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Abstract

The pervading theme of this thesis is the development of insights that 
contribute to the understanding of whether certain classes of functional dif­
ferential equation have solutions that are all oscillatory.

The starting point for the work is the analysis of simple (linear au­
tonomous) ordinary differential equations where existing results allow a full 
explanation of the phenomena. The Laplace transform features as a key tool 
in developing a theoretical background.

The thesis goes on to explore the corresponding theory for delay equa­
tions, advanced equations and functional differential equations of mixed type. 
The focus is on understanding the links between the characteristic roots of 
the underlying equation, and the presence or otherwise of oscillatory solu­
tions.

The linear t?—methods are used as a class of numerical schemes which lead 
to discrete problems analogous to each of the classes of functional differential 
equation under consideration. The thesis goes on to discuss the insights that 
can be obtained for discrete problems in their own right, and then considers 
those new insights that can be obtained about the underlying continuous 
problem from analysis of the oscillatory behaviour of the analogous discrete 
problem.

The main conclusions of the work are some semi-automated computa­
tional approaches (based upon the Principle of the Argument) which allow 
the prediction of oscillatory solutions to be made. Examples of the effec­
tiveness of the approach are provided, and there is some discussion of its 
theoretical basis. The thesis concludes with some observations about further 
work and some of the limitations of existing analytical insights which restrict 
the reliability with which the approach developed can be applied to wider 
classes of problem.
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Chapter 1 

Introduction

In this chapter, we introduce definitions and equations that will be used 
or referred to later in the thesis; we also introduce various mathematical 
concepts and varieties of differential equation.

1.1 Ordinary Differential Equations

1.1.1 First order ordinary differential equations
We suppose that y(t) £ Mn for some n £ N (scalar equations arise when 
77, =z i); we have t £ M (typically, t £ [bn00) f°r some t0). An ordinary 
differential equation of first order is an equation of the form

y'(t) = /(b?/W), t > to (1.1.1)

with a given function / £ Iff being continuous when t > t0, for
bounded v £ Iff). A function y with absolutely continuous components is 
called a solution of this equation for £ > £0 if it satisfies the differential 
equation (1.1.1) for almost all t > to. In particular, and throughout our 
discussion here, y is a solution if it is differentiable for all t > tQ and satisfies 
(1.1.1) for all t > to. The derivative y'(to) is (by definition) the right-hand 
derivative, since it is taken at the left-hand point to. A particular solution is 
determined only when an initial value

y(to) = 2/o (1.1.2)

is prescribed. (Uniqueness of a solution follows from, e,g., a Lipschitz condi­
tion on /.) The equation (1.1.1) together with the initial condition (1.1.2) is 
known as a initial-value problem. Notice that in the case where y is a scalar 
function, the need for a single initial condition corresponds to the problem 
being 1—dimensional; the general case is n-dimensional.

8
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Remark 1.1.1 We shall use the term ‘scalar’ to refer to either a real or 
a complex value. We remark that systems of complex-valued equations may 
arise and be represented in the form (1.1.1) with a vector-valued function 
y : [t0, oo) -» Cn. / : [t0, oo) x Cn --?► Cn.

1.1.2 First-order linear homogeneous and autonomous 
equations

We recall some well-known material. In this thesis, we shall refer several 
times to one of the most basic first order ordinary differential equations.

Definition 1.1.1 The basic equation

y'(t) = ay(t), t > i0, (1.1.3)

with initial condition y(to) — yo is a homogeneous first-order linear scalar 
differential equation where a is a constant scalar parameter (we take a E M 
unless indicated otherwise), y is the solution (a scalar-valued function of the 
real variable t) and y'it) is the value of its derivative.

Remark 1.1.2 (a) Each different value of the parameter ‘a’gives a different 
differential equation. The differential equation (1.1.3) is a relationship be­
tween the value of a function of time y(t) and the value of its derivative y'{t). 
It is the simplest and one of the most fundamental differential equations and 
can be used as an initial point of reference in this work, (b) There exist a 
number of directions in which (1.1.3) can be generalised: first, a E M may be 
changed so that we consider complex-valued a (and complex-valued y); sec­
ondly, we may replace a by a matrix A E MTlxn (and vector-valued y, with 
yit) E W1) so that the equation reads y'{t) — Ay(t). See Remark 1.1.7 and 
Example 1.1.3. (The generalisation from A E Mnxn to the case A E Cnxn 
is straightforward; some of the insight for the first case relies on the second 
case where A is in Jordan canonical form.) Later, we shall consider delay- 
(or retarded-) differential equations which generalise (1.1.3) further.

Lemma 1.1.1 The solution of the initial value problem

y'(t) = Ay(t), (t > to) where A — [a^j] E ]Rnxn

y(t0) =y0eRn

is y(t) = exp[A(t - to)]y(t0) (t > t0).

(1.1.4)

(1.1.5)



10

The reader who seeks a proof of this result can obtain one most simply by 
verification. If A = XJX*1 is the Jordan canonical form where X, J E Cnxn 
(with detX ^ 0) then y(t) = X exp[J(t — t0)]^_1?/(^o) and the qualitative 
behaviour of y can be discussed in terms of the structure of J E Cnxn (see 
Remark 1.1.1). The salient features of J are its eigenvalues (these are in 
general complex) and their multiplicities.

Definition 1.1.2 The characteristic function for yf(t) = Ay(t), where A = 
fcj] e R"xn fand n> 1 is a natural number) is the characteristic polynomial 
of A:

x(A) := det{AJ — A} where I is the identity matrix. (1.1.6)

Its zeros {AA c C are termed eigenvalues or characteristic values both of A 
and of (1.1.4).

Given any constant multiple of x, say £(A) := «x(A) (with k ^ 0), the 
equation £(A) = 0 will be called an auxiliary equation and its roots are the 
zeros of x- Suppose that A^ is a characteristic value; then all multiples of 
exp(Xit) satisfy y'{t) = Ay{t), and there may also be solutions pg(t) exp(Xet) 
where pe(t) is an appropriate polynomial. Any solution of this form is called 
a characteristic solution corresponding to A^.

Later, we shall amend, in a natural manner, the definitions of character­
istic function, characteristic value, and characteristic solution to cover other 
types of linear homogeneous and autonomous differential equation.

Example 1.1.1 det{A — XI} = 0 is an auxiliary equation for (1.1.4).

Lemma 1.1.2 If x(A^) = 0 and Xi is the complex conjugate of X# then 
x{Xe) — 0 (with A e Mnxny).

As a special case of Lemma 1.1.1, one can show very simply that the 
general form of solution to equation (1.1.3) is y(t) = keat. This observation 
leads us to the following result on solution behaviour. The function

y(t) = keat (1.1.7)

is a solution of the equation (1.1.3) where A; is a scalar whose value is deter­
mined by y(to) (that is, k — y(to) exp(—a£o))- For the case a — 0^ k = y(to): 
the constant solution (y(t) = y{to)), is called an equilibrium solution or equi­
librium point for the equation (1.1.3). For a E M and a ^ 0, the sign of a is 
crucial, as the behaviour of solutions is quite different according to whether 
a is positive or negative. The qualitative behaviour is given in the following 
self-evident lemma:
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Lemma 1.1.3 Let y(t) be given by (1.1.7). Then, (1.) if a > 0? y(t) oo 
as t oo when k > 0, and y(t) ~oo as t —oo when k < 0; (2.) if 
a = 0, y(t) = y(to)? a constant; (3.) i/a < 0, y{t) —» 0 as t ^ oo.

Remark 1.1.3 The above qualitative behaviour can be illustrated by sketch­
ing the graphs of solutions (see [78]). In this case the solutions of the equa­
tion (1.1.3) have no oscillatory behaviour - just exponential growth or decay. 
One might gather from Remark 1.1.2 that we shall need to generalise the 
case a E M io obtain oscillatory behaviour. Suitable generalisations arise 
both from considering systems of ordinary differential equations and from 
considering differential equations with deviating arguments, such as delay- 
differential equations.

For its bearing on delay-differential equations later, we include the fol­
lowing result which can be established by verification.

Lemma 1.1.4 The solution of the inhomogeneous equation y'(t) — ay ft) + 
g{t) for t e |/*,oo) (where a E M, p E Clt^^oo)) that satisfies the initial 
condition £/(£*) = y* is y(t) = exp{a(t - £*)}y* + /f* exp{a(£ — s)}y(s)ds.

Farther remarks on ordinary differential equations

Differential equations arise naturally in many areas of science and the hu­
manities such as biology, physics, chemistry, economics etc. Its applications 
are diverse. Nowadays, researchers are using differential equations to solve, 
or try to solve, real life problems such as the diagnosis of diabetes, the spread 
of gonorrhea and the detection of art forgeries etc. (see [30]).

Remark 1.1.4 The equation (1.1.1) can be written as an integral equation 
by integrating both sides with respect to t. Thus for t > to,

y(t) = y(t0) + f f(s, y(s))ds (1.1.8)
dto

which is a special case of a Volterra integral equation in the classical form

y{t)=g{t)+f K(t,s,y(s))ds (t >t0). (1.1.9)
dt0

This is a Volterra integral equation of the second kind. Also of interest are 
Volterra integro-differential equations, e.g.,

y'(t) = G{t,y(t), [ K{t,s,y{s))ds).
dto
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Remark 1.1.5 It is convenient in passing to refer to a different kind of 
Volterra integral equation:

f K(t,s,y(s))ds = g(t) (t>t0). (1.1.10)
Jto

This is a Volterra integral equation of the first kind. The equation does not 
have a solution for arbitrary g G C[i0joo). Indeed, the simplest example, 
Jtoy(s)ds — g(t) (for t > to) has a solution only when gifo) — 0 and g'it) 
exists for t > to (the solution is then g'{t)). This is sufficient to demonstrate 
that the example is ill-posed in the sense of Hadamard (see [110]). We shall 
encounter differential equations with deviating arguments that are ill-posed 
in this sense.

1.1.3 Second order scalar ordinary differential equa­
tions

In this subsection, we meet some of the simplest differential equations with 
real coefficients whose solutions may oscillate, namely second-order autonomous 
homogeneous, linear, and scalar ordinary differential equations.

Definition 1.1.3 (Oscillatory and non-oscillatory real functions) Let
To Q [4, co) be a set of real numbers with no finite upper bound. A real-valued 
function u of t G To is said to be oscillatory (or oscillatory about zero) if there 
does not exists a value T G [to, oo) such that either

u(t) > 0 for t £ To H [T, oo) or u{t) < 0 for t G To H [T, oo). (1.1.11)

A function that is not oscillatory is called non-oscillatory: that is, there does 
exists a value T G [to, oo) such that either

u(t) > 0 for t G To H [T, oo) or u(t) < 0 for t G To H [T, oo). (1.1.12)

A function is either oscillatory about a value k or non-oscillatory about 
a value k if the function with values u(t) — k is respectively oscillatory or 
non-oscillatory.

Some authors define oscillatory functions that are vector-valued by refer­
ence to some cone, say V C Mn; see, for example, [89]. On setting n = 1 it is 
seen that a function that is oscillatory about zero, in our sense, is oscillatory 
in this sense. Our definition above suffices for a real-valued function defined 
for t G {to < ti, < t2, < ts, • * • } as well as for a real-valued function defined 
on [t0, oo). For future use we add the following definition.
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Definition 1.1.4 Any infinite scalar sequence W2> *1 * }> ^ called os­
cillatory if, for arbitrary To = {to < £i, < hr ‘ ’}> ihe function u defined by 
u(tg) — U£ for ^ = 0,1, 2, ■ • • is oscillatory

Remark 1.1.6 Concerning notation, there are various traditions in differ­
ing branches of mathematics and we shall clarify our various conventions. 
In some areas, a vector-valued sequence {uq,Ui,u2, • • • } (with um 6 for 
m E {0,1, 2, • • • }J is denoted by u. In other areas the convention is to index 
using the natural numbers (as inv := {t'i, ^ "}) or to use integer argu­
ments (as m {ti(0), w(l),n(2), • • • } and in {v(\),v(2),v(3),-• •}). Regarding 
u, this latter convention is compatible with that employed in Definition 1.1.4 
when we set tm = m. From the point of view of our analysis (though not 
necessarily that of interpretation), our choice o/7o = {to < < £2, * • • }
be in general immaterial. Thus, the symbol u will denote either the sequence 
{wo, u\, U2, • ■ • } or the function defined on % with indexing {0,1, 2, • • • } (or 
the equivalents with indexing {1,2, 3, • • • as we see fit.

Example 1.1.2 By definition, the null function u E [to, 00) M with 
u(t) = 0 is called oscillatory about zero. The function u E [to? 00) —> M 
with u(t) = tk sm(7Trt) (where k and r ^ 0 are integer) is oscillatory about 
zero, as is the function with u(t) = exp{i/t} sin(7rst) for ^ E M, s E N.

A real differential equation of second order for y(t) is an equation of the 
form

y"{t) = /(t, y(t), for all t > t0, (1.1.13)
with a given real continuous function / (where f(t,u}v) is continuous for 
t > to, u,v E M); a function y with a second derivative is a solution of this 
equation if it satisfies the differential equation (1.1.13) for all t > to- A 
particular solution is determined only when initial values

2/(to) = 2/o £ 2/(t0) = 2/0 E M, (1.1.14)

are given. The equation (1.1.13) together with the initial conditions (1.1.14) 
is known as an initial value problem for a second-order ordinary differential 
equation.

Remark 1.1.7 An n-th order ordinary differential equation can be rewritten 
as a system of first-order differential equations (equivalently, as a first-order 
differential equation for a vector-valued solution with n components). In a 
similar vein, a first-order differential equation for a complex-valued function 
may be written as a coupled pair of ordinary differential equations for a real 
vector-valued solution.
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Example 1.1.3 (a) If we write u(t) = w2(i)]T = [y(t),y'(t)]T then we
can recast (1.1.13) (wherein all the functions are assumed to be real-valued) 
in the form

u'(t) = «i(t) u2(t)
. “2(f). _ /(t,ui(i),ii2(t)) _ (t > to), (1.1.15)

which is clearly (given a change of notation) of the form (1.1.1) with n = 2.
(b) Consider w'(t) = g(t,w{t)) (fort > to) where w and g{t,w{t) assume 

complex values. Write w{t) = wi(t) +m>2(£), and g(t,w(t)) = gi(t,wi(t), 
w2(£))+ ig2(t,Wi(t)JW2(t)) where wi, w2) gi, and g2 are real-valued functions; 
then

' w'M - gi(t,wi(t),w2(t))
. ^(t). _ g2(t,w1(t),w2{t)) _ (t > to) (1.1.16)

which is again (given a change of notation) of the form (1.1.1) with n — 2.

Definition 1.1.5 For a ^ 0 where a, b, c are real constant parameters, the 
equation

ay"{t) + by'(t)+cy{t) = 0 (1.1.17)

with initial conditions y(tf) = yQ, y'(to) = y^, t > to is called a homogeneous 
second-order linear scalar differential equation. Here, y{t) is an unknown 
real function of a real variable t and y'(t) and y"(t) are its derivatives. Each 
set of parameter values (a, b, c) yields a different differential equation. Note 
that the specific solution depends on the specification of two initial conditions 
and the dynamical system has dimension two.

We can rewrite (1.1.17) as y"(t) = —(b/a)y,(i) - (c/a)y(t)). Following 
on from Example 1.1.3 we obtain, with the notation (u{t) = [y(t),y/(t)]T) of 
that example,

ufft) = A Ui(t) wherein A = 0 1
_ u'2(t) . U2{t) _ —cj a —b/a (1.1.18)

The remarks for (1.1.4) now apply. Indeed, the equation equation

aX2 + b\ + c — Q. (1.1.19)

is an auxiliary equation for (1.1.17) and its solutions A!, A2 are the associ­
ated characteristic values or eigenvalues - the eigenvalues of the matrix A in
(1.1.18).
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Lemma 1.1.5 Suppose that a ^ 0, h} and c are real numbers, and let X1) A2 & 
C be the roots of (1.1.19). (a) If \i,\2 are distinct then for any ki, &2 £ C 
the (real- or complex-valued) functions

y(t) = ki exp(Xit) + fc2 exp(A2i) (1.1.20)

satisfy (1.1.17), Further, (b) if X\ = A2 then for any feit2 the functions

y(t) = kiexp(Xit) + fc2texp(Ait) (1.1.21)

satisfy (1.1.17). (c) //Ai,A2 G R then these functions are real-valued so­
lutions when ki, k2 G M; Ai,A2 ^ M then these functions are real-valued 
solutions for suitable hi, A;2 G C. (d) In all cases, ki and k2 are uniquely 
determined by y{tf) and y'fto) and the functions (1.1.20)-(1.1.21) are real­
valued solutions for y{to)}y'(to) G R. Indeed, with Xx = a-\-i/3, X2 = a — i/3 
(o:,/3 G R and i = V—l), (1.1.20) can be rewritten in the real form

y{t) = {ci cos(pt) + c2sin(/?t)} exp(at), ci)2 G R. (1.1.22)

(e) All solutions of (1.1.17) have one of the forms in (1.1.20) - (1.1.22).

Lemma 1.1.5 can be established by verification, with (e) a consequence of 
the fact that &1)2 or ci)2 are determined by y{tf) and yf(to). It is also possible 
to employ Laplace transform theory. If the values of Aij2 are (both) real 
then the behaviour of solutions is quite different depending whether each A 
is positive or negative. The following trivial lemma echoes Lemma 1.1.3 and 
gives the qualitative behaviour.

Lemma 1.1.6 Suppose X G {Ai,A2} and y(t) = A; exp (At) G R. Then, (1) 
if X > 0, \y(t)\ oo as t cx>. (2) If X = 0 and y(t) = kexp(Xt) then, 
clearly, y{t) is constant1 for all t. (3) //A < 0; y{t) —»■ 0 as t oo.

Obviously none of the solutions of (1.1.17) oscillate if Ai and A2 are real 
and all of the solutions of (1.1.17) oscillate if Ai and A2 have non-zero imag­
inary part. We should note (since all linear homogeneous equations have 
the zero function as a solution) that, according to our definition (Definition 
1.1.3), the zero solution is oscillatory. Now we are in a position to state for 
the first time what we will mean by an oscillatory equation.

Definition 1.1.6 A scalar differential equation is said to be an oscillatory 
equation if and only if all the solutions of the equation are oscillatory func­
tions in the sense of Definition 1.1.3.

XA constant solution y{t) = 0 is called an equilibrium solution or equilibrium point for 
the equation (1.1.17).
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From the preceding discussion we obtain the next lemma:

Lemma 1.1.7 The equation (1.1.17) is an oscillatory equation if and only 
if the characteristic values Ai and A2 are complex with non-zero imaginary 
part.

Remark 1.1.8 Second-order differential equations arise quite often in ap­
plications in science and engineering. The equation (1.1.17) is sometimes 
known as an equation of a damped harmonic oscillator (see [78]).

Some of the most important examples of second-order differential equa­
tions are derived from Newton’s second law of motion

my"{t) = F(t,y(t),y'(t)) {t>tQ) (1.1.23)

which describes the motion of a particle of mass m moving under the influence 
of a force F. In this equation y(t) is its position at time t, y'(t) is its velocity, 
and F is the total force acting on the particle. F depends on the position, 
velocity and time (see [30], [78]). If we consider the non-homogeneous form 
of the equation (1.1.17)

ay"{t) + by'(t) + cy{t) == g{t) (1.1.24)

this is sometimes known as the equation for a harmonic oscillator where g(t) 
is an external force at time t.

1.2 First-order delay-differential equations
Here, we consider some first-order linear autonomous homogeneous scalar 
delay-differential equations. Some of the main equations of interest in this 
thesis will be differential equations deviating arguments, in particular those 
with delayed arguments - ‘delay-differential equations’ (DDEs). The study 
of DDEs has been undertaken since the eighteenth century to extend techno­
logical insight. Since the last century it has been developing rapidly. DDEs 
arise in application such as control theory, biology, etc. The study of DDEs 
is therefore often quite applications oriented.

We suppose that y(t) E Mn for some natural number n (n = 1 is the scalar 
case). A delay-differential equation of first order for y(t) is an equation of 
the form

yft) = f(t,y(t),y(t-T)) (1.2.1)
with r > 0, and a function / that is a real-valued continuous function having 
values f(t,u,v) for t > to, and (say) bounded u,v E Mn.
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In analysis, an absolutely-continuous function y(t) is called a solution of 
this equation for all t > to ii it satisfies the differential equation (1.2.1) for 
almost all t > to. In the cases we consider, solutions are differentiable and 
satisfy (1.2.1) for allt > to- For definiteness the derivative at t0 is the right- 
hand derivative. A particular solution is determined only when the initial 
function </> E C[to — r, to] is given in the condition

y(t) = (j){t) for to — t <t < to. (1.2.2)

The need to specify an initial function to determine a unique solution, 
rather than a finite number of initial values needed in (1.1.4), indicates that 
even a scalar delay-differential equation constitutes an infinite-dimensional 
dynamical system.

Definition 1.2.1 The characteristic function of the system of equations

y'(t) = Ay(t) + By(t - r) (t > t0) where r > 0, A, £ E Mnxr\ y(t) E IT,
(1.2.3)

is defined as the function

x(A) = det[A/ — A — B exp(—tA)], (1.2.4)

This function is a quasi-polynomial. The zeros Ag of (1.2.4) are called the 
characteristic values.

We may find it convenient to refer to an auxiliary equation:

Definition 1.2.2 Suppose that£ is an entire function that vanishes nowhere 
in C and denote by x the corresponding function

X(A) := £(A)x(A) for all A E C. (1.2.5)

Then, we refer to (1.2.5) as an auxiliary characteristic function or auxiliary 
function (for the corresponding differential equation) and the set of zeros of 
X is the set of characteristic values.

Definition 1.2.2 is compatible with the terminology introduced for recurrence 
relations (see Definition 1.1.2).

Definition 1.2.3 The first order linear autonomous scalar delay-differential 
equation

ijf(t) = /j,y(t - t) + vy{t)(t > t0) (1.2.6)
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where y{t) £ M, r > 0 and /i, z/ E R are constants will be called the basic test 
equation for DDEs. In this case (1.2.4) reduces to

x(A) := A — ^exp(—r) - v (1.2.7)

which is called the characteristic function for (1.2.6). The zeros Xi of (1.2.7) 
are called the characteristic values of (1.2.6).

A particular solution of (1.2.6) is defined by requiring y(t) = <p{t) for to — r< 
t < t0, given an initial function 4> £ C[to — r, to]-

Remark 1.2.1 For the basic equation (1.2.6), a change of variables allows 
us to normalise by taking r = 1 - to do so we replace fi by ji^ — rpL and u 
by ^ = tv. We would obtain a generalisation of both (1.1.4) and of (1.2.6) 
if we were to consider y'(t) = Ay(t) + By(t — r) (t > t0) with A,B € M7ixn; 
y(t) E Rn as in (1.2.3).

1.2.1 A pure delay equation
The equation

y'(t) = fj,y(t — t) (1.2.8)
where y(t) E R, t > 1 and ^ is a constant is an example of a first order linear 
autonomous homogeneous scalar delay-differential equation. Associated with 
(1.2.8) we require an initial function f and set y(t) — 4>{t) for to “T < t < to- 
The equation (1.2.8) is an example of a ‘pure delay’ equation (where y'(t) 
depends only on past values y(t — r), r > 0) and is one of the simplest 
delay-differential equations.

The next lemma and its corollary relate to the definition of an exponen­
tially bounded function recalled again later in Definition 2.1.2.

Lemma 1.2.1 All solutions of (1.2.8) are continuous, and are exponentially 
bounded in the sense that there exist T > to, k, and 7 E R such that

|y(t)| < k exp(7t) for t > T. (1.2.9)

Proof: The result follows from the method of steps: On every interval [to + 
mr, to + (mTl)r] the solution satisfies y(t) — y(to+mT)-\-fj, ft0+mTy{s — l)ds 
(which is continuous). It follows that \y(t)\ < exp{/i(t — to)} sup^0_rto] \(p(t)\ 
and the result follows.

Corollary 1.2.2 All solutions of (1.2.6) are continuous and are exponen­
tially bounded.
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Remark 1.2.2 It is easy to show that a change of variables can be used to 
convert (1.2.6) into the form v'(t) — /uv(t — r)} compare (1.2.8), or (as a 
particular case, cf. Remark 1.2.1) into

v! (t) — p^u(t — 1) (1.2.10)

obtained with := pr on changing the independent variable. To see this, 
write (1.2.6) in the form y'(t)—vy(t) = (lyit—r) to obtain (d/dt) exp(—vt)y(t) 
= piexp(—vt)y(t — t) or v'{t) = fiv(t — r) with v(t) = ex.ip(—ist)y(t) and 
jl = exp(^r) pL.

Equation (1.2.6) is commonly analysed, as a test of various theories or 
methods. The preceding remarks show that insight can also be obtained 
by taking r = 1 in (1.2.6), as in Remark 1.2.1, or by examining (1.2.8) or 
(1.2.10).

Definition 1.2.4 The quasi-polynomial

x(A) := A —/r exp(—rA) (defined for X G C) (1.2.11)

is the characteristic function for the DDE (1.2.8). The zeros of x are called 
the characteristic values (or eigenvalues) of (1.2.8).

Our next Lemma addresses the behaviour of exponential solutions of 
(1.2.10) and conditions for (1.2.10) to be an oscillatory equation. With 

— rji we obtain corresponding results for (1.2.8).

Lemma 1.2.3 (a) Let us suppose the function

y(i) = fcexpAt, (k ^ 0) (1.2.12)

is a solution of the equation (1.2.10). Then,

x(A) = 0 where x(X) Aexp(Ar) — ja^. (1.2.13)

(b) The behaviour of solutions is dependent on

(1) If fjL^> 0, y(t) go as t co.
(2) If = 0, y(t) = y(t0) for all t>t0.
(3) If Pb < 0, y(t) 0 ast^oo.
(4) The equation x(A) = 0 has a real root for p^ G (~l/e, oo) and has no 
real roots for G (—oo, —1/e) (see [47])-
(5) The equation (1.2.10) is non-os dilatory for p^ > —1/e and is oscil­
latory otherwise (see [47]), when G M.
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Theorem 1.2.4 (A necessary and sufficient condition) (See [70, p.37, 
Proposition 1.3.1] [73].) Equation (1.2.10) is oscillatory (equivalently, every 
solution of the equation (1.2.10) is oscillatory) if and only if the equation 
(1.2.13) has no real roots.

The essential result required to provide a proof of is the fact that the eigen­
functions generated by the characteristic values span the required solution 
space when 0 G C[to — T, t0]. Hale and Verduyn Lunel [83, Chapter 7, p.220], 
for example, has a section on this.

Remark 1.2.3 Our approach can be refined through the use of the Laplace 
transform, which is useful to get a explicit expression as a contour integral 
in the form of an inverse Laplace transform for a solution y(t).

1.3 First order advanced differential equations
Suppose, as previously, that the function / with values f(t,u,v) G Mn is 
continuous for t > to, and bounded u,v G for some natural number n 
(scalar equations arise for n — 1).

Definition 1.3.1 We suppose that r > 0. An equation of the form

y'{t) - f{t,y{t),y{t + T)) (1.3.1)

with y(t) G Kn is an advanced differential equation of first order for y. A 
continuous function y is called a solution of equation (1.3.1) on [to>T) if it 
has a derivative y' and y{t) satisfies (1.3.1) fort G [to,T), say.

A particular solution of (1.3.1) is determined when, e.g., a suitable function 
f is given in the condition

y(f) = <j){t), for to <t <to + r. (1.3.2)

Definition 1.3.2 The first order linear autonomous homogeneous scalar ad­
vanced differential equation (or differential equation with a deviating argu­
ment of advanced type)

y'{t) = yy(t + T), t>t0, (1.3.3)

where y{f) G M and y EM. is a constant is called a purely-advanced equation.

Plausible constraints that may (we now explore further) define a unique 
solution to (1.3.3) are of the form (1.3.2).
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Lemma 1.3.1 Suppose that y(t) = 4>{t), for to < t < to + t. Then a 
continuous solution y of (1.3.3) exists on [to + mr, to~\- (m-{~ l)r] only if the 
m-th derivative 0m(t) is continuous on [to,to+r] and ^^(toTr) = (j>m+1(to).

Proof: Write the given equation as

y(t) = v'ty-r)//*, t £[to + mTt0-\-(m-\-l)T]: me {1,2,3,(1.3.4) 

and the result follows.

Remark 1.3.1 (a) The preceding result implies that (1.3.3) is ill-posed: if 
one makes non-differentiable perturbations in <f> then a problem with a solu­
tion is transformed into a problem without a solution, (b) We also note that 
ifyf{t) = pyite-r), for all £ E M, then y must be infinitely-differentiable, (c) 
If (1.3.3) holds and we write x(s) = y(T — s), we obtain the problem

x,(s) — —/ix(s — t),s>0, with x(s) — f>(T — s) for s E [£o — Ti to]5 (1-3.5)

this problem, cf. (1.2.8), is a pure-delay problem. When we think of time as 
running backwards from the interval on which the function 4> is defined, the 
advanced equation can be considered as a reformulated pure-delay equation 
problem. This is however, somewhat contrived.

1.4 First-order differential equations with de­
layed and advanced arguments

Next we move on to consider problems where there is a mixture of terms 
having delayed and advanced arguments - so-called mixed-type equations. 
The general class of problems considered here are termed mixed type func­
tional differential equations (MTFDEs). We suppose that we seek y{t) E Mn 
for some natural number n (with n = 1 the scalar case). A basic mixed- 
type differential equation of first order for y is introduced in the following 
definition.

Definition 1.4.1 (Mixed-type differential equations) Suppose that the 
function f, with values f(t,u,v,w) E Mn (continuous for t > to, and bounded 
u,v,w E M.n) is given. An equation of the form

y'{t) = f(t,y{t),y(t-T),y{t + r)) (t > t0) (1.4.1)

where r > 0 and a differentiable function y(t) is called a solution of this 
equation if it satisfies the differential equation (1.4-1) for t > to-
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Lemma 1.4.1 The value ofr in equation (1.4.1) can be normalised to be 1. 
Thus the equation under consideration can be taken to be — f(t, y(t),y(t— 
T),y(t + 1)) (for t > t0); it is also possible to normalise so that to = 0.

Proof: Suppose y satisfies (1.4.1), suppose 4, E R and s — t^ — r x (t — to) +£q 

and let y^(s) = y{t). Then y'^s) = —y'(t) and hence

y{(t) = Mt>y\\(t),yb(t -+1)) (for t > tl) (1.4.2)

where /^(t, u, v, w) = r/(t, u} v, w). Clearly, we may pick tg — 0.

Remark 1.4.1 (Particular solutions) A particular solution of (1.4.1) is 
determined only when suitable initial and/or boundary functions are pre­
scribed. Plausible (or at least possible) conditions are

y(t) = fait), forto-r <t <t0, (1.4.3)

y(t) = <p1{t)Jorto<t<to + T. (1.4.4)
However, the existence of a solution that satisfies the given conditions is not 
guaranteed. We saw a similar result in our discussion of (1.3.3). Here, we 
consider (1.4.1). Given (1.4.1) is satisfied for t > to and given (1.4.4), we 
must require 4>\{t) to be differentiable for to <t < to A- r,

0o(M = <Mto) (1.4.5)

and that
(*o) = /(*o, <MM> ‘Mio - r)> <M*o + r)) M- (1.4.6)

It follows that arbitrary continuous functions (4>o and fi) do not necessarily 
determine a solution,

The general class of problems considered here involve differential equa­
tions with both delayed and advanced terms and (1.4.1) is a mixed type 
functional differential equation (MTFDE). We next define a basic equation 
of mixed-type which we will encounter several times in this thesis.

Remark 1.4.2 Suppose that r > 0. A change of variable transforms the 
equation

uft) = ayit) + fiy(t — r) + ^uit + r) (1-4.7)
into the form

y'(t) = ay{t) + by(t - 1) + cy(t + 1) (1.4.8)
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Definition 1.4.2 The equation (1.4.8) where y(t) G M and a, b, c are con­
stant is called the basic equation of mixed-type. It is a first order linear 
autonomous homogeneous scalar mixed differential equation with delay and 
advanced terms or mixed type functional differential equation (MTFDE).

We shall consider the question of solutions of (1.4.8) subject to appropri­
ate conditions, such as y(f) — ^i(t) for to + 1 > t > to and y(t) = </>o(t) for 
to + 1 < t < t0 in Chapter 4.

Remark 1.4.3 Both linear and non-linear MTFDEs arise naturally in prob­
lems of travelling waves in discrete spacial media such as lattices (see [IfO]).

1.5 First order linear autonomous homoge­
neous integro-differential equationss

All the equations we have considered in the above sections have described 
the behaviour of y'(t) in terms of the values of y:y! etc. at points in time 
that are a fixed distance (e.g., r) from t. It is also possible, through the use 
of integro-differential equations, to define equations that take into account 
historical values and future values in a distributed way. Indeed, through the 
use of distributions and Stieltjes-type measures, one can express DDEs and 
MTDEs in the form of an integro-differential equation of a type that can be 
regarded as generalisations of the ones considered previously.

This section introduces ordinary, delay and mixed integro-differential 
equations IDEs.

1.5.1 First order ordinary integro-differential equations
To avoid repetition below, we state here that we assume, until otherwise 
stated, that / : [to, oo) x Mn x Mn —^ xRn denotes a given real function (with 
continuous f(t,u,v) for t > to and bounded u, v).

We suppose that y(t) G Mn (n — 1 is the scalar case). An equation of the 
form

y'(t) = f(t,y(t), ^ k(t,s)y(s)ds^, t > t0, (1.5.1)

(with k(tts) continuous for t > to, s G [to,t]) is an integro-differential equa­
tion of the first order for y (defined for t > to). A differentiable function 
y is called a solution of this equation if it satisfies (1.5.1) for all t > to- A 
particular solution is determined when we are given an initial value

y{ta) = Vo- (1.5.2)
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Example 1.5.1 The equation

y'(t) = f y(t + s)ds (t > to), (1.5.3)
J-l

where y(t) G Mn; with initial condition y(t) = <f>(i) for t G [to — l,to] a 
first-order linear autonomous homogeneous scalar integro-differential equa­
tion. We may clearly rewrite (1.5.3) in the form

y'(t) = f yirfda (t > t0). (1.5.4)
Jt-i

In principle, we can now proceed to find y'{t) on [to, to + 1] and thereby find

before proceeding, by a method of steps, to compute the derivative and then 
the solution on successive intervals [to + to, to + (^ + 1)].

Note that, for suitable 4>, a solution of (1.5.3) will satisfy, for k G 
{1,2, 3, yk+1{f) = yk~l{t) - yk~l{t - 1) (t > to) (obtained by differ­
entiating (1.5.4),).

Remark 1.5.1 If we replace the Riemann integral in the equation (1.5.1) by 
a Riemann-Stieltjes integral we obtain the form

where y{t) G t > t0. If n = 1, we can write this as

(1.5.6)

In (1.5.6), we suppose a is function of bounded variation on [tQ, oo). (A
function is of bounded variation if and only if it is the difference between two 
monotone functions.)

1.5.2 First order linear autonomous homogeneous integro- 
differential equations with delay

Suppose that y(t) G Rn. in

(1.5.7)
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This is a delay integro-differential equation of first order for y{t). Here the 
real function / is given (see Remark 1.5.1) along with a suitable kernel k 
(with

&(i, 5) continuous for t > to, s £ [t — T,t]. (1.5.8)
A differentiable function y is called a solution if it satisfies (1.5.7) for all 
t > t0. A particular solution is determined if an initial function (j) is given 
with

y{t) — for £0 — r < t < to- (1.5.9)
The equation can have a uniform contribution from history as in

y'{t) = J y(t + s)ds (1.5.10)

where y(t) E Mn, with initial function y(t) = <f>(t) for to — s < t < to is 
called a first order linear autonomous homogeneous scalar integro-differential 
equation with delay term.

Remark 1.5.2 If we replace the Riemann integral in equation (1.5.7) by a 
Riemann-Stieltjes integral we obtain (with n = 1) the form

y'{t) = f(t,y(t), J dr}(s)k(t, s)y(s)y (1.5.11)

1.5.3 A canonical delay integro-differential equation
An integro-differential equation that reduces in special cases to equations 
with retarded argument considered earlier is

jJ{t) = j y(t — T(s))da{s), (here, n = 1). (1.5.12)

We suppose the delay term r(s) is a positive real continuous function on 
[—1, 0] and a(s) is a monotonically increasing real-valued function of bounded 
variation on [—1,0]. Equations of this form have been studied in the literature 
(see [120] and its references).

1.5.4 Beyond constant-coefficient equations
In the classical literature the characteristic function is defined for homoge­
neous equations that have constant coefficients. More recently, researchers
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have defined generalised characteristic functions. The following is an exam­
ple, and it is motivated in much the same manner as the classical charac­
teristic function. We remark that in other work, a generalised characteristic 
function is motivated through a comparison equation.

The following assumption is made in the current discussion concerning

y'(t) = J y(t — r(s))da(s)t ( in the case n = 1). (1.5.13)

encountered in (1.5.12).
For similar results for a more general equation see [120].

Assumption 1.5.1 For all s <E [-1,0], ckfs) exists and a'(s) > 0.

Definition 1.5.1 The generalised characteristic equation of (1.5.13) is the 
function Xt) with

Xj|(A) X — J exp(-Xr(s))da(s) for A e C. (1.5.14)

Here, n = 1. A zero A* of x# is called a characteristic value of (1.5.13). 

Lemma 1.5.1 Given Assumption 1.5.1,

1- -f/X{|(A*) = 0 then exp(A*i) satisfies (1.5.13);

2. Every solution of the equation (1.5.12) oscillates if and only ifx$W > 
0. for all X E M;

3. Some solutions of the equation (1.5.12) do not oscillate if

Xs(A*) < 0 for some A <G M. (1.5.15)

For a proof, see [120].

1.5.5 First order integro-differential equations with ad­
vanced term

We can give the corresponding definitions for advanced equations. Suppose 
that y(t) E Mn for some natural number n. An equation of the form

y'(t) = f(t,y(t)
t+T

k{t,s)y(s)ds) (t>t0), (1.5.16)
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is an advanced integro-differential equation of first order for y. Here we are 
given /, with /(£, it, v) continuous for t > to and bounded it,u, and a suitable 
kernel k (with /c(t; s) continuous when t > s G [t + r,t]). A differentiable 
function y is a solution of this equation when it satisfies the differential 
equation (1.5.16) for all t < to- We may conjecture that a particular solution 
is defined when the condition y(t) — for ti + r > t > t0 is given.
Example 1.5.2 The equation

y'(t)= [ y(t + s)ds (t > t0), (1.5.17)
Jo

where y(t) E Rn for t > t0, can be rewritten
/•t+i

y'{t) = j y{o)da. (1.5.18)

This is a first order linear autonomous homogeneous scalar integro-differential 
equation with advanced term and, on assuming sufficient differentiability,

y(t + 1) = y"{t) + y(t) (t > t0). (1.5.19)

Assume we are given a function f and seeky satisfying (1.5.19) and also 
satisfying the condition

y(t) = 0(t) for t e [t0, to + !]• (1.5.20)
An application of a step-by-step method (a ‘method of steps’) based on (1.5.19)
and (1.5 .20) gives us, in sequence, the following results:

for t G [to, to + 1];> II

for t G [to -|- 1, to + 2], y(t) - ?/(t- i);
— - 1) + (f)(t — 1) 5

for t G [to + 2, to + 3], y{t) = y"{t - l)+y{t - i)
= 4?v(t - 2) + 20"(1 - 2) + <j){t - 2)

for t G [to + 3, to + 4], y(t) = + - 3) +
+30//(t — 3) + (f>{t — S)},

etc. The general expression requires that (f> be arbitrarily differentiable, and 
the ill-posedness of the problem is clearly indicated.

Remark 1.5.3 If, as before, we replace the Riemann integral by a Riemann- 
Stieltjes integral in the equation (1.5.16) we obtain where y(t) G W1, the form

y'(t) = /(t,?/(t), f [dr}(3)]y{s)^fft > t0).

oryft) = f(t,y(t), f*+T y(s)da(s)) if n = 1.

(1.5.21)
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1.5.6 First order integro-differential equations with de­
layed and advanced terms

Given a real continuous function / with values f(t,u,v,w) (for t > £0, and 
bounded u, v, w), an equation of the form

rt+r
h(t>s)y(s)ds: / k2(t}s)y(s)ds

T Jt
j (t > to) (1-5.22)yf{t) = J

is a mixed-type integro-differential equation of first order for the function y 
(where y(t) €= for t 6 [to,oo). A differentiable function y is a solution of 
this equation for all t > to if it satisfies (1.5.22).

Remark 1.5.4 We might conjecture that a particular solution is determined 
when suitable functions <pi and fa are given and we require

tj{t) = fa(t), forto-r <t < t0; (1.5.23)

y(t) = fait), for t0 < t < t0 + r. (1.5.24)
In fact, arbitrary choices of fa and fa do not define a solution.

Remark 1.5.5 If as before, we replace the Riemann integral by a Riemann- 
Stieltjes integral in the equation (1.5.16) we obtain the form

V'(t) = f(t,y{t),J [Ms)]y(s), J [dy(s)]y(s)^ (1.5.25)

where y{t) G W1, for t > to- For n — 1, (1.5.25) reads

i/{t) - f(t}y{t),J y{s)da{s), y^dfas)^.

The equation

2/09 = J [dri{s)]y{t - r(s)) + J [dr}(s)]y(t + r(s)), (1.5.26)

where r is a non-negative real continuous function on [—1,0], y(t) G Mn, 
s G [—1,0], t > to with constraints y(t) = fa(t) for to — supr(s) < t < to, 
y{t) = fa[t) for to < t < to + suprfs) is an example of a first order linear 
autonomous homogeneous scalar integro-differential equation with delayed 
and advanced terms.
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Example 1.5.3 The equation

y'(t) = j y(t + s)ds + J y(t + s)ds, (1.5.27)

where y(t) G t > to is a basic first order linear autonomous homogeneous 
scalar integro-differential equation with delayed and advanced terms.

Remark 1.5.6 Related to (1.5.27) is the delay equation

ij(t) = J y(t + s)da(s), (1.5.28)

where o:(s) is a real function of bounded variation on [—1,1]. Equation 
(1.5.27) can be rearranged to read

y(<j)dcr (1.5.29)

and, if differentiation is justified y"(t) = y(t + 1) — y(t — 1) or

y(t+ 1) = y"(t) +y(t - 1). (1.5.30)

Plausible constraints of the form

y(t) — <j>i(t) (t G [to — l,t0]), y(t) = 02M (t € [to,to + 1]), (1.5.31)

with arbitrary will not in general define a solution; compare Example 
1.5.2 where we had y(t + 1) = y,f(t) + y(t).

1.6 Discrete equations (recurrence, difference, 
and summation equations)

1.6.1 First order discrete recurrence equations
In this material, the function / is defined on N x Mn and /(m, u) is continuous 
for bounded w G Mn for each m G N. We suppose that y(tm) G Mn. With a 
given function /, an equation of the form

y{tm+i) = /(m,2/(tm)), valid for m > ra0 > 0, (1.6.1)

defines the sequence of values

y = {y(imo+l)J2/(*mo+2)52/(*mo+3)> * * * }» Siven = 2W (1.6.2)
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Remark 1.6.1 If we wish to distance ourselves from a particular choice

'TmQ Omen ^mo+1? ^mo+2? ' ‘ }

we may equally discuss the sequence {ymo+i,^mo+2,?/mo-|.3, • • • } satisfying

Vm+i = f(rn,ym), /or m G {m0) m0 + 1, m0 + 2, • • • }> (1.6.3)

We shall employ the alias ym — y(tm) and where there is no danger of confu­
sion we denote a sequence {ymo,ymQ+i, ymQ+2> • • ■ } by y. (The same notation 
is used to denote the function y : m y(tm), or y : tm y(tm), where 
£0 < £i < i2 < • • ■ is arbitrary.) There is no loss of generality is taking 
mo = 0.

Definition 1.6.1 Equation (1.6.1) is an explicit discrete recurrence equa­
tion of first order for the sequence y (equivalently, for the function y defined 
on the integers greater than or equal to mo). The equation is autonomous if 
f(m,u) is independent ofm. If the relation (1.6.1) can be written

y{tm+i) -y(tm) = V/ra,;*/(tm)),m > m0 > 0, (1.6.4)

it is natural to refer to the discrete recurrence as a difference equation and 
the latter term is often applied to all relationships of the form (1.6.1).

By converting scalars to vectors, (1.6.1) can be formulated to include 
summation equations.

Example 1.6.1 For an example of a summation equation consider

1--
--

--
--
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3 
3

+ + )_j ^
l _

__
__

__
!

=

1 
1

1__
__

__
__

_!

X 2/m , given

i 
i

o 
o

sa b =

1 
i

1__
__

__
__

_1

Clearly, cim bi{_ymTyrn—iT" * ‘yo\ andym+i ymTh {ymTym—iT’ ■ ■ j/o}; a 
discrete analogue of the simple integro-differential equation y'(t) = fo y(s)ds.

A particular solution of (1.6.1) is determined only when a value y(t ) — 
ymoi is given for given mo- The equation (1.6.1) together with the condition 
y(t ) = ymo is an initial value problem. As a variant of Definition 1.6.1. we 
have the following, which differs from the preceding definition.

Definition 1.6.2 If the relationships

y{tm+i) = f{m,y{tm),y{tm+i)), valid for m> mo >0, (1.6.6)
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define, given a particular choice ofy(tmo) — a unique sequence of values

V ~ {Z/(^mo+l) > yifrriQ+f) ■> ?/(^mo+3)j * ’ ' }j (1.6.7)
then (1.6.6) is an implicit difference equation and there exists a function g 

such that
y{tm+i) = 9form > m0 > 0. (1.6.8)

Example 1.6.2 Suppose a and h > 0 are real constants where the step-size 
h> 0. ym £ R,

Vm+i = (1 + ah)ym (m > 0) (1.6.9)
with initial value y0. (1.6.9) is a first order (ordinary) linear autonomous 
and homogeneous scalar difference equation. It is a discrete analogue of the 
differential equation yf(t) = ay(t). An implicit analogue is

fim+i = ym + ahym+i (m>0). (1.6.10)
assuming that ah ^ 1. The n-dimensional versions read i/m+i = (/ + Ah)ym 
and ym+i ~ ymS Ahym+i (assuming det{7 — hA} ^ 0) where A £ Rnxn.

Definition 1.6.3 For each linear homogeneous recurrence relation we define 
a corresponding characteristic polynomial:

ym____
Scalar
Scalar
Scalar
Vector
Vector

Recurrence relation
fim+i = (J- + ah)^
(1 - ah)ym+i = ym (ah ^ 1)
2/m+l “ i 'Icym+l—f:
2/m+i — (/ + Ah^ym
(/ - Ah)ym+i = ym det[I-Ah]

7^ 0

Characteristic polynomial 
x(A) — A — (1 + ah)
X(A) = (1 - ah)X - 1
X(A) = - Eti
X(A) = det[A/ — (/ + Ah)}
X(A) = det[A(/ — Ah) + /)]

Characteristic polynomials

Lemma 1.6.1 Refer to the table of characteristic polynomials in Definition 
1.6.3, and suppose that x(^e) ~ 0. Then {ym = yo(A^)m} is a solution of the 
corresponding recurrence. If is a multiple zero then there can be additional 
solutions of the formp(m)(\f)m where p is a polynomial.

Consider the behaviour of Am (to — 0,1, 2, • • •) where A is a scalar. If 
|A| > 1, \ym\ -4- oo as n —> oo, if |A| < 1, » 0, and if 97(A) = 0 ,
Am oscillates. In the latter case the solutions of the equation (1.6.9) have 
oscillatory behaviour.

Remark 1.6.2 Suppose a < 0; the solution y(t) of the ordinary differen­
tial equation (1.1.3) has no oscillatory behaviour but the solution ym of the 
ordinary difference equation (1.6.9) has oscillatory behaviour if h > 1/a.
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1.6.2 Generalisations: discrete recurrence equation with 
delayed or advanced terms

We have seen that differential equations with advanced or retarded argu­
ments provide generalisations of ordinary differential equations, and we con­
sider whether there are corresponding generalisations of recurrences such as 
(1.6.1). To a certain extent, the distinctions between current and delayed ar­
guments are redundant: thus, in Example 1.6.1 we see a summation equation 
in which ym+i is expressed in terms of all preceding values {;f/o>27i> • • ■ >2/m} 
using (1.6.1) but this is not apparent in the vector form.

In general a two-stage recurrence

y(tm+i) = /(m,2/(tm),y(im_i)), (1.6.11)

can be re-expressed in the form of a one-stage recurrence between column 
vectors um+1 := [y(tm+i),y(tm)]T in as:

yifm+i) IpfaUm)

yifm) T6l Um
= \l/(m, um) G M2 (1.6.12)

where ef[ui,u2]T is iq.
Despite the preceding remark, it is sometimes convenient to retain a scalar 

formulation. Thus, given constants (i and h > 0 the relation ym+i = ym+ 
/J>hym-i} where ym G M, with initial function ym — y((f)) for n > 0 is a 
two-stage linear autonomous homogeneous scalar difference equation More 
generally, for integer M > 1, the recurrence ym+i — ym-\- jJ,hym-N provides 
a discrete analogue of the delay differential equation (1.2.8).

Example 1.6.3 Consider the two-step discrete equation of the form

Z/m+2 2/m+i T /ahym,

or, equivalently,
ym+2 ' 1 j-th J/m+l
?/m+l 1 0 ym

The characteristic polynomial of (1.6.13) is

X(A) = \2 - \ - /ah.

(1.6.13)

(1.6.14)

(1.6.15)

The equation x(A) = 0 is quadratic and the characteristic values are

Ai, A2 = — ± — \/l + Ayh.
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If Xi and X2 are distinct, then the general solution has ym — CiX™ + qX™ 
and if Xi = A2 then it has ym = (ci + mcfjX™. The every solution of the 
(1.6.13) oscillates if and only if Xi and A2 are not positive real numbers, 
every non-trivial solution oscillates if and only if yh < — | where fi and h 
are constants.

Oscillatory behaviour of the DDE (1.2.8) and its discrete analogue (1.6.13) 
is remarkably similar, but comparisons are improved if we consider ym+i = 
Pm “i- P’fa’Um—N with Ivl 1.

If we wish to reveal the structure, then the scalar recurrence

y{tm+i) = - ■ ■ ,y(tm-N)) (m e {JV,iv + i,---})
(1.6.16)

provides a natural generalisation of (1.6.11). This suggests that we consider 
discrete equations with advanced terms by examining

Vm+l = f yarn Vm+h Vm+2i ' ' ' i J/ttz+m) j (1.6.17)

and discrete equations with delayed and advanced terms by examining

2/m-fl f {pi'iUm—N ‘ ' ) y?n+2> 2/m.—I? l/m? 1/m+l) ?/m+2) ’ ’ * lUm+M)' (1.6.18) 

Example 1.6.4 The equation

Z/m+l ~ Vm T P’l'Um+N•> (1.6.19)

where n = 0,1, 2,..., TV, 77 6 n, ym e M, is a first order linear autonomous 
homogeneous scalar difference equation with advanced terms. It provides a 
discrete analogue of the advanced differential equation (1.3.2). Clearly, it can 
be rewritten as an explicit difference equation

Vm+N {l/m+l 2/m.}/ {rn G{0,1,•*•)■). (1.6.20)

Example 1.6.5 The equation

Vm+i = (1 + ah)ym + h(bym-N + cym+N), (1.6.21)

is a linear autonomous homogeneous scalar difference equation with delayed 
and advanced terms. (It provides a discrete analogue of the mixed differential 
equation with delayed and advanced terms (1.4-8).)

If we write down (1.6.21) for m = mo, mo + 1, • • • ,mo + M0 — 2, and 
if {ym0-^}iLo and {2/mo+M0+^}iLo are given, we obtain a system of linear 
equations. There are Mq — 1 equations and 2N + 2 conditions for finding 
the Mq — 1 unknown values, so that problem may have, one, none or many 
possible solutions in principle.
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1.7 Conditions for oscillation of discrete equa­
tions

In this section criteria for discrete equations to be oscillatory, such as those 
that have emerged in the previous section, will be discussed. This will fo­
cus on linear equations, where the analysis can be based on the zeros of a 
polynomial and it will refer also to a characterisation for nonlinear problems. 

For the linear equation

N

Vn+l ^ ^ tijUn—j) (1.7.1)
j=0

by considering the characteristic equation for problems of this type, it is sim­
ple to show that the general solution may be written as a linear combination 
of eigenfunctions. (One needs to take account of any repeated characteristic 
values in the usual way.) Let the values be the zeros of the characteristic 
polynomial,

zjv+i N N—l
—■ CLqZ — CliZ — aN (1.7.2)

then assuming all the zeros are distinct the solution takes the form ym — 
■ If characteristic values are repeated, a slightly more compli­

cated expression is needed for the solution but for our purposes the conclu­
sions will be the same. Any particular eigenfunction oscillates unless G M+ 
and therefore we can give the result:

Lemma 1.7.1 The equation (1.7.1) is oscillatory if and only if none of the 
zeros of (1.7.2) lie on the positive real axis (see [47]).

This result, based on the zeros of the characteristic polynomial, will prove 
most useful in the theoretical analysis, which is currently confined to linear 
equations.

However, a more general theorem that applies also to certain nonlinear 
discrete problems has been given (see [43], [73]) and it may prove fruitful 
in the further investigation of non-linear problems. Consider the difference 
equation (discrete Volterra equation),

m

Vm+l ~ Vm ~ ^ ^Pifijl/m—ki) (1.7.3)
i=l

where Pi > 0, /q are positive integers, and fi are continuous functions on M.
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Theorem 1.7.2 (Elaydi, [43].) Suppose that the following conditions are
My)met: (a) yfdy) > 0 fory 7^ 0,1 < i < m; (b) lira inf

y->0 y > 1, for

l < i < m (c) '/'Pi—-—^----- > 1; then every solution of (1.7.3) oscillates.
i—l

Remark 1.7.1 In the study of stability theory and exponential growth and 
decay, it is usual to linearise equations and to use the linear analysis as the 
basis for obtaining a close approximation to the behaviour of a non-linear 
problem. For the study of oscillation theory, it is clear that the situation is 
more complicated, and the extent to which a linear analysis provides useful 
insights into non-linear problems has not been established. Some examples 
that are considered are non-linear, and there is no experimental evidence that 
our methods fail in these cases (see [47])■

1.7.1 A preview of oscillation theory
Oscillation for both continuous and discrete homogeneous linear problems (in 
particular those which have constant coefficients and deviating arguments) 
can be investigated by the location of zeros of a characteristic function. In 
the discrete case, this function will be a polynomial whose degree depends 
upon the step-size chosen for the numerical schemes (The degree increases as 
the step-size becomes smaller) and approximation of the continuous problem 
by the discrete schemes become more accurate.) In this context we have 
available various techniques, such as the ‘boundary locus’ or D-partition 
method, and direct polynomial solvers like the NAG Fortran library, MAT- 
LAB, Mathematica etc. Here, we wish to develop a method based on the 
Argument Principle and which will in principle be applicable for any degree 
of polynomial.

1.8 A brief remark on application
Application of delay differential equations commonly arise in models where 
there is some time-lag or after-effect. This situation arises for example in 
modelling in the biosciences and we can refer the reader to [94, 2] for exam­
ple, for specific models. Mixed-type equations are less well-used in models. 
However a discrete FitzHugh-Nagumo equation for modelling nerve cells can 
lead to an equation of the form

^ = k(V(T + H)~ 2V(T) + V(T + H)) + f(V,T),
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for the travelling wave solution (see [34]) where f(V) — V(y — l)(pt — V) for 
suitable constants 0 < ck < 1.



Chapter 2

Basic Methods and Solutions: 
The Laplace transform

2.1 Introduction
This Chapter introduces the Laplace transform method and indicates how 
the method can be used to solve certain differential equations. The Laplace 
transform is conventionally defined for functions with domain [0, oo) and 
without loss of generality we shall suppose that our equations hold on [to, oo) 
with t0 = 0- We study its basic properties.
Remark 2.1.1 Clearly, a function u defined on [to,oo) defines a function 
Ufl on [0, oo) on setting u$(t) = u(t + t0).

2.1.1 The Laplace transform
The formal definition of the Laplace transform is stated below.
Definition 2.1.1 The Laplace transform (assuming it exists) of the function 
f defined on [0, oo) is the function £{f}

poo
£{f}(s) = / e~st f{t)dt (2.1.1)

Jq

where f(t) G Rn for t > 0.
Let us recall the following concepts.
Definition 2.1.2 (a) A function f defined on [0,oo) is said to be expo­
nentially bounded (sometimes, exponentially bounded at oo or of exponential 
order) if there exist 7 E M, & > 0 and T > to such that

\f(t)\ < k exP(7t) fort > T. (2.1.2)

37
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(b) A function f is said to be piecewise continuous on a bounded interval 
T C ^ if it has a finite number of discontinuities and the left and right 
limits exist (and are bounded) at each discontinuity. It is said to be piecewise 
continuous on [0, oo] if it is piecewise continuous on every bounded subinterval 
X C [0, oo).

While s is commonly taken to be real, the extension to s G C (with 
s ^ Si + iss) as the complex-valued integral

poo
£{f}(s) = / e_^sl+1S2^/(t)dt where si = G M and S2 = 9?s, (2.1.3)

Jo
is straightforward.

Lemma 2.1.1 If f(t) is piecewise continuous on [0,oo) and exponentially 
bounded, and let 7 be chosen as in (2.1.2). Then £{f}(s) = F(s) in (2.1.3) 
exists for all s > s G M.

Remark 2.1.2 All bounded continuous functions and every polynomial have 
Laplace transforms. Thus tn, n=l, 2, 3, has a Laplace transform but 
et2 does not. The conditions are not necessary for the existence; e.g., t"1/2 

do not satisfy the conditions but yet has a Laplace transform. £{^"2“} =
/“ e-ste^dt = ^ = V (7) •

Some properties of Laplace transforms

Suppose / and g satisfy the conditions of Lemma 2.1.1. Then,

• £{/ + #} = £{/} + £{#}•

• £{cf} = cC{f} for any constant c.

• £{eatf}(s) = F(s - a).

. £{f}(s) = sF(s) - F(0).

. £{/"}(s) = s2F{s) - s/(0) - f(0).

• £{fn}(s) = snF(s) - 5n-1/(0) - sn-2f'(0) - ... - /^(O).

. £{Ff}(s) = (-l)^F(s).
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2.1.2 The inverse Laplace transform
The definition of the inverse Laplace transform follows from that of the 
Laplace transform, and several notational conventions are employed.
Definition 2.1.3 The expression C~1{F'} denotes a function whose f whose 
Laplace transform is F C{f}. Thus, if

C{f} = F then f = ^{F}. (2.1.4)

With a commonly adopted abuse of notation, we may write:

£{/}(*) = F(s); m = .c-'moo- (2.1.5)
Example 2.1.1 To illustrate the latter notation,

C~l /——X — eat, and C~l / ——-]> = sin (at). (2.1.6)— aj (s2 + a2J
A fairly extensive table of inverse transform is given in Appendix A (see 

[31]).

Theorem 2.1.2 (A uniqueness theorem) Suppose f(t) and g(t) are con­
tinuous on [0, oo) and of exponential order 7. If £{f}(s) = £{g}(s) for all 
5 > 7, then f(t) = g(t) for all t > 0.

Remark 2.1.3 In brief, the preceding well-known result (known as Lerch’s 
theorem) indicates that when f is continuous, £~1{F(s)}, is unique.

The simplest inversion formula is given by the so-called Bromwich inte­
gral, which provides a useful analytical tool.
Theorem 2.1.3 The function £~1{F(s)}, is given by

-1 /■c+ioo

f(t) = — F(s)exp{st}ds, (2.1.7)
^ J c—ioo

where the integral is evaluated along the path from s = c — 00 to s = c + ioo 
for any real c such that this path lies in the region of convergence of the 
integral.

2.2 Solving differential equations using the 
Laplace transform: Examples

If not specifically stated otherwise, we shall assume that the solutions of dif­
ferential equations discussed here are continuous and exponentially bounded. 
Their Laplace transforms then exist.
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2.2.1 Solving ordinary differential equations using the 
Laplace transform

Let us consider the ordinary differential equation (ODE) y'{t) = ay(t), in 
(1.1.3), with initial condition y(to) = yo. Of course, we know that the solution 
is y(t) — exp(a[£ — to])yo which is continuous and exponentially bounded so 
that in consequence it has a Laplace transform. Now, applying the Laplace 
transform to yf(t) — ay(t) we obtain

poo
~tsy'{t)dt = / ay(t)e~tsdt

Jo
(2.2.1)

We know that

y(t)e t3dt, and C[y']{s) y'{t)e tsdt = s£[y](s) - 2/(0).
o

From (2.2.1), s£[y](s) — y(0) — a£[y](s)} so that (s — a)jC[y](s) = 2/(0), and

= (s7^a)-
O (Jb

(2.2.2)

Taking the inverse Laplace transform of both sides of (2.2.2) yields, as an­
ticipated,

y{t) = eaty{Q). (2.2.3)

2.2.2 Solving delay differential equations with Laplace 
transforms

Let us consider the delay differential equation (DDE) (1.2.8), that is, y'{t) = 
ayit) + (3y(t — r). A change of variables gives the normalised form

y'(t) = ay(t) + by(t - 1), (t > 0) (2.2.4)

(where a = ar, b = (dr). Suppose <p £ ^[“-TjO] and assume the initial 
condition y{t) = for t G [—1,0]. We know that it can be established, 
by the method of steps, that the the solution of (2.2.4) is continuous and 
exponentially bounded and therefore has a Laplace transform. To illustrate 
our procedure we shall take

= 1 for t G [-1,0]. (2.2.5)

Applying the Laplace transform to both sides of (2.2.4), we obtain
fOO poo poo
/ e-^y'tydt = / ay(t)e~stdt + / by(t — l)e“tsdt (2.2.6)

Jo Jo Jo
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Let t — l = a)t = (T + l then dt ~ dr and when £ = 0 then <r — — 1 and when 
t = oo then a = oo. Using these results in (2.2.6), we get,

ruu poo
+ 1)^ = J ay((T + l)e-l',+1'l3da + J by^e-^+^da

/
OO

by(cr)e^a+1)sda

Here
f' OO POO

Uy](s)=/ y{t)e-tsdtC{yl\{s)= 2/'(t)e-t3* = S>C[y](5)-y(0)
Jo Jo

/
0 poo

62/(a-)e_(cF+1)s<icr + J by{a)e~^+V)s dcr

pO poo

= a£[y](s) + / by(o)e~(<7+1')sdo + be~s / y(o)e~ado.

Hence,
f°

£[y](s)(s — a- be~s) — y(0) + J by(o)e~^+1^sd<T. 

Prom this, provided the denominator is non-zero,

2/(0) + by(o)e~^(T+1^sdo
C[y]{s) =

s — a — be~s (2.2.7)

where 2/(0) and y{o) are determined by the initial function. If y(t) = (j>{t) on 
[—1,0] then we get y(0) = l and y(o) — 1

/
0 pQ

y(o)e~(<T+1'>sdo = j y(o)e~ase~sdo

= e~sf e-Tsda = e- re asl°
—s

= Ui 1
J -i

Using these results in (2.2.7) we get,

i+ ;(!-£)
s — a — be~s

Applying the inverse Laplace transform to (2.2.8), we get,

-i fi + ia-i)y{t) = £ s — a — be~s

(2.2.8)

(2.2.9)

The denominator s — a —be Sisy(s).
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2.2.3 Solving mixed type functional differential equa­
tions using Laplace transforms

It is interesting to attempt to solve mixed type functional differential equa­
tions (MTFDEs) by the Laplace transform method. We are able to apply the 
Laplace transform to a function that is exponentially bounded and piecewise 
continuous. This is not true of all solutions of MTFDEs, so one must proceed 
with caution.

Assumption 2.2.1 We suppose that the solution to which we apply the 
Laplace transform is exponentially bounded and piecewise continuous.

Where there exists a characteristic function or generalised characteristic 
function we know that the class of functions satisfying the last assumption 
is non-empty; the characteristic values correspond to solutions exp(A£) that 
satisfy the necessary condition.

Let us consider a MTFDE of the form (1.4.8)

y'(t) = ay(t) + by(t - 1) + cy(t + 1) (2.2.10)

We consider (2.2.10) for t € [0,T] and we investigate the existence of a 
solution y when we require that y(t) = t E [—1, 0] and y(t) = fait), t E 
[T, T + 1].

We have to prove this general theorem. Taking Laplace transform of both 
sides of the above equation, we get,

/‘OG pOO POO POO

/ e^y'iffjdt— / ay(t)e~tsdt + / by(t — l)e~~tsdt + / cy(t + l)dt 
Jo Jo Jo Jo

(2.2.11)
We know that

POO POO

C[y}{s) = / y(t)e~tsdt, C[y']{s) = / y'(t)e"tsdt,
Jo Jo

which implies that
C[y'}{s) = s£[y\{s)-y(0)}

Using these results in equation (2.2.11) we get,
POO POO

s£[y}{s)-y{ti) = aJC\y){s)+ l by{t—l)e~tsdt+j cy{t+l)e~tsdt (2.2.12)
Jo Jo

Let t — 1 = (Ti, i = on -f- 1 then dt — dai. When /; = 0 then = —1 and 
when t — oo then oq : oo. Again let t -)-1 = <72, t = \ then dt — doq.
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When t = 0 then <j2 = 1 and when t oo then (J2 oo. Now equation 
(2.2.12) becomes

/
oo poo

6j/(cri)e“(1+cri)s(i£7i + J cij(a2y~{a2~l)d(J2

s£[y](s) ~ 1/(0) = a>£[y]{s) + bij(a1)e~il+ri)sdai + /“ byia^e-^+^d^

/
0 poo

cy(a2)e~(-<T2~1)sdcr2 + J cy(a2)e~^2~1)sda2 

5£[y](s) - y(0) = a£[y\{s) + by^e^^dcr! 4- be~s y(a1)e~aiad(T1

pi poo
- / cy(a2)e~(a2~1'>sd(J2 + ces / 2/(o72)e_(72Sdc72

7o Jo

s£[y]{s) - 2/(0) = a£[y](s) + ^(crOe-^+^^dcri + 6e~sZ:[2/](s)

- / C2/(cr2)e—((j2 - l)sdl(j2 + ces/:[2/](s)

SjC[t/](s) — 2/(0) = (a + 6e_s + ces)£[y\(s) + by(ai)e~^1+cri^sdai

- f cy{a2)e^a2)sda2 
Jo

(s — a — be~s — ces)C[y\(s) = 2/(0) + by(a1)e~('1+ai^sdai

- [ cy(a2)e-^2-1>da2 
Jo

cm*) y{$) +j°_lby((71)e-{l +a^sdar-cy((j2)e (<72 l)sda2

s — a — be~s —■ ces
(2.2.13)

If y(t) — 1 on [—1,0] then we get y{(Ji) = 1, y{(J2) — 1 and 2/(0) = 1 then

/
0 pO pO

by{ai)e~{'l+ari^sd(Ji = j be~3e~TlSdc7i = be~s j e~aiSd(7i

e aiS 
—s

o

-i

b__b_
s ses

= be~s
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Again

[ cy(a2)e (CT2 1)sda2 = [ 
Jo Jo

ce ce -023 da2

ce"
— CT2S1 1

— 3
ce c

3 3

Now using these results in (2.2.13) we get ,

=

1 + i_i_£Sl+c
s se3 s s

where

s — a — be~s ~ ce6

£M(s) = F(s)

i 6____b___ cef^ _i_ c
F(s) = s se3 s $

S — a — be~s — ces 

Taking inverse the Laplace transform of (2.2.14) we get,

---- -y(t) = CT1 ' s se +
s — a — be~s — ce&

(2.2.14)

(2.2.15)

(2.2.16)

»(*) =

Remark 2.2.1 Of course, the equation (1.2.1) can be written as integral 
equation by integrating both sides with respect to t. Thus, for tf > t > to,

y{t)=y{t')T [ f(siy(s),y(s-r))ds (2.2.17)
Jf

which is a Volterra integral equation in classical form when we set t' — to.

There are various ways to generalise (1.2.1) to obtain further examples, for 
example, assuming that r;(t) > 0(Z 6 [1,2,3, ...,m]), by considering variable 
or multiple ”lags” {ri{t) > 0(1 E [1, 2, 3,..., m]), as in

y'{t) = - n(t))>y(t - r2(t)), ....,y(t - Tm(t))),(t > to), (2.2.18)

or
by introducing a distributed time-lag as in

y'(t) = f(t, y(t), [ k(t, s, y(s))ds), (t > t0), (2.2.19)



45

or

Equations (2.2.19)-(2.2.20) are normally termed Volterra integro-differential 
equations.

Remark 2.2.2 If we replace the Riemann integral by the Riemann-Stieltjes 
integral in the equations (2.2.19)~(2.2.20) we obtain, (each for t > to), the 
forms

where y(t) G M, s > 0.



Chapter 3

Numerical Methods

3.1 Introduction
In this chapter we introduce numerical methods for initial-value problems. 
Our main focus will be on the linear method, which can be thought of as 
a generalisation of the classical Euler or trapezium rules. These methods pro­
vide an important prototype for investigation because they can be classed 
as either linear multi-step methods or as Runge-Kutta methods; in conse­
quence, properties that are established for ■d—methods may well be found in 
more complicated methods.

3.2 Linear multi-step methods
All the numerical methods for initial-value problems that are discussed here 
are based on the idea of discretisation: we approximate a true solution y 
defined on a continuous interval [to,T] by an approximate solution defined 
on a set of discrete points by tm = to + mh, m — 0,1, 2, ■ • • (the parameter 
/i > 0 is called the step-size). We introduce familiar methods for ODEs and 
discuss their adaptation to equations with deviating argument later.

Let us consider the ODE (1.1.1);

• suppose h > 0, t = to + mh, m = 0,1,2, • • •.

• write tm := to + mh and define To = {to, ti, t2, ■ • • }

• write y(tm) to denote an approximation to y(tm):

y(tm)~y(tm) (3.2.1)

46
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(in which y{tm) is the value of the true solution at tm). In our dis­
cussion, To is the domain of definition of y (though for more general 
problems we need to extend the domain to [io, oo) using a dense-output 
process);

• when we seek brevity, we use the abbreviations

(m G {0, 1,2, • • • }) (3.2.2)

when discussing the ODE case (1.1.1). (We shall amend (3.2.2) when 
we consider approximations to solutions of other equations.)

Remark 3.2.1 The numerical methods indicated here are methods for deter­
mining, in sequence, the approximations {y(tm)} using a chosen formula for 
the calculations. In a 1-step method, the approximate solution of the ODE 
(1.1.1) at tk+i is computed using the value at tm using the true initial value 
(m = 0) or computed at a previous stage (m = 1,2, in turn). General 
Runge-Kutta methods involve the computation of ‘stage values’ where an ap­
proximation is obtained at additional points in [tm,tm+1\ in order to take the 
full step. In a k-step multi-step method, the approximate solution of the ODE 
(1.1.1) has to be available at each of the points £].,••• , before the approxi­
mation at tk+i is obtained. Such methods require the initial value and starting 
procedures in order to compute the approximations at {ti,t2, • ■ • ,

A general linear multi-step method or linear k-step method, using a fixed 
step h> 0, for the ODE (1.1.1) is defined by suitable parameters in
a formula ym+i + Y/j=iajym-j+i = A'/m-i+i- (aP ft are constants
that specify the formula.) The formula defines ym+i as the solution (if it 
exists) of

k k
Vm+l hPofitm+hym+l) := ^ T/l/rn—j+1 T ^ ^ ft/m—j+1 • (3.2.3)

1=1 1=0

for successive values of m. (In the Adams formulae, ctq — 1 and ctj — 0 for 
j G {2,3, •• • , Jfc}.) Equation (3.2.3) has a solution if /30 — 0 or (for a wide 
class of functions /) if h is sufficiently small. Now, ym+i — y(tm+i) and we 
can consider (3.2.3) with m replaced by m H- 1.

We next indicate the structure of Runge-Kutta methods. The general s- 
stage Runge-Kutta method is defined for the solution of (1.1.1) by a choice 
of h > 0 and suitable parameters in a formula

....
y(tm+l) = y(tm) + ^ 2^ bikm,i}

i—1

(3.2.4)
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where the values are to satisfy

s
fcm,i f (tm 4“ Cih) y(jjm) 4“ ^ ^ ^ {1? 2, ■ • • , s}). (3.2.5)

j=l

Equation (3.2.5) has a solution if ay = 0 for j > z and, more generally, for a 
wide class of functions /, whenever h is sufficiently small.

Example 3.2.1 Consider the approximate solution of (1.1.1). Throughout, 
Vo = y(to) and h > 0.

• Euler’s method is associated with the formula

y(fm+i) Vm+i ~ Urn 4~ hf(tm, Pm) (jn = 0, 1, 2, • • • ). (3.2.6)

It is the simplest numerical method. It is both a one-step method and 
a one-stage Runge-Kutta (RK) method and is an explicit method.

• By contrast the implicit Euler’s method is associated with the formula

yifm+l'} — 2/m+l = Pm 4“ hf (fmi Pm+l) ijn ~ 0, 1, 2, • • • ) (3.2.7)

(with y0 = y(to) and where h > Q). This is an implicit formula that 
must be solved for ym+i for m = 0,1,2, ■ • *.

• The trapezium rule method is associated for h > 0 with the formula

yifm+l) = Pm+l ~ Pm 4” 4“ ^j^fifmiym+l) (3.2.8)

(m = 0,1,2, • • •). with yo — y(to)f It too is an implicit method.

• The method defined, where h> 0, by the explicit formula

yifm+l) = Pm+l Pm 4” hf (tm + —, ym “h (tm, pm')') (3.2.9)

(m = 0,1,2, • • •), can be rewritten as a two-stage Runge-Kutta method. 
It is based on the mid-point rule in which the mid-point value y(tm+i) 
is approximated using Euler’s method with step ^h.

The implicit formulae are in general solved by an iterative method, but for
linear ODEs the implicit equations reduce to linear equations that can be
solved explicitly unless h is an exceptional value.
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3.2.1 The ^-method for ODEs
The ^-method is a generalisation of methods such as Euler’s explicit and 
implicit methods and the trapezoidal rule. For the ODE (1.1.1) we have the 
following definition.

Definition 3.2.1 The general ^-method for (1.1.1) is defined for d 6 [0,1] 
by the formula

y(fm+l) — Vm+l Vm T + (1 'd)/(^m+l) ?/m+l)] 5 (3.2.10)

(m = 0,1, •1 2 * j, where fm = /(im, ym) and y(t0) = y0 = y{to).

Remark 3.2.2 When id = l we obtain from (3.2.10) the form (3.2.6) - the 
Euler explicit (or forward) method for (1.1.3). When'd — 0 we obtain from 
the equation (3.2.10) the form (3.2.7). When ‘O = \ we obtain from the 
equation (3.2.10) the form (3.2.8) - the trapezoidal method for (1.1.3).

Example 3.2.2 Let us consider the ODE (1.1.3), y'(t) = ay{t) for scalar a. 
Applying, in turn, the Euler forward rule (3.2.6), Euler backward rule (3.2.7) 
and trapezoidal rule (3.2.8) we obtain, with h> 0 and form = 0,1, 2,..., three 
basic discrete formulae - respectively for $ = 1; $ = 0, and

2 Id- -ah
Pm+l (Id- &h')ym) ym+i — y- T^ymt and Pm+l

1 — |a/i ymi(1 — ah)
(3.2.11)

including (1.6.9), These are discrete analogues of the ODE (1.1.3). The 
sequences are defined if, respectively,

/i > 0, h> 0 and ah ^ 1, h> 0 and ah
1

(3.2.12)

Remark 3.2.3 (Dense output) Although the primitive $-method described 
here provides approximate solution values on a mesh To (y{tm) — ym), we 
sometimes require a densely-defined approximation (‘dense-output’) (y(t) for 
general t EM.). There are various possibilities for obtaining such values and 
we indicate two:

1. We may define y(tm + sh) as (1 — s)y(tm) d- sy(tm+i) using linear in­
terpolation;

2. We may define y{tm d- sh) as the solution ym+s of

ym+s = ym + shl&fm + (1 - i?)/(tm+s, ym+s)}, s G (0,1). (3.2.13)
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Both approaches may be generalised, in principle, to functional differential 
equations (DDEs etc.).

The sequences corresponding to (3.2.11) when a is replaced by a matrix 
A G Mnxn and we consider y'(t) = Ay(t) are easily written down, and are 
defined, respectively, for all h > 0, for all /i > 0 when det[7 — hA] 7^ 0, and 
for all h > 0 when det[/ — ^hA] 7^ 0.

Lemma 3.2.1 For the general $-method applied to y'{t) — Ay {ft) (where 
A G Mnxnj we obtain, provided det[/ — (1 —$)hA] 7^ 0, the sequence {ym}m>o 
satisfying yo = y(to) and

Vm+i ^ [I - (1 - ^hAff^I - idhAlym (m = 0,1, • • •). (3.2.14)

Then y : % is defined by the relation ym = y{t„f) for m = 0,1,2, • • •.

Definition 3.2.2 (a) The characteristic polynomial for a recurrence relation 

Um+i — Mum where M G Mnxn, and uq G is given (3.2.15)

is defined to be
x(A) det[AJ — M], (3.2.16)

and its zeros {A^} are called characteristic values, (b) The sequence {um}m>0 
in (3.2.15) is oscillatory if the function u with domain To and u(tm) = um 
is oscillatory in the sense of Definition 1.1.3. (c) The recurrence (3.2.15) is 
called oscillatory if all its solutions are oscillatory.

Lemma 3.2.2 The recurrence (3.2.15) is oscillatory if and only if there is 
no characteristic value that is real and positive.

3.2.2 The ^-method for numerical integration

Consider the issue of calculating g{s)ds (for to < T). This is equivalent 
to determining y(T) where y'(t) — g{T) (to < t < T) and j/(to) = 0. If 
we select an integer N and write h (T — to)/N then we can calculate an 
approximate value using the -d-method and we obtain

f 9(s)ds ~ h-(rdg(to)-{-g(to-\-h)-]-g(to-\-<2h)-\-- • • (1—,d)g(io+A/7i)}. (3.2.17) 
dto

Here g(t) is evaluated at a set of equally-spaced arguments. It is also possible 
to use non-uniformly space abscissae. Suppose that each value hm is positive 
and

tm+i tm T hm(m G {0,1,2, • • • , TV}) and tiv+i T. (3.2.18)
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Then (3.2.17) generalises, with ^ ^ € N) to

N—l^^ ptm+l ^^
/ p(s)hs W + (1 - i9)flr(tm+i)}.

m=0 m=0
(3.2.19)

3.3 The i?-method for DDEs
The ^-method for ODEs can be adapted to the treatment of a general DDE 
(1.2.1), i.e., y'TO = f(y, y(t), y(t - r)) where r > 0.

Definition 3.3.1 Choose h such that r = Nh where IV £ M. The method of 
the general form

Vm+l ~ Vm T h\&f {tm, ym) ym-N) T (1 — ^)f {t-m+li Vm+lj Vm—W+l)? (3.3.1)

for me {0,1, • • • } and $ £ [0,1] is called the id-method for (1.2.1).

Using the conditions in (3.3.1) we obtain different versions of the $ meth­
ods for (1.2.1):

y'(t) = f(t,y{t),y(t-T)) {t>tQ). (3.3.2)
Throughout, 77 is a positive integer with Nh — r. When $ = 1 we obtain 
from (3.3.1) the form (3.3.3)

ym T hf (7^, ymi ym—N) —' 0,1, ....,. (3.3.3)

This defines the Euler forward (explicit) method for the DDE (3.3.2). When 
d = 0 we obtain from (3.3.1) the form (3.3.4) -

2/7n+l ~ 2/m T hf (Un+l) 2/m+l) 2/m+i—iv) ^ — 0,1,....,. (3.3.4)

the Euler backward (or implicit) method for the DDE (3.3.2). Finally, when 
^ we obtain from (3.3.1) the form

2/m+l — 2/m T ~[/(t77) 2/m> 2/m—iv) T /(Un+1 > 2/m+l; 2/m+l—iv)] ? (3.3.5)

for m = 0,1,...... which defines the trapezoidal method for the DDE (3.3.2).
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Example 3.3.1 Consider yf (t) = fj,y(t — t), from (1.2.8), or, equivalently,

4? II i

i—̂ (3.3.6)

with /it, = rpL. Applying, respectively, the Euler forward rule 
backward rule (3.3.4) and trapezoidal rule (3.3.5) we obtain,

(3.3.3), Euler

Vm+l — Vm 4“ d^Vm—Ni (3.3.7)

Vm+l ~ Vm 4~ fJ-tyhym-^i—N, (3.3.8)

and
— jJthh ,— _ v
Vm+l = Vm 4 ~^~\ym—N 4“ ym+i-N)•> (3.3.9)

(m G Ta) where N is a positive integer, and h = 1/N.

3.4 i?-methods for advanced differential equa­
tions

Consider (1.3.1), namely the advanced differential equation (ADE)

y'(t) - f{t,y(t),y{t + T)) (r > 0). (3.4.1)

Definition 3.4.1 With $ G [0,1], the general form of the id-formula for 
(3.4.1) is defined by the formula

Vm+l Vm 4" h[ldf (tm, ym, £/m+iv) 4" (l ,d)/(^m+l) 2/m+l) ?/m+l+iv)]) (3.4.2)

(m G ZJ where Nh — r (N G N). If, under suitable conditions, a sequence 
{ym} exists then an approximate solution y is defined on ‘}q on setting gifnf) — 
Vm (& — 0,1,2, • • •). The associated method is called the D-method for the 
ADE (3.4.1).

Definition 3.4.2 When d = 1 we obtain the Euler forward (explicit) method 
for the advanced differential equation (1.3.1) from the equation (3.4-2). This 
is of the form

Z/m+i Vm 4“ b>f(tm,ym}ym^.]^[f m G (3.4,3)

where N (E N and h ~ r/N.
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Definition 3.4.3 When'd — 0 we obtain from (S.f.2) the Euler backward 
(implicit) method for the advanced differential equation (1.3.1). This is of 
the form

Vm+l ^ ?/m, ”i" ^/(irn+li 2/m+l) 2/m+l+iv)) (3.4.4)
where N is a positive integer and h = r/N.

Definition 3.4.4 When$ — ^ we obtain from (3.4.2) the trapezoidal method 
for the advanced differential equation (1.3.1), of the form

_ _ ^
?/to+1 ~~ ?/m 4“ 7-^3/m) 3/m+iv) 4~ ZAn+l) 2/?Ti+l+iv)]i 171 ^

(3.4.5)
where h — r/N, n eN.

Example 3.4.1 Consider the advanced differential equation (1.3.2),

y'(t) = fay(t + l).

Using h — 1/N with N E N, we obtain discrete analogues of this advanced 
differential equation. Applying the Euler forward rule (3.4-3), Euler backward 
rule (3.4-4) and trapezoidal rule (3.4-5) we obtain,

and

hm+l ym 4“ l^hym+N, 

ym+1 ym 4” /^?/m+l+iVj

2/m+l ~ ym 4 7^~(ym+N 4“ 2/m+l+iv)*

(3.4.6)

(3.4.7)

(3.4.8)

3.5 The ^-method for mixed type differential 
equations with delay and advanced terms

All of the preceding cases are subsumed in the general one discussed here for 
a mixed type functional differential equation (MTFDE).
Definition 3.5.1 For the MTFDE

y'{t) - f(t,y(t),y{t - r),y(t + t)), (3.5.1)

the id-method is defined by a choice of h and of id E [0,1] in the equations

ym+l ~~ l/m+

h[ldf (fm, ym, ym—N,ym+N) 4“ (1 ^)/(^m+l) 2/m+l) Z/m+1—iV} 2/m+l+w)) (3.5.2)
where Nh — r and m E Z.
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Euler’s methods and the trapezoidal method are special cases. When $ = 1 
we obtain Euler’s forward (explicit) method for MTFDE (3.5.1) from (3.5.2),

Vm+l = Urn “b 2/mj ^/m—iV? ?/m+iv)' (3.5.3)

When $ = 0 we obtain from (3.5.2)

Vm+l ~ 2/m d" /(^m+1) 2/m+l) ?/m+l—iVj 2/t7H-1+/v) (3.5.4)

the Euler backward (implicit) method for MTFDE (3.5.1). When | we 
obtain from (3.5.2) the trapezoidal method for MTFDE (3.5.1), namely

2/m+l = 2/m T ~[/(^mj 2/m) 2/m—iV? 2/m-l-iv) T /(^m+1 > 2/m+l) 2/m+l—iVi 2/m+l+iv)]•

(3.5.5)

Example 3.5.1 Let us consider the MTFDE (1.4-8), that is,

y'(t) = ay(t) + by(t - 1) + cy(t + 1). (3.5.6)

Applying the Euler forward rule (3.5.3), the Euler backward (implicit) rule 
(3.5.4) and the trapezoidal rule (3.5.5) we obtain, respectively,

2/m+i = (1 + ah)ym T /i(6j/m_jv+iv + c?/m+jv+jv)) (3.5.7)

2/m+i = (1 + ah)ym + h(bym+i-^+N + cym+i+N+N), (3.5.8)
and

Vm+l = (flH—[h(ym-N+N + 2/m+l-iV+iv) + c(ym+N+N + 2/m+l+JV+w)] j

(3.5.9)
where Nh = r, m = 0,1, 2,.... These are discrete analogues of the advanced 
differential equation (1.4-8).

3.6 The 1? method for integro-differential equa­
tions

For our discussion of the IDE

2//W = f k{t,s)y(s)ds'j
a to

(3.6.1)
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in (1.5.1), it is convenient to introduce the notation

m—l
Zm = h^&*k{tm,tQ)yQ + + (1 - (3.6.2)

1=1

to denote an approximation to Jt*m k(tm, s)y(s)ds based on repeated i?* quadra­
ture rules and values {yz\.

Definition 3.6.1 The -method for (3.6.1) is defined for D E [0,1] and some 
E [0,1] by the formulae

ym+i ^ym + ym, z^) + (1 — i9)/(Wx, 2/m+i, 2^+1)}• (3.6.3)

For definiteness, we take $* = <& unless otherwise stated.

If $ = $* = 1 in (3.6.3) we have the Euler forward rule, if ^ — ■d* = 0 in 
(3.6.3) we have the Euler backward rule and if d = d* — | in (3.6.3) we have 
the trapezoidal rule.

Definition 3.6.2 WhenD = 1 we obtain the Euler forward (explicit) method 
for IDE (3.6.1), of the form

2/m+l — fifmtymiz'm)‘ (3.6.4)

Definition 3.6.3 When d — 0 toe obtain the Euler backward (implicit) 
method for IDE (3.6.1):

1/m+l 2/m "b f (fm+hym+l) zm+l)m (3.6.5)

Definition 3.6.4 When d — | toe obtain the trapezoidal method for (3.6.1)

__ __ 1. jL

2/m+l ?/m "b ~[/(irn, t/rn? ^m)-/(tm+l? dm+1) ^m+l)]' (3.6.6)

3.6.1 Reformulation of recurrences in matrix-vector 
form

Let us consider the DDE ,

ij'(t) + jj,y{t - r) = 0

Applying the 9 method, where r — Nh, h= jf, we have,

ym+i — y-n "b ah{\ — 6)ym-N -f- ahOym—jy+i.
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Reformulating the recurrence relation as matrix-vector form, we have,

um =

Urn

Vm—l

\
and Um+j =

Vm+l

Um

\
(3.6.7)

where

\ym-N+i / y/m-iV+2 /

(l 0 0 0 ... ah(l — 0) ah6 \

1 0 0 0 ... 0 0
Um+l 0 1 0 0 ... 0 0 Um

U 0 0 0 ... 1 0 J
^m+l — A-Um, (3.6.8)

In this way the recurrence can be reformulated as a matrix-vector version.

3.7 Difference equations obtained using nu­
merical methods

Examples in the above sections clearly show that any differential equation 
would be converted into a discrete form (a difference equation) on the ap­
plication of -d—methods. Therefore there is a close link between difference 
equations and numerical methods for differential equations. So discretisation 
for differential equations is a potential source of difference equations involv­
ing approximate solutions ym which can be computed by an appropriate 
algorithm or computer code.

3.T.1 Discretisation techniques

Consider
y'{t) = J (3.7.1)

(where r is a real continuous non-negative function on [—1, 0] and g is a real 
function of bounded variation on [—1,0]), This equation has been used to 
illustrate many fundamental ideas. Numerical methods to solve problems 
of the form (3.7.1) can be based on a simple combination of a differential 
equation solver and a quadrature rule (see [23], [85], [88], [109]). One could 
apply, for example, a linear multi-step method or a Runge-Kutta method for 
solving the differential equation. We use the linear t?—methods which can be
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expressed either as a linear multi-step method or as a Runge-Kutta method. 
These are convenient because they illustrate key features of both types of 
method and because they have simple natural quadrature rule analogues. 
The resulting equations take the form of a discrete Volterra equation or 
difference equation. We can give theoretical results that cover more general 
methods too.

To start with, a simple constant step-size discretisation of (3.7.1) is con­
sidered. Let us suppose MeN, h — -^>0 and ym « y{tm) as usual and we
write o

(3.7.2)

Here the values Wj are quadrature weights, g is a weight function based on 
the original measure q in (3.7.1) and k(j) = k(jh). The function ^ is a dense 
output of the solution process. In other words y(tj) = yj for j E N and y(t) 
is defined by interpolating the values when its argument t is not in
the set {tg}. The interpolation will be based on some combination of the 
values yj at neighboring points.

In the case of multi-delay equations with constant delays, the step length 
may be chosen so that interpolation becomes unnecessary whenever the dif­
ferent delays are related appropriately. The equation (3.7.2) provides an 
expression for ym+1 as a function of ym) y^^,..., ym-M'

Of course, here a very simple one-step solver can be used for the dif­
ferential equation. If a multi-step method is chosen then there will be a 
much more complicated expression, but we will still retain the same overall 
idea, and a discrete equation of the same overall form will be obtained. The 
same observation would apply if a backward difference or central difference 
approach is adopted to approximating the left hand side of (3.7.1).

For a constant step size h > 0 and all the usual notation, let $ E [0,1]. 
For the differential equation

y\t) = ^(Lz/W),2/(0) = 2/o (3.7.3)

the approximate solution given by the linear $ — method is given by

ym+i^ym + Kl ~ d)Fm + MFm+i, Fr~ F{U,yz). (3.7.4)

The corresponding quadrature rule approximates the integral

f{s)ds pa h(l — d)f(mh) + hdf((m + l)h). (3.7.5)
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To integrate over an interval of length unity ([0,1], say) we may take a step 
h — 1/M, write

pi p(k+l)h
/ f(*)ds f(s)ds

JO ,._n Jkhk=0
(3.7.6)

and approximate each integral over an interval [hh,(k-\- l)h] using (3.7.5). 
The approximation simplifies to read

pi M-l
/ f{s)ds = h(l - fl)/0 + h ^ /fc + MfM (h=l/M). (3.7.7)
do k=i

Example 3.7.1 We consider examples based on choices of r and q in the 
equation y1 {t) = given in (3.7.1). The simplest case arises

y'{t) = J y{t + <;)<k (3.7.8)

with r(s) = —s, q(s) = s. Applying a discrete scheme based on an Euler rule 
(‘d = 0) for the differential equation and the corresponding forward rectangu­
lar rule (the repeated explicit Euler rule - d = 0) for the quadrature we then 
obtain

M—l
ym+1 = ym + 2h2Y^Jhym^j {h = 1/M), (3.7.9)

i=o
This is an elementary finite order difference scheme.

For a further example, consider the equation

y'(t) — 2j y(t + q)qd<; (3.7.10)

This is of the form (3.7.1) with

q(s) = C2,r(c) -

However the example

pO
y'(t) = j y(t — q2)dq{<;} where q(<;) = (3.7.11)

(to which we return later) shows how the discretisation of apparently simple 
equations may become unexpectedly complicated. Indeed, we write y'(t) =
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~~ <;2)dq(<;) as y'(t) = 2 f^yit — q2)<;d<;) and direct application of a 
simple discrete scheme based on the explicit Euler formula gives us

M-l
ym+1 = ym + 2h2 ^ jhy(tm ~ j2h)y (3.7.12)

j=o

It is easy to see that we need to interpolate the values ofy since tm — j2h will 
not always be one of the values {U}. However, depending on the function 
function r, we may be able to avoid this problem (a) by restricting the choice 
of h or (b) by using a non-uniform grid for discretising the integral (thereby 
using only values yi). Both approaches can be applied for the present example.

3.7.2 Some remarks on quadrature
An early discussion of the definition of Riemann-type integration can be 
found in [87]. We recall the standard definition of a Riemann integral (see, 
also, [1], which yields

pi n
/ f(s)ds := = o(l) as max{aNij+1 - <JN>j} 0

JO j=1 ’ 3

(3.7.13)
where, for each N,

0 = <7jv,0 ^ — ^N,l ^ ‘ ^N,N — ®N,N — 1- (3.7.14)

Any particular choice (3.7.14) can be used to give an approximation. Taking 
aJvj — {j — l)h (for j = 1,2, • * • ,N and h = 1/(N — 1)) we can obtain as 
particular examples the composite versions of the d rules (compare (3.7.7)).

Remark 3.7.1 (a) Given low-order smoothness on f (assume Lipschitz- 
continuity, or a bounded first derivative, for f) the term o(l) in (3.7.13) 
is actually 0(h). Thus the errors in any repeated d rule (3.7.7)J are 0(h) 
under the mildest of conditions.

(b) However, with sufficiently high-order differentiability of f, the quadra­
ture errors are 0(h2r) for any r when f is periodic of period unity. This result 
follows from formulae of Euler-Maclaurin type. The result is of interest when 
one approximates an integral around a simple closed contour, since the in­
tegrand is periodic - with period equal to the length of the closed contour - 
when the variable of integration is distance along the contour from some fixed 
point.



60

We turn, now, to the approximation of a class of Riemann-Stieltjes inte­
grals f0 f(s)dfi(s). The classical analysis literature contains more than one 
definition of the Riemann-Stieltjes integral, but this need not concern us as 
we consider a subset of the possible choices of S7. Moreover, there is little in 
the classical numerical analysis literature on this topic, and we shall restrict 
ourselves to elementary approximation formulae.

Lemma 3.7.1 faj If f is continuous and JT2 is of bounded variation on [0,1], 
then the Riemann-Stieltjes integral f* f(s)d£2(s) exists. Furthermore, (b) if 
12 has a continuous derivative on [0,1] we have

f f(s)d£l(s) = ( f(s)H'(s)ds (3.7.15)
Jo Jo

N

= - fl(crNj_i)}/(u^.) + 0(1) as maxj{(j^vj+i - o-^} -* 0.
j=l

(3.7.16)
where, for each N,

0 = OXo < CTiVp < Vn,! < * ‘ ‘ < ^n,n ~ = T (3.7.17)

The second result (b) follows because each term {12((TArj) — ^(t/vj-i)} in the 
sum can be expressed as (ax? — oXj-i) x CV(dNtj) where dNj e [oxj-i, aNtj] 
and we can invoke (3.7.13) with the choice (Fnj = &N,j •

3.7.3 Quadrature for functional equations
In the context of the discretisation of functional differential equations that 
involve integrals, we consider formulae that generate approximations ym ~ 
y{tm)} where tm — to + mh. It is appropriate to ask whether quadrature 
formulae that approximate the integrals can be expressed directly in terms 
of values {ym}.

To assist the discussion, let us focus on

2/CO = J y(t- r(g))dq{g) (3.7.18)

that appeared in (3.7.1). Let us seek an approximation to y(tm—r(<;))dq(<;) 
that involves only values ym}. If we base this approximation on (3.7.16) we 
will have an approximation

r0 JV
/ yifm - r{<;))dq(q) « ^MoXi) - ?(0Xi-i)Kfam ~ r(alN^) (3.7.19)
J~l j=i
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in which the a— and (j7-values satisfy (3.7.17), and we are looking for such a 
choice subject to the condition tm — r(a!Nj) G {t^}; thus, we require

r{a'Nij) = Km,jh for some G Z_. (3.7.20)

At the same time, it is desirable, on the grounds of consistency, that

maxjyisM+i — <7jv?} —>■ 0 as /i —>■ 0. (3.7.21)
3

Remark 3.7.2 Finding a suitable approximation may not always be possible} 
but an alternative procedure in which y(tm~r(alN j)) is expressed (using some 
interpolation formula) in terms of {ye} is always open to us.

Returning to (3.7.19), it is not a big step to deduce the related approxi­
mations

r0 n

/ y(tm ~ r(g))dq(g) & Y'Wj) - 0X/-i}y(*m ~ r(a'Nj))q(o-Nj) (3.7.22)
J-l

or
/■O ^ w
/ y(tm-r(^))dq(g) ~ - PNj-iMtm - (3.7.23)

'y“1

f°Example 3.7.2 (a) Consider the approximation of / y(tm — s2)sds which 

corresponds to r(s) = s2 and q(s) = ^s2 in the discussion above. Pick

<jj = jVh where for j G {0,1, 2, • • • M} and h = 1/M2. (3.7.24)

For convenience we shall here set N = M2. Then (3.7.22) combined with 
the additional approximation y(t) zs y(t) provides us with the approximation

N-l N-l

+ l)h — Vkh}y(tm-k2)\/rkh = h + l)fc — fc}2/(tm_fe2).
k—0 k—0

(3.7.25)
Observe that — crwj-i —)• 0 as h ^ 0.

fO
(b) Next, consider the approximation of I y(tm — sA)s3ds which corre­

sponds to r(s) = s2 and q(s) = |s4 in the discussion above. Pick, in place of 
(3.7.24),

(Tj = j-¥h where for j G {0,1,2, • • • M} and h — 1/M4 (3.7.26)
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(again, —» 0 as h 0) and by a similar process to the one
above we obtain

N-l

h^VW+iw
k—O

fc4) •

For convenience we have here set N — M4 and h — 1/N.

(3.7.27)

3.8 IDVEs with oscillatory solutions
In this section we discuss qualitative behaviour of solutions of first order 
DVEs. These have oscillatory solutions given certain conditions. We gener­
ate a first order linear autonomous homogeneous DYE from the delay IDE 
(1.5.12) and having the generic form

N-l

Vm+l — Vm T ^ ''jPjV'm—j ~ 0 (3.8.1)
3=0

where {pk} and h are constants and ym E Mn. Every solution of the equation 
(3.8.1) oscillates if and only if the characteristic values of the equation do 
not include at least one positive real number.

3.8.1 Generating DVEs from delay IDEs using numer­
ical methods

Let us consider the non-oscillatory IDE (2.24), namely

y'(t) = 2 J y(t — O^Ode

Refer back to the discussion of Section 3.7.3. Let us suppose h = 1/M2, and 
we derive equations for ym & y{tm). by applying the explicit Euler rule to 
discretise the derivative and discretising the integral using (3.7.25). We have 
(on simplifying)

m2-i

2/m+i Dm 2/i 'y ^ (\/(^ T 1) k^ym—k — 0-
k=0

Similarly let us consider the non-oscillatory IDE of the form,

7°
?/(£) = 4 J y{t- 6A)Q*dd

(3.8.2)

(3.8.3)
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If the Euler forward rule is applied to the DDE (3.34), we have, on using the 
discretisation (3.7.27) and simplifying,

m4-i _________
ym+i -ym = 4/i2 (\/(& + 1)&3 - k)ym-.k (h = 1/M4). (3.8.4)

fc=0

In the next chapter the most sophisticated analytical and numerical meth­
ods will be studied to develop the analysis for the new numerical and ana­
lytical methods.



Chapter 4

Some Sample Differential 
Equations with Oscillatory 
Solutions

4.1 Introduction
This Chapter introduces some differential equations with oscillatory solutions 
and provides examples of the types of equation that will be used later in the 
thesis. We endeavour to set the equations that we consider in context. The 
basic constant-coefficient homogeneous equations that we have introduced, 
that is, the scalar cases

y'{t) = ^(t), y\t) = b y(t — r), y’(t) = cy{t + r), (4.1.1a)

y'(t) = a y(t) + b y{t - r), y'{t) = a y(t) + by(t~T) + c y(t + r), (4.1.1b) 
or the rather more general systems (with y(t) € Mn)

y'(t) = Ay(t), y'(t) — B y{t — r), y'{t) = C y(t + r) (4.1.2a)
y'(t) = Ay(t) + By(t - r) + Cy{t + r), (4.1.2b)

can be generalised in a number of ways. First, we may increase the number 
of deviating arguments, as in

y'{t) = ^2/W + B3y(t - Tj) + Qyti + (4-1-3)
3 3

(where each Tj and each rj is non-negative). Second, we may replace con­
stants by variables, as in

y’(i) = A(t)y(t) + ^ - Tj(t)) + ^ (4.1.4)
3 3

64
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Then, we may replace sums by Riemann integrals or Riemann-Stieltjes inte­
grals, as in

y'(t) =

A(t)y{t) + ^ BjWvit ~ TjWJ+X) C,-(t)j/(i + T*(t)) + f [dr](s)}y(t + r(s)),
3 3 _1

(4.1.5)
or, in the scalar case

y'(t) = a(t)y(t)+^6j(i)y(i-rj(i))+5jsj(%(t+r/(t))+ f y(t+r{s))dn(s).
i i

(4.1.6)

Remark 4.1.1 Non-linear versions can sometimes be related to linear ones 
through a process of linearization, but, for ill-posed equations, this lineariza­
tion may prove difficult to justify. The step away from equations with instan­
taneous or retarded arguments to those where arguments may be advanced 
presents challenges that have been addressed in the literature.

As part of our orientation, we here quote from Krisztin’s paper [90], of 
2000. In that paper, an example is given to show that the linear autonomous 
functional differential equation of mixed type y'{t) — [dr?(s)]?/(£ + s) may 
have a non-oscillatory solution in spite of the nonexistence of real roots of 
its characteristic equation. However, under a regularity condition on y at 
1, exponential boundedness is shown for the non-oscillatory solutions. The 
following quote (taken from [90], edited and adapted to our notation), is 
instructive. It is assumed that 77 is an nxn matrix-valued function of bounded 
variation.

Recall that for linear autonomous FDEs of retarded type of the 
form y'{f) — J^Jd^s)]?/^ + s), the Cauchy problem for positive 
times is well-posed. There is an exponential bound on the growth 
of the solutions at 00. Such a bound is related to the fact that there 
is an upper bound for the real parts of the roots of the charac­
teristic equation det[A/ — exp(As)d?7(s)] ... Furthermore, the 
existence of a non-oscillatory solution is equivalent to the exis­
tence of a real root of the characteristic equation. The situation 
for y'(t) = J_ '^[dffis^yft + 3) is, in general, strikingly different.
The Cauchy problem is not well posed for both positive and neg­
ative times. There is no upper bound for the real parts of the 
roots of the characteristic equation. As a consequence, there are 
solutions growing faster than any exponential as t ^ 00. Series
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representations for all solutions ... also are not known. ... First 
we give an example showing that y'(t) — + s) may
have a non-os dilatory solution in spite of the fact that the corre­
sponding characteristic equation has no real roots. The function 
grows faster than any exponential as i —» oo. This example pro­
vides a counterexample to the conjecture that the oscillation of 
all solutions of y'{t) = J^1[cJ?7(s)]y(it + s) can be characterised 
by the nonexistence of real roots of the characteristic equation 
det[A/ — exp(As)d?7(s)] — Q. For our second result it is as­
sumed that 77 satisfies a weak non-degeneracy condition at s = 1.
Then it is proved that, although there is no exponential bound 
for all solutions, the non-oscillatory solutions are exponentially 
bounded at 00 ....

We return to related issues in §4.4 (in particular Remark 4.5.1), and refer 
to [90] for additional detail.

In what follows, we restrict ourselves to scalar equations and to a discus­
sion of (4.1.1) supplemented by some particular examples that fit in with the 
generalisations indicated above. To be specific, in the following sections we 
consider the examples shown:

2y"(t)d3y'(t)F4y(t) = 0, i > 0.

y'(t) = 3y(t-l), t>0.

y'{t) = -y{t - 1), t > 0.

y'(t) = 2 J y(t — s2)sds, t >0.

-1 1
y'(t) — — / y(t — y + 0)d9, £ > 0, a > 0.a J_x 5

y'(t) -I- y(t — 1) + ?/(£ + 1) = 0, t> 0.

y,(t) = J y(t + s)ds + y(t + l), t>0.

etc.

4.1.1 Oscillation
Before we proceed, we recall from Chapter 1, Section 1.1 the definitions 1.1.3 
of an oscillatory solution and of an oscillatory equation.
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Definition 4.1.1 If% C [t0, oo) is a set of real numbers with no finite upper 
bound, then a real-valued function u of t £ % is said to be oscillatory (or 
oscillatory about zero) if there does not exists a value T G [to, oo) such that 
either

u{t) > 0 for t G To H [T, oo) or u{t) < 0 for t G To H [T, oo). (4.1.7)

A function that is not oscillatory is called non-oscillatory: that is, there does 
exists a value T G [to, oo) such that either

u{t) > 0 for t G To H [T, oo) or u(t) < 0 for £ G To H [T, oo). (4.1.8)

A function is either oscillatory about a value k or non-os dilatory about 
a value k if the function with values u(t) — k is respectively oscillatory or 
non-oscillatory.

Now we recall what we will mean by an oscillatory equation.

Definition 4.1.2 A scalar differential equation is said to be an oscillatory 
equation if and only if all the solutions of the equation are oscillatory func­
tions in the sense of Definition 4-1.1.

As we have seen, for the cases of certain linear equation, the presence 
(or otherwise) of non-oscillatory solutions can be studied by considering the 
characteristic equation. We recall the following result

Lemma 4.1.1 Let C be a linear differential operator with constant coeffi­
cients and deviating argument such that all the characteristic values (eigen­
values) of C are complex then the equation Cy = 0 is oscillatory. If one or 
more of the characteristic values is real then the equation is non-oscillatory.

The proof is immediate, simply by writing the solution as a linear com­
bination of eigenfunctions and setting all but one coefficient to zero.

4.2 ODEs with oscillatory solutions
In Section 1.1 and in Lemma 1.1.5 we discuss qualitative behaviour of first 
order and second order ODEs. First order scalar linear ODEs with real 
coefficients have no oscillatory solutions but second-order real ODEs may 
have oscillatory solutions.
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Example 4.2.1 Consider the second order linear autonomous homogeneous 
differential equation obtained by setting a = 2, b = 3 and c = A in the 
equation (1.1.17), i.e.,

2y,'{t)+3y'(t)+4y{t)=0, (4.2.1)

where y(t) G M and we have initial values yitf) — y0, y'(t) — y'0. According 
to the Lemma 1.1.6, every solution of the equation oscillates (and we would 
then conclude that the equation is oscillatory) if and only if the characteristic 
values of the equation are complex with non-zero imaginary part.

Remark 4.2.1 For equation (4-2.1), the characteristic equation can be writ­
ten

2A2 + 3A + 4 = 0 (4.2.2)

Therefore the characteristic values are Aij2 = —^ ±£-\/23^ ^ave non_zero

imaginary part. So, according to Lemma 1.1.7 all solutions of the equation 
(4-2.1) oscillate.

4.3 DDEs with oscillatory solutions
In Chapter 1, Section 1.2, we discuss the qualitative behaviour of first order 
DDEs. First order linear autonomous DDEs have oscillatory solutions under 
conditions that can be determined.

Example 4.3.1 Let us consider the first order scalar linear autonomous ho­
mogeneous delay differential equation obtained on obtained by setting (i — 3, 
r = 1 in (1.2.8), namely:

y'(t) = 3y(t — 1), with initial function y(t) = <j6(t) for tQ — 1 < t < t0,
(4-3-i)

where yif) G M. The characteristic function is A —3exp(—A). At least one or 
more solutions of the equation does not oscillate if and only if one or more 
of the characteristic values of the equation is real and the equation is then a 
non-os dilatory DDE.

Example 4.3.2 Consider the DDE (4-3.1) which has characteristic function 
A — 3exp(—A). The related quasi-polynomial

Xa«x(A) := Aexp(A) - 3. (4.3.2)
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Plot of $\lambda\expOJambda)-3$

Figure 4.3.1: Results for Example 4.3.1: Plot of the auxiliary characteristic 
function (for (4.3.1)) defined in (4.3.2)

is an an auxiliary characteristic function, and Xaux(l) < 0, XauI(l-l) > 0 so 
Xaux has one real zero. Thus, at least one solution of the DDE (f.3.1) does 
not oscillate, so that equation (4-3.1) is a non-oscillatory DDE.

The graph of the auxiliary function (Figure 4-3.1) shows evidence of the 
real zero which confirms that the DDE (4-3.1) is a non-oscillatory equation.

Example 4.3.3 Now consider a first order scalar linear autonomous homo­
geneous delay differential equation obtained by setting /a = —1, r = l in 
(1.2.8), that is,

y'{t) = —y{t — 1), with initial function y[t) = (fft) for t^ — l < t < t^,
(4.3.3)

where y(t) £ R. According to Lemma 1.2.3, every solution of the equation 
oscillates if and only if none of the characteristic values of the equation are
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Plot of $\lambda\exp(\lambda)+1 $

Figure 4.3.2: Results for Example 4.3.3: Plot of auxiliary characteristic func­
tion (4.3.4) for (4.3.3)

real and the equation is then said to be an oscillatory DDE. 
For the DDE (4-3.3)

Xaux(A) := Aexp(A) + 1 (4.3.4)

defines an auxiliary function. The function (4-3.4) satisfies Xauz(A) > 0, 
where A E K. So all the solutions of the DDE (4-3.3) oscillate and the equa­
tion (4-3.3) is an oscillatory DDE. The graph of the auxiliary characteristic 
polynomial (4-3.4) shows evidence of the absence of the real zeros, confirming 
that the DDE (4-3.1) is an oscillatory equation.

4.3.1 Determination of an upper bound on the real 
part of the characteristic roots
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Definition 4.3.1 The expression ‘dominant’characteristic root will in this 
section refer to the characteristic value or values which has (have) the largest 
real part.

Lemma 4.3.1 Consider the usual prototype DDEs (1.2.6) and (1.2.8), namely

y'(t) = ay(t)-\-by(t-r), and y'(t) = py(t - 1). (4.3.5)

(a) These two equations are equivalent under an appropriate transformation 
of variables, (b) For p E [^oo) there is a real characteristic root while for 
p E there are no real characteristic values.

Consider the DDE y'(t) = py(t — l) from (1.2.8). The function y(t) — exp(Xt) 
satisfies the above equation if

Aexp(A) = p. (4.3.6)

The characteristic function is x(^) — A — /xexp(—A) and the characteristic 
values for (1.2.8) are solutions of the equation AeA — p. Writing X = a -E i(3 
where a,/? E M, we obtain from(4.3.6) the two equations

o:exp(a;) cos (3 — /lexp(a;) sin (3 = p (4.3.7)

and
Qiexp(a) sin/? + (3exp(a) cos/? = 0 (4.3.8)

which yield
/?exp(Q:)

P ~~ . Qsm p (4.3.9)

f . p sin B
exp (a) = (4.3.10)

Taking the natural logarithm of both sides of the equation (4.3.10) we have,

f psm(3\ a = la{-—)

Prom equation (4,3.8), we obtain,

a — —Pcotp (4.3.11)

and from (4.3.10), we obtain,

/3 = —^exp(—a) sin/1. (4.3.12)
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plot of (a,(3) satisfying (4.3.14) for [i=30

Figure 4.3.3: Results of DDE 1.2.8: Plot of 4.3.14 with positive imaginary 
part for ^ = 30
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plot of (a.p) satisfying (4.3.14) for |i=30

a axis

Figure 4.3.4: Results of DDE 1.2.8: Plot of 4.3.14 with positive and negative 
imaginary parts for = 30



74

Equations (4.3.11) and (4.3.12) can be combined, giving

V = —r4^-exp(o;) = exp ( -^cot(^)), (4.3.13)
sm(p) sm(p)

where sin(/3) ^ 0. Equation (4.3.13) can be written

ft — i (4.3.14)

^=(—4^) -«2 (4.3.15)
\exp(a)/

Since f3 must be real, > 0 and this imposes an upper limit on a, say a* 
dependent upon ji. So the growth rate of the eigenfunctions is bounded by 
exp (a:*i). The growth rate of the eigenfunctions is exp {at) and oscillation 
rate is governed by (3. The graph of j3 against a satisfying 4.3.14 show that 
the greatest value of a with /32 > 0 is approximately 2.5.

4.4 Delay integro-differential equations with 
oscillatory solutions

We shall consider delay IDEs and mixed IDEs (with delayed and advanced 
terms). Here we wish to study some examples of oscillatory IDEs. In Chapter 
1, Section 1.5.2, we discussed the qualitative behaviour of first order IDEs 
with delay. First order IDEs with delay term may have oscillatory solutions 
under appropriate conditions. We shall consider (1.5.12), namely

y'(t) = j y(t — T{s))dQ{s)

Example 4.4.1 Let us consider the first order linear autonomous homoge­
neous Delay IDE obtained by setting, r(s) — s2 and O(s) — s2 in the equation 
(1.5.12),

r°y\t) = 2 j y{t — s2)sds (4.4.1)

where y(t) 6 M, r(<p) is a positive real continuous function on [—1,0] and 
q(ip) is a real function of bounded variation on [—1,0].
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Lemma 4.4.1 By way of illustration of the fundamental analytical ideas, let 
us consider the characteristic polynomial of the equation (4-4‘V

r°x(A) := A — 2 J ex-p(—Xip2)(pd(p (4.4.2)

where r(<p) is a real continuous non-negative function on [—1,0] and q{(p) is a 
real function of bounded variation on [—1,0]. Equation (f.f.l) is oscillatory 
if and only if xW is not equal to zero for A G M (see [47])•

Equations (1.5.12) generalise single and multi-term delay differential equa­
tions and various delay integro-differential equations. They are sufficiently 
complicated to exhibit the range of behaviours we need to study while re­
maining tractable to analysis. In particular the underlying linear nature of 
the problem makes the work amenable to analysis using characteristic values 
(see [47]).

The result of the above Lemma 4.4.1 can be found in the work of Krisztyn 
[89] (see also [63], [64], [120]) who also develop additional criteria to identify 
oscillatory equations) and can be derived by the usual approach of searching 
for solutions of (1.5.12) that take the form eAt.

Example 4.4.2 A broad class of examples takes the form

r(g) = <rn, q(g) = cqm, for some c G M and n, m G N. (4.4.3)

When n is even, r is non-negative and such problems are found to be non- 
oscillatory (see [47]). When n is odd, the equation is advanced and goes 
beyond the scope of the present section. Nevertheless, the approach can be 
extended to this case too and this will be explored in a sequel.

Example 4.4.3 If we take a subset of the problems given in Example 4-4-^ 
of the form

r(g) = qn, for some even n G N, dq(q) = r'{(;)dq, (4.4.4)

then a family of equations will be obtained which are all non-oscillatory (seeuw
Example 4.4.4 Pinelas (see [119]) considered the equation

y'(t) = — f y(t-^ + s)ds (4.4.5)
a o

and showed for some constant a > 0, the equation is oscillatory. We look at 
it numerically in Chapter 6.
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Lemma 4.4.2 Oscillatory and non-os dilatory delay IDEs can be expressed 
by

y'it) ~ 3 J (4.4.6)

where y(t) G M, a <E [—1,0], j=lt2,3}...,N. The delay IDE (4-4-6) will be 
oscillatory if and only if every solution of the equation is an oscillatory func­
tion and the equation (4-4-6) will be non-oscillatory if and only if at least 
one solution is not an oscillatory function.

4.5 Mixed type IDEs or MTFDEs with oscil­
latory solutions

In Chapter 1, Section 1.5.6 we discussed qualitative behaviour of first order 
IDEs. First order IDEs with delay and advanced terms may be shown to 
have oscillatory solutions under suitable conditions.

Let us consider the first order linear autonomous homogeneous mixed 
IDE (1.5.28), namely

y'itf + J [dtt(s)]y(t d s) = (4.5.1)

where y(t) G Mn and 0 : [—1,1] —»■ Mnxn are functions of bounded variation.

Remark 4.5.1 The starting point needs to be a consideration of the con­
ditions under which an equation of the form (1.5.28) has at least one non- 
oscillatory solution. This is a problem that has been considered in detail in 
the works of Krisztin [89], [90], [91]. In his work [89], for example, Krisztin 
gives an example (1.5.28) of a linear mixed type equation with constant co­
efficients, where the characteristic equation has no real roots, but where the 
equation has a non-os dilatory solution. Thus the conditions that are so well- 
known from the theory of ordinary differential equations, and which extend 
to consideration of delay differential equations and integral equations, are 
no longer adequate to provide full information about oscillatory behaviour in 
the case of mixed-type equations. Krisztin gives a non-degeneracy condition 
which, if satisfied, provides us with the usual insights based on characteristic 
roots. He calls the non-degeneracy Condition (H) (see [90, 91]), and we recall 
it below.

Definition 4.5.1 (Kristin’s Condition H) Condition (H) holds for the 
equation

y'(t) + J [cin(s)]j/(£ + s) = 0 (y(t)eRn), (4.5.2)
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if there exist a nonsingular matrix A E Mnxn and a non-decreasing function 
(d : [—1,1] M such that j3(s) < p(l) for all s E [—1,1), and

det{r2(s)A —/3(s)/} — det{f2(l)A —/9(1)/}
m-m "

(4.5.3)

as s —^ 1—.

Lemma 4.5.1 [90, p. 335]. Condition (H) holds, provided either

(a) 0(1) — 12(1—) is a nonsingular matrix; or

(b) there is a nonsingular matrixM E Rnxn; sq G [—1,1), and a monotone 
function v : [s0) 1] —» M so that 0(s)B = v(s)I for all s E [s0,1] and 
v(s) ^ v(l) for all s E [sq, 1).

Remark 4.5.2 In 2009, Pinelas [119] used a condition related to Condition 
(a) in Lemma 4.5.1.

Let L(t)(f> = 4>{t + s)d9l{s). For each t, L(t) is an operator that maps
(f into Rn. Since Cl is assumed to have bounded variation, it follows that L 
is continuous for each t.

Definition 4.5.2 In the scalar case (n — 1), the operator L(t) is atomic at 
0 in the sense of [83] when the left and right-hand limits of Q, at 9 do not 
coincide.

Lemma 4.5.2 (See Krisztyn [90].) If the operator L that maps the function 
"0 E (7(1 — 1, l],Mra) to the function X/0 where

Lif(i) = J [c£J}(s)]^(t + s) E Mn (4.5.4)

is atomic at 1 in the sense of [83, pp. 52-53], then Condition (H) holds.

Assumption (H) may be satisfied in cases where L is non-atomic at 1 
(see [90]). Verduyn Lunel and Hale [83] trace the use of their terminology 
to Hale and Oliva [82] who themselves refer to Hale’s 1971 book [80]. For 
completeness, we include the definition from [83] that applies for a nonlinear 
operator:

Remark 4.5.3 Suppose 12 C M x (7 is open with elements (£, 0). A function 
D : Cl Mn (not necessarily linear) is said to be atomic at (3 on Cl if D is 
continuous together with its first and second Frechet derivatives with respect
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to 4>; and D^, the derivatives with respect to (j), is atomic at (3 on f2. If 
D(t, (jf) is linear in 4> and continuous in (t, </>) e M x C,

D{t,<j>)= f [der}(t, 9)}<t>(0)
J —r

then = A{t,f3) is independent of <f) and A{t,(3) = ??(£,/?+) —
rj(t,(3~). Thus, is atomic at {3 on M x C if det A(t,f3) ^ 0 for
allt EM

We now consider the scalar version of (4.5.2).

Lemma 4.5.3 Consider the scalar case

2/CO + f y{t A s)dQ,(s) = 0 (y(t) e M). (4.5.5)

Krisztin’s Condition (H) for oscillation is satisfied (see [90]) when there exists 
A e R such that

/3{s)-/3(l)
(4.5.6)

Example 4.5.1 We demonstrate how the preceding result may be applied to
the equation

y'(t) A y(t - 1) + y(t + 1) = 0. (4.5.7)
We define

( 0, i/s = -I ;
0 (s) ^ < 1, i/ — 1 < 3 < 1; (4.5.8)

\ 2, if s = l.

and consider the scalar mixed type IDE or MTFDE of the form

y'{t) + J y(t + s)dQ(s) = 0. (4.5.9)

Then, (4.5.9) reduces toyl(t)Ay{t~l)(l-~0)A0Ay(tAl)(2 — l) = 0, which 
is (4.5.7). Let us now choose /3 = Q, that is

( 0, ifs=-l;
/3(s) = O (s) — < 1, if — 1 < s < 1;

[ 2, if s = 1
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and P is a nondecreasing function. Let us make the choice A — 1, then as
g —y ^ —

{fi(s) - /3(s)} - {f2(l) - /3(1)}
2-1 1 (4.5.10)m-m

Therefore, the mixed type IDE or MTFDE (r(4.5.9)J satisfies Condition (H), 
and the equivalent MTFDE (4.5.7) is oscillatory.

We revisit the example studied here in Chapter 6 when we investigate the 
problem numerically.

Example 4.5.2 Let us consider a mixed type IDE or MTFDE of the form

— J 2/(t + s)ds+ 2/(i H-1). (4.5.11)

Equivalently,

y'(t) = J y(t F s)dD1(s)-\-J y{t + s)dD2(s) 

where, Oi(s) = s and n2 (s) — J ^ 1 < 5 <

(4.5.12)

1, if s = 1; 
Equation (4-5.11) can also be written

y'{t) = J y(t + s)dQ(s)

where Q(s) — fiifs) + n2(s) = s F n2(«s) and

o f — I s + 0’ */ - 1 < ^ < 1; 

ls + 1, */s=l

We seek to apply Condition (H), with n = 1,
det{ri(s)A — j0(s)/} — det{n(l)A — P(l)I}

pw-m
as 5 —> 1“ (for oscillation). Let us choose,

^0

p(s) = n(s) = j s, if — 1 < s < 1] 
5 + 1, if s = 1

where p is a nondecreasing function. With A = 1, we have 
det{r2(s) — P(s)I} — det{0(l) — /?(!)/} —y 0-0 0

(4.5.13)

0 as s —^ 1-
P(s)~P{l) ' (s + l)-5 1

Therefore, the MTFDE satisfies Condition (H) and (4-5.11) is oscillatory.
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Example 4.5.3 Again let us consider the linear autonomous mixed type IDE 
or MTFDE (1.5.26) (see [89], [90], [91]), that is,

2/00 + J y(t + s)dQ(s) = 0,

and apply a different method to check the characteristic equation, 
Let us suppose, n(s) = s,<in(s) — ds

2/(0 + J y{t + s)ds = 0 (4.5.14)

Consider two tests for oscillation:

(1) using the characteristic function,

(2) using Condition (H) ([90]).

For (1), examine
. eA e~x
A + —------- — = 0

A A
This is the characteristic equation of the MTFDE (4.5.14)- It can be shown 
that the characteristic equation has no real roots. Therefore, the MTFDE 
(4-5.14) is oscillatory;

For (2) we must check (but for the case n — 1) that 

det{fi(s)A - P{s)I} - det{£2(l)A - 0(1)/}
m - m 0

as s —>■ 1_ holds where A G Rnxn is some nonsingular matrix and f3 is a 
nondecreasing function on [~1,1[. Let us take A = 1 then f2(s) = 0(s) = s7 
fi(s)A — P(s)I = s — s — 0 on [—1,1] and

{n(s)A-p(s)i}-{n{i)A-p(i)i} 0
0(1) -0(0

0 on [—1,1],

{n(6)A -/?(«)/} - {n(iM -/3(i)/|
m-m -J- 0.

Thus the equation (4-5.14) satisfies Condition (H) [90]) and the original 
equation (1.5.26) is therefore an oscillatory MTFDE.

Remark 4.5.4 We revisit the examples studied here in Chapter 6 when we 
investigate them numerically.
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4.5.1 Further mixed type equations with oscillatory 
solutions

In Chapter 1, Section 1.5.6, we discussed the qualitative behaviour of first 
order IDEs. First order IDEs with delay and advanced terms have oscillatory 
solutions subject to appropriate conditions (see also [48]). In this section we 
shall study the oscillatory behaviour of some mixed type IDEs.

We consider the mixed type IDE (1.5.26) of the general form:

/
o /»0

x (t — r (0)) dv (9) + J x (t + t {0)) dr) (6) (4.5.15)

where x {t) G M, v(Q) and rj {9) are real functions of bounded variation on 
[—1,0] normalised so that z/ (—1) = r) (—1) = 0, r (9) and r (6) are nonnega­
tive real continuous functions on [—1,0]. Taking

||t|| = max{r (9) : 9 E [—1, 0]} ,

the advance r (0) will be assumed to satisfy

r (^o) = IMI > r (0), \/9 ^ 9q. (4.5.16)

In case of having r (9q) > 0, the function 77 (9) is supposed to be atomic at 
$0) that is, such that

V (0o+) - V (<?o~) ^ 0. (4.5.17)
The equation (4.5.15) represents another wider class of linear functional 

differential equations of mixed type and is considered by Krisztin (see [90]) 
as a basis for some mathematical applications appearing in the literature, 
such as in [34] and [123].

Letting R = max{||?',||, ||t||}, a solution of (1.5.28) will mean any dif­
ferentiable function x : [—_R,+00) —>• M which satisfies (4.5.15) for every 
t G [0, +00).

Remark 4.5.5 As usual, a solution x of (4-5.15) oscillates if satisfies Def­
inition 1.1.3. In [90] x(t) is called oscillatory if there is no cone, 1C, such 
that x(t) G K,, eventually. Notice that for these equations, both definitions 
coincide.

By assuming that delays and advances are positive and differentiable on 
[—1,0], one can obtain some special criteria for (4.5.15) to be oscillatory. In 
this section this case will be analyzed, complementing the results in [120] for 
the case where delays and advances are only continuous. Further theoretical
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results for delay equations are obtained in [124] and these can be extended 
in a natural way to the mixed equation.

The two main ingredients in the theory of linear delay equations (see 
[83]) are the existence of a unique solution, for any given initial condition, 
and the exponential boundedness on those solutions. As is shown in [122], 
this is not at all the situation for a differential equation of mixed type such 
as (4.5.15). However the following Lemma goes some way towards helping 
with the analysis.

Lemma 4.5.4 However, under the atomicity assumption (4-5.17), one has 
that every oscillatory solution is exponentially bounded as t oo ([90], 
[Proposition 4])-

This fact enables the oscillatory behaviour of (4.5.15) to be studied through 
the analysis of the zeros of the generalised characteristic equation

/
0 nQ

exp {—\r (9)) dv (6) + J exp (Xt (9)) drj (6). (4.5.18)

Theorem 4.5.5 If
o pO

exp (—Xr (9)) dis (9)-j- / exp (At (#)) d?7 (#).
i

Equation (4-5.15) is oscillatory if and only if F (X) ^ X then the generalised 
characteristic function is

Equivalently if 

or if

X(X) = A - F(X) 

F (X) > X (4.5.19)

F (A) < A, VAgR (4.5.20)
(where x := A — F) equation (4-5.15) is oscillatory.

4.5.2 Oscillatory mixed-type equations with differen­
tiable delays and advances

Definition 4.5.3 Assuming that —1 ^ < 0, let D^iOf) be the family of
all positive differentiable functions, which are strictly increasing on [“-l,<9i] 
and decreasing on [9i, 0].
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Definition 4.5.4 The set we denote by consists of all positive increasing 
differentiable functions on the interval [—1,0]. The class denotes all 
decreasing positive differentiable functions on [—1,0],

The set of r E D+(6i) and r G D+(0q) with 9q as in (4-5.16), we define 
the value for (1.5.28)

Si = v {9) dlrtr {9) + / r\ {9) dlnr {9)
-i

Theorem 4.5.6 Consider (4-5.15) and suppose r G D+(9i) and r G D+(9q) 
and

v (9) < 0/or 0 G [—1,0i), z/(0) ^ 0/or 0 G [0i, 0) (4.5.21)
r]{9) ^ 0 for 9 G [-1,0O), v{9)^0 for 9 G [00,0), (4.5.22)

such that 7] (0) > 0. If

1 + In (r (0) r] (0)) + t (0) Si > 0 (4.5.23)

then the equation (4-5.15) is oscillatory.

Proof: [48] We shall prove that 4.5.19 is satisfied for A = 0, we have 
F (0) = z' (0) +97(0) > 0. Let A 7^ 0. Using integration by parts we obtain

F(X) — exp (—Ar (0)) z/(0) + exp (At (0)) 77 (0) 
+ Ay exp (—Ar (0)) z'(0) dr (0)

— X J exp (At (0)) rj (0) dr (0). (4.5.24)

Since z/(0)r/(0) ^ 0 and r/(0)T/(0) ^ 0 for 0 G [—1,0], and izexp(—tz) ^ 
1/e, for every real u} we have

F (A) ^ exp (—Ar (0)) 1/ (0) + exp (At (0)) 77 (0) + Si.

Therefore

F (A) — A ^ exp (—Ar (0)) z^ (0) + exp (At (0)) 77 (0) — A + Si
^ exp (At (0)) 77 (0) — A + Si. (4.5.25)

As 7] (0) > 0, the function f (A) = exp (At (0)) 77 (0) — A attains an absolute 
minimum at

^ _ In (t (0)77(0))
A°- vwr~
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and consequently

F(X)~X^ 7j|o) + 7(o)ln^71 ^ + 5l > °-

Thus (4.5.19) is satisfied, which completes the proof.
The following examples illustrate the application of Theorem 4.5.6.

Example 4.5.4 Consider the equation (4-5.15) for

v {&) - (30 + 1) (0 + 1), ?/ (0) = (0 + 1) (20 + 1)

r (0) = —^02 — 0 + 1 and r (0) = —02 — 0 + 2

5l = e_1 /0 (30 + 1} ^ + 1] -Ig2g_+6)1+ ^

/
o _2f) i
1 (0 + 1) (20 + 1) _ 0 + ~ -0.1421,

1 + In (r (0) ?7 (0)) + r (0) = 1 + In 2 + 2^ « 1.4089,

the corresponding equation (4-5.15) is oscillatory.

Example 4.5.5 Consider the equation (4-5.15) with

z,(0) = -0-1, if 9 e [-1,0[ 
1, if 0 = 0

77(0) = 0 + 1, r (0) = 0 + 2 and r(0) = —0 + 1.

The corresponding equation is oscillatory since

rO
Si = e'

1 ' $ 1d0 + e~1 f0Tl±TdS
'_i 0 + 2 -1 ■+ 1

and
1 + In (r (0) 77 (0)) + r (0) Si = 1 + In 1 + SI

-0.25499

0.74501.

To state a further theorem, we define

0 pO
v (0) dr (0) - / 77 (0) dr (0). 

1 7-i



85

Theorem 4.5.7 [48] Let r G D+(6i), r <E D+(6o). If (4‘5.21)-(4.5.22) hold 
such that i/ (0) + 77 (0) > 0 and

1 — er (0) rj (0) < S2 < l er (0) ^ (0) (4.5.26)

then equation (4-5.15) is oscillatory.

Proof: The case where A = 0, follows as in the proof of Theorem 4.5.6. 
For A 7^ 0, by (4.5.24) we have

FpO = exp(-Ar(Q))t,(0) | exp(Ar (0))^ (Q)
A A A

+ J exp (—Ar (6)) u {9) dr (9)

— J exp (\t (9)) 7] (9) dr (9). (4.5.27)

Now let A > 0. Since exp (—it) < 1, expu > 1, > 0 and > e, for
n > 0, we obtain

-—jjp" > er (0) 77 (0) + ^2 > 1
and so F (A) > A. Finally, for A < 0, the same arguments imply that

^ ^ < —er (0) i/ (0) + ^ < 1 
A

and ^(A) > A. Hence (4.5.19) is again satisfied and (4.5.15) is oscillatory. 

The following examples illustrate Theorem 4.5.7.

Example 4.5.6 Consider the equation (4-5.15) with

We have

S2

v {9) = {59 + 4) (0 + 1), 77 {9) - (100 + 9) (0 + 1),

r (0) = ~t^62 — 40 -j- 5 and r (0) = —502 — 90 + 1.

/
0 p0

(50 + 4)2 (0 + 1) d0 + j (100 + 9)' (0 + 1 15.417

and

-23.465 w 1 —9e = 1-er (0)77(0) < S2 < l + er (0) z/(0) = l + 20e « 55.366.
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Therefore, the corresponding equation is oscillatory. 
Notice that in this case

Si
(56> + 4)2(0 + l) 
-|02-40 + 5

dQ +
-i

— (100 + 9)2 (0 + 1) 
-5<92 — 9(9 + 1

dO

■3.6737

and

1 + In (r (0) ?7 (0)) + r (0) Si = 1 + In 9 + 5i = —0.47648 < 0.

so that, in consequence, we cannot apply Theorem 4-5.6.

With respect to condition (4.5.20) the following theorem will be obtained.

Theorem 4.5.8 [48] Let r 6 D+(6i), r E D+(90) and assume i/(0) < 0 and 
that

v(0)> 0 for eel-1,00, i/ (0) ^ 0 for 0 E [0l5 0], (4.5.28)
Ti{e)> 0 for 0 E [-1, 0O), 77 (0) ^ 0 for 0 E [0O, 0] (4.5.29)

//
1 + In (r (0) \v (0)|) - r (0) Si > 0 (4.5.30)

then equation (4-5.15) is oscillatory.

Proof: We show that 4.5.20 is satisfied for A — 0, we have F(0) = 
(0) + 77 (0) < 0 ^ A.

Let A ^ 0. Applying (4.5.24) and taking into account that now v (0) r' (0) > 
0 and 77 (0) rf (0) ^ 0 for 0 E [—1,0], and u exp (—u) ^ 1/e, for every real u, 
we have

F (A) < exp (—At- (0)) n (0) + exp (Ar (0)) 77 (0) + Si.

Notice that, in this case, M (A) —» —00, as A —> ±00.

Therefore

F (A) — A < exp (—Ar (0)) ^ (0) — A + Si. (4.5.31)

The function g (A) = exp (—Ar (0)) 1/ (0) — A has a maximum at

ln(r(0)|i/(0)|)A°-

and consequently by (4.5.30)

F (A) - A < ~0o) _ rjd)ln ^ ^ ^ < °>

for every A E M.
Thus (4.5.20) is satisfied and (4.5.15) is oscillatory.
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Remark 4.5.6 Notice that conditions (4-5.21) and (4-5.22) of Theorem 4-5-6 
by (4-5.25), imply that M(A) — A —^ +oo, as X ±oo. Analogously to 
(4-5.28) and (4-5.29) of Theorem 4-5.8, by (4-5.31), one has M(A) — A -> 
—oo, as X ioo. This means that in such situations the real roots of the 
characteristic equation (4-5.18) are bounded.

Example 4.5.7 Consider the equation (4-5.15) with

v (0) - (-0 - 1) (46 + 3), 77 (0) = -80 - 8,

r (0) - —202 - 30 + 1, and r (0) = -0 + 1.
Notice that

Sl=e- r
r-i -202 ~ 30 + 1

'° 80 + 8 
—0 + 1

dO w 1.6372.

and
1 + In (r (0) M0)|) -r (0)Si = 1 + ln3- 5i « 0.4614.

By Theorem 4-5.8, the corresponding equation (1.5.28) is oscillatory.

Example 4.5.8 Consider

u{e) 6+1, if 6 e[-l,0[
-1, if 6 = 0

*7(0) = -0-1, r (0) = —02 + 2 and r (6) =-6 + 3.

The equation (4-5.15) is oscillatory since

Si = e_-if f° + , f° 6 + 1a;
■02 + 2

d6 +
-i —0 + 3

d6 » 0.1291,

and
1 + In (r (0) (0)|) - r (0) 5i = 1 + ln2 - 2^ « 1.4349.

Theorem 4.5.9 Let r e D+(01), r G D+(0O) and assume that (4-5.28)- 
(4-5.29) are satisfied such that z' (0) + 77 (0) <0. If

1 + er (0) v (0) < S2 <1 — er (0) rj (0) (4.5.32)

then the equation (4-5.15) is oscillatory.



Proof: When A = 0, as before one has F (0) = u (0) + 77 (0) < 0.
Let A > 0. Using (4.5.27) and the arguments as in Theorem 4.5.7, we 

obtain

< er (0)??(0) + S2,

and by (4.5.32) follows that M (A) < A.
For A < 0, the same arguments as before enable us to conclude that

Ud>er (0) \i/ (0)| + S2 > 1.

So, by (4.5.32) one has also F (A) < A, which achieves the proof.
For the case where 9q — 9i = —1, the delays and advances are in D#. 

When 9q — 9i — 0, the delays and advances are in Df. The following example 
illustrates this situation for Theorem 4.5.9.

Example 4.5.9 Let the equation (4-5.15)

v(9) = - {59 + 1) (0 + 1), rj{9) — — {69 + 1) (0 + 1),

r{9) = -m2-49 + 10,

and
r {9) = —392 — 9 + 1.

We have
r0 pQ

S2 — {59 + l){9 + l){209 + 4)d9- {69 + l)2 {9 + 1) d9

« 2.1667

-26.138 w l-10e = 1 + er (0)^(0) < S'a < 1 - er (0) 77 (0) - 1+ e ^ 3.7183, 

therefore, the corresponding equation is oscillatory.

Remark 4.5.7 We revisit the examples studied here in Chapter 6 when we 
investigate them numerically.



Chapter 5

Rouche’s Theorem and the 
Argument Principle

5.1 Introduction
This Chapter introduces Rouche’s theorem and the Argument Principle that 
will be used later in the thesis to count the number of zeros of a polynomial 
that lie in a given region or a given interval. (The principles are the same 
when we consider the zeros of a quasi-polynomial rather than a polynomial.)

5.2 Rouche’s and related theorems
In this section we introduces Rouche’s theorem and some related results.

In the following theorems, we suppose that the functions / and g are 
analytic on a simply-connected open domain D <Z C whose boundary 7 = dD 
is a simple closed contour (taken to be positively oriented).

Theorem 5.2.1 (Rouche’s Theorem) Suppose that f(z) and g(z) have 
no zeros or poles for £ e 7. If \g(z)\ < \f(z)\ for all z E 'y then f and f + g 
have the same number of zeros inside 7 (that is, in D).

An equivalent result is the following.

Theorem 5.2.2 (Attributed to Estermann [46]) If\f{z)—g{z)\ < |/(^)| + 
\g{z)\ for all z E j then f and g have the same number of zeros inside 7.

Suppose now that a function / is analytic in D except at a finite set of 
poles. We denote the number of zeros of / in D by and the number of
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poles in D by pf. If / is a analytic on the closed contour 7 then

The above result is stated formally in Theorem 5.2.3 and is often called 
the Principle of the Argument [38]. In the cases we consider, / is often 
a polynomial (sometimes a quasi-polynomial) and so the integral permits 
us to calculate the number of zeros (counting multiple zeros according to 
multiplicity) lying within 7.

Moreover, our aim is to test for real zeros. Typical of our results for 
oscillation of solutions of a discrete recurrence is the characterisation property 
that states that the equation (1.7.1) is oscillatory if and only if none of the 
zeros of (1.7.2) lie on the non-negative real axis or its positive part. For many 
of the analytic problems (ODES, DDEs, etc.) considered here, the equation 
is oscillatory if and only if none of the zeros of some characteristic function 
lie on the whole real axis. In each case, we do not need to find the zeros of the 
function, we merely need to count how many lie on the nonnegative real axis 
(respectively, on the real axis). The Argument Principle provides an ideal 
tool for this type of investigation. In the next section we demonstrate the 
use of the Argument Principle in a simple example, showing how to count 
the zeros of a function in a given region.

We recall that a meromorphic function is a function that is the quotient 
of two analytic functions, and state the result formally:

Theorem 5.2.3 (The Argument Principle) Let f be meromorphic as­
sumption onV E Cset with poles Pi,P2,..., mp and zeros zi,Z2,..., mz re­
peated as necessary according to multiplicity. Let y be a positively oriented 
Jordan (simple closed) curve in T> which does not pass through any of the 
zeros or poles of f. Then

1 f^fmdz=z>~p?l the number of zeros of f lying within 7— 
the number of poles of f lying within 7

(5.2.1)

5.2.1 Basic application of the Argument Principle
In this section we shall present an example where the location and number of 
the zeros of a simple function is already known and the purpose is merely to 
illustrate the principle we shall use later. Our numerical approach depends 
upon selecting contours 7m for integer M and using them in place of 7. We 
start with a problem where we wish to count the zeros on the real axis (E)
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and later we deal with a problem where we wish to count the zeros on the 
positive real axis (M+).

Example 5.2.1 The problem here is to find the number and location of zeros 
of the function f where

f(z) = z2 — 1, z E C. (5.2.2)

on the real axis using the Argument Principle. (We know the zeros to be at 
dzl. We can verify the known result using numerical techniques based on the 
Argument Principle!)

Definition 5 .2.1 (Rectangular contours and jm) (&) The con­
tour consists of the rectangular contour in the complex plane (specifically, 
in the right half-plane) with vertices A = M + i/M, B = i/M, C = —\/M, 
D = M — i/M. (b) The contour r2M is defined as the rectangular con­
tour having vertices A = M -p i/M, B = —M + i/M, C = —M — i/M, 
D = M- i/M.

Refer to Figure 5.2.1, where we display a contour 7m- This contour 
is used to find zeros in M+ (Figure 5.2.1); r2M is used to find zeros in R 
(Figure 5.2.2). If the length of the rectangular contour ABCD is increased 
by increasing M then the height of the rectangular will decrease and in the 
limit as M ^ oo the number of zeros on the real half-axis (respectively, real 
axis) will be determined.

First, we consider results that follow using 7m* When M = 1 one of the 
zeros of f lies on 7m and the Argument Principle cannot be applied. This 
problem arises with 7m only for M = 1, and we can take any other value of 
M and apply the principle.

For the given function
f(z) = z2 - 1 (5.2.3)

we have
f(z) = 2z (5.2.4)

By the Argument Principle, the number and location of zeros inside 7m = 
ABCD (Figure 5.2.1) is

zf
1

27ri
f(*)
/(*)

dz = T 2z
2mf^Mz2-l

dz.

Here, 7m = ABCD is a closed curve and

(5.2.5)

+
AB

+
BC CD

2z
z2 — l

dz (5.2.6)
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Y

Figure 5.2.1: Results for Example 5.2.1: The rectangle 7a/ for M = 2

Y

Figure 5.2.2: Result for Example 5.2.1: The rectangle r2A/ for M — 2
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We propose to discretise each of the four integrals in (5.2.6). Define a 
step-size h — 1/(LM) where L is an integer and define 7m(^) to be the set 
of points lying on starting at the vertex A and at a distance h from its 
neighbour. (The set can be defined in a similar fashion.)

We obtain
h \—% 2z . .T, (5-2-7)

ZZ'YMW

Indeed, since h = 1/(LM) —> 0 as L oo,

zf lim -—:
L,M^-oo ZTTl

zejM{h)

2z
z2 — 1

(5.2.8)

and we are aided by the fact that the true value is an integer (zf G N) so that 
the limit is more readily apparent on taking a small h (taking a large L with 
a large M). Already, for M — L = 2, the approximation to Zf is 0.56. The 
number of zeros on real axis is one. Figure 5.2.1 shows the result.

Now consider the number of real zeros (of any sign) and construct 72m- 
Thus, we consider both sides of the real axis then the number and location of 
the real zeros will be obtained. The number of the real roots will be 2. There 
is one positive and one negative root. Figures 5.2.1 and 5.2.2 based on the 
Argument Principle show clearly the accurate determination of the number 
of positive and negative zeros for the polynomial. Using T2M(h) gives the 
number of real zeros; while using TM{h) gives the number of positive real 
zeros, in each case for sufficiently small h and sufficiently large M.

Remark 5.2.1 Example 5.2.1 shows that the Argument Principle can be 
used to locate and count the number of zeros of a polynomial on the real 
axis. Also the example shows the process is automatic, quicker and accurate 
for the smaller step-size (see figure 5.2.3).

The application of the Argument Principle to count zeros of a function will 
be given in the next section.

5.2.2 The Use of the Argument Principle to Count Ze­
ros

We proceed without formal justification in this section (further theoretical 
justification will be deferred to Chapter 7).

We let M > 0 be fixed and we let 7m be the rectangle with vertices 
at (0,±^), (M, i-^h). We approximate the integral (5.2.1) using numerical 
integration. That means we approximate, numerically, the integral on the



94

forward Euler method

Figure 5.2.3: Results for Example 5.2.1: Each symbol * represents a charac­
teristic value obtained using h = 0.05, M = 10 and the rectangle 7m with 
corners at (0 ± i-^), (Af ± i-p)

left hand side of (5.2.1) around 7m as we allow M to vary through a sequence 
of increasing values. This enables us to count the number of zeros of / lying 
on the positive real axis in a very straightforward way. Of course we must be 
careful to ensure the accuracy of the numerical method used to evaluate the 
integral as well as ensuring that we choose M sufficiently large to capture 
all the positive real zeros of /. We give examples illustrating the use of 
this approach in the next section. Figure 5.2.3 illustrates the method using 
M = 4 and for which the integral will determine three zeros lying inside the 
rectangle. The zeros of the characteristic polynomial are marked with * and 
as Af —>• oo we can see that the method will count the single real positive 
zero.

Remark 5.2.2 Table 5.2.1 records the results of the numerical calculations 
using different values of M to calculate the number of zeros of a polyno­
mial lying in the rectangle. As M becomes larger, the number of zeros of 
the polynomial counted by the Argument Principle tends to 1. There is one 
positive real characteristic value for the discrete scheme. The underlying 
problem is non-oscillatory, as is the discrete scheme. Throughout, the term 
‘Large’ refers to all values of M larger than in the preceding row for which



Step length h Length of rectangle M Number of zeros
0.0001 10 7
0.0001 20 1
0.0001 30 1
0.0001 Large 1

Table 5.2.1: Results for Example 5.2.1: Number of zeros located inside 
by the Argument Principle 5.2.1.

experiments were performed.



Chapter 6

Counting characteristic values 
for continuous and discrete 
problems using the Argument 
Principle

6.1 Introduction
The oscillatory behaviour of solutions of DDEs and MTDEs (with delayed 
and advanced terms) are based on the existence or non-existence of real 
zeros of the corresponding characteristic equation and also depends on the 
smoothness of the delay function (see [63], [64]).

6.2 Discretisation of oscillatory DDEs and 
DIDEs

We want to determining the number of real characteristic values of continuous 
and discrete DDEs and delay IDEs or MTFDEs. Essentially, we wish to 
know whether there are no real zeros or one or more real zeros. We use basic 
numerical methods for discretisation. Actually we are interested to know the 
fundamental oscillatory properties of an equation and its solutions under a 
numerical discretisation.

This is particularly important when investigating functional differential 
equations which often do not admit an exact closed form solution, and the 
use of numerical approximation methods becomes essential. It is known 
that numerical schemes may suppress certain properties of an equation, or
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introduce spurious properties and one needs to be able to select numerical 
methods that exhibit accurately the important true patterns of behaviour 
from the original continuous problem (see [56, 60, 61]).

For counting zeros a matlab program has been produced based on the 
Principle of the Argument to count the number of zeros of characteristic 
equations of DDEs and delay IDEs to investigate whether or not they are 
oscillatory. Similarly a matlab program has been produced based on the 
Principle of the Argument to count the number of zeros of characteristic 
equation of its discrete equations to investigate whether they are also os­
cillatory or not. We demonstrate some examples which will show how to 
count the number of zeros using the program and it will also show how the 
numerical methods are more effective and reliable than original analytical 
methods.

6.2.1 Experiments of real characteristic values of DDEs
In this section we consider some examples of oscillatory and non-oscillatory 
DDEs. Our approach is to discretise the equations.

Example 6.2.1 Consider the non-oscillatory problem obtained by setting 
Q, = 3 in the basic DDE (1.2.8),

v'(t) = 3y(t - 1), i > 0. (6.2.1)

The characteristic function of the above equation can be written x(A) — A — 
3exp(—A).

Applying the forward Euler rule (3.3.3), where Nh = 1, N is a positive 
integer and me {0,1,2, • • • }, — to + mil, ym « y(tm), we obtain

Vm+l Vm ^>hym^jyf — 0.

The characteristic equation for (6.2.2) can be written

XN+1 — \N — 3h = 0

(6.2.2)

(6.2.3)

and the characteristic polynomial can be written

XDW = AN+1 — \N ~ 3h.

Figure 6.2.2 presents the characteristic values of the discretised case 6.2.2for 
h = 0.01, N — 100. Figure 6.2.2 and Table 6.2.1 show that the discrete 
problem (6.2.2) is non-oscillatory as is the underlying DDE (6.2.1).
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Plot of X-3e**

Figure 6.2.1: Results for Example 6.2.1: Plot of the characteristic function 
for y'{t) = 3y(t - 1).

Step length h Length of rectangle M Number of zeros
0.01 2 17

0.001 10 3
0.001 20 3
0.001 30 1
0.001 40 1

0.0001 40 1
0.0001 Large 1

Table 6.2.1: Results for Example 6.2.1 : Number of positive real zeros located 
inside 7m by the Argument Principle 5.2.1
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forward Euler method

15 2

Figure 6.2.2: Results for Example 6.2.1: Each symbol * represents a char­
acteristic value of the discretised scheme obtained using h = 0.01, M = 2 
inside the rectangle 7aj with corners at (0 ± i^), (M ± i-^).
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Example 6.2.2 Let us consider the oscillatory DDE (4.3.1), i,e.,

y'(t) =t>0.

The characteristic function x(^) = A + exp(—A). We can choose as an 
auxiliary characteristic function Aexp(A) + 1.

Plot of X+ e'^

Figure 6.2.3: Results for Example 6.2.2: Plot of the characteristic function 
for y'(t) = —y{t - 1).

Applying the forward Euler rule (3.3.3) with the usual notation, we obtain 

hm+l ?/m “h hym—N = 0, h = —. (6.2.4)

The characteristic polynomial can be written xD(A) = AN+1 —\N + h and the 
characteristic equation can be written

XN+l - \N + h = 0 (6.2.5)
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forward Euler method

Figure 6.2.4: Results for Example 6.2.2: Each symbol * represents a char­
acteristic value of the discretised scheme obtained using h = 0.01, M = 2 
inside the rectangle 7m with corners at (0 ± i^y), (M ±\jj).
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Step length h Length of rectangle M Number of zeros
0.01 2 18.0955

0.001 10 4
0.001 20 2
0.001 30 2
0.001 40 2

0.0001 40 2
0.0001 Large 0

Table 6.2.2: Results for Example 6.2.2: Number of positive real roots located 
inside 7^ by the Argument Principle 5.2.1

The characteristic values are represented in Figure 6.2.4 and Table 6.2.2 
confirming that the problem is oscillatory.

Remark 6.2.1 Figure 6.2.4 and Table 6.2.2 confirming that the discrete 
problem (6.2.4) of the problem (4-3.1) is oscillatory.

6.2.2 Experiments for counting characteristic values 
of oscillatory and non-oscillatory DIDEs

Example 6.2.3 Let us consider the non-oscillatory IDE (4.4-l)>

f0
y'(t) ~ 2 J y(t — s2)sds.

The characteristic function of the above equation can be written x(A) — A — 

g.x.P..(-A)--1 for - with x(0) = limA^oX(A).
Applying the forward Euler rule (3.3.3) for the differential equation, and 

a specially selected quadrature rule with step length y/h, the discrete scheme 
will be obtained,

= 2/i V" wkym-k2.k, (6.2.6)
ll **

k——N

where N — M2 is a positive integer and Me (iV = 0,1,2,..., M), h> Q,t — 
mh,y(mh) « ym,wQ = W-N = I,wk = l,h ^ -^2.

0

Vm+i -ym = 2/i2 kwkym_k2 
k=-N
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-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

Figure 6.2.5: Results for Example 6.2.3: Plot of the characteristic function 
for y'{t) = 2 y{t — s2)sds.

and the characteristic equation is

A^+i - A"2 + Jj^iA"2-12 + ^.2.w2\n2-22 +... + Aa^a"2-"2 = 0.

The characteristic polynomial can be written 

X°(A) = \n2+1-\n2 + ^Wi\n2-i2+~.2.w2\"2-*+...+^Nw-N\n2-"2. 

where {w£} = 1,* • • , 1,

Remark 6.2.2 Figure 6.2.6 and Table 6.2.3 confirm that the discrete prob­
lem (6.2.6) and the underlying continuous problem are non-oscillatory.
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forward Euler method

Figure 6.2.6: Results for Example 6.2.3: Each symbol * represents a charac­
teristic value of the discretised scheme obtained using h = 0.0125, M = 10 
inside the rectangle 7m with corners at (0 ± i-^g), (M ± i-gr).
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Step length h Length of rectangle M Number of zeros
0.01 2 13.0482

0.001 10 3.0002
0.001 20 1
0.001 30 1
0.001 40 1

0.0001 40 1
0.0001 Large 1

Table 6.2.3: Results for Example 6.2.3: Number of positive real roots located 
inside 7m by the Argument Principle 5.2.1.

Example 6.2.4 Let us consider the oscillatory equation (4-4-5) of the form

y'(t) = -~f y(t — 7 + s)ds, a > 0 (6.2.7)
a J—i 5

The characteristic function of the above equation can be written xM — ^ +
exp(—A/5)(l—ea;p(—A)) jQr ^ q

Applying the Euler forward rule to discretise (6.2.7) with t = mh, ym & 
y{mh), Nh —J;0<a<2we obtain:

Vm+l Vm
h =----Vm-

rt * ^
N+j .h.

j=~5N

and the characteristic equation takes the form 

h2
[A0 + A1 + A2 +......+ X5N] - X6N + A6JV+1 = 0

(6.2.8)

(6.2.9)

And characteristic polynomial can be written

XD(A) = -[A° + A1 + A2 +......+ A5W] - XSN + A6N+1
a

Remark 6.2.3 Figure 6.2.8 and Table 6.2.4 confirm that the discrete prob­
lem (6.2.8) and the underlying continuous problem (4-4-5) are oscillatory.

Remark 6.2.4 We have seen that the numerical approach introduced here 
does provide a reliable method for determining whether or not linear func­
tional differential equations are oscillatory. The experiments have shown that 
the technique works also for some non-linear problems, but there is a need 
for further analytical results in this case.
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-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

Figure 6.2.7: Results for Example 6.2.4: Plot of the characteristic function
1 1for Example 6.2.4, \.e.,y'(t) = — / y(t------ b s)ds.
a 7_i 5

Step length h Length of rectangle M Number of zeros
0.01 2 22
0.01 4 10
0.01 10 4
0.01 20 2
0.01 30 2
0.01 40 2
0.01 Large 0

Table 6.2.4: Results for Example 6.2.4: Number of positive real roots located 
inside 7a/ by the Argument Principle 5.2.1.
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forward Euler method

Figure 6.2.8: Results for Example 6.2.4: Each symbol * represents a char­
acteristic value of the discretised scheme obtained using h = 0.01, M = 20 
inside the rectangle 7m with corners at (0 ± i-^), (M ± i-^).
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6.3 Numerical treatment of oscillatory MT- 
DEs and mixed type IDEs

This section shows how to count zeros of continuous and discrete mixed 
type differential equations (MTDEs or MTFDEs) with delayed and advanced 
terms and continuous and discrete mixed type integro-differential equations 
(MTIDEs) with differentiable delays and advances.

In this section we are interested to study fundamental properties of a 
mixed type differential equations (MTDEs) and their solutions under nu­
merical discretisation. The work presented develops new insights and builds 
upon the previous section where equations without advanced term were stud­
ied.

As is well known, mixed-type equations, which have both advanced and 
delay terms can be particularly difficult to analyse, even in the case of linear 
equations.

The importance of understanding the dynamics of numerical schemes for 
solution of mixed-type equations is considerable. Where, as in these cases, the 
problems under investigation have no closed form exact solution, one needs 
to know for certain whether numerical approximations reproduce faithfully 
the true behaviour of the original problem, or whether they introduce new 
behaviour of their own. The aim is always to select well-behaved numerical 
methods that exhibit accurately true behaviour from the original continuous 
problem. In other words, it is important that we should observe oscillatory 
behaviour in the approximate solutions if and only if it would be found in 
the exact solutions.

A basic mixed type differential equation has a much wider range of po­
tential dynamical behaviour than a delay differential equation.

A MATLAB program has been produced based on the Principle of the 
Argument to count the number of zeros of the characteristic equation of a 
mixed type differential equation and we shall investigate whether it is oscil­
latory or not. Similarly a MATLAB program has been produced based on the 
Principle of the Argument to count the number of zeros of the characteristic 
equation of its discrete equation and we shall investigate whether it is oscil­
latory or not. We demonstrate some examples which will show how to count 
the number of zeros for any order of polynomial or a quasi=polynomial and 
also show how the numerical methods can be more effective and reliable than 
original analytical methods.
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6.3.1 Experiments for counting characteristic values 
of Mixed Type FDEs

In this section we consider some examples of oscillatory MTDEs with differ­
entiable delays and advances.

Example 6.3.1 Let us consider the oscillatory MTDE (1.4-8)

y'(t) + y(t + 1) + y(t - 1) = 0

The characteristic function can be written x(A) = A + exp(A) + exp(—A)

Plot of Ueft+0'Jm-Ji

Figure 6.3.1: Results for Example 6.3.1: Plot of the characteristic function 
for y\t) + y{t + 1) + y{t — 1) = 0.

Applying the Euler rule, we have,

Vm+l Urn + y{tm + Nh) 4- y{tm - Nh) - 0
h

8257548166
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forward Euler method

Figure 6.3.2: Results for Example 6.3.1: Each symbol * represents a charac­
teristic value obtained using h = 0.01, M = 20 and the rectangle 7m with 
corners at (0 ± i-^j), (M ± i-^)

where,h > 0, Nh — trn = mh, yirnh) ~

Vm+i - Vm + hy((m + N)h) + hy((m - N)h) = 0

ym+l hm hymjr^[ -|- hym_H = 0
Replace rn by m N to obtain

ym+N+l — ym+N + hym+^+^ + /iym+jV-AT = 0

The characteristic equation can be written \N+l — + h\N+N + h\N~N = 0
or

h\2N + A^1 - AN + h\0 = 0;

its roots are the characteristic value. Using the matlab program all roots of 
the characteristic equation are represented by the diagram 6.3.2. Obviously, 
there is no positive real root. Just one negative real root and the rest are 
all complex roots with non-zero imaginary part, which satisfy the criteria for 
oscillation of the discrete equation. Therefore, the behaviour reproduces in 
the numerical scheme.

A summary of the results is presented in Table 6.3.1
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Step length h Length of Rectangle M Number of zeros
0.01 2 18.0938
0.01 4 8
0.001 10 4
0.001 20 2
0.001 30 2
0.001 40 2

0.0001 Large 0

Table 6.3.1: Results for Example 6.3.1: Number of zeros located inside 7m 
by the Argument Principle 5,2.1.

Remark 6.3.1 The above Diagram 6.3.2 and the Table 6.3.1 confirm that 
the corresponding discrete equation is also oscillatory.

6.3.2 Experiments for counting zeros of mixed type 
IDEs

In this section we consider some example of oscillatory mixed type IDEs with 
differentiable delays and advances.

Example 6.3.2 Let us consider the oscillatory mixed type IDE

2/CO = y* y(t + s)ds + y(t + 1)

The characteristic function can be written x(A) = A — expA)-^xp(-A) _ exp^) 
Applying the explicit Euler rule, we have,

~ ~ N-l
Vm+1 Vm = y{tm + kh).h + y(tm +Nh) (6.3.1)

k=—N

where h > 0, Nh = 1; = A + mh, y(tm) & ym. Thus,

N-l

Vm+I ~ym = h2 y(Hm+k)) + hy(tim+N)) 
k=~N

and thus

Vm+l Vm h [(l/m—ivT^/m—iV+lT..._(_y7n—lT?/m)-h(l/m+lTr/m+2'h.• .Tt/m+iV—iTym+W—l)]

ht/m+N 0.
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Plot of X-(eVVke*

-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

Figure 6.3.3: Results for Example 6.3.2: Plot of the characteristic function 
for y'{t) = y(t + s)ds + y(t + 1).

The characteristic polynomial has the form p(X) = ai\0 + (Z2A1 + a^X2 +... + 
d2N+iX2N - a polynomial of degree 2N.

For various values of parameters all roots of the polynomial can be deter­
mined in order to indicate the behaviour of solutions of the discrete equation. 
The roots of the polynomial are represented by the above diagram using the 
Argument Principle. Obviously, there is no positive real root. All are complex 
roots which satisfy the criteria for oscillation of discrete equation. Therefore, 
the behaviour reproduces in the numerical scheme.

Summary of the experiment can be represented by the following Table 
6.3.2:

Remark 6.3.2 The above diagram and table confirm that the corresponding 
discrete equation is also oscillatory.
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forward Euler method

Figure 6.3.4: Each symbol * represents a characteristic value of the discre- 
tised scheme obtained using h = 0.01, M = 30 inside the rectangle 7a/ with 
corners at (0 ± i-^y), (M ± ijj).
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Step length h Length of rectangle M Number of zeros
0.02 2 18
0.02 4 8

0.002 10 4
0.002 20 2

0.0002 30 2
0.0002 Large 0

Table 6.3.2: Results for Example 6.3.2: Number of zeros located inside 7m 
by the Argument Principle 5.2.1.

Example 6.3.3 Let us consider the equation (1.5.28), namely

y\t) J y(t -T s)ds = 0,

a linear autonomous IDE of mixed type (see [89], [90], [91]). The character­
istic function can be written x(A) = A — ?xP(A)-exp(-A)

Applying Euler’s explicit (forward) rule, we obtain,

Dm+l

h

N~l

Vm+k = o
k——N

(6.3.2)

where y(tm) ~ ym, Nh — 1 (h > 0, N e N). Thus, we have ym+i — ymA- 
~ which we can write as

2/m+l 2/m (6.3.3)

+h2[ym—N + 2/m-iV+l + ••* + 2/m—1 + 2/m) + (l/m+l T 2/m+2 + ■ • ■ + — 0

This is a DVE derived from the MTIDE (1.5.28). The characteristic equation 
can be written

h2-\-h2\+h2\2-\-...-\-(h2— l)\N + (h2-\-l)\N+1-\-...-\-h2\N+N~1-{-h2\N+N = 0,

(which is satisfied when X is a characteristic root). Therefore, the polynomial 
can be written by

(20 Oj\z a2Z2 + a^z3 + a4^4 +.... + a2N%2N

where the coefficients are given by

a\ = h2, a2 ~ h2,..., o/v+i = h2 — 1, ajv+2 = h2 1, Ujv+s — h2}..., o,2n+i — h2.
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-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

Figure 6.3.5: Results for Example 6.3.3: Plot of the characteristic function 
for y'(t) + y(t + s)ds = 0.

By computation based on the Argument Principle for various values of pa­
rameters all roots of the polynomial can be determined which indicate the 
behaviour of the solutions of the discrete equation (3.8.4). The roots are dis­
played by the diagram 6.3.6. Obviously, there is no positive real root which 
satisfies the conditions for oscillation of discrete equation (3.8.4). Therefore, 
the behaviour reproduces in the numerical schemes.

Remark 6.3.3 Finally the Figure 6.3.6 and 6.3.7 and the Table 6.3.3 illus­
trate the results and confirming that the discrete problem is also oscillatory.
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forward Euler method
1 5|------------------ \------------------ 1------------------ 1------------------ 1------------------ 1------------------ r

_1 51------------ -—i----------------- 1------------------- 1------------------ 1------------------ 1------------------ 1------------------
-1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 6.3.6: Results for Example 6.3.3: Each symbol * represents a char­
acteristic value of the discretised scheme obtained using h = 0.01, M = 4 
inside the rectangle Jm with corners at (0 di i-^), (M
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forward Euler method

Figure 6.3.7: Results for Example 6.3.3: Each symbol * represents a char­
acteristic value of the discretised scheme obtained using h = 0.01, M = 30 
inside the rectangle 7m with corners at (0 ± i^), (M ± i^j).
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Step length h Length of rectangle M Number of zeros
0.01 2 32
0.01 4 14
0.01 10 6
0.01 20 2
0.01 30 2
0.01 Large 0

Table 6.3.3: Results for Example 6.3.3: Number of zeros located inside 7m 
by the Argument Principle 5.2.1.

6.4 Numerical treatment for further oscil­
latory mixed type IDEs with delays and 
advances using the Argument Principle

In this section, we show how numerical approximations can be used to derive 
information about oscillation or non-oscillation of solutions to a mixed-type 
equation. To begin, an overview of the approach is given, which builds on 
that adopted in [47]. More details are given later.

The general approach is to derive a discrete system that approximates the 
underlying mixed-type equation and to analyse the behaviour of solutions of 
the discrete scheme. The approach is adopted here is to use a very simple 
discretisation, based on an Euler rule to approximate the derivative on the left 
hand side of the equation, and a trapezoidal rule to approximate the integrals 
on the right hand side. In principle, one could use a more complicated 
approach, but the results we obtain here are very good and the method is 
already effective in our view.

As a general principle, a fixed step length h > 0 will be used and the 
resulting system of discrete equation will take the form of difference equa­
tions or a recurrence relation. This can be analysed using its,characteristic 
equation and (for no oscillatory solutions) we are looking for the case where 
there are no non-negative real characteristic roots.

The root counting method is adopted (see [47]) for further discussion) 
is based as usual on an application of the argument principle and Rouche’s 
Theorem to count zeros of a polynomial function inside a closed path. We 
choose the same rectangular path with vertices at 0 ± —z, M ± for large 
positive values of M E K and count the zeros inside the rectangle as M —>■ oo. 
As is seen in [47], one can show that the characteristic polynomial of the dis­
crete problem has zeros close to the positive real axis only if the characteristic 
equation of the underlying continuous problem has characteristic values close
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to the real axis. Further details of the analytical results will be found in [47] 
(see also [8], [38], [51], [57], [58]).

For the detail, consider the numerical scheme for the equation (1.5.28),

/
0 /-O

ij(t - r(0)) dv(6) + j y(t + t(Q)) d7](0) (6.4.1)

where, y(t) £ M, and v and r) are real functions of bounded variation on 
[—1, 0] normalised in manner that u(~l) = ??(—1) = 0, while r and r are non- 
negative real continuous functions on [—1,0]. The backward Euler method is 
used to approximate the time derivative and we use the trapezoidal method 
to approximate the integral. Then the corresponding discrete characteris­
tic polynomial is obtained. Further we use the Argument Principle to find 
the numbers of real roots of the discrete characteristic polynomial. We ob­
serve that the equation (6.4.1) is oscillatory if and only if the characteristic 
polynomial has no real roots, which is consistent with the theoretic results.

We will describe how to find the discrete characteristic polynomial of 
(6.4.1). In all the numerical examples, it is assumed that r(0), i^(0), r{9) and 
r}{9) are quadratic polynomials.

6.4.1 A novel approach
The equation under consideration here is

y'(t) = J y{t- r(0)) dv{6) (6.4.2)

which is a special case of (6.4.1). Similar ideas can be applied to the integral 
f-i y(t + T(@)) when we consider (6.4.1). For examples see §6.4.2.

In a practical numerical algorithm, it is often necessary to know the max­
imum deviation that arises in a differential equation with deviating argu­
ments. With this in mind, let us consider a different approach on how to 
discretise the integral f^yft — r(0))di/(0). The significant detail is that we 
wish to know the maximum value of r(0).

With our new approach it is necessary, first, to find the critical points 0r 
of r(0) on [—1,0], i.e., points where r7(^r) = 0. Assume for simplicity that 
r(0) attains its maximum value at 0rt i.e., r(0) is increasing on [—l,0r] and 
decreasing on [0r, 0]. It is also assumed that

r(—1) = r_i > 0, r(0) = ro > 0.
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Obviously, in this case r(9r) = rc> max{r_i, ro}. The integral is now written 
in two parts:

f y(t - r(Q)) dv{9) = f y{t - r{9)) dv($) + [ y(t - r{9)) dv(9).
J-l j-l Jdr

Let 0 = to < < t2 < • ■ • < tn < ... be time points and let h —
tj+i — tj be the time step. The idea in the discretisation of the integral 
f-iy(t T- r(9))di/(9) is to find two nonnegative integers Ni, N2, Ni > N2 
such that

— 1 = 9-^ < th-Wx+i < ■ • * < ^_iv2 = 9r, 

is a partition of [—1, 9r\ and

r{0-Nt) = r(~l) = r-i =
r(@j) = Nih + mr(N1 + j)h, j — —Ni + 1, —Ni + 2,..., —cai 

Ni — N2 — l),
r(9-N2) = r(9r) =rc = Nih + mr(A^i - N2)h.

(6.4.3)

(6.4.4)

(6.4.5)

Here mr is some positive integer which guarantees that u2 > 0. Such cui and 
u2 can be obtained by (6.4.3) and (6.4.5),

r-i

h ’ N2 = (mr + l)Nx - ^ 
mr (6.4.6)

Note that 9j, j = — iVi, — + 1,..., —Ni + (Ni — uj2) can be obtained by
solving (6.4.3) - (6.4.5) for the given r(9).

The idea of the discretisation of the integral J0° y(t-\-r(9)) du{9) is to find 
two nonnegative integers 7V3, Afi such that

9r — 9_N3 < 9-N3+i < • ■ • < 9-i < 9q = Q, 

is a partition of [0r,O] and

r(0o) = r(0) = r0 = N4h, (6.4.7)
r(9i) = (N^h + N±h) — (N3 + l)h, l = —IV3 + 1, + 2,..., —1, (6.4.8)
r(9-N3) = r(9r) = rc = N3h + N±h. (6.4.9)

Such N3 and IV4 can be obtained by (6.4.7) and (6.4.9),

N4 = ^3 = ^ - N4.
h h (6.4.10)
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Note that Qi, l = —N3, —N3 +1,..., —1,0 can be obtained by solving (6.4.7) 
- (6.4.9) for the given r(6).

Now the integral y(t + r(9)) dv(Q) at t = tn can be discretised. We 
have

y(tn-r(9))dv{6) = [ y(tn - r(0)) di/(0) + [ y{tn 
-1 J-l Jdr

r{9)) dv(9) 

(6.4.11)

-V2-1
~ £ y{tn - r(9j)) (u{9j+1) - iy(9j)^

j=—Ni 
-1

+ y(tn-r(9i))(v{9i+1)-v
l=~N3

-N2-1
= y(nh ~ [Nlh + mr(Nl + j)h]) (v(9j+l) - v{0jj)

j=-iVi
-1

+ X! y(nh - + N/ih ~ (Ns + 0^]) (^(^+1) - K^)) •
l=-Ni

Similarly the integral f^1y(tJrr(9))dr)(9) can be discretised. Now let us 
summarise the steps to find the characteristic polynomial of the discretised 
version of (6.4.2).

Step 1. Find the critical point1 9r of r(9) on [—1,0]. Without loss of the 
generality, this is assumed that r(9) is increasing on [—1,67] and decreasing 
on [67,0] and r(—1) = r_i > 0, r(0) r0 > 0.

Step 2. Find the nonnegative integers fVi,lV2, Ah > N2 by

K.-K+iw-i
h mr

where rc = r(9r) and mr is some positive integer such that N2 > 0.
Find the nonnegative integers N3 and Ah by

= p N3 = ^~~N4.

Whe critical value r(9r) represents the maximum delay over [—1,0] and this determines 
the maximum numbers of terms in the history of the solution which will need to be retained 
by the algorithm.
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Step 3. Find the critical point 0T of r(0) on [—1,0]. Without loss of the 
generality, this is assumed that r(9) is increasing on [—1, 0T] and decreasing 
on [0r, 0] and r(—1) = r^i > 0, r(0) = To > 0.

Step 4. Find the nonnegative integers M1; M2, Mi > M2 by

Mi —
T~l

h ’ M2 —
(mT + l)Mi — y

mT

where rc = t{9T) and mT is some positive integer such that M2 > 0. 
Find the nonnegative integers M3 and M4 by

M4 = ^, =-r — Mi.
h h

Step 5. Approximating the time derivative in (6.4.2) by the backward 
Euler method and approximating the integral in (6.4.2) by the Trapezoidal 
method, we obtain, at time tn,

y{tn+i) y(tn) _ ^ y^nh _ [Nih + mr(jVi + j)h}) (v(9j+i) - i/(9j))
j = -N!

-i

+ y(nh - lN^ + - (n3 + i)h\) {u(el+1) - y(8,))
l=-N3
-m2-i

+ y{nh+ + mr(Mi + j)h\) (??(0'+i) - 7?(^))
j = -M!

-1
+ ]T y (nh + [M3h+ Mih-{M3 + l)h]) {7,(81^)—nfe1,)).

l=-Ma

Here 9j and 9i are determined by

r(9j) = Nih + mr(Ni + j)h, j = -Nu -Ni + 1,..., -N2i

and

r(@i) — {N^h + N^h) — (A^ + l)h, l — — A3, — A3 + 1,..., —1,0.

Similarly, 0'- and 9[ are determined by

r(^) = Mih + mr{Mi + j)h, j — —Mi, —Mi 4- 1,..., —M2,

and

— (Msh + M4J1) — {M3 + l)h, l — —M3, —M3 + 1,..., —1,0.
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Write ym « y(tm), n — 0,1, 2,.... We have

Vm+l ~ Dm __

h ~

(6.4.12)

~n2~i

J=-JV!
-1

+ ym-[N3+Ni-(Ns+l)] (^(^+l) ~

l=-N3
—M2 —1

+ E “ V^j))
j=-Mi

-1
+ S  ̂+ [M3+M4-(M3+i)](7?(^+l) ~ ^(^O)- 

l=-M3

Write N — max{]Vi + mr(Ni — N2 — 1), + A^}. The characteristic poly­
nomial of (6.4.12) is obtained as

-n2-i
XD(z) = ZN+1 - zN - h\ J2 zn~lNl+m'l-Nl+M(v(0:j+1) - v(dj))

- ]T zn-^+N*-N°+l»(v(el+1) - ^e,))
l=-N3 

-M2-I
_ zn^Ml+m^Ml+^(r){0':j+1)-ri(S'j

j=—Mi 
-1

- zn+[M3+M*-{M3+l)] (r)(0l+i) - vW))

Step 6. Apply the Argument Principle to determine the existence of the 
positive real roots of the characteristic polynomial p(z) = xD{z)-

1
27R

f p'(z )
7 P(z)

dz — Number of zeros of p(z) inside the closed curve 7.

In the numerical simulation, the curve 7 is chosen as the boundary of a 
rectangle with vertices A = +i^, B = —i^, C — M — and D == M-l-i-E 
for some sufficiently large M.
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Remark 6.4.1 A similar idea can be used to work on the case where r(—1) — 
r_i < 0 and r(0) = r0 < 0, or r(—1) • r(0) < 0.

Remark 6.4.2 A similar idea also can be used to work on the case where 
r(6) (orT(9)) is decreasing on [—1}0C] (or [—l,QT]) and increasing on [0CJ 0]
(or [eT,o\).

6.4.2 Examples
Below, we will consider how to construct the discrete characteristic polyno­
mials for a selection of examples.

Example 6.4.1 Consider the equation (6.4.C) with the conditions of Exam­
ple 4-5.4

y(t — r(9)) di/(9) + J y(t + t(Q)) dr}(0). (6.4.13)

Here
v{9) = (30 + 1)(0 + 1), 77(0) - (0 + 1)(20 + 1),

r{fl) = -hp-B + \, T{e) = -e2 -6 + 2.

Let us find the discrete characteristic polynomial of (6.4.13). First the 
critical point 9r of r{9) on [—1,0] is to be found. Let r'(9) = —30 — 1 — 0. 
we get 9r = — |. Further it is easy to find that r(9) is increasing on [—l,0r] 
and decreasing on [0r,O] and r(—1) = r_i = | > 0, r(0) — 7*0 ^ 1 > 0 and 
r(9r) — rc —

The nonnegative integers Ni,N2, Ni > N2 can be determined by

r-i J_ 
h 2h'

N2
(mr + l)jVi ~ % 

mr
1

6h’

where mr — 2 is chosen which guarantees that > 0.
The nonnegative integers Ns and N4 can be determined by

ro _1 
h h:

Ns =
6h'

Next the critical point 0T of r(9) on [—1,0] will be found. Let t'(9) = 
—20 — 1 = 0. we get9r — —|. Further it is easy to find that r(9) is increasing 
on [—1,0T] and decreasing on [0T,O] and r(—1) = t_i = 2 > 0, r(0) = tq — 

2 > 0 and r(0T) = rc = 2.25.
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The nonnegative integers Mi > M2 can be determined by

h h1
M2 =

{ttit + l)Mi 
mT

Tc
h 

Ah'

where mT = 1 25 chosen which guarantees that M2 > 0.
The nonnegative integers M3 and M4 can be determined by

tq 2 
h h'

M3 = Tc
h

Finally, N = max{iVi + 2(iVi — — 1), TV's + A^4} is denoted. Then the
following discrete characteristic equation of (6.4.13) is obtained

-JV2-1
p(z) — —zN+1 zN A-h^ ^ 2,iv-[Ni+2(jvi+j)]_ 1/(^0j))

j=-N!

+ E ^|W3+W4-(iV3+,)1^w+i)-^))
i=-n3 
—M2 — 1

j=-Mi
-1

+ ^2 ^+[Ms+M4~{M3+l)] - vW))

l=-M3

Here 0j and 61 are determined by

r{0j) = - (9, + 1 = (SiV! + 2j)h, j = -Nu-N1 + \,..., -jV2,

and

r(9i) = -e, + l = Nth-lh, 1 = ~N3, —N3 + 1,..., —1,0.

which implies that

V} =

and

l + ^/l +6(1-(37V1 + 2i)/i) 

2 x (-3/2)

1 - ^1 + 6 (l — N^h + Ih)

" 2 x (-3/2) ’ I — — A^, —A^s + 1,... j —1,0.
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forward Euler method

**

* * * *

_i_______________ i_ _i_______________ i_
-2 -1.5 -1 -0.5 05 1 1.5

Figure 6.4.1: Results for Example 6.4.1: Each symbol * represents a charac­
teristic value obtained using h = 0.05, M = 10 and the rectangle 7m with 
corners at (0 ± i-^), (M ± i-p).

Similarly, and 9[ are determined by

1 + a/l 4- 4(2 — {2M\ + j)h)
0j =------ --------j = +

and

1 - a/i + 4(2 — A/4/i + Ih)
0[ =----- y----2VFl)----------- ’ 1 = -^3 + 1, • • •, -1, 0.

Remark 6.4-3 Applying the Argument Principle, we have discovered that 
p(z) has no positive real roots and so this satisfies the conditions for discrete 
equation to be oscillatory. Hence the numerical results are consistent with 
the theoretical results about the oscillatory property of the equation (6.4.13). 
See Figure 6.4-1 and Table 6.4-1-

Example 6.4.2 Consider the equation (6.4-1) of Example 4-5-5

y(t-r(0))dv(6) + [ y(tt{6)) dr](d).
1 J-i

(6.4.14)
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Step length h Length of rectangle M Number of zeros
0.05 2 12
0.05 4 6
0.05 10 2
0.05 20 2
0.05 Large 0

Table 6.4.1: Results for Example 6.4.1: Number of zeros located inside 7m 
by the Argument Principle 5.2.1.

Here

„W = J -'“1- -1^<0’\ 1. 0 = 0.

and
7j(0) = 0 + 1, r(0) = 0 + 2, r(0) = -0 + l.

Now the discrete characteristic polynomial of (6.4.14) can be found. We 
first find the critical point 9r ofr(6) on [—1,0]. We get 9r — 0. It is easy to 
see that r(9) is increasing on [—1,9r\ and r,(—1) = r_i = 1 > 0, r(0) = r^ = 
2 > 0 and r{9r) — rc — 2.

The nonnegative integers Ni,N2, Ni > N2 can be determined by

CJl = r~i
h

1
h'

N2 =
(mr + l)Ai

mr

Ic.
h = 0,

where mr — 1 zs chosen which guarantees that N2 > 0.
Next the critical point 9T of r{9) on [—1,0] will be found. Then 9T = —1. 

It is easy to see that r(9) is decreasing on [0r,O] and r(—1) = r_i — 2 > 
0, r(0) = r0 = 1 > 0 and r(0T) = tc — 2.

The nonnegative integers M3,M4 can be determined by

To 1_
h h'

M3 = ^ - M4 = 1
h

Finally, Ni + (Ni — N2 — 1) is denoted by N. Then the following discrete 
characteristic equation of (6.4.14) is obtained

pO)
-JV2-1

z»+l + zN + h\ ^

j=-N!

+ E ^+[M3+Ml-(M3+i)1(>7(^+i)-0(^))
l=-Mz

(6.4.15)
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Here 9j are determined by

r(9j) = 0j-\-2 — Nih + {N\ + j)h, j = —Ni, —Ni + 1,..., —A^2, 

which implies that

9j — Nih + (Ni + j)h — 2, j = —A^i, —A^i + 1,..., —Nz. 

Similarly, the 9[ are determined by

t{0'i) — —9'i + 1 = M^h) — (M3 + l)h, j = —M3, —M3 + 1,..., —1,0.

which implies that

— —{Msh + M4N) + (M3 + l)h + 1, l = —M3, —M3 + 1,..., —1,0.

Remark 6.4*4 Note that v(9) has a jump at 9 — {), therefore we have, in 
(6.4.15),

i/(9_N2) — z/(0_jv2_i) = i/(0) — v(Nih + IV1/1 — — h)
= i/(0) - i/(2 - /i) == 1 - ( - (2 - /i) - 1)
= 4-h,

Remark 6.4*5 Applying the Principle of the Argument, we find that p(z) 
has no positive real roots and therefore satisfies the conditions for the discrete 
equation to be oscillatory. Hence the numerical results are consistent with the 
theoretical results about the oscillation property for the equation (6.4.14). See 
Figure 6.4-2.

Example 6.4.3 Consider the equation (6.4-1) for the example 4-5.6
0 pO

y(t — r(9)) di/(9) + / y(t P r(9)) drj(9). (6.4.16)
1 J-i

Here
v(0) = (59 + 4)(9 + 1), n(6) - (109 + 9)(0 + 1),

and
r(e) ^ ~\o2 — 40 + 5, t(9) = — 502 -90+1.

Now the discrete characteristic polynomial of (6.4.16) can be found. First 
the critical point 9r ofr(9) on [—1,0] is found. Letr'(9) = -50—4 — 0. Then 
we can see that 9r = —|. Further it is easy to find that r(9) is increasing on
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forward Euler method

Figure 6.4.2: Results for Example 6.4.2: Each symbol * represents a char­
acteristic value obtained using h = 0.01, M = 8 and the rectangle FM with 
corners at (—M ± i^), (M ± i-^)
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[—l,0r] and decreasing on [0r,O] and r(—1) = r_i — 6.5 > 0, r(0) = To = 
5 > 0 and r{0r) = rc = 6.6.

The nonnegative integers > N2 can be determined by
6.5 (mr + 1)^
X’Ni r-\

h
Ic.h

where mr = 1 is chosen which guarantees that > 0.
The nonnegative integers IV3 and NA can be determined by

m = =h h N3 ~ — N4 =h h
Na.

Next the critical point 0T of t(6) on [—1,0] will be found. Let t,{9) = 
”■100 — 9 = 0. we get 9r = — Further it is easy to find that r(0) is 
increasing on [—l,0r] and decreasing on [0r,O] and r(—1) — r_i = 5 > 
0, r(0) = tq = 1 > 0 and r(0T) = rc — 5.05.

The nonnegative integers M1> M2 can be determined by

T-l 5 
h h’ M2 — (mT + l)Mi

mT
Ic
— - 2 Mi

5.05
~h~

where mT = 1 is chosen which guarantees that M2 > 0.
The nonnegative integers M3 and M4 can be determined by

2
h N M3 — "T — M4 = h

1
4h'

Finally, N = max{A^i + 2(iV1 — A2 — 1), A^3 + N4} is denoted. Then the 
following discrete characteristic equation of (6.4.16) is obtained

-n2-i
p(z) = -zN+1 + zN + h[ zN-^+2<-N^ (v(ej+i) ~ 1/(0,))

+ E ^-[N3+JV4-(W3+01(^i+i)-^))

i=~n3
-m2-i

j=-Mi
-1

+ zN+m+A/U-m+l)](v(0'i+i)-vW)) ■
l=-M3

Here 9j and &i are determined by

r(%) = -\e2, - 40, + 5 = (2Ni + j)h, j = -iV,, -JV, + 1,..., -N2,
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and

'-(Qi) = + 5 = NJi -Ih, 1 = -N3, —N3 + 1,..., -1,0.

which implies that

0j =
4 + ^16^10(5^1^1+7)1)

2 x (-5/2) , i = -iVi,-jV1 + l,...,-jV2>

and

4 - Jl6 + 10(5 - N4h + Ih)

2 x (-5/2) ) / — “-IV3, —TVs + 1,..., —1,0.

Similarly, 0'a and 6[ are determined by

9 + ^/si + 20(1 - {2M1 + j)h)

2 x (-5) 5 3 ~~ —Mi + 1,..., —M2,

and

9 - yj%l + 20(1 - M±h + Ih)

2 x (-5) , l — —M3, —M3 + 1,..., —1,0.

Remark 6.4*6 Applying the Principle of the Argument, we find that p{z) 
has no positive real roots which means that the equation satisfies the condi­
tions to be oscillatory. Hence the numerical results are consistent with the 
theoretical results about the oscillation of the equation (6.4.16). See Figure 
6.4-3 and Table 6.4-2.

Step length h Length of rectangle M Number of zeros
0.05 2 78
0.05 4 38
0.05 10 14
0.05 20 8
0.05 Large 0

Table 6.4.2: Results for Example 6.4.3: Number of zeros located inside FV 
by the Argument Principle 5.2.1.
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forward Euler method

-0 5 -

Figure 6.4.3: Results for Example 6.4.3: Each symbol * represents a charac­
teristic value obtained using h = 0.05, M = 20 and the rectangle 7m with 
corners at (—M ± ijj), (M ± i-^).



133

Example 6.4.4 Consider the equation (6.4-1) for Example 4-5.7

y{t — r(Q)) dv{0) + J y{t + t(Q)) drj{0). (6.4.17)

Here
u{9) - (-0 - 1)(40 + 3), 7?(0) = ~80 - 8,

and
r{0) = -2e2 -30 + 1, r(0) = -0 + 1.

Now the discrete characteristic polynomial of (6.4.17) is found. First the 
critical point 9r of r(9) on [-1,0] is found. Let r'(9) = -40 -3 = 0. We 
get 9r — —|. Further it is easy to find that r{9) is increasing on [—l,0r] 
and decreasing on [0r,O] and r(-l) = r^ = 2 > 0, r(0) ^ r0 = 1 > 0 and 
r{er) = rc = %.

The nonnegative integers Nu N2i Nj_ > N2 can be determined by

r_i 2 
~h N N2 —

K + i)iVi - r-f

mr
= 2^- 17

S/i’
where mr = 1 is chosen which guarantees that IV2 > 0.

The nonnegative integers N3 and N4 can be determined by

fo l 
h h' Na.

Next the critical point 9r of t(9) on [-1,0] will be found. We obtain 
9t = -1. Further it is easy to find that r(0) is decreasing on [0r,O] and 
t(—1) = r_! = 2 > 0, r(0) = r0 = 1 > 0 and r(9T) = rc = 2.

The nonnegative integers M3 and M4 can be determined by

M4 = ^ =+ m3 = ^ - m4 = I - m4.
h h h h

Finally, N = max{A^i + (Ni — N2 ~ 1),N3 + A/4} is denoted. Then the 
following discrete characteristic equation for (6.4.17) is obtained

-N2-1
p(z) = -ZN+1 +ZN + h[ + (u(ej+1) - !/(%))

3——N1

+ Yl ^_[iV3+iV4“(7V3+o](i/(0m) - i/(0z)) 

i=-JV3 
-1

+ Yi zN+lM3+Mi~{M3+l)](vW+i)-v(8'i))
l=-M3
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Here Oj and 61 are determined by

r(9j) = -20J - 36j + 1 = (2N! + j)h, j = -N1>-N1 + l,...,-N2,

and

r(6t) = -20? - 30, + 1 = Nth -Ih, 1 = -N3, -N3 + l,..., -1,0. 

which implies that

°3
3 + y/9H-8(l-(2iV1+i)/i)

2 x (-2) j — —iVi, —A^i + 1,..., — IV2,

and

Z- J§ + B{1-Nih + lti)
81 ~ 2 x (-2) ’ 1 =

Similarly, 9[ are determined by

■•Wsj — A3 + 1,..., — 1,0.

@i — —Af^h + Z/i -f-1, l — —Afs, —Afs “Hi,..., —1,0.

Remark 6.^.7 Applying the Principle of the Argument, we find that p((z) 
has no positive real roots which means that the equation satisfies the condi­
tions to be oscillatory. Hence the numerical results are consistent with the 
theoretical results about the oscillation of the equation (6.4.17). See Figure 
6.4-4 and Table 6.4-3.

Step length h Length of rectangle M Number of zeros
0.05 2 6
0.05 8 2
0.05 10 2
0.05 20 2
0.05 30 2
0.05 Large 0

Table 6.4.3: Results for Example 6.4.4 Number of zeros located inside YM 
by the Argument Principle 5.2.1.
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forward Euler method

-0 5 -

** * # * *

Figure 6.4.4: Results for Example 6.4.4: Each symbol * represents a charac­
teristic value obtained using h = 0.05, M = 10 and the rectangle 7m with 
corners at (0 ± i-^), (M ± i-^).
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Example 6.4.5 Consider the equation (6.4-1) for the example 4-5.8

y'(6) — J y{t — r(9)) dv(Q) + J y(tt(6)) dr)(9). (6.4.18)

Here
f 9 + 1, -1<9<0,
\ 0, 0 = 0,

and
,7(0) = -0-1, r{0) = -e2 + 2, T(e) = -e + s.

Now the discrete characteristic polynomial of (6.4.18) is found. First the 
critical point 9r of r{6) on [—1,0] is found. Let r'(9) — —29 — 0. Then it is 
seen that 9r = 0. Further it is easy to see that r{9) is increasing on [—l,#r] 
and r(—l) = r_i = 1 > 0, r(0) — r0 — 2 > 0 and r(9r) = rc = 2.

The nonnegative integers IVi, can be determined by

r-i 1
~h h'

{mr + l)ATi - ^iV, = " J= 2NX - 1
mr h

where mr — 1 is chosen which guarantees that A^ > 0.
Next the critical point 9r ofr(9) on [—1,0] will be found. We get 0T = —1. 

Further it is easy to see that r(9) is decreasing on [0T, 0] and r(—1) = r_i = 
4 > 0, r(0) = r0 = 3 > 0 and t(9t) = tc — i.

The nonnegative integers M3 and M4 can be determined by

To 3 
h h'

M3 =
h

M4 —
h

Finally, A^ = A^! + (Ni — A^ — 1), iV3 + AT4} is denoted. Then the following 
discrete characteristic equation of (6.4.18) is obtained

-n2-i
p(z) = -zN+1 +zN + k[ ^2 zN-Wi+^i+i)] („(0i+1) _

j^-Nt

-1
+ zN+lMz+M4-(M3+i)} - 77(09)

i=-m3

Here 9j are determined by

r(dj) = -9) + 2 = (2M + j)h, +

which implies that

9j = —^2 — {2Ni + j)h, j — — A/i, — A^i + 1,..., — A^.
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forward Euler method

-2 -1.5 -1 -0.5 0 0 5 1 1 5 2

Figure 6.4.5: Results for Example 6.4.5: Each symbol * represents a charac­
teristic value obtained using h = 0.01, M = 10 and the rectangle with 
corners at (—M ± i-^), (M ± i-^).

Similarly, 6[ are determined by

T{e\) = -e[ - 1 = MAh - Ih,

which implies that

0l = —M4/1 -\- Ih — 1, / = ——M3 + 1,..., —1,0.

Remark 6.4-8 Applying the Principle of the Argument, we find that p(z) 
has no positive real roots which mean that the equation satisfies the condition 
to be oscillatory. Hence the numerical results are consistent with the theo­
retical results about the oscillation of the equation (6.4.18). See Figure 6.4-5 
and Table 6.4-4-

Example 6.4.6 Consider the equation (6.4-1) for Example 4-5.9

/
o /*0

y(t — r(6)) dis(6) + J y{t + t(6)) dy^O). (6.4.19)

Here
„(<?) = -(50 + 1)(0 + 1), 7/(0) = -(60 + 1)(0 + 1),
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Step length h Length of rectangle M Number of zeros
0.01 2 10
0.01 4 4
0.01 8 2
0.01 10 2
0.01 20 2
0.01 Large 0

Table 6.4.4: Results for Example 6.4.5: Number of zeros located inside Tm 
by the Argument Principle 5.2.1.

and
r{0) = —10#2 - 40 + 10, r(0) = -302 -0 + 1.

Now the discrete characteristic polynomial of (6.4.19) is found. We First 
the critical point 0r of r(6) on [—1,0] is found. Let rf(9) = —200 — 4 — 0. 
Then it is seen that 9r = — Further it is easy to find that r(9) is increasing 
on [—l,0r] and decreasing on [0r,O] and r(—1) = r_i — 4 > 0, r(0) = ro = 
10 > 0 and r(9r) — rc~ 10.4.

The nonnegative integers Ni}N2i Nx > N2 can be determined by

r_i 4
X N

+ 1)jyi - T
mr

10.4
h

where we choose mr — 2 which guarantees that A/2 > 0.
The nonnegative integers N3 and N4 can be determined by

r0 10
'h T1

10.4
h

-AT

Next the critical point 9r ofr(9) on [—1,0] will be found. Then it is seen 
that 9t — —f. Further it is easy to find that r(9) is increasing on [—1,0T] 
and decreasing on [0T, 0] and r(—1) = r_i — —1 < 0, r(0) = t0 ^ 1 > 0 and
t(9t) = rc — y§.

Note that here r(—1) — r_i = —1 < 0. Let us discretise the inte­
gral x(t + r(0)) drj(9). It is necessary to find some nonnegative integers 
Mi, M2, Mi > M2 such that -1 = 6LMl < 0_Ml+i < • • • < 0„M2 = 9r is a 
partition o/[—l,0r] and

t(9-Mi) = t(-1) = r_i = -Mih,
t(0j) = -Mih + mr(M1 + j)h, j - -Mi + 1, -Mi + 2,..., -M2 - 1, 

t(9-m2) = t(9t) =tc = -Mih + mr(Mi - M2)/i,
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Here mT is some positive integer which guarantees that M2 >0. In fact, we 
can determine Mi > M2 by the following:

and, with mT = 3;

1
V

Mih + mr(Mi — M2)h —
13
12’

o JVfi — 13
which implies that M2 = -—3 12h > 0. This is remarkable that the bigger mr 
is, the faster T(0j), j = —Mi -f 1, —Mi 4- 2,, —M2 increase. In order to 
guarantee M2 is nonnegative, we need to choose mT > 3.

The nonnegative integers M3 and M4 can be determined by

1°
h h ’

M, = ^ - Mi = 1
12h'

Finally, N = ma,x.{Ni -\-mr(Ni — N2 — 1), N3 + A^4} is denoted. Then the 
following discrete characteristic equation of (6.4.19) is obtained

-JV2-1
p(z) = -zN+1 +zN + h[ zw-[Ar1+smr(Jv1+i)](u(gj+1) _ v(g.))

+ Y zN-m+Ni-iN3+l)i(i'(8i+i) - vtfi))

{vftj+i) ~ V(8'}))

i=-n3
■—M2 ~ 1

4- E ZN+ [Mi +mT (Mi +j)]
j=-Mi

-l
+ 2JV+[M3+M4_(M3+z)] (r){0'l+i) - v(0i))

i=-m3

Here 9j and 9i are determined by

r(6j) = -10d]-48j + W = Nih+mriNi+fih, j = -Nu -JVi + 1,. 

and

-No.

r{Bi) = -106? -49i + 10 = Nih-lh, l =-N3,-N3 + 1,... ,-1,0.

which implies that

4 + y/l6 + 40(10 - (Nih + mr{Ni + j)h)
Q. _ _ - 2 x (-10) j = -Ni,-NiF\,...,-N2,
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forward Euler method

Figure 6.4.6: Results for Example 6.4.6: Each symbol * represents a charac­
teristic value obtained using h = 0.05, M = 32 and the rectangle 7m with 
corners at (0 ± i-p), (M ± i-^).
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and

61 =
4- y/l6 + 40(10 — N^h + Ih)

2 x (-10) , ^ —IV3, —TV’s + 1,..., —1,0.

Similarly, O', and 6[ are determined by

t 1 + ^1 + 12(l + Mih — mT(Mi + j)h)

2 x (-3) , j — “Afj+l,..., —M[2)

anc/

1- Jl +12(1-
^ — 2 x (—3) ’ ^ = “^3? —M3 + 1,..., —1,0.

Remark 6.4-9 Applying the Principle of the Argument, we find that p(z) 
has no positive real roots which means that the equation satisfies the condi­
tion to be oscillatory. Hence the numerical results are consistent with the 
theoretical results about the oscillation of the equation (6.4.19). See Figure 
6.4.6 and Table 6.4-5.

Step length h Length of rectangle M Number of zeros
0.05 2 24
0.05 4 12
0.05 8 6
0.05 10 4
0.05 20 2
0.05 30 2
0.05 Large 0

Table 6.4.5: Results for Example 6.4.6: Number of zeros located inside 7m 
by the Principle of the Argument 5.2.1.

Remark 6.4.10 We have seen that the numerical approach introduced here 
does provide a reliable method for determining whether or not linear mixed 
functional differential equations are oscillatory. Based on the experiments 
we have tried, the technique works also for non-linear problems, but there is 
a need for further analytical results in this case.



Chapter 7

Theoretical justification of our 
numerical approaches

7.1 Introduction
The organisation of this Chapter is based on a perspective communicated 
by Professor Baker. We give results (in particular, a number of the formal 
statements) that he proposed to indicate the mathematical foundations of 
our methodology. The material also draws on insight obtainable from related 
work in the literature, including publications of Professor Ford and his co­
authors, and the thesis of Dr Lumb [105] on small solutions.

7.1.1 Basic analysis
Before we recall the properties of auxiliary and characteristic functions and 
their generalisations, it is useful to remind ourselves of some relevant facts 
from analysis.

Lemma 7.1.1 (Bolzano-Weirstrass) If a bounded setS cR contains in­
finitely many points then there is at least one rr E M that is an accumulation 
point of S.

According to this well-known theorem (for which see [1, p.43]), the bound­
edness of S implies that there exists {AaJo0 C S such that x — lim/^oo 
exists (a; E M).

We now recall some basic results for analytic functions of a complex 
variable. If / is a single-valued continuous complex function in a domain V C 
C and / is complex-differentiable in V then / is described as being analytic 
(or holomorphic) on T>. Such an analytic function is infinitely differentiable.

142
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Lemma 7.1.2 (Taylor series) For z in an open neighbourhood V0 of z0 
(Vq C.T>)} f{z) has a series expansion

f(z) = X] a^z “ z°y where zo e Vo, (7.1.1)
3=0

in which the values {%•} depend on Zq. Indeed, when Cr(zo) is (for a given r 
and zq) a positively oriented circle \z — zq\ = r that lies in Vq,

/(i)(^o) =
j\ 27ri Cr(zo) (w

f(w)
- Zo)j+1

dw, j e {0,1,2,•••}. (7.1.2)

Lemma 7.1.3 (Taylor sum with remainder) As in Lemma 7.1.2, sup­
pose that f is analytic on V c C, and let Cr(zo) again be the positively- 
oriented circle |^ — ^0| ^ r- Then,

AIL (z — Zn)3
f(z) = f3(zo)LRm{zQ;z) for z,z0 G Cr{z0), (7.1.3)

j=o ^

where

/M ■dw.
3=m+l Cr(z0)(W ~ zo)m+1{w - Z)

(7.1.4)

Corollary 7.1.4 Given that Cr(zo) is the circle with centre zo and radius r,

gm+i
\Rm{zo]z)\ < max |/(w;)|------- for \z — z0\ </3r with 0 </3 < 1, (7.1.5)

weCr(zo) 1 — p

and, hence, the magnitude of \Rm(zo] z)\ depends on the maximum absolute 
value assumed by f on the circle Cr{zo):

Mr = max \f(w)\ = max |/(^0 + rexp(i0))|. (7.1.6)
U)€r(j2o) O<0<27T

See, for example {http://en.Wikipedia.org/uiki/Taylor'sX.theorem}. 

Example 7.1.1 If we choose z0 — 0, we have

exp(2:) — 1 + z I- z2/2\ + £3/3! H-----; for all z G C;

exp(—2r) — 1 — 2: -h z2/2\ — 23/3! ■ • •; for all z G C;
and

http://en.Wikipedia.org/uiki/Taylor'sX.theorem%7d
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{1 — z) 1 = 1 + .2 + z2 + z3 + • • • provided \z\ < 1;

(1 + 2)""1 = l~z + z2~z3^ provided \z\ < 1.

Selecting from the previous results, we can deduce that

= 1 H- 2 + (1 — tyz2 H- • • • for \z\ < 1 when id e [0,1]. (7.1.7)

It follows that

exp(2:) = (1 + zY/(l — z)1^ + 0(z2) as z ^ 0, for id E [0,1] (7.1.8)

and
exp(^) = (1 + z)®/(l — ^)1_1? + 0(z3) as z ^ 0 for ft — (7.1.9)

Lemma 7.1.5 Suppose that the function / E (C —)■ C) is analytic on an
open region 77. C C and f(zo) = 0 for some z0 E 77. If f does not vanish
identically on 77 then there is a neighbourhood N$(zq) := {2; E C : l-z—zol < <^} 
on which f vanishes only at z0 .

According to the previous theorem (see [1, p.518]) a zero zq of an analytic 
function is isolated. Apostol (loc. cit.) establishes this well-known property 
using the Taylor series. (For a zero zq of multiplicity precisely m, f(x) = 
(z — zo)m/o(^) where /o does not vanish at z$ and is analytic and has an 
infinite Taylor series expansion centered on Zq.)

From the preceding lemmas we deduce:

Theorem 7.1.6 Given a non-vanishing analytic function / E (C —* C); the 
number of real zeros of f lying in any given bounded interval [uq,Ui] C R is 
finite.

Proof: Denote by U C, the set of real zeros of /. If U contains
infinitely many points then [uo,Ui\ C R contains a point of accumulation x 
with x — lim^oo Xk where {x^} C U. By continuity of /, we have f(x) — 0. 
But the zero x must be an isolated zero, so the hypothesis is false and IA 
contains a finite number of points.

Corollary 7.1.7 Suppose u® < u\ and u E R are prescribed. Given a non­
vanishing analytic function / E (C —> C), the number of zeros of f lying on 
the bounded line segment < 37(z) < u\} ©(z) — v is finite.

Remark 7.1.1 We shall be treating functions (denoted f, say) of a complex 
variable (denoted £ E C, say) whose restrictions to real arguments define real­
valued functions. Without ambiguity, the real function will also be denoted f 
and its values written f(x) (for x E RJ.

(1 + zf 
(1 — z)1^
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7.1.2 Basic auxiliary and characteristic functions
In the classical literature, auxiliary and characteristic functions and their 
generalisations are defined both for linear autonomous difference equations 
and for linear autonomous differential equations and delay-differential equa­
tions with one retarded argument; their extension in the literature to linear 
autonomous functional differential equations (including those with multiple 
constant deviations) then follow very naturally. In particular, they arise in 
the solution of such difference equations based on 3-transforms and the so­
lution of the functional differential equations based on Laplace transforms 
(assuming the applicability of these techniques).

Remark 7.1.2 In the case of Laplace transform techniques, assuming them 
to be applicable, the (classical) characteristic function, and the characteris­
tic values, assumes a prominent role when the theory of Cauchy residues is 
employed to invert the Laplace transform that defines the solution.

7.1.3 Oscillation in discrete equations
There exist parallels between the role of characteristic values for FDEs in 
the search for oscillatory or non-oscillatory solutions and corresponding re­
sults for analogous discrete equations. The discrete theory is easier than 
the continuous theory because there are finitely many degrees of freedom 
in the definition of the solution (and the auxiliary function is an auxiliary 
polynomial).

We shall consider a generic homogeneous constant-coefficient finite-term 
linear recurrence scalar relation

loum + 7ium_i H------ h %um-k = 0 (m G Z) where jo% 7^ 0, (7.1.10)

with fixed k £ N, for which the characteristic polynomial is

£(0 := (7'U1)
£=0

In our current context, (7.1.10) depends upon a given FDE and a choice of 
discretisation parameter h > 0. We could normalise so that 70 = 1, but in 
general

h = l/N for some TV £ N (7.1.12)
and

k = k(N), 7^ = 7*(/i) € R (^ £ {0,1, 2, • • • , &}). (7.1.13)
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Since x(C) 18 a polynomial of degree k it has k zeros (counting according 
to multiplicity) and if the distinct zeros are denoted where Q has a
multiplicity ji£ then

fc*

x(c)=n^-ww- (7.1.14)
€=1

If C* ^ {Oli* then £* G We recall that the general complex-valued
solution of (7.1.10) is expressible as = Y^LiP^ji171)7']1'exi^^7n^') we 
write Q = r^exp(i^)} which for real-valued sequences gives us the form

fc* /c*

Um = = ^{X^^(m)rreXP(im&')} (7.1.15)
1=1 1=1

where the notation pr denotes a polynomial of degree r with complex coeffi­
cients, as usual i denotes a/—T, and denotes the real part of u> E C. It
follows that the general form for real valued sequences satisfying the relation 
(7.1.10) is

um - ]T}{g°,(m)rf cos(m&) + ^.(m)r"1 sin(m^)} (7.1.16)
l=i

where we denote by q® and by any polynomials of degree r with real 
coefficients. For some purposes, (7.1.15) is a more helpful expression.

Lemma 7.1.8 (a) For j G {1,2, • • • , k*}, the j-th term in (7.1.15) is oscil­
latory if and only if

either (z) ^{Ci} 7^ 0 or (zz) ^{Ci} — 0 and ^{Ci} <0 (7.1.17)

(b) When (7.1.17) holds for all j E {1,2, ,&*} then all solutions of (7.1.10)
are oscillatory.

Proof: The elementary formulae for trigonometric functions can be used to 
show that the sum is oscillatory when each term is oscillatory.

One implication is that there exists a non-oscillatory solution if and only 
if there exists at least one j E {1, 2, • • • , k*} for which (7.1.17) is not satisfied.

Theorem 7.1.9 Equation (7.1.10) is non-oscillatory if and only if there ex­
ists a characteristic value that is positive {{0} H (0,00) is non-empty).

Remark 7.1.3 For vector-valued recurrences there are similar equations with 
7^ replaced by matrices E M™xn, and x(C) :== det an(^ cor~
responding results (including Theorem 7.1.9) expressed in terms of charac­
teristic values are valid.
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7.1.4 Solution expansion based on the characteristic 
values

We assume, unless noted otherwise, that n — 1 and our equations have 
solutions have values in M (extensions for solutions with values in Kn for 
1 < n G N are often straightforward).

In the classical theory of functional differential equations, the character­
istic function x is analytic.

Lemma 7.1.10 The characteristic values {A^} constitute a set of isolated 
complex numbers such that exp(At) is a solution of the functional differential 
equation whenever X G {A^}.

Recall that, in the current context, if A G {A^}, then A G {A^}. It follows 
immediately that if ^(A) 0 for some A G {A^} then there are corresponding
oscillatory solutions sin(A£) and cos(At). (In the case of a multiple charac­
teristic value we also have oscillatory solutions of the form ^sin(At) and 
tk cos(At) for certain integer k.) In this classical case, we show that a non- 
oscillatory solution exists when we find some A G {A^} with 7y(A) = 0, and 
an oscillatory solution exists when we find A G {A^} with £y(A) 7^ 0. More 
thought is required, even if we know all of the characteristic values, if we 
wish to assert that no oscillatory solution exists or that no non-oscillatory 
solution exists. Such assertions will generally rely on being able to prove that 
all the solutions are expressible in the form

OO

y{t) = ^2pe(t) exp(A^) (7.1.18a)
£=0

or
00

y(t) - E Pe(t) exp(A^t) as £ 00 (7.1.18b)
&=o

or (see Remark 7.1.4) some similar claim, where Pi(t) is some polynomial 
in t whose degree does not exceeed the multiplicity of A^ as a characteristic 
value.

Observe that (7.1.18) refers to the possible solutions of the FDE and 
they will in general form a subset - a subset that is defined by the FDE - 
of the set of continuous functions. The relevant theory for retarded (delay) 
equations is more complete than that for advanced or mixed-type arguments. 
The situation in Section 7.1.3 was more straightforward because the result 
corresponding to (7.1.18) involved a finite sum.
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Remark 7.1.4 We are interested in providing motivation for later sections 
^§§7,5> onwards) and allow ourselves to forego some rigour} which may be 
recaptured by consulting the cited literature. It may be necessary to show (for 
every solution y) not only that

lim sup |ejv(t)| = 0 
N-+°° t>T

where n

eN{t) - y(t) - ]T^(t)exp(A^),
£=0

but also that, for given solution y the corresponding function

£n is non-oscillatory for all N > iV*, (7.1.20)

or
£n is oscillatory for all N > TV*. (7.1.21)

Lemma 7.1.11 For an autonomous homogeneous constant-coefficient linear 
DDE,

(a) if 3?(A) = 0 for some A } then the eguathon possesses a non-
os dilatory solution;

(b) every oscillatory solution can be expressed in a suitable form (7.1.18) 
where (7.1.21) holds, and

(c) the FDE is oscillatory if {A^} M (that is, 9?(A) ^ 0 for every 
A E {A^}j.

Part (a) applies equally to any autonomous homogeneous constant-coefficient 
linear FDE (functional differential equation) of the type considered here, and 
the applicability of (b)-(c) in such cases is sometimes established separately 
and sometimes assumed.

7.1.5 Small solutions
There is a connection between small solutions and the possibility of express­
ing a solution as a sum of characteristic functions.

Definition 7.1.1 A small solution of a FDE is a solution that decays to zero 
faster than the exponential of any multiple of the argument t as t oo.

It can be shown that some FDEs possess solutions that do not have the 
required expansion of the form (7.1.18). In particular, small solutions provide 
an example in the literature on DDEs (the coefficients of the exponential 
terms exp(At) in in (7.1.18) all vanish). When such small solutions exist,

(7.1.19a)

(7.1.19b)
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they may, in principle, be oscillatory - for example, sin(i) exp(—t2), or not 
oscillatory - for example, exp(—t2). See Verduyn Lunel, [100] . We draw 
attention to the results (see [100] and for a shortened form [97]) by Verduyn 
Lunel and others that indicate that under certain simple conditions all small 
solutions for delay equations become zero in finite time and would therefore 
be oscillatory.

Example 7.1.2 Dr Lumb’s thesis [105] contains a summary of some results 
in the literature on small solutions of retarded equations. We state some 
results that attracted our interest and may be found in [105] where original 
sources are given:

1. The equation y'(t) = ix^y(t — 1) has no small solutions when ^ G R;

2. If the equation y'{t) = /^(£)y(£—1); with G R, has a small solution, 
then yi^ must change sign;

3. The vector-valued equation y'{t) — Bo(t)y(t) + Bi(t)y(t — 1) with ana­
lytic Boti(t) G Rnxn has no non-trivial small solutions when \ det(jBi(i)| 
> 0 for all i > to-

7.1.6 Generalised characteristic functions
We offer some remarks as an introduction to for further reading and inves­
tigation. We have already referred, earlier in this thesis, to research papers 
that explore rigorously various links between oscillatory equations and gen­
eralised characteristic functions.

Lemma 7.1.10 provides a description of characteristic functions and char­
acteristic values that allows their definition to be extended to non-autonomous 
FDEs; compare (1.5.14).

Definition 7.1.2 A generalised characteristic function x\\ of a given FDE 
is (it it exists) a function o/ A G C that vanishes if and only if exp(At) 
is a solution of the given FDE. If x^A) — 0 then A is called a generalised 
characteristic value.

Clearly, if any characteristic value is real, then the FDE is non-oscillatory. 
For a homogeneous equation the null function is always a solution. However, 
if zero is a real characteristic value, then any constant solution is necessarily 
a solution, and (corresponding to zero as a multiple characteristic value) 
certain polynomials may also be solutions.
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Remark 7.1.5 Instead of seeking solutions of the form exp(Xt) one might 
search for solutions exp(A(£)) where X(t) € C for t > to. Since the FDE 
involves the derivative of the solution, it would be appropriate to suppose 
that X is differentiable and in consequence seek solutions of the form

y(t) — exp(A(t)), X(t) := f a(s)ds. (7.1.22)
Jt0

(Compare this form with solutions of the ODEyf(t) = a(t)y(t).) Substitution 
of (7.1.22) into the FDE will give a relation that must be satisfied by a 
(equivalently, a relation that must be satisfied by X) that may prove tractable. 
Clearly, if X satisfies (7.1.22) then so does its complex conjugate and there is 
an oscillatory solution if $sX(t) 0 for all sufficiently large t and there is a 
non-os dilatory solution if 1sX(t) = 0 for all sufficiently large t

A somewhat different approach to that suggested by the remarks above 
follows from a search for solutions that are ultimately positive (or ultimately 
negative). A solution that is ultimately strictly positive is non-oscillatory, as 
also is a solution that is ultimately strictly negative. In [73, Chapters 2-3], 
conditions are established for a positive solution of

N

2/W + “ rfc) ^ 0 > 0 for a11 & G {1, 2. • • • , N}) (7.1.23)
fc=i

and the existence of a real zero of x (where x(A) := A + Ylk=i 9k exp(AT£;)). 
The theory is extended to provide conditions for the existence of a positive 
solution of

N

s/'M +
/c=i

Tfc(t)) = 0 (rjfc(t) > 0 for all & G {1, 2. * • • , N}).

(7.1.24)

7.2 Further reading
The literature provides further insight, and as a selection for further reading 
we suggest [2, 7, 24, 40, 47, 51, 58, 65, 70, 73, 96, 97, 98, 99, 100, 83, 89, 138, 
48, 90, 119, 118, 43]. Chapter 3 of [73] concerns generalised characteristic 
equation and existence of positive solution.
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7.3 Criteria based on characteristic values
We seek to explain the theoretical background of the numerical methods that 
we use to count the number of real or positive zeros of an analytic function 
defined by the characteristic function or the characteristic polynomial. We 
emphasise that we concentrate, now, on criteria for equations to be oscillatory 
where these criteria take the form:

1. The continuous problem is oscillatory when the zeros of a characteristic 
function defined by the continuous problem all have non-zero imaginary 
part, or (equivalently) that for an oscillatory equation the function x 
must have no real zeros.

2. The corresponding discretised problem is oscillatory when the zeros of 
a characteristic polynomial defined by the discretised problem are all 
non-positive or have non-vanishing imaginary part. Equivalently, for an 
oscillatory equation the function xD must have no positive real zeros.

It may prove convenient to consider a related auxiliary function in place of 
the characteristic function/polynomial. (An auxiliary function has precisely 
the same zeros as the characteristic function.)

7.3.1 Theoretical aspects of the application of the Ar­
gument Principle

We consider the basic requirements for the application of the Argument 
Principle using rectangular contours r2M or 7m- We suppose these are rect­
angular contours in C_ U C+ or in C+, used to determine the location of 
appropriate zeros of a suitable corresponding characteristic function. Of 
these,

1
p2M is the (“full”) rectangle with corners ± M ± i—. (7.3.1)

7m is the (“half”) rectangle with corners M ± i-^ and 0 ± i-^ (7.3.2)

is a rectangle in C+. By ‘rectangle5 we mean the positively-oriented rectan­
gular contour that bounds the rectangular area! Characteristic polynomials 
XD from discretised equations are treated using 7m-
Remark 7.3.1 We may require, in the discretised case (if the properties of 
XD are to indicate properties ofx), that the discretisation parameter h should 
be sufficiently small - and this means that the degree of the characteristic 
polynomial may have to be large.
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We take f(z) = x(z) for some characteristic function or f(z) = xD(z) for 
some characteristic polynomial and the properties required are that

(i) the integrand f,(z)/f(z) should be analytic within and on (respec­
tively, 7m) and

(ii) / should not vanish on r2M (respectively, 7m)-

The first requirement (i) is automatic because X is a quasi-polynomial and xD 
is a polynomial. The second requirement (ii) will generally require that M is 
taken sufficiently large and h — l/N sufficiently small. We shall need to show 
that with such conditions, we capture all the relevant real zeros identified in 
the opening remarks of §7.1.

7.3.2 A general approach to bounding real zeros
The following lemma forms the basis of our approach to bounding the real 
zeros of a smooth (that is, continuous) function of a real variable. In ap­
plications, this will result from restricting a relevant analytic function of a 
complex variable to the real numbers (this restriction is real-valued).

Lemma 7.3.1 (a) An upper bound for the real zeros of a continuous function 
/ £ (M M) will exist if

3 x* <E R such that f(x) > 0 V x > z* or3x* such that f(x) < 0 V x > x*.

(b) Similarly, a lower bound for the real zeros of a continuous function f will 
exist if there esists a real value x* such that f(x) >0 for all x < x* or such 
that f(x) < 0 for all x< x*.

In the cases that we consider we can often show that f(x) —» oo or 
f(x) —)■ —oo as £ --» +oo and this yields the desired result in (a). Indeed 
it is sufficient to show that f(x) ~ /* 7^ 0 as rc —oo (/* can be finite 
or infinite), and this result will be provable if f(x) = fo(x) + fi(x) where 
fo(x) 0 while fi(x) ~ /1 7^ 0 both as 2; —» 00. The discussion of lower 
bounds follows parallel lines to that of upper bounds.

Definition 7.3.1 Here, the notation fo(x) = o(l)/i(a:) as x x* signifies 
that

fo(x)/fi(x) —>0 as x x* (7.3.3)
where x* is a finite or infinite real number. With what is a minor abuse of 
convention, this notation will also be used
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1. in the case that fo(x) is a non-zero constant and fi(x) oo or fi(x) —> 
—oo as x x± or

2. in the case that fo(x) is zero constant provided that fi(x) remains either 
positive or negative for all sufficiently large arguments.

Lemma 7.3.2 Suppose that x G M and f(x) = /o(^) + /i(^) where /o,i are 
continuous real-valued functions (%,i £ C(M -» R)j. If

fo(x) = o(l)fi(x) as x oo (7.3.4a)

and if
fi(x) —> +oo or fi(x) —>• —oo as x oo (7.3.4b)

then there exists an upper bound on the real zeros of f. Such a bound is 
provided by any value x such that, for all x>x,

|/i(^)| > 1/oMI and also sign/i(x) = sign lim f{x). (7.3.5)
ic—>cx»

Likewise, if fo(x) — o(l)fi(x) as x —oo and if fi(x) —^ H-oo or fi(x) —$■ 
—oo as x —oo, then there exists a lower bound on the real zeros of f.

7.4 Mixed type homogeneous linear equations
In this section, we do not give the detailed analysis for the general case but 
consider simple examples that indicate the general form of the theoretical 
justification of the use of the Argument Principle. We shall start by looking 
at characteristic functions for undiscretised equations.

We gain relatively easy insight if we examine the characteristic function 
for the simple scalar equation of mixed type introduced in (1.4.8), namely,

y'(t) = a y(t) + by(t-l)+c y(t + 1) (7.4.1)

where y E (M —» M). (The case y'(t) — ay(t) + /5y(t — r) + 7j/(t + r) in 
(1.4.7) follows immediately from the discussion.) The characteristic function 
for (7.4.1) reads

x(z) = z — a — bexp(-z) — cexp(z) (z E C). (7.4.2)

Example 7.4.1 The value z = 0 is a zero of x on^y if a b c = 0. 
Moreover, x;(0) = 0 only «/l + 5 + c = 0. // a = 1, 6 = — 1 and c = 0, then 
zero is a multiple root of x{z) = 0.

Suppose b = c = 0, then x(z) — z — a and x has a zero only at a.
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Vanishing
parameters

Dominating Limiting
term behaviour

asx—>00 asx->oo

Dominating Limiting
term behaviour

as x —y —oo as x —> —00
a can be 0
6 = 0 
c = 0
6 = c = 0

“-cexp(x) —» —sign(c)oo 
—cexp(x) —» -“Sign(c)oo

X 00

X 00

—6exp(—x) —¥ —sign(6)oo 
x —00

—6exp(—x) —» —sign(6)oo 
x —oo

Table 7.4.1: Limiting behaviours

Motivated by Lemma 7.3.4 we examine the dominating terms in x(x) — 
x — a — 6exp(—a;) — cexp(a:)} as a: ^ oo or as a; ^ —oo. See Table 7.4.1.

The following result holds in general.

Lemma 7.4.1 (i) There is an upper bound on the real zeros of (7.4.2), and 
(ii) there is a lower bound on the real zeros of (7.4.2).

Proof: We shall follow the lines of argument indicated in §7.3.2. Consider 
£ G M and, as a reminder, write it as 2: — ax For c 0, it is clear that as 
x —»■ 00, sign(—c)x(^) —>• +00, and in consequence there exists x € [0,00) 
such that sign{x(a;)} = sign{—c} for all x G [x", 00). The case c = 0 is 
similar. The totality of possibilities for vanishing coefficients is indicated in 
Table 7.4.1 and the analogous arguments are straightforward. The result 
(i) follows and (ii) follows on replacing z by —z to show that as x —» —00, 
sign(—6)x(x) —» +00.

As a corollary of the preceding work, we deduce

Theorem 7.4.2 For sufficiently large M, x has no zeros on F2m-

Proof: Take M sufficiently large so that (i) [—M, M] contains all the real 
zeros and (ii) 1/M < min|7s:(A)| where the minimum is taken over those 
A G {A^} (finite in number) such that ^(A^) G [—M, M].

Remark 7.4.1 If characteristic values are to be found on a contour, it is 
possible to “indent” the rectangle with a semicircle (or a set of semicircles) 
of sufficiently small radius cm such that no zeros lie on the indented rectangle. 
Compensating adjustments can be made to our results.
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7.4.1 Analogues in the discretised case
Recall the equation (7.4.1), namely

y'(t) = a y{t) + by(t-l) + c y(t + 1) (7.4.3)

and we assume it to be discretised using a stepsize h — \/N with the $- 
method to give the scheme

ym+i - Vm (7.4.4)
~ 'dh-fti ym~^~b ym—N^C ?/m+iv)}4_(l 'i?)/z.{(2 ym+i—N-\-C •

Suppose 6 7^ 0; then, for'd = 0 the characteristic function is

XD(*=()) (A) - A^1 - \N - h{a\N+l + 6 4- c\2N+1} (7.4.5)

while for 71 = 1 the characteristic function is
^(^(A) = AiV-M _ AW _ h{aXN + b + cA2iV}i (7 46)

If 5 = 0, then spurious factors XN should be cancelled throughout to yield 
xd(1?=o)(A) _ A _ ! _ h{aX + cA^+i}5 (7.4.7)

XD(1?=1)(A) = A — 1 — h{a + cXN}. (7.4.8)
The general case (0 < i? < 1) follows from

XDW(A) - 7lxD(l?=1)(A) + (1 - 0)xDC*=o)(A). (7.4.9)

Lemma 7.4.3 For 5^0,

XDW (A) = A"+1 - A" - iSAjaA^ + 6 + cA2Ar} - (1 - $)h,{a\N+1 + b + cA2W+1}.
(7.4.10)

For 6 = 0, xDmW = A - 1 - 0h{a + cAw} - (1 - ti)h{a\ + cA"+1}.

We see readily that the following Lemma holds.

Lemma 7.4.4 xD^(0) 7^ 0 for all h = 1/N and all •& G [0,1],

Remark 7.4.2 We gain general insight when, for simplicity, we consider the 
case t? — 1 and determine what may be said about the zeros o/x'D^=1^(A), 

XjD{1?=i)(A) simplifies, when expressed in terms of N rather than h, as

X°(1=1>W = + Aiv+1 - (1 + £)*" -jjifbTtO. (7.4.11)

We also have ^D<l?=0) (A) = ~-^rA2w + Aw+1 - (1 — -X A'v A- f ifb^O.
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A polynomial of degree K has exactly K zeros and it follows that for 
fixed N, and h = 1/N, the real zeros of xD^(A) have an upper bound and 
a lower bound. This result is insufficient for our purposes. Rather, we need 
to provide an upper bound that can be quantified and apply uniformly and 
we shall now achieve this aim. Assuming c 7^ 0,

sign{x'D^1^(A)} — sign lim {xD^=1^(A)} (7.4.12)

when |A| > 1 and lA^I > 2 + |ah| + \bh\ and hence, in particular, when

|A| >2+|a| + |6| (7.4.13)

(the condition implies (7.4.12)). In the case c = 0 a corresponding bound is 
|A| > 1 + |a| + |6|. The general case $ € [0,1] follows in a similar manner, 
and we can establish the following result.
Lemma 7.4.5 There is an upper bound on the real zeros of xD^ that ts 
independent of N > 1.

Remark 7.4.3 We can supplement Lemma l.f.f by establishing: xD^=1^ 
has no purely imaginary zeros.

If we evaluate the even powers of iv are real and the odd
powers are purely imaginary; both these terms must vanish to ensure that 

_ q we see fry inSpection that this cannot happen.

For d e [0,1] and for general xjD^=1^ we can deduce instead the weaker 
statement that we require, namely:
Lemma 7.4.6 Whenever h = 1/N is sufficiently small, xD^=1^ has no zeros 
of the form i— (with —l<n<l) for every sufficiently large M.

As a corollary of our lemmas, we deduce:
Theorem 7.4.7 For sufficiently large M, xD^ has no zeros on 7m-

7.4.2 From the continuous to the discrete
It is clear, on the basis of Theorems 7.4.2 and 7.4.7 and the analytic properties 
of x and x-0? that we are justified in our use of the Argument Principle to 
determine, in each case, the number of zeros of x (or of xD) within the 
contour 72A/ (the contour 7^).

It remains, however, to show that [when the stepsize h is sufficiently 
small) results for oscillation based on the Argument Principle for the con­
tinuous and the discrete case are consistent with each other.

The criteria that should carry across from the continuous case to the 
discrete case (for any sufficiently small step-size) are the following:
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1. the function x where

X(^) = ^ — u 6exp(—2r) — cexp(^) (z G C); (7.4.14)

(when 6 ^ 0, this is 2; — a — cexp(^)) has no real zeros]

2. xD has no positive real zeros; where the general form of xD^ is given 
by Lemma 7.4.3 and, in particular,

XD^=i\Z) — —chz2N+zN+1 — (l+ah)zN — bh where h = 1/N (7.4.15)

unless 6 = 0 when

XD(’,=1,(z) = -chzN + z - (1 + ah). (7.4.16)

We distinguish this latter case (the case 6 = 0) since the function 
(7.4.15) has a multiple zero at 2 = 0 which is removed in (7.4.16).

7.4.3 A route to comparison
Consider the characteristic polynomial (7.4.15). To compare its zeros with 
those of (7.4.14), we can equally consider the auxiliary function exp(^)x(z)

Xaux(^) = zexp(2) — aexp(—;?) — b — cexp(22) (z G C), (7.4.17)

defined by (7.4.14).
In (7.4.15) we seek to replace 2 by exp^h, with h = 1/N. To the previous 

end, we employ the maps

Cft e R z=^h) z e K+; and z £ R+ c'*±5.(s) e R (7.4.18)

associated with restrictions of the exponential w — exp(z) for £ G C and 
z = Ln(u/) for to G C, in which Ln denotes the principal value of the natural 
logarithm (with ^{Lnfu?)} G (—7r,7r] for all w G C).

The general procedure is well-illustrated by studying the special case 
based on the choosing 6 = 0 and a comparison of x a3Qd xD^=1^ F°r ease of 
access we restate the functions for comparison as

x{z)'■= z — a~cexp(z) (the case 6 = 0); (7.4.19)
^D(i9=i)(^,) ._ ^ _ (1 -j- ah') — chzN (the case 6 = 0). (7.4.20)

Now, from the fact that Nh = 1, we have z = exp(f/i) and zN = exp(f)) 
and (7.4.20) when expressed in terms of £ reads

XI)(1?=i)(^) := exp(Ch) — (1 + h) — chexp(() (7.4.21)
_ ^jexp(Ch)----1 _ a _ | (7.4.22)
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(this is the case 6 = 0). It remains, therefore, to compare the zeros of the 
analytic functions

2: £ C —► f(z) := z — a — cexp(z)
C£C—> gh(0 := exp(^----l_a_cexp(^). (7.4.23)

where we have scaled the second function in (7.4.21) by a factor h to give 
We recall from Example 7.1.1 that exp(z) = 1 + z + z2/2\ + z2,/?>\ + • • •, so 
that

exp(Cfe) - 1 = ^ + h^j2 + + .,, (7.4.24)
f V

and it follows that f(z) — gh(z) = h(2/2 + h2(3/S\ + • • •, and (from the 
remainder in the Taylor sum1) we see that for any rectangular region F2M 
we have a bound of the form

sup \f{z) - gh(z)\ <hKM sup |exp(2)| (7.4.25)
zer2M zer2M

for some constant Km- Taking M sufficiently large so that T2M contains all 
the real zeros of /, (7.4.25) together with the second theorem in Chapter 
5 (Theorem 5.2.2) this result establishes that the number of real zeros of / 
does not exceed the number of real zeros of gh and by a symmetric argument, 
the number of real zeros of / equals the number of real zeros of g^. In the 
special case 1? = 1 and 6 = 0 we have established Theorem 7.4.8. The case 
i9 = 1 and 6 7^ 0 follows virtually identical lines with

2 6 C —y f(z) z ~ a — 6exp(—z) — cexp(2;)
C £ C —y gh{Cj := exp^----1 -a- &exp(-0 “ cexp(C). (7.4.26)

so that f(z) — gh{z) has the same expression as it had in the case b = 
0. The general case 1? £ [0,1] involves rather more manipulation. The 
principal result related to this discussion is the following generalisation to 
the 'd-method with step h:

Theorem 7.4.8 For all sufficiently small h the number of real zeros of the 
characteristic function

z — a — 6exp(—z) — cexp(2:) (2: £ C),

is equal to the number of positive zeros of the discretised characteristic poly­
nomial xD^ •

1We use a modified form of Corollary 7.1.4.



Chapter 8

Conclusions and further work

As we have seen, our approach to the analysis of oscillatory equations based 
upon the use of the Principle of the Argument has been quite effective in the 
examples we have studied. Indeed, we have found examples of work by other 
authors in which equations had been wrongly classified using conventional 
analysis, and where the approach we have introduced here has enabled the 
analysis to be corrected. However, as we already remarked, much remains to 
be done.

The work on small solutions for delay equations was mentioned in Chap­
ter 7. Our analysis is heavily dependent upon an understanding that the 
characteristic values fully characterise the behaviour of the solution set for 
the given problem. It is known that, in the presence of small solutuions, this 
may not be correct. However it is also known that, for delay equations at 
least, small solutions often become zero after finite time, and therefore they 
have little new to contribute to the long-term dynamics of the solution.

More problemmatic may be the application of the method to mixed-type 
equations, where the existing analytical results are much more limited. One 
can surmise the existence of an analogous property to a small solution, but 
one which decays from right to left, rather than left to right. However analysis 
of this type of problem lies beyond the scope of the present thesis. Never­
theless, we recognise that not being able to be sure that one can resolve the 
solution fully in terms of characteristic functions is a significant limitation to 
our results. For delay equations, small solutions represent a form of degen­
eracy of the equation, and the same would apply to their reverse analogue 
in the mixed equation. Therefore the results of this thesis will apply to all 
problems where this degeneracy does not arise. For delay equations, the 
degeneracy cannot arise for autonomous problems, and we believe the same 
would be true for mixed-type problems. Our experimental evidence suggests 
that the results of our approach are much more widely applicable than can
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currently be shown analytically, and we believe that a significant piece of 
further work would be to widen the scope of the analytical understanding of 
the problem.

Other possible investigations could be based upon applying our methods 
to known mixed-type equations that arise in mathematical models of the real 
world, since these equations are not always the ones that are most naturally 
candidates for analysis.

In conclusion, it is our intention to continue working in this area.
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