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Abstract

Variety membership testing is a central task in algebraic geometry. “Given” a variety
V and a point x in the ambient space, we want to decide whether x ∈ V . In this paper, we
are particularly interested in the case when V is given as an orbit closure and the ambient
space is the set of all tensors of order three. The border tensor rank can be phrased as such
a problem. The first variety that we consider is the slice rank variety, which consists of all
3-tensors of slice rank at most r. The notion of slice rank was introduced by Tao and has
subsequently been used for several combinatorial problems like capsets, sunflower free sets,
tri-colored sum-free sets, and progression-free sets. We show that deciding if a given 3-tensor
has slice rank at most r is NP-hard, that is, the membership testing problem for the slice
rank variety is NP-hard. While the slice rank variety is a union of orbit closures, we define
another variety, the minrank variety, which can be expressed as a single orbit closure. The
minrank variety is closely related to the generalized matrix completion problem considered
in Bläser et al. (STOC, 2018). Our next result is the NP-hardness of membership testing
in the minrank variety, hence we establish the NP-hardness of the orbit closure containment
problem for tensors of order three.

Algebraic natural proofs were recently introduced by Forbes, Shpilka and Volk (STOC,
2017) and independently by Grochow, Kumar, Saks and Saraf (CoRR, abs/1701.01717,
2017) as an attempt to transfer Razborov and Rudich’s famous barrier result (J. Comput.
Syst. Sci., 1997) for Boolean circuit complexity to algebraic complexity theory. Bläser et
al. (STOC, 2018) also gave a version of an algebraic natural proof barrier for the matrix
completion problem which relies on the hypothesis that coNP ⊆ ∃BPP. The result implied
that constructing equations for the corresponding variety should be hard. We generalize
their approach to work with any family of varieties for which the membership problem is
NP-hard and for which we can efficiently generate a dense subset. Therefore, a similar
barrier holds for the slice rank variety and the minrank variety, too. This allows us to set up
the slice rank and minrank varieties as a test-bed for geometric complexity theory (GCT),
an approach initiated by Mulmuley and Sohoni (J. Comput., 2001) to attack the permanent
versus determinant problem. We determine the stabilizers of the tensors that generate the
orbit closures of the slice rank varieties and the minrank varieties and prove that these
tensors are almost characterized by their symmetries. We prove several nontrivial equations
for both the slice rank and the minrank varieties using different GCT methods. Many
equations also work in the regime where membership testing in the slice rank or minrank
varieties is NP-hard. In particular, we obtain equations by using succinctly represented large
determinants, Koszul-flattenings, and representation theoretic methods, more precisely, by
using highest weight vectors and bounding multiplicities. We view this as a promising sign
that the GCT approach might indeed be successful.
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1 Introduction

1.1 Testing membership in algebraic varieties

Testing whether a point lies in an algebraic variety is a fundamental problem in algebraic
geometry. “Given” a variety V and a point x in the ambient space, our task is to decide
whether x ∈ V or not. The complexity of this task depends on how the variety V is given.
One natural way of representing a variety is a tuple of circuits C1, . . . ,Cm computing a set of
defining polynomials f1, . . . , fm for V , that is, V is the set of common zeros of f1, . . . , fm. In
this case, the problem turns out to be easy; it is deterministically polynomial-time equivalent
to the arithmetic circuit identity testing problem. For the one direction, note that x ∈ V iff
f1(x)z1 + ⋅ ⋅ ⋅ + fm(x)zm is identically zero. Here, z1, . . . , zm are new variables. For the other
direction, we use the fact that general arithmetic circuit identity testing can be reduced to the
case when the circuit computes a constant (that is, degree zero) polynomial [3]. In this proof,
the polynomial is transformed by a Kronecker substitution and then evaluated at a point of the
form (B, . . . ,B). Therefore, arithmetic circuit identity testing even reduces to the case when V

is a hypersurface.
This shows that when V is given by circuits, the membership problem is easy. A complicated

variety will have a large circuit and therefore, we have more computation time for deciding
whether x ∈ V . However, often we do not know a set of defining equations explicitly. While the
computation is possible in principle, for instance by Gröbner bases, it is very costly. Therefore,
we can think of other ways to represent varieties. An obvious way is to encode the variety
explicitly in the problem. One prominent example is the border tensor rank problem. We are
given a tensor t ∈Kn×n×n and want to know whether its border rank is at most r. The tensors
in Kn×n×n of border rank ≤ r form a variety.

More general is the problem when the variety is given as an orbit closure. Here we have a
group G that acts on the ambient space S, that is we have a mapping ⋅ ∶ G×S → S that satisfies
the axioms 1 ⋅ s = s and (gh) ⋅ s = g ⋅ (h ⋅ s) for all s ∈ S and g,h ∈ G. Here gh is the group
operation. Let GLn denote the group of all invertible n × n matrices. GLn acts on Kn by the
usual matrix-vector multiplication. Gn ∶= GLn × GLn × GLn acts on rank-one tensors u ⊗ v ⊗w

by (A,B,C) ⋅ u⊗ v ⊗w = Au⊗Bv ⊗Cw and on arbitrary tensors by linear continuation. The
orbit of a tensor t under Gn is the set Gnt ∶= {g ⋅ t ∣ g ∈ Gn} and its orbit closure is the closure
Gnt in the Zariski topology. It is well known that the variety of all tensors of border rank ≤ r
can be written with the help of an orbit closure [12], namely Grer where er is the so-called unit
tensor in Kr×r×r: A tensor t ∈Kn×n×n has border rank ≤ r iff t̃ ∈ Grer, where t̃ is an embedding
of t into the larger ambient space Kr×r×r.

Orbit closure problems have played a central role in algebraic complexity theory in the
recent years. Not only the border rank problem can be phrased as an orbit closure, but also
the famous permanent versus determinant problem. This is the starting point of the geometric
complexity program initiated by Mulmuley and Sohoni, see Section 1.5.

We can think of a tensor t ∈Kn×n×m as a set of m matrices A1, . . . ,Am of size n×n, stacked
up on top of each other (also called slices). The group Γn ∶= SLn×SLn acts on t by simultaneously
multiplying each of the matrices from the left and the right. Bürgin and Draisma [10] showed
that the noncommutative rank of the matrix space given by A1, . . . ,Am is maximal iff 0 ∈ Γnt.
(All such tensors t are said to lie in the null cone.) Garg et al. [31] show how to decide the null-
cone problem in this setting in polynomial time, hence giving a deterministic noncommutative
identity testing algorithm. (Unfortunately, we do not know whether something similar can
be achieved in the commutative setting. More unfortunately, Makam and Wigderson proved
recently that the commutative case cannot be written as a null-cone problem [57].)

While the complexity of the border rank is still unknown to our best knowledge, the fact that
the tensor rank problem is NP-hard might be seen as an indication that the border rank problem
is hard, too. The noncommutative identity testing problem however is easy. Of course, we have
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different group actions in these two problems. Furthermore, in the border rank problem, the
vector on the right hand side is essentially fixed, namely to er, whereas in the latter problem,
the vector on the left hand side is fixed, namely it is zero. As our first contribution, we settle
the complexity of testing whether a tensor t lies in the orbit closure of another tensor t′ under
the group action GLk × GLm × GLn. Note that when t lies in the closure of t′, then the whole
orbit closure of t is contained in the closure of t′. Therefore, we refer to this problem as the
orbit closure containment problem. We prove that the orbit closure containment problem is NP-
hard for tensors under the GLk × GLm × GLn action by defining a quantity called minrank (see
Sections 5 and 6). We prove that deciding whether the minrank is bounded by some given bound
b is an NP-hard question (see Section 8.2) and furthermore, that this question can be phrased
as an orbit closure containment problem. We also study another quantity, the so-called slice
rank. The slice rank was introduced recently, in the proof of the capset conjecture. The tensors
of slice rank bounded by r form a variety, too. Its structure seems to be more complicated, we
prove that it is the union of polynomially many orbit closures. We show that the membership
problem for the slice rank variety is NP-hard, too.

If the orbit closure of t is not contained in the orbit closure of t′, then there is a polynomial f
that vanishes on the orbit closure of t′ but f(t) /= 0. Such an f is a proof that t is not contained
in the orbit closure of t′. Now let t′ be a tensor such that membership testing in the orbit
closure of t′ is NP-hard, for instance, t′ could come from a sequence of tensors that generate
the minrank varieties. We will prove that unless the polynomial time hierarchy collapses, not
all such f can have polynomial size algebraic circuits. This can be viewed as an instance of the
algebraic natural proofs framework, introduced by Forbes et al. as well as Grochow et al., see
Section 1.4.

When such an f has superpolynomial circuit size, this is an indication that proving that t is
not contained in the orbit closure of t′ might be hard. However, when we want to separate the
permanent from the determinant, we need to prove a statement like this. (Note however, that
we currently do not know whether it is hard to test whether a polynomial lies in the orbit closure
of the determinant, this is an algebraic variant of the so-called minimum circuit size problem.)
In the third part of this paper we investigate how methods from geometric complexity theory
might overcome this barrier by constructing equations for the slice rank variety which is a union
of orbit closures and the minrank variety which in fact is an orbit closure.

1.2 Slice rank problem

The notion of slice rank was first used implicitly by Croot, Lev, and Pach in their application
of the so-called polynomial method in their breakthrough work on progression-free sets, also
known as capsets [22]. Later Tao [73] gave a symmetrized formulation of this method and used
slice rank explicitly. In [8], Blasiak et al. used the term slice rank for the notion that Tao
introduced. They used this notion to extend the results on capsets and obtained some barrier
results on the group-theoretic approach to the matrix multiplication. Further Tao and Sawin
[74] explored slice rank of tensors systematically. The methods based on slice rank have been
very useful in advancement of several combinatorial problems like the sunflowers free sets, the
tri-colored and multi-colored sum-free sets, the capsets and the progression-free problem, and
multiplicative matching in nonabelian groups (see for instance [27, 63, 55, 66]).

We describe the notion of slice rank and then the corresponding computational problem.
For this, we consider the space V1 ⊗ V2 ⊗ V3. It can also be written as ⊗3

i=1 Vi, and is generated
by the decomposable (also called rank-one) tensors v1⊗ v2⊗ v3, where vi ∈ Vi. The usual tensor
rank is the minimum number of decomposable tensors that is needed to write a given tensor as a
sum of decomposable tensors. The slice rank is defined in a similar manner, however, the basic
building blocks are not decomposable tensors but tensors that can be decomposed into a matrix
and a single vector. More formally, consider the smaller tensor products ⊗1≤i≤3∶i≠j Vi and the
j-th tensor products ⊗j ∶ Vj ×⊗1≤i≤3∶i≠j Vi → ⊗3

i=1 Vi with its natural definition. Now the rank

2



one functions are the elements of the form vj ⊗j vĵ for some vj ∈ Vj and v
ĵ
∈⊗1≤i≤3∶i≠j Vi. The

slice rank (or srk for short) of a tensor T ∈ ⊗3
i=1 Vi is the smallest nonnegative integer r such

that T can be expressed as a linear combination of r rank one functions. For its comparison
with other notions of rank of tensors, like subrank and multi-slice rank, see [20, Section 5]. For
its relation to the analytic rank and the partition rank, see [56]. For its connection to the null
cone problem of group actions, see [13, 8].

The slice rank problem is the following.

Problem 1. We are given T ∈ Fn ⊗ Fn ⊗ Fn and a number r, and we want to know whether
srk(T ) ≤ r.

Prior to this work, nothing about the complexity status of the problem was known to our
best knowledge.

1.3 Matrix completion and minrank problems

An instance of a matrix completion problem over some field K is an n × n-matrix A that is
filled with elements from K or with a special symbol ∗. One can think of the ∗’s as placeholders
that can be replaced by arbitrary elements from K. The goal is to replace the ∗’s in such a
way that the rank of the resulting matrix is either minimized or maximized, depending on the
application.

Matrix completion has many applications, for instance, in machine learning and network
coding, we here just refer to [64, 39, 38], which contain relevant hardness results. When we
consider minimization, the problem is NP-hard, even when the resulting matrix has rank 3 [64].
When we consider maximization, then the problem is NP-hard over finite fields [39]. Over large
enough fields, there is a simple randomized polynomial time algorithm that simply works by
plugging in random elements from a large enough set. The correctness of this algorithm follows
from the well-known Schwartz-Zippel lemma.

We can phrase the matrix completion problem as a problem on tensors or on tuples of
matrices. Let Ei,j ∈K

n×n be the matrix that has a 1 in position (i, j) and zeros elsewhere. Let
A0 be the matrix that is obtained from A by replacing every ∗ by a 0. For every star, we create
a matrix Ei,j where (i, j) is the position of the ∗. Let F1, . . . , Fm be the resulting matrices. We
can view (A0, F1, . . . , Fm) as a tensor in Kn×n×(m+1). We call A0, F1, . . . , Fm the slices of this
tensor. Then the matrix completion problem can be phrased as follows: Find the minimum r

such that there are λ1, . . . , λm ∈K fulfilling

rk(A0 + λ1F1 + ⋅ ⋅ ⋅ + λmFm) ≤ r.

Here rk denotes the usual matrix rank. Many variants of matrix completion have been studied
in the literature. For instance, instead of having simply ∗’s we can have variables and each
occurrence of a variable has to be replaced by the same value. This can naturally be modeled as
a tensor problem, too: Each of the Fi will have a 1 at each position where a particular variable
occurs and 0’s elsewhere. The most general setting would be the following: Given a tensor t as a
tuple of n×n-matrices (A0,A1, . . . ,Am), what is the minimum r such that there are λ1, . . . , λm

with
rk(A0 + λ1A1 + ⋅ ⋅ ⋅ + λmAm) ≤ r. (1.1)

We call this problem a generalized matrix completion problem and we call the minimum value
r above the completion rank of t.

In [7], it is shown that given t and a bound r, deciding whether the completion rank of t

is bounded by r is NP-hard. Furthermore—and this is the interesting case here—even testing
whether t is in the algebraic closure of the set of all tensors of completion rank ≤ r is NP-hard.
The smallest r such that this is the case, is called the border completion rank. This makes the
class of all tensors of border completion rank bounded by some number r an interesting test
case for algebraic natural proofs and methods from geometric complexity theory.
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When we want to address this problem with methods from geometric complexity theory, it
is unsatisfactory that in (1.1), we have an affine matrix pencil, that it, the matrix A0 is always
contained in the linear combination. It would be much more natural to view this as a problem in
projective space, that is, we allow arbitrary nonzero linear combinations. We call this measure
the minrank, since it is the smallest rank of any nonzero matrix that is contained in the linear
span of the slices of the tensor. In the hardness proofs in [7], it is crucially used that A0 always
has unbounded rank whereas all other Ai always have constant rank. Therefore, the hardness
proofs for completion rank do not transfer to minrank.

1.4 Algebraic natural proofs

Algebraic natural proofs were introduced by Forbes, Shpilka, and Volk [28] and indepen-
dently by Grochow, Kumar, Saks, and Saraf [36] (see also [1, 2]) as an attempt to transfer
Razborov and Rudich’s famous barrier result [65] for Boolean circuit complexity to algebraic
complexity theory.

Let X be a set of indeterminates. We fix a set of monomialsM ⊆K[X] and we consider the
linear span ⟨M⟩ of M in K[X]. Every polynomial in ⟨M⟩ is of the form ∑m∈M cmm. Every
f ∈ ⟨M⟩ is identified with its list of coefficients (cm)m∈M. We consider a class C ⊆ ⟨M⟩. Think
of C as the polynomials of “low” complexity in ⟨M⟩. An algebraic proof or distinguisher is a
nonzero polynomial D in ∣M∣ variables Tm, m ∈ M , that vanishes on the coefficient vectors of
all polynomials in C. If for f ∈ ⟨M⟩, D(f) /= 0, then D proves that f is not in C, that is, f has
“high” complexity.

Definition 1.2 (Algebraic Natural Proofs [28, 36]). Let X be a set of variables and let M ⊆

K[X] be a set of monomials. Let C ⊆ ⟨M⟩ be a set of polynomials and let D ⊆K[Tm ∶m ∈M].
A polynomial D is an algebraic D-natural proof against C, if

1. D ∈ D,
2. D is a nonzero polynomial, and
3. for all f ∈ C, D(f) = 0, that is, D vanishes on the coefficient vectors of all polynomials in
C.

Furthermore, for f0 ∈ ⟨M⟩, we call D as above an algebraic D-natural proof for f0 against
C, if we have D(f0) /= 0. That is, D proves that f0 is not in C.

A hitting set for some class of polynomials P in µ variables is a set of vectors H ⊆Kµ such
that for all p ∈ P, there is an h ∈ H such that p(h) /= 0. Forbes et al. as well as Grochow et
al. go on and define C-succinct hitting sets where C is some class of polynomials. Their main
barrier result is that there are either algebraic D-natural proofs against C or C-succinct hitting
sets for D.

Maybe the most interesting example is when C is the class of polynomials in n variables
that have degree poly(n) and circuit size poly(n), that is, we get the class VP when we run
over all n. If a polynomial vanishes on a particular set, it also vanishes on the Zariski closure
of this set. So an algebraic proof against some class C will vanish on polynomials f that are
not contained in C, but are contained in the closure C. Polynomials in the border C ∖ C may
have higher complexity than polynomials in C (otherwise, they would be in C), yet they cannot
be distinguished by an algebraic proof from polynomials in C, independently of any barrier.
Therefore, to study algebraic proofs properly, one needs to look at Zariski closed classes of
polynomials.

The setting above is not only limited to the class VP, we can for instance also consider
tensors of order three, that is, trilinear forms. In this case, instead of circuit complexity, we
study for instance the border rank of tensors. While the complexity of the border rank is still
open (note however, that testing the rank is a hard problem [40, 69, 67, 7, 72]), Bläser et al.
[7] defined a related measure, the so-called border completion rank. They proved that border
completion rank is NP-hard. From this it follows that from any set of equations defining the
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variety of tensors of border completion rank bounded by a certain value at least one of the
equations has superpolynomial algebraic circuit complexity, unless coNP ⊆ ∃BPP.

Even more general, we can consider this problem for any variety V . In our setting, V would
be VP or the orbit closure of the determinant or the variety of all tensors with border rank
bounded by some r. An equation f of this variety can be considered as an algebraic proof: If
f(x) /= 0, then f is a proof that x is not in V . Of course, if V is arbitrarily complex, then
the complexity of f can be of course arbitrarily high, therefore, we are interested when V can
be easily described, for instance as the closure of objects (polynomials, tensors, . . . ) of low
complexity.

1.5 Geometric Complexity Theory

In [75] Valiant proved that every polynomial f can be written as the determinant of a matrix
whose entries are affine linear polynomials. The required matrix size to write f in this way is
called the determinantal complexity dc(f). The flagship conjecture in algebraic complexity the-
ory is that the sequence dc(perm) is not polynomially bounded, where perm ∶= ∑π∈Sm∏

m
i=1 xi,π(i)

is the permanent polynomial. In terms of algebraic complexity classes, this can be succinctly
phrased as VDET ≠ VNP. Mulmuley and Sohoni [61, 62] proposed to reinterpret Valiant’s de-
terminant versus permanent conjecture in terms of questions about certain orbit closures and
the representations in their coordinate rings. They arrive at the potentially stronger conjecture
VDET ≠ VNP and coined the name geometric complexity theory (GCT) for their approach. At
the center of their attention is the study of the orbit closure Detn ∶= GLn2detn, as it allows us
to define the border determinantal complexity dc(f) to be the smallest n such that the padded
polynomial xn−m1,1 f is contained in GLn2detn. The conjecture VDET ≠ VNP is equivalent to
dc(perm) growing superpolynomially. The definition of dc from dc is in complete analogy to
going from tensor rank to the border rank of tensors, see e.g. [5].

To prove that a point p does not lie in Detn one searches for polynomials vanishing on
Detn, that is, equations for the variety Detn. Those which do not vanish on p are sometimes
called separating polynomials in the GCT literature, as they prove p ∉ Detn. In the language
of the previous section, they would be called algebraic proofs or distinguishers. Sometimes
representation theory can be used to find equations for varieties: Since Detn is closed under
the action of GLn2 , the vanishing ideal I(Detn) decomposes into a direct sum of irreducibles in
each degree. If λ is an GLn2-isomorphism type and aλ is the multiplicity in the coordinate ring
of the ambient space C[x1,1, . . . , xn,n]n, then the algebraic Peter-Weyl theorem implies that an
equation of type λ exists if the multiplicity of λ in the coordinate ring of the orbit GLn2detn is
less than aλ. This multiplicity if known as the rectangular symmetric Kronecker coefficient, see
[17]. This criterion is satisfied in numerous cases, see the appendix of [44].

The GCT approach is very general and can be applied to numerous algebraic measures of
complexity. As one example, the border rank of the matrix multiplication tensor was phrased
in this setup [14, 15] and explicit lower bounds for this border rank have been found using the
multiplicities in the coordinate ring of the GLn ×GLn ×GLn orbit of the unit tensor. These were
the first lower bounds in algebraic complexity theory found using this approach. Since our space
of objects is a tensor space and the action a product of general linear groups, the multiplicities
in the coordinate ring of this ambient space are given by the infamous1 Kronecker coefficients.

2 Our contributions

We give a detailed overview of our results and its meaning for geometric complexity the-
ory. We keep this exposition at a non-expert level, the complete results can be found in the
subsequent sections.

1“Although Kronecker coefficients are a classical subject, frustratingly little is known about them.” [11]
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2.1 The slice rank problem and orbit closures

Our first contribution is that we show that the slice rank problem is NP-hard under polyno-
mial time many-one reductions. (see Section 8.1). For this, we use a connection of the slice rank
to the size of a minimum vertex cover of a hypergraph by Tao and Sawin [74]. They showed
that for every 3-uniform, 3-partite hypergraph H, one can associate a tensor TH , and if the
edge set of the hypergraph forms an antichain, then the slice rank of the associated tensor TH

equals the size of the minimum vertex cover of the hypergraph H. To our best knowledge, the
complexity of the decision version of the slice rank problem for order-three tensors has been
open so far. Prahladh Harsha, Aditya Potukuchi, and Srikanth Srinivasan kindly sent us an
unpublished manuscript, in which they prove that the order-four case is NP-hard. However, this
one more tensor leg gives an additional degree of freedom, which easily allows to establish the
antichain condition. Bürgisser et al. [9, page 27] report that Sawin has an unpublished proof
that computing the slice-rank of tensors of order three is NP-hard. However, they also state
that the decision version is open.

We show the NP-hardness of the slice rank problem for order-three tensors by showing
that the 3-uniform, 3-partite hypergraph minimum vertex cover problem where the edge set
forms an antichain is NP-hard. The corresponding hypergraph minimum vertex cover problem
without the antichain restriction is known to be NP-hard [34] by reduction from the usual 3-
SAT problem. However, their reduction does not work if one wants to adapt it to the antichain
restriction. We use a reduction from a restricted SAT-variant, the bounded-occurrence mixed
SAT (bom-SAT) problem, in which there are 3-clauses and 2-clauses, and every variable occurs
exactly thrice, once in a 3-clause and twice in 2-clauses. Because of the antichain restriction,
our labelling of the gadget becomes very delicate and needs to be handled very carefully in the
reduction (see Lemma 8.3).

Next, we phrase the slice rank problem in terms of orbit closures. More specifically, we
show that testing whether a tensor T ∈ Fn×n×n has srk(T ) ≤ r is equivalent to testing if the
tensor T is contained in a polynomially large union of orbit closures. Let (r1, r2, r3) be such
that r1+r2+r3 = r. We first embed T in a larger subspace U ′⊗V ′⊗W ′ ≅ Fs1 ⊗Fs2 ⊗Fs3 (this is
called padding), where s1 = r1 + nr2 + nr3, s2 = nr1 + r2 + nr3 and s3 = nr1 + nr2 + r3, and define

Sn,r1,r2,r3 =

r1

∑
i=1

n

∑
j=1

e1i ⊗ e1ij ⊗ e1ij +
r2

∑
i=1

n

∑
j=1

e2ij ⊗ e2i ⊗ e2ij +
r3

∑
i=1

n

∑
j=1

e3ij ⊗ e3ij ⊗ e3i .

Intuitively, in the sum above, we have r1 rank-one elements of the form v1 ⊗1 v1̂ with v1 ∈ V1

and v1̂ ∈⊗1≤i≤3∶i≠1 Vi, r2 elements of the form v2⊗2v2̂, and r3 elements of the form v3⊗3v3̂. Now
srk(T ) ≤ r becomes equivalent to testing whether T is in the orbit closure of the Sn,r1,r2,r3 for
some (r1, r2, r3) with r1 + r2 + r3 = r. Thus we show that the slice rank variety SVFn⊗Fn⊗Fn,r is
the union of orbit closure of Sn,r1,r2,r3 over all (r1, r2, r3) with r1 + r2 + r3 = r, intersected with
the ambient space Fn ⊗ Fn ⊗ Fn, see Section 3.1 for details. Note that Tao showed that the set
of all T with srk(T ) ≤ r is closed, so there is no need to define a notion of border slice rank (see
[74, Corollary 2]). This is different to the situation with determinantal complexity and border
determinantal complexity or tensor rank and border rank.

Next we go on to determine the stabilizer of Sn,r1,r2,r3 , i.e., the subgroup of GL(U ′)×GL(V ′)×
GL(W ′) which fixes Sn,r1,r2,r3 (Theorem 3.9). We can also show that each Sn,r1,r2,r3 is almost
characterized by its stabilizer, i.e., it is a direct sum of three tensors that are each characterized
by their respective stabilizers (Theorem 3.10). This is an important property in the context of
geometric complexity theory. Both the permanent and the determinant are characterized by
their respective stabilizers as well.

Phrasing the problem geometrically allows us to find equations for the slice rank varieties.
This makes the slice rank problem an interesting “testing ground” for the methods of geometric
complexity theory. The situation is very similar to the permanent-determinant and border rank
settings that have been studied in geometric complexity theory; the symmetries of the tensors
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determine the orbits. This allows us to analyze the problem using representation-theoretic
methods. What makes our “testing ground” very appealing from a complexity theoretic point
of view is the fact that we can prove that testing containment in the slice rank varieties is
NP-hard, something which we do not know for VP, the orbit closure of the determinant, or
tensors of a given border rank. This hardness allows us to reason about proof barriers.

2.2 The minrank problem and orbit closures

As a second test case, we study the minrank problem as a test case for the geometric
complexity methodology. In contrast to the slice rank problem, the corresponding variety can
be written as a single orbit closure. Since we also prove that containment in the minrank
variety is NP-hard, we obtain the result that the orbit closure containment problem is NP-hard
(Corollary 8.10), which we cannot deduce from the hardness of slice rank.

For the minrank problem, we are given a tuple of matrices A1, . . . ,Ak of the same size m×n
and a number r, and the problem is to decide whether there exist a nonzero linear combination
x1A1 + ⋅ ⋅ ⋅ + xkAk with rank at most r. The smallest r is called the minrank of A1, . . . ,Ak.
Instead of thinking of a tuple of matrices, we can also view A1, . . . ,Ak as a tensor in F k×m×n

with A1, . . . ,Ak being its slices. We will use both views in this paper.
In contrast to the completion rank, we allow any nontrivial linear combination of the slices

in the minrank case, whereas for completion rank, we always require x1 = 1. We can view the
minrank problem as the homogeneous version of the completion rank problem. As minrank is
a homogeneous problem, from an algebraic perspective, it is more natural than the completion
rank. Instead of affine varieties, we obtain a projective variety. The NP-hardness proofs in [7]
critically used the fact that x1 = 1, since A1 was a matrix that had rank linear in the input size
whereas all other matrices had the same, constant rank. These hardness proofs do not work
in the homogeneous setting, since all instances created in the proofs trivially have the same
minrank. As one of our main results, we prove that testing containment in these projective
varieties is still NP-hard.

While the minrank problem certainly is an interesting problem on its own right, we consider
it here as a “test-bed” for the geometric complexity approach. To this aim, we again want
to show that we can write the minrank problem as an orbit closure problem. For a tensor
T ∈ F k×m×n given as e1⊗A1+⋅ ⋅ ⋅+ek⊗Ak and a linear form x ∈ (F k)∗, we define the contraction
Tx by Tx ∶= x(e1)A1 + ⋅ ⋅ ⋅ + x(ek)Ak, that is, we form a linear combination of the slices. If we
take the set of all (T,x) with rk(Tx) ≤ r and x /= 0 and project on the first component, we get
all tensors of minrank at most r. Since the set of all such (T,x) is invariant under scaling of
T or x by nonzero factors, it also defines a projective variety, and the projection on the first
component is a projective variety, too, see Section 6 for more details. So we are in the nice
situation where the set of all tensors of minrank at most r is Zariski closed (Theorem 6.1). This
means that we are in the same situation as slice rank; we do not need an additional border
complexity measure, i. e., minrank and border minrank coincide. We denote the corresponding
variety of all tensors T ∈ U ⊗ V ⊗W of minrank at most r by MU⊗V ⊗W,r or just Mr when the
tensor space is clear from context.

Next, we want to write the minrank varieties MU⊗V ⊗W,r as orbit closures. Note that we
can always embed a tensor T ∈ U ⊗ V ⊗W into a larger ambient space U ⊗L⊗L, where V and
W are subspaces of L, by filling the new entries with zeros. (This process is called padding.)
We then show (Corollary 6.7), that MU⊗V ⊗W,r is the GL(U) × GL(L) × GL(L)-orbit closure of
the tensor

Tk,n,r = e1 ⊗ ( r

∑
j=1

e1j ⊗ e1j) + k

∑
i=2

ei ⊗ ( n

∑
j=1

eij ⊗ eij),
intersected with the ambient space U ⊗ V ⊗W (here k = dimU , n = dimL). This means that
we can reduce the question whether a tensor has minrank at most r to the question whether it
is contained in the orbit closure of Tk,n,r.
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Then we go on and determine the so-called stabilizer of Tk,n,r (Theorem 6.8), a subgroup of
GL(U) ×GL(L) ×GL(L) which fixes Tk,n,r. This is the group of “symmetries” of Tk,n,r. It can
be shown that the orbit of Tk,n,r is completely described by the stabilizer, that is, all tensors
having the same stabilizer lie in the orbit of Tk,n,r (Theorem 6.9). This is an important property
in the context of geometric complexity theory, only slightly weaker than the property of being
characterized by the stabilizer up to scale shared by determinant and permanent.

2.3 Equations of slice rank varieties

In Section 4 we describe many nonzero polynomials which vanish on slice rank varieties.
We use two different representation theoretic methods to find these equations, and interestingly
both yield the same set of polynomials. The first method in Section 4.1 uses multilinear algebra
and highest weight vectors, while the second method in Section 4.2 uses the stabilizer of the
slice rank tensors and invariant theory. Interestingly, among these equations we find that the
unique SLn2 × SLn2 × SLn2-invariant function of degree n3 vanishes on tensors of slice rank < n2

in Cn2

⊗ Cn2

⊗ Cn2

. This function is known as one of Cayley’s hyperdeterminants. If the
combinatorial property in [16, Cor. 5.25(3)] is true, then this coincides with the fundamental
invariant of the n × n matrix multiplication tensor.

Let k, m and n denote the dimensions of U , V and W respectively. Since the slice rank
variety SVU⊗V ⊗W,r is invariant under the group action of GL(U)×GL(V )×GL(W ), the ideal of
polynomials vanishing on it is also a representation of GL(U)×GL(V )×GL(W ). The irreducible
polynomial representations of GL(U) are indexed by partitions with at most dimU many parts
(a partition is a finite list of nonincreasing natural numbers). The irreducible polynomial
representations of GL(U) ×GL(V ) ×GL(W ) are indexed by triples of partitions (λ,µ, ν) where
λ has at most k parts, µ has at most m parts, and ν has at most n parts. The multiplicity with
which (λ,µ, ν) occurs in the coordinate ring C[U ⊗ V ⊗W ] is called the Kronecker coefficient.
It is nonzero only if ∣λ∣ = ∣µ∣ = ∣ν ∣, in which case D = ∣λ∣ is the degree of the polynomial.

Let ℓ = ⌈√max{k,m,n}⌉. In Section 4 we find that all partition triples that satisfy λ1 > ℓ

or µ1 > ℓ or ν1 > ℓ vanish on SVU⊗V ⊗W,D/ℓ.
It is intriguing that both constructions in Section 4.1 and Section 4.2 give the same set of

equations. Both approaches are rather indirect, but the multilinear algebra approach in Sec-
tion 4.1 contains a construction principle for the functions, whereas the approach in Section 4.2
is purely based on invariant theory and the stabilizers of the slice rank tensors that we deter-
mine in Section 3.1. In Section 4.2 do not write down the polynomials, but we obtain an upper
bound on the multiplicities of irreducible representations in the coordinate ring of slice rank
varieties. The upper bound is given by the multiplicities in the coordinate rings of the orbits
of the slice rank tensors. When these multiplicities are all less than the Kronecker coefficients,
then we get equations.

The polynomials described in Section 4.1 have polynomial degree, but the direct method of
evaluation of these polynomials involves exponential sums. We conjecture that it is NP-hard
to check vanishing of these polynomials on a given tensor. The polynomials obtained from
comparing multiplicities are given by a type of representation. It describes polynomials exactly
using small size labels, but does not give a direct method of evaluation of these polynomials,
which makes it potentially able to overcome the barrier saying that in some cases algebraic
proofs need to be hard. But it also means we do not have a concrete tensor on which these
polynomials do not vanish. Indeed, the nonvanishing of the hyperdeterminant on the matrix
multiplication tensor is an open question posed in [16, Cor. 5.25(3)]. It would be nice to find
explicit nontrivial tensors for which we can prove a slice rank lower bounds using multiplicities.

2.4 Equations of the minrank varieties

Throughout this subsection, k, m and n denote the dimensions of U , V and W respectively.
In Section 7 we describe several polynomials which vanish on minrank varieties. Section 7.1 gives
a very basic example which follows directly from the definition: existence of a slice Tx of rank
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at most r means that the (r+1)×(r+1) minors of Tx as polynomials in x have a common zero.
Instead of this, a weaker condition can be checked. The degree r + 1 homogeneous polynomial
map sending x to the collection of all minors gives rise to a linear map sending x⊗(r+1) to the
same minors. The existence of the common zero in this case can be checked simply by checking
the rank of this linear map. Interestingly, in one special case this construction coincides with
the construction of the hyperdeterminant [32].

Another construction is an application of Koszul flattenings which are also used in the
study of border rank of tensors. The best currently known lower bounds for the border rank of
the matrix multiplication tensor are based on Koszul flattenings [54, 53] (but it is also known
that these bounds cannot be significantly improved [26]). A simplest example of this family of
equations is the case k = 3, m = n. Let T = e1 ⊗A1 + e2 ⊗A2 + e3 ⊗A3. We can form a matrix

⎡⎢⎢⎢⎢⎢⎣
−A2 A1 0
−A3 0 A1

0 −A3 A2

⎤⎥⎥⎥⎥⎥⎦
which is GL(U) × GL(V ) × GL(W )-covariant in the sense that if one tensor is obtained from
another by an action of this group, then the correponding matrices are also equivalent. If
rk(A1) ≤ r, then the rank of this matrix is at most 2m + 2r, which is less than the maximal
possible 3m for r < m

2
. It is known [71] that for a generic tensor the rank of the above matrix

is maximal, which means that the equations for Mr given by the (2m + 2r + 1) × (2m + 2r + 1)
minors of this matrix are nontrivial. This construction can be generalized. In Section 7.2 we
describe a generalization that gives equations when m =

k−p
p+1n and r < m

k−p where p is a parameter

(Theorem 7.2).
More interesting examples are given by representation-theoretic methods. Since the minrank

variety Mr is invariant under the group action, the ideal of polynomials vanishing on it is also
a representation of GL(U)×GL(V )×GL(W ). In Section 7.3 we describe a family of polynomials
which potentially give equations for minrank varieties in cases m,n > kr. They are constructed
as specific highest weight vectors of certain GL(U) × GL(V ) × GL(W )-representations. The
nontriviality of these equations is connected to interesting combinatorial questions about Latin
rectangles. These problems arise from the evaluation of the constructed polynomial, which
involve exponential sums. We now give an example of such a degree 6 equation in the case
k = 2, n = m = 3, r = 2. Let sgn(w) ∈ {−1,1} denote the sign of a permutation w of a set of
numbers that start at 1, e.g., sgn(1,3,2) = −1 and sgn(1,2) = 1. We define sgn(w) = 0 for any
other list of numbers w, e.g., sgn(2,3) = 0 and sgn(1,2,2) = 0. Denote the components of the
tensor T ∈ C2×3×3 by Tα,β,γ . Let R ∶= {(i, j) ∣ 1 ≤ i ≤ 2,1 ≤ j ≤ 3} be a 2 × 3 rectangle and
I ∶= {(α,β, γ) ∣ 1 ≤ α ≤ 2,1 ≤ β, γ ≤ 3} the set of possible indices. Define

f(T ) = ∑ϕ∶R→I σ(ϕ)∏q∈R Tϕ(q), (2.1)

where σ(ϕ) = sgn (ϕ(1,1)1, ϕ(2,1)1) ⋅ sgn (ϕ(1,2)1, ϕ(2,2)1) ⋅ sgn (ϕ(1,3)1, ϕ(2,3)1)
⋅ sgn (ϕ(1,1)2, ϕ(1,2)2 , ϕ(1,3)2) ⋅ sgn (ϕ(2,1)2 , ϕ(2,2)2 , ϕ(2,3)2)
⋅ sgn (ϕ(1,1)3, ϕ(2,1)3) ⋅ sgn (ϕ(1,2)3 , ϕ(2,2)3) ⋅ sgn (ϕ(1,3)3, ϕ(2,3)3).

Clearly, f is a homogeneous degree 6 polynomial on U ⊗V ⊗W . It will follow from the general
results in Section 7.3 that f is nonzero and that f vanishes on tensors of minrank ≤ 2. Moreover,
this f is a highest weight vector of weight (3,3), (2,2,2), (3, 3).

More indirectly, the existence of equations can be proven by showing that the ideal of Mr

contains an irreducible representations of a given weight. We study this approach in Section 7.4.
There we show that nontrivial equations can be obtained purely from the description of minrank
varieties in terms of orbit closures, without presenting the polynomial explicitly and computing
its value on tensors from minrank varieties. This is achieved by obtaining an upper bound
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on the multiplicities of irreducible representations in the coordinate ring of minrank varieties.
The upper bound is given by the multiplicities in the coordinate ring of the orbit of the tensor
describing min-rank. When this multiplicity is less than the multiplicity in the space of all
polynomials (which is given by Kronecker coefficients), then we get an equation. We determine
the exact formula for the upper bound and verify that it indeed yields numerous equations, for
example one can calculate that one of the equations we find in this way is the one in (2.1).

Computational properties of the described polynomials vary. Basic polynomials described
in Section 7.1 are compositions of determinants where inner determinants are of size r + 1 and
outer determinants are of size (k+r

r+1
). If r is constant (in particular, in the case r = 1), these

polynomials are easy to compute. This means that for almost all tensors of minrank greater
than 1 we can easily prove this using these basic equations. Nevertheless, we will prove that in
general this question is coNP-hard and thus we are unlikely to have easy proofs for all tensors.
If, on the other hand, r is linear in the size of the tensor (in this other regime we also prove
hardness results) computation involves determinants of exponential degree. Similarly, the ranks
of Koszul flattenings from Section 7.2 are computable in polynomial time if the parameter p

is constant and involve determinants of exponential size if p is linear in the size of the tensor.
The polynomials described in Section 7.3 have polynomial degree, but the direct method of
evaluation of these polynomials involves exponential sums. We conjecture that it is NP-hard
to check vanishing of these polynomials on a given tensor. The polynomials obtained from
comparing multiplicities are given by a type of representation. It describes polynomials exactly
using small size labels, but does not give a direct method of evaluation of these polynomials,
which makes it potentially able to overcome the barrier saying that in some cases algebraic
proofs need to be hard. But it also means we do not have a concrete tensor on which these
polynomials do not vanish. Of course these equations are nonzero, but we only know that it
does not vanish on a tensor of the form Tk,n,r for large enough r. It would be nice to find other
explicit tensors for which we can prove a minrank lower bound using multiplicities.

2.5 Hardness of membership testing and algebraic natural proofs

In Section 8.1, we prove that testing membership in the slice rank varieties is NP-hard and
we prove in Section 8.2 that testing membership in the minrank varieties is NP-hard. Since the
minrank varieties are orbit closures, we get as a corollary, that the orbit closure containment
problem is NP-hard. It turns out that even deciding whether the minrank is ≤ 1 is already NP-
hard. We can use these hardness results to show the following lower bound for the equations
of slice rank and minrank varieties: For infinitely many n, there is an m, a tensor T ∈ Fm×n×n

and a value r such that there is no algebraic poly(n)-natural proof for the fact that the slice
rank or minrank of T is greater than r unless coNP ⊆ ∃BPP. We prove this by providing a
general methodology for proving statements like this, generalizing results from [7]. The two
main ingredients needed to achieve this results are

• the NP-hardness of the membership problem of the varieties and

• the ability to effectively generate a dense subset of the variety.

Here “effectively generate” means that we can provide a vector of polynomials, each computed
by a polynomial sized circuit, such that the image of the vector (interpreted as a polynomial
map) lies dense in the variety. Since the minrank varieties are orbit closures, it follows easily
that the minrank varieties satisfy the second property. For the slice rank varieties, this works,
too, since they are a polynomial union of orbit closures.

Now we can go as follows: If we assume that almost all minrank varieties are described by
a set of equations of polynomial size, we can decide non-membership as follows: Given a point
x, we guess a polynomially sized circuit for an equation f . Since we can effectively generate
a dense set, we can check whether f vanishes on this set and therefore on the whole variety
using polynomial identity testing. This can be done by an ∃BPP-machine. Then we simply
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test whether f(x) /= 0 using polynomial identity testing again and can therefore decide non-
membership. Since membership testing is NP-hard, non-membership testing is coNP-hard and
the result follows.

We can interpret this as a barrier result: We proved that we can get equations for the slice
rank or minrank varieties by different methods from geometric complexity. The result above
means that in a full set of equations, that is, for a set of equations that describe the variety
completely, not all of them will have algebraic circuits of polynomial size (unless the polynomial
time hierarchy collapses). Therefore, if we want to prove lower bounds with the GCT approach,
we have to argue why in our lower bound proof, we do not (implicitly) evaluate the circuit to
prove that a point is not contained in the variety, but we do something more clever.

2.6 Does GCT avoid natural proofs barriers?

By the results mentioned in the previous section, if the (Vn)-membership problem is NP-hard
for some family (Vn) of varieties, then not all equations of Vn can have polynomial size circuits.
However, in this paper we have constructed various equations for the slice rank and minrank
varieties using the GCT methodology, even in the regime where the membership problem is
NP-hard. While we do not know whether all of the equations have polynomial size circuit—we
rather suspect not, since they are described by exponential sized determinants or exponential
sums—they have polynomial size descriptions in other models, for instance, they are given by:

• succinctly represented exponential size determinants,

• succinctly represented exponential sums, or

• succinct representation-theoretic objects.

But by the end of the day, given a variety V and a point x, the GCT approach produces
the description of an equation f of the variety V under consideration, such that f(x) /= 0. The
description of this equation can be very short, as mentioned above. However, we do not only
have to give a description of the equation, but we also have to prove that f(x) /= 0 and that f

vanishes on the corresponding variety.
More specifically, we have a sequence (Vn) of varieties and a sequence of points (xn) and

we want to prove that xn ∉ Vn. We do this by constructing a sequence of polynomials (fn) such
that fn vanishes on Vn and fn(xn) /= 0. What the term “constructing” means, that is, how do we
represent the polynomial fn and how do we prove that it vanishes on Vn and fn(xn) /= 0, might
depend on our lower bound method. In our example, we can think of (Vn) as being a sequence
of minrank varieties generated by Tk(n),n,r(n) where k(n) and r(n) are chosen in such a way
that the membership problem in (Vn) is NP-hard, see Section 8.2 for various possible choices
of parameters. Slice rank is a little bit more complicated, but essentially the same reasoning
works.

From Theorem 8.13 it follows that when the (Vn)-membership problem is NP-hard and (Vn)
fulfills the further, very natural prerequisites of the theorem, then we cannot expect that all
equations of Vn have polynomial circuit size. So the question is whether we can prove that fn
vanishes on Vn and that fn(xn) /= 0 despite this natural proof barrier.

One can think of various ways how to circumvent this barrier. Think of (Vn) being a
sequence of slice rank or minrank varieties such that membership testing is hard:

• First of all, we might be lucky and the equations fn that we picked for xn have polynomial
size circuits. We cannot rule out this possibility, however, it seems very unlikely to us
that this might actually happen.

• For all our equations that we constructed in the paper, we were able to show that they
vanish on the corresponding variety. This means that if one of these equations has super-
polynomial circuit size—what we consider to be very likely—all our proofs in Sections 4
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and 7 cannot rely on evaluating this underlying circuit on a generic point of the variety,
even not implicitly. We think that this is a good sign.

(A small side remark: One could say that to prove the vanishing of an equation, we do
not need to evaluate the circuit, it suffices to evaluate an algebraic decision tree. How-
ever, it is well known that for every algebraic decision tree that decides membership in
a variety, there is an algebraic circuit of roughly the same size that computes a multi-
ple of this equation (by following the so-called generic path and then applying Hilbert’s
Nullstellensatz) see e.g. [12]. Then we can use Kaltofen factorization [47] and the recent
variants [25], which also work to some extent for exponential degree equations, to get a
circuit computing the equation. So algebraic decision trees will most likely not overcome
the natural proofs barrier.)

• The second item that we have to prove is fn(xn) /= 0. In our setting, we easily can overcome
this problem. We can choose Sn,r1(n),r2(n),r3(n) such that r1(n) + r2(n) + r3(n) is large
enough or Tk(n),n,r′(n) for some large enough r′(n) > r(n) as our point, respectively. Then,
since we have an ascending chain of orbit closures, Sn,r1(n),r2(n),r3(n) or Tk(n),n,r′(n) does
not lie in Vn by design and hence the equation fn will not vanish on it, since it is nontrivial.
Again, we believe that this a promising sign, too. Of course, this will not be as easy in
the permanent versus determinant setting. However, there is hope that GCT can prove
f(pern) ≠ 0 using symmetry properties of pern. Unlike a generic point, the permanent
is characterized by its symmetries, so such a proof would be special to the permanent.
Note that for our points Sn,r1(n),r2(n),r3(n) and Tk(n),n,r′(n), the situation is similar. They
are almost characterized by their symmetries, for instance, Sn,r1(n),r2(n),r3(n) is the direct
sum of three tensors that are characterized by its symmetries.

• Finally, in the case of the permanent versus the determinant problem, it is possible that
deciding whether a family of polynomials is in VP is an easy problem. This is the algebraic
analogue of the minimum circuit size problem, the complexity of which is widely open.
The same could be the case for the border tensor rank problem, although here, this is
rather unlikely, since we know that the tensor rank problem is NP-hard.

3 Geometric description of slice rank varieties

For the necessary mathematical background, the reader is referred [68, 49, 50, 6].
In this section, we describe the geometric description of the slice rank varieties for 3-tensors.

Let us say we are given a 3-tensor T ∈ U ⊗ V ⊗W , and we are interested in finding out if it has
slice rank at most r, i.e., if srk(T ) ≤ r.

In what follows, we phrase this problem geometrically and formulate it as variety membership
testing problem. More explicitly, we write it as membership testing of T in a union of orbit
closures of certain tensors.

Lemma 3.1. ([74, Corollary 2]) Let U,V,W be vector spaces over an algebraically closed field
F. The set of all tensors T ∈ U ⊗ V ⊗W with slice rank at most r is a Zariski closed set.

In fact, they even showed that the set of all tensors T ∈ U ⊗V ⊗W with slice rank at most r
decomposed as (r1, r2, r3) for a fixed tuple (r1, r2, r3) with r1 + r2 + r3 = r is also Zariski closed.

Definition 3.2. We call the the affine variety

SVU⊗V ⊗W,r = {T ∈ U ⊗ V ⊗W ∣ srk(T ) ≤ r}
the affine slice rank variety or simply the slice rank variety.

When clear from the context, we drop the index U ⊗ V ⊗W .
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Lemma 3.3. Let U,V , and W be subspaces of vector spaces U ′, V ′, and W ′, respectively. Then

SVU⊗V ⊗W,r = SVU ′⊗V ′⊗W ′,r ∩ (U ⊗ V ⊗W ).
Proof. A tensor lies in SVU⊗V ⊗W,r iff it is an element of the space U ⊗V ⊗W and has slice rank
at most r, i.e. lies in SVU ′⊗V ′⊗W ′,r.

Lemma 3.4. The slice rank variety SVU⊗V ⊗W,r is invariant under the standard action of
GL(U) ×GL(V ) ×GL(W ) on U ⊗ V ⊗W .

Proof. If srk(T ) ≤ r, we have T =
r1

∑
i=1

ui,1⊗1Ti,1+
r2

∑
i=1

ui,2⊗2Ti,2+
r3

∑
i=1

ui,3⊗3Ti,3 for some (r1, r2, r3)
such that r1 + r2 + r3 = r, where ui,1 ∈ U , ui,2 ∈ V , wi,3 ∈ W , and Ti,1 ∈ V ⊗W , Ti,2 ∈ U ⊗W ,
Ti,3 ∈ U ⊗ V . Clearly when A ⊗ B ⊗ C ∈ GL(U) × GL(V ) × GL(W ) acts on T , the slice rank
remains at most r.

3.1 Slice rank varieties and orbit closures

For every tuple (r1, r2, r3) of non-negative integers such that r1 + r2 + r3 = r, we consider the
vector spaces U ′(r1,r2,r3) = F

r1⊕(Fn)⊕(r2)⊕(Fn)⊕(r3), V ′(r1,r2,r3) = (Fn)⊕(r1)⊕Fr2⊕(Fn)⊕(r3), and

W ′
(r1,r2,r3)

= (Fn)⊕(r1) ⊕ (Fn)⊕(r2) ⊕ Fr3 . We will drop the index (r1, r2, r3) in the following.

U ′ has dimension s1(r1, r2, r3) = r1+nr2+nr3, and is decomposed into 1+r2+r3 summands,
where one summand is of dimension r1, while the other summands are of dimensions n each.
Similarly, V ′ and W ′ have dimensions s2(r1, r2, r3) = nr1 + r2 + nr3 and s3(r1, r2, r3) = nr1 +
nr2 + r3, respectively, and are decomposed analogously as U ′, into r1 + 1 + r3 summands and
r1 + r2 + 1 summands respectively. We will denote s1(r1, r2, r3), s2(r1, r2, r3) and s3(r1, r2, r3)
simply by s1, s2, and s3, respectively. Thus U ′ ⊗ V ′ ⊗W ′ ≅ Fs1 ⊗ Fs2 ⊗ Fs3 .

Let us give names to the components: Let L1 be (Fn)⊕(r1) of dimension nr1, L
2 be (Fn)⊕(r2),

and L3 be (Fn)⊕(r3), respectively, and we have vector spaces Ũ = Fr1 , Ṽ = Fr2 and W̃ = Fr3

respectively. Let Lk
i be the i-th summand of Lk, k ∈ {1,2,3} with standard basis ekij , j ∈ [n], and

let e1i , e
2
i and e3i be the standard basis of Ũ , Ṽ and W̃ . We have U ′ = Ũ⊕L2

1⊕⋅ ⋅ ⋅⊕L
2
r2
⊕L3

1⊕⋅ ⋅ ⋅⊕L
3
r3

and similar decomposition for V ′ and W ′.

Definition 3.5. For (r1, r2, r3), we define the unit slice rank tensor Sn,r1,r2,r3 ∈ (Ũ ⊗L1⊗L1)⊕(L2 ⊗ Ṽ ⊗L2)⊕ (L3 ⊗L3 ⊗ W̃ ) ⊆ U ′ ⊗ V ′ ⊗W ′ as

Sn,r1,r2,r3 =

r1

∑
i=1

n

∑
j=1

e1i ⊗ e1ij ⊗ e1ij +
r2

∑
i=1

n

∑
j=1

e2ij ⊗ e2i ⊗ e2ij +
r3

∑
i=1

n

∑
j=1

e3ij ⊗ e3ij ⊗ e3i .

Along Ũ we have r1 slices where each slice contains an n×n identity matrix each in disjoint
blocks. Then along Ṽ , we have r2 slices with n×n identity matrices in disjoint blocks. Finally,
we have r3 slices with n×n identity matrices in disjoint blocks along W̃ . Thus Sn,r1,r2,r3 can be
decomposed into three summands Sn.r1 ∈ Ũ⊗L1⊗L1, Sn,r2 ∈ L

2⊗ Ṽ ⊗L2 and Sn,r3 ∈ L
3⊗L3⊗W̃

such that Sn,r1,r2,r3 = Sn,r1 ⊕ Sn,r2 ⊕ Sn,r3 .
The group GLs1 ×GLs2 ×GLs3 acts on U ′ ⊗ V ′ ⊗W ′ in a natural way. The slice rank variety

can be defined as the union of orbit closures of Sn,r1,r2,r3 under the action of GLs1 ×GLs2 ×GLs3 ,
where the union is taken over (r1, r2, r3) such that r1 + r2 + r3 = r.

Lemma 3.6. Let U , V , and W be n-dimensional subspaces of U ′, V ′, and W ′, respectively.
Then we have

SVU⊗V ⊗W,r = ⋃
r1,r2,r3

r1+r2+r3=r

(GLs1 ×GLs2 ×GLs3)Sn,r1,r2,r3 ∩ (U ⊗ V ⊗W ).
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Note that each of the orbit closures is taken in a different ambient space, since each Sn,r1,r2,r3

lives in a different ambient space. But since we intersect each closure with U⊗V ⊗W , this is fine.
We could also embed all Sn,r1,r2,r3 into a larger ambient space, however, this is disadvantageous
when we want to determine the stabilizers later.

Proof. First of all note that for every such (r1, r2, r3), we have that Sn,r1,r2,r3 ∈ SVU ′⊗V ′⊗W ′,r,
simply by the construction of Sn,r1,r2,r3 , where U ′ ≅ Fs1 , V ≅ Fs2 ,W ′ ≅ Fs3 . Now since by Lemma
3.4, SVU ′⊗V ′⊗W ′,r is invariant under the action of GL(U ′)×GL(V ′)×GL(W ′), we have that the
entire orbit (GLs1 × GLs2 × GLs3)Sn,r1,r2,r3 lies in it. Also, from Lemma 3.1 (see [74, Corollary
2]), it follows that (GLs1 × GLs2 × GLs3)Sn,r1,r2,r3 is contained in a Zariski closed subset of

SVU ′⊗V ′⊗W ′ and hence the orbit closure (GLs1 ×GLs2 ×GLs3)Sn,r1,r2,r3 also lies in SVU ′⊗V ′⊗W ′.
Now we apply Lemma 3.3 to get the desired inclusion.

For the other direction, let us assume T ∈ SVU⊗V ⊗W,r. Since srk(T ) ≤ r, we have that we have

T =
r1

∑
i=1

ui,1 ⊗1 Ti,1 +
r2

∑
i=1

ui,2 ⊗2 Ti,2 +
r3

∑
i=1

ui,3 ⊗3 Ti,3, for some (r1, r2, r3) such that r1 + r2 + r3 = r,

where ui,1 ∈ U , ui,2 ∈ V , and wi,3 ∈ W and Ti,1 ∈ V ⊗W , Ti,2 ∈ U ⊗W , and Ti,3 ∈ U ⊗ V .
Since ∀i ∈ [r1], rk(Ti,1) ≤ n, we can write Ti,1 as (Qi,1 ⊗ Ri,1)(∑n

j=1 e
1
i,j ⊗ e1i,j) for linear maps

Qi,1 ∶ L1
i → V and Ri,1 ∶ L1

i → W . Analogously, Ti,2 = (Pi,2 ⊗ Ri,2)(∑n
j=1 e

2
i,j ⊗ e2i,j) for linear

maps Pi,2 ∶ L2
i → U and Ri,2 ∶ L2

i → W , and Ti,3 = (Pi,3 ⊗Qi,3)(∑n
j=1 e

3
i,j ⊗ e3i,j) for linear maps

Pi,3 ∶ L3
i → U and Qi,3 ∶ L3

i → V .
Let Q1 ∶ L1 → V and R1 ∶ L1 → W be linear maps which are equal to Qi,1 and Ri,1,

respectively, when restricted to the i-th slice L1
i . Similarly we have maps P2 ∶ L2 → U and

R2 ∶ L2 → W whose restrictions to i-th slices are Pi,2 and Ri,2, respectively, and P3 ∶ L3 → U

and Q3 ∶ L3 → V have their restrictions as Pi,3 and Qi,3.
Finally, we also have linear maps P1 ∶ Ũ → U sending e1i to ui,1 , Q2 ∶ Ṽ → V sending e2i to

ui,2 and R3 ∶ W̃ →W sending e3i to ui,3.
Thus T = ((P1⊗Q1⊗R1)⊕(P2⊗Q2⊗R2)⊕(P3⊗Q3⊗R3))Sn,r1,r2,r3 for some (r2, r2, r3). The

closure of GLs1 ,GLs2 and GLs3 contains all linear endomorphisms of U ′, V ′ and W ′, respectively,
and thus contains (P1 ⊗Q1 ⊗R1) ⊕ (P2 ⊗Q2 ⊗R2) ⊕ (P3 ⊗Q3 ⊗R3). Therefore, T lies in the
closure (GLs1 ×GLs2 ×GLs3)Sn,r1,r2,r3 for some (r1, r2, r3) with r1 + r2 + r3 = r.

Corollary 3.7.

SVn,r ∶= SFn⊗Fn⊗Fn,r = ⋃
r1,r2,r3

r1+r2+r3=r

(GLs1 ×GLs2 ×GLs3)Sn,r1,r2,r3 ∩ (Fn ⊗ Fn ⊗ Fn)

Proof. We identify Fn as a subspace of U ′, V ′ as well as W ′ by embedding an element x ∈ Fn

in the bigger spaces as (x,0, . . . ,0) where we have zeros in all the other coordinates except the
first n coordinates. Now apply Lemma 3.3.

We now describe the stabilizers of the unit slice rank tensors.

Lemma 3.8. The stabilizer of ∑k
i=1 ei ⊗ ei ∈ F

k ⊗ Fk in GLk × GLk consists of elements of the
form (A,A−T).
Proof. For the left action of GLk ×GLk on Fk ⊗ Fk consider the corresponding left-right action:
AXB ∶= (A,BT)X for A,B ∈ GLk and X ∈ Fk ⊗ Fk. If we interpret F k ⊗ F k as the space of
k × k matrices, then ∑k

i=1 ei ⊗ ei is the identity matrix I and we observe that AXB is the usual
product of matrices. Clearly AIB = I iff A = B−1.

Theorem 3.9. For n ≥ 2, the stabilizer of Sn,r1,r2,r3 in GLs1 × GLs2 × GLs3 is isomorphic to
3

⊕
i=1
((GLn × GL1)ri ⋊Sri). The element (Zi1, zi1, . . . ,Ziri , ziri) ∈ (GLn × GL1)ri for i = 1,2,3 is
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embedded into GLr1 ×GLnr1 ×GLnr1 , GLnr2 ×GLr2 ×GLnr2 and GLnr3 ×GLnr3 ×GLr3 respectively,
via

(diag(z11, . . . , z1r1),diag(Z11, . . . ,Z1r1),diag((z11Z1r1)−T, . . . , (z1r1Z1r1)−T)),
(diag(Z21, . . . ,Z2r2),diag(z21, . . . , z2r2),diag((z21Z2r2)−T, . . . , (z2r2Z2r2)−T)), and
(diag(Z31, . . . ,Z3r3),diag((z31Z3r3)−T, . . . , (z3r3Z3r3)−T),diag(z31, . . . , z3r3)),

respectively. The Sri factor permutes the ri coordinates of Ũ , Ṽ and W̃ , and the ri summands
of Li ×Li simultaneously.

Proof. Let S ∶= Sn,r1,r2,r3 = Sn,r1⊕Sn,r2⊕Sn,r3 , and (A,B,C) ∈ stabS, that is, (A⊗B⊗C)S = S.
It will be useful to visualize A, B and C as

A =

⎛⎜⎜⎜⎝
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞⎟⎟⎟⎠
, B =

⎛⎜⎜⎜⎝
B11 B12 B13

B21 B22 B23

B31 B32 B33,

⎞⎟⎟⎟⎠
, C =

⎛⎜⎜⎜⎝
C11 C12 C13

C21 C22 C23

C31 C32 C33

⎞⎟⎟⎟⎠
.

Above, A11 is an r1 × r1 matrix, A22 is an nr2 × nr2 matrix, and A33 is an nr3 × nr3 matrix,
respectively. B11 is an nr1×nr1 matrix, B22 is an r2×r2 matrix, and B33 is an nr3×nr3 matrix,
respectively, and C11 is an nr1 × nr1 matrix , C22 is an nr2 × nr2 matrix, and C33 is an r3 × r3
matrix, respectively.

Let S = ∑s1
i=1 ei ⊗1 Si, where Si is the i-th slice of S. Then,

(A⊗B ⊗C)Sn,r1,r2,r3 =

s1

∑
i=1

(Aei)⊗ (B ⊗C)Si =

s1

∑
i=1

ei ⊗ (B ⊗C)( s1∑
j=1

aijSj).
First of all we divide the set of slices into groups. These include:

• r1 groups of size 1 each, {1}, . . . ,{n},
• r2 groups of size n each, {r1 + 1, . . . , r1 + n}, . . . ,{r1 + (r2 − 1)n + 1, . . . , r1 + r2n},
• r3 groups of size n each, {r1 + r2n+1, . . . , r1 + r2n+n}, . . . ,{r1 + r2n+ (r3−1)n+1, . . . , r1 +
r2n + r3n}.

We first consider the first r1 groups of slices, i.e., slices Si for i ∈ {1, . . . , r1} to deduce about
the first r1 rows of A.

Recall that for i ∈ {1, . . . , r1}, rk(Si) = n (by definition). Thus we have that rk(∑s1
j=1 aijSj)

and consequently the rank of the i-th slice of (A ⊗ B ⊗ C)S will be at least qn, where q

is the number of nonzero entries among ai1, . . . , air1 . Therefore, there will be at most one
j ∈ {1, . . . , r1} such that aij is nonzero. Now consider the case when for some i′ ∈ {1, . . . , r1},
ai′j ≠ 0 for some j ∈ {r1+1, . . . , r1+nr2, . . . , r1+nr2+nr3}. First of all, it implies that ai′j = 0, for
all j ∈ {1, . . . , r1}, otherwise rk(∑s1

j=1 ai′jSj) ≥ n + 1. Now since A induces a bijection among the
slices, every slice is involved in the linear combination of at least one of the slices. And since two
slices of rank n cannot be involved in the linear combination of first r1 slices, the above forces
that at least one of the rank n slices is involved in the linear combination of a slice Si for i ∈{r1+1, . . . , r1+nr2, . . . , r1+nr2+nr3}, i.e., aij ≠ 0 for some i ∈ {r1+1, . . . , r1+nr2, . . . , r1+nr2+nr3},
j ∈ {1, . . . , r1}. But this implies that rk(∑s1

j=1 aijSj) ≥ n and not 1, which cannot be the case if
A ⊗B ⊗C ∈ stabS. Thus aij = 0 for all j ∈ {r1 + 1, . . . , r1 + nr2, . . . , r1 + nr2 + nr3}. Thus A11

is a product of a diagonal matrix and a permutation matrix, and A12 = A13 = 0. Symmetrical
argument implies that B21 = B23 = C31 = C32 = 0, and both B22 and C33 are products of a
diagonal matrix and a permutation matrix.

Now consider the first group from the second case i.e. i ∈ {r1 + 1, . . . , r1 + n}: Here, first of
all recall that rk(Si) = 1 for all i. Thus rk(∑s1

j=1 aijSj) has to be 1. This immediately implies
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that aij = 0 for all j ∈ {1, . . . , r1}, otherwise the resulting rank will be at least n. We further
argue that aij = 0 for all j ∈ {r1 + r2n + 1, . . . , r2n + n, . . . , r1 + r2n + r3n}. Assume the contrary.
Then ∑s1

j=1 aijSj will have something in the bottom right r3 × nr3 block. In order for (A,B,C)
to be in stabS, (B⊗C)(∑s1

j=1 aijSj) should bring it back to its original place, i.e., in the central
nr2 × r2 block. However C33 being a product of a diagonal matrix and a permutation matrix,
C will only permute the the last r3 rows of ∑s1

j=1 aijSj within themselves and hence B ⊗C will
not bring ∑s1

j=1 aijSj to the central block as needed. Thus from the above discussion, we have
A21 = A23 = A31 = A32 = B12 = B13 = B31 = B32 = C12 = C13 = C31 = C32 = 0. Finally, A22 will
be a product of a block diagonal matrix and a block permutation matrix. For this, notice that
for a fixed i ∈ {r1 + 1, . . . , r1 + r2n}, aij cannot be non-zero for j’s belonging to more than one
group, otherwise the rank of the resulting slice exceeds 1.

Thus A will be a product of a diagonal matrix with a permutation matrix in the top left
block. In the central block, it will be a product of a block diagonal matrix with a block
permutation matrix. Similarly, for the bottom right block, too, it will be a product of a block
diagonal matrix with a block permutation matrix. Thus the picture becomes

A =

⎛⎜⎜⎜⎝
A11 0 0

0 A22 0

0 0 A33

⎞⎟⎟⎟⎠
, B =

⎛⎜⎜⎜⎝
B11 0 0

0 B22 0

0 0 B33

⎞⎟⎟⎟⎠
, C =

⎛⎜⎜⎜⎝
C11 0 0

0 C22 0

0 0 C33

⎞⎟⎟⎟⎠
,

where A11,B22 and C33 are products of a diagonal matrix and a permutation matrix, and
A22,A33,B11,B33,C11 and C22 are all products of a block diagonal matrix and a block permu-
tation matrix. Thus we can decompose (A,B,C) ∈ stabS as ((A11,B11,C11)⊕(A22,B22,C22)⊕(A33,B33,C33)) where (A11,B11,C11) acts on Ũ ⊗L1 ⊗L1, (A22,B22,C22) acts on L2 ⊗ Ṽ ⊗L2

and (A33,B33,C33) acts on L3 ⊗ L3 ⊗ W̃ , respectively. Hence for (A,B,C) to be in stabS,
with S = Sn,r1 ⊕Sn,r2 ⊕Sn,r3, (A11,B11,C11) must preserve Sn,r1 , (A22,B22,C22) must preserve
Sn,r2 , and (A33,B33,C33) must preserve Sn,r3 , i.e., stabS = stabSn,r1 ⊕ stabSn,r2 ⊕ stabSn,r3,
where stabSn,r1 ⊆ GLr1 × GLnr1 × GLnr1 , stabSn,r2 ⊆ GLnr2 × GLr2 × GLnr2 and stabSn,r3 ⊆

GLnr3 ×GLnr3 ×GLr3 .
We consider stabSn,r1 now. Let Pσ1

be an element of GLr1 ×GLnr1 ×GLnr1 which permutes
the r1 coordinates of Ũ ⊆ U ′ and the r1 summands of L1×L1 ⊆ V ′×W ′ according to the permu-
tation σ1. It is easy to see that Pσ1

∈ stabSn,r1. Hence, (A11,B11,C11)P−1σ1
= (Ã11, B̃11, C̃11) ∈

stabSn,r1. Using this and the previous discussion, we have that Ã11 is a diagonal matrix
diag(ã111, . . . , ãr111). Let Ã′11 be the linear map which scales elements of L1

i by ãi11 for each
i ∈ [r1]. Clearly (Ã−111 , id, Ã′11) also preserves Sn,r1 . Therefore, (Ã11, B̃11, C̃11) ⋅ (Ã−111 , id, Ã′11) =(id, B̃11, Ĉ11) is in stabSn,r1

Now, since the first component of (id, B̃11, Ĉ11) is the identity, it preserves Sn,r1 if and only
if B̃11 ⊗ Ĉ11 preserves each slice of Sn,r1 . If it preserves each slice, it also preserves its sum

∑r1
i=1∑

n
j=1 e

1
ij ⊗ e1ij, the full rank diagonal matrix of size nr1 × nr1. Therefore, by Lemma 3.8,

Ĉ11 = B̃
−T
11 . Thus (id, B̃11, B̃

−T
11 ) ∈ stabSn,r1 .

Thus, we decomposed an element A11⊗B11⊗C11 ∈ stabS1 into a product of three special ele-
ments (id,diag(B1

11, . . . ,B
r1
11),diag(B1

11, . . . ,B
r1
11)−T), (diag(ã111, . . . , ãr111), id,diag(ã111 id, . . . , ãr111 id)−1),

and Pσ1
for some permutation σ1 ∈ Sr1 . These three types of elements correspond to three sub-

groups of stabSn,r1 . The subgroups intersect only in the identity; elements of the first two types
commute, and the conjugation with Pσ1

permutes ãi11 and Bi
11 according to σ1, so the product

of the first subgroups is direct, and the last product is semidirect. Symmetrical arguments for
stabSn,r2 and stabSn,r3 finishes the proof.

Now we show that the unit slice rank tensor Sn,r1,r2,r3 is almost characterized by its stabilizer.
More precisely, it is a direct sum of three tensors Sn,r1, Sn,r2 and Sn,r3 that are each characterized
by their respective stabilizers.
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Theorem 3.10. Suppose T is a tensor in U ′⊗V ′⊗W ′ = (Ũ ⊕L2⊕L3)⊗ (L1⊕ Ṽ ⊕L3)⊗ (L1⊕
L2 ⊕ W̃ ). If stabT = stabSn,r1,r2,r3, then

T = ((diag(α, . . . , α), id, id), (id,diag(β, . . . , β), id), (id, id,diag(γ, . . . , γ))Sn,r1,r2,r3 ,

for some α,β, γ ≠ 0, i.e., T = α ⋅ Sn,r1 ⊕ β ⋅ Sn,r2 ⊕ γ ⋅ Sn,r3.

Proof. Suppose T is stabilised by stabSn,r1,r2,r3 . We first establish that T also has the block
structure like Sn,r1,r2,r3 , i.e., even though the ambient space of T is (Ũ ⊕L2 ⊕L3)⊗ (L1 ⊕ Ṽ ⊕
L3)⊗ (L1⊕L2⊕W̃ ), it sits completely inside one of the smaller subspaces (Ũ ⊗L1⊗L1)⊕ (L2⊗
Ṽ ⊗L2)⊕ (L3 ⊗L3 ⊗ W̃ ) which also contains Sn,r1,r2,r3 .

For this, we take the element (A,B,C) ∈ stabSn,r1,r2,r3 ⊆ GLs1 ×GLs2 ×GLs3 where we have
A = (diag(α1, . . . , α1),diag(α2 ⋅ id, . . . , α2 ⋅ id),diag(α3 ⋅ id, . . . , α3 ⋅ id)), whereas B = (diag(β1 ⋅
id, . . . , β1 ⋅ id),diag(β2, . . . , β2),diag(β3 ⋅ id, . . . , β3 ⋅ id)) and C = (diag(γ1 ⋅ id, . . . , γ1 ⋅ id),diag(γ2 ⋅
id, . . . , γ2 ⋅ id),diag(γ3, . . . , γ3)) such that α1β1γ1 = α2β2γ2 = α3β3γ3 = 1. Now, U ′ ⊗ V ′ ⊗W ′ is
a direct sum of 27 subspaces, and T can be decomposed into corresponding 27 blocks. On the
action of (A,B,C) on T , only three of the blocks remain fixed, i.e., the ones corresponding to
the subspaces (Ũ⊗L1⊗L1), (L2⊗ Ṽ ⊗L2) and (L3⊗L3⊗W̃ ) because the entries in these blocks
get scaled by α1β1γ1, α2β2γ2 and α3β3γ3 respectively, which are all equal to unity. The blocks
corresponding to the other subspaces will be scaled by non-unity and hence will not remain
fixed. Hence for (A,B,C) to be in the stabilizer of T , only the blocks corresponding to these
three subspaces will be non-zero, which is also the case for Sn,r1,r2,r3 .

Recall from Definition 3.5 that Sn,r1,r2,r3 can be decomposed as Sn,r1 ⊕ Sn,r2 ⊕ Sn,r3. Thus,
we decompose T into blocks as T = Tn,r1 ⊕ Tn,r2 ⊕ Tn,r3 . We focus on Tn,r1 =∶ T

′, where
T ′ ∈ (Ũ ⊗L1 ⊗L1).

Let T ′1, . . . , T
′
r1

be the slices of T ′. Decompose them into blocks T ′i = (T ′ijk) according to the

decomposition of L1 into L1
i .

Let Ai(λ) ∶ Ũ → Ũ be the map which scales the i-th coordinate by λ, leaving other in place,
and Bi(λ) ∶ L1 → L1 be the map which scales L1

i by λ and acts like identity on the other
summands. Applying to T ′ the transformation (Ai(λ−2),Bi(λ),Bi(λ)) ∈ stabSn,r1, we see that
all blocks of T ′i except T ′iii are zero, as they are multiplied by a coefficient λ−2 or λ−1 in this
transformation.

Applying (id,diag(Z11, . . . ,Z1r1),diag(Z11, . . . ,Z1r1)−T) with arbitrary Z1i to T ′, we obtain

that each T ′iii has the form a1i∑
dimL1

i

j=1 e1ij ⊗ e1ij . Applying permutations on the blocks of T ′iii, we
see that a11 = ⋯ = a1r1 =∶ α.

Therefore

T ′ = α
r1

∑
i=1

n

∑
j=1

ei ⊗1 e
1
ij ⊗ e1ij = α ⋅ Sn,r1.

If α ≠ 0, then T ′ = Tn,r1 = (diag(α, . . . , α), id, id)Sn,r1 . Applying the symmetrical arguments on
Tn,r2 and Tn,r3 , we get that

T = (diag(α, . . . , α), id, id)Sn,r1 ⊕ (id,diag(β, . . . , β), id)Sn,r2 ⊕ (id, id,diag(γ, . . . , γ))Sn,r3 ,

for some α,β, γ ≠ 0, or simply T = α ⋅ Sn,r1 ⊕ β ⋅ Sn,r2 ⊕ γ ⋅ Sn,r3 .

4 Ideals of slice rank varieties

In this section we will consider tensors over C (or over algebraically closed field of char-
acteristic 0). For an affine variety A, we denote its ideal by I(A) and its coordinate ring
by C[A]. Since slice rank varieties SVU⊗V ⊗W,r are scale-invariant, their ideals and coordi-
nate rings inherit grading from C[U ⊗ V ⊗W ]. Since they are invariant under the action of
GL(U) × GL(V ) × GL(W ), this group acts on I(SVU⊗V ⊗W,r) and C[SVU⊗V ⊗W,r]. We study
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representation-theoretic properties of specific equations in I(Mr) and multiplicities of irre-
ducible representations in I(SVU⊗V ⊗W,r) and C[SVU⊗V ⊗W,r]. Irreducible representations in
C[U ⊗ V ⊗W ]d are indexed by triples (λ,µ, ν) of partitions of D, and the multiplicity of the
type (λ,µ, ν) in C[U ⊗ V ⊗W ]D is called the Kronecker coefficient. Finding a combinatorial
interpretation for the Kronecker coefficient is Problem 10 in [70].

Here we describe some polynomials in the ideals of slice rank varieties and study their
representation-theoretic properties.

Throughout the section we assume dimU = k, dimV =m, dimW = n.
Interestingly, the equations that we find in Section 4.1 and Section 4.2 are exactly the same,

even though the method of finding them is very different. Also note that the equations are
given indirectly just by their representation isomorphism type.

Theorem 4.1. Let λ ⊢n2 D, µ ⊢n2 D, ν ⊢n2 D be partitions of D with at most n2 rows. If
λ1 ≤ n and µ1 ≤ n and ν1 ≤ n, then all GL3n2-modules of type (λ,µ, ν) are in the vanishing ideal
of SV

Cn2⊗Cn2⊗Cn2
,r
for all r <D/n.

The whole GL3n2-module {λ,µ, ν} being in the vanishing ideal means that if not all of the
functions in these modules vanish at T , then (λ,µ, ν) is an occurrence obstruction.

The abundance of equations that we get from Theorem 4.1 is quite remarkable. Note
that using Schur-Weyl duality we have that the multiplicity of {λ,µ, ν} in SymD ⊗3 Cn2

is the
Kronecker coefficient k(λ,µ, ν). The dimension of the space of degree D equations that we

obtain for slice rank r is ∑n3

D=nr+1∑λ,µ,ν⊢
n2D k(λ,µ, ν)dim{λ}dim{µ}dim{ν}. The dimensions

of {λ}, {µ}, {ν} are given by the hook content formula.
Theorem 4.1 gives equations for slice rank in the full range, up to the most extreme case

λ = µ = ν = n2×n ⊢ n3, which gives equations for slice rank < n3/n = n2. This equation is known
as Cayley’s hyperdeterminant. Its evaluation at the matrix multiplication tensor is explained
combinatorially in [16, Prop. 5.24].

Many more equations for slice rank < n2 than just this hyperdeterminant are readily con-
structed from Theorem 4.1. It is an open question whether or not the equations from Theo-
rem 4.1 cut out SV

Cn2⊗Cn2⊗Cn2
,r

set-theoretically.

4.1 Equations from designs

We study slice rank in CN ⊗ CN ⊗ CN . It will be natural to have N = n2. We start by
establishing a construction principle for equations.

Construction of highest weight vectors

Given a representation X of GL(U) × GL(V ) × GL(W ), a highest weight vector t ∈ X is a
vector that

1. is invariant under the action of triples of upper triangular matrices with 1s on the main
diagonal

2. satisfies that x is rescaled under the action of triples of diagonal matrices as follows for
some triple of partitions (λ,µ, ν):

(diag(α1, . . . , αk),diag(β1, . . . , βm),diag(γ1, . . . , γn))x
= αλ1

1 ⋯α
λk

k
β
µ1

1 ⋯βµm
m γν11 ⋯γνnn x

The triple (λ,µ, ν) is called the type of the highest weight vector. Each irreducible GL(U) ×
GL(V ) × GL(W )-representation X of type (λ,µ, ν) has exactly one highest weight vector (up
to scale), and the type of X coincides with the type of its highest weight vector. Moreover, X
equals the linear span of the GL(U) ×GL(V ) ×GL(W )-orbit of its highest weight vector.
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To construct an irreducible representation of nontrivial equations for a variety, we construct
the corresponding highest weight vector and prove that it vanishes on the variety. The tensor
product of tensor powers U⊗D ⊗ V ⊗D ⊗W⊗D is known to decompose into irreducibles of the
group GL(U) ×GL(V ) ×GL(W ) ×SD ×SD ×SD via Schur-Weyl duality:

U⊗D ⊗ V ⊗D ⊗W⊗D
= ⊕

λ,µ,ν

{λ}⊗ {µ}⊗ {ν}⊗ [λ]⊗ [µ]⊗ [ν],
where the sum runs over all partition triples λ,µ, ν such that λ, µ, ν have D boxes and λ

has at most dimU many rows, µ has at most dimV many rows, and ν has at most dimW

many rows. The D-th tensor power of U ⊗ V ⊗W is isomorphic to U⊗D ⊗ V ⊗D ⊗W⊗D. Let
̺ ∶ U⊗D ⊗ V ⊗D ⊗W⊗D → (U ⊗ V ⊗W )⊗D denote this canonical isomorphism. Moreover, if we
embed SD ↪SD×SD×SD, π ↦ (π,π,π), then the space of homogeneous degree D polynomials
on U ⊗ V ⊗W can be identified with the SD-invariant linear subspace of (U ⊗ V ⊗W )⊗D in a
very natural way via polarization and restitution: If F is a homogeneous degree D polynomial
on U∗ ⊗ V ∗ ⊗W ∗ and f its corresponding tensor in ((U ⊗ V ⊗W )⊗D)SD , then the evaluation
of f at a point t ∈ U∗ ⊗ V ∗ ⊗W ∗ equals the tensor contraction

F (t) = ⟨f, (t⊗D)⟩. (4.2)

We fix a basis of U , V , and W and denote each basis with e1, e2, . . . when there is no possibility
of confusion. For a partition λ, let λt denote its transpose. Given a triple (λ,µ, ν) of partitions
of D, a highest weight vector h of type (λ,µ, ν) in U⊗D ⊗ V ⊗D ⊗W⊗D can be constructed via
h ∶= hλ ⊗ hµ ⊗ hν , where

hλ ∶= e1 ∧ e2 ∧⋯∧ eλt
1

⊗ e1 ∧ e2 ∧⋯∧ eλt
2

⊗⋯⊗ e1 ∧ e2 ∧⋯∧ eλt
λ1

.

Let π(1) ∈ SD, π(2) ∈ SD, π(3) ∈ SD. Clearly (π(1)hλ) ⊗ (π(2)hµ) ⊗ (π(3)hν) is also a highest
weight vector of type (λ,µ, ν). The projection of ̺((π(1)hλ)⊗ (π(2)hµ)⊗ (π(3)hν)) onto ((U ⊗
V ⊗W )⊗D)SD corresponds to a highest weight vector of type (λ,µ, ν) in C[U ⊗ V ⊗W ]D via
eq. (4.2). The vector space of highest weight vectors of weight (λ,µ, ν in C[U ⊗ V ⊗W ]D is
spanned by the vectors that are constructed in this fashion.

Evaluation via products of determinants

Let T ∈ U∗ ⊗ V ∗ ⊗W ∗. Considering eq. (4.2), we aim to understand the tensor contraction

⟨f,T⊗D⟩. (4.3)

For T = ∑r
j=1 aj ⊗ bj ⊗ cj we expand

T⊗D = ∑
J ∶[D]→[r]

aJ(1) ⊗ bJ(1) ⊗ cJ(1) ⊗⋯⊗ aJ(D) ⊗ bJ(D) ⊗ cJ(D).

For a list of vectors v1, . . . , vk of large enough dimension we define det(v1, . . . , vk) to be the
determinant of the k × k matrix whose columns are given by the top k entries of each vi. Note
that for µ = λt we have

⟨hλ, v1 ⊗⋯⊗ v∣λ∣⟩ = det(v1, . . . , vµ1
)det(v∣µ1∣+1, . . . , vµ1+µ2

)⋯det(v∣µ∣−µλ1
+1, . . . , v∣µ∣). (4.4)

[15] established that there is a basis of highest weight vectors in C[U ⊗ V ⊗W ]D for which
the contraction in (4.3) has a combinatorial description as follows: Given λ,µ, ν we consider
a hypergraph on D vertices with 3 types of hyperedges (we call these “layers” of hyperedges)
such that every layer of hyperedges is a set partition of the vertices. Moreover, to every column
in λ we attach a hyperedge of layer 1 such that the number of vertices in the hyperedge equals
the length of the column. We do the same for layer 2 and µ and layer 3 and ν. We end up with

19



a hypergraph in which every vertex lies in exactly one hyperedge of layer 1, one hyperedge of
layer 2, and one hyperedge of layer 3. We require that no two vertices lie in the same three
hyperedges. As described in [15], for a hypergraph H we get a highest weight vector fH (or
fH = 0) such that for any tensor T = ∑R

i=1 ai ⊗ bi ⊗ ci the evaluation (4.3) can be written as
follows:

⟨fH , T⊗D⟩ = ∑
J ∶[D]→[R]

∏
layer 1 hyperedge e

det(aJ(e1),...,aJ(e∣e∣)) ∏
layer 2 hyperedge e

det(bJ(e1),...,bJ(e∣e∣))
∏

layer 3 hyperedge e

det(cJ(e1),...,cJ(e∣e∣)), (4.5)

where we fixed an order on each hyperedge, ei is the ith vertex of e, and the determinant of an
list of m vectors of dimension N is the determinant of the square matrix in which the columns
are given by the top m entries of the vectors.

The equations vanish on low slice rank

Proof of Theorem 4.1. Let n = ⌈√N⌉. Since λ1 ≤ n, µ1 ≤ n, ν1 ≤ n, the hypergraph can be
reinterpreted as a cardinality D subset of [n]3, where the slices in x-, y-, and z-direction of [n]3
form the three layers of hyperedges: points share a layer k hyperedge iff they share the k-th
coordinate, see [15]. We evaluate fH at a tensor T = ∑r1

i=1∑
n
j=1 ui ⊗ vi,j ⊗wi,j +∑

r2
i=1∑

n
j=1 ui,j ⊗

vi⊗wi,j +∑
r3
i=1∑

n
j=1 ui,j ⊗vi,j ⊗wi of slice rank at most r1 +r2 +r3 = r. In total we have rn many

triads. Each triad has a parent vector, which is either ui, vi, or wi, depending of the triad’s
layer.

A map J ∶ [D] → [rn] corresponds to a placement of triads on the D vertices. If two
triads with the same parent vector share the hyperedge of their layer, then the determinant
corresponding to this hyperedge vanishes (because determinants of matrices with a repeating
column are zero), see (4.5). Hence we do not have to consider these summands J in (4.5).
Therefore in the remaining placements J , for each parent vector there can only be at most n

many placed triads with this parent vector. Thus the evaluation at T is zero if the number of
parent vectors is less than D/n. If the slice rank of T at most r, then we can write T using
only r many parent vectors. Therefore fH vanishes on all points of slice rank less than D/n.
Since H was arbitrary and since the vector space of all highest weight vectors of type (λ,µ, ν)
is generated by the fH , Theorem 4.1 follows.

4.2 Equations from multiplicities

In this section we search for equations for the slice rank variety by using the symmetry
group to study the representation theoretic multiplicities in the orbits of SN,r1,r2,r3 . It turns
out that we obtain precisely the same equations as in 4.1, but without the explicit construction
of highest weight functions.

We consider the space Cs1 ⊗ Cs2 ⊗ Cs3 and recall Cs1 = Cr1 ⊕ (CN)r2 ⊕ (CN)r3 , Cs2 =(CN)r1 ⊕Cr2 ⊕ (CN)r3 , Cs3 = (CN)r1 ⊕ (CN)r2 ⊕Cr3. Let G ∶= GLs1 ×GLs2 ×GLs3 . Let H denote
the continuous part of the stabilizer of SN,r1,r2,r3 (i.e., ignoring the symmetric groups). Let(GL1 ×GL1 ×GL1)/C∗ := {(α,β, γ) ∣ αβγ = 1}. Then H is generated by Hlarge and Hsmall, where
Hlarge = GL

r1
n ×GLr2n ×GLr3n embedded into G via

(g11 , . . . , gr11 ;g12 , . . . , g
r2
2 ;g13 , . . . , g

r3
3 )↦

(diag(Idr1 , g
1
2 , . . . , g

r2
2 , (g13)−T , . . . , (gr33 )−T )); (diag((g11)−T , . . . , (gr11 )−T , Idr2 , g

1
3 , . . . , g

r3
3 );(diag(g11 , . . . , gr11 , (g12)−T , . . . , (gr22 )−T , Idr3),
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and Hsmall is ((GL1 ×GL1 ×GL1)/C∗)r1+r2+r3 . The first factor (GL1×GL1×GL1)/C∗ is embedded
in G via (α,β, γ) ↦
(diag(α,1, . . . ,1, Idr2 , Idr3); diag(β,β, . . . , β´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

,1, . . . ,1, Idr2 , Idr3); diag(γ, γ, . . . , γ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

,1, . . . ,1, Idr2 , Idr3)),
while the other factors are embedded analogously.({λ}s1 ⊗ {µ}s2 ⊗ {ν}s3)H = ({λ}s1 ⊗ {µ}s2 ⊗ {ν}s3)Hsmall ∩ ({λ}s1 ⊗ {µ}s2 ⊗ {ν}s3)Hlarge

We will treat Hlarge and Hsmall independently.
First, we decompose ({λ}s1 ⊗ {µ}s2 ⊗ {ν}s3) into irreducibles of GLr11 × (GLn)r1 × GLr21 ×(GLn)r2 ×GLr31 × (GLn)r3 as follows.
We use the multi-Littlewood-Richardson rule (note that while λ1 is the length of the first

row of λ, we have that λ′′1 is a partition. We will not need to refer to its row lengths):

{λ}s1 = ⊕
ℓ1,...,ℓr1

λ′′
1
,...,λ′′r2

⊢n

λ′′′
1
,...,λ′′′r3

⊢n

cλ(ℓ1),...,(ℓr1),λ
′′
1
,...,λ′′r2

,λ′′′
1
,...,λ′′′r3

{(ℓ1)}⊗⋯⊗ {(ℓr1)}⊗ {λ′′1}⊗⋯⊗ {λ′′r2}⊗ {λ′′′1 }⊗⋯⊗ {λ′′′r3}
{µ}s2 = ⊕

µ′
1
,...,µ′r1

⊢n

m1,...,mr2

µ′′′
1
,...,µ′′′r3

⊢n

c
µ

µ′
1
,...,µ′r1

,(m1),...,(mr2
),µ′′′

1
,...,µ′′′r3

{µ′1}⊗⋯⊗ {µ′r1}⊗ {(m1)}⊗⋯⊗ {(mr2)}⊗ {µ′′′1 }⊗⋯⊗ {µ′′′r3}
{ν}s3 = ⊕

ν′
1
,...,ν′r1

⊢n

ν′′
1
,...,ν′′r2

⊢n

n1,...,nr3

cνν′
1
,...,ν′r1

,ν′′
1
,...,ν′′r2

,(n1),...,(nr3
)

{ν′1}⊗⋯⊗ {ν′r1}⊗ {ν′′1 }⊗⋯⊗ {ν′′r2}⊗ {(n1)}⊗⋯⊗ {(nr3)}
Each summand is a representation of Hlarge and Hsmall.

The summands that are invariant under Hlarge are the ones for which µ′i = ν
′
i and ν′′i = λ

′′
i

and λ′′′i = µ
′′′
i . This follows from the fact that dim({λ}⊗ {µ∗})GLn = 1 if λ = µ and 0 otherwise.

The summands that are invariant under Hsmall are the ones for which ∣µ′i∣ = ∣ν′i ∣ = ℓi and∣ν′′i ∣ = ∣λ′i∣ =mi and ∣λ′′′i ∣ = ∣µ′′′i ∣ = ni.
Hence the dimension of the H-invariant space in {λ}s1 ⊗ {µ}s2 ⊗ {ν}s3 is

∑
λ′
1
,...,λ′r1

µ′′
1
,...,µ′′r2

ν′′′
1
,...,ν′′′r3

cλ(∣λ′
1
∣),...,(∣λ′r1 ∣),µ

′′
1
,...,µ′′r2

,ν′′′
1
,...,ν′′′r3

⋅cµ
λ′
1
,...,λ′r1

,(∣µ′′
1
∣),...,(∣µ′′r2 ∣),ν

′′′
1
,...,ν′′′r3

⋅cνλ′
1
,...,λ′r1

,µ′′
1
,...,µ′′r2

,(∣ν′′′
1
∣),...,(∣ν′′′r3 ∣)

We are interested in the case in which all summands vanish. Note that a Littlewood-
Richardson coefficient is zero if at least one of its lower partition parameters is not a subpartition
of the upper partition parameter. In particular, for nonzeroness we require ∣λ′1∣, . . . , ∣λ′r1 ∣ ≤ λ1

and ∣µ′′1 ∣, . . . , ∣µ′′r2 ∣ ≤ µ1 and ∣ν′′′1 ∣, . . . , ∣ν′′′r3 ∣ ≤ ν1. Let λ1, µ1, ν1 ≤ k.
Let ∣λ∣ = ∣µ∣ = ∣ν ∣ = D be the degree. (Clearly we have D ≤ kn, because otherwise there are

no such λ, µ, ν.) Note that

∣λ′1∣ +⋯+ ∣λ′r1 ∣ = ∣µ′′1 ∣ +⋯+ ∣µ′′r2 ∣ = ∣ν′′′1 ∣ + . . . + ∣ν′′′r3 ∣ =D.

Hence for nonzeroness we require D = ∣λ′1∣ +⋯+ ∣λ′r1 ∣ ≤ r1k. Analogously D ≤ r2k and d ≤ r3k.
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Hence if λ1, µ1, ν1 ≤ k, then the irreducible G-representation {λ,µ, ν} does not occur in
C[GSN,r1,r2,r3] (and hence not in C[GSN,r1,r2,r3]) if r1 > D/k or r2 > D/k or r3 > D/k, in
particular if r1 + r2 + r3 >D/k.

For the sake of comparing these equations to the equations found in Section 4.1, let N = n2

and k = n. Then we get a degree D equation vanishing on GSN,r1,r2,r3 if r1 > D/n or r2 > D/n
or r3 > D/n. In particular, (λ,µ, ν) does not occur in C[GSN,r1,r2,r3] (and hence also not in
C[GSN,r1,r2,r3]) if r1 + r2 + r3 >D/n, which is precisely what we found in Section 4.1, where we
constructed the equations explicitly.

5 Homogeneous minrank problem

We consider the following problem: given a tuple of matrices A1, . . . ,Ak of the same size
m × n and a number r, does there exist a nonzero linear combination x1A1 + ⋅ ⋅ ⋅ + xkAk with
rank at most r? This is a homogeneous variant of the MinRank problem, where instead of a
linear combination we have an affine expression A0 + x1A1 + ⋅ ⋅ ⋅ + xkAk. A restricted variant of
this problem was first considered in [18], where it is proven that the problem is NP-hard. The
related problem of low rank matrix completion is widely studied in optimization.

Clearly, the answer depends on the field from which we take the coefficients of the linear
combination. For example, the pair of matrices

A1 = [1 0
0 1
] , A2 = [ 0 1

−1 0
]

has no nontrivial linear combinations of rank 1 over R, but over C we have rk(A1 + iA2) = 1.
We will mostly work over algebraically closed fields such as C, but many results are also true
over other fields.

Let F be a field. Instead of talking about matrices Ai, . . . ,Ak ∈ F
m×n, we can also phrase

the homogeneous minrank problem in terms of a linear subspace ⟨A1, . . . ,Ak⟩, a matrix of linear
forms A∶F k → Fm×n where A(x) = ∑k

i=1 xiAi or a tensor T ∈ F k⊗Fm⊗Fn such that T = ∑ei⊗Ai.
We will use the tensor language.

Recall the definition of minrank.

Definition 5.1. Let U,V,W be finite-dimensional vector spaces over some field F . The minrank
of a tensor T ∈ U ⊗V ⊗W is the minimal number r such that there exists a nonzero x ∈ U∗ with
rk(Tx) = r.

Let S be a finite or countable subset of F .

Problem HMinRankS,F . Given a tensor T ∈ F k×m×n with all components in S and a number
r, decide if the minrank of T is at most r.

In section 8.2 we will prove that this problem is NP-hard. Moreover, it is hard even if we
look for rank 1 slices.

Problem HMinRank1S,F . Given a tensor T ∈ F k×m×n with all components in S, decide if the
minrank of T is at most 1.

6 Geometric description of Minrank varieties

Over algebraically closed fields, the answer to the homogeneous minrank problem is deter-
mined by membership in a certain affine variety.

Theorem 6.1. Let U , V , W be vector spaces over an algebraically closed field F . The set of
all tensors T ∈ U ⊗ V ⊗W with minrank at most r is Zariski closed.
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Proof. Define an affine variety

XU⊗V ⊗W,r = {(T,x) ∈ (U ⊗ V ⊗W ) ×U∗ ∣ rk(Tx) ≤ r}.
Since the condition rk(Tx) ≤ r is scale-invariant with respect to both T and x, we can define
the corresponding projective variety

PXU⊗V ⊗W,r = {([T ], [x]) ∈ P(U ⊗ V ⊗W ) × PU∗ ∣ rk(Tx) ≤ r} ⊂ P(U ⊗ V ⊗W ) × PU∗

Let π∶P(U ⊗ V ⊗W ) ×PU∗ → P(U ⊗ V ⊗W ) be the projection onto the first component of the
product. Consider the image of PXU⊗V ⊗W,r under π:

πPXU⊗V ⊗W,r = {[T ] ∈ P(U ⊗ V ⊗W ) ∣ ∃x ≠ 0∶ rk(Tx) ≤ r}
As an image of a projective variety, it is a closed subvariety of P(U ⊗ V ⊗W ) (see e. g. [68,
Thm. 1.10]). The affine cone over this subvariety is therefore also closed. This affine cone is
exactly the set of tensors of minrank at most r.

Definition 6.2. We call the projective variety

PMU⊗V ⊗W,r = {[T ] ∈ P(U ⊗ V ⊗W ) ∣ ∃x ≠ 0∶ rk(Tx) ≤ r}
the projective minrank variety, and the corresponding affine cone

MU⊗V ⊗W,r = {T ∈ U ⊗ V ⊗W ∣ ∃x ≠ 0∶ rk(Tx) ≤ r}
the affine minrank variety, or just the minrank variety. We omit the index U ⊗ V ⊗W if it is
clear from context.

Some simple properties of minrank varieties follow directly from the definition:

Lemma 6.3. Let V ′ and W ′ be subspaces of V and W respectively. Then

MU⊗V ′⊗W ′,r =MU⊗V ⊗W,r ∩ (U ⊗ V ′ ⊗W ′).
Proof. Trivial. A tensor lies in MU⊗V ′⊗W ′,r iff it is an element of the space U ⊗ V ′ ⊗W ′ and
has minrank at most r, i. e., lies in MU⊗V ⊗W,r.

Lemma 6.4. Let dimU = k, dimV = n and dimW > s = n(k − 1) + r. Then

MU⊗V ⊗W,r = ⋃
W ′⊂W

dimW ′=s

MU⊗V ⊗W ′,r.

Proof. Let T be a tensor inMU⊗V ⊗W,r and x1 be a nonzero vector in U∗ such that rk(Tx1) ≤ r.
Choose x2, . . . , xk such that {xi} is a basis of U∗ and set Ai = Txi ∈ V ⊗W . Since rkA1 ≤ r,
there exists a subspace W1 ⊂ W of dimension at most r such that A1 ∈ V ⊗W1. Analogously,
for i > 1 we have Ai ∈ V ⊗Wi for some subspace Wi ⊂W of dimension at most n. The sum W ′

of all Wi is a subspace of dimension at most s. We extend it to dimension s in arbitrary way if
needed. The tensor T lies in U ⊗ V ⊗W ′ and, therefore, in MU⊗V ⊗W ′,r.

Lemma 6.5. The varietyMU⊗V ⊗W,r is invariant under the standard action of GL(U)×GL(V )×
GL(W ) on U ⊗ V ⊗W .

Proof. Straightforward. If rk(Tx) ≤ r, then (F ⊗G⊗H)T ⋅ (Fx) = (G⊗H)(Tx) also has rank
at most r (here Fx denotes the dual action of GL(U) on U∗).
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6.1 Minrank varieties and orbit closures

The minrank varieties are related to orbit closures of some tensors. Let L = (Fn)⊕(k−1)⊕F r

be a vector space of dimension s = n(k − 1) + r decomposed into k summands of dimension n

each, except the first one, which is of dimension r. Let Li be the i-th summand and denote
the standard basis of Li by eij , 1 ≤ j ≤ dimLi. Let U = F k be a k-dimensional space with a
standard basis ei. Define the tensor Tk,n,r ∈ U ⊗L⊗L as

Tk,n,r = e1 ⊗ ( r

∑
j=1

e1j ⊗ e1j) + k

∑
i=2

ei ⊗ ( n

∑
j=1

eij ⊗ eij),
that is, i-th layer of T is a block matrix with the only nonzero block being a diagonal matrix
in Li ⊗Li.

The group GLk ×GLs ×GLs acts in a usual way on U ⊗L⊗L. The minrank variety Mr can
be defined using the orbit closure of Tk,n,r:

Theorem 6.6. Let V be an n-dimensional subspace of L. Then

MU⊗V ⊗L,r = (GLk ×GLs ×GLs)Tk,n,r ∩ (U ⊗ V ⊗L).
Proof. We have Tk,n,r ∈ MU⊗L⊗L,r. Since the minrank variety is invariant, the entire orbit(GLk × GLs × GLs)Tk,n,r lies in it. Since the minrank variety is Zariski closed, it also contains

the orbit closure. By Lemma 6.3 we have (GLk ×GLs ×GLs)Tk,n,r ∩ (U ⊗ V ⊗L) ⊂MU⊗V ⊗L,r.
Conversely, let T ∈MU⊗V ⊗L,r. We can write T as ∑k

i=1 ui ⊗Ai where {ui} is some basis of
U and A1 is a slice with rk(A1) ≤ r.

Since rk(A1) ≤ r, it can be presented as (P1 ⊗ Q1)(∑r
j=1 e1j ⊗ e1j) where P1∶L1 → V and

Q1∶L1 → L are some linear maps. Analogously, for i > 1 we have rk(Ai) ≤ dimV = n and
Ai = (Pi⊗Qi)(∑n

j=1 eij⊗eij) for some Pi∶Li → V and Qi∶Li → L. Let P ∶L→ V and Q∶L → L be
the linear maps which are equal to Pi and Qi respectively when restricted to Li. Let R∶U → U

be the map sending each ei to the corresponding ui. Then T = (R ⊗ P ⊗Q)Tk,n,r. The closure
of GL(L) consists of all linear endomorphisms of L and thus contains P and Q. Therefore, T
lies in the closure (GLk ×GLs ×GLs)Tk,n,r.

Corollary 6.7. Let dimU = k and dimV = n. Suppose V and W are subspaces of a vector
space L of dimension s = (k − 1)n + r. Then

MU⊗V ⊗W,r = (GL(U) ×GL(L) ×GL(L))Tk,n,r ∩ (U ⊗ V ⊗W ).
Theorem 6.8. If r < n, then the stabilizer of Tk,n,r in GLk ×GLs ×GLs is isomorphic to (GLr ×
GL1) × (GLn ×GL1)k−1 ⋊Sk−1. The element

(Z1, z1, . . . ,Zk, zk) ∈ (GLr ×GL1) × (GLn ×GL1)k−1
is included into GLk ×GLs ×GLs via

(diag(z1, . . . , zk),diag(Z1, . . . ,Zk),diag((z1Z1)−T, . . . , (zkZk)−T))
and the Sk−1 factor permutes the last k − 1 coordinates of F k and the last k − 1 summands of
W simultaneously.

Proof. Let (A,B,C) ∈ stabTk,n,r, so that (A⊗B ⊗C)Tk,n,r = Tk,n,r.

Let Ti = ∑
dimWi

j=1 e1j ⊗ e1j be the slices of Tk,n,r, so T = ∑k
i=1 ei ⊗ Ti and

(A⊗B ⊗C)T = k

∑
i=1

(Aei)⊗ (B ⊗C)Ti =

k

∑
i=1

ei ⊗ (B ⊗C)( k

∑
j=1

aijTj).
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Note that the rank of ∑k
j=1 aijTj and, consequently, of the i-th slice of (A ⊗ B ⊗ C)Tk,n,r, is

equal to sr + qn, where s = 0 if ai1 = 0 and s = 1 otherwise, and q is the number of nonzero
entries among ai2, . . . , aik. Therefore, A contains only one nonzero entry in each row, and in
the first row the nonzero entry is in the first column, otherwise the ranks of slices of Tk,n,r and(A⊗B ⊗C)Tk,n,r do not match. Thus, A is a product of a diagonal matrix and a permutation
matrix corresponding to some permutation σ of the last k − 1 coordinates of F k.

Let Pσ be an element of GLk ×GLs ×GLs which permutes last k − 1 coordinates of F k and
last k−1 summands of W according to the permutation σ. It is easy to see that Pσ ∈ stabTk,n,r.

Thus, (A,B,C)P−1σ = (Â, B̂, Ĉ) is also in stabTk,n,r. From the previous discussion, Â is a

diagonal matrix diag(z1, . . . , zk). Let Â′ ∈ GLs be the linear map which scales elements of Wi by
zi for each i. (Â−1, id, Â′) also preserves Tk,n,r. Therefore, (Â, B̂, Ĉ) ⋅ (Â−1, id, Â′) = (id, B̂, Č)
is in stabTk,n,r

Now, since the first component of (id, B̂, Č) is the identity, it preserves Tk,n,r if and only

if B̂ ⊗ Č preserves each slice Ti. If it preserves each slice, it also preserves its sum ∑k
i=1 Ti =

∑k
i=1∑

dimWi

j=1 eij ⊗ eij , the full rank diagonal matrix. Therefore, by the Lemma 3.8, Č = B̂−T.

Consider B̂ as a block matrix (Bij) according to the decomposition of W into Wi. If B̂ has
a nonzero off-diagonal block Bij, then (B̂ ⊗ B̂−T)Tj has nonzero elements in the i-th block of
rows, and thus is not equal to Tj . Therefore, B̂ is a block diagonal matrix diag(Z1, . . . ,Zk).
Using the previous lemma, we see that any such B̂ gives rise to (id, B̂, B̂−T) ∈ stabTk,n,r.

We decomposed an arbitrary element A⊗B ⊗C ∈ stabTk,n,r into a product of three special
elements (id,diag(Z1, . . . ,Zk),diag(Z1, . . . ,Zk)−T), (diag(z1, . . . , zk), id,diag(z1 id, . . . , zk id)−1)
and Pσ for some permutation σ ∈ Sk−1. These three types of elements correspond to three
subgroups of stabTk,n,r. The subgroups intersect only by identity; elements of the first two
types commute, and the conjugation with Pσ permutes zi and Zi according to σ, so the product
of the first subgroups is direct, and the last product is semidirect.

Theorem 6.9. Suppose T is a tensor in F k ⊗W ⊗W . If stabT = stabTk,n,r, then T lies in the

orbit (GLk ×GLs ×GLs)Tk,n,r. If stabT ⊃ stabTk,n,r, then T ∈ (GLk ×GLs ×GLs)Tk,n,r

Proof. Suppose T is stabilised by stabTk,n,r. Let T1, . . . , Tk be the slices of T . Decompose them
into blocks Ti = (Tijk) according to the decomposition of W into Wi.

Let Ai(λ)∶F k → F k be the map which scales the i-th coordinate by λ, leaving other in
place, and Bi(λ)∶W →W be the map which scales Wi by λ and acts like identity on the other
summands. Applying to T the transformation (Ai(λ−2),Bi(λ),Bi(λ)) ∈ stabTk,n,r, we see that
all blocks of Ti except Tiii are zero, as they are multiplied by a coefficient λ−2 or λ−1 in this
transformation.

Applying (id,diag(Z1, . . . ,Zk),diag(Z1, . . . ,Zk)−T) with arbitrary Zi to T , we obtain that
each Tiii has the form ai∑

dimWi

j=1 eij ⊗ eij . Applying permutations of the last m − 1 blocks Tiii,
we see that a2 = ⋯ = ak.

Therefore

T = a1

n

∑
j=1

e1 ⊗ e1j ⊗ e1j + a2

k

∑
i=2

n

∑
j=1

ei ⊗ eij ⊗ eij .

If both a1 and a2 are nonzero, then T = (diag(a1, a2, . . . , a2) ⊗ id⊗ id)Tk,n,r lies in the orbit
of Tk,n,r. In this case stabT = stabTk,n,r. The closure of the set of tensors of this form with
a1 ≠ 0 and a2 ≠ 0 includes the cases when a1 or a2 are zero. In these border cases, T has
more symmetries than Tm,n,r, for example, multiplication of the zero blocks by an arbitrary
matrix.

7 Ideals of minrank varieties

In this section we will consider tensors over C (or over algebraically closed field of char-
acteristic 0). For an affine variety A, we denote its ideal by I(A) and its coordinate ring by
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C[A]. It is convenient to work with a tensor space U∗ ⊗ V ∗ ⊗W ∗. The algebra of polynomi-
als on this space is C[U ⊗ V ⊗W ]. Since minrank varieties MU∗⊗V ∗⊗W ∗,r are scale-invariant,
their ideals and coordinate rings inherit grading from C[U ⊗ V ⊗W ]. Since they are invariant
under the action of GL(U) ×GL(V ) × GL(W ), this group also acts on I(Mr) and C[Mr]. We
study representation-theoretic properties of specific equations in I(Mr) and multiplicities of
irreducible representations in I(Mr) and C[Mr]. Irreducible representations in C[U ⊗V ⊗W ]d
are indexed by triples (λ,µ, ν) of partitions of D, and the multiplicity of the type (λ,µ, ν) in
C[U ⊗ V ⊗W ]D is called the Kronecker coefficient. Finding a combinatorial interpretation for
the Kronecker coefficient is Problem 10 in [70].

Here we describe some polynomials in the ideals of minrank varieties and study their
representation-theoretic properties. The methods used in Section 7.3 are similar to the ones used
in Section 4.1; and the methods used in Section 7.4 are similar to the ones used in Section 4.2.

Throughout the section we assume dimU = k, dimV =m, dimW = n.

7.1 Basic equations

For a vector space V let SpV denote its pth symmetric power, which corresponds to the
vector space of homogeneous degree p polynomials in dimV variables. Moreover, let ∧pV denote
the pth exterior power of V .

Let T ∈ U∗⊗V ∗⊗W ∗ be a tensor. The condition rk(Tx) ≤ r is equivalent to the vanishing of
all (r + 1)× (r + 1) minors of Tx, or, equivalently, of the matrix (Tx)∧(r+1) ∈ Λr+1V ∗ ⊗Λr+1W ∗,
entries of which are multiples of the minors in question. All the minors are homogeneous
polynomials of degree r + 1 with respect to x, so the polynomial map sending x to (Tx)∧(r+1)
extends to a linear map MT,r ∶Sr+1U → Λr+1V ∗⊗Λr+1W ∗ such that MT,r(x⊗(r+1)) = (Tx)∧(r+1).
Theorem 7.1. Let s = dimSr+1U = (k+r

r+1
). Size s minors of MT,r lie in the ideal I(Mr).

Proof. If T ∈Mr, then there exists a nonzero rank 1 symmetric tensor x⊗(r+1) on which MT,r

vanishes. In particular, it means that the rank of MT,r is less than the dimension of the source
space Sr+1U , so the s × s minors of MT,r vanish.

The map MT,r is represented by a tensor in Sr+1U∗ ⊗ (Λr+1V ∗ ⊗ Λr+1W ∗). Therefore,
the GL(U) × GL(V ) × GL(V )-representation generated by size s minors of MT,r is the image
of ΛsSr+1U ⊗ Λs(Λr+1V ⊗ Λr+1W ) ⊂ SsSr(U ⊗ V ⊗W ) under the symmetrization map from
SsSr+1(U ⊗ V ⊗W ) to Ss(r+1)(U ⊗ V ⊗W ).

In the special case n =m+k−1, r =m−1 the dimension dim(Λr+1V ∗⊗Λr+1W ∗) coincides with
s and the resulting polynomial in I(Mr) is the determinant of the square matrix MT,r. This
polynomial is the hyperdeterminant of boundary format, a very special case of hyperdeterminant
polynomials considered in [32]. It is a SL(U) × SL(V ) × SL(W )-invariant of degree sm.

7.2 Koszul flattenings

Another family of equations can be constructed using so called Koszul flattenings, a special
case of Young flattenings introduced in [51] in relation to secant varieties.

For any integer p the antisymmetrization map U∗ ⊗ ΛpU∗ → Λp+1U∗ gives rise to a linear
map Ip∶U∗ → ΛpU ⊗ Λp+1U∗ sending each u ∈ U to a tensor representing the map x ↦ u ∧ x.
Applying this map to the first multiplicand of the tensor T ∈ U∗ ⊗ V ∗ ⊗W ∗, we get a tensor
IpT ∈ ΛpU ⊗Λp+1U∗⊗V ∗⊗W ∗. Rearranging tensor multiplicands, we get the Koszul flattening
FT,p∶ΛpU∗ ⊗ V → Λp+1U∗ ⊗W ∗. If T = ∑i xi ⊗Ai, then FT,p sends y ⊗ v to ∑i(xi ∧ y)⊗Aiv.

Theorem 7.2. Let 0 < p < k. If T ∈MU∗⊗V ∗⊗W ∗,r, then

rkFT,p ≤ (k − 1

p
)(r +min(m,

k − p − 1

p + 1
n) +min(n, p

k − p
m)).
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Proof. If T ∈ Mr, then it can be written as x ⊗ A + T ′ where x ∈ U∗, rk(A) ≤ r and T ′ ∈

H ⊗ V ∗ ⊗W ∗ for some hyperplane H ⊂ U∗ which does not contain x. The space ΛpU∗ can be
decomposed as ΛpU∗ = ΛpH ⊕ (u ∧ Λp−1H). Similarly, Λp+1U∗ = Λp+1H ⊕ (u ∧ ΛpH). Using
these decomposition, the map FT,p is given by the 2 × 2 block matrix

[
ΛpH ⊗ V (u ∧Λp−1H)⊗ V

Λp+1H ⊗W ∗ FT ′,p 0(u ∧ΛpH)⊗W ∗ (Ipu)⊗A FT ′,p−1
]

The rank of this matrix is at most the sum of the ranks of the three blocks. The block Ipu⊗A

has rank dim ΛpH ⋅ rkA = (k−1
p
)r. The ranks of other two blocks are bounded by their sizes:

(k−1
p
)m × (k−1

p+1
)n for the top left block and (k−1

p−1
)m × (k−1

p
)n for the bottom right. Factoring out

the (k−1
p
), we get the expression from the theorem statement.

Corollary 7.3. If n = p+1
k−pm, and r < m

k−p , then rkFT,p < dim(ΛpU∗ ⊗ V ).
Proof. In this case we have dim ΛpU∗ ⊗ V = (k

p
)m = (k−1

p
) k
k−pm and

rkFT,p ≤ (k − 1

p
)(r + k − p − 1

p + 1
n +

p

k − p
m) = (k − 1

p
)(r + k − 1

k − p
m) < (k − 1

p
) k

k − p
m.

In particular, this construction works in the case k = 2p + 1, n = m. Landsberg [52] showed
that for a generic (2p+1)×m×m tensor T the flattening FT,p has maximal possible rank (k

p
)m,

so the corollary implies that the minors of FT,p of corresponding size give nontrivial equations
for Mr.

7.3 Equations from rectangular designs

For α,β ∈ N, fix max(α,β) many vectors U ∶= {u1, . . . , umax(α,β)} in Cα. An α × β Latin
Rectangle for U is an α×β matrix (Ai,j)i,j, where in each row and in each column we have each
entry from V at most once. Note that if α ≥ β, then each column contains each vector exactly
once. For each column A.,j we define its determinant det(A.,j) as the determinant of the α ×α

matrix whose columns are given by the list of vectors (A1,j , . . . ,Aα,j). The column-determinant
of a Latin rectangle A is defined as

coldet(A) ∶= β

∏
j=1

det(A.,j).
For every α ∈ N and every even β ∈ N such that α ≤ β, the Latin Rectangle Conjecture

LatRect(α,β) can be stated as follows.

Conjecture 7.4. Choose a set U of β many vectors in Cα generically. Then ∑L coldet(L) ≠ 0,
where the sum is over all Latin Rectangles for U .

LatRect(1, β) is trivially true for all β. The fact that LatRect(2, β) is true for all even β

follows from the classical proof of Hermite’s reciprocity theorem in representation theory [41].
The fact that LatRect(α,β) is true for all even β and α ≤ 5 follows from recent work on Foulkes’
conjecture, see [60, 59, 19]. LatRect(β,β) can be easily seen to be equivalent to the Alon-Tarsi
conjecture [4], which is equivalent to the Huang-Rota conjecture [43], and is known to be true
for β ∈ {p + 1, p − 1 ∣ p an odd prime number}, in particular for all even 2 ≤ β ≤ 24 [24, 33].
LatRect(β,β) implies LatRect(α,β) for α ≤ β, as was shown by S. Kumar as part of his work
on geometric complexity theory [48].
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Theorem 7.5. For the sake of notational simplicity let m ≤ n. If m,n > kr and if LatRect(k,m)
holds, then there exists an irreducible representation of nontrivial equations for Mr in degree
km of type ((k ×m), (m × k), (m × k)). Note that for m = n this means that the equation is an
SL(U) × SL(V ) × SL(W )-invariant polynomial.

The Kronecker coefficients for the type ((k×m), (m×k), (m×k)) are still not well understood.
The Kronecker coefficients for the slightly more general type (λ, (m×k), (m×k)) appear as and
upper bound to the multiplicities of λ in the coordinate ring of the orbit of the determinant,
see [17]. Recent progress on rectangular Kronecker coefficients has been made in [58] and [46].

The rest of this subsection is devoted to prove Theorem 7.5. Like before, we start by
establishing a construction principle.

Construction of highest weight vectors

We use the same setup as in the paragraph “Construction of highest weight vectors” in
Section 4.1. We are mostly interested in one specific permutation: For i, j ∈ N let τ ∈Sij denote
the transpose permutation, i.e., a + j(b − 1)↦ b + j(a − 1) for 1 ≤ a ≤ i, 1 ≤ b ≤ j.

For the proof of Theorem 7.5 we define h ∶= hk×m ⊗ τ(hm×k)⊗ τ(hm×k). In both cases let f

denote the projection of ̺(h) ∈ (U ⊗ V ⊗W )⊗D onto the SD-invariant subspace.

Evaluation via products of determinants

Let T ∈ U∗ ⊗ V ∗ ⊗W ∗ and let D ∶= km. Considering eq. (4.2), we aim to understand the
tensor contraction ⟨f (1), T⊗D⟩. (7.6)

Since T⊗D is symmetric under SD, it follows

⟨f (1), T⊗D⟩ = ⟨̺(h(1)), T⊗D⟩.
Our goal is to prove its vanishing for tensors from Mr, but its nonzeroness for at least one
tensor. In general, let t = ∑r

j=q aj ⊗ bj ⊗ cj . We expand

T⊗D = ∑
J ∶[D]→[r]

aJ(1) ⊗ bJ(1) ⊗ cJ(1) ⊗⋯⊗ aJ(D) ⊗ bJ(D) ⊗ cJ(D).

Note that

⟨hk×m, v1 ⊗⋯⊗ vmk⟩ = det(v1, . . . , vk)det(vk+1, . . . , v2k)⋯det(v(m−1)k+1, . . . , vmk), (7.7)

if each vi ∈ C
k. But in our analysis the vectors vi will not always come from a k-dimensional

vector space. If there is j > k such that each vi ∈ C
j, then eq. (7.7) still holds if for vectors

w1, . . . ,wk ∈ C
j we define det(w1, . . . ,wk) to be the determinant of the top k × k matrix of the

j × k matrix given by w1, . . . ,wk.
Recalling that h = hk×m ⊗ τ(hm×k)⊗ τ(hm×k), we see that

⟨̺(h), x1 ⊗ y1 ⊗ z1 ⊗⋯⊗ xmk ⊗ ymk ⊗ zmk⟩
= det(x1, . . . , xk)det(xk+1, . . . , x2k)⋯det(x(m−1)k+1, . . . , xmk) (7.8)

⋅ det(y1, yk+1, . . . , y(m−1)k+1)det(y2, yk+2, . . . , y(m−1)k+2)⋯det(yk, y2k, . . . , ymk)
⋅ det(z1, zk+1, . . . , z(m−1)k+1)det(z2, zk+2, . . . , z(m−1)k+2)⋯det(zk, z2k, . . . , zmk).

The indices in (7.8) correspond to the rows and columns of the matrix

⎛⎜⎜⎜⎝
1 k + 1 ⋯ (m − 1)k + 1
2 k + 2 ⋯ (m − 1)k + 2
⋮ ⋮ ⋱ ⋮
k 2k ⋯ mk

⎞⎟⎟⎟⎠
.

For notational convenience, let Cβ ∶= {k(β − 1) + 1, . . . , k(β − 1) + k} denote the set of entries
in column β, 1 ≤ β ≤ m, and let Rα ∶= {α,k + α, . . . , k(m − 1) + α} denote the set of entries in
row α, 1 ≤ α ≤ k.
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The equations vanish on Mr

Let T ∈Mr and write

T =
k−1

∑
ℓ=1

(aℓ ⊗ ∑
i∈[m]
j∈[n]

b
(ℓ)
i ⊗ c

(ℓ)
j ) + ak ⊗

r

∑
i=1

b
(k)
i ⊗ c

(k)
i .

We now show that for this T , (7.6) vanishes. We expand T in the straightforward (and not
very efficient) way into a sum of (k − 1)mn + r many rank 1 tensors. We expand T⊗km into
summands of the form

x1 ⊗ y1 ⊗ z1 ⊗⋯⊗ xmk ⊗ ymk ⊗ zmk

and analyze (7.8) for each of the summands separately. First, we observe that if (7.8) is nonzero,
then in each of the sets Cβ, 1 ≤ β ≤m, there exists exactly one β such that xβ = ak. Moreover,
if (7.8) is nonzero, then the determinants for the y-variables (and independently also those for
the z-variables) imply that in each of the sets Rα there are at most r many α such that xα = ak.
Therefore, since m > kr, the pigeonhole principle implies that (7.8) is zero.

The whole contraction (7.6) vanishes, because (7.8) is zero for each summand in the expan-
sion independently.

Nontriviality of the equations

In this section we show that if LatRect(k,m), then there exists a tensor t for which (7.6) is
nonzero, which proves that our equations are not just the zero function. Let ui ∈ U

∗, 1 ≤ i ≤m,
be chosen generically. Let vi ∈ V

∗, 1 ≤ i ≤m, form a basis of V and let wi ∈W
∗, 1 ≤ i ≤ n, form

a basis of W . For the sake of simplicity, we assume that for 1 ≤ i ≤m we have vi = wi = ei is the
i-th standard basis vector. We define

T ∶=
m

∑
i=1

ui ⊗ vi ⊗wi

We write (7.6) as a sum of mkm many summands of the form (7.8) by expanding T⊗km into a
sum of rank 1 tensors

x1 ⊗ y1 ⊗ z1 ⊗⋯⊗ xmk ⊗ ymk ⊗ zmk

as we did in the last section. By inspection of (7.8) we observe that if there exist i and i′ in
Rα with yi = yi′ , then (7.8) vanishes. Moreover, if there exist j and j′ in Cβ with xj = xj′, then
(7.8) also vanishes. Thus for each nonzero summand in (7.6), the matrix

L ∶=

⎛⎜⎜⎜⎝

u1 uk+1 ⋯ u(m−1)k+1
u2 uk+2 ⋯ u(m−1)k+2
⋮ ⋮ ⋱ ⋮
uk u2k ⋯ umk

⎞⎟⎟⎟⎠
forms a Latin Rectangle for U = {u1, . . . , um}. Moreover, each determinant of y-variables has
value ±1, and each determinant of z-variables also has value ±1, and the signs of the i-th
determinant of y-values and the i-th determinant of z-values coincide. Since a product of an
even number of −1s equals 1, the value of each nonzero summand in (7.6) equals coldet(L).
Thus the contraction (7.6) equals ∑L coldet(L), where the sum if over all Latin Rectangles for
U . This proves Theorem 7.5.

7.4 Equations from multiplicities

The homogeneous part of the coordinate ring of U ⊗V ⊗W in degree d decomposes into two
GL(U)×GL(V )×GL(W ) representations: C[U ⊗V ⊗W ]d = I(Mr)d⊕C[Mr]d, where I(Mr) is
the vanishing ideal ofMr, i.e., the subset of all polynomials on U⊗V ⊗W that vanish identically
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onMr, and C[Mr]d ∶= C[U ⊗V ⊗W ]/I(Mr) is the coordinate ring ofMr, whose elements can
be interpreted as all restrictions of polynomials on U ⊗ V ⊗W to Mr.

Determining the multiplicities of irreducible representations in C[U ⊗ V ⊗W ] can be done
using classical character theory: the multiplicities are the Kronecker coefficients. To find
equations, we prove a lower bound on multiplicities in I(Mr)d by proving an upper bound
on multiplicities in C[Mr]d. This is done by considering all regular functions on the orbit(GLk × GLs × GLs)Tk,m,r, which we denote by C[(GLk × GLs × GLs)Tk,m,r]: These multiplici-

ties are bounded from below by the multiplicities in C[(GLk ×GLs ×GLs)Tk,m,r]d, but they can
be computed using branching rules in representation theory, without actually performing any
calculations on tensors. We explain this method in this section.

Let {λ}k to denote the irreducible GLk-representation to the partition λ. We occasionally
omit the subscript if the group is clear. We write λ ⊢k to denote that λ is a partition of some
number into at most k parts.

Let G ∶= GLk × GLs × GLs. The algebraic Peter-Weyl theorem can be used to describe the
multiplicities in the coordinate ring of the orbit of Tk,m,r:

C[GTk,m,r] = C[G/H] = C[G]H = ⊕
λ,µ,ν

{λ,µ, ν} ⊗ {λ,µ, ν}H .

where H ⊆ G is the stabilizer of Tk,n,r. In particular

mult(λ,µ,ν)C[GTk,m,r] = dim{λ,µ, ν}H .

The rest of this section is devoted to determine dim{λ,µ, ν}H .

{λ,µ, ν} = {λ}k ⊗ {µ}s ⊗ {ν}s.
Splitting {µ}s into GLr ×GL×k−1m -irreducibles via the multi-Littlewood-Richardson rule yields:

{µ}s = ⊕
µ1
⊢r

µ2,...,µk
⊢m

c
µ

µ1,...,µk{µ1}r ⊗ {µ2}m ⊗⋯⊗ {µk}m.

Using the analogous equality for ν we obtain {λ,µ, ν} =
⊕
µ1
⊢r

µ2,...,µk
⊢m

ν1⊢r
ν2,...,νk⊢m

c
µ

µ1,...,µkc
ν
ν1,...,νk

{λ}k ⊗ {µ1}r ⊗ {µ2}m ⊗⋯⊗ {µk}m ⊗ {ν1}r ⊗ {ν2}m ⊗⋯⊗ {νk}m

For a partition ξ we write ξ ⊴ λ when ξ arises from λ by removing boxes, at most one in each
column. Splitting {λ}k into irreducible GL1 ×GLk−1-representations via Pieri’s rule yields

{λ}k = ⊕
ξ⊴λ

ξ⊢k−1

{(∣λ∣ − ∣ξ∣)}1 ⊗ {ξ}k−1,

where (∣λ∣ − ∣ξ∣) is the partitition to the one-row Young diagram with ∣λ∣ − ∣ξ∣ many boxes. In
total, {λ,µ, ν} =
⊕
µ1
⊢r

µ2,...,µk
⊢m

ν1⊢r
ν2,...,νk⊢m

ξ⊴λ
ξ⊢k−1

c
µ

µ1,...,µkc
ν
ν1,...,νk

{(∣λ∣−∣ξ∣)}1⊗{ξ}k−1⊗{µ1}r⊗{µ2}m⊗⋯⊗{µk}m⊗{ν1}r⊗{ν2}m⊗⋯⊗{νk}m
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Let {(a1), . . . , (ak)} denote the 1-dimensional irreducible GLk1-representation to the 1-row par-
titions (ai). Taking GLr ×GLk−1m -invariants in {λ,µ, ν} and using that

dim({µi}⊗ {νi}∗)GLm = ⎧⎪⎪⎨⎪⎪⎩
1 if µi = νi

0 otherwise

yields {λ,µ, ν}GLr×GL
k−1
m =

⊕
µ1
⊢r

µ2,...,µk
⊢m

ξ⊴λ
ξ⊢k−1

c
µ

µ1,...,µkc
ν
µ1,...,µk{(∣λ∣ − ∣ξ∣)}1 ⊗ {ξ}k−1 ⊗ {(∣µ1∣), . . . , (∣µk ∣)}

Taking GL1 ×GLk−11 -invariants yields {λ,µ, ν}GL1×GL
k−1
1
×GLr×GL

k−1
m =

⊕
µ1
⊢r ∣λ∣−∣ξ∣

µ2,...,µk
⊢m

ξ⊴λ
ξ⊢k−1

c
µ

µ1,...,µkc
ν
µ1,...,µk{ξ}∣µ2∣,...,∣µk ∣,

where {ξ}b2,...,bk is the weight space to (b1, . . . , bk−1) in {ξ}. To obtain dim{λ,µ, ν}H we have to

determine the dimension of the space of Sk−1-invariants in {λ,µ, ν}GL1×GL
k−1
1
×GLr×GL

k−1
m . Observe

that Sk−1 permutes the weight spaces, so we write {λ,µ, ν}H =
⊕

µ1
⊢r ∣λ∣−∣ξ∣

µ2,...,µk
⊢m

ξ⊴λ
ξ⊢k−1

∣µ2∣≤∣µ3∣≤⋯≤∣µk ∣

c
µ

µ1,...,µkc
ν
µ1,...,µk( ⊕

γ∈Sk−1⋅(∣µ2∣,∣µ3∣,⋯,∣µk ∣)

{ξ}γ1,...,γk−1 , )

Fortunately, the dimension of Sk−1-invariants in the term in parentheses has been studied before
in the context of geometric complexity theory and tensor rank [14]:

( ⊕
γ∈Sk−1⋅(∣µ2∣,∣µ3∣,⋯,∣µk ∣)

{ξ}γ1,...,γk−1)Sk−1
= dim({ξ}∣µ2 ∣,∣µ3∣,⋯,∣µk ∣)stabSk−1

(∣µ2 ∣,∣µ3∣,⋯,∣µk∣).

Let J ∶= (∣µ2∣, ∣µ3∣,⋯, ∣µk ∣) and set SJ ∶=S∣µ2∣×⋯×S∣µk ∣. Gay’s theorem says that {ξ}∣µ2 ∣,∣µ3∣,⋯,∣µk∣ =

[ξ]SJ . Let S ∶= stabSk−1
(∣µ2∣, ∣µ3∣,⋯, ∣µk ∣). We want to determine dim[ξ]SJ⋊S . We calculate

dim[ξ]SJ⋊S = dim HWVξ{ξ}⊗ [ξ]SJ⋊S Schur-Weyl duality
= dim HWVξ(⊗∣ξ∣V )SJ⋊S

. (7.9)

(⊗ξV )SJ⋊S
= (Sym∣µ2∣V ⊗⋯⊗ Sym∣µ

k−1∣)S (7.10)

Let κi denote the number of times that i occurs in the J . Then (7.10) can be grouped as follows:

(7.10) = (⊗κ1Sym1V ⊗⋯⊗⊗κk−1Symk−1V )S
= Symκ1Sym1V´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=⊕δ1

a
δ1
(κ1,1){δ1}

⊗⋯⊗ Symκk−1Symk−1V´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=⊕δk−1

a
δk−1

(κk−1,k−1){δk−1}

Using the multi-Littlewood-Richardson rule we obtain

(7.9) = ∑
δ1,...,δk−1⊢ℓ(ξ)iκi

c
ξ

δ1,...,δk−1

∣ξ∣

∏
i=1

aδi(κi, i).
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Altogether, dim{λ,µ, ν}H =
∑

µ1
⊢r ∣λ∣−∣ξ∣

µ2,...,µk
⊢m

ξ⊴λ
ξ⊢k−1

∣µ2∣≤∣µ3∣≤⋯≤∣µk ∣≤∣ξ∣

∑
δ1,...,δk−1⊢ℓ(ξ)

∣δi ∣=iκi

c
µ

µ1,...,µkc
ν
µ1,...,µkc

ξ

δ1,...,δk−1

∣ξ∣

∏
i=1

aδi(κi, i),

where the κi denotes the number of times i occurs in (∣µ2∣, . . . , ∣µk ∣).
Implementing this formula, we see that it indeed yields equations! For example,

multλ,µ,ν C[GT3,3,1]6 = 0 < 1 = k(λ,µ, ν)
where k(λ,µ, ν) denotes the Kronecker coefficient and (λ,µ, ν) is one of the following cases:

• ((3,3), (2,2, 2), (3, 3))
• ((3,3), (3,3), (2,2, 2))
• ((3,3), (2,2, 2), (4, 1, 1))
• ((3,3), (4,1, 1), (2, 2, 2))

Numerous other partition triples can be readily generated. Restricting the first partition to two
rows and the second and third to three rows, we checked with the software Macaulay2 com-
bined with methods from [15] that this method only misses one triple: ((3,3), (3,2,1), (3, 2, 1)),
where the multiplicities on the left hand side and the right hand side are both 2.

8 Complexity-theoretic properties

Here we show the NP-hardness of the slice rank and the minrank problems.

8.1 Hardness of Slice Rank

In this section, we show that the problem of testing if a given 3-tensor has slice rank at
most r is NP-hard. We do this by showing that a variant of hypergraph vertex cover testing is
NP-hard. Tao and Sawin [74] showed the equivalence of the slice rank problem to this variant
of hypergraph vertex cover testing.

We fix a field F. Given a 3-uniform, 3-partite hypergraph H with 3 partitions U,V and W

with ∣U ∣ = n1, ∣V ∣ = n2, and ∣W ∣ = n3, ni ∈ N, i ∈ [3], with edge set being E ⊆ U × V ×W , we can
define a 3-tensor TH(x1,x2,x3) corresponding to H, where xi is a tuple of [ni] variables in the
following way.

TH(x1,x2,x3) = ∑
(ui1

,vi2 ,wi3
)∈E

x1,i1 ⋅ x1,i2 ⋅ x3,i3

We label the nodes in U,V and W from the set of integers. For two hyperedges e1 ∶=(ua1 , vb1 ,wc1) and e2 ∶= (ua2 , vb2 ,wc2), we say that e1 ≤ e2 iff (a1 ≤ a2) ∧ (b1 ≤ b2) ∧ (c1 ≤ c2). If
neither e1 ≤ e2 nor e2 ≤ e1 holds, we say that e1 and e2 are incomparable. In E, if every pair of
hyperedges is incomparable to each other, we say that E is an antichain.

Tao and Sawin (see [74, Proposition 4]) showed the following.

Lemma 8.1. If the hyperedge set E is an antichain, then the slice rank of TH is the same as
the size of the minimum vertex cover of the hypergraph H.

Thus, in order to show that computing slice rank of 3-tensors is NP-hard, we show that the
hypergraph minimum vertex cover problem for a 3-partite, 3-uniform graph, where the edge set
is an antichain, is NP-hard.
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Our reduction is inspired by [34] where they show the NP-hardness of the hypergraph vertex
cover problem for 3-uniform 3-partite graphs. Their reduction involved reducing 3-SAT to this
problem. Here we need to show the hardness under the extra condition that the hyperedge set
of the graph is an antichain. This makes the reduction far more involved, and we also change
the hard problem that we reduce to our problem.
The NP-hard problem that we use for our reduction is a bounded occurrence mixed SAT problem
(bom-SAT), where we have 3-clauses and 2-clauses, such that every variable appears exactly
thrice, once in a 3-clause, while the other two occurrences are in 2-clauses (note that the number
of variables, n = 3t, for some t, where t is the number of 3-clauses).

Remark. It is easy to see that the above mentioned bom-SAT is NP-hard. For this, start with
any 3-SAT instance. Now assume that a variable Z appears m times. Introduce m copies
Z1, ...,Zm of X. Replace every occurrence of Z by one Zi. We do this for all the variables. Now
every variables appears only once. However, we have to ensure consistency, that is, Z1, ...Zm

should have the same value. So we add the 2-clauses: (Z1 ∨¬Z2)∧ (Z2 ∨¬Z3)∧⋯∧ (Zm ∨¬Z1).
These 2-clauses can only be satisfied if we set all the Zi’s to 0 or all the Zi’s to 1. The resulting
formula is a bom-SAT instance as described above.

In the reduction, given a bom-SAT formula φ in n variables X1, . . . Xn with t 3-clauses and
m 2-clauses, the construction of a 3-uniform 3-partite hypergraph Gφ with 3 vertex partitions
U,V and W proceeds as follows. First of all we sort all the clauses such that all the 3-clauses
precede all the 2-clauses. Next we rename all the variables such that the variables in the r-
th 3-clause (r ∈ t) are Y3(r−1)+1, Y3(r−1)+2 and Y3(r−1)+3 corresponding to the first, second and
the third position of the clause respectively. We also say that Y3(r−1)+1, Y3(r−1)+2 and Y3(r−1)+3

belong to the same triple of variables.
Now, we have a gadget Gφ

k
corresponding to each variable Yk, k ∈ [n]. Gφ

k
consists of nodes (i, j)k

and (i, j)k, i, j ∈ {1,2,3}. Here (i, j)k refers to the node corresponding to the i-th occurrence of

the variable Yk, and it occurs at the j-th position in the clause in which it appears. (i, j)k refers
to the negation of Yk in its i-th occurrence at the j-th position in the clause. We will drop the
superscript k, when it is clear from the context. Clearly, there are 18 such literal-nodes in a
gadget G

φ
k
, which are ordered along a circle (see the outer circle in Figure 1). Since Yk appears

exactly thrice in φ, exactly 3 out of these 18 nodes will correspond to some occurrence of Yk

in φ. G
φ
k

also consists of 18 other nodes, which we call free-nodes (as they do not correspond
to any literal), that are useful in the construction (see the inner circle in Figure 1). We have
hyperedges connecting two literal-nodes and a free-node. There are total 18 hyperedges in G

φ
k

each consisting of three vertices that form a triangle in Figure 1. Note that every literal-node
appears in exactly 2 hyperedges, while a free-node appears in exactly one of them. We partition
the set of nodes in 3 parts, as illustrated in the figure. Among the literal-nodes, the nodes
corresponding to the first-occurrences (j = 1) go to the set U , the ones corresponding to the
second-occurrences (j = 2) go to the set V , while the ones corresponding to third occurrences
(j = 3) go to the set W . We distribute the free-nodes equally among the three sets, while
maintaining the property of being 3-partite (see Figure 1).

Additionally, we have clause hyperedges, which for a 3-clause, connect the nodes correspond-
ing to the three literals present in it. For every 2-clause, we first introduce another free-node
to the graph, added to set W (as there are no literals at the third position in a 2-clause). Now,
there is an hyperedge for every 2-clause as well, connecting the two nodes corresponding to
its literals and a free-node. We refer to the hyperedges in a variable gadget either as vari-
able hyperedges or local hyperedges. We refer to the hyperedges corresponding to the clauses
as clause hyperedges or global hyperedges. We illustrate the set up with an example. See Figure 3.

The following two lemmas finishes the reduction.

Lemma 8.2. The size of the minimum vertex cover of the hypergraph Gφ is at most 9n if and
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Figure 1: A variable gadget G
φ
k

corresponding to the variable Yk in φ. Nodes sharing the
red, cyan and green arcs correspond to the first, second, and third occurrence of Yk in a clause
respectively. Exactly 3 out of 18 literal-nodes are used in clause hyperedges. Nodes with an
overline indicate that the negation of Yk appeared in the corresponding clause. Nodes in the
inner circle correspond to the free-nodes.

only the bom-SAT instance φ is satisfiable.

The proof of this lemma follows very closely the proof of hardness of hypergraph minimum
vertex cover problem (see [34, Lemma 5.3]), which was itself inspired by the proof of NP-hardness
of 3-dimensional matching given in Garey and Johnson [29]. We give a sketch here.

Proof. Let φ be satisfiable with ν being a satisfying assignment on the variables Y1, . . . , Yn.
Now, we construct the vertex cover set S for Gφ of size 9n as follows. If ν(Yk) = 0, we add all
the 9 overlined nodes from G

φ
k

to S, otherwise we add the other 9 nodes to S. Note that S

covers all the local hyperedges. Since ν is a satisfying assignment, all the clause hyperedges are
also covered by S as well.

Conversely, assume there is a minimum vertex cover S of Gφ of size at most 9n. Now, since
all the free-nodes appear in only one hyperedge each, we can assume that S does not contain
any free-node, since we can always replace them by a literal-node of the same hyperedge. Now,
for i ∈ {1, . . . , n} if Si is the subset of S such that Si only contains the vertices corresponding
to the variable gadget G

φ
i , it can be easily seen that ∣Si∣ ≥ 9 for all the variable hyperedges to

be covered. This implies that ∣Si∣ = 9 since we assumed that ∣S∣ = ∣ ∪ni=1 Si∣ ≤ 9n. Thus Si forms

a vertex cover corresponding to the local gadget G
φ
i and hence covers the hyperedges in G

φ
i .

However, there are only two vertex covers of G
φ
i of size 9, namely the one set containing all

the overlined nodes, i.e., they correspond to ¬Yk, and the other set where none of the nodes
are overlined, i.e., they correspond to Yk. In the first case, we assign the value 0 to Yk, and we
assign 1 in the second case. Thus we construct the assignment ν for Y1, . . . , Yn. Now, since S

is a vertex cover and hence span all the hyperedges including the clause hyperedges, ν satisfies
all the clauses of φ.

The following lemma ensures that the edge set E of the above constructed graph Gφ is
indeed an antichain under some labelling.

Lemma 8.3. For every formula φ, there exists a way of labelling of the nodes in hypergraph
Gφ such that the hyperedge set of Gφ is an antichain.

Proof. We first give the labelling used. We have literal-nodes and free-nodes. The literal-nodes
either correspond to the first occurrence, the second occurrence or the third occurrence of a
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Figure 2: The labelling of variable gadgets G
φ
1 for n = 6. The hyperedges with a red arc

correspond to the first occurrence of variables. Notice the difference in labelling of W nodes.
Literal-nodes are all labelled positive. Free-nodes are all labelled negative except the W node
connecting the two first occurrence literal-nodes.

variable. In every gadget, we have 6 nodes corresponding to each occurrence, 2 from each
partition U,V and W . The free-nodes although do not correspond to any occurrences, we
say that they correspond to first occurrence if the two literal-nodes that they connect both
correspond to the first occurrence. In every gadget, there are 5 such nodes, 2 each belonging to
U and V , while one belonging to W . If a free-node does not correspond to the first occurrence,
we say that it corresponds to the second or third occurrence (we do not make distinction within
them as it is not needed).

We first give the labelling corresponding to the nodes corresponding to the second and the
third occurrences of variables:

• The position 1 literal-nodes (i,1)k and (i,1)k in G
φ
k

are labelled
u2n+2(i−2)+4(k−1)+1 and u2n+2(i−2)+4(k−1)+2 , respectively, ∀k, for i = 2,3.

• Similarly, the position 2 literal-nodes (i,2)k and (i,2)k are labelled
v2n+2(i−2)+4(k−1)+1 and v2n+2(i−2)+2(k−1)+2 , respectively, ∀k, for i = 2,3.

• Likewise, the position 3 literal-nodes (i,3)k and (i,3)k are labelled
w2n+2(i−2)+4(k−1)+1 and w2n+2(i−2)+4(k−1)+2 respectively, ∀k, for i = 2,3.

• The 4 free U nodes in G
φ
k

corresponding to the second or third occurrence are labelled
u
−2n−4(k−1)−ℓ, ℓ ∈ [4] (see Figure 2 to see which ones exactly).

• Similarly, the 4 such free V nodes in G
φ
k

are labelled v
−2n−4(k−1)−ℓ, ℓ ∈ [4].

• Finally, the 5 such free W nodes in G
φ
k

are labelled w
−5(k−1)−ℓ, ℓ ∈ [5].

• All the 2-clauses also correspond to the second and third occurrence of variables. Each
such 2-clause will have a corresponding hyperedge. Here we have a freedom to choose the
position for the free node. We invariably choose it to be at the third position. Thus the
first two nodes of the hyperedges will take the relevant literals as per the clause, while
the W nodes will be free ones. For the s−th 2-clause (under an arbitrary order), s ∈ [m]
label the W nodes as w−5n−s.
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• We take all the hyperedges that include all the above labelled free W nodes. This will
include all the 2-clause hyperedges along with 5 hyperedges per variable gadget. Now
the tuple of U and V coordinates (ua, vb) of these hyperedges will have a partial order
among themselves. We shuffle their W coordinates so that the order of the W coordinates
becomes the reverse of the order of the tuple (ua, vb). We can do this without disturbing
other hyperedges because these W nodes are all free and are used in only one hyperedge
each.

Now it remains to label the literal-nodes corresponding to the first occurrences and the
free nodes pertaining to them. They are labelled differently so as to ensure that the antichain
property indeed holds when the hyperedges connecting these would be compared with the 3-
clause hyperedges. One key difference is that the labels of W nodes for G

φ
k

in this case also
depend on whether k ≡ 1,2 or 0 mod 3.

• The position 1 literal-nodes (1,1)k and (1,1)k in G
φ
k

are labelled u2(k−1)+1 and u2(k−1)+2,
respectively, ∀k.

• The position 2 literal-nodes (1,2)k and (1,2)k are labelled v2(k−1)+1 and v2(k−1)+2, respec-
tively, ∀k.

• The position 3 literal-nodes (1,3)k and (1,3)k get the labels w7n−9(q−1) and w7n−9(q−1)−1,
respectively, for k = 3(q − 1) + 1, whereas w7n−9(q−1)−3 and w7n−9(q−1)−4, respectively, for
k = 3(q − 1) + 2, and w7n−9(q−1)−5 and w7n−9(q−1)−6, respectively, for k = 3(q − 1) + 3

• The 2 free U nodes corresponding to the first occurrence of the variable get the labels
u
−2(k−1)−1 and u

−2(k−1)−2, respectively. Similarly such free V nodes get the labels v
−2(k−1)−1

and v
−2(k−1)−2 respectively, whereas the such free W nodes (1 per gadget) get the labels

w7n−9(q−1)−2 for k = 3(q − 1) + 1 and w7n−9(q−1)−7 for k = 3(q − 1) + 2, and w7n−9(q−1)−8 for
k = 3(q − 1) + 3.

Figure 3 illustrates the labelling for k = 1,2,3 when n = 6.
We now show that with the above ordering, the set of hyperedges E of the hypergraph Gφ

indeed is an antichain.
To simplify the argument, we divide the set of hyperedges in two parts E = A ⊍B:

• Set A: This set consists of local hyperedges in which both the literal-nodes correspond to
the first occurrence of variables. We also include the 3-clause hyperedges.

• Set B: The set consisting of the remaining hyperedges, i.e., the ones in which at least one
of the literal-nodes correspond to the second or the third occurrences of variables. We
also include the 2-clause hyperedges.

We first argue that the subset B is an antichain.
We note that in B, the literal-nodes are all labelled positive (2n+2(i−2)+4(k−1)+j), i ∈ {2,3},
k ∈ [n], j ∈ [4], while the free-nodes are all labelled negative (−2n− 4(k − 1)− ℓ), k ∈ [n], ℓ ∈ [4],
for U and V nodes, whereas (−5(k − 1)− ℓ), k ∈ [n], ℓ ∈ [5] for W nodes, and it is easy to verify
that as the labels of the literal-node increase, the labels along the free-node decrease.
Now we take two arbitrary elements of the the set B. Recall that every hyperedge in B contains
exactly one free-node. Now the free-node will either be in the same partition or in different
ones.
If they are in different ones, we are done because we have a pair of coordinates such that, in
one of them, one hyperedge is labelled positive while the other is labelled negative, while the
opposite happens in the other coordinate. If the free nodes are in the same coordinate, we are
done again because as the literal coordinate increases, the free coordinate decreases.
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Figure 3: The variable gadgets Gφ
k
, k = 1,2,3 for n = 6. The hyperedges with a red arc correspond

to the first occurrence of variables. Notice the difference in labelling of W nodes. The clause
edge corresponds to the clause Y1 ∨ Y2 ∨ Y3.
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Note that, since we have already shuffled the nodes with free W nodes taking the 2-clause
hyperedges into account, the 2-clause hyperedges are also taken care off.

Now, we argue that given an arbitrary hyperedge of the set A, and an arbitrary hyperedge
of the set B, they are incomparable too.
For this, we notice that, the labels of the W nodes of all the hyperedges in A are higher than
the labels of all the W nodes of the hyperedges in B. For this, we simply note that range of the
W labels of the second and the third occurrence (set B) is {−5n, . . . ,4n} ∖ {0}, whereas the W

labels of the first occurrence (A) has the range from {4n + 1, . . . ,7n}. Secondly, notice that the
labels of the U and V literal-nodes at the second and third occurrences, i.e., from the edges of
set B (range {2n+1, . . . ,6n}) are all higher than that of the first occurrence i.e. from the edges
of the set A (range {1, . . . ,2n}).

We are done since for every pair of hyperedges (ha, hb), where ha ∈ A and hb ∈ B, we have
that the W coordinate of ha will be higher than that of hb, whereas the among the other two
coordinates, whichever is positive (i.e. corresponds to a literal-node) in hb will be higher than
the correpsonding coordinate in ha.

Finally we are left to show that A is also an antichain.
We remind the reader that we have named the variables such that every 3-clause comprises of

variables from only one triple of variables i.e. every 3-clause involves Y3(q−1)+1, Y3(q−1)+2, Y3(q−1)+3

at first, second and third position respectively, for some q > 0. Now first of all we notice that
for a pair of hyperedges which come from a different triple of variables, we are done, because W

coordinates of a higher triple are all lower than the W coordinates of a lower triple, since the
labels are (7n−9(q−1)−ℓ), ℓ ∈ {0, . . . ,8} for q−th triple of variables Y3(q−1)+1, Y3(q−1)+2, Y3(q−1)+3,
whereas the positive coordinate among U or V will be higher for the higher triple (lables are
4(k −1)+ ℓ, ℓ ∈ [2]). When they are in the same triple of variables, it helps to remark that there
are three kinds of hyperedges in A, i.e. A = A1 ⊍A2 ⊍Ac:

• A1: the ones where the free-nodes belong to U or V . These hyperedges have exactly one
negative coordinate, which will either be in the U coordinate or the V coordinate.

• A2: the ones where the free nodes belong to W . All the coordinates are positive.

• Ac: the set of 3-clause hyperedges: All the coordinates are again positive, as all the nodes
are literal-nodes.

Now, we need to compare the hyperedges of A1,A1 and Ac with each other and within them-
selves when they all belong to the same triple of variables, say q−th triple, Y3(q−1)+1, Y3(q−1)+2, Y3(q−1)+3

for some q ∈ [t]. We remind the reader that the labelling of the W nodes that appear in A
varies depending on whether the corresponding index k = 3(q−1)+1, 3(q−1)+1, or 3(q−1)+3.

There are six possible cases:

i. A1: same proof that was given for the elements of B, where also we had exactly one negative
coordinate.

ii. A2: for the higher variable, the W coordinate is lower (labels are 7n − 9(q − 1) − 2 for
k = 3(q − 1)+ 1, 7n− 9(q − 1)− 7 for k = 3(q − 1)+ 2 and 7n− 9(q − 1)− 8 for k = 3(q − 1)+ 3),
while the other two coordinates are higher, since both U and V labels are 2(k − 1) + 1,2.

iii. Ac: two different clauses clearly belong to different triple of variables: already taken care
of above.

iv. A1 −A2 (ha1 ∈ A1, ha2 ∈ A2): Here we have two cases: namely, either ha1 belonging to a
higher variable, or ha1 belonging to the same or lower variable as compared to ha2 . In the
first case, one of the U or V coordinate of ha1 (whichever is positive) will be higher, while
the other coordinate being negative will be lower than that of ha2 (whose all coordinates are
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positive). In the second case, we note that the W coordinate of ha2 will be lower, since for
the same variable, it has the lowest W coordinate (being 7n−9(q−1)−2 versus 7n−9(q−1),
7n−9(q−1)−1 for k = 3(q−1)+1, 7n−9(q−1)−7 versus 7n−9(q−1)−3, 7n−9(q−1)−4 for
k = 3(q−1)+2 and 7n−3(k−1)−8 versus 7n−9(q−1)−5, 7n−9(q−1)−6 for k = 3(q−1)+3),
and as we go up the variables, W coordinate decreases, while at least one of the other two
coordinate will be higher, i.e., in the coordinate in which ha1 is negative and ha2 is positive.

v. A1 −Ac (ha1 ∈ A1, hac ∈ Ac): When ha1 belongs to G
φ

3(q−1)+1
or G

φ

3(q−1)+2
, its W coordinate

will be higher than that of hac , since for the clause hyperedge hac , the W node is picked
from G

φ

3(q−1)+3
. However, one of the other two coordinates in ha1 is negative. So, it will

be lower than that of hac . So, we are done. When ha1 belongs to G
φ

3(q−1)+3
, both ha1

and hac might share the W coordinate. However, in such ha1 , the positive node among
the U and V coordinate will be higher than that of hac , since ha1 comes from the highest
variable among the triple, and both U and V coordinate increase with higher variables,
being labelled 2(k − 1) + 1,2, whereas the negative coordinate will of course be lower than
that of hac which has no negative coordinate.

vi. A2 −Ac (ha2 ∈ A2, hac ∈ Ac): Here when ha2 ∈ G
φ

3(q−1)+1
, its V coordinate will be less since

Y3(q−1)+1 is the lowest variable, whereas the V coordinate of the clause hyperedge hac is

picked from G3(q−1)+2. However, the W coordinate will be higher for ha2 as it is labelled

7n − 9(q − 1) − 2, whereas the clause gets the W coordinate corresponding to the G
φ

3(q−1)+3

and hence the label 7n − 9(q − 1) − 5 or 7n − 9(q − 1) − 6 . Whereas when ha2 ∈ G
φ

3(q−1)+2
or

G
φ

3(q−1)+3
, the W coordinate will be lower for ha2 (labelled 7n−9(q−1)−7 or 7n−9(q−1)−8

respectively) than hac (labelled 7n−9(q−1)−5 or 7n−9(q−1)−6), whereas the U coordinate
of ha2 will be higher, since the clause hyperedge hac gets the U coordinate corresponding
to variable Y3(q−1)+1 which is the lowest variable within the triple and hence has the lowest
U coordinate (U labels being 2(k − 1) + 1,2).

8.2 NP-Hardness of minrank

In this section we prove NP-hardness of HMinRank by reducing it to the following problem:

Problem HQuadS,F . Given a set of quadratic forms with coefficients from S, represented by
lists of coefficients, determine if it has a common zero over F .

To implement the reduction, we need to perform linear algebra computations with elements
of the field.

Definition 8.4. An effective field is a finite or countable field F with a binary encoding of
elements of F such that the following operations can be performed in time polynomial in the
length of the encoding of arguments:

• multiplication and addition of two elements over F ,

• multiplication of an arbitrary number of matrices over F (follows from the first item),

• equality comparison of two elements of F ,

• division of two elements of F (if the denominator is zero, the algorithm should fail).

Furthermore, we want that polynomial identity testing is in BPP, that is, there is a BPP-
machine that given an algebraic circuit computing a polynomial over F , decides in whether this
polynomial is identically zero.
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In our paper, we usually deal with polynomials over uncountable fields like C. In the
algebraic complexity setting, this is no problem. However, when we want to compute with
Turing machines, we have to restrict ourselves to appropriate subfields. This is modelled by
effective fields. In particular, Q is effective and the natural effective subfield of R and Q+ iQ is
natural choice for C. Finite fields are effective, when we drop the last condition about identity
testing, which we only need in the second part of this section.

Efficient multiplication of several matrices implies that products and linear combinations of
elements can also be computed in polynomial time. It also allows for various polynomial-time
linear algebra procedures. In particular, we are interested in the following:

Theorem 8.5. For an effective field K there is a polynomial time algorithm which, given a
matrix A over K, computes a basis of kerA.

Proof. Determinants of matrices over an effective field are computable in polynomial time,
because determinant can be represented as an iterated matrix multiplication of polynomial size
(see e. g. [45]). This allows computing the inverse of a nonsingular matrix. Also, we can find
one of the maximal nonzero minors of a given nonzero matrix, by starting from any nonzero
entry and trying to enlarge the minor by checking all rows and columns at each step. We can
then compute the basis of the kernel by basic linear algebra.

Hillar and Lim [42, Thm. 2.6] proved that HQuad is NP-hard over the fields R and C. Their
proof also works for any field of characteristic different from 3 containing cubic roots of unity.
The NP-hardness for arbitrary fields was proven by Grenet, Koiran and Portier in [35]. We give
another proof for arbitrary fields based on the idea of Hillar and Lim. Compared to [35], we
describe a general construction for all fields instead of treating characteristic 2 as a special case,
and only use coefficients from {−1,0,1}.
Theorem 8.6. HQuad{0,1,−1},F is NP-hard for any field F .

Proof. We reduce from graph 3-colorability.
Given a graph G = (V,E), we will construct a system of quadratic homogeneous equation,

solutions of which correspond to colorings of the graph. The set of variables consists of two
variables xv and yv for each vertex v ∈ V and one additional variable z. Consider a system of
homogeneous quadratic equations which contains for each vertex v the three equations

xvyv = 0

x2v − xvz = 0

y2v − yvz = 0

and for each edge (v,w) ∈ E the equation

x2v + y2v + x2w + y2w − xvyw − xwyw − z2 = 0

If z = 0, then from vertex equations we deduce xv = yv = 0 for all v ∈ V . Therefore, a nontrivial
solution must have nonzero z. We can scale it so that z = 1. When z = 1, the vertex equations
give (xv , yv) ∈ {(0,0), (0,1), (1, 0)}. Restricted to these values, the left-hand side of the edge
equation has the following values:

v

w (0,0) (0,1) (1,0)
(0,0) −1 0 0(0,1) 0 1 0(1,0) 0 0 1
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That is, the edge equation forces the tuples (xv, yv) and (xw, yw) to be different. Thus, nontrivial
solutions with z = 1 are in one-to-one correspondence with colorings of the graph G into three
colors, given by the three possible solutions of the vertex equations.

Theorem 8.7. Let F be a field and K be an effective subfield of F . Then HMinRank1K,F is
polynomial-time equivalent to HQuadK,F .

Proof. To reduce from HMinRank1 to HQuad, note that the condition rk(Tx) ≤ 1 can be
expressed by homogeneous quadratic equations on x, namely, vanishing of 2 × 2 minors of the
matrix of linear forms Tx.

Now we describe the reduction from HQuad to HMinRank1. Let k be a number of given
quadratic forms and n be the number of variables. Each quadratic form q(x) = ∑1≤i≤j≤n aijxixj

on Fn corresponds to a linear form Q(X) = ∑1≤i≤j≤n aijxij on the space Sym2Fn ⊂ Fn ⊗ Fn of
symmetric matrices, and a vector x is a zero of q if and only if x⊗ x is a zero of Q. Therefore,
a set of k linear forms on Fn corresponds to a linear map L∶Sym2Fn → F k given by a matrix
consisting from the coefficients of quadratic forms, and x is a common zero if and only if x⊗ x

is contained in kerL. Since all the coefficients lie in K, the map L is an extension of a linear
map Sym2Sn → Sk, and its kernel has a basis consisting of vectors in Sym2Sn, which can be
computed in polynomial time. Let A1, . . . ,Am be such basis and T = ∑m

i=1 ei⊗Ai ∈ S
m⊗Sn⊗Sn.

Nontrivial common zeros x ∈ Fn of the original set of quadratic forms corresponds to rank 1
symmetric matrices x⊗ x which can be presented as a nontrivial linear combination ∑m

i=1 yiAi

with yi ∈ F or, equivalently, as a contraction Ty with nonzero y ∈ Fm. This is the resulting
instance of HMinRank1 problem.

Corollary 8.8. Let F be a field and K be an effective subfield of F . Then HMinRank1K,F is
NP-hard.

The HMinRank problem is also hard in other regimes.

Theorem 8.9. Let F be a field of characteristic 0 and K be an effective subfield of F . Then
HMinRankQ,F is NP-hard for n × (2n + 1) × (2n + 1) tensors and r = n + 1.

Proof. The proof is based on a similar theorem for finite fields is sketched in [21, §3.3], which
uses NP-completeness of the minimum distance problem for linear codes proved in [76].

We reduce from a variant of the Partition problem: given a list of 2n integers such that
each integer appears at most n − 2 times, determine if it can be partitioned into 2 subsets of
size n with equal sums. NP-completeness of this variant is noted in [30, SP12].

From the input {ai, . . . , a2n} of the Partition problem construct a (n+1)× (2n+1) matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1 0
a1 a2 . . . a2n 0
a21 a22 . . . a22n 0
⋮ ⋮ ⋱ ⋮ ⋮

an−21 an−22 . . . an−22n 0
an−11 an−12 . . . an−12n 1
an1 an2 . . . a2n S/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where S is the sum of all ai. From the properties of Vandermonde determinants we see that
any (n + 1) × (n + 1) minor is nonzero if it does not contain the last column. If a minor does
contain the last column and columns i1, . . . , in, it vanishes if and only if S/2 = ai1 + ⋅ ⋅ ⋅ + ain [76,
Lem. 1]. Thus, the matrix A has rank n+ 1. Moreover, it has n+ 1 linearly dependent columns
if and only if the original Partition problem has a solution.

Let b1, . . . , bn be a basis of kerA. Since subsets of k linearly dependent columns corresponds
to vectors in kerA which have at most k nonzero coordinates, the original problem has a solution
if and only if there is a nonzero linear combination of bi with at most n+1 nonzero coordinates.
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Let Bi be a (2n + 1) × (2n + 1) matrix constructed from bi by placing its coordinates on the
diagonal. The rank of a linear combination of Bi is equal to the number of nonzero coordinates
in the corresponding linear combination of vectors bi. Thus, the answer to the HMinRank

problem for the n × (2n + 1) × (2n + 1) tensor ∑n
i=1 ei ⊗Bi and r = n + 1 determines the answer

to the original problem.

From the facts that the minrank problem is NP-hard and that minrank varieties can be
written as orbit closures, we immediately get the following hardness result for the orbit closure
containment problem.

Corollary 8.10. Given two tensors t and t′, deciding whether the orbit closure of t is contained
in the orbit closure of t′ (under the usual GLn ×GLn ×GLn action) is NP-hard.

8.3 Slice rank and minrank varieties and algebraic natural proofs

We have found a lot of equations for the minrank varieties and it is a natural question how
hard these equations are. In particular, in the GCT setting, we have a sequence of varieties Vn

and a sequence of points xn and want to prove that xn is not in Vn. This is done by giving
equations fn such that fn vanishes on Vn, but fn(xn) /= 0. The meta-question is how “difficult”
is it to prove that fn has the desired properties. That is, why is progress on algebraic circuit
lower bounds so hard? For instance, if fn has high circuit complexity, then it is very unlikely
that we will be able to prove fn(xn) /= 0 by evaluating this circuit. In turns out that when
testing membership in Vn is a hard problem, then this high circuit complexity is in some sense
unavoidable. To deal with this questions, we generalize the methods from [7] and make them
applicable to varieties for which the membership problem is hard.

We call a sequence (Vn) a p-family of varieties if Vn is a subset of F p(n) for some polynomially
bounded function p.

Definition 8.11. A family of varieties (Vn) is polynomially definable, if for each n, there are
polynomials f1, . . . , fm such that Vn is the common zero set of these polynomials and L(fi) is
polynomially bounded in n for all 1 ≤ i ≤m.

Here L(fi) denotes the algebraic circuit complexity of fi, that is, the size of a smallest circuit
computing f . Note that we do not require that m is polynomially bounded in n.

Definition 8.12. Let F be a field and K be an effective subfield. A p-family of varieties (Vn)
with Vn ⊆ F

p(n) is uniformly generated if for all n, there are polynomials g1, . . . , gp(n) over K

such that

1. the image of (g1, . . . , gp(n)) is dense in Vn,

2. each gi has polynomial circuit complexity, and

3. there is a polynomial time bounded Turing machine M that given n in unary, outputs for
each gi an arithmetic circuit.

The (Vn)-membership problem is the following decision problem: Given n and an encoding
of a point x ∈ Sp(n), decide whether x ∈ Vn.

Theorem 8.13. Let F be a field and K be an effective subfield. Let V = (Vn) be a p-family
of varieties such that V is polynomially definable over K and uniformly generated and the
V -membership problem is NP-hard. Then coNP ⊆ ∃BPP.

Proof. We give an ∃BPP-algorithm for the V -non-membership problem, that is given a point
x = (x1, . . . , xp(n)) ∈ Sp(n), decide whether x ∉ Vn. Since V -membership is NP-hard, V -non-
membership is coNP-hard and the result follows. The idea is to guess an equation f of the
variety Vn such that f(x) /= 0. Since V is polynomially definable, there is a set of defining
equations of Vn that all have polynomial circuit complexity. Of course, we need to check that
f vanishes indeed of Vn. The algorithm works as follows:
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1. Guess a circuit C of size polynomial in n computing a polynomial f(X1, . . . ,Xp(n)).
2. Generate the circuits D1, . . . ,Dp(n) computing polynomials g1, . . . , gp(n) as in Definition 8.12.

3. Use polynomial identity testing to check whether C(g1, . . . , gp(n)) is identically zero. If
not, reject.

4. Otherwise, use polynomial identity testing to check whether C(x1, . . . , xp(n)) is identically
zero. If yes, reject. Otherwise accept.

Since polynomial identity testing over K can be done in BPP, this is clearly an ∃BPP-
algorithm.

Assume that x is not in the variety. Then there is an equation of polynomial circuit com-
plexity f that vanishes on Vn such that f(x) /= 0 by the definiability of V . Assume we guessed
a circuit C for f in the first step. Since the image of (g1, . . . , gp(n)) lies in Vn, C(g1, . . . , gp(n))
will not be identically zero. We pass the test in step 3 with probility 1 − ǫ. Since f(x) /= 0, we
accept with probility 1 − ǫ in step 4. Therefore, the overall acceptance probability is bounded
by 1 − 2ǫ.

Now assume that x ∈ Vn. If the guessed circuit computes an equation f of Vn, then we will
reject with probability 1 − ǫ in step 4. If f is not an equation of Vn, then we reject in step 1 − ǫ

in step 3. In both cases the acceptance probability is bounded by ǫ. This shows the correctness
of the algorithm.

Lemma 8.14. Let (Vn) ⊆ F p(n) be a p-family of varieties. Let (Gn) be a sequence of groups and(un) be a sequence of vectors such that Vn is the Gn-orbit closure of un. If for a generic element
g ∈ Gn, the coordinate functions (γ1, . . . , γp(n)) of gun can be described by polynomial size circuits(C1, . . . ,Cp(n)) and the mapping 1n ↦ (C1, . . . ,Cp(n)) is polynomial time computable, then (Vn)
is uniformly generated.

Proof. Since Vn is an orbit closure, the orbit lies dense in Vn by definition. The other two items
in Definition 8.12 follow from the prerequisites of the lemma.

Remark. The same statement is true, if every Vn is not an orbit closure but an intersection of
an orbit closure with a vector space. The proof is almost identical.

Corollary 8.15. Let S be an effective subfield of F . For infinitely many n, there is an m, a
tensor t ∈ Sm×n×n and a value r such that there is no algebraic poly(n)-natural proof for the
fact that the minrank of t is greater than r unless coNP ⊆ ∃BPP.

Proof. The proof is by contradiction. If there is a poly(n)-natural proof for every tensor t for
almost all n, then the corresponding sequence of minrank varieties is p-definable. Since each
minrank variety can be written as an orbit closures, where the groups are triples of general
linear groups, by Lemma 8.14, the minrank varieties are also uniformly generated. Therefore,
by Theorem 8.13, coNP ⊆ ∃BPP.

Remark. The result above can also be extended to the slice rank varieties. Since each of them
can be written as a polynomial union of orbit closures, instead of testing whether the circuit
C in the proof of Theorem 8.13 vanishes on one dense subset, we test whether it vanishes on
polynomially many dense subsets.
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