 6.52 (d, 

/=8.4 Hz, 2 H) 6.05 (s, 2 H); 13C NMR (101 MHz, DMSO-d6) 5 

162.9, 148.4, 132.7, 132.2, 131.9, 131.1, 121.0, 113.6, 93.1; (ES+) m/z [MNa]+ 403 

(100), 405 (88), 407 (30); Found 402.9784, [MNaf CnHnNsC^Na^Ckreq 402.9784.

N-(2,2,2-trichloroacetyl)2,8-dibiomo-5H-dibenz|Z?i/l azepine-5-carboxamide 15a:

Br Br
white powder, 78 %; 'H NMR (400 MHz, DMSO-^) 5 ppm 

10.46 (br.s., 1 H, NH) 7.35 - 7.60 (m, 6 H) 7.08 (s, 2 H); 13C 

NMR (101 MHz, DMSO-d6) 5 162.9, 158.4, 150.3, 149.5, 

140.5, 138.2, 135.1, 133.8, 132.1, 130.4, 129.5, 129.3,

129.3, 127.1, 121.9, 119.1, 91.8; IR (cm’1) 3386.4 (m, NH), 3091.3, 3027.7 (w, CH 

(sp3)), 1778.1 (s, C=ONH), 1708.6 (m, CC13C=0), 1481.06 (s, NH); (Ef, m/z) 559(23), 

561(100), 563(90), 565(39), 566(10) [MNa]+; Found 558.8021, [MNaf

C17H9N20223Na79Br235Cl3 req 558.7994.

189



Experimental Methods and Techniques: Chemistry

General Reaction Procedure for Alkali Metal Isocyanates:

Iminostilbene analogues (200 pmol) were dissolved in toluene (2.5 mL) and NaNCO 

(240 pmol) added to the solution. Trifluoroacetic acid (240 pmol) was then added, the 

NaNCO-iminostilbene suspension becomes clear yellow and then colourless and 

precipitation of a white solid is observed after 30-60 minutes. The reaction was then left 

for 6-12 hours to allow completion of the precipitation and the product collected by 

vacuum filtration and the filter cake washed with ice-cold water (2 x 30 mL) yielding 

the product as a white solid.

All carbamazepine analogues were purified by the preparative HPLC method described 

in the general experimental to remove any trace impurities.. Compound purity of greater 

than 98 % is required for metabolite assays.

127.8 ppm.

Carbamazepine: lR NMR (400 MHz, CDC13): 5 7.26 - 7.50 (m, 8 

H), 6.95 (s, 2 H, H-C10’11), 4.53 (br. s., 2 H, HN); 13C NMR (101 

MHz, CDC13): 5 156.9, 140.0, 135.0, 130.4, 129.6, 129.5, 128.7,

NMR data consistent with an authentic sample.

2-Bromo-carbamazepme 44: Compound 14 (0.051 g, 

187.40 jimol) was treated according to the general method to 

yield the product as a white powder as a 1:1 mixture of 

isomers (determined by LC-MS), as discussed in chapter 2, 0.051 g, 89 %. The mixture 

was purified by the preparative HPLC method to remove most of the impurity, followed
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by separation by the analytical HPLC method outlined in the general experimental to 

remove the closely eluting impurity, yielding the final compomid as a white powder 

0.024 g. lU NMR (400 MHz, CDC13): 5 7.54 (dd, J= 8.3, 2.4 Hz, 1 H), 7.50 (d, J=2.2 

Hz, 1 H), 7.44 - 7.49 (m, 1 H), 7.33 - 7.40 (m, 1 H), 7.23 - 7.28 (m, 2 H), 7.12 - 7.21 (m, 

1 H), 6.97 (d, A ofAB, 7=11.4 Hz, 1 H), 6.95 (s, 1 H), 6.85 (d, B ofAB, 7=11.5 Hz, 1 

H), 4.46 (br. s., 2 H); 13C NMR (101 MHz, CDC13) 5157.8, 156.6, 139.8, 139.0, 136.7, 

134.8, 132.3, 132.1, 130.5, 129.9, 129.8, 128.5, 128.1, 121.3; IR (cm4) 3359 (NH 

stretch), 1671 (C=0 stretch), 1489 (NH2 5), 1469, 1400; MS (CI+, m/z) 315 (94), 317 

(100) [MH]+; Found 314.0058, Ci5H1179BrN20 req 314.0055

v—v 2,8- dibromo-carbamazepine 45: Compound 15 (0.080 g,

225.05 (imol) was reacted according to the general method 
H2n'^0 1° yield the product as a white solid after purification by

the preparative HPLC method outlined above, 0.076 g, 87 %; ^ NMR (400 MHz, 

CDCI3) 5 ppm 7.55 (dd, 7= 8.4, 2.2 Hz, 2 H, H-C3’7), 7.51 (d, 7= 2.3 Hz, 2 H, H-C1’9), 

7.32 (d, 7= 8.4 Hz, 2 H, H-C4’6), 6.87 (s, 2 H, H-C10’11), 4.58 (br. s., 2 H, NCONH2); 13C 

NMR (101 MHz, CDCI3): 5 156.3, 138.8, 136.5, 132.7, 132.4, 130.4, 130.3, 121.7; IR 

(cml) 3491, 3452 (NH stretch), 1682 (CO stretch), 1597, 1485, 1462, 1400; (ES+, 

m/z) 415 (51), 417 (100), 419 (49) [MNa]+; Found 414.9045, Ci5Hio23Na79Br2 N20 req 

414.9058.

Data consistent with those reported in 12
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2-chIoro-carbamazepine 46: Compound 16 (0.051, 223.99 

jLimol) was treated according to the general method to yield the 

product as a white powder after purification, 0.048 g, 79 %. ]H 

NMR (400 MHz, CDC13): 5 7.43 - 7.47 (m, 2 H), 7.30 - 7.42 (m, 5 H), 6.96 (d, A ofAB 

J=11.6 Hz, 1 H), 6.84 (d, B ofAB .7=11.5 Hz, 1 H), 4.66 ppm (hr. s., 2 H); 13C NMR 

(101 MHz, CDC13) 8 156.8, 142.4, 139.8, 138.5, 136.3, 134.8, 133.3, 131.4, 130.2, 

129.8, 129.8, 129.3, 129.1, 128.5, 128.1; IR 3475, 3421 (NH stretch), 1651 (CO 

stretch); 1562, 1485, 1408, 1088, 829, 795, 633; MS found 270.0563 C^Hn^CHSbO 

[M]+ req 270.0560

2,8-dichloro-carbamazepine 47: Compound 17 (0.052 g,

Cl 198.37 pmol) was treated according to the general method

outlined above to yield the product as a white powder after
H2N O

purification 0.055 g, 91 %, lR NMR (400 MHz. CDC13): 8 7.40 - 7.42 (d, <7=2.3 Hz, 2 H, 

H-C3’7), 7.36 (d, <7= 1.8 Hz, 2 H, H-C1’9), 7.26 (s, 2 H, H-C4’6), 6.89 (s, 2 H, H-C10’11), 

4.46 ppm (hr. s., 2 H, CONH2); 13C NMR (101MHz, CDC13) 8 156.3, 138.8, 136.5, 

132.7, 132.4, 130.3, 121.7; IR (cm'1) 3483 (amine stretch), 1689 (C=Q stretch), 1593,

1485, 1396, 787; MS (ES+, m/z) 327 (100), 329 (97), 331(25) [MNa]+; Found: 327.0056 

(100) Ci5HioN35Cl2 [MNa]+ req 327.0068

2-fhioro-carbamazepine 48: Compoimd 36 (0.038 mg, 179.90 

pmol) was treated according to the general method to yield the
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product as a white powder after purification. 0.035 mg, 78 %; 'll NMR (400 MHz, 

CDC13) 5 7.35 (dd, J=3.5, 1.4 Hz, 1 H, H-C7), 7.22 - 7.34 (m, 4 H), 7.01 (td, .7=8.3, 2.9 

Hz, 1 H), 6.93 (dd, /= 9.1, 2.8 Hz, 1 H), 6.84 - 6.88 (d, A ofAB, / 11.6 Hz, 1 H, H-C10), 

6.72 - 6.77 (d, B ofABJ= 1.6 Hz, 1 H, H-C11), 4.95 (br. s., 2 H, N5CONH2); 13C NMR 

(101 MHz, CDCI3) 8 ppm 161.46 (d, Vcf = 246.9 Hz), 157.39, 139.83, 137.83, 135.89 

(br. s.), 134.74, 130.39 (d, 3JCf = 8.1 Hz,), 129.81 (d, Vcf = 4.2 Hz), 128.99, 128.42 (br. 

s), 128.19, 128.04,125.2, 116.41 (d, Vcf = 22.6 Hz), 115.40 (d, VCF = 22.2 Hz); IR(cm 

l) 3345, 1674, 1581, 1493, 1396, 1211; MS found 254.0847, C15H11N2OF [M]+req 

254.0855

2,8- difluoro-carbamazepine 49: Compound 39 (0.047 g,

w 11 VFv 205.04 pmol) was treated according to the general method to

Ah2n yield the product as a white solid after purification, 0.042 g,

75 % ; !H NMR (400 MHz, CDC13) 8 7.40 (dd, J= 8.7, 5.2 Hz, 2 H, H-C’'), 7.08 - 7.143,7>

(m, 2 H, H-C1’9), 7.03 (dd, /= 9.0, 2.8 Hz, 2 H, H-C4’6), 6.86 (s, 2 H, H-C10’11), 4.98 (br. 

s., 2 H , NCONIL); 13C NMR (101 MHz, CDC13) 8 ppm 161.47 (d, VCf = 247.3 Hz), 

157.44, 137.80, 136.46 (d, J= 7.7 Hz), 135.95 (br. s.), 130.23 (d, J= 8.4 Hz), 128.96, 

128.15, 125.23, 116.70 (d, Vcf = 23.0 Hz) 115.61 (d, J= 22.6 Hz); IR (ciri1)3495 (NH 

stretch), 1693 (C=0 stretch), 1604, 1493, 1385, 1257, 879, 818, 795; MS found 

272.0764, Ci5H1oN2OF2 [M]+req 272.0761.
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Chapter 6

This chapter describes the experimental methods and techniques used by Dr. Sophie L 
Regan to isolate the rat hepatocytes and how the cells were incubated with the 
carbamazepine analogues.
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6. Experimental Methods and Techniques: Pharmacology

6.1 Animals
Male CD1 mice (20-40 g) and male Wistar rats (150-300 g) were obtained from Charles 

River Laboratories (Margate, Kent). Experiments undertaken were in accordance with the 

criteria outlined in a license granted under the Animals (Scientific Procedures) Act of 1986 

and approved by the Animal Ethics Committee of the University of Liverpool.

6.2 Hepatocyte isolation procedure used for metabolic 
characterisation
Hepatocytes were isolated from male Wistar rats (150-300 g) by a modified two-step 

collagenase perfusion method 1. The animal was anaesthetised with sodium pentobarbital (1 

pL/g). The abdomen was opened by a V-shaped transverse incision and the small intestines 

moved to the left to reveal the hepatic portal vein. A loose ligature was placed around the 

hepatic portal vein. The rib cage was opened up with incisions up either side of the rib cage 

to reveal the heart. The vein was cannulated with a 20G catheter. The catheter was secured in 

place with the already in place ligature and the heart removed. The perfusate (Ca2+ free) flow 

was then stalled at 40 mL/min. The liver was first perfused with Wash buffer (lOx Ca2+-free 

Hanks Balanced Salt Solution, 5.8 mM HEPES, 4.5 mM NaHC03) for 9 minutes. After 

perfusion with wash buffer, the liver was perfused with digestion buffer (wash buffer; 0.05 % 

collagenase (w/v), 0.0068 % trypsin inhibitor (w/v), 5 mM CaCL) the time of which was 

variable from animal to animal. When cracks began to appear throughout the liver lobes, it 

was an indication of digestion and perfusion was terminated. The liver was removed from 

the animal and initially rinsed with wash buffer, containing DNase (200 mL wash buffer, 20
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mg DNase I). The liver was then transferred to a Petri dish containing approximately 50 mL 

of Buffer C and cells were liberated from the connective vasculature tissue by gentle combing 

with sharp forceps. The cell suspension was filtered through nylon mesh (125 pm) to remove 

the vasculature, resulting in a mixture of both parenchymal and non parenchymal cells.

Further purification of the initial cell suspension was required. This was achieved through 

three centrifugation steps (50 g, 2 min). For the first stage, cells were washed in wash buffer 

(containing DNase I) and for the final two stages subsequent washes were in wash buffer 

before being resuspended in incubation buffer (wash buffer, 1 mM MgSO^TEhO) to be 

counted. Cell count and viability were assessed with a haemocytometer. Viability was 

assessed through trypan blue exclusion (20 pL: 100 pL cells) and only cells of a viability of 

>80 % were used for experiments.

6.3 Metabolic assessment of CBZ and haloarene derivatives in rat 
hepatocyte suspensions
Rat hepatocytes were incubated in suspension (2xl06 cells/mL, 6 ml total incubation volume) 

at 37 °C in an orbital incubator with CBZ and the haloarene analogues (0-1000 pM; MeOH, 1 

%) for 6 h. CBZ-2-Br (50 pM and 200 pM; ACN, 1%) CBZ-2-C1 were also incubated (50 

pM and 500 pM) in rat hepatocytes as a result of limited stock of the synthetic analogue. 

Following the 6 h incubation 6 mL of ACN was added to cells to terminate reaction and 

stored at -20 °C until analysis. After centrifugation (2200 rpm, 10 min) of samples, ACN in 

the supernatant was evaporated off under a steady stream of N2 at room temperature. The 

remaining supernatants were loaded onto Sep-Pak Cl 8 solid phase extraction cartridges 

(Waters Ltd, Herts, U.K.). Cartridges were then washed with 3 mL of distilled water and 

eluted with 3 mL MeOH. The MeOH fractions were evaporated to dryness under a steady 

stream of N2 at room temperature. Samples were then reconstituted in MeOH: dH20 (50:50,
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250 jitL: 250 pL). Aliquots (50 pL) of the reconstituted samples were injected onto HPLC and 

LC/MS systems.

Hepatocyte suspension metabolites were resolved on a Gemini NX 5-j.im CMS 110 A column 

(250 x 4.60 mm; Phenomenex, Macclesfield, Cheshire, U.K.) on a gradient of ACN (15 % for 

5 min, increasing to 50 % from 5 to 25 min, and horn there a further increase to 75 % over 15 

min) in ammonium acetate (10 mM; pH 3.8). The gradient was delivered with a Dionex 

Summit HPLC System at a flow rate of 1 mL/min through a UVD 170S UV detector set at 

254 run (Dionex). Authentic standards of CBZ, and CBZE were used additionally to identify 

metabolites.

6.4 LC/MS for metabolite identification.
The 50-pM incubations - the only ones that contained all of the drug metabolites that were 

identified - were taken for metabolite identification by LC/MS. This concentration falls 

within the therapeutic range of CBZ (17-51 pM). The LC/MS system consisted of a 

PerkinElmer series 200 pump and autosampler (Norwalk, CT) connected to an API 2000 

mass spectrometer (AB Sciex, Foster City, CA) equipped with a TurboIonSpray electrospray 

ionization source. Separation of parent compounds and their metabolites was achieved at 

room temperature on a Gemini-NX 110 A CIS column (5 pm, 4.6 x 250 mm; Phenomenex, 

Macclesfield, Cheshire, U.K.) using solvent A (10 mM ammonium acetate, pH 3.8) and 

solvent B (acetonitrile). At a flow rate of 1.0 mL/min, the initial eluent composition (15 % 

solvent B) was held constant for 5 min followed by an increase to 50 % solvent B over 15 

min and a further increase to 75 % over 15 min. The eluent composition was returned to its 

initial proportions over 3 min and finally held for a 2-min re-equilibration period. The 

column eluate was split, and approximately 15 % was routed to the LC/MS interface. The 

mass spectrometer was set for full scanning (m/z 100-1000; 5 s) and was operated in positive-
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ion mode. The source temperature was 400 °C; electrospray capillary voltage, 5.0 kY; 

desolvation potential, 60 V; source gas, 15 (arbitraiy unit); and heater gas, 75 (arbitrary unit). 

The mass spectrometry data were acquired and analyzed using Analyst software version 1.4 

(AB Sciex). Metabolites of CBZ and its derivatives were identified preliminarily by 

comparing total and extracted ion chromatograms of control (substrate free) and test 

hepatocyte incubations. They were subsequently characterised from their diagnostic in-source 

fragmentation.
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