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Abstract

Background: Porous tantalum is currently used in orthopaedic surgery for a variety of indications including soft tissue
re-attachment. However, the clinical results have been variable and a previous laboratory study has suggested that
tantalum may actually inhibit chick tendon fibroblasts. The influence of tantalum on human cell-types involved in soft
tissue re-attachment has not been defined.

Methods: Human fibroblasts, human osteoblasts and human mesenchymal stem cells were plated on glass cover slips,
half of which were coated with tantalum. Cell numbers were assessed at 1, 2, 7 and 14 days using Cyquant® assay. Cell
adhesion and morphology were assessed using light microscopy at 7, 14 and 28 days. To reduce the effect of an
expected rate of error, n = 4 was utilised for each cell type and the experiment was repeated twice.

Results: Statistically similar numbers of human osteoblasts and human mesenchymal stem cells were present at 14 days
on tantalum-coated and uncoated glass cover slips, revealing no inhibitory effect on cell proliferation. More than double
the number of human fibroblasts was seen on tantalum-coated cover slips at that time point (compared to controls),
which was statistically significant (p < 0.0001). Morphological assessment revealed normal cell spreading and adhesion on
both substrates at all time points.

Conclusions: In vitro study demonstrates that Tantalum causes a significant increase in the proliferation of human
fibroblasts with no quantifiable negative effects seen on fibroblast behaviour after 28 days culture. Furthermore, tantalum
does not exert any inhibitory effects on the proliferation or behaviour of human osteoblasts or human mesenchymal
stem cells. Tantalum could be an appropriate biomaterial for use in situations where soft tissue requires direct
reattachment to implants and may stimulate soft tissue healing.
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Introduction
Porous tantalum has favourable chemical and mechanical
properties for use as an orthopaedic biomaterial. Its trabe-
culated structure is fabricated by depositing vaporised
tantalum onto a polymerised carbon foam skeleton. (Zar-
diackas et al., 2001) The porous structure has a Young’s
modulus of elasticity that is close to cortical bone. (Levine
et al., 2006) Tantalum exhibits excellent osseointegration
and as a result has an established track record in arthro-
plasty surgery, where its main indication is to address

bone loss, with vascularised bone growing through the in-
terconnected pores in as little as 8 weeks. (Black, 1994)
The potential for porous tantalum to act as a site for the
direct reattachment of soft tissues such as tendons and lig-
aments is also of interest, but less well studied.
With an ageing global population and a higher expect-

ation of function, the demand on revision and salvage
arthroplasty implants is increasing. Loss of bone stock can
include native soft tissue attachment sites (e.g. abductor
mechanism to greater trochanter), affecting implant sta-
bility, joint function and survivorship of the implant. In
these circumstances, (when the native attachment is no
longer present) soft-tissues may require direct reattach-
ment to a weight bearing prosthesis and porous tantalum
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is currently being used in this role. However, the clinical
outcomes of soft-tissue re-attachment to tantalum are less
well studied and perhaps more variable than its ability to
osseointegrate.
Canine supraspinatus reattachment studies have shown

promising results with restoration of function, stability
and locomotion, (Reach et al., 2007; Itälä et al., 2007;
Bobyn et al., 1982; Higuera et al., 2005; Inoue et al., 1995)
but despite this, Reach et al. found that the quality of the
interface between soft-tissues and tantalum implants was
‘histologically poor’ and associated with low mechanical
strength. (Reach et al., 2007) Clinical human studies are
limited in number but have reported restoration of collat-
eral ligament stability around the knee, and abductor
function of the hip, after direct reattachment to tantalum
implants in small numbers of patients. (Chalkin & Minter,
2005; Kwong & Lin, 2010; Holt et al., 2009) In contrast,
tantalum patellar augments used in the management of
the symptomatic post-patellectomy knee, have met with
almost universal failure, unless some residual bone stock
was present. (Jordan et al., 2014; Ries et al., 2006; Tigani
et al., 2009; Kwong & Desai, 2008)
In order to better understand the relationship between

soft-tissue and this material, laboratory studies have
investigated the cellular effects of tantalum, demonstrating
increases in murine osteoblast proliferation, (Ninomiya
et al., 2015; Sagomonyants et al., 2011) canine chondro-
cyte activity (Gordon et al., 2005) and the phagocytic cap-
acity of leukocytes. (Schildhauer et al., 2009) It is the
behaviours of fibroblasts and mesenchymal stem cells in
contact with tantalum, however, that are presumed to be
more important to the success of soft tissue reattachment.
Animal fibroblast studies found that phagocytosis of par-
ticulate tantalum debris inhibited fibroblast proliferation
and, in high enough concentrations, was cytotoxic, (Plenk,
1980; Mostardi et al., 1997) but the effect was not material
specific. Another study found the presence of a porous
tantalum block inhibited chick tendon fibroblast activity,
reducing the cells’ capacity to adhere and produce colla-
gen. (Jordan et al., 2014)

Despite the currently available literature, evidence of
the behaviour of human cells in contact with tantalum is
limited. The aim of this study was to examine the effects
of tantalum on the proliferation and behaviour of human
cell types involved in tissue healing and reattachment of
soft tissues, namely human fibroblasts (HFs), human
mesenchymal stem cells (HMSCs) and human osteo-
blasts (HOBs).

Materials and methods
Circular, glass cover-slips (ø = 13mm, SLS Ltd) were
used to provide a flat substrate with minimal nanotex-
ture. All slides were cleaned (oxygen plasma at 50w for
2 min) and half were coated with vaporised, ‘com-
mercially-pure’ tantalum at a thickness of 50 nm (125
mA Emitch K575x Turbo Splutter Coater, LOT-
QuantumDesign Ltd). All cover slips were sterilised in
70% ethanol inside a laminar flow cabinet. 24-well
plates were prepared with a single coverslip of either
uncoated glass (UG) or tantalum-coated (TC) glass in
the bottom of each well.
Three cell types were studied; HOBs (primary derived

osteoblasts from distal femur), HFs (human fibroblasts)
and HMSCs (C-12972). Cells were plated in each well
on either uncoated glass or tantalum-coated glass cover-
slips with DMEM culture medium (supplemented with
10% Foetal Calf Serum and 1% penicillin/streptomycin),
which was refreshed every 2 days. In every experiment
n = 4 to account for an expected rate of error.
An initial value of 10,000 cells per well was chosen for

all cell types, however in preliminary experiments, fibro-
blast confluence was seen after only 7 days on both sub-
strates. For this reason a lower number of fibroblasts
(1000) was utilised to ensure the substrate remained
sub-confluent, avoiding cell-cell contact inhibition.
Cyquant® assay was performed at 1,2, 7 and 14 days

culture to examine the rate of cell proliferation. Serial
dilutions of known cell numbers were prepared to create
a standard curve for comparison of fluorescent emis-
sions to ascertain cultured cell numbers. This was

Table 1 Mean proliferated cell numbers of Human osteoblasts (HOBs), human mesenchymal stem cells (HMSCs) and human
fibroblasts (HFs) cultured on glass or tantalum-coated glass substrates at 0, 1, 2, 7 and 14 days. Mean variability reported as standard
deviation

0 days 1 day 2 days 7 days 14 days

HOB on glass 10,000 29,938 (±2710) 40,397 (±1805) 70,204 (±1775) 68,723 (±159)

HOB on tantalum 10,000 40,416 (±8126) 45,013 (±1265) 57,086 (±3927) 61,618 (±1105)

HMSC on glass 10,000 22,729 (±684) 21,547 (±2045) 38,042 (±1298) 39,624 (±2704)

HMSC on tantalum 10,000 16,961 (±4809) 24,378 (±1046) 37,068 (±2596) 37,732 (±1231)

HF on glass 1000 1418 (±175) 1096 (±238) 1105 (±208) 3535 (±820)

HF on tantalum 1000 1829 (±596) 1175 (±280) 1339 (±338) 7390 (±1618)

Mean proliferated cell numbers of Human osteoblasts (HOBs), human mesenchymal stem cells (HMSCs) and human fibroblasts (HFs) cultured on glass or tantalum-
coated glass substrates at 0, 1, 2, 7 and 14 days. Mean variability reported as standard deviation
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performed three times for each cell type and an average
taken. The data was submitted to normality testing and
analysed by two-way ANOVA and Tukey’s pair test (p <
0.05). For ease of reading the data in tabulated form
average values were rounded to the nearest hundred.
Each cell type was removed from culture and fixed

(2% paraformaldehyde fixative solution) to enable mor-
phological analysis using light microscopy at 7, 14 and
28 days culture. The entire experiment was repeated
twice to ensure correlation.

Results
Human osteoblasts (HOBs)
After 1 day of culture there was a statistically significant in-
crease in the number of HOBs on TC substrate compared
to UG (p < 0.0001). At 7 days the opposite was observed
with a statistically significant increase in the number of

HOBs on UG (p < 0.0001). By 14 days there was no statis-
tical difference in the cell numbers. (Table 1, Fig. 1).
Light microscopy at 7 days revealed a monolayer of

HOBs on both surfaces, which was denser by 14 days. By
28 days culture, bony spicules were seen protruding from
both substrates that did not wash away with passage or
rinsing. (Fig. 2) There was no discernible difference be-
tween the behaviour of HOBs on the two different sur-
faces, the cells were adherent to the substrates with
cellular projections (lamellipodia and filopodia) and per-
ipheral spreading.

Human Mesenchymal stem cells (HMSCs)
Despite an initial increase in the number of HMSCs on
UG substrate (p < 0.0001) after 1 day, the cells prolifer-
ated at a comparable rate for the rest of the time points.
(Table 1, Fig. 3).
Light microscopy showed the cells to form a consist-

ent, adherent monolayer on both substrates by 7 days
and nodule formation was seen with a range of sizes.
These nodules disappeared during cell passage and rep-
resented dense clumps of colony forming units. By 14
days the cellular nodules were seen denser and larger
(500 μm compared to 200 μm) on the TC slips. (Fig. 4)
By 28 days, cellular senescence was observed on both
substrates.

Human fibroblasts (HFs)
At this lower initial number of cells (1000) there was
no statistical difference in proliferation on the 2 sub-
strates until day 14, when there was a statistically sig-
nificant increase in the number of fibroblasts on TC
substrate (p < 0.0001). The number of fibroblasts on
the TC slips was more than double (7390 ± 1618
(SD)) the number seen on the UG slips (3535 ± 820
(SD)). (Table 1, Fig. 5).
Morphological analysis saw no recognisable difference

in the behaviour of the cells on the two different sur-
faces. Fibroblasts were adherent to both substrates and

Fig. 1 Human Osteoblast (HOBs) proliferation on glass and tantalum-coated glass substrates at 0, 1, 2, 7 and 14 days culture

Fig. 2 Human osteoblasts forming a bony spicule on tantalum-
coated glass (1c)
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were seen to be well-spread with thinning of the cells
around the edges. (Fig. 6) A dense monolayer was
formed by the cells and this became increasingly dense
with time. At 28 days a direct comparison found the
monolayer on the TC substrate to be visibly denser than
on UG.

Discussion
The main findings of this study were that tantalum-
coated glass caused a significant increase in the pro-
liferation of human fibroblasts after 14 days culture,
with no quantifiable negative effects seen on fibroblast
behaviour after 28 days culture. This finding is in
contrast to previous concerns regarding the possibility
of tantalum inhibiting fibroblasts. (Jordan et al., 2014)
This study found no evidence of any inhibitory effect
on the proliferation or cellular morphology of any of
the human cell lineages studied.
Specifically, when observing the morphology of all cell

lineages studied, there was no inhibitory effect seen
when culturing on a tantalum-coated substrate. Tanta-
lum’s osseointegrative success was further supported,
with bony spicules seen forming on the surface of both

substrates. Anchorage dependant cells, such as fibro-
blasts and osteoblasts, require adhesion to an underlying
substrate for survival, (Baxter et al., 2002) and dense,
well-attached monolayers were noted in all cultures,
with the cells spreading, and forming projections (la-
mellipodia and filopodia).
The aforementioned study suggesting that the pres-

ence of tantalum inhibited fibroblasts used chick ten-
don cells and reported inhibition of cellular adhesion,
with rounded, unattached cells floating in the culture
medium and a reduced ability to proliferate and pro-
duce collagen. (Jordan et al., 2014) These effects may
be attributable to the particular cells used, or the
presence of other factors affecting cellular behaviour
such as particulate debris (created by cutting blocks
of porous tantalum), or the nanostructure of the ma-
terial used. (Yim & Leong, 2005; Lim & Donahue,
2007; Barr et al., 2009)
When reviewing the porous material’s ability to inte-

grate with different tissues there are more factors to
consider than purely the metal element used. These
include the structures porosity with large interconnect-
ing pores providing potential for capillary ingrowth to

Fig. 3 Human Mesenchymal Stem Cell (HMSCs) proliferation on glass and tantalum-coated glass substrates at 0, 1, 2, 7 and 14 days culture

Fig. 4 Human Mesenchymal Stem Cells at 7-day culture forming nodules on uncoated glass (a) and tantalum-coated glass (b) substrates
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support vascularised tissue, and also the nanostructure
which has been reported to be stimulatory to certain
cell types. (Plenk, 1980; Yim & Leong, 2005; Lim &
Donahue, 2007; Barr et al., 2009) The macrostructure
of the surface produces a coefficient of friction that can
provide initial interference fixation and therefore stabil-
ity for ingrowth of friable soft tissues.
Human studies, although limited, have met with some

successes. Promising results were seen with functional
restoration after reattachment of the hip abductors and
collateral ligaments around the knee, however, these
prostheses utilised compressive clamps to reattach the
tendon/ligament, which may have allowed functional
restoration without histologically adequate soft tissue
integration into the porous structure for medium term
results. (Chalkin & Minter, 2005; Kwong & Lin, 2010;
Holt et al., 2009) The, almost, universal failure of patella
augments in the absence of host bone may be more

likely attributable to the high mechanical shear stresses
at this tissue-implant interface and a poor biological en-
vironment created by multiple revision surgeries, (Jordan
et al., 2014; Ries et al., 2006; Tigani et al., 2009; Kwong
& Desai, 2008; Gee et al., 2016) than previous sugges-
tions that tantalum may cause fibroblast inhibition
(Jordan et al., 2014).
Despite previous concerns of tantalum causing fibro-

blast inhibition (from a single study using chick tendon
fibroblasts) (Jordan et al., 2014), this new evidence sug-
gests that the reverse is true. The presence of tantalum
itself does not inhibit the human cells required for tissue
healing (HOBs, MSCs or HFs) and actually exerts stimu-
latory effects on HF proliferation by 14 days. With this
new information, we have an improved understanding of
the likely causative factors in the success or failure of
this biomaterial and can discard concerns of cellular in-
hibition by tantalum itself. New manufacturing processes

Fig. 5 Human Fibroblast (HFs) proliferation on glass and tantalum-coated glass substrates at 0, 1, 2, 7 and 14 days culture

Fig. 6 Human fibroblasts forming a dense monolayer on tantalum-coated glass, with cellular adhesion (a). A direct comparison of the density of
the Human Fibroblast monolayer after 28 days on uncoated glass (b) and tantalum-coated glass (c)
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or bio-manipulation could be utilised to enable novel
methods and applications of directly reattaching soft tis-
sues to a tantalum implant with restoration of a more
natural histological attachment and a more predictable
outcome.

Conclusion
In vitro studies demonstrated that tantalum significantly
increased the proliferation of human fibroblasts in direct
contact with no quantifiable negative effects seen on
fibroblast behaviour up to 28 days culture. Furthermore,
tantalum did not exert any inhibitory effects on the pro-
liferation or behaviour of human osteoblasts or human
mesenchymal stem cells. Tantalum could be an appro-
priate biomaterial for use in situations where soft tissue
requires direct reattachment to implants and may stimu-
late soft tissue healing at tissue interfaces.

Abbreviations
DMEM: Dulbecco’s Modified Eagle Media; HF: Human fibroblast;
HMSC: Human mesenchymal stem cell; HOB: Human osteoblast;
PBS: Phosphate buffered saline; TC: Tantalum coated glass cover slip;
UG: Uncoated glass cover slip

Authors’ contributions
ECAG – study design, data acquisition, data interpretation, study write up,
editing. RE – data acquisition, data interpretation. LB - data acquisition, data
interpretation. AS – senior author, study design, study write up, editing. JAH
– senior author, study design, data acquisition, data interpretation, editing.
All authors have read and approved the final submitted manuscript.

Funding
Internal institutional research funds.

Availability of data and materials
The datasets generated and/or analysed during the current study are not
publicly available, but are available from the corresponding author on
reasonable request.

Ethics approval and consent to participate
Not applicable, cell based study.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Salford Royal NHS Foundation Trust, Manchester, UK. 2School of Science and
Technology, Nottingham Trent University, Nottingham NG11 8NS, UK. 3Sano
Orthopedic Clinic, Kansas City, Kansas, USA. 4Kansas City University of
Medicine and Biosciences, Kansas City, MO, USA.

Received: 1 May 2019 Accepted: 17 October 2019

References
Barr S, Hill E, Bayat A (2009) Current implant surface technology: an examination

of their nanostructure and their influence on fibroblast alignment and
biocompatibility. Eplasty 16(9):e22

Baxter LC, Frauchiger V, Textor M, ap Gwynn I, Richards RG (2002) Fibroblast and
osteoblast adhesion and morphology on calcium phosphate surfaces. Eur
Cell Mater 4(1):1–17

Black J (1994) Biological performance of tantalum. Clin Mater 16:167–173

Bobyn JD, Wilson GJ, Macgregor DC, Pilliar RM, Weatherly GC (1982) Effect of
pore size on the Peel strength of attachment of fibrous tissue to porous-
surfaced implants. J Biomed Mater Res 16:571–584

Chalkin B, Minter J (2005) Limb salvage and abductor reattachment using a custom
prosthesis with porous tantalum components. J Arthrop 20(1):127–130

Gee ECA, Jordan R, Hunt JA, Saithna A (2016) Current evidence and future
directions for research into the use of tantalum in soft tissue re-attachment
surgery. J Mater Chem B 4:1020–1034

Gordon WJ, Conzemius MG, Birdsall E, Wannemuehler Y, Mallapragada S, Lewallen
DG, Yaszemski MJ, O’Driscoll SW (2005) Chondroconductive potential of
tantalum trabecular metal. J Biomed Mater Res Part A 75(2):229–233

Higuera C, Inoue N, Lim J, Zhang R, Dimaano N, Frassica F, Chao E (2005) Tendon
reattachment to a metallic implant using An Allogenic bone plate
augmented with Rhop-1 Vs. Autogenous Cancellous Bone Marrow In A
Canine Model. J Orthop Res 23:1091–1099

Holt GE, Christie MJ, Schwartz HS (2009) Trabecular metal Endoprosthetic limb
salvage reconstruction of the lower limb. J Arthrop 24(7):1079–1085

Inoue N, Young DR, Ikeda K (1995) Fiber orientation in soft tissue attachment to
metallic prosthesis. Trans Orthop Res Soc 20:615

Itälä A, Heijink A, Leerapun T, Reach JS, An KN, Lewallen DG (2007) Successful
canine patellar tendon reattachment to porous tantalum. Clin Orthop Relat
Res 463:202–207

Jordan R, Saithna A, Paxton J, Grover L, Thompson P, Krikler S (2014) Early failure
of tantalum patellar augments in the post- Patellectomy knee. Curr Orthop
Pract 25(5):472–477

Kwong LM, Lin A (2010) Abductor reattachment to structural allograft utilizing
porous tantalum in revision THA. J Bone Jt Surg Br 92(B):111

Kwong Y, Desai V (2008) The use of a tantalum-based augmentation of Patella in
patients with a previous Patellectomy. Knee 15:91–94

Levine B, Della Valle C, Jacobs J (2006) Applications of porous tantalum in Total
hip Arthroplasty. J Am Acad Orthop Surg 14(12):646–655

Lim JY, Donahue HJ (2007) Cell sensing and response to micro- and
nanostructured surfaces produced by chemical and topographic patterning.
Tissue Eng 13(8):1879–1891

Mostardi RA, Meerbaum SO, Kovacik MW, Gradisar IA Jr (1997) Response of
human fibroblasts to tantalum and titanium in cell culture. Biomed Sci
Instrum 33:514–518

Ninomiya JT, Struve JA, Krolikowski J, Hawkins M, Weihrauch D (2015) Porous
Ongrowth surfaces Alter osteoblast maturation and mineralization. J Biomed
Mater Res Part A 103(1):276–281

Plenk H (1980) Evaluation of the effect of ceramic and different metallic implant
materials on the growth rate of human fibroblast cultures. In: Winter GD et al
(eds) Evaluation of biomaterials, advances in biomaterials, vol 1. Wiley,
Chichester, pp 399–403

Reach JS, Dickey ID, Zobitz ME, Adams JE, Scully SP, Lewallen DG (2007) Direct
tendon attachment and healing to porous tantalum: An experimental animal
study. J Bone Jt Surg Am 89:1000–1009

Ries MD, Cabalo A, Bozic KJ, Anderson M (2006) Porous tantalum patellar
augmentation: the importance of residual bone stock. Clin Orthop Relat Res
452:166–170

Sagomonyants KB, Hakim-Zargar M, Jhaveri A, Aronow MS, Gronowicz G (2011)
Porous tantalum stimulates the proliferation and Osteogenesis of osteoblasts
from elderly female patients. J Orthop Res 29(4):609–616

Schildhauer TA, Peter E, Muhr G, Koller M (2009) Activation of human leukocytes
on tantalum trabecular metal in comparison to commonly used orthopedic
metal implant materials. J Biomed Mater Res Part A 88(2):332–341

Tigani D, Trentani P, Trentani F, Andreoli I, Sabbioni G, Del Piccolo N (2009)
Trabecular metal Patella in Total knee Arthroplasty with Patella bone
deficiency. Knee 16:46–49

Yim EKF, Leong KW (2005) Significance of synthetic nanostructures in dictating
cellular response. Nanomed Nanotech Biol Med 1(1):10–21

Zardiackas LD, Parsell DE, Dillon LD, Mitchell DW, Nunnery LA, Poggie R (2001)
Structure metallurgy and mechanical properties of a porous tantalum foam. J
Biomed Mater Res 58(2):180–187

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Gee et al. Journal of Experimental Orthopaedics            (2019) 6:40 Page 6 of 6


	Abstract
	Background
	Methods
	Results
	Conclusions

	Introduction
	Materials and methods
	Results
	Human osteoblasts (HOBs)
	Human Mesenchymal stem cells (HMSCs)
	Human fibroblasts (HFs)

	Discussion
	Conclusion
	Abbreviations
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

