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Abstract

The pervading theme of this thesis is the development of insights that
contribute to the understanding of whether certain classes of functional dif-
ferential equation have solutions that are all oscillatory.

The starting point for the work is the analysis of simple (linear au-
tonomous) ordinary differential equations where existing results allow a full
explanation of the phenomena. The Laplace transform features as a key tool
in developing a theoretical background.

The thesis goes on to explore the corresponding theory for delay equa-
tions, advanced equations and functional differential equations of mixed type.
The focus is on understanding the links between the characteristic roots of
the underlying equation, and the presence or otherwise of oscillatory solu-
tions.

The linear ¥—methods are used as a class of numerical schemes which lead
to discrete problems analogous to each of the classes of functional differential
equation under consideration. The thesis goes on to discuss the insights that
can be obtained for discrete problems in their own right, and then considers
those new insights that can be obtained about the underlying continuous
problem from analysis of the oscillatory behaviour of the analogous discrete
problem.

The main conclusions of the work are some semi-automated computa-
tional approaches (based upon the Principle of the Argument) which allow
the prediction of oscillatory solutions to be made. Examples of the effec-
tiveness of the approach are provided, and there is some discussion of its
theoretical basis. The thesis concludes with some observations about further
work and some of the limitations of existing analytical insights which restrict
the reliability with which the approach developed can be applied to wider
classes of problem.
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Chapter 1

Introduction

In this chapter, we introduce definitions and equations that will be used
or referred to later in the thesis; we also introduce various mathematical
concepts and varieties of differential equation.

1.1 Ordinary Differential Equations

1.1.1 First order ordinary differential equations

We suppose that y(t) € R™ for some n € N (scalar equations arise when
n = 1); we have ¢ € R (typically, ¢ € [ty,00) for some ty). An ordinary
differential equation of first order is an equation of the form

Y1) = f(Ly(t), t>to (1.1.1)

with a given function f (f(¢,v) € R" being continuous when ¢ > g, for
bounded v € R™). A function y with absolutely continuous components is
called a solution of this equation for ¢ > ¢y if it satisfies the differential
equation (1.1.1) for almost all ¢ > #. In particular, and throughout our
discussion here, y is a solution if it is differentiable for all ¢ > ¢, and satisfies
(1.1.1) for all t > t5. The derivative y'(to) is (by definition) the right-hand
derivative, since it is taken at the left-hand point £y. A particular solution is
determined only when an initial value

y(to) = vo (1.1.2)

is prescribed. {(Uniqueness of a solution follows from, e,g., a Lipschitz condi-
tion on f.) The equation (1.1.1) together with the initial condition (1.1.2) is
known as a initial-value problem. Notice that in the case where y is a scalar
function, the need for a single initial condition corresponds to the problem
being 1—dimensional; the general case is n-dimensional.

8



Remark 1.1.1 We shall use the term ‘scalar’ to refer to either a real or
a complex value. We remark that systems of complez-valued equations may
arise and be represented in the form (1.1.1) with a vector-valued function
y : [to,00) = C™. f: [tg,00) x C" — C".

1.1.2 First-order linear homogeneous and autonomous
equations

We recall some well-known material. In this thesis, we shall refer several
times to one of the most basic first order ordinary differential equations.

Definition 1.1.1 The basic equation

y'(t) = ay(t), ¢t > to, (1.1.3)

with initial condition y(to) = yo s a homogeneous first-order linear scalar
differential equation where a is a constant scalar parameter (we toke a € R
unless indicated otherwise), y is the solution (a scalar-valued function of the
real variable t) and ' (t) is the value of its derivative.

Remark 1.1.2 (o) Each different value of the parameter ‘a’gives a different
differential equation. The differential equation (1.1.8) is a relationship be-
tween the value of a function of time y(t) and the value of its derivative y'(t).
It is the simplest and one of the most fundamental differential equations and
can be used as an initial point of reference in this work. (b) There exist a
number of directions in which (1.1.3) can be generalised: first, a € R may be
changed so that we consider complez-valued a (and complez-valued y); sec-
ondly, we may replace a by a matriz A € R™"™ (and vector-valued y, with
y(t) € R™) so that the equation reads y'(t) = Ay(t). See Remark 1.1.7 and
Ezxample 1.1.3. (The generalisation from A € R™ ™ to the case A € C**"
is straightforward; some of the insight for the first case relies on the second
case where A is in Jordan canonical form.) Later, we shall consider delay-
(or retarded-) differential equations which generalise (1.1.3) further.

Lemma 1.1.1 The solution of the initial value problem
y'(t) = Ay(t), (t>to) where A= [a;;] € R™™ (1.1.4)

y(to) = yo € R” (1.1.5)
is y(¢) = explA(t — to)ly(to) (t = to).
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The reader who seeks a proof of this result can obtain one most simply by
verification. If A = XJX ! is the Jordan canonical form where X, J € C**"
(with det X # 0) then y(t) = X exp[J(t — 1o)]X *y(to) and the qualitative
behaviour of y can be discussed in terms of the structure of J € C™" (see
Remark 1.1.1). The salient features of J are its eigenvalues (these are in
general complex) and their multiplicities.

Definition 1.1.2 The characteristic function for y'(t) = Ay(t), where A =
la;;] € R™™ (andn > 1 is a natural number) is the characteristic polynomial
of A:

X(A) == det{\] — A} where I is the identity matriz. (1.1.6)

Its zeros {\g} C C are termed eigenvalues or characteristic values both of A
and of (1.1.4).

Given any constant multiple of x, say X(A\) = xx(A\) (with k # 0), the
equation X(A\) = 0 will be called an auziliary equation and its roots are the
zeros of x. Suppose that Ay is a characteristic value; then all multiples of
exp(Agt) satisfy y'(t) = Ay(t), and there may also be solutions py(t) exp(Agt)
where pe(t) is an appropriate polynomial. Any solution of this form is called
a characteristic solution corresponding to ;.

Later, we shall amend, in a natural manner, the definitions of character-
istic function, characteristic value, and characteristic solution to cover other
types of linear homogeneous and autonomous differential equation.

Example 1.1.1 det{A — AI'} = 0 is an auwziliary equation for (1.1.4).

Lemma 1.1.2 If x(A;) = 0 and ¢ is the complex conjugate of Mg then
x(Ae) =0 (with A € R™").

As a special case of Lemma 1.1.1, one can show very simply that the
general form of solution to equation (1.1.3) is y(t) = ke®. This observation
leads us to the following result on solution behaviour. The function

y(t) = ke (1.1.7)

is a solution of the equation (1.1.3) where k is a scalar whose value is deter-
mined by y(to) (that is, & = y(to) exp(—aty)). For the case a = 0, k = y{to),
the constant solution (y(¢) = y(¢e)), is called an equilibrium solution or equi-
librium point for the equation (1.1.3). For a € R and a # 0, the sign of a is
crucial, as the behaviour of solutions is quite different according to whether
a is positive or negative. The qualitative behaviour is given in the following
self-evident lemma.
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Lemma 1.1.3 Let y(t) be given by (1.1.7). Then, (1.) if a > 0, y(t) — oo
as t — oo when k > 0, and y(t) — —oo0 as t — —oo0 when k < 0; (2.) if
a=0, y(t) = y(to), a constant; (3.) if a <0, y(t) = 0 as t = co.

Remark 1.1.3 The above qualitative behaviour can be illustrated by sketch-
ing the graphs of solutions (see [78]). In this case the solutions of the equa-
tton (1.1.3) have no oscillatory behaviour — just exponential growth or decay.
One might gather from Remark 1.1.2 that we shall need to generalise the
case a € R to obtain oscillatory behaviour. Suitable generalisations arise
both from considering systems of ordinary differential equations and from
considering differential equations with deviating arguments, such as delay-
differential equations.

For its bearing on delay-differential equations later, we include the fol-
lowing result which can be established by verification.

Lemma 1.1.4 The solution of the inhomogeneous equation y'(t) = ay(t) +
g(t) for t € [t,,00) (where a € R, g € C[ly,00)) that satisfies the initial
condition y(t.) = yy is y(t) = exp{a(t — t.) by + f:* exp{a(t — s)}g(s)ds.

Further remarks on ordinary differential equations

Differential equations arise naturally in many areas of science and the hu-
manities such as biology, physics, chemistry, economics etc. Its applications
are diverse. Nowadays, researchers are using differential equations to solve,
or try to solve, real life problems such as the diagnosis of diabetes, the spread
of gonorrhea and the detection of art forgeries etc. (see [30]).

Remark 1.1.4 The equation (1.1.1) can be written as an integral equation
by integrating both sides with respect to t. Thus for t > g,

o) = vleo) + | " Fs,y(s))ds (1.18)

which is a special case of a Volterra integral equation in the classical form

t
y(t)=g(t)+ [ K(t,s,y(s))ds (t > to). (1.1.9)
to
This is a Volterra integral equation of the second kind. Also of interest are
Volterra integro-differential equations, e.g.,

i

y(t) =Gy, [ Kt s,y(s))ds).

to
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Remark 1.1.5 It is convenient in passing to refer to a different kind of
Volterra integral equation:

t
K(t,5,y(s))ds = g(t) (¢ > to). (1.1.10)
to
This is a Volterra integral equation of the first kind. The equation does not
have a solution for arbitrary g € Clto,00). Indeed, the simplest example,
ftf) y(s)ds = g(t) (for t > to) has a solution only when g(ty) = 0 and ¢'(t)
erists for t > to (the solution is then ¢'(t)). This is sufficient to demonstrate
that the example is ill-posed in the sense of Hadamard (see [110/). We shall
encounter differential equations with deviating arguments that are ill-posed
in this sense.

1.1.3 Second order scalar ordinary differential equa-
tions

In this subsection, we meet some of the simplest differential equations with
real coefficients whose solutions may oscillate, namely second-order autonomous
homogeneous, linear, and scalar ordinary differential equations.

Definition 1.1.3 (Oscillatory and non-oscillatory real functions) Let
To C [to, 00) be a set of real numbers with no finite upper bound. A real-valued
Junction u of t € Ty is said to be oscillatory (or oscillatory about zero) if there
does not exists a value T' € [tg, 00) such that either

u(t) >0 fort € ToN[T,00) oru(t) <0 fort € ToN [T, c0). (1.1.11)

A function that is not oscillatory is called non-oscillatory: that is, there does
exists a value T' € [to, 00) such that either

u(t) >0 fort € ToN [T, 00) or u(t)y <0 fort € ToN [T, c0). (1.1.12)

A function is either oscillatory about a value k or non-oscillatory about
o value k if the function with values u(t) — k is respectively oscillatory or
non-oscillatory.

Some authors define oscillatory functions that are vector-valued by refer-
ence to some cone, say U C R"; see, for example, [89]. On setting n = 1 it is
seen that a function that is oscillatory about zero, in our sense, is oscillatory
in this sense. Our definition above suffices for a real-valued function defined
for t € {to < t1,< ta, < t3,--- } as well as for a real-valued function defined
on [tg, 00). For future use we add the following definition.
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Definition 1.1.4 Any infinite scalar sequence {ug, Uy, Uz, - - }, is called os-
cillatory if, for arbitrary To = {to < t1,< tg,- -}, the function u defined by
w(te) = up for £=0,1,2,--- is oscillatory

Remark 1.1.6 Concerning notation, there are various traditions in differ-
ing branches of mathematics and we shall clarify our various conventions.
In some areas, a vector-valued sequence {ug, U1, U, -} (With U, € R™ for
m € {0,1,2,---}) is denoted by u. In other areas the convention is to index
using the natural numbers (as in v = {vy,vq, v, - -+ } ) or to use integer argu-
ments (as in {u(0),u(l),u(2),- -} and in {v(1),v(2),v(3),---}). Regarding
u, this latter convention is compatible with that employed in Definition 1.1.4
when we set t,, = m. From the point of view of our analysis (though not
necessarily that of interpretation), our choice of To = {to < t1, < ta,- -+ } will
be in general immaterial. Thus, the symbol u will denote either the sequence
{uo, 1, us, -+ } or the function defined on Ty with indezing {0,1,2,---} (or
the equivalents with indezing {1,2,3,---}), as we see fit.

Example 1.1.2 By definition, the null function u € [tg,00) — R with
u(t) = 0 is called oscillatory about zero. The function u € [tg,00) — R
with u(t) = tFsin(nrt) (where k and v # 0 are integer) is oscillatory about
zero, as is the function with u(t) = exp{vt}sin(nst) for v € R, s € N.

A real differential equation of second order for y(¢) is an equation of the
form

y"(t) = ft,y(t),y () for all £ > o, (1.1.13)

with a given real continuous function f (where f(¢,u,v) is continuous for
t > to, u,v € R); a function y with a second derivative is a solution of this
equation if it satisfies the differential equation (1.1.13) for all ¢ > t,. A
particular solution is determined only when initial values

’y(to) =1 € R, y’(to) = y() € R, (1114)

are given. The equation (1.1.13) together with the initial conditions (1.1.14)
is known as an initial value problem for a second-order ordinary differential
equation.

Remark 1.1.7 An n-th order ordinary differential equation can be rewritten
as a system of first-order differential equations (equivalently, as a first-order
differential equation for a vector-valued solution with n components). In a
similar vein, a first-order differential equation for a complez-valued function
may be written as a coupled pair of ordinary differential equations for a real
vector-valued solution.
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Example 1.1.3 (a) If we write u(t) = [u1(t), ua(t)]T = [y(t),y' ()] then we
can recast (1.1.13) (wherein all the functions are assumed to be real-valued)
in the form

vt = [ it ] - [ o (e ] (t= o), (1-1.15)

which is clearly (given a change of notation) of the form (1.1.1) with n = 2.

(b) Consider w'(t) = g(¢t, w(t)) (fort > ty) where w and g(t,w(t) assume
complex values. Write w(t) = wi(t) +iws(t), and g(t, w(t)) = g1(t, wy (L),
wa(t))+ i92(t, wi(t), we(t)) where wy, wq, g1, and g, are real-valued functions;

then
wg (t) _ 1(t, wl(t), wz(t))
[’w’z(t) } B [jg(t, w1 (1), wal)) J (t > to) (1.1.16)

which is again (given a change of notation) of the form (1.1.1) with n = 2.

Definition 1.1.5 For a # 0 where a, b, ¢ are real constant parameters, the
equation
ay"(t) +by'(t) + cy(t) = 0 (1.1.17)

with initial conditions y(to) = yo, ¥ (to) = g, t > Lo is called a homogeneous
second-order linear scalar differential equation. Here, y(t) is an unknown
real function of a real variable t and y'(t) and y”’(t) are its derivatives. FEach
set of parameter values (a, b, ¢) yields a different differential equation. Note
that the specific solution depends on the specification of two initial conditions
and the dynamical system has dimension two.

We can rewrite (1.1.17) as ¢"(t) = —(b/a)y'(t) — (c/a)y(t)). Following
on from Example 1.1.3 we obtain, with the notation (u(t) = [y(t), v (¢)]T) of
that example,

[ 2'383 ] =4 [ Z;Eg } wherein A = { _S/a _;/a } . (11s)

The remarks for (1.1.4) now apply. Indeed, the equation equation
al? + b +c = 0. (1.1.19)

is an auxiliary equation for (1.1.17) and its solutions A1, Ae are the associ-
ated characteristic values or eigenvalues — the eigenvalues of the matrix A in
(1.1.18).
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Lemma 1.1.5 Suppose thata # 0, b, and ¢ are real numbers, and let \;, Ay €
C be the roots of (1.1.19). (a) If A1, A2 are distinct then for any ky, ky € C
the (real- or complex-valued) functions

y(t) = ky exp(Ait) + ko exp(Aqt) (1.1.20)
satisfy (1.1.17), Further, (b) if Ay = Ag then for any k1o the functions
y(t) = kyexp(Ait) + kot exp(Ait) (1.1.21)

satisfy (1.1.17). (c¢) If M, \a € R then these functions are real-valued so-
lutions when ki, ke € R; if A, s & R then these functions are real-valued
solutions for suitable ki, ko € C. (d) In all cases, k1 and ko are uniquely
determined by y(to) and y'(to) and the functions (1.1.20)—(1.1.21) are real-
valued solutions for y(ty),y' (to) € R. Indeed, with \; = a +1if8, g = a — if8
(@, €R and i =+/—1), (1.1.20) can be rewritten in the real form

y(t) = {c1 cos(Bt) + cosin(Bt)} exp(at), ci12 € R. (1.1.22)
(e) All solutions of (1.1.17) have one of the forms in (1.1.20) - (1.1.22).

Lemma, 1.1.5 can be established by verification, with (e) a consequence of
the fact that k19 or ¢ are determined by y(to) and y'(¢). It is also possible
to employ Laplace transform theory. If the values of ;o are (both) real
then the behaviour of solutions is quite different depending whether each A
is positive or negative. The following trivial lemma echoes Lemma 1.1.3 and
gives the qualitative behaviour.

Lemma 1.1.6 Suppose A € {A1, A2} and y(t) = kexp(Mt) € R. Then, (1)
if A >0, |y(t)] = oo ast — oo. (2) If A =0 and y(t) = kexp(\t) then,
clearly, y(t) is constant' for allt. (3) If X <0, y(t) — 0 as t — oo.

Obviously none of the solutions of (1.1.17) oscillate if A; and A, are real
and all of the solutions of (1.1.17) oscillate if A; and Ay have non-zero imag-
inary part. We should note (since all linear homogeneous equations have
the zero function as a solution) that, according to our definition (Definition
1.1.3), the zero solution is oscillatory. Now we are in a position to state for
the first time what we will mean by an oscillatory equation.

Definition 1.1.6 A scalar differential equation is said to be an oscillatory
equation if and only if all the solutions of the equation are oscillatory func-
tions in the sense of Definition 1.1.8.

1A constant solution y(t) = 0 is called an equilibrium solution or equilibrium point for
the equation (1.1.17).
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From the preceding discussion we obtain the next lemma:

Lemma 1.1.7 The equation (1.1.17) is an oscillatory equation if and only
if the characteristic values Ay and Ay are complex with non-zero imaginary
part.

Remark 1.1.8 Second-order differential equations arise quite often in ap-
plications in science and engineering. The equation (1.1.17) is sometimes
known as an equation of a damped harmonic oscillator (see [78]).

Some of the most important examples of second-order differential equa-
tions are derived from Newton’s second law of motion

my"(t) = F(t,y(t),y' () (t = to) (1.1.23)

which describes the motion of a particle of mass m moving under the influence
of a force F'. In this equation y(t)} is its position at time t, y'(t) is its velocity,
and F' is the total force acting on the particle. F' depends on the position,
velocity and time (see [30], [78]). If we consider the non-homogeneous form
of the equation (1.1.17)

ay" () + by’ (t) + cy(t) = g(t) (1.1.24)

this is sometimes known as the equation for a harmonic oscillator where g(t)
1s an external force at time t.

1.2 First-order delay-differential equations

Here, we consider some first-order linear autonomous homogeneous scalar
delay-differential equations. Some of the main equations of interest in this
thesis will be differential equations deviating arguments, in particular those
with delayed arguments — ‘delay-differential equations’ (DDEs). The study
of DDEs has been undertaken since the eighteenth century to extend techno-
logical insight. Since the last century it has been developing rapidly. DDEs
arise in application such as control theory, biology, etc. The study of DDEs
is therefore often quite applications oriented.

We suppose that y(¢) € R™ for some natural number n (n = 1 is the scalar
case). A delay-differential equation of first order for y(¢) is an equation of
the form

y'(t) = f(ty(®),y(t — 1)) (1.2.1)

with 7 > 0, and a function f that is a real-valued continuous function having
values f(t,u,v) for t > g, and (say) bounded u,v € R™.
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In analysis, an absolutely-continuous function y(t) is called a solution of
this equation for all ¢ > ¢y if it satisfies the differential equation (1.2.1) for
almost all ¢ > ty. In the cases we consider, solutions are differentiable and
satisfy (1.2.1) for all t > to. For definiteness the derivative at &y is the right-
hand derivative. A particular solution is determined only when the initial
function ¢ € C[to — 7, tp] is given in the condition

y(t) = ¢(t) for to — 7 < t < to. (1.2.2)

The need to specify an initial function to determine a unique solution,
rather than a finite number of initial values needed in (1.1.4), indicates that
even a scalar delay-differential equation constitutes an infinite-dimensional
dynamical system.

Definition 1.2.1 The characteristic function of the system of equations

y'(t) = Ay(t) + By(t — ) (t > to) where 7 > 0,4, B € R™™, y(¢) € R™,
(1.2.3)
1s defined as the function

X(A) = det[A\ — A — Bexp(—7))], (1.2.4)

This function is a quasi-polynomial. The zeros A, of (1.2.4) are called the
characteristic values.

We may find it convenient to refer to an auxiliary equation:

Definition 1.2.2 Suppose that € is an entire function that vanishes nowhere
in C and denote by X the corresponding function

X(A) == E(N)x(A) for all N € C. (1.2.5)

Then, we refer to (1.2.5) as an auziliary characteristic function or auxiliary
function (for the corresponding differential equation) and the set of zeros of
X 1is the set of characteristic values.

Definition 1.2.2 is compatible with the terminology introduced for recurrence
relations (see Definition 1.1.2).

Definition 1.2.3 The first order linear autonomous scalar delay-differential
equation

Y'(t) = py(t — 1)+ vy(t)(t > o) (1.2.6)
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where y(t) € R, 7 > 0 and u,v € R are constants will be called the basic test
equation for DDEs. In this case (1.2.4) reduces to

X(A) = A — pexp(—7) —v (1.2.7)

which is called the characteristic function for (1.2.6). The zeros Ay of (1.2.7)
are called the characteristic values of (1.2.6).

A particular solution of (1.2.6) is defined by requiring y(¢) = ¢(t) for to—7 <
t < tp, given an nitial function ¢ € Clty — T, to).

Remark 1.2.1 For the basic equation (1.2.6), a change of variables allows
us to normalise by taking T = 1 — to do so we replace p by py = T and v
by vy = Tv. We would obtain a generalisation of both (1.1.4) and of (1.2.6)
if we were to consider y'(t) = Ay(t) + By(t — 7) (¢t > to) with A, B € R™™,
y(t) € R" as in (1.2.3).

1.2.1 A pure delay equation

The equation
y'(t) = py(t —) (1.2.8)

where y(t) € R, ¢ > 1 and p is a constant is an example of a first order linear
autonomous homogeneous scalar delay-differential equation. Associated with
(1.2.8) we require an initial function ¢ and set y(t) = ¢(t) for to—7 < t < 1.
The equation (1.2.8) is an example of a ‘pure delay’ equation (where y'(t)
depends only on past values y(t — 7), 7 > 0) and is one of the simplest
delay-differential equations.

The next lemma and its corollary relate to the definition of an exponen-
tially bounded function recalled again later in Definition 2.1.2.

Lemma 1.2.1 All solutions of (1.2.8) are continuous, and are exponentially
bounded in the sense that there exist T' > to, k, and v € R such that

ly@)| <k exp(yt) fort = T. (1.2.9)

Proof: The result follows from the method of steps: On every interval [ty +
mT, to-+ (m+1)7] the solution satisfies y(t) = y(to+m7)+pu Lz+mT y(s—1)ds
(which is continuous). It follows that |y(t)| < exp{u(t — to)} SUDy,— 1.0 |D(2)]
and the result follows.

Corollary 1.2.2 All solutions of (1.2.6) are continuous and are exponen-
tially bounded.
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Remark 1.2.2 [ is easy to show that a change of variables can be used to
convert (1.2.6) into the form v'(t) = pw(t — 7), compare (1.2.8), or (as a
particular case, cf. Remark 1.2.1) into

u'(t) = pyu(t — 1) (1.2.10)

obtained with py := LT on changing the independent variable. To see this,
write (1.2.6) in the form y'(t)—vy(t) = puy(t—7) to obtain (d/dt) exp(—vt)y(t)
= pexp(—vt)y(t — 7) or v'(t) = Lot — ) with v(t) = exp(—vt)y(t) and
i = exp(v7) 1.

Equation (1.2.6) is commonly analysed, as a test of various theories or
methods. The preceding remarks show that insight can also be obtained

by taking 7 = 1 in (1.2.6), as in Remark 1.2.1, or by examining (1.2.8) or
(1.2.10).

Definition 1.2.4 The quasi-polynomial
x(A) = A — pexp(—7A) (defined for A € C) (1.2.11)

is the characteristic function for the DDE (1.2.8). The zeros of x are called
the characteristic values (or eigenvalues) of (1.2.8).

Our next Lemma addresses the behaviour of exponential solutions of
(1.2.10) and conditions for (1.2.10) to be an oscillatory equation. With
py = T/ we obtain corresponding results for (1.2.8).

Lemma 1.2.3 (a) Let us suppose the function
y(t) = kexp At, (k # 0) (1.2.12)
is a solution of the equation (1.2.10). Then,
x(A) = 0 where x(A) 1= Xexp(A7) — 1. (1.2.13)
(b) The behaviour of solutions is dependent on

(1) If py > 0, y(t) = o0 as t — oo.

(2) If iy, = 0, y(t) = y(to) for all t > to.

(8) If py < 0, y(t) — 0 ast — 0.

(4) The equation x(\) = 0 has a real root for w, € (—1/e,00) and has no
real roots for py € (—oo,—1/e) (see [47]).

(5) The equation (1.2.10) is non-oscillatory for py > —1/e and is oscil-
latory otherwise (see [{7]), when py € R.
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Theorem 1.2.4 (A necessary and sufficient condition) (See [70, p.37,
Proposition 1.8.1] [78].) Equation (1.2.10) is oscillatory (equivalently, every
solution of the equation (1.2.10) is oscillatory) if and only if the equation
(1.2.18) has no real roots.

The essential result required to provide a proof of is the fact that the eigen-
functions generated by the characteristic values span the required solution
space when ¢ € C[to— T, to]. Hale and Verduyn Lunel [83, Chapter 7, p.220],
for example, has a section on this.

Remark 1.2.3 OQur approach can be refined through the use of the Laplace
transform, which is useful to get a explicit expression as a contour integral
in the form of an inverse Laplace transform for a solution y(t).

1.8 First order advanced differential equations

Suppose, as previously, that the function f with values f(t,u,v) € R" is
continuous for ¢ > iy, and bounded u,v € R™ for some natural number n
(scalar equations arise for n = 1).

Definition 1.3.1 We suppose that T > 0. An equation of the form

y'(t) =St y(), y(t + 1)) (1.3.1)

with y(t) € R™ is an advanced differential equation of first order for y. A
continuous function y is called a solution of equation (1.3.1) on [to,T") if it
has o derivative y' and y(t) satisfies (1.8.1) for t € [to, T), say.

A particular solution of (1.3.1) is determined when. e.g., a suitable function
¢ is given in the condition

y(t) = ¢(t), for to <t < to+ 7. (1.3.2)

Definition 1.3.2 The first order linear autonomous homogeneous scalar ad-
vanced differential equation (or differential equation with a deviating argu-
ment of advanced type)

Y'(t) = py(t +7), t>to, (1.3.3)
where y(t) € R and u € R is a constant is called a purely-advanced equation.

Plausible constraints that may (we now explore further) define a unique
solution to (1.3.3) are of the form (1.3.2).
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Lemma 1.3.1 Suppose that y(t) = ¢(t), for to <t < to+ 7. Then a
continuous solution y of (1.3.3) exists on [to +mm,to + (m + 1)7] only if the
m-th derivative ¢™(t) is continuous on [to, to-+7] and pud™(to+7) = ™ (t0).

Proof: Write the given equation as
y(t) =yt —7)/n, tE€to+mrto+ (m+1)7], me{1,2,3,---} (1.3.4)
and the result follows.

Remark 1.3.1 (a) The preceding result implies that (1.3.3) is ill-posed: if
one makes non-differentiable perturbations in ¢ then a problem with a solu-
tion is transformed into a problem without a solution. (b) We also note that
if y'(t) = py(t+71), for all t € R, then y must be infinitely-differentiable. (c)
If (1.3.3) holds and we write x(s) = y(T — s), we obtain the problem

z'(s) = —pz(s—7),8 >0, with x(s) = §(T'—s) for s € [to—T,10); (1.3.5)

this problem, cf. (1.2.8), is a pure-delay problem. When we think of time as
running backwards from the interval on which the function ¢ is defined, the
advanced equation can be considered as a reformulated pure-delay equation
problem. This is however, somewhat contrived.

1.4 First-order differential equations with de-
layed and advanced arguments

Next we move on to consider problems where there is a mixture of terms
having delayed and advanced arguments — so-called mixed-type equations.
The general class of problems considered here are termed mixed type func-
tional differential equations (MTFDEs). We suppose that we seek y(t) € R"
for some natural number n (with n = 1 the scalar case). A basic mixed-
type differential equation of first order for y is introduced in the following
definition.

Definition 1.4.1 (Mixed-type differential equations) Suppose that the
function f, with values f(t,u,v,w) € R™ (continuous fort > tq, and bounded
u,v,w € R") is given. An equation of the form

y'(t) = f(ty@),y(t — )yt + 7)) (t>t) (1.4.1)

where T > 0 and o differentiable function y(t) is called a solution of this
equation if it satisfies the differential equation (1.4.1) for t > to.
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Lemma 1.4.1 The value of T in equation (1.4.1) can be normalised to be 1.
Thus the equation under consideration can be taken to be y'(t) = f(t,y(t), y(t—
1, y(t+1)) (fort > ty); it is also possible to normalise so that to = 0.

Proof: Suppose y satisfies (1.4.1), suppose t} € R and s—t = 7 x (t —to) + 1o
1
and let yy(s) = y(t). Then y;(s) = ;y’(t) and hence

Yo(t) = folt, (8t — 1), (2 + 1)) (for ¢ > ¢}) (1.4.2)
where fy(t,u,v,w) = 7f(¢,u,v,w). Clearly, we may pick t% = 0.

Remark 1.4.1 (Particular solutions) A particular solution of (1.4.1) is
determined only when suitable initial and/or boundary functions are pre-
scribed. Plausible (or at least possible) conditions are

y(t) = ¢o(t), forto—7 <t <ty, (1.4.3)

y(t) = ¢i(t), forto <t <t + 7 (1.4.4)

Howewver, the existence of a solution that satisfies the given conditions is not
guaranteed. We saw a similar result in our discussion of (1.3.3). Here, we
consider (1.4.1). Given (1.4.1) is satisfied for t > to and given (1.4.4), we
must require ¢1(t) to be differentiable for ty <t < tg+T,

Po(to) = ¢1(to) (1.4.5)

and that p
35451(750) = f(to, po(to), dolto — 7), p1(to + 7)) (£). (1.4.6)

It follows that arbitrary continuous functions (¢g and ¢1) do not necessarily
determine a solution,

The general class of problems considered here involve differential equa-
tions with both delayed and advanced terms and (1.4.1) is a mixed type
functional differential equation (MTFDE). We next define a basic equation
of mixed-type which we will encounter several times in this thesis.

Remark 1.4.2 Suppose that 7 > 0. A change of variable transforms the
equation

u'(t) = ay(t) + By(t — 7) + yu(t + ) (1.4.7)
into the form

y'(t) = ay(t) + by(t — 1) + cy(t + 1), (1.4.8)
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Definition 1.4.2 The equation (1.4.8) where y(t) € R and a, b, ¢ are con-
stant is called the basic equation of mized-type. It is a first order linear
autonomous homogeneous scalar mized differential equation with delay and
advanced terms or mized type functional differential equation (MTFDE).

We shall consider the question of solutions of (1.4.8) subject to appropri-
ate conditions, such as y(t) = ¢1(t) for to+1 > ¢ > ty and y(t) = ¢o(t) for
to+ 1<t <tpin Chapter 4.

Remark 1.4.3 Both linear and non-linear MTFDEs arise naturally in prob-
lems of travelling waves in discrete spacial media such as lattices (see [140]).

1.5 First order linear autonomous homoge-
neous integro-differential equationss

All the equations we have considered in the above sections have described
the behaviour of %'(¢) in terms of the values of 3,3 etc. at points in time
that are a fixed distance (e.g., 7) from ¢. It is also possible, through the use
of integro-differential equations, to define equations that take into account
historical values and future values in a distributed way. Indeed, through the
use of distributions and Stieltjes-type measures, one can express DDEs and
MTDEs in the form of an integro-differential equation of a type that can be
regarded as generalisations of the ones considered previously.

This section introduces ordinary, delay and mixed integro-differential
equations IDEs.

1.5.1 First order ordinary integro-differential equations

To avoid repetition below, we state here that we assume, until otherwise
stated, that f : [tp,00) X R" x R® — xR" denotes a given real function (with
continuous f(¢,u,v) for ¢ > ¢ty and bounded u, v).
We suppose that y(t) € R™ (n = 1 is the scalar case). An equation of the
form .
v© = (830, [ ke se)ds), ¢t (1.5.1)
to
(with k(t, s) continuous for t > ty, s € [to,t]) is an integro-differential equa-
tion of the first order for y (defined for ¢t > t5). A differentiable function
y is called a solution of this equation if it satisfies (1.5.1) for all ¢ > 5. A
particular solution is determined when we are given an initial value

y(to) = Yo (1.5.2)
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Example 1.5.1 The equation

J(t) = /_ y(t+ s)ds (¢ 2 ta), (1.5.3)

where y(t) € R, with initial condition y(t) = $(t) for t € [to — 1,t0) is a
first-order linear autonomous homogeneous scalar integro-differential equa-
tion. We may clearly rewrite (1.5.3) in the form

t
v©) = | o) 2 0) (1.5.4)
t—1
In principle, we can now proceed to find y'(t) on [to, to + 1] and thereby find
t
y(t) = (to) + / y(s)ds (¢ € ltoyto + 1. (L.5.5)
to

before proceeding, by o method of steps, to compute the derivative and then
the solution on successive intervals [to + m, to + (m + 1)].

Note that, for suitable ¢, a solution of (1.5.3) will satisfy, for k €
{1,2,8,--+}, ¥*t) = y*1(E) —yF Tt — 1) (& > to) (obtained by differ-
entiating (1.5.4)).

Remark 1.5.1 If we replace the Riemann integral in the equation (1.5.1) by
a Riemann-Stieltjes integral we obtain the form

) = 5 (100, [ )k s)u(e)), for > 1

where y(t) € R™, t > ty. If n =1, we can write this as

v©) = £ (500), [ k6 da), forezt  (156)

to

In (1.5.6), we suppose « is function of bounded variation on [tg,00). (A
function is of bounded variation if and only if it is the difference between two
monotone functions.)

1.5.2 First order linear autonomous homogeneous integro-
differential equations with delay

Suppose that y(t) € R™. in

t

v =7 (ty®), [k s)y(s)ds). (1.5.7)

t—T
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This is a delay integro-differential equation of first order for y(¢). Here the
real function f is given (see Remark 1.5.1) along with a suitable kernel k&
(with

k(t, ) continuous for ¢ > tg, s € [t — 7, 1] (1.5.8)

A differentiable function y is called a solution if it satisfies (1.5.7) for all

t > to. A particular solution is determined if an initial function ¢ is given
with
y(t) = P(t), for to — 7 < t < 1. (1.5.9)

The equation can have a uniform contribution from history as in
0
Y (t) = / Yt +s)ds (¢ k), (1.5.10)
-1

where y(t) € R™, with initial function y(t) = @(¢) for to — s < t < g is
called a first order linear autonomous homogeneous scalar integro-differential
equation with delay term.

Remark 1.5.2 If we replace the Riemann integral in equation (1.5.7) by a
Riemann-Stieltjes integral we obtain (with n = 1) the form

v(©) = £ (ty(e), / dn(s)k(t 3y(s)). (L5.11)

1.5.3 A canonical delay integro-differential equation

An integro-differential equation that reduces in special cases to equations
with retarded argument considered earlier is

y(t) = / Uyt — r()dals), (here, n= 1), (1.5.12)

-1

We suppose the delay term 7(s) is a positive real continuous function on
[—1, 0] and «a(s) is a monotonically increasing real-valued function of bounded
variation on [—1, 0]. Equations of this form have been studied in the literature
(see [120] and its references).

1.5.4 Beyond constant-coefficient equations

In the classical literature the characteristic function is defined for homoge-
neous equations that have constant coefficients. More recently, researchers



26

have defined generalised characteristic functions. The following is an exam-
ple, and it is motivated in much the same manner as the classical charac-
teristic function. We remark that in other work, a generalised characteristic
function is motivated through a comparison equation.

The following assumption is made in the current discussion concerning

y'(t) = /j y(t — 7(s))da(s), (in the case n=1). (1.5.13)

encountered in (1.5.12).
For similar results for a more general equation see [120].

Assumption 1.5.1 For all s € [-1,0], &/(s) ewxists and o'(s) > 0.

Definition 1.5.1 The generalised characteristic equation of (1.5.13) is the
function xy with

Xp(A) == A — /—01 exp(—A7(s))da(s) for A € C. (1.5.14)

Here, n=1. A zero A, of xy is called a characteristic value of (1.5.13).
Lemma 1.5.1 Given Assumption 1.5.1,
1. If xy(A) = 0 then exp(At) satisfies (1.5.13);

2. Bwvery solulion of the equation (1.5.12) oscillates if and only if xy(\) >
0. for all X e R;

3. Some solutions of the equation (1.5.12) do not oscillate if

Xi(Ax) <0 for some A € R. (1.5.15)

For a proof, see [120].

1.5.5 First order integro-differential equations with ad-
vanced term

We can give the corresponding definitions for advanced equations. Suppose
that y(t) € R™ for some natural number n. An equation of the form

V@ =5(bv, [ ke sueds) G20, (1510
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is an advanced integro-differential equation of first order for y. Here we are
given f, with f(¢,u,v) continuous for ¢t > ¢, and bounded u,v, and a suitable
kernel k& (with (¢, s) continuous when ¢ > tg, s € [t + 7,t]). A differentiable
function y is a solution of this equation when it satisfies the differential
equation (1.5.16) for all ¢ < ¢5. We may conjecture that a particular solution
is defined when the condition y(t) = ¢(t), for t; +7 >t > ¢ is given.

Example 1.5.2 The equation

1
y'(t) = / y(t+ s)ds (t > o), (1.5.17)
0
where y(t) € R™ for t > to, can be rewritten
t+1
y'(t) m/ y(o)do. (1.5.18)
t

This is a first order linear autonomous homogeneous scalar integro-differential
equation with advanced term and, on assuming sufficient differentiability,

y( +1) = y"(t) + y(®) (t = to)- (1.5.19)

Assume we are given a function ¢ and seek y satisfying (1.5.19) and also
satisfying the condition

y(t) = @(t) fort € [to, to + 1]. (1.5.20)

An application of a step-by-step method (a ‘method of steps’) based on (1.5.19)
and (1.5.20) gives us, in sequence, the following results:

for te [to, to -+ 1], y(t) = ¢(t)§
for telto+ 1,40+ 2], y(t) =y"(t - 1) +yt —1);
=¢"(t—1)+¢(t —1);
for telto+2,t+ 3], y@) =y"t—-1)+yt—1)
= ¢ (t —2) + 24" (t — 2) + p(t — 2);
for t € [to+ 3,1t + 4], y(t) = {@¥(t — 3) + 3™ (t — 3) +

+3¢"(t — 3) + ¢t — 3)},

etc. The general expression requires that ¢ be arbitrarily differentiable, and
the ill-posedness of the problem. is clearly indicated.

Remark 1.5.3 If, as before, we replace the Riemann integral by a Riemann-
Stieltjes integral in the equation (1.5.16) we obtain where y(t) € R™, the form

VO =1(v®, [ ) 20, 52

or g (1) = f(t,y(2), [T y(s)da(s)) if n=1.
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1.5.6 First order integro-differential equations with de-
layed and advanced terms

Given a real continuous function f with values f(¢,u,v,w) (for ¢t > to, and
bounded u, v, w), an equation of the form

i

v =(6y0), [kt 2)(s)ds / T halt (e)ds) (2 1) (15.22)

t—T

is a mixed-type integro-differential equation of first order for the function ¥
(where y(t) € R™ for ¢ € [tg,00). A differentiable function y is a solution of
this equation for all ¢ > ¢ if it satisfies (1.5.22).

Remark 1.5.4 We might conjecture that a particular solution is determined
when suitable functions ¢; and @9 are given and we reguire

y(t) = ¢1(t), forto —7 <t < to; (1.5.23)

y(t) = ¢2(t), forto <t <to+T. (1.5.24)

In fact. arbitrary choices of ¢1 and ¢ do not define a solution.

Remark 1.5.5 If, as before, we replace the Riemann integral by a Riemann-
Stieltjes integral in the equation (1.5.16) we obtain the form

vt = (o), |

—T

t

aluts), [ ), (1529

where y(t) € R™, fort > ty. Forn=1, (1.5.25) reads

4

V@)= 5 (500, [ v6ots), [ vle)da(s)).

The equation

0 0

V) = [ nalye =) + [ @), (1520)
where 7 is a non-negative real continuous function on [-1,0], y(t) € R™,
s € [~1,0], t > to with constraints y(t) = ¢1(¢) for to — sup7(s) < ¢t < ¢,
y(t) = ¢do(t) for to < ¢t < Lo+ sup7(s) is an example of a first order linear
autonomous homogeneous scalar integro-differential equation with delayed
and advanced terms.



29

Example 1.5.3 The equation
0 1
y'(t) = / y(t + s)ds + / y(t + s)ds, (1.5.27)
—1 0

where y(t) € R™, t > ty is a basic first order linear autonomous homogeneous
scalar integro-differential equation with delayed and advanced terms.

Remark 1.5.6 Related to (1.5.27) is the delay equation

y'(t) = fl y(t + s)da(s), (1.5.28)

where «(s) is a real function of bounded wvariation on [—1,1]. FEquation
(1.5.27) can be rearranged to read

t-+1
y'(t) :/ y(o)do (1.5.29)
t—1
and, if differentiation is justified y"(t) = y(t + 1) —y(t — 1) or
yt+1)=¢"(t) +y(t—1). (1.5.30)
Plausible constraints of the form
y(t) = 1 (t) (t € [to— 1L, ko)), y(t) = da(t) (t € [to,to +1]),  (1.5.31)

with arbitrary ¢12 will not in general define a solution; compare Ezxample
1.5.2 where we had y(t + 1) = y"(¢) + y(¢).

1.6 Discrete equations (recurrence, difference,
and summation equations)

1.6.1 First order discrete recurrence equations

In this material, the function f is defined on NxR™ and f(m, u) is continuous
for bounded u € R™ for each m € N. We suppose that y(t,,) € R". With a
given function f, an equation of the form

Y(tmt1) = fF(m,y(tm)), valid for m > mg > 0, (1.6.1)

defines the sequence of values

Y = {Y(tmo+1), Y(Emor2), Y(tmo+s), - -+ }, given y(tmy) = Umo- (1.6.2)
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Remark 1.6.1 If we wish to distance ourselves from a particular choice

77—7'?,0 = {tﬂ’Lo) tmo—l—l, tm0+2> e }

we may equally discuss the sequence {Ymo+1, Umo+2s Ymo+3, -+ - + Satisfying
Umi1 = f(m,Ym), for m € {mg,mo+1,mo+2,---}, (1.6.3)

We shall employ the alias ¥, = y(tm) and where there is no danger of confu-
sion we denote a sequence {Ymg, Ymo+1> Ymo+2, - -+ + 0y Y. (The same notation
is used to denote the function y : m — y(tm), or ¥ : tm — y(tn), where
to <ty < ty < --- is arbitrary.) There is no loss of generality is taking
mo = 0.

Definition 1.6.1 Fquation (1.6.1) is an explicit discrete recurrence equa-
tion of first order for the sequence y (equivalently, for the function y defined
on the integers greater than or equal to mg). The equation is autonomous if
f(m,u) is independent of m. If the relation (1.6.1) can be written

y(tm+1) - y(tm) = w(m,y(tm)),m 2 Mo Z 01 (1‘6'4)

it is natural to refer to the discrete recurrence as a difference equation and
the latter term is often applied to all relationships of the form (1.6.1).

By converting scalars to vectors, (1.6.1) can be formulated to include
summation equations.

Example 1.6.1 For an example of a summation equation consider

Ymer || 1 h Ym . o | | w
[Umﬂ]w{h1}x[am],gwen{go}*[o]. (1.6.5)
Clearly, om = hM{Ym+Ym-1+- - Yo} and Yms1 = Ym+P*{Ym~+Ym-1+- - %0}, @

discrete analogue of the simple integro-differential equation y'(t) = fot y(s)ds.

A particular solution of (1.6.1) is determined only when a value y(t,, ) =
Yme, 18 given for given my. The equation (1.6.1) together with the condition
Y(t,.,) = Ym, is an initial value problem. As a variant of Definition 1.6.1. we
have the following, which differs from the preceding definition.

Definition 1.6.2 [f the relationships

y(im—i-i) = f(may(tm)!y(tm—f-l))s valid fOT‘ m 2 Mo P Oa (166)
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define, given a particular choice of Y(tmy) = Umg, @ Unique sequence of values

Y= {y(tmo-%-l): y(tmo—i-Z)a y(tmo+3)7 e }a (167)
then (1.6.6) is an implicit difference equation and there exists a function g
such that

Y(tms1) = g(m, y(tm)), for m > mg > 0. (1.6.8)
Example 1.6.2 Suppose a and h > 0 are real constants where the step-size
h>0. 9y, €ER,

Gt = (14 ah)m (m > 0) (1.6.9)
with initial value yo. (1.6.9) is a first order (ordinary) linear autonomous
and homogeneous scalar difference equation. It is a discrete analogue of the
differential equation y'(t) = ay(t). An implicit analogue is

YUmt1 = Um + 0hYm+1 (m > 0). (1.6.10)
assuming that ah # 1. The n-dimensional versions read Ym+1 = (I + Ah)Ym
and Ymi1 = Ym + ARYmy1 (assuming det{l — hA} # 0) where A € R™*",

Definition 1.6.3 For each linear homogeneous recurrence relation we define
a corresponding characteristic polynomial:

Ym Recurrence relation Characteristic polynomial

Scalar  Ymy1 = (1 + ah)ym x(A) = A= (1-+ah)

Scalar (1 — ah)Um+1 = Ym (ah # 1) x(A)=(1—-ah)\—1

Scalar  Ymi1 = gy Velmi1-e X(A) = N — ST, yeht

Vector Ymi1 = (I + Ah)Ym x(A) = det[A — (I + Ah)]

Vector (I — AR)Ym+1 = Um det[I—AhR] x(N\) = det[A\(I — Ah) + I)]
# 0

Characteristic polynomials

Lemma 1.6.1 Refer to the table of characteristic polynomials in Definition
1.6.3, and suppose that x(A¢) = 0. Then {ym = vo(Ae)™} is a solution of the
corresponding recurrence. If Ag is a multiple zero then there can be additional
solutions of the form p(m)(A)™ where p is a polynomial.

Consider the behaviour of \™ (m = 0,1,2,--.) where A is a scalar. If
Al > 1, |gm] = o0 asn — oo, if A < 1, m — 0, and if R(A) =0,
A™ oscillates. In the latter case the solutions of the equation (1.6.9) have
oscillatory behaviour.

Remark 1.6.2 Suppose a < 0; the solution y(t) of the ordinary differen-
tial equation (1.1.8) has no oscillatory behaviour but the solution U, of the
ordinary difference equation (1.6.9) has oscillatory behaviour if h > 1/a.
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1.6.2 Generalisations: discrete recurrence equation with
delayed or advanced terms

We have seen that differential equations with advanced or retarded argu-
ments provide generalisations of ordinary differential equations, and we con-
sider whether there are corresponding generalisations of recurrences such as
(1.6.1). To a certain extent, the distinctions between current and delayed ar-
guments are redundant: thus, in Example 1.6.1 we see a summation equation
in which 741 is expressed in terms of all preceding values {yo, 71, ,Um}
using (1.6.1) but this is not apparent in the vector form.
In general a two-stage recurrence

Y(tmr1) = f(m: y(tm)ay(tm-i))a (1.6.11)

can be re-expressed in the form of a one-stage recurrence between column
vectors Umy1 = [Y(tm1), ¥(tm)]T in R? as:

[y:tst(?;)l) } - [w(e?ibumm) ] = U(m,um) € R? (1.6.12)

where e [uy, vo]T is vy.

Despite the preceding remark, it is sometimes convenient to retain a scalar
formulation. Thus, given constants p and h > 0 the relation ¥pmy1 = Ym +
UhYm-—~1, wWhere ¥, € R, with initial function 7,, = y(¢) for n > 0 is a
two-stage linear autonomous homogeneous scalar difference equation More
generally, for integer M > 1, the recurrence ¥,;41 = Um + hYm—n provides
a discrete analogue of the delay differential equation (1.2.8).

Example 1.6.3 Consider the two-step discrete equation of the form

Umr2 = Yma1 -+ him, (1.6.13)
or, equivalently,
§m+2 1 /-bh' @7m+1
b = ~ . 1.6.14
[ymﬂ} {1 OHym} ( :

The characteristic polynomial of (1.6.13) is
x(A) = A% — X — ph. (1.6.15)

The equation x(A) = 0 is quadratic and the characteristic values are

1 1
)\1,)\2 = 5 :|Z§\/1+4!,Lh
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If Ay and Ay are distinct, then the general solution has Ym = c1AT* + coAY
and if Ay = g then it has Yn, = (c1 + mea) N, The every solution of the
(1.6.183) oscillates if and only if Ay and Ay are not positive real numbers.
every non-trivial solution oscillates if and only if ph < —i where u and h
are constants.

Oscillatory behaviour of the DDE (1.2.8) and its discrete analogue (1.6.13)
is remarkably similar, but comparisons are improved if we consider Ymi1 =
T + hfimn with M > 1.

If we wish to reveal the structure, then the scalar recurrence

y(tm+1) = f(ml y(tm)yy(tm—lay(t'm-—% e ’y(tm—N)) (m € {Na N + 17 e })

(1.6.16)
provides a natural generalisation of (1.6.11). This suggests that we consider
discrete equations with advanced terms by examining

37m+1 = f(m/gma :‘]m+1a"ijm+2a e :§m+JVI)a (1'6'17)

and discrete equations with delayed and advanced terms by examining

gm-l-l = f(ma gm—N e 7§m+27§m—17 gmangrl: gm+2: e 1gm+M) . (1618)

Example 1.6.4 The equation

Ymi1 = Um + phimen, (1.6.19)

where n = 0,1,2,..., N,N € n, Y, € R, is a first order linear autonomous
homogeneous scalar difference equation with advanced terms. It provides a
discrete analogue of the advanced differential equation (1.8.2). Clearly, it can
be rewritten as an explicit difference equation

Grsre = {Fmet = T}/ Lk} (m € {0,1,---}). (1.6.20)
Example 1.6.5 The equation

is a linear qutonomous homogeneous scalar difference equation with delayed
and advanced terms. (It provides a discrete analogue of the mized differential
equation with delayed and advanced terms (1.4.8).)

If we write down (1.6.21) for m = mo,mo + 1,--+ ,mg + My — 2, and
f {Umo—t}io and {Umorroretino are given, we obtain a system of linear
equations. There are My — 1 equations and 2N + 2 conditions for finding
the My — 1 unknown values, so that problem may have, one, none or many
possible solutions in principle.
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1.7 Conditions for oscillation of discrete equa-
tions

In this section criteria for discrete equations to be oscillatory, such as those

that have emerged in the previous section, will be discussed. This will fo-

cus on linear equations, where the analysis can be based on the zeros of a

polynomial and it will refer also to a characterisation for nonlinear problems.
For the linear equation

N
Yntr = Z aYn—j, (1.7.1)
3=0

by considering the characteristic equation for problems of this type, it is sim-
ple to show that the general solution may be written as a linear combination
of eigenfunctions. (One needs to take account of any repeated characteristic
values in the usual way.) Let the values Ay be the zeros of the characteristic
polynomial,

2V o2 — g2V — L —an (1.7.2)
then assuming all the zeros are distinct the solution takes the form 7, =
z;v;il b;A;™ . If characteristic values are repeated, a slightly more compli-
cated expression is needed for the solution but for our purposes the conclu-
sions will be the same. Any particular eigenfunction oscillates unless \; € Rt

and therefore we can give the result:

Lemma 1.7.1 The equation (1.7.1) is oscillatory if and only if none of the
zeros of (1.7.2) lie on the positive real azis (see [47]).

This result, based on the zeros of the characteristic polynomial, will prove
most useful in the theoretical analysis, which is currently confined to linear
equations.

However, a more general theorem that applies also to certain nonlinear
discrete problems has been given (see [43], [73]) and it may prove fruitful
in the further investigation of non-linear problems. Consider the difference
equation (discrete Volterra equation),

@'m-l—l = gm - sz’fi(gm—ki) (1-7-3)
i=1

where p; > 0, k; are positive integers, and f; are continuous functions on R.
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Theorem 1.7.2 (Elaydi, [43].) Suppose that the following conditions are
(a) yfily) > 0 fory # 0,1 < i < m; (b) hmlnf fz(y) > 1, for

(k + 1)k1+1 ) )
1<i<m(c) Z kk > 1; then every solution of (1.'7.3) oscillates.

Remark 1.7.1 In the study of stability theory and exponential growth and
decay, it is usual to linearise equations and to use the linear analysis as the
basis for obtaining a close approzimation to the behaviour of o non-linear
problem. For the study of oscillation theory, it is clear that the situation is
more complicated, and the extent to which a linear analysis provides useful
insights into non-linear problems has not been established. Some examples
that are considered are non-linear, and there is no experimental evidence that
our methods fail in these cases (see [47]).

1.7.1 A preview of oscillation theory

Oscillation for both continuous and discrete homogeneous linear problems (in
particular those which have constant coefficients and deviating arguments)
can be investigated by the location of zeros of a characteristic function. In
the discrete case, this function will be a polynomial whose degree depends
upon the step-size chosen for the numerical schemes (The degree increases as
the step-size becomes smaller) and approximation of the continuous problem
by the discrete schemes become more accurate.) In this context we have
available various techniques, such as the ‘boundary locus’ or D-partition
method, and direct polynomial solvers like the NAG Fortran library, MAT-
LAB, Mathematica etc. Here, we wish to develop a method based on the
Argument Principle and which will in principle be applicable for any degree
of polynomial.

1.8 A brief remark on application

Application of delay differential equations commonly arise in models where
there is some time-lag or after-effect. This situation arises for example in
modelling in the biosciences and we can refer the reader to [94, 2] for exam-
ple, for specific models. Mixed-type equations are less well-used in models.
However a discrete FitzHugh-Nagumo equation for modelling nerve cells can
lead to an equation of the form

av

7T = k(V(T+ H)=-2V(T)+V(T+ H))+ f(V,T),
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for the travelling wave solution (see [34]) where f(V) =V (V —1)(a— V) for
suitable constants x,H, 0 < a < 1.



Chapter 2

Basic Methods and Solutions:
The Laplace transform

2.1 Introduction

This Chapter introduces the Laplace transform method and indicates how
the method can be used to solve certain differential equations. The Laplace
transform is conventionally defined for functions with domain [0,c0) and
without loss of generality we shall suppose that our equations hold on [tg, c0)
with tg = 0. We study its basic properties.

Remark 2.1.1 Clearly, a function u defined on [tg,00) defines a function
uy on [0,00) on setling uy(t) = u(t + to).

2.1.1 The Laplace transform

The formal definition of the Laplace transform is stated below.

Definition 2.1.1 The Laplace transform (assuming it exists) of the function
[ defined on [0, 00) is the function L{f}

LU = [ et (2.1.1)
where f(t) € R™ fort > 0.

Let us recall the following concepts.

Definition 2.1.2 (a) A function f defined on [0,00) is said to be expo-
nentially bounded (sometimes, exponentially bounded at oo or of exponential
order) if there exist v € R, k > 0 and T > ty such that

()] <k exp(qt) fort>T. (2.1.2)

37
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(b) A function f is said to be piecewise continuous on a bounded interval
T C R if it has a finite number of discontinuities and the left and right
limits exist (and are bounded) at each discontinuity. It is said to be piecewise

continuous on [0, 00| if it is piecewise conlinuous on every bounded subinterval
Z C [0,00).

While s is commonly taken to be real, the extension to s € C (with
s = 81 + 182) as the complex-valued integral

L{f}Hs) = / e~ ¥t £(1)dt where s = Rs € R and 85 = Is,  (2.1.3)
0

is straightforward.

Lemma 2.1.1 If f(t) is piecewise continuous on [0,00) and ezponentially
bounded, and let v be chosen as in (2.1.2). Then L{f}(s) = F(s) in (2.1.3)
exists for all s > v, s€R.

Remark 2.1.2 All bounded continuous functions and every polynomial have
Laplace transforms. Thus t", n=1, 2, 8, ..., has a Laplace transform but
et? does not. The conditions are not necessary for the existence; e.g., t=/?

do not satisfy the conditions but yet has o Laplace transform. C{t_Tl} =
_ 1
Jemedar =" — (D),

82 s

Some properties of Laplace transforms

Suppose f and g satisfy the conditions of Lemma 2.1.1. Then,
o L{f +g} = L{I} + L{g}.

L{cf} = cL{f} for any constant c.

L{e"f}(s) = F(s - a).

L{fH(s) = sF(s) = F(0).

L{f"}(s) = "I (s) — sf(0) — f'(0).

LLF"}(s) = 8" F(s) — 5" F(0) — s 2f(0) — ... — F771(0).

L{"f}(s) = (-1)" §= F(s).
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2.1.2 The inverse Laplace transform

The definition of the inverse Laplace transform follows from that of the
Laplace transform, and several notational conventions are employed.

Definition 2.1.3 The expression L7{F} denotes a function whose f whose
Laplace transform is F = L{f}. Thus, if

L{f}=F then f = L~Y{F}. (2.1.4)
With a commonly adopted abuse of notation, we may write:
LL{fIH(E) = F(s); f(t) = L7HEHs). (2.1.5)

Example 2.1.1 To illustrate the latter notation,

L—l{ ! } = e and ﬁ‘l{ a 2} = sin(at). (2.1.6)

8 —a s2+a

A fairly extensive table of inverse transform is given in Appendix A (see
[31]).

Theorem 2.1.2 (A uniqueness theorem) Suppose f(t) and g(t) are con-
tinuous on [0,00) and of exponential order . If L{f}(s) = L{g}(s) for all
s >y, then f(t) = g(t) for allt > 0.

Remark 2.1.3 In brief, the preceding well-known result (known as Lerch’s
theorem) indicates that when f is continuous, L™{F(s)}, is unique.

The simplest inversion formula is given by the so-called Bromwich inte-
gral, which provides a useful analytical tool.

Theorem 2.1.3 The function L~{F(s)}, is given by
1 c+-ico
f@) = —/ F(s)exp{st}ds, (2.1.7)
2m c—ioco

where the integral is evaluated along the path from s =c — 0o to s = ¢+ 100
for any real ¢ such that this path lies in the region of convergence of the
integral.

2.2 Solving differential equations using the
Laplace transform: Examples
If not specifically stated otherwise, we shall assume that the solutions of dif-

ferential equations discussed here are continuous and exponentially bounded.
Their Laplace transforms then exist.
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2.2.1 Solving ordinary differential equations using the
Laplace transform

Let us consider the ordinary differential equation (ODE) ¢/(t) = ay(t), in
(1.1.3), with initial condition y(¢o) = yo. Of course, we know that the solution
is y(t) = exp(alt — to])yo which is continuous and exponentially bounded so
that in consequence it has a Laplace transform. Now, applying the Laplace
transform to y/(t) = ay(t) we obtain

/0 e Py (t)dt =f0 ay(t)e “dt (2.2.1)
We know that
£ = [ a0, and £)(e) = [ v ele at = sLll5) - )
From (2.2.1), sL[y|(s) — y(0) = aL[y|(s), so that (s — a)L[y](s) = y(0), and

cilis) = 2 (s 20 (2.2.2)

§—a

Taking the inverse Laplace transform of both sides of (2.2.2) yields, as an-
ticipated,
y(t) = e*y(0). (2.2.3)

2.2.2 Solving delay differential equations with Laplace
transforms

Let us consider the delay differential equation (DDE) (1.2.8), that is, ¢/(¢) =
ay(t) + By(t — 7). A change of variables gives the normalised form

y'(t) =ay(t) +by(t—1), (t=0) (2.2.4)

(where a = ar, b = p7). Suppose ¢ € C[—1,0] and assume the initial
condition y(t) = ¢(¢), for t € [—1,0]. We know that it can be established,
by the method of steps, that the the solution of (2.2.4) is continuous and
exponentially bounded and therefore has a Laplace transform. To illustrate
our procedure we shall take

$(t) =1 for ¢t € [—1,0]. (2.2.5)

Applying the Laplace transform to both sides of (2.2.4), we obtain

f e~y (t)dt = f ay(t)e *tdt + f by(t — 1)e~*dt (2.2.6)
0 0 0
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Lett—1=o0,t= o +1 then dt = d7 and when ¢ = 0 then o0 = —1 and when
t = oo then ¢ = co. Using these results in (2.2.6), we get,

oo o0 o0
/ e sy (o + 1)do = / ay(o +1)e sy 4 / by(o)e~ T3 dg
-1

1 -1

sL)(e) ~(0) = aLl(e) + [ bylo)e o

-1
Here

£ = [ e tdiLly)(s) = / "y (W)t = sL)(s) — y(0)

0 o0
— i) + [ to)e e do+ [ hyfo)e o

-1

= aL[y](s) + /O by(o)e™tV3dg 4 pe~* /wy(a)e“"da.
Hence, 0
Lyl(s)(s —a—be™®) = y(0) + /0 by(o)e~ "t sgg,
From this, provided the denominator is non—z_elro,

y(0) + J°, by(o)e~“tDsdg
s—a—bes

L[yl(s) =

where y(0) and y(o) are determined by the initial function. If y(¢) = ¢(¢) on
[—1,0] then we get y(0) =1 and y(o) =1

0 0
/y(a)e"(”+1)sda=/ y(o)e e °do

1 -1

0 —os]0
— e—-s/ e—asdo_ — e—s [8 :’ — }_ (1 — _1_)
—1 —8 ] S es

Using these results in (2.2.7) we get,

(2.2.7)

L+ -3)

= e 2.2.
Lll(s) = === (2.2.8)
Applying the inverse Laplace transform to (2.2.8), we get,
1+, -5)
t)=L71q—8 e’ 2.2.9
) = e { a2 (2:29)

The denominator s —a — be™* is x(s).
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2.2.3 Solving mixed type functional differential equa-
tions using Laplace transforms

It is interesting to attempt to solve mixed type functional differential equa-
tions (MTFDEs) by the Laplace transform method. We are able to apply the
Laplace transform to a function that is exponentially bounded and piecewise
continuous. This is not true of all solutions of MTFDEs, so one must proceed
with caution.

Assumption 2.2.1 We suppose that the solution to which we apply the
Laplace transform is exponentially bounded and piecewise continuous.

Where there exists a characteristic function or generalised characteristic
function we know that the class of functions satisfying the last assumption
is non-empty; the characteristic values correspond to solutions exp(At) that
satisfy the necessary condition.

Let us consider a MTFDE of the form (1.4.8)
y'(t) = ay(t) + by(t — 1) + cy(t -+ 1) (2.2.10)

We consider (2.2.10) for ¢ € [0,7"] and we investigate the existence of a
solution y when we require that y(t) = ¢1(¢),t € [—1,0] and y(¢t) = ¢2(t),t €
[T, T + 1].

We have to prove this general theorem. Taking Laplace transform of both
sides of the above equation, we get,

/ e‘tsy’(t)dt:/ ay(t)e"”dt+/ by(t — 1)e“tsdt—i—/ cy(t + 1)dt
0 0 0 0

(2.2.11)
We know that

Llyl(s) = [ Tyetd,  Li)(s) = / "y t)e

which implies that
Lly'l(s) = sL[y)(s) — y(0),
Using these results in equation (2.2.11) we get,

oo

sLlyl(s)—y(0) = aﬁ[y](s)+/000 by(t—l)e_tsdt—l—/o cy(t+1)e "dt (2.2.12)

Let t — 1 = o1, t = 0y + 1 then dt = doy. When ¢t = 0 then o7 = —1 and
when ¢ = oo then 01 = 00. Again let t + 1 = 0y, t = g9 — 1 then dt = dos.
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When ¢ = 0 then 03 = 1 and when ¢ — oo then oy — oco. Now equation
(2.2.12) becomes

sL[y](s) — y(0) = aLlyl(s) + /OO by(o1)e” ooy + /Oo cy(oz)e "2 Ndoy
-1 1
sﬁ[y](s) —-y(0) = a,[,[y](s) + ffl by(al)e—(l-l-ﬁ)sdgl i fooo by(gl)e—(l-f-al)sdal
0 o
_(UZ—I)Sd —(O’z—l)sd
+/1 cy(o2)e oy + /0 cy(oa)e o9
sLyl(s) — y(0) = aLy)(s) + [, by(o1)e™O+%day 4 be~* [ y(o1)e™*doy
1 (o9}
_/ cy(o2)e™ T odoy + ceS/ y(oa)e™?°doy
0 0
sLIyl(s) —y(0) = aLly](s) + [°, by(or)e M+ %doy + be*L]y](s)
1
—/ cy(og)e— (o9 — 1)sdoy + ce®L[y](s)
0
sLy](s) —y(0) = (a + be™® + ce®) L[y](s) + ffl by(o1)e~(1+o05dg,
_ /1 Cy(m)e_(az)sdcr2
0
(5 —a—be™® — ce?)Lly)(s) = y(0) + [, by(o)e+%day

1
— / Cy(o.Z)e—(az—l)sd0_2
0

y(O) + f—o}. by(al)e“(l + U])Sd0'1 — fol cy(0~2)e“(02"1)3d02
S_G,—be_s—-ces

Llyl(s) =

(2.2.13)
If y(¢t) = 1 on [~1, 0] then we get y(o1) = 1, y(o2) = 1 and y(0) = 1 then

0 0 0
/ by(Ul)e"(l—Hn)Sdo'l P / be—se—nsdo_l — be—s/ e——olsdo_l

-1
—og158710
1

—S8 S se’
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Again

1 1 1
/ cy(az)e“("z“l)sdag = / ce %%e’dgg = ces/ e 7%%dgq
0 0 0

—ops
5|77 ce’ ¢
= ce =——=

—S Jg 8 8

Now using these results in (2.2.13) we get ,

142 b ey

= g s’ s 2.2.14
Lll(s) = —— e e (22.14)
Llyl(s) = F(s) (2.2.15)
where b b et e
1+8— b ey
F —_— s se 3 38
(s) 5 —a — be % — ce®
Taking inverse the Laplace transform of (2.2.14) we get,
140 b e
t) =L P ra— 2.2.16
v(t) { s —a—be™ — ce® } ( )

Remark 2.2.1 Of course, the equation (1.2.1) can be writlen as inlegral
equation by integrating both sides with respect to t. Thus, for t' > t > tq,

T
o)) =vlt) + [ s,3(6) (s - 7))ds 2:2.17
tl
which is a Volterra integral equation in classical form when we set t' = 1.
There are various ways to generalise (1.2.1) to obtain further examples, for
example, assuming that 7;(t) > 0(l € [1,2,3,...,m|), by considering variable

or multiple ”lags” (7;(t) > 0(l € [1,2,3,...,m]), as in

Y1) = 6y, y(t — 7(6), y(t = 2(0)), o y(t = T (1)), ( 2 o), (2.2.18)

or
by introducing a distributed time-lag as in

V0= S0, [ Mesy i), (20, (2219
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or

t

V(&) = Fy(), [ k(s y(s))ds), (2 to), (2.2.20)

to

Equations (2.2.19)—(2.2.20) are normally termed Volterra integro-differential
equations.

Remark 2.2.2 If we replace the Riemann integral by the Riemann-Stieltjes
integral in the equations (2.2.19)-(2.2.20) we obtain, (each fort > ty), the
forms

y'(t) = f(t, y(t),/; k(t, s, y(s))da(s)), (t = to), (2.2.21)
and
y'(t) = f(t,y(), /ttk(t, s,y(s))da(s)), (¢t = to), (2.2.22)

where y(t) € R, s > 0.



Chapter 3

Numerical Methods

3.1 Introduction

In this chapter we introduce numerical methods for initial-value problems.
Our main focus will be on the linear ¥— method, which can be thought of as
a generalisation of the classical Euler or trapezium rules. These methods pro-
vide an important prototype for investigation because they can be classed
as either linear multi-step methods or as Runge-Kutta methods; in conse-
quence, properties that are established for ¥#—methods may well be found in
more complicated methods.

3.2 Linear multi-step methods

All the numerical methods for initial-value problems that are discussed here
are based on the idea of discretisation: we approximate a true solution y
defined on a continuous interval [tg, 7] by an approximate solution defined
on a set of discrete points by ¢, = to +mh, m = 0,1,2, - (the parameter
h > 0 is called the step-size). We introduce familiar methods for ODEs and
discuss their adaptation to equations with deviating argument later.

Let us consider the ODE (1.1.1);

e suppose h >0, t =ty +mh, m=20,1,2,---.
o write t,, := to + mh and define To = {to, t1,t9, - }

o write y(t,,) to denote an approximation to y(t):

Y(tm) = y(tm) (3.2.1)

46
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(in which y(¢,,) is the value of the true solution at ¢,). In our dis-
cussion, 7T is the domain of definition of ¥ (though for more general
problems we need to extend the domain to [{, o) using a dense-output
process);

e when we seek brevity, we use the abbreviations

gm = :lj(tm) and fm = f(tmyg(tm)) (m € {07 1,2, }) (3'2'2)

when discussing the ODE case (1.1.1). (We shall amend (3.2.2) when
we consider approximations to solutions of other equations.)

Remark 3.2.1 The numerical methods indicated here are methods for deter-
mining, in sequence, the approximations {y{ty)} using a chosen formula for
the calculations. In o 1-step method, the approzimate solution of the ODE
(1.1.1) at tyyy is computed using the value at t,, using the true initial value
(m = 0) or computed at a previous stage (m = 1,2,--+ in turn). General
Runge-Kutta methods involve the computation of ‘stage values’ where an ap-
proximation is obtained at additional points in [ty, tmy1] in order to take the
full step. In a k-step multi-step method, the approzimate solution of the ODE
(1.1.1) has to be available at each of the points ty,--- 1y before the approxi-
mation at {41 18 oblained. Such methods require the initial value and starting
procedures in order to compute the approzimations at {t1,ta, - ,tk_1}.

A general linear multi-step method or linear k-step method, using a fixed
step h > 0, for the ODE (1.1.1) is defined by suitable parameters {c;, 5;} in
a formula ¥pm1 + Z?zl AjYm—j1 = D Z?:o Bj fm—j+1. (o, B; are constants
that specify the formula.) The formula defines %41 as the solution (if it
exists) of

k A
Uma1 — hBof (tm1, Uma1) = Z QjYm—jt1 + Z Bj fm—ja1- (3.2.3)
o1 =0

for successive values of m. (In the Adams formulae, oy = 1 and «; = 0 for
j €42,3,---,k}.) Equation (3.2.3) has a solution if By = 0 or (for a wide
class of functions f) if h is sufficiently small. Now, %11 = ¥(tmy1) and we
can consider (3.2.3) with m replaced by m + 1.

We next indicate the structure of Runge-Kutta methods. The general s-
stage Runge-Kutta method is defined for the solution of (1.1.1) by a choice
of A > 0 and suitable parameters in a formula

Fltmar) = T(tm) + 2D bikims, (3.2.4)
i=1
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where the values {k,;} are to satisfy
8
km,z' = f(tm =+ Cih': g(ym) + Zaijkm,j) (Z € {11 21 T 55})' (325)
=1

Equation (3.2.5) has a solution if a;; = 0 for j > ¢ and, more generally, for a
wide class of functions f, whenever & is sufficiently small.

Example 3.2.1 Consider the approzimate solution of (1.1.1). Throughout,
Yo = y(to) and h > 0.

o Fuler’s method is associated with the formula
y“m-l—l) = gm+1 = gm + h'f(tm: gm) (m =012, ) (3-2-6)

It is the simplest numerical method. It is both a one-step method and
a one-stage Runge-Kutta (RK) method and is an explicit method.

e By contrast the implicit Euler’s method s associated with the formula
g(tm—kl) = §m+1 = gm -+ h'f(tm: §m+l) (’I’TL =0,1,2,--- ) (327)

(with Yo = y(to) and where h > 0). This is an implicit formula that
must be solved for Ymy1 form=20,1,2,---.

e The trapezium rule method is associated for h > 0 with the formula

— ~ - 1 - 1 ~
y(tm+1) =Ymtl = Um + Eh'f(tmaym) + §hf(tmaym+l) (328)

(m=0,1,2,--- ). with Yo = y(to), It too is an implicit method.

e The method defined, where h > 0, by the explicit formula

~ ~ ~ h _ h ~

y(tm+1) = Ym+l = Ym + hf(tm + 9 Ym -+ Ef(tm, ym)) (3-2-9)
(m =0,1,2,--- ), can be rewritten as a two-stage Runge-Kutta method.
It is based on the mid-point rule in which the mid-point value y(t,, %)

18 approzimated using Euler’s method with step %h.

The tmplicit formulae are in general solved by an iterative method, bul for
linear ODEs the implicit equations reduce to linear equations that can be
solved explicitly unless h is an exceptional value.
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3.2.1 The Y-method for ODEs

The ¥-method is a generalisation of methods such as Euler’s explicit and
implicit methods and the trapezoidal rule. For the ODE (1.1.1) we have the
following definition.

Definition 3.2.1 The general 9-method for (1.1.1) is defined for ¥ € [0, 1]
by the formula

Ttms1) = Umet = Tm + A fmn + (1 = 9) F(bms1, Pinsr )]s (3.2.10)
(m == Oa 11 U ); where fm = f(tmy ’ljm) (M’Ld g(tO) =Yoo = y(tO)

Remark 3.2.2 When ¥ =1 we obtain from (8.2.10) the form (3.2.6) — the
Euler explicit (or forward) method for (1.1.3). When ¢ = 0 we obtain from
the equation (3.2.10) the form (3.2.7). When ¥ = % we obtain from the

2
equation (3.2.10) the form (3.2.8) — the trapezoidal method for (1.1.3).

Example 3.2.2 Let us consider the ODE (1.1.8), y'(t) = ay(t) for scalar a.
Applying, in turn, the Euler forward rule (3.2.6), Euler backward rule (3.2.7)
and trapezoidal rule (3.2.8) we obtain, with h > 0 and form = 0,1,2, ..., three
basic discrete formulae — respectively for 9 =1, 9 =0, and ¥ = %:

- ~ ~ 1 . - 1+ tah _
Um+1 = (L+ah)¥m,  Ymy1 = mym, and Ymy1 = 1= 1ah i—ahym’
2

(3.2.11)
including (1.6.9), These are discrete analogues of the ODE (1.1.8). The
sequences are defined if, respectively,

h >0, h >0 and ah # 1, h >0 and ah # % (3.2.12)

Remark 3.2.3 (Dense output) Although the primitive ¥-method described
here provides approzimate solution values on a mesh Ty (Y(tm) = Ym), we
sometimes require a densely-defined approzimation (‘dense-output’) (y(t) for
general t € R). There are various possibilities for obtaining such values and
we indicate two:

1. We may define Y(tm, + sh) as (1 — 8)Y(tm) -+ sY(tms1) using linear in-
terpolation;

2. We may define y(in, + sh) as the solution Ymys of

Umts = Um + SB[ frm + (1 = ) F(bmess Urass)], s € (0,1).  (3.2.13)
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Both approaches may be generalised, in principle, to functional differential
equations (DDEs etc.).

The sequences corresponding to (3.2.11) when a is replaced by a matrix
A € R™™ and we consider y/(t) = Ay(t) are easily written down, and are
defined, respectively, for all A > 0, for all A > 0 when det[] — hA] 5 0, and
for all A > 0 when det{I — $hA] # 0.

Lemma 3.2.1 For the general 9-method applied to y'(t) = Ay(t) (where
A € R™™) we obtain, provided det[l — (1 —39)hA] # 0, the sequence {Um }m>o0
satisfying yo = y(to) and

Umar = I — (1 = NRAMI — 9hA)m (m=0,1,---). (3.2.14)
Then y : To — R™ is defined by the relation Yy = Y(tm) form =0,1,2,---.
Definition 3.2.2 (a) The characteristic polynomial for a recurrence relation
Ums1 = MUy, where M € R™" and ug € R" is given (3.2.15)
is defined to be
X(A) 1= det[A] — M], (3.2.16)

and its zeros { A} are called characteristic values. (b) The sequence {tm tm>0
in (3.2.15) is oscillatory if the function u with domain To and u(tm) = Unm
is oscillatory in the sense of Definition 1.1.8. (c) The recurrence (3.2.15) is
called oscillatory if all its solutions are oscillatory.

Lemma 3.2.2 The recurrence (3.2.15) is oscillatory if and only if there is
no characteristic value that is real and positive.

3.2.2 The Y-method for numerical integration

Consider the issue of calculating ftf g(s)ds (for to < T). This is equivalent
to determining y(T") where ¢/(¢t) = g(T) (to <t < T) and y(tp) = 0. If
we select an integer N and write h := (T — ¢5)/N then we can calculate an
approximate value using the ¥-method and we obtain

/Tg(s)ds ~ h{9g(to)+g(to+h)+g(to+2h)+- - (1= g(to+Nh)}. (3.2.17)

to

Here g(¢) is evaluated at a set of equally-spaced arguments. It is also possible
to use non-uniformly space abscissae. Suppose that each value h,, is positive
and

b1 = by + hm(m S {0, 1,2, ,N}) and Il = T. (3218)
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Then (3.2.17) generalises, with ¢, = to + £h (£ € N) to

J, o

Z ftm+l (s)ds = Z hn{9g(tm) + (1 — ) g(tms1) }-

m=0
(3.2.19)

3.3 The ¥-method for DDEs

The ¥-method for ODEs can be adapted to the treatment of a general DDE
(1.2.1), ie., ¥1'0 = f(y,y(¢t),y(t — 7)) where 7 > 0.

Definition 3.3.1 Choose h such that T = Nh where N € N. The method of
the general form

gm+1 = gm + h['&f(tm:gm, gm—N) -+ (1 - ﬁ)f(tm-l—lz gm+1,§m~N+l): (3'3'1)
form € {0,1,---} and 9 € [0,1] is called the ¥-method for (1.2.1).

Using the conditions in (3.3.1) we obtain different versions of the ¥ meth-
ods for (1.2.1):

y'(t) = f(t,y(t),y(t — 7)) (t>to). (3.3.2)

Throughout, N is a positive integer with Nh = 7. When ¥ = 1 we obtain
from (3.3.1) the form (3.3.3)

Tt = T & hf (s o T ) M= 0,1, (3.3.3)

This defines the Euler forward (explicit) method for the DDE (3.3.2). When
¥ = 0 we obtain from (3.3.1) the form (3.3.4) ~

gm+1 == gm + hf(tm.{.]_, @’m.}.l, gm+l_N) m = 0, 1, vesvye (3.3.4)

the Euler backward (or implicit) method for the DDE (3.3.2). Finally, when

¥ = 1 we obtain from (3.3.1) the form

~ - h ~ o~ - .
Ym+1 = Ym + g[f(mvym> ym—N) =+ .f(tm+1a Ym+1, ym-f—l——N)]a (3-3-5)

for m = 0,1, ....,. which defines the trapezoidal method for the DDE (3.3.2).
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Example 3.3.1 Consider y'(t) = py(t — 7), from (1.2.8), or, equivalently,

Y1) = py(t —1) (3.3.6)

with py = . Applying, respectively, the Euler forward rule (3.3.3), Euler
backward rule (3.8.4) and trapezoidal rule (3.3.5) we obtain,

Um+1 = Ym + Mhhgm—N: (3.3.7)
Ymt1 = Ym + ﬂhh§m+1—Na (338)
and
~ o~ ,Lahh ~ ~
Ym+1 = Ym + 7(ym—N + Y18 ), (3.3.9)

(m € Z) where N is a positive integer, and h = 1/N.

3.4 J-methods for advanced differential equa-
tions

Consider (1.3.1), namely the advanced differential equation (ADE)

y () = fty),ylt+ 7)) (r>0). (3.4.1)

Definition 3.4.1 With ¢ € [0,1], the general form of the ¥-formula for
(3.4.1) is defined by the formula

gm»{-l = gm + h[ﬁf(tmn gma gm«k-N) + (1 - ﬁ)f(tm—i—la §m+1= gm—f-l—i—N)]a (3-4-2)

(m € Z) where Nh =71 (N € N). If, under suitable conditions, a sequence
{Ym} exists then an approzimate solution y is defined on To on setting §(ty) =
Um (€ = 0,1,2,---). The associated method is called the ¥9-method for the
ADE (3.4.1).

Definition 3.4.2 When ¥ = 1 we obtain the Euler forward (explicit) method
for the advanced differential equation (1.8.1) from the equation (3.4.2). This
is of the form

Ym+1 = Um + Bf (b, Y, Ymaw), M EZ, (3.4.3)

where N € N and h =7/N.
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Definition 3.4.3 When ¢ = 0 we obtain from (3.4.2) the Euler backward
(tmplicit) method for the advanced differential equation (1.8.1). This is of
the form

Ym+1 = Ym + hf(tnﬂ-la Ymet1s gm+1+N)a (3~4'4)
where N is a positive integer and h = 7/N.

Definition 3.4.4 Whend = § we obtain from (3.4.2) the trapezoidal method
for the advanced differential equation (1.8.1), of the form

- - h S ~
Ym+1 = Ym + g[f(tma Ym, ym-l—N) + f(tm+17 'ym+1:ym+1+N)]7 m e Z,
(3.4.5)
where h =7/N, n € N,
Example 3.4.1 Consider the advanced differential equation (1.3.2),

y'(t) = py(t +1).

Using h — 1/N with N € N, we obtain discrete analogues of this advanced
differential equation. Applying the Euler forward rule (8.4.8), Euler backward
rule (8.4.4) and trapezoidal rule (3.4.5) we obtain,

gm+1 = gm + ,L’Jh?jm+N, (3.4.6)
Ym+1 = Ym + phAYmi14n, (3.4.7)
and
- - wh ~
Ym+1 = Ym + _i“(ym+N + ym+1+N)- (348)

3.5 The Y¥-method for mixed type differential
equations with delay and advanced terms

All of the preceding cases are subsumed in the general one discussed here for
a mixed type functional differential equation (MTFDE).

Definition 3.5.1 For the MTFDE
y'(t) = fy(t),y(t — 1),y + 1)), (3.5.1)
the ¥-method is defined by a choice of h and of ¥ € [0,1] in the equations
Ym+1 = Ym+

h[ﬂf(tma ﬂm, gm—N: gm+N) + (1 - ﬁ)f(tm—i-la "ljm+1> §m+1—N: §m+l+N): (3'5-2)
where Nh =1 and m € Z.
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Euler’s methods and the trapezoidal method are special cases. When ¥ = 1
we obtain Euler’s forward (explicit) method for MTFDE (3.5.1) from (3.5.2),

Ym+1 = Ym + Af (bmy Y YV, Yty )- (3.5.3)
When 9 = 0 we obtain from (3.5.2)

gm+1 = @'m + f(tm-bl) gm+1a ym+1—N> gm+1+N) (3'5'4)

the Euler backward (implicit) method for MTFDE (3.5.1). When ¢ = 1 we
obtain from (3.5.2) the trapezoidal method for MTFDE (3.5.1), namely

- - h - - ~ ~ ~
Ymt+l = Ym + §[f(tm7 Ym> Ym—N, ym-{-N) + f(tm+1>ym+1: Ym+1—N» ym+1+N)]~
(3.5.5)
Example 3.5.1 Let us consider the MTFDE (1.4.8), that is,
y'(t) = ay(t) + by(t — 1) + cy(t + 1). (3.5.6)

Applying the Euler forward rule (8.5.3), the Euler backward (implicit) rule
(8.5.4) and the trapezoidal rule (3.5.5) we obtain, respectively,

':Uvm-l—l - (1 + (Lh)ﬂm + h(b@’m—N—i—N + Cgm+N+N): (3-5-7)
Umi1 = (1 + ah)ym + h(0Ums1-N+N + CUm+14+N+N)s (3.5.8)
and
~ ah.. h, - - -
Umi1 = (a+7)ym+~2— (DTN + Ung1-Nan) + C(Umanen + Umt148+8)] 5
(3.5.9)
where Nh =7, m =0,1,2,.... These are discrete analogues of the advanced

differential equation (1.4.8).

3.6 The ¥ method for integro-differential equa-
tions

For our discussion of the IDE

v = 1ty | "kt s)y(s)d) (3.6.1)
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in (1.5.1), it is convenient to introduce the notation

m—1
z;’: = h{’l(/l*k(tm, to)% + Z k(tm,tj)gj + (1 - ﬁ*)k(tm:tm)gm} (3'6‘2)
=1

to denote an approximation to j;im k(tm, s)y(s)ds based on repeated ¥* quadra-
ture rules and values {g;}.

Definition 3.6.1 The ¥-method for (8.6.1) is defined for 9 € [0,1] and some
9% € [0,1] by the formulae

?jm+1 = gm + h{'&f(tmagma 2:’;:) + (1 - ﬁ)f(tm—%-l, gm+1’ gg;l)}' (3-6'3)
For definiteness, we take ¥* = ¥ unless otherwise stated.

If 9 = 9¥* = 1 in (3.6.3) we have the Euler forward rule, if 9 = 9* =0 in
(3.6.3) we have the Euler backward rule and if ¢ = ¥* =  in (3.6.3) we have
the trapezoidal rule.

Definition 3.6.2 When ¥ = 1 we obtain the Euler forward (explicit) method
for IDE (3.6.1), of the form

Definition 3.6.3 When ¢ = 0 we obtain the FEuler backward (implicit)
method for IDE (3.6.1):

Um+1 = Ym + [(tmt1s Yma1s E{T)n-f-l)' (3.6.5)

Definition 3.6.4 When 9 = } we obtain the trapezoidal method for (3.6.1)
- - h JURY | - L

Yma1l = Ym T §[f(tm) Ym, Zﬁ’t)-f(tm—l-l, Um-+1, 27314-])]' (3'6-6)

3.6.1 Reformulation of recurrences in matrix-vector
form

Let us consider the DDE |
y'(t) +py(t—7)=0
Applying the ¢ method, where 7 = Nh, h = £, we have,

gm—*—l - gn + ah(l - Q)gm—N -+ ahé@m_z\rﬂ-
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Reformulating the recurrence relation as matrix-vector form, we have,

jjm g@ﬂ
'lm— m
U, = Y : ' and Ugppg = y: (3.6.7)
gm—N—i—l gm—N+2
where
1000 ah(1—8) ahf
1000 0 0
U= ] 0100 0 0 |u,
@000 ... 1 0
Umy1 = Al (3.6.8)

In this way the recurrence can be reformulated as a matrix-vector version.

3.7 Difference equations obtained using nu-
merical methods

Examples in the above sections clearly show that any differential equation
would be converted into a discrete form (a difference equation) on the ap-
plication of ¥—methods. Therefore there is a close link between difference
equations and numerical methods for differential equations. So discretisation
for differential equations is a potential source of difference equations involv-
ing approximate solutions %,, which can be computed by an appropriate
algorithm or computer code.

3.7.1 Discretisation techniques

Consider

v = [ vl )it 871)

(where 7 is a real continuous non-negative function on [—1,0] and ¢ is a real
function of bounded variation on [—1,0}), This equation has been used to
illustrate many fundamental ideas. Numerical methods to solve problems
of the form (3.7.1) can be based on a simple combination of a differential
equation solver and a quadrature rule (see [23], [85], [88], [109]). One could
apply, for example, a linear multi-step method or a Runge-Kutta method for
solving the differential equation. We use the linear ¥ —methods which can be
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expressed either as a linear multi-step method or as a Runge-Kutta method.
These are convenient because they illustrate key features of both types of
method and because they have simple natural quadrature rule analogues.
The resulting equations take the form of a discrete Volterra equation or
difference equation. We can give theoretical results that cover more general
methods too.

To start with, a simple constant step-size discretisation of (3.7.1) is con-
sidered. Let us suppose M € N, h = % > 0 and ¥, =~ y(tm) as usual and we
write

y 1 j
m+ =h Z Wi G(7) T Em_ii))- (3.7.2)

j=—M

Here the values w; are quadrature weights, ¢ is a weight function based on
the original measure g in (3.7.1) and k() = k(jh). The function 7 is a dense
output of the solution process. In other words y(t;) = y; for j € N and y(¢)
is defined by interpolating the values {¥(¢;)} when its argument ¢ is not in
the set {t,}. The interpolation will be based on some combination of the
values y; at neighboring points.

In the case of multi-delay equations with constant delays, the step length
may be chosen so that interpolation becomes unnecessary whenever the dif-
ferent delays are related appropriately. The equatlon (3.7.2) provides an
expression for ¥,,41 as a function of ¥, ¥e 15+ - Ym—n-

Of course, here a very simple one-step solver can be used for the dif-
ferential equation. If a multi-step method is chosen then there will be a
much more complicated expression, but we will still retain the same overall
idea, and a discrete equation of the same overall form will be obtained. The
same observation would apply if a backward difference or central difference
approach is adopted to approximating the left hand side of (3.7.1).

For a constant step size h > 0 and all the usual notation, let ¢ € [0, 1].
For the differential equation

y'(t) = F(t, y(t)), y(0) = yo (3.7.3)
the approximate solution given by the linear ¥ — method is given by
§m+1 == 'gm -+ h(l - ’19)Fm + h’ﬁFm+1, F}g — F(tg,”ljg). (374)

The corresponding quadrature rule approximates the integral

/(mﬂ)h F(s)ds = h(1 — 9) f(mh) + ko f((m + 1)h). (3.7.5)

mh
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To integrate over an interval of length unity ([0, 1], say) we may take a step

h=1/M, write
1 M-1  a(k4+1)h
/0 f(s)ds = kzz(:)/k f(s)ds (3.7.6)

h

and approximate each integral over an interval [kh, (k + 1)h] using (3.7.5).
The approximation simplifies to read

/ 1 F(8)ds = h(1 —8)fo + I i fo+ RO far (b= 1/M). (3.7.7)

k=1

Example 3.7.1 We consider examples based on choices of r and q in the
equation y'(t) = ffl y(t—7(s))da(s) given in (3.7.1). The simplest case arises

v = [ y(t -+ <)ds (3.7.8)

with r(s) = —s, q(s) = s. Applying a discrete scheme based on an Fuler rule
(% = 0) for the differential equation and the corresponding forward rectangu-
lar rule (the repeated explicit Euler rule — 9 = 0) for the quadrature we then

obtain
M—1

Uit = Um + 282 Y jhm—y  (h=1/M), (3.7.9)
7=0

This is an elementary finite order difference scheme.
For a further example, consider the equation

0
y'(t) = 2/ y(t + <)cds (3.7.10)
-1
This is of the form (3.7.1) with

q(s) = <%, r(s) = —s.

However the example

0
y'(t) = / y(t — <Hdg(s) where g(s) = ¢* (3.7.11)

-1

(to which we return later) shows how the discretisation of apparently simple
equations may become unexpectedly complicated. Indeed, we write y'(t) =
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ffl y(t — ?)dq(s) as y'(t) = 2f_(_]1 y(t — ¢*)sds) and direct application of a
simple discrete scheme based on the explicit Euler formula gives us

M-1

Uit = Gm + 20% > jhG(tm — 5°R), (3.7.12)
J=0

It is easy to see that we need to interpolate the values of § since ty — j2h will
not always be one of the values {t,}. However, depending on the function
function v, we may be able to avoid this problem (a) by restricting the choice
of h or (b) by using a non-uniform grid for discretising the integral (thereby
using only values 4 ). Both approaches can be applied for the present ezample.

3.7.2 Some remarks on quadrature

An early discussion of the definition of Riemann-type integration can be
found in [87]. We recall the standard definition of a Riemann integral (see,
also, [1], which yields

1 N
| #6)ds == > fows = omwgo1} (0, = (1) a5 max{ongen — owg} 0
(3.7.13)
where, for each IV,
0=0‘N'0§O“$V,1 SO‘Nglg"' SO";\{,NSO'N,N:L (3714)

Any particular choice (3.7.14) can be used to give an approximation. Taking
oy; = —1h (for j = 1,2,--- ,N and h = 1/(N — 1)) we can obtain as
particular examples the composite versions of the ¥ rules (compare (3.7.7)).

Remark 3.7.1 (a) Given low-order smoothness on [ (assume Lipschitz-
continuily, or a bounded first deriwative, for f) the term o(1) in (3.7.13)
is actually O(h). Thus the errors in any repeated ¥ rule (3.7.7)) are O(h)
under the mildest of conditions.

(b) However, with sufficiently high-order differentiability of f, the quadra-
ture errors are O(h*) for any r when f is periodic of period unity. This result
follows from formulae of Euler-Maclaurin type. The result is of interest when
one approzimates an integral around a simple closed contour, since the in-
tegrand is periodic — with period equal to the length of the closed contour —
when the variable of integration is distance along the contour from some fixed
point.



60

We turn, now, to the approximation of a class of Riemann-Stieltjes inte-
grals fo f(s)dQ(s ) The classical analysis literature contains more than one
definition of the Riemann-Stieltjes integral, but this need not concern us as
we consider a subset of the possible choices of 2. Moreover, there is little in
the classical numerical analysis literature on this topic, and we shall restrict
ourselves to elementary approximation formulae.

Lemma 3.7.1 (a) If f is continuous and 2 is of bounded variation on [0, 1],
then the Riemann-Stielljes integral fo 5)dQU(s) exists. Furthermore, (b) if
2 has a continuous derivative on [0,1] we have

/f )dQ(s /f )Y (s (3.7.15)

Z (ong) — Qowj-1)} (o) +o(1) as max;{ow 11 — on;} — 0.
=]
(3.7.16)

where, for each N,
OZO-N,OSO-EV,]_SO'N,IS"‘go—;\J,NSO'N,N:L (3717)

The second result (b) follows because each term {Q(oy;) —Q(on j-1)} in the
sum can be expressed as (on; —onj—1) X (UN:,) where oy ; € [on,j—1, 0N ]
and we can invoke (3.7.13) with the choice o'y ; = o'n;

3.7.3 Quadrature for functional equations

In the context of the discretisation of functional differential equations that
involve integrals, we consider formulae that generate approximations 7, ~
y(tm)} where ¢, = to + mh. It is appropriate to ask whether quadrature
formulae that approximate the integrals can be expressed directly in terms
of values {ym }-

To agsist the discussion, let us focus on

0
J(t) = / 9t = r(€)da(s) (3.7.18)

that appeared in (3.7.1). Let us seek an approximation to ffl Y(tm—7($))dg(s)
that involves only values ¥, }. If we base this approximation on (3.7.16) we
will have an approximation

/"y“( — r(6))da(s Z{q 0ws) — Q(on51)}(tm — 7(0ly ;) (3.7.19)

-1
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in which the o— and o’-values satisfy (3.7.17), and we are looking for such a
choice subject to the condition t,, — (o} ;) € {t,}; thus, we require

(0% ;) = Kimyh for some Ky, ; € Z_. (3.7.20)
At the same time, it is desirable, on the grounds of consistency, that

maX{UN,j+1 - O'N’j} —+0as h—0. (3721)
J

Remark 3.7.2 Finding a suitable approzimation may not always be possible,
but an alternative procedure in which Y(tm—r(0yy ;) is expressed (using some
interpolation formula) in terms of {Ue} is always open to us.

Returning to (3.7.19), it is not a big step to deduce the related approxi-
mations

[t = 1(©)dals) & > {ows) = ong-1}iltm — (i, Dalowy) (37.22)

or

0
[t —r(e)dats) ~ Z{m—am it — (0;)a(on-1) (3.7.23)

0

Example 3.7.2 (a) Consider the approzimation of | y(tm — s%)sds which
-1
corresponds to r(s) = s* and q(s) = 3s* in the discussion above. Pick

o; = jVh where forj € {0,1,2,-- M} and h = 1/M>. (3.7.24)

For convenience we shall here set N = M2, Then (3.7.22) combined with
the additional approzimation y(t) = y(t) provides us with the approrimation

S VG + D — VRRYi o) VRh=h S {/EF DE = B}tnoio)
k=0 k=0

(3.7.25)

Observe that oy ; — onj—1 — 0 as h — 0.
0
(b) Nezxt, consider the approzimation of Y(tm — s*)s3ds which corre-
-1
sponds to (s) = s® and q(s) = 3s* in the discussion above. Pick, in place of
(3.7.24),

o; = jVh where for j € {0,1,2,---M} and h = 1/M?* (3.7.26)



62

(again, on; — onj—1 — 0 as h — 0) and by a similar process to the one
above we obtain

/0 Y(tm — s*)sPds =~ h Z_:{\“/ (k+ 1)k3 — k}g(tm_rs). (3.7.27)
k=0

-1

For convenience we have here set N = M* and h = 1/N.

3.8 IDVEs with oscillatory solutions

In this section we discuss qualitative behaviour of solutions of first order
DVEs. These have oscillatory solutions given certain conditions. We gener-
ate a first order linear autonomous homogeneous DVE from the delay IDE
(1.5.12) and having the generic form
N-1
Umi1 = Tm + Y _Pi¥im—y =0 (3.8.1)
7=0

where {py} and h are constants and 7,, € R". Every solution of the equation
(3.8.1) oscillates if and only if the characteristic values of the equation do
not include at least one positive real number.

3.8.1 Generating DVEs from delay IDEs using numer-
ical methods

Let us consider the non-oscillatory IDE (2.24), namely
0
y(t) =2 f y(t — 6%)0d
-1

Refer back to the discussion of Section 3.7.3. Let us suppose h = 1/M?, and
we derive equations for ¥, =~ y(tm). by applying the explicit Euler rule to
discretise the derivative and discretising the integral using (3.7.25). We have
(on simplifying)

M2-1

U1 = G = 2107 Y (/{6 + 1)k = k)gm—sc = 0. (3.8.2)
k=0
Similarly let us consider the non-oscillatory IDE of the form,

J(t) = 4 /1 "yt — 096%d0 (3.8.3)
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If the Euler forward rule is applied to the DDE (3.34), we have, on using the
discretisation (3.7.27) and simplifying,

MA—1
Uir = G = 40 Y (/BT DR — K)fies (h=1/M").  (384)
k=0

In the next chapter the most sophisticated analytical and numerical meth-
ods will be studied to develop the analysis for the new numerical and ana-
lytical methods.



Chapter 4

Some Sample Differential
Equations with Oscillatory
Solutions

4.1 Introduction

This Chapter introduces some differential equations with oscillatory solutions
and provides examples of the types of equation that will be used later in the
thesis. We endeavour to set the equations that we consider in context. The
basic constant-coeflicient homogeneous equations that we have introduced,
that is, the scalar cases

Y =ay(t), YO =bylt—7), yB=cylt+r),  (4Lle)

y(t)=aylt)+bylt—71), ¥t) =ay(t) +bylt—7)+cy(t+7), (4.1.1b)
or the rather more general systems (with y(¢) € R™)

y(t)=Ay@t), Y®)=Bylt—-7), y({)=Cuylt+7) (4.1.2a)

y'(t) = Ay(t) + Byt — 7) + Cy(t + 7), (4.1.2b)

can be generalised in a number of ways. First, we may increase the number
of deviating arguments, as in

y'(t) = Ay(t) + Z Byy(t —1;) + Z Ciy(t+17), (4.1.3)

(where each 7; and each Ty 18 non-negative). Second, we may replace con-
stants by variables, as in

y'(t) = A()y( +ZB y(t — () + 3 Ci)ylt +77(t).  (4.1.4)

g

64
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Then, we may replace sums by Riemann integrals or Riemann-Stieltjes inte-
grals, as in

y'(t) =
1
AW+ 3 Byt =)+ Colowe +70)+ | [an(olate+r(s)
’ ’ (4.1.5)
or, in the scalar case
(0 = a0+ 30 b=+ vt )+ [ v,
’ ’ (4.1.6)

Remark 4.1.1 Non-linear versions can sometimes be related to linear ones
through a process of linearization, but, for ill-posed equations, this lineariza-
tion may prove difficult to justify. The step away from equations with instan-
taneous or retarded arguments to those where arguments may be advanced
presents challenges that have been addressed in the literature.

As part of our orientation, we here quote from Krisztin’s paper [90], of
2000. In that paper, an example is given to show that the linear autonomous
functional differential equation of mixed type v'(t) = f_ll[dn(s)]y(t + 8) may
have a non-oscillatory solution in spite of the nonexistence of real roots of
its characteristic equation. However, under a regularity condition on 7 at
1, exponential boundedness is shown for the non-oscillatory solutions. The
following quote (taken from [90], edited and adapted to our notation), is
instructive. It is assumed that n is an n xn matrix-valued function of bounded
variation.

Recall that for linear autonomous FDEs of retarded type of the
form y'(t) = ffl[dn(s)]y(t + s), the Cauchy problem for positive
times is well-posed. There is an exponential bound on the growth
of the solutions at co. Such a bound is related to the fact that there
is an upper bound for the real parts of the roots of the charac-
teristic equation det[A] — ffl exp(As)dn(s)] ... Furthermore, the
existence of a mon-oscillatory solution is equivalent to the exis-
tence of a real root of the characteristic equation. The situation
for y'(t) = fjl[dn(s)]y(t + 8) 1s, in general, strikingly different.
The Cauchy problem is not well posed for both positive and neg-
ative times. There is no upper bound for the real parts of the
roots of the characteristic equation. As a consequence, there are
solutions growing faster than any exponential as t — oco. Series



representations for all solutions ... also are not known. ... First
we giwe an example showing that y'(t) = fjl[dn(s)]y(t + 8) may
have a non-oscillatory solution in spite of the fact that the corre-
sponding characteristic equation has no real roots. The function
grows faster than any exponential as t — oo. This example pro-
vides a counterexample to the conjecture that the oscillation of
all solutions of y'(t) = f_ll[dn(s)]y(t + 8) can be characterised
by the nonexistence of real roots of the characteristic equation
det[A] — fjl exp(As)dn(s)] = 0. For our second result it is as-
sumed that n satisfies a weak non-degeneracy condition at s = 1.
Then it is proved that, although there is no exponential bound
for all solutions, the non-oscillatory solutions are exponentially
bounded at oo . ...
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We return to related issues in §4.4 (in particular Remark 4.5.1), and refer

to [90] for additional detail.

In what follows, we restrict ourselves to scalar equations and to a discus-
sion of (4.1.1) supplemented by some particular examples that fit in with the
generalisations indicated above. To be specific, in the following sections we

consider the examples shown:
2y"(t) + 3y (t) +4y(t) =0, ¢>0.

y'(t) =3yt—1), ¢=0.
y'(t) =—y(t—1), t=0.
0
y'(t) = 2/ y(t — s%)sds, t>0.
-1
-1 [0

y(t) = — y(t—l—i-@)dé?, t>0,a>0.
a J_1 9

vt +yt—-1)+ylt+1) =0, t>0.

1
y'(t) =/ y(t+s)ds+y(t+1), t>0.
-1

etc.

4.1.1 Oscillation

Before we proceed, we recall from Chapter 1, Section 1.1 the definitions 1.1.3

of an oscillatory solution and of an oscillatory equation.
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Definition 4.1.1 If 7 C [tg, o) 5 a set of real numbers with no finite upper
bound, then a real-valued function u of t € Ty is said to be oscillatory (or
oscillatory about zero) if there does not exists a value T € [tg, 00) such that
either

u(t) >0 fort € ToN[T,00) oru(t) <0 fort e ToNI[T, o). (4.1.7)

A function that is not oscillatory is called non-oscillatory: that is, there does
exists a value T € [tg, 00) such that either

u(t) >0 fort € ToN [T, 00) or u(t) <0 fort e ToN [T, oc0). (4.1.8)

A function is either oscillatory about a value k or non-oscillatory about
a value k if the function with values u(t) — k is respectively oscillatory or
non-oscillatory.

Now we recall what we will mean by an oscillatory equation.

Definition 4.1.2 A scalar differential equation is said to be an oscillatory
equation if and only if all the solutions of the equation are oscillatory func-
tions n the sense of Definition 4.1.1.

As we have seen, for the cases of certain linear equation, the presence
(or otherwise) of non-oscillatory solutions can be studied by considering the
characteristic equation. We recall the following result

Lemma 4.1.1 Let £ be a linear differential operator with constant coeffi-
cients and deviating argument such that all the characteristic values (eigen-
values) of L are complex then the equation Ly = 0 s oscillatory. If one or
more of the characteristic values is real then the equation is non-oscillatory.

The proof is immediate, simply by writing the solution as a linear com-
bination of eigenfunctions and setting all but one coefficient to zero.

4.2 ODEs with oscillatory solutions

In Section 1.1 and in Lemma 1.1.5 we discuss qualitative behaviour of first
order and second order ODEs. First order scalar linear ODEs with real
coeflicients have no oscillatory solutions but second-order real ODEs may
have oscillatory solutions.
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Example 4.2.1 Consider the second order linear autonomous homogeneous
differential equation obtained by setting a = 2, b = 3 and ¢ = 4 in the
equation (1.1.17), i.e.,

2y"(t) + 3y (t) + 4y(t) = 0, (4.2.1)

where y(t) € R and we have initial values y(to) = yo, ¥’ (t) = yj. According
to the Lemma 1.1.6, every solution of the equation oscillates (and we would
then conclude that the equation is oscillatory) if and only if the characteristic
values of the equation are complezx with non-zero imaginary part.

Remark 4.2.1 For equation (4.2.1), the characteristic equation can be writ-
ten
222+ 30 +4=0 (4.2.2)
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