THE KAUFFMAN SKEIN ALGEBRA OF THE TORUS

HUGH MORTON, ALEX POKORNY, AND PETER SAMUELSON

Abstract

We give a presentation of the Kauffman (BMW) skein algebra of the torus, which is the "type $B C D$ " analogue of the Homflypt skein algebra of torus which was computed by the first and third authors. In the appendix we show this presentation is compatible with the Frohman-Gelca description of the Kauffman bracket (Temperley-Lieb) skein algebra of the torus FG00.

Contents

1. Introduction
2. The BMW algebra and symmetrizers2.1. Notation and definitions2.2. The Hecke and BMW Algebras2.3. Relating D_{k} to hook idempotents2.4. Lifting from the Hecke algebra
2.5. Explicit formulas for $n=2$
2.6. Recursion between symmetrizers 7
3. All relations 8
4. Perpendicular relations 13
5. Angled relations 18
5.1. Acting on the empty link 19
5.2. The affine BMW algebra 19
6. Appendix 22
6.1. Przytycki 22
6.2. Frohman and Gelca 23
References 24

1. Introduction

The skein $\operatorname{Sk}(M)$ of the 3 -manifold M is a vector space formally spanned by embedded links in M, modulo local relations which hold in a ball. These relations are referred to as skein relations, and there are several versions, each of which encodes a linear relation between R-matrices for some quantum group. A priori, $\operatorname{Sk}(M)$ is just a vector space, but if $M=F \times[0,1]$, then $\operatorname{Sk}(M)$ is an algebra, where the product is given by stacking in the $[0,1]$ direction.

In recent years there have been several results relating skein algebras of surfaces with algebras constructed using representation theoretic methods. Let us somewhat imprecisely state two of these results which are most relevant to the present paper.

Theorem 1. We have the following isomorphisms.
(1) The Kauffman bracket skein algebra of the torus is isomorphic to the $t=q$ specialization of the $\mathfrak{s l}_{2}$ spherical double affine Hecke algebra. [FG00]
(2) The Homflypt skein algebra of the torus is isomorphic to the $t=q$ specialization of the elliptic Hall algebra of Burban and Schiffmann. MS17]
The double affine Hecke algebra was defined by Cherednik (for general \mathfrak{g}, see, e.g. [Che05]) as part of his proof of the Macdonald conjectures. The elliptic Hall algebra was defined by Burban and Schiffmann, who showed it is the "generic" Hall algebra of coherent sheaves over an elliptic curve over a finite field. This algebra can also be viewed as a DAHA (the spherical $\mathfrak{g l}_{\infty}$ DAHA) by work of Schiffmann and Vasserot in SV11. These algebras have found many applications over the years, including the following:

- Cherednik's proof of the Macdonald conjectures Che95,
- algebraic combinatorics (proofs and generalizations of the shuffle conjecture CM18, BGSLX16),
- knot theory (computations of Homflypt homology of positive torus knots Mel17),
- mathematical physics (a mathematical version of the AGT conjectures SV13),
- enumerative geometry (counting stable Higgs bundles [Sch16).

These results suggest that it is worthwhile to understand skein algebras of surfaces, and in particular of the torus, for various versions of the skein relations. In this paper we give a presentation of the algebra \mathcal{D} associated to the torus by the Kauffman 1 skein relations given in equations (2.1) and (2.2).

Theorem 2 (see Theorem 3.10). The Kauffman skein algebra \mathcal{D} of the torus has a presentation with generators $D_{\mathbf{x}}$ for $\mathbf{x} \in \mathbb{Z}^{2}$, with relations

$$
\begin{align*}
{\left[D_{\mathbf{x}}, D_{\mathbf{y}}\right] } & =\left(s^{d}-s^{-d}\right)\left(D_{\mathbf{x}+\mathbf{y}}-D_{\mathbf{x}-\mathbf{y}}\right) \tag{1.1}\\
D_{\mathbf{x}} & =D_{-\mathbf{x}} \tag{1.2}
\end{align*}
$$

If $\mathbf{x} \in \mathbb{Z}^{2}$ is primitive (i.e. its entries are relatively prime), then $D_{\mathbf{x}}$ is the (unoriented) simple closed curve on the torus of slope \mathbf{x}. However, the definition for nonprimitive \mathbf{x} is more complicated, and in some sense is the key difficulty in the paper. The strategy for the proof follows the ideas of MS17], which in turn was motivated by some proofs in BS12]. Using skein theoretic calculations and some identities involving idempotents in the BMW algebra, we prove two special cases of these relations (see Proposition 3.3). We then use the natural $S L_{2}(\mathbb{Z})$ action and an induction argument to show that all the claimed relations follow from these special ones.

We also note that the $D_{\mathbf{x}}$ come from elements $B_{k} \in B M W_{k}$ that are analogues of the power sum elements $P_{k} \in H_{k}$ in the Hecke algebra that were found and studied by Morton and coauthors. In Theorem 4.1. which may be of independent interest, we show that the B_{k} satisfy a "fundamental identity" which is an analogue of an identity for the P_{k} found by Morton and coauthors. We aren't aware of a previous appearance of this identity in the literature.

In both of the statements in Theorem the skein algebra was computed explicitly and then shown to be isomorphic to a DAHA-type algebra that had already appeared in representation theory. However, at present we are not aware of a previous appearance of the algebra described in Theorem 2, In particular, the discussion above suggests that there should be an interesting t-deformation of the algebra presented in Theorem 2

We remark that these skein relations are the relations used in defining the BMW algebra BW89, Mur87, which is the centralizer algebra of tensor powers of the defining representation of quantum groups in type $B C D$. The algebra \mathcal{D} could therefore optimistically be viewed as a "type $B C D$ elliptic Hall algebra." We believe making this statement more precise is an interesting question, but it will have to wait for future work. We do not 2^{2}, however, that this algebra is unlikely to literally be the Hall algebra of a category because it does not have a \mathbb{Z}^{2} grading ${ }^{3}$.

A summary of the contents of the paper is as follows. In Section 2, we recall some background and prove some identities in the $B M W$ algebra. In Section 3, we state the main theorem and reduce its proof to 2 families of identities, which are then proved in Sections 4 and 5. The Appendix regards a classical

[^0]theorem of Przytycki and the relation of our theorem to a theorem of Frohman and Gelca in FG00 describing the Kauffman bracket skein algebra of the torus.
Acknowledgements: This paper was initiated during a Research in Pairs stay by the first and third authors at Oberwolfach in 2015, and we appreciate their support and excellent working conditions. Further work was done at conferences at Banff and the Isaac Newton Institute, and the third author's travel was partially supported by a Simons travel grant. The authors would like to thank A. Beliakova, C. Blanchet, C. Frohman, F. Goodman, A. Negut, A. Oblomkov, and A. Ram for helpful discussions.

2. The BMW algebra and symmetrizers

In this section we define the Kauffman skein algebra and the BMW algebra $B M W_{k}$, define elements $B_{k} \in B M W_{k}$ which are fundamental in the paper. We relate the closure of B_{k} in the annulus to elements D_{k} defined using power series, and we prove some identities involving the D_{k} that will be needed in later sections.
2.1. Notation and definitions. Here we will record some notation and definitions. Everywhere our base ring will be

$$
R:=\mathbb{Q}(s, v)
$$

We will use standard notation for quantum integers:

$$
\{n\}:=s^{n}-s^{-n}, \quad\{n\}^{+}:=s^{n}+s^{-n}, \quad[n]:=\{n\} /\{1\}
$$

Definition 2.1. The Kauffman skein $\mathcal{D}(M)$ of a 3-manifold M is the vector space spanned by framed unoriented links in M, modulo the Kauffman skein relations:

In particular, we will abbreviate the notation for the thickened torus and solid torus.

- $\mathcal{D}:=\mathcal{D}\left(T^{2} \times[0,1]\right)$ is the skein algebra of the thickened torus,
- $\mathcal{C}:=\mathcal{D}\left(S^{1} \times[0,1]^{2}\right)$ is the skein of the solid torus.
2.2. The Hecke and BMW Algebras. The Birman-Murakami-Wenzl algebra $B M W_{n}$ is the R-algebra generated by $\sigma_{1}, \cdots, \sigma_{n-1}, h_{1}, \cdots, h_{n-1}$ subject to certain relations, which can be found in BW89, Mur87. They showed that the BMW algebra is isomorphic to the Kauffman algebra (see also Mor10, GH06), which consists of tangles in the square with n points on both the top and bottom edges, with orientation removed, modulo the Kauffman skein relations, where the multiplication is stacking diagrams vertically. By convention, the diagram of the product $X Y$ is obtained by joining the top edge of X with the bottom edge of Y. This is sometimes referred to the relative skein module on the square with $2 n$ boundary points. A general theory of relative skein modules exist, and we will discuss another example of such a skein in Section 4

The Hecke algebra H_{n} is similarly defined as the relative Homflypt skein module of the square with $2 n$ boundary points. As an algebra, it is generated by $\sigma_{1}, \cdots, \sigma_{n-1}$, modulo the quadratic relations $\sigma_{i}-\sigma_{i}^{-1}=s-s^{-1}$. There is an algebra projection $\pi_{n}: B M W_{n} \rightarrow H_{n}$ sending σ_{i} to σ_{i} and sending h_{i} to 0 .

In this subsection we first recall a very useful result of Beliakova and Blanchet in BB01 relating the Hecke algebra H_{n} and the BMW algebra, which we use to prove an identity involving the D_{k}. Let
$\pi_{n}: B M W_{n} \rightarrow H_{n}$ be the projection from the BMW algebra to the Hecke algebra, and let I_{n} be the kernel of π_{n}.

Theorem 2.2 ([BB01, Thm. 3.1]). There exists a unique (non-unita $\sqrt{4}$) algebra map $s_{n}: H_{n} \rightarrow B M W_{n}$ which is a section of π_{n} such that

$$
s_{n}(x) y=0=y s_{n}(x) \quad \text { for } x \in H_{n}, y \in I_{n}
$$

The Hecke algebra has minimal central idempotents $z_{\lambda} \in H_{n}$ indexed by partitions of n :

$$
\left\{\lambda=\left(\lambda_{1}, \cdots, \lambda_{k}\right) \mid \lambda_{j} \in \mathbb{N}_{\geq 0}, \lambda_{i} \geq \lambda_{i+1}, \quad \sum \lambda_{i}=n\right\}
$$

The section s_{n} transfers these to minimal central idempotents in the BMW algebra. In particular, if $z_{(n)} \in H_{n}$ is the symmetrizer, then $s_{n}\left(z_{(n)}\right)=f_{n}$ is the symmetrizer in the BMW algebra. We use these symmetrizers to make the key definition of the paper.

Definition 2.3. Given an element $x \in B M W_{n}$, let $\hat{x} \in \mathcal{C}=\mathcal{D}\left(S^{1} \times D^{2}\right)$ be the annular closure of a diagram representing x. Define elements $D_{k} \in \mathcal{C}$ using the following equality of power series:

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{D_{k}}{k} t^{k}:=\ln \left(1+\sum_{j \geq 0} \hat{f}_{j} t^{j}\right) \tag{2.3}
\end{equation*}
$$

Note the right hand side makes sense because \mathcal{C} is a commutative algebra.
2.3. Relating D_{k} to hook idempotents. Write $\widehat{f}_{n} \in \mathcal{C}$ for the standard closure of the symmetriser $f_{n} \in B M W_{n}$ and similarly $\widehat{e}_{n} \in \mathcal{C}$ for that of the antisymmetriser. We will also use the notation $\widehat{Q}_{(i \mid j)} \in \mathcal{C}$ for the image in \mathcal{C} of the class $\left[s_{n}\left(z_{(i \mid j)}\right)\right]$ corresponding to the hook $\lambda=(i \mid j)$, which has an arm of length i and a leg of length j, and whose Young diagram contains $i+j+1$ cells. Then we have as a special case $\widehat{f}_{n}=\widehat{Q}_{(n-1 \mid 0)}$ and $\widehat{e}_{n}=\widehat{Q}_{(0 \mid n-1)}$.

We can use the decomposition of the product of \widehat{f}_{i} and \widehat{e}_{j} as a sum of hooks to analyse the element D_{k} in terms of hooks. Write $F(t), E(t)$ for the formal generating functions

$$
F(t):=1+\sum_{i=1}^{\infty} \widehat{f}_{i} t^{i}, E(t)=1+\sum_{i=1}^{\infty} \widehat{e}_{i} f t^{i}
$$

Recall that we have defined D_{k} by

$$
\sum_{k=1}^{\infty} \frac{D_{k}}{k} t^{k}:=\ln (F(t))
$$

Taking the formal derivative of these series gives the alternative description

$$
\sum_{k=1}^{\infty} D_{k} t^{k-1}=\frac{F^{\prime}(t)}{F(t)}
$$

Let us also introduce the formal 2 -variable hook series $S(t, u)$ by setting

$$
S(t, u):=\sum_{k, l \geq 0} \widehat{Q}_{(k \mid l)} t^{k} u^{l}
$$

Proposition 2.4. The product of the two series $F(t)$ and $E(u)$ satisfies

$$
\begin{equation*}
F(t) E(u)=(1+t u)(1+(t+u) S(t, u)) . \tag{2.4}
\end{equation*}
$$

[^1]Proof. From the paper of Koike and Terada KT87] we have an expansion for the product $\widehat{f}_{i} \widehat{e}_{j}$ in terms of hooks:

$$
\widehat{f}_{i} \widehat{e}_{j}=\widehat{Q}_{(i-1 \mid j)}+\widehat{Q}_{(i \mid j-1)}+\widehat{Q}_{(i-2 \mid j-1)}+\widehat{Q}_{(i-1 \mid j-2)}
$$

This relation is true for $i, j>1$, and also holds when one of i and j is equal to 1 , with the convention that $\widehat{Q}_{(k \mid l)}=0$ when $k<0$ or $l<0$. The one exception is that when $i=j=1$ there is an extra term

$$
\widehat{f}_{1} \widehat{e}_{1}=\widehat{Q}_{(0 \mid 1)}+\widehat{Q}_{(1 \mid 0)}+1
$$

This accounts for the term $t u$ on the right hand side of equation (2.4). Otherwise the coefficient of $t^{i} u^{j}$ in $\left(t+u+t^{2} u+t u^{2}\right) S(t, u)$ is

$$
\widehat{Q}_{(i-1 \mid j)}+\widehat{Q}_{(i \mid j-1)}+\widehat{Q}_{(i-2 \mid j-1)}+\widehat{Q}_{(i-1 \mid j-2)}
$$

with the same convention, and so agrees with the coefficient of $t^{i} u^{j}$ in $F(t) E(u)$.
In Proposition 2.4 we can take $u=-t$ to get the relation $F(t) E(-t)=1-t^{2}$.
Theorem 2.5. We have

$$
D_{k}=\sum_{i+j+1=k}(-1)^{j} \widehat{Q}_{(i \mid j)}+c_{k}
$$

where

$$
c_{k}:= \begin{cases}0 & k \text { odd } \tag{2.5}\\ -1 & k \text { even }\end{cases}
$$

Proof. Differentiate equation (2.4) with respect to t. Then

$$
F^{\prime}(t) E(u)=u(1+(t+u) S(t, u))+(1+t u)\left(S(t, u)+(t+u) \frac{\partial S}{\partial t}\right)
$$

Divide this by $F(t) E(u)$ and set $u=-t$. Then

$$
\frac{F^{\prime}(t)}{F(t)}=\frac{-t+\left(1-t^{2}\right) S(t,-t)}{1-t^{2}}=S(t,-t)-\frac{t}{1-t^{2}}
$$

Now D_{k} is the coefficient of t^{k-1} in this series, which is as claimed, with $c_{k}=-1$ when k is even, and $c_{k}=0$ when k is odd.
2.4. Lifting from the Hecke algebra. We now recall elements in the Hecke algebra which were studied by Morton and coauthors, and were useful in MS17. We will show that the section of BB01 maps these elements $B_{k} \in B M W_{k}$ whose closure is (essentially) the elements D_{k}. We use this to "lift" some identites involving these elements from the Hecke algebra to the BMW algebra.

Definition 2.6. Let $P_{n} \in H_{n}$ be given by the formula

$$
P_{n}=\frac{s-s^{-1}}{s^{n}-s^{-n}} \sum_{i=0}^{n-1} \sigma_{1} \cdots \sigma_{i} \sigma_{i+1}^{-1} \cdots \sigma_{n-1}^{-1}
$$

where, by convention, the first term is $\sigma_{1}^{-1} \cdots \sigma_{n-1}^{-1}$ and the last term is $\sigma_{1} \cdots \sigma_{n-1}$.
Recall that the Hochschild homology $H H_{0}(A)$ of an algebra A is the vector space defined by

$$
H H_{0}(A):=\frac{A}{\operatorname{span}_{R}\{a b-b a \mid a, b \in A\}}
$$

This is useful for us because of the following lemma.
Lemma 2.7. There is an injective linear map cl:H $H_{0}\left(H_{n}\right) \rightarrow H o m f l y p t\left(S^{1} \times D^{2}\right)$ from the Hochschild homology of the Hecke algebra into the Homflypt skein algebra of the annulus. There is a (noninjective) linear map cl : $H H_{0}\left(B M W_{n}\right) \rightarrow B M W\left(S^{1} \times D^{2}\right)$ from the Hochschild homology of the BMW algebra to the Kauffman skein algebra of the annulus.

Proof. The existence of both linear maps follows from the fact that the Hecke algebra (BMW algebra) is isomorphic to the algebra of tangles in the disk modulo the Homflypt (Kauffman) skein relations. The injectivity in the Homflypt case is well known (see, e.g. [CLL+18, Thm. 3.25] for a stronger statement).

Remark 2.8. In the BMW case this closure map does not induce an injection from $H H_{0}\left(B M W_{n}\right)$. For example, the class of the "cup-cap" element $h_{1} \in B M W_{2}$ is not a multiple of the class of the identity since $B M W_{2}$ is commutative, but $1-\delta^{-1} h_{1}$ is sent to zero in the skein algebra.

We write $[a] \in H H_{0}(A)$ for the class of an element $a \in A$. If we expand the class $\left[P_{k}\right]$ in terms of the classes of the central idempotents z_{λ}, we obtain the following identity involving the so-called "hook" idempotents:

$$
\begin{equation*}
\left[P_{k}\right]=\sum_{i+j+1=k}(-1)^{j}\left[z_{(i \mid j)}\right] \tag{2.6}
\end{equation*}
$$

(This follows e.g. from MS17, Eq. (4.2)] and the injectivity statement in Lemma 2.7) This equation explains the notation for P_{k}, since this identity is satisfied by the power sums in the ring of symmetric functions.

Definition 2.9. The image in the BMW algebra of the power sum element defined above is denoted

$$
\begin{equation*}
B_{k}:=s_{k}\left(P_{k}\right) \in B M W_{k} \tag{2.7}
\end{equation*}
$$

To separate notation between the Hecke and BMW algebras, we write $Q_{\lambda}:=s_{n}\left(z_{\lambda}\right)$ for the image in the BMW algebra of idempotents in the Hecke algebra. The following identity will be used to relate the closure of B_{k} to the element D_{k} defined using the power series (2.3).

Corollary 2.10. The B_{k} satisfy the following identities:

$$
\begin{align*}
{\left[B_{k}\right] } & =\sum_{i+j+1=k}(-1)^{j}\left[Q_{(i \mid j)}\right] \tag{2.8}\\
D_{k} & =\hat{B}_{k}+c_{k} \tag{2.9}
\end{align*}
$$

Proof. The identity follows immediately from Theorem 2.2 and from equation (2.6), and the second follows from this and Theorem 2.5

We will also need a more general identity which will be used to describe "part" of the action of the skein algebra of the torus on the skein module of the annulus. In the Hecke/Homflypt case this was described completely in MS17, and here we slightly rephrase some of these results in terms of Hochschild homology.

Let $k \in \mathbb{N}_{\geq 1}$ and $n \in \mathbb{N}_{\geq 2}$, and let $m \in \mathbb{Z}$ be relatively prime to n. Here we write an element $T_{k m, k n} \in H_{k n}$ in the Hecke algebra whose closure is the image of the $(k m, k n)$ torus link in the annulus.

$$
\begin{aligned}
\alpha_{i, j} & :=\sigma_{i} \sigma_{i+1} \cdots \sigma_{j-1} \\
T_{k m, k n} & :=\left(\alpha_{k, n} \alpha_{k-1, n-1} \cdots \alpha_{1, n-k}\right)^{m}
\end{aligned}
$$

Let $H_{k} \hookrightarrow H_{k+1}$ be the standard inclusion of Hecke algebras. We abuse notation and write $P_{k} \in H_{n}$ for the image of P_{k} under compositions of these inclusions. We next define elements in the Hecke algebra whose closures are positive torus links colored by P_{k} (the factor of v is to compensate for framing).

$$
\begin{equation*}
\tilde{T}_{k m, k n}:=v^{-k m} P_{k} T_{k m, k n} \tag{2.10}
\end{equation*}
$$

The following identity is a special case of MS17, Thm. 4.6, (4.3)] when the partitions λ and μ are empty.
Lemma 2.11. In $H H_{0}\left(H_{k n}\right)$, we have the following identity:

$$
\left[\tilde{T}_{k m, k n}\right]=\sum_{a+b+1=k n}(-1)^{b} v^{-k m} s^{k m(a-b)}\left[z_{(a \mid b)}\right]
$$

Proof. Since the closure map $H H_{0}\left(H_{n}\right) \rightarrow \operatorname{Homflypt}\left(S^{1} \times D^{2}\right)$ is injective, we can transfer the skeintheoretic identity [MS17, Thm. 4.6, (4.3)] into the claimed identity in $H H_{0}\left(H_{n}\right)$.

We then have the following corollary which describes part of the action of the BMW skein algebra of the torus on the BMW skein module of the annulus.

Corollary 2.12. In $H H_{0}\left(B M W_{k n}\right)$, we have the identity

$$
\left[s_{k n}\left(\tilde{T}_{k m, k n}\right)\right]=\sum_{a+b+1=k n}(-1)^{b} v^{-k m} s^{k m(a-b)}\left[Q_{(a \mid b)}\right]
$$

Remark 2.13. Some of the identities involving the B_{k} and D_{k} are reminiscent of identities in DRV13, DRV14, and we hope to clarify this in future work.
2.5. Explicit formulas for $n=2$. In this section we write explicitly the statements above in the case $n=2$, both as an example and as a sanity check. This explicit formula will also be useful in equation (5.3). By [BB01], when $n=2$, the section $s_{2}: H_{2} \rightarrow B M W_{2}$ is given by $s_{n}(x)=p_{1}^{+} x p_{1}^{+}$, where

$$
p_{1}^{+}:=1-\delta^{-1} h_{1}
$$

We have $P_{2}=\left(\sigma+\sigma^{-1}\right) /\left(s+s^{-1}\right)$, and a short computation gives

$$
B_{2}=s_{2}\left(P_{2}\right)=\frac{\sigma+\sigma^{-1}}{s+s^{-1}}-\frac{v+v^{-1}}{s+s^{-1}}
$$

The symmetrizer $z_{2} \in H_{2}$ is $z_{2}=(1+s \sigma) /\left(s^{2}+1\right)$, and another computation gives

$$
s_{2}\left(z_{2}\right)=\left(1+s \sigma+\beta_{1} h\right) /\left(s^{2}+1\right)=f_{2}
$$

which agrees with the $B M W_{2}$ symmetrizer (see, e.g. She16]). (Here $\beta_{1}=-\delta^{-1}\left(s v^{-1}+1\right)$.) The power series definition of $D_{2} \in \mathcal{C}$ shows $D_{2}=2 \widehat{f_{2}}-1$, where as above have written \widehat{f}_{2} for the closure of the symmetrizer in the annulus. Using relations in $B M W_{2}$, one can manipulate the above equations to obtain

$$
\begin{equation*}
D_{2}=\widehat{B}_{2}-1 \tag{2.11}
\end{equation*}
$$

which agrees with equation (2.9).
2.6. Recursion between symmetrizers. In this section, we will recall some facts about the symmetrizers f_{n} in the BMW algebras.
Definition 2.14. The symmetrizer $f_{n} \in B M W_{n}$ is the unique idempotent such that

$$
\begin{aligned}
& f_{n} \sigma_{i}=\sigma_{i} f_{n}=s \sigma_{i} \\
& f_{n} h_{i}=h_{i} f_{n}=0
\end{aligned}
$$

for all i, where σ_{i} is the standard positive simple braid and h_{i} is the cap-cup in the i and $i+1$ positions.
Note that this implies that the f_{n} are central in $B M W_{n}$. In the analogous case of the Hecke algebra, the symmetrizers z_{n} are well known. In fact, each f_{n} is the image of z_{n} under the section of the projection $\operatorname{map} \pi: B M W_{n} \rightarrow H_{n}$ defined in BB01.
Proposition 2.15 (She16, Prop. 3]). The symmetrizers $f_{n} \in B M W_{n}$ satisfy the following recurrence relation:

$$
[n+1] f_{n+1}=[n] s^{-1}\left(f_{n} \otimes 1\right)\left(1 \otimes f_{n}\right)+\sigma_{n} \cdots \sigma_{1}\left(1 \otimes f_{n}\right)+[n] s^{-1} \beta_{n}\left(f_{n} \otimes 1\right) h_{n} \cdots h_{1}\left(1 \otimes f_{n}\right)
$$

In terms of diagrams,

This recurrence relation will prove to be useful in Section 4 .

3. All Relations

In this section we state the main theorem of the paper, and we reduce its proof to several independent propositions that we prove in later sections. The structure of this proof is similar to that of Proposition 3.7 in MS17. Recall that the algebra \mathcal{D} is the Kauffman skein algebra $\mathcal{D}\left(T^{2} \times[0,1]\right)$ of the torus, and that $D_{k} \in \mathcal{C}=\mathcal{D}\left(S^{1} \times[0,1] \times[0,1]\right)$ is the element in the skein of the annulus defined by the power series identity (2.3).
Definition 3.1. Given $\mathbf{x}=(a, b) \in \mathbb{Z}^{2}$ with $k=\operatorname{gcd}(a, b)$, we define $D_{\mathbf{x}} \in \mathcal{D}$ to be the image of D_{k} under the map $\mathcal{C} \rightarrow \mathcal{D}$ that embeds the annulus along the simple closed curve \mathbf{x} / d on the torus T^{2}.
Remark 3.2. Note that if \mathbf{x} is primitive (i.e. its entries have gcd 1), then $D_{\mathbf{x}}$ is just the simple closed curve on the torus of slope \mathbf{x}. The reason that the $D_{\mathbf{x}}$ are the "correct" choice of generators for nonprimitive \mathbf{x} is that they satisfy surprisingly simple relations.

We first state special cases of the relations, which we prove in later sections. We then state and prove the general case of these relations.

Proposition 3.3. The elements $D_{\mathbf{x}}$ satisfy the following relations:

$$
\begin{align*}
& {\left[D_{1,0}, D_{0, n}\right]=\{n\}\left(D_{1, n}-D_{1,-n}\right)} \tag{3.1}\\
& {\left[D_{1,0}, D_{1, n}\right]=\{n\}\left(D_{2, n}-D_{0, n}\right)} \tag{3.2}
\end{align*}
$$

Proof. These are proved in Sections 4 and 5 ,
Remark 3.4. Suppose we picked some other generators $D_{\mathbf{x}}^{\prime}$, and we required the $D_{\mathbf{x}}^{\prime}$ to be equivariant with respect to the $S L_{2}(\mathbb{Z})$ action, and we choose $D_{1,0}^{\prime}$ to be a simple closed curve. Then equation (3.2) determines the $D_{n, 0}^{\prime}$ uniquely, and it can be shown that equation (3.1) determines $D_{n, 0}^{\prime}$ up to addition of a scalar. This means the choice of generators is essentially uniquely determined by either special case of our desired relations. The key point is that the $D_{n, 0}^{\prime}$ are simultaneous solutions to these two equations.

In what proceeds, we will show that the relations of Proposition 3.3 imply the relations (3.9) desired in the main Theorem. We will write $d(\mathbf{x}, \mathbf{y})=\operatorname{det}[\mathbf{x} \mathbf{y}]$ for $\mathbf{x}, \mathbf{y} \in \mathbb{Z}^{2}$ and $d(\mathbf{x})=g c d(m, n)$ when $\mathbf{x}=(m, n)$ and we will also use the following terminology:

$$
(\mathbf{x}, \mathbf{y}) \in \mathbb{Z} \times \mathbb{Z} \text { is good if }\left[D_{\mathbf{x}}, D_{\mathbf{y}}\right]=\{d(\mathbf{x}, \mathbf{y})\}\left(D_{\mathbf{x}+\mathbf{y}}-D_{\mathbf{x}-\mathbf{y}}\right)
$$

Remark 3.5. Note that because $D_{\mathbf{x}}=D_{-\mathbf{x}}$, if (\mathbf{x}, \mathbf{y}) is good, then the pairs $(\pm \mathbf{x}, \pm \mathbf{y})$ are good as well.
The idea of the proof is to induct on the absolute value of the determinant of the matrix with columns \mathbf{x} and \mathbf{y}. To induct, we write $\mathbf{x}=\mathbf{a}+\mathbf{b}$ for carefully chosen vectors \mathbf{a}, \mathbf{b} and then use the following lemma.
It is easy to see that Lemma 3.6 applies to the vectors in this example.
Lemma 3.6. Assume $\mathbf{a}+\mathbf{b}=\mathbf{x}$ and that (\mathbf{a}, \mathbf{b}) is good. Further assume that the five pairs of vectors $(\mathbf{y}, \mathbf{a}),(\mathbf{y}, \mathbf{b}),(\mathbf{y}+\mathbf{a}, \mathbf{b}),(\mathbf{y}+\mathbf{b}, \mathbf{a})$, and $(\mathbf{a}-\mathbf{b}, \mathbf{y})$, are good. Then the pair (\mathbf{x}, \mathbf{y}) is good.
Proof. By the first assumption, we have $\left[D_{\mathbf{a}}, D_{\mathbf{b}}\right]=\{d(\mathbf{a}, \mathbf{b})\}\left(D_{\mathbf{a}+\mathbf{b}}-D_{\mathbf{a}-\mathbf{b}}\right)$. We then use the Jacobi identity and the remaining assumptions to compute

$$
\begin{aligned}
& - \\
=- & \{d(\mathbf{a}, \mathbf{b})\}\left[D_{\mathbf{a}+\mathbf{b}}, D_{y}\right]+\{d(\mathbf{a}, \mathbf{b})\}\left[D_{\mathbf{a}-\mathbf{b}}, D_{y}\right] \\
= & {\left.\left[\left[D_{\mathbf{a}}, D_{\mathbf{b}}\right], D_{\mathbf{a}}\right], D_{\mathbf{b}}\right]+\left[\left[D_{\mathbf{b}}, D_{y}\right], D_{\mathbf{a}}\right] } \\
= & \left\{d(\mathbf{y}, \mathbf{a}\}\left[D_{\mathbf{y}+\mathbf{a}}-D_{\mathbf{y}-\mathbf{a}}, D_{\mathbf{b}}\right]+\{d(b, y)\}\left[D_{\mathbf{b}+\mathbf{y}}-D_{\mathbf{b}-\mathbf{y}}\right], D_{\mathbf{a}}\right] \\
= & \{d(\mathbf{y}, \mathbf{a})\}\left(\{d(\mathbf{y}+\mathbf{a}, \mathbf{b})\}\left(D_{\mathbf{y}+\mathbf{a}+\mathbf{b}}-D_{\mathbf{y}+\mathbf{a}-\mathbf{b}}\right)\right. \\
& \left.\quad-\{d(\mathbf{y}-\mathbf{a}, \mathbf{b})\}\left(D_{\mathbf{y}-\mathbf{a}+\mathbf{b}}-D_{\mathbf{y}-\mathbf{a}-\mathbf{b}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
&+\quad\{d(\mathbf{b}, \mathbf{y})\}\left(\{d(\mathbf{b}+\mathbf{y}, \mathbf{a})\}\left(D_{\mathbf{b}+\mathbf{y}+\mathbf{a}}-D_{\mathbf{b}+\mathbf{y}-\mathbf{a}}\right)\right. \\
&\left.\quad-\{d(\mathbf{b}-\mathbf{y}, \mathbf{a})\}\left(D_{\mathbf{b}-\mathbf{y}+\mathbf{a}}-D_{\mathbf{b}-\mathbf{y}-\mathbf{a}}\right)\right) \\
&=\quad(\{d(\mathbf{y}, \mathbf{a})\}\{d(\mathbf{y}+\mathbf{a}, \mathbf{b})\}+\{d(\mathbf{b}, \mathbf{y})\}\{d(\mathbf{b}+\mathbf{y}, \mathbf{a})\}) D_{\mathbf{a}+\mathbf{b}+\mathbf{y}} \\
&+(\{d(\mathbf{y}, \mathbf{a})\}\{d(\mathbf{y}-\mathbf{a}, \mathbf{b})\}-\{d(\mathbf{b}, \mathbf{y})\}\{d(\mathbf{b}-\mathbf{y}, \mathbf{a})\}) D_{\mathbf{a}+\mathbf{b}-\mathbf{y}} \\
&-(\{d(\mathbf{y}, \mathbf{a})\}\{d(\mathbf{y}+\mathbf{a}, \mathbf{b})\}-\{d(\mathbf{b}, \mathbf{y})\}\{d(\mathbf{b}-\mathbf{y}, \mathbf{a})\}) D_{\mathbf{a}-\mathbf{b}+\mathbf{y}} \\
&-(\{d(\mathbf{y}, \mathbf{a})\}\{d(\mathbf{y}-\mathbf{a}, \mathbf{b})\}+\{d(\mathbf{b}, \mathbf{y})\}\{d(\mathbf{b}+\mathbf{y}, \mathbf{a})\}) D_{\mathbf{a}-\mathbf{b}-\mathbf{y}} \\
&=\quad c_{1} D_{\mathbf{a}+\mathbf{b}+\mathbf{y}}+c_{2} D_{\mathbf{a}+\mathbf{b}-\mathbf{y}}-c_{3} D_{\mathbf{a}-\mathbf{b}+\mathbf{y}}-c_{4} D_{\mathbf{a}-\mathbf{b}-\mathbf{y}}
\end{aligned}
$$

Using some simple algebra, we can show

$$
\begin{aligned}
c_{1}= & (\{d(\mathbf{y}, \mathbf{a})\}\{d(\mathbf{y}+\mathbf{a}, \mathbf{b})\}+\{d(\mathbf{b}, \mathbf{y})\}\{d(\mathbf{b}+\mathbf{y}, \mathbf{a})\}) \\
= & \left(\{d(\mathbf{y}, \mathbf{a})+d(\mathbf{y}+\mathbf{a}, \mathbf{b})\}^{+}-\{d(\mathbf{y}, \mathbf{a})-d(\mathbf{y}+\mathbf{a}, \mathbf{b})\}^{+}\right. \\
= & \left.\{d(\mathbf{b}, \mathbf{y})+d(\mathbf{b}+\mathbf{y}, \mathbf{a})\}^{+}-\{d(\mathbf{b}, \mathbf{y})-d(\mathbf{b}+\mathbf{y}, \mathbf{a})\}^{+}\right) \\
=\quad & \left(\{d(\mathbf{y}, \mathbf{a}+\mathbf{b})+d(\mathbf{a}, \mathbf{b})\}^{+}-\{d(\mathbf{y}, \mathbf{a}-\mathbf{b})-d(\mathbf{a}, \mathbf{b})\}^{+}\right. \\
= & \left.\{d(\mathbf{y}, \mathbf{a}-\mathbf{b})-d(\mathbf{a}, \mathbf{b})\}^{+}-\{d(\mathbf{a}, \mathbf{b})-d(\mathbf{y}, \mathbf{a}+\mathbf{b})\}^{+}\right) \\
=\quad & \left(\{d(\mathbf{a}, \mathbf{b})+d(\mathbf{y}, \mathbf{a}+\mathbf{b})\}^{+}-\{d(\mathbf{a}, \mathbf{b})-d(\mathbf{y}, \mathbf{a}+\mathbf{b})\}^{+}\right) \\
=\quad & \{d(\mathbf{a}, \mathbf{b})\}\{d(\mathbf{y}, \mathbf{a}+\mathbf{b})\}
\end{aligned}
$$

Similar computations for the other c_{i} show that

$$
\begin{aligned}
c_{1} D_{\mathbf{a}+\mathbf{b}+\mathbf{y}}+c_{2} D_{\mathbf{a}+\mathbf{b}-\mathbf{y}}-c_{3} D_{\mathbf{a}-\mathbf{b}+\mathbf{y}}-c_{4} D_{\mathbf{a}-\mathbf{b}-\mathbf{y}}= & -\{d(\mathbf{a}, \mathbf{b})\}\{d(\mathbf{a}+\mathbf{b}, \mathbf{y})\}\left(D_{\mathbf{a}+\mathbf{b}+\mathbf{y}}-D_{\mathbf{a}+\mathbf{b}-\mathbf{y}}\right) \\
& +\{d(\mathbf{a}, \mathbf{b})\}\{d(\mathbf{a}-\mathbf{b}, \mathbf{y})\}\left(D_{\mathbf{a}-\mathbf{b}+\mathbf{y}}-D_{\mathbf{a}-\mathbf{b}-\mathbf{y}}\right)
\end{aligned}
$$

Since $(\mathbf{a}-\mathbf{b}, \mathbf{y})$ is assumed to be good, we see that $(\mathbf{a}+\mathbf{b}, \mathbf{y})=(\mathbf{x}, \mathbf{y})$ is good. This completes the proof of the lemma.

We next prove the following elementary lemma (which is a slight modification of [FG00, Lemma 1]). This lemma is used to make a careful choice of vectors \mathbf{a}, \mathbf{b} so that the previous lemma can be applied.

Lemma 3.7. Suppose $p, q \in \mathbb{Z}$ are relatively prime with $0<q<p$ and $p>1$. Then there exist $u, v, w, z \in \mathbb{Z}$ such that the following conditions hold:

$$
\begin{align*}
u+w & =p, \quad v+z=q \\
0<u, w & <p \tag{3.3}\\
u z-w v & =1
\end{align*}
$$

Proof. Since p and q are relatively prime, there exist $a, b \in \mathbb{Z}$ with $b q-a p=1$. This solution can be modified to give another solution $a^{\prime}=a+q$ and $b^{\prime}=b+p$, so we may assume $0 \leq b<p$. We then define

$$
u=b, \quad v=a, \quad w=p-b, \quad z=q-a
$$

By definition, u, v, w, z satisfy the first condition of (3.3), and the inequalities $0 \leq b<p$ and $p>1$ imply the second condition. To finish the proof, we compute

$$
u z-w v=b(q-a)-a(p-b)=b q-a p=1
$$

It might be helpful to point out that the numbers in the previous lemma satisfy

$$
\left[\begin{array}{ll}
u & w \\
v & z
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
p \\
q
\end{array}\right]
$$

Remark 3.8. There is a natural R-linear anti-automorphism $\tau: \mathcal{D} \rightarrow \mathcal{D}$ which "flips $T^{2} \times[0,1]$ across the y-axis and inverts $[0,1]$." In terms of the elements $D_{a, b}$, we have $\tau\left(D_{a, b}\right)=D_{a,-b}$. We therefore have an a priori action of $\mathrm{GL}_{2}(\mathbb{Z})$ on \mathcal{D}, where elements of determinant 1 act by algebra automorphisms, and elements of determinant -1 act by algebra anti-automorphisms. It will be important that the orbits of
this action on the $D_{\mathbf{x}}$ are the fibers of the assignment $D_{\mathbf{x}} \mapsto d(\mathbf{x})$ (which is essentially the statement of Lemma 3.7.

Proposition 3.9. Suppose A is an algebra with elements $D_{\mathbf{x}}$ for $\mathbf{x} \in \mathbb{Z}^{2} /\langle-\mathbf{x}=\mathbf{x}\rangle$ that satisfy equations (3.1) and (3.2). Furthermore, suppose that there is a $\mathrm{GL}_{2}(\mathbb{Z})$ action by (anti-)automorphisms on A as in Remark 3.8, and that the action of $\mathrm{GL}_{2}(\mathbb{Z})$ is given by $\gamma\left(D_{\mathbf{x}}\right)=D_{\gamma(\mathbf{x})}$ for $\gamma \in \mathrm{GL}_{2}(\mathbb{Z})$. Then the $D_{\mathbf{x}}$ satisfy the equations

$$
\left[D_{\mathbf{x}}, D_{\mathbf{y}}\right]=\left(s^{d}-s^{-d}\right)\left(D_{\mathbf{x}+\mathbf{y}}-D_{\mathbf{x}-\mathbf{y}}\right)
$$

Proof. The proof proceeds by induction on $|d(\mathbf{x}, \mathbf{y})|$, and the base case $|d(\mathbf{x}, \mathbf{y})|=1$ is immediate from Remark 3.8 and the assumption (3.1) for $\mathbf{x}=(1,0)$ and $\mathbf{y}=(0,1)$. We now make the following inductive assumption:

$$
\begin{equation*}
\text { For all } \mathbf{x}^{\prime}, \mathbf{y}^{\prime} \in \mathbb{Z}^{2} \text { with }\left|d\left(\mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right)\right|<|d(\mathbf{x}, \mathbf{y})| \text {, we have that }\left(\mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right) \text { is good. } \tag{3.4}
\end{equation*}
$$

We would like to show that $\left[D_{\mathbf{x}}, D_{\mathbf{y}}\right]=\{d(\mathbf{x}, \mathbf{y})\}\left(D_{\mathbf{x}+\mathbf{y}}-D_{\mathbf{x}-\mathbf{y}}\right)$. By Remark 3.8, we may assume

$$
\mathbf{y}=\binom{0}{r}, \quad \mathbf{x}=\binom{p}{q}, \quad d(\mathbf{x}) \leq d(\mathbf{y}), \quad 0 \leq q<p
$$

If $p=1$, then this equation follows from (3.2), so we may also assume $p>1$. Furthermore, we may assume that $r>0$ by Remark 3.5.

We will now show that if either $d(\mathbf{x})=1$ or $d(\mathbf{y})=1$, then (\mathbf{x}, \mathbf{y}) is good as follows. By symmetry of the above construction of \mathbf{x} and \mathbf{y}, we may assume $d(\mathbf{x})=1$, which immediately implies $q>0$. Furthermore, we may now assume that $r>1$ by the relation (3.2). We apply Lemma 3.7 to p, q to obtain $u, v, w, z \in \mathbb{Z}$ satisfying

$$
\begin{equation*}
u z-v w=1, \quad u q-v p=1, \quad u+w=p, \quad v+z=q, \quad 0<u, w<p \tag{3.5}
\end{equation*}
$$

We then define vectors \mathbf{a} and \mathbf{b} as follows:

$$
\begin{equation*}
\mathbf{a}:=\binom{u}{v}, \quad \mathbf{b}:=\binom{w}{z}, \quad \mathbf{a}+\mathbf{b}=\mathbf{x}, \quad d(\mathbf{a}, \mathbf{b})=1 \tag{3.6}
\end{equation*}
$$

Using Lemma 3.6 and Assumption (3.4), it is sufficient to show that each of $|d(\mathbf{a}, \mathbf{b})|,|d(\mathbf{y}, \mathbf{b})|,|d(\mathbf{y}, \mathbf{a})|$, $|d(\mathbf{y}+\mathbf{a}, \mathbf{b})|,|d(\mathbf{y}+\mathbf{b}, \mathbf{a})|$, and $|d(\mathbf{a}-\mathbf{b}, \mathbf{y})|$ are strictly less than $p r=|d(\mathbf{x}, \mathbf{y})|$. First, $|d(\mathbf{a}, \mathbf{b})|=1$ is strictly less than $p r$ since $p>1$ and $r>0$. Second, $|d(\mathbf{y}, \mathbf{a})|=u r$ and $|d(\mathbf{y}, \mathbf{b})|=w r$ are strictly less than $p r$ by the inequalities in (3.5). Third, we compute

$$
\begin{aligned}
|d(\mathbf{y}+\mathbf{a}, \mathbf{b})| & =|-d(\mathbf{y}+\mathbf{a}, \mathbf{b})| \\
& =|-d(\mathbf{y}, \mathbf{b})-d(\mathbf{a}, \mathbf{b})| \\
& =|w r-1| \\
& =w r-1 \\
& <w r \\
& <p r
\end{aligned}
$$

Fourth, we compute

$$
\begin{aligned}
|-d(\mathbf{y}+\mathbf{b}, \mathbf{a})| & =|-d(\mathbf{y}+\mathbf{b}, \mathbf{a})| \\
& =|-d(\mathbf{y}, \mathbf{a})-d(\mathbf{b}, \mathbf{a})| \\
& =|u r+1| \\
& =u r+1 \\
& \leq(p-1) r+1 \\
& =p r-r+1 \\
& <p r
\end{aligned}
$$

Finally, we compute

$$
\begin{aligned}
|d(\mathbf{a}-\mathbf{b}, \mathbf{y})| & =|d(\mathbf{a}, \mathbf{y})-d(\mathbf{b}, \mathbf{y})| \\
& =|d(\mathbf{y}, \mathbf{a})-d(\mathbf{y}, \mathbf{b})| \\
& =|u r-w r| \\
& =|u-w| r \\
& <|u+w| r \\
& =p r
\end{aligned}
$$

So we have shown that (\mathbf{x}, \mathbf{y}) is good if $d(\mathbf{x})=1$ or $d(\mathbf{y})=1$. Let us now turn our attention to the more general case. We will immediately split this into cases depending on q.
Case 1: Assume $0<q$.
Let $p^{\prime}=p / d(\mathbf{x})$ and $q^{\prime}=q / d(\mathbf{x})$. By the assumption $0<q$, we see that $d(\mathbf{x})<p$, so $p^{\prime}>1$. We can therefore apply Lemma 3.7 to p^{\prime}, q^{\prime} to obtain $u, v, w, z \in \mathbb{Z}$ satisfying

$$
\begin{equation*}
u z-v w=1, \quad u q^{\prime}-v p^{\prime}=1, \quad u+w=p^{\prime}, \quad v+z=q^{\prime}, \quad 0<u, w<p^{\prime} \tag{3.7}
\end{equation*}
$$

In a way similar to the above, we may pick vectors \mathbf{a} and \mathbf{b} as follows:

$$
\begin{equation*}
\mathbf{a}:=\binom{d(\mathbf{x}) u}{d(\mathbf{x}) v}, \quad \mathbf{b}:=\binom{d(\mathbf{x}) w}{d(\mathbf{x}) z}, \quad \mathbf{a}+\mathbf{b}=\mathbf{x}, \quad d(\mathbf{a}, \mathbf{b})=d(\mathbf{x})^{2} \tag{3.8}
\end{equation*}
$$

As before, it is sufficient to show that each of $|d(\mathbf{a}, \mathbf{b})|,|d(\mathbf{y}, \mathbf{b})|,|d(\mathbf{y}, \mathbf{a})|,|d(\mathbf{y}+\mathbf{a}, \mathbf{b})|,|d(\mathbf{y}+\mathbf{b}, \mathbf{a})|$, and $|d(\mathbf{a}-\mathbf{b}, \mathbf{y})|$ are strictly less than $p r=|d(\mathbf{x}, \mathbf{y})|$. First,

$$
|d(\mathbf{a}, \mathbf{b})|=d(\mathbf{x})^{2} \leq d(\mathbf{x}) d(\mathbf{y})=d(\mathbf{x}) r<p r
$$

where the last inequality follows from the assumption $0<q<p$. Second, we can compute $|d(\mathbf{y}, \mathbf{b})|=$ $d(\mathbf{x}) r w$ and $|d(\mathbf{y}, \mathbf{a})|=d(\mathbf{x}) r u$ are strictly less than $p r$ by the inequalities in (3.7). Third, we compute

$$
\begin{aligned}
|d(\mathbf{y}+\mathbf{a}, \mathbf{b})| & =|-d(\mathbf{y}+\mathbf{a}, \mathbf{b})| \\
& =|-d(\mathbf{y}, \mathbf{b})-d(\mathbf{a}, \mathbf{b})| \\
& =\left|d(\mathbf{x}) w r-d(\mathbf{x})^{2}\right| \\
& =d(\mathbf{x}) w r-d(\mathbf{x})^{2} \\
& <d(\mathbf{x}) w r \\
& \leq p r
\end{aligned}
$$

Finally, we compute

$$
\begin{aligned}
|d(\mathbf{y}+\mathbf{b}, \mathbf{a})| & =|-d(\mathbf{y}+\mathbf{b}, \mathbf{a})| \\
& =|-d(\mathbf{y}, \mathbf{a})-d(\mathbf{b}, \mathbf{a})| \\
& =d(\mathbf{x}) u r+d(\mathbf{x})^{2} \\
& \leq(d(\mathbf{x}) u+d(\mathbf{x})) d(\mathbf{y}) \\
& =(u+1) d(\mathbf{x}) r
\end{aligned}
$$

Therefore, we will be finished once we show that $(u+1) d(\mathbf{x})$ is strictly less than p. We now split into subcases:

Subcase 1a: If $u+1<p^{\prime}$, then $(u+1) d(\mathbf{x}) r<p^{\prime} d(\mathbf{x}) r=p r$, and we are done.
Subcase 1b: Assume $u+1=p^{\prime}$. By equation (3.7), we have

$$
1=u q^{\prime}-v p^{\prime}=\left(p^{\prime}-1\right) q^{\prime}-v p^{\prime} \Longrightarrow p^{\prime}\left(q^{\prime}-v\right)=1+q^{\prime}<1+p^{\prime}
$$

Since $p^{\prime}>1$, the last inequality implies $q^{\prime}-v=1$, which implies $v=q^{\prime}-1$ and $z=1$. Since $u z-v w=1$, this implies $\left(p^{\prime}-1\right)-\left(q^{\prime}-1\right)=1$, which implies $q^{\prime}=p^{\prime}-1$. If we write $g=d(\mathbf{x})$, we then have
$|d(\mathbf{y}+\mathbf{b}, \mathbf{a})|=|-d(\mathbf{y}+\mathbf{b}, \mathbf{a})|=\left|-\operatorname{det}\left[\begin{array}{cc}g & p-g \\ g+r & p-2 g\end{array}\right]\right|=|r p+g(g-r)|=r p+d(\mathbf{x})(d(\mathbf{x})-r) \leq r p$
Where the last inequality comes from the assumption $d(\mathbf{x}) \leq r$. If this inequality is strict, then we are done. Otherwise, we move onto the next Subcase.
Subcase 1c: In this subcase, we are reduced to showing the following vectors are good:

$$
\mathbf{y}=(0, r), \quad \mathbf{x}=\left(r p^{\prime}, r p^{\prime}-r\right)
$$

If $r=1$, then $d(\mathbf{y})=1$, which makes \mathbf{y} good. Thus, we may assume that $r>1$.
We must replace our previous choice of \mathbf{a} and \mathbf{b} with a choice which is better adapted to this particular subcase. We define

$$
\mathbf{a}:=\binom{1}{-1}, \quad \mathbf{b}:=\binom{r p^{\prime}-1}{r p^{\prime}-r+1}
$$

We know that the pairs $(\mathbf{a}, \mathbf{b}),(\mathbf{y}, \mathbf{a}),(\mathbf{y}+\mathbf{b}, \mathbf{a})$ are good since $d(\mathbf{a})=1$. Since $r>1$ and $p^{\prime}>1$, we can compute that $(\mathbf{y}, \mathbf{b}),(\mathbf{y}+\mathbf{a}, \mathbf{b}),(\mathbf{a}-\mathbf{b}, \mathbf{y})$ are strictly less than $r^{2} p^{\prime}=|d(\mathbf{x}, \mathbf{y})|$ as follows:

$$
\begin{aligned}
|d(\mathbf{a}-\mathbf{b}, \mathbf{y})| & =\left|r^{2} p^{\prime}-2 r\right| \\
& =r^{2} p^{\prime}-2 r \\
& <r^{2} p^{\prime} \\
|d(\mathbf{y}, \mathbf{b})| & =\left|r^{2} p^{\prime}-r\right| \\
& =r^{2} p^{\prime}-r \\
& <r^{2} p^{\prime} \\
|d(\mathbf{y}+\mathbf{a}, \mathbf{b})|= & \left|r^{2} p^{\prime}-\left(r p^{\prime}+r-1\right)\right| \\
& =r^{2} p^{\prime}-\left(r p^{\prime}+r-1\right) \\
& <r^{2} p^{\prime}
\end{aligned}
$$

This together with Assumption (3.4) and Lemma 3.6 shows that (\mathbf{x}, \mathbf{y}) finishes the proof of this subcase, which finishes the proof of Case 1.

Case 2: In this case we assume $q=0$. We define \mathbf{a}, \mathbf{b} similarly to Subcase 1c, so we have

$$
\mathbf{y}=\binom{0}{r}, \quad \mathbf{x}=\binom{p}{0}, \quad \mathbf{a}:=\binom{1}{-1}, \quad \mathbf{b}:=\binom{p-1}{1}
$$

Since $d(\mathbf{a})=d(\mathbf{b})=1$, the pairs $(\mathbf{a}, \mathbf{b}),(\mathbf{y}, \mathbf{a}),(\mathbf{y}, \mathbf{b}),(\mathbf{y}+\mathbf{a}, \mathbf{b}),(\mathbf{y}+\mathbf{b}, \mathbf{a})$ are all good. We must check that $|d(\mathbf{a}-\mathbf{b}, \mathbf{y})|<p r=|d(\mathbf{x}, \mathbf{y})|$. If $r=1$, then the relation (3.1) implies that the pair (\mathbf{x}, \mathbf{y}) is good. Thus, we may asume that $r>1$. We may also assume that $p>1$. Finally, we check $|d(\mathbf{a}-\mathbf{b}, \mathbf{y})|=$ $|r p-2 r|=r p-2 r<r p$. By using Assumption (3.4) and Lemma 3.6, this completes Case 2 which completes the proof.

Using the technical results above, we give a presentation of the algebra \mathcal{D}.
Theorem 3.10. The algebra \mathcal{D} is generated by the elements $D_{\mathbf{x}}$, and these satisfy the following relations:

$$
\begin{align*}
{\left[D_{\mathbf{x}}, D_{\mathbf{y}}\right] } & =\left(s^{d}-s^{-d}\right)\left(D_{\mathbf{x}+\mathbf{y}}-D_{\mathbf{x}-\mathbf{y}}\right) \tag{3.9}\\
D_{\mathbf{x}} & =D_{-\mathbf{x}}
\end{align*}
$$

where $d=\operatorname{det}(\mathbf{x} \mathbf{y})$. This gives a presentation of \mathcal{D} as an algebra.

Remark 3.11. In the simple case $\mathbf{x}=(1,0)$ and $\mathbf{y}=(0,1)$, the claimed relation is exactly the Kauffman skein relation. Also, note that if we take the first equation and replace \mathbf{x} with $-\mathbf{x}$, the left hand side is invariant because of the second relation, and the right hand side is invariant because both factors switch sign.

Proof. First we will show that \mathcal{D} is generated by the $D_{\mathbf{x}}$. Using the skein relation, we may write an arbitrary element of \mathcal{D} as a sum of products of knots. Using further skein relations, any knot can be written as a sum of products of annular knots (i.e. knots which are contained in an annulus inside the torus). Therefore, it is sufficient to prove that the D_{k} generate the skein algebra of the annulus. By MS17, Lemma 3.1], the P_{k} generate the Homflypt skein algebra of the annulus. Combining this with the inclusion $s_{n}: H_{n} \rightarrow B M W_{n}$ from BB01 shows that D_{k} generate the Kauffman skein algebra of the annulus (since all idempotents in $B M W_{n}$ come from idempotents in $H_{n-2 k}$ for some k).

It is clear that $D_{\mathbf{x}}=D_{-\mathbf{x}}$ due to the lack of orientation on the links. The other relations have already been shown to hold in Proposition 3.9 .

To show that these relations give a presentation of \mathcal{D}, we first note that Theorem 6.1 shows that as a vector space, \mathcal{D} has a basis given by unordered words in the elements $D_{\mathbf{x}}$. The relations (3.9) allow any $D_{\mathbf{x}}$ and $D_{\mathbf{y}}$ to be reordered, which shows that they give a presentation of \mathcal{D}.

4. Perpendicular relations

In this section we prove the perpendicular relations

$$
\begin{equation*}
\left[D_{1,0}, D_{0, n}\right]=\{n\}\left(D_{1, n}-D_{1,-n}\right) \tag{4.1}
\end{equation*}
$$

The main tool we use will be the recursion relation between the symmetrizers in the BMW algebra from Section 2.6. We will actually show a stronger identity, which is the analogue of an identity involving the Hecke algebra elements P_{k} found by Morton and coauthors.

Let \mathcal{A} be the skein algebra of the annulus with one marked point on each boundary component. For $x \in \mathcal{C}$, the element $l(x) \in \mathcal{A}$ is defined to be a horizontal arc joining the boundary points with the element x placed below the arc. Similarly, we may define $r(x)$, but the element x is placed below the arc.

Let a be the arc that goes once around the annulus in the counter-clockwise direction:

The vector space $s a$ is an algebra, where the multiplication is given by "nesting" annuli. The identity in this algebra is $l(\varnothing)$, where $\varnothing \in \mathcal{C}$ is the empty link. In fact \mathcal{A} is commutative, and is isomorphic to $\mathcal{C} \otimes_{R} R\left[a^{ \pm 1}\right]$ (see She16), but we won't need this fact. We will, however, use the fact that $l(-)$ and $r(-)$ are algebra maps from \mathcal{C} to \mathcal{A}.
Theorem 4.1. We have the following identity in \mathcal{A} :

$$
\begin{equation*}
l\left(D_{n}\right)-r\left(D_{n}\right)=\{n\}\left(a^{n}-a^{-n}\right) \tag{4.2}
\end{equation*}
$$

Note that this implies (4.1). In particular, by Remark 3.2 after applying the wiring $c l_{1}: \mathcal{A} \rightarrow \mathcal{D}$ which closes the marked points around the torus as shown:

equation (4.2) becomes

$$
D_{1,0} D_{0, n}-D_{0, n} D_{1,0}=\{n\}\left(D_{1, n}-D_{1,-n}\right)
$$

The rest of the section is dedicated to the proof of Theorem 4.1 and we begin with some lemmas. In an effort to reduce notation, define the following elements of \mathcal{A} :

$$
\begin{aligned}
c & :=l\left(D_{n}\right)-r\left(D_{n}\right)-\{n\}\left(a^{n}-a^{-n}\right) \\
l_{n} & :=l\left(\widehat{f}_{n}\right) \\
r_{n} & :=r\left(\widehat{f}_{n}\right)
\end{aligned}
$$

As a convention, let $l_{0}=r_{0}=l_{-1}=r_{-1}=1_{\mathcal{A}}$.
Lemma 4.2. The relation $c=0$ in \mathcal{A} is equivalent to the following:

$$
\begin{equation*}
l_{n+2}-r_{n+2}=\left(s^{-1} a+s a^{-1}\right) l_{n+1}-\left(s a+s^{-1} a^{-1}\right) r_{n+1}-\left(l_{n}-r_{n}\right) ; \quad n \geq-1 \tag{4.3}
\end{equation*}
$$

Proof. We may rephrase the relation $c=0$ as one of power series in $\mathcal{A}[[t]]$.

$$
\sum_{n=1}^{\infty} \frac{l\left(D_{n}\right)-r\left(D_{n}\right)}{n} t^{n}=\sum_{n=1}^{\infty} \frac{\{n\}\left(a^{n}-a^{-n}\right)}{n} t^{n}
$$

Using linearity of l and r on the left hand side, while expanding out the right hand side we get the equation:

$$
l\left(\sum_{n=1}^{\infty} \frac{D_{n}}{n} t^{n}\right)-r\left(\sum_{n=1}^{\infty} \frac{D_{n}}{n} t^{n}\right)=\sum_{n=1}^{\infty} \frac{s^{n} a^{n} t^{n}}{n}+\sum_{n=1}^{\infty} \frac{s^{-n} a^{-n} t^{n}}{n}-\sum_{n=1}^{\infty} \frac{s^{n} a^{-n} t^{n}}{n}-\sum_{n=1}^{\infty} \frac{s^{-n} a^{n} t^{n}}{n}
$$

Define the power series

$$
F(t):=1+\sum_{n=1}^{\infty} \widehat{f}_{n} t^{n} \in \mathcal{C}[[t]]
$$

Then on the left hand side we may use equation (2.3) and on the right side we may apply Newton's power series identity to obtain:

$$
l(\ln (F(t)))-r(\ln (F(t)))=-\ln (1-s a t)-\ln \left(1-s^{-1} a^{-1} t\right)+\ln \left(1-s a^{-1} t\right)+\ln \left(1-s^{-1} a t\right)
$$

Moving terms around and using properties of natural log, we arrive at the equation:

$$
\ln \left(l(F(t))\left(1-s a t-s^{-1} a^{-1} t+t^{2}\right)\right)=\ln \left(r(F(t))\left(1-s a^{-1} t-s^{-1} a t+t^{2}\right)\right)
$$

Exponentiating both sides, we get:

$$
l(F(t))\left(1-s a t-s^{-1} a^{-1} t+t^{2}\right)=r(F(t))\left(1-s a^{-1} t-s^{-1} a t+t^{2}\right)
$$

Equate the coefficients of to obtain a system of equations in \mathcal{A} :

$$
\begin{aligned}
l_{1}-\left(s a+s^{-1} a^{-1}\right) & =r_{1}-\left(s a^{-1}+s^{-1} a\right) \\
l_{2}-\left(s a+s^{-1} a^{-1}\right) l_{1}+1 & =r_{2}-\left(s a^{-1}+s^{-1} a\right) r_{1}+1 \\
l_{n}-s a l_{n-1}-s^{-1} a^{-1} l_{n-1}+l_{n-2} & =r_{n}-s a^{-1} r_{n-1}-s^{-1} a r_{n-1}+r_{n-2} ; \quad n \geq 2
\end{aligned}
$$

These terms can be rearranged to those in the statement, thus completing the proof.
Before showing the relation (4.3), we will first set up some machinery in \mathcal{A}. First, consider the following wirings $W_{n}, \widetilde{W}_{n}: B M W_{n+1} \rightarrow \mathcal{A}$ defined by:

At the risk of abusing notation, we will set $W_{n}:=W_{n}\left(\widehat{f}_{n+1}\right)$ and $\widetilde{W}_{n}:=\widetilde{W}_{n}\left(\widehat{f}_{n+1}\right)$. We can see diagramatically the properties:

$$
\begin{array}{r}
W_{n}(x \otimes 1)=W_{n}(1 \otimes x)=a W_{n}(x) \\
\widetilde{W}_{n}(x \otimes 1)=\widetilde{W}_{n}(x \otimes 1)=a^{-1} \widetilde{W}_{n}(x) \tag{4.5}
\end{array}
$$

We will also need the constants

$$
\beta_{n}:=\frac{1-s^{2}}{s^{2 n-1} v^{-1}-1}
$$

Remark 4.3. There exist maps

$$
\tau: B M W_{n} \rightarrow B M W_{n} \quad \div: B M W_{n} \rightarrow B M W_{n}
$$

induced by the diffeomorphisms of the thickened square $(x, y, t) \mapsto(x, 1-y, 1-t)$ and $(x, y, t) \mapsto$ ($x, y, 1-t$), respectively. The map - is often called the mirror map and is an R-anti-linear involution, while τ will be called the flip map and is an R-linear anti-involution which extends the dihedral symmetry of the square to the thickened square. As noted in [She16], the symmetrizers f_{n} are fixed under these
maps. Using the quotient map defined by the equivalence relation $(x, 0, t) \sim(x, 1, t)$, we may analagously define maps

$$
\tau: \mathcal{A} \rightarrow \mathcal{A}, \quad \div: \mathcal{A} \rightarrow \mathcal{A}
$$

which are linear and anti-linear involutions, respectively. We will also call these the flip map and the mirror map; it will be clear from the context which is being applied. These maps satisfy:

$$
\begin{align*}
\tau\left(W_{n}(x)\right) & =\widetilde{W}_{n}(\tau(x)) \tag{4.6}\\
\overline{W_{n}(x)} & =W_{n}(\bar{x})
\end{align*}
$$

Lemma 4.4. The following relations hold in \mathcal{A}.

$$
\begin{align*}
l_{n} & =[n+1] W_{n}-[n] s^{-1} a W_{n-1}-[n] s^{-1} \beta_{n} a^{-1} \widetilde{W}_{n-1} \tag{4.8}\\
l_{n} & =[n+1] \widetilde{W}_{n}-[n] s a^{-1} \widetilde{W}_{n-1}-[n] s \bar{\beta}_{n} a W_{n-1} \tag{4.9}\\
r_{n} & =[n+1] W_{n}-[n] s a W_{n-1}-[n] s \bar{\beta}_{n} a^{-1} \widetilde{W}_{n-1} \tag{4.10}\\
r_{n} & =[n+1] \widetilde{W}_{n}-[n] s^{-1} a^{-1} \widetilde{W}_{n-1}-[n] s^{-1} \beta_{n} a W_{n-1} \tag{4.11}
\end{align*}
$$

Proof. This was more or less observed in [She16] using different notation. An outline of the proof is as follows. First, notice that the equations (4.8) and (4.9) are the result of applying the mirror map to equations (4.10) and (4.11) respectively. By (4.6), one can quickly verify that equation (4.8) is the image of equation (4.11) under the flip map. Thus, it suffices to prove equation (4.11). To do this, we will use Proposition 3 from She16 which provides a recurrence relation of the symmetrizers of $B M W_{n+1}$. Taking the image of this relation under the maps $\widetilde{W_{n}}$ produces relation (4.11) as follows.

From Proposition 2.15, the recurrence relation for the symmetrizers in $B M W_{n+1}$ is

$$
\begin{equation*}
[n+1] f_{n+1}=[n] s^{-1}\left(f_{n} \otimes 1\right)\left(1 \otimes f_{n}\right)+\sigma_{n} \cdots \sigma_{1}\left(1 \otimes f_{n}\right)+[n] s^{-1} \beta_{n}\left(f_{n} \otimes 1\right) h_{n} \cdots h_{1}\left(1 \otimes f_{n}\right) \tag{4.12}
\end{equation*}
$$

where σ_{i} is the standard simple braiding of the i and $i+1$ strands and h_{i} is the horizontal edge between the i and $i+1$ strands. One may verify diagramatically that applying $\widetilde{W_{n}}$ to the above gives us relation (4.11):

$$
\begin{aligned}
{[n+1] \widetilde{W}_{n}=} & {[n] s^{-1} \widetilde{W}_{n}\left(\left(f_{n} \otimes 1\right)\left(1 \otimes f_{n}\right)\right)+\widetilde{W}_{n}\left(\sigma_{n} \cdots \sigma_{1}\left(1 \otimes f_{n}\right)\right)+} \\
& {[n] s^{-1} \beta_{n} \widetilde{W}_{n}\left(\left(f_{n} \otimes 1\right) h_{n} \cdots h_{1}\left(1 \otimes f_{n}\right)\right) } \\
= & {[n] s^{-1} \widetilde{W}_{n}\left(f_{n} \otimes 1\right)+r_{n}+[n] s^{-1} \beta_{n} W_{n}\left(f_{n} \otimes 1\right) } \\
= & {[n] s^{-1} a \widetilde{W}_{n-1}+r_{n}+[n] s^{-1} \beta_{n} a^{-1} W_{n-1} }
\end{aligned}
$$

This completes the proof.
We will also need the following identities for the β_{n}.
Lemma 4.5. The following relations hold in the $\mathbb{C}\left(s^{ \pm 1}, v^{ \pm 1}\right)$:

$$
\begin{aligned}
s-s^{-1} \beta_{n} & =s^{-1}-s \bar{\beta}_{n} \\
\left(\bar{\beta}_{n+1}-\beta_{n+1}\right)\left(s-s^{-1} \beta_{n}\right) & =-\left(s-s^{-1}\right)
\end{aligned}
$$

Lemma 4.6 ([She16]). For all $n \geq 1$,

$$
\begin{equation*}
l_{n}-r_{n}=\{n\}\left(a W_{n-1}-a^{-1} \widetilde{W}_{n-1}\right) \tag{4.13}
\end{equation*}
$$

Proof. This is proven in Proposition 7 of [She16]. We can prove it here by taking the difference of equations (4.8) and (4.10) and using that $s^{-1} \beta_{n}-s \bar{\beta}_{n}=s-s^{-1}$, as provided by Lemma 4.5.

$$
\begin{aligned}
l_{n}-r_{n} & =[n]\left(s-s^{-1}\right) a W_{n-1}-\left(s^{-1} \beta_{n}-s \bar{\beta}_{n}\right) a^{-1} \widetilde{W}_{n-1} \\
& =[n]\left(s-s^{-1}\right)\left(a W_{n-1}-a^{-1} \widetilde{W}_{n-1}\right)
\end{aligned}
$$

$$
=\{n\}\left(a W_{n-1}-a^{-1} \widetilde{W}_{n-1}\right)
$$

Proposition 4.7. The relations of Lemma 4.2 hold.
Proof. In the case $n=-1$, the relation we want to show becomes

$$
l_{1}-r_{1}=\{1\}\left(a-a^{-1}\right)
$$

This can easily be verified by applying the skein relation once to the left-hand side of the equation. By Lemma 4.6 the relation (4.3) is equivalent to:

$$
\begin{equation*}
\{n+2\}\left(a W_{n+1}-a^{-1} \widetilde{W}_{n+1}\right)=\left(s a+s^{-1} a^{-1}\right) l_{n+1}-\left(s a^{-1}+s^{-1} a\right) r_{n+1}-\{n\}\left(a W_{n-1}-a^{-1} \widetilde{W}_{n-1}\right) \tag{4.14}
\end{equation*}
$$

Now we will prove (4.3). By Lemma 4.6, the relation (4.3) is equivalent to:

$$
\begin{equation*}
\{n+2\}\left(a W_{n+1}-a^{-1} \widetilde{W}_{n+1}\right)=\left(s a+s^{-1} a^{-1}\right) l_{n+1}-\left(s a^{-1}+s^{-1} a\right) r_{n+1}-\{n\}\left(a W_{n-1}-a^{-1} \widetilde{W}_{n-1}\right) \tag{4.15}
\end{equation*}
$$

We will show that the left hand side of the equation above may be reduced to the right hand side by a series of applications of Lemma 4.4

$$
\left.\begin{array}{rl}
\{n+2\} & \left(a W_{n+1}-a^{-1} \widetilde{W}_{n+1}\right) \\
\xlongequal{(1) \operatorname{and}(4)}\{n+2\}\left(\frac{a}{[n+2]}\left(l_{n+1}+[n+1] s^{-1} a W_{n}+[n+1] s^{-1} \beta_{n+1} a^{-1} \widetilde{W}_{n}\right)-\right. \\
& \left.\frac{a^{-1}}{[n+2]}\left(r_{n+1}+[n+1] s^{-1} a^{-1} \widetilde{W}_{n}+[n+1] s^{-1} \beta_{n+1} a W_{n}\right)\right) \\
= & \left(s-s^{-1}\right)\left(\left(a l_{n+1}+[n+1] s^{-1} a^{2} W_{n}+[n+1] s^{-1} \beta_{n+1} \widetilde{W}_{n}\right)-\right. \\
& \left.\left(a^{-1} r_{n+1}-[n+1] s^{-1} a^{-2} \widetilde{W}_{n}-[n+1] s^{-1} \beta_{n+1} W_{n}\right)\right) \\
\xlongequal{(3) \operatorname{and}(2)}\left(s-s^{-1}\right)\left(\left(a l_{n+1}+\left([n+2] s^{-2} a W_{n+1}-s^{-2} a r_{n+1}-[n+1] s^{-1} \bar{\beta}_{n+1} \widetilde{W}_{n}\right)+[n+1] s^{-1} \beta_{n+1} \widetilde{W}_{n}\right)-\right. \\
& \left.\quad\left(a^{-1} r_{n+1}+\left([n+2] s^{-2} a^{-1} \widetilde{W}_{n+1}-s^{-2} a^{-1} l_{n+1}-[n+1] s^{-1} \bar{\beta}_{n+1} W_{n}\right)+[n+1] s^{-1} \beta_{n+1} W_{n}\right)\right)
\end{array}\right\}
$$

We break the computation here to note that the first two terms in the last line also appear on the right hand side of (4.15). Thus, we would like to prove the following equality:

$$
\begin{gather*}
\left(s^{-1} a^{-1}+s^{-3} a\right) r_{n+1}-\left(s^{-1} a+s^{-3} a^{-1}\right) l_{n+1}+\{n+2\} s^{-2}\left(a W_{n+1}-a^{-1} \widetilde{W}_{n+1}\right)- \tag{4.16}\\
\{n+1\} s^{-1}\left(\bar{\beta}_{n+1}-\beta_{n+1}\right)\left(W_{n}-\widetilde{W}_{n}\right)=-\{n\}\left(a W_{n-1}-a^{-1} \widetilde{W}_{n-1}\right)
\end{gather*}
$$

We will show this by continuing to expand the right hand side using the identities from Lemma 4.4.

$$
\begin{aligned}
& \quad\left(s^{-1} a+s^{-3} a^{-1}\right) l_{n+1}-\left(s^{-1} a^{-1}+s^{-3} a\right) r_{n+1}-\{n+2\} s^{-2}\left(a W_{n+1}-a^{-1} \widetilde{W}_{n+1}\right)- \\
& \quad\{n+1\} s^{-1}\left(\bar{\beta}_{n+1}-\beta_{n+1}\right)\left(W_{n}-\widetilde{W}_{n}\right) \\
& =\left(s^{-1} a^{-1}+s^{-3} a\right) r_{n+1}-\left(s^{-1} a+s^{-3} a^{-1}\right) l_{n+1}+[n+2]\left(s^{-1}-s^{-3}\right)\left(a W_{n+1}-a^{-1} \widetilde{W}_{n+1}\right)+ \\
& \quad[n+1]\left(1-s^{-2}\right)\left(\bar{\beta}_{n+1}-\beta_{n+1}\right)\left(W_{n}-\widetilde{W}_{n}\right) \\
& = \\
& s^{-1} a\left([n+2] W_{n+1}-l_{n+1}\right)+s^{-3} a^{-1}\left([n+2] \widetilde{W}_{n+1}-l_{n+1}\right)-s^{-3} a\left([n+2] W_{n+1}-r_{n+1}\right)-
\end{aligned}
$$

$$
\begin{aligned}
& s^{-1} a^{-1}\left([n+2] \widetilde{W}_{n+1}-r_{n+1}\right)+[n+1]\left(1-s^{-2}\right)\left(\bar{\beta}_{n+1}-\beta_{n+1}\right)\left(W_{n}-\widetilde{W}_{n}\right) \\
= & s^{-1} a\left([n+1] s^{-1} a W_{n}+[n+1] s^{-1} \beta_{n+1} a^{-1} \widetilde{W}_{n}\right)+s^{-3} a^{-1}\left([n+1] s a^{-1} \widetilde{W}_{n}+[n+1] s \bar{\beta}_{n+1} a W_{n}\right)- \\
& s^{-3} a\left([n+1] s a W_{n}+[n+1] s \bar{\beta}_{n+1} a^{-1} \widetilde{W}_{n}\right)-s^{-1} a^{-1}\left([n+1] s^{-1} a^{-1} \widetilde{W}_{n}+[n+1] s^{-1} \beta_{n+1} a W_{n}\right)+ \\
& {[n+1]\left(1-s^{-2}\right)\left(\bar{\beta}_{n+1}-\beta_{n+1}\right)\left(W_{n}-\widetilde{W}_{n}\right) } \\
= & {[n+1]\left(s^{-2} a^{2} W_{n}+s^{-2} \beta_{n+1} \widetilde{W}_{n}+s^{-2} a^{-2} \widetilde{W}_{n}+s^{-2} \bar{\beta}_{n+1} W_{n}-s^{-2} a^{2} W_{n}-s^{-2} \bar{\beta}_{n+1} \widetilde{W}_{n}-\right.} \\
& s^{-2} a^{-2} \widetilde{W}_{n}-s^{-2} \beta_{n+1} W_{n}+\bar{\beta}_{n+1} W_{n}-\bar{\beta}_{n+1} \widetilde{W}_{n}-\beta_{n+1} W_{n}+\beta_{n+1} \widetilde{W}_{n}- \\
& \left.s^{-2} \bar{\beta}_{n+1} W_{n}+s^{-2} \bar{\beta}_{n+1} \widetilde{W}_{n}+s^{-2} \beta_{n+1} W_{n}-s^{-2} \beta_{n+1} \widetilde{W}_{n}\right) \\
= & {[n+1]\left(\bar{\beta}_{n+1}-\beta_{n+1}\right)\left(W_{n}-\widetilde{W}_{n}\right) } \\
= & \left(\bar{\beta}_{n+1}-\beta_{n+1}\right)\left(\left([n+1] W_{n}\right)-\left([n+1] \widetilde{W}_{n}\right)\right) \\
= & \left(\bar{\beta}_{n+1}-\beta_{n+1}\right)\left(\left(l_{n}+[n] s^{-1} a W_{n-1}+[n] s^{-1} \beta_{n} a^{-1} \widetilde{W}_{n-1}\right)-\left(l_{n}+[n] s a^{-1} \widetilde{W}_{n-1}+[n] s \bar{\beta}_{n} a W_{n-1}\right)\right) \\
= & \left(\bar{\beta}_{n+1}-\beta_{n+1}\right)\left([n]\left(s^{-1}-s \bar{\beta}_{n}\right) a W_{n-1}-[n]\left(s-s^{-1} \beta_{n}\right) a^{-1} \widetilde{W}_{n-1}\right) \\
= & {[n]\left(\bar{\beta}_{n+1}-\beta_{n+1}\right)\left(s-s^{-1} \beta_{n}\right)\left(a W_{n-1}-a^{-1} \widetilde{W}_{n-1}\right) } \\
= & -\{n\}\left(a W_{n-1}-a^{-1} \widetilde{W}_{n-1}\right)
\end{aligned}
$$

5. Angled relations

In this section we prove the angled relations

$$
\begin{equation*}
\left[D_{1,0}, D_{1, n}\right]=\{n\}\left(D_{2, n}-D_{0, n}\right) \tag{5.1}
\end{equation*}
$$

The argument here is more intricate than in the previous section, so we first give the main steps, and then prove the main two steps in independent subsections.

Proof of (5.1). Let $a=\left[D_{1,0}, D_{1, n}\right]-\{n\}\left(D_{2, n}-D_{0, n}\right)$, so that our goal is to show $a=0$. Recall that \mathcal{C} is the skein of the annulus, and let $\mathcal{C}_{0,1}$ be the image of \mathcal{C} when the annulus is embedded in T^{2} along the $(0,1)$ curve. Also, recall that \mathcal{D} acts on \mathcal{C}, where in this action $(0,1) \in T^{2}$ corresponds to the core of the annulus, and $(1,0)$ is the meridian of the annulus. After making these choices, if we compose the algebra maps $\mathcal{C} \rightarrow \mathcal{C}_{0,1} \subset \mathcal{D} \rightarrow \operatorname{End}(\mathcal{C})$, then the (commutative) algebra \mathcal{C} is acting on itself by multiplication.

The claimed relations then follow from the following statements:
(1) First, in Subsection 5.1 we show that $a \cdot \varnothing=0$, where \varnothing is the empty link in \mathcal{C}.
(2) Then, using skein-theoretic arguments, in Section 5.2 we show that a is in the subalgebra $\mathcal{C}_{0,1}$.
(3) Finally, the following composition is an isomorphism

$$
\mathcal{C} \rightarrow \mathcal{C}_{0,1} \rightarrow \mathcal{C}
$$

where the second map is given by $b \mapsto b \cdot \varnothing$. This follows from the fact that there is a deformation retraction comprised of smooth embeddings which takes $S^{1} \times D^{2}$ to the image of a neighborhood of the $(0,1)$ curve under the gluing map

$$
\left(T^{2} \times[0,1]\right) \sqcup\left(S^{1} \times D^{2}\right) \rightarrow S^{1} \times D^{2}
$$

Combining these three facts shows $a=0$ in the algebra \mathcal{D}.
5.1. Acting on the empty link. Here we partially describe the action of the skein algebra of the torus on the skein algebra of the annulus. The formula we give here is similar in spirit to the formula for torus link invariants in RJ93, but it is simpler because of our choice to color the torus link by D_{k}. (For uncolored torus links there are idempotents other than hooks on the right hand side of the formula in RJ93.)
Lemma 5.1. Suppose that $k \in \mathbb{N}_{\geq 1}$, that $m, n \in \mathbb{Z}$ are relatively prime, and that $n \geq 1$. Then

$$
D_{k m, k n} \cdot \varnothing=c_{k}+\sum_{a+b+1=k n} v^{-k m} s^{k m(a-b)}(-1)^{b} \widehat{Q}_{(a \mid b)}
$$

Proof. The left hand side is the $(k m, k n)$ torus link colored by the element D_{k}, and projected into the skein of the annulus. Since the left hand side of Corollary 2.12 is an explicit expression in the BMW algebra for an element which closes to the B_{k}-colored $(k m, k n)$ torus link in the annulus, the formula claimed in this lemma follows from Corollary 2.12 and equation (2.9).

Since the constants c_{k} from equation (2.5) only depend on the parity of k, and the parity of $d(2, n)$ and $d(0, n)$ is the same, Lemma 5.1 implies the following identity:

$$
\begin{equation*}
\{n\}\left(D_{2, n}-D_{0, n}\right) \cdot \varnothing=\{n\} \sum_{a+b+1=n}\left(v^{-2} s^{2(a-b)}-1\right)(-1)^{b} \widehat{Q}_{(a \mid b)} \tag{5.2}
\end{equation*}
$$

By [LZ02, Proposition 2.1], \widehat{Q}_{λ} is an eigenvector of the action by $D_{1,0}$ on \mathcal{C} with eigenvalue

$$
c_{\lambda}=\delta+\left(s-s^{-1}\right)\left(v^{-1} \sum_{x \in \lambda} s^{2 c n(x)}-v \sum_{x \in \lambda} s^{-2 c n(x)}\right)
$$

where if c is a cell of index (i, j) in λ, it has content $\operatorname{cn}(c)=j-i$. When $\lambda=(a \mid b)$, one may compute

$$
c_{(a \mid b)}=\delta+v^{-1}\left(s^{n}-s^{-n}\right) s^{a-b}-v\left(s^{n}-s^{-n}\right) s^{-(a-b)}
$$

This together with (5.2) gives us

$$
\begin{aligned}
{\left[D_{1,0}, D_{1, n}\right] \cdot \varnothing } & =D_{1,0} \cdot\left(D_{1, n} \cdot \varnothing\right)-D_{1, n} \cdot\left(D_{1,0} \cdot \varnothing\right) \\
& =D_{1,0} \cdot\left(\sum_{a+b+1=n} v^{-1} s^{a-b}(-1)^{b} \widehat{Q}_{(a \mid b)}\right)-D_{1, n} \cdot(\delta \varnothing) \\
& =\sum_{a+b+1=n}\left(c_{(a \mid b)}-\delta\right) v^{-1} s^{a-b}(-1)^{b} \widehat{Q}_{(a \mid b)} \\
& =\sum_{a+b+1=n}\left(v^{-1}\left(s^{n}-s^{-n}\right) s^{a-b}-v\left(s^{n}-s^{-n}\right) s^{-(a-b)}\right) v^{-1} s^{a-b}(-1)^{b} \widehat{Q}_{(a \mid b)} \\
& =\{n\} \sum_{a+b+1=n}\left(v^{-2} s^{2(a-b)}-1\right)(-1)^{b} \widehat{Q}_{(a \mid b)} \\
& =\{n\}\left(D_{2, n} \cdot \varnothing-D_{0, n} \cdot \varnothing\right)
\end{aligned}
$$

This shows that $a \cdot \varnothing=0$.
5.2. The affine BMW algebra. In this section, we will show that the element $a \in \mathcal{D}$ lies in $\mathcal{C}_{0,1}$. We will do this in the following skein-based calculations, starting with the use of the affine BMW algebra on 2 strands, $B \dot{M} W_{2}$. The algebra $B \dot{M} W_{n}$ is isomorphic to the algebra of n-tangles in the thickened annulus, modulo the Kauffman skein relations, where the product is stacking digrams GH06. We will think of the diagrams as living in the square with the top and bottom horizontal edged identified, where a product of diagrams $X Y$ is the diagram obtained from connecting the right vertical edge of X with the left vertical edge of Y.

Making a further identification of the vertical edges allows us to pass to the skein of the torus T^{2}, and induces a linear map $c l_{2}: B \dot{M} W_{2} \rightarrow \mathcal{D}$. This closure map $c l_{2}$ has the standard 'trace' property, namely
that $c l_{2}(X Y)=c l_{2}(Y X)$ for any $X, Y \in B \dot{M} W_{2}$. Similar to $c l_{1}$, this map may also be defined using a careful choice of wiring diagram:

From the diagrams A and \bar{A} as shown:

we can picture A^{n} and \bar{A}^{n}. The closures of these satisfy $c l_{2}\left(A^{n}\right)=D_{1,0} D_{1, n}$ and $c l_{2}\left(\bar{A}^{n}\right)=D_{1, n} D_{1,0}$. Hence

$$
\left[D_{1,0}, D_{1, n}\right]=c_{2}\left(A^{n}-\bar{A}^{n}\right)
$$

By the skein relation we can write $A-\bar{A}=\left(s-s^{-1}\right)(C-D)$ in $B \dot{M} W_{2}$, where C and D are the diagrams:

Using Definition 3.1 and the explicit computation of D_{2} in Section 2.5, one can verify that

$$
D_{2, n}= \begin{cases}c l_{2}\left(C^{n}\right) & n \text { odd } \tag{5.3}\\ c l_{2}\left(\frac{1}{s+s^{-1}}\left(A C^{n-1}+\bar{A} C^{n-1}\right)\right)-c & n \text { even }\end{cases}
$$

where

$$
c=\frac{v+v^{-1}}{s+s^{-1}}-1
$$

The product of D with any element of $B \dot{M} W_{2}$ closes in T^{2} to an element in the skein of T^{2} lying entirely in an annulus around the vertical curve, $(0,1)$:

In algebraic terms, $\operatorname{cl}_{2}(X D) \in \mathcal{C}_{0,1}$ for any $X \in B \dot{M} W_{2}$. Write \mathcal{I} for the two-sided ideal of $B \dot{M} W_{2}$ generated by D. Then $c l_{2}(\mathcal{I}) \subset \mathcal{C}_{0,1}$.

Note that $D_{0, n}$ is in $\mathcal{C}_{0,1}$ by definition. Our argument then, for n odd, is to show that $c l_{2}\left(A^{n}-\bar{A}^{n}-\right.$ $\left.\left(s^{n}-s^{-n}\right) C^{n}\right) \in \mathcal{C}_{0,1}$, with the appropriate modification for n even. In the case where n is even, we may forget about the constant term in $D_{2, n}$ since $-c \in \mathcal{C}_{0,1}$.

A few observations in the algebra $B \dot{M} W_{2}$ will get us much of the way towards our goal.
Firstly we can see that C^{2} commutes with A and \bar{A} at the diagrammatic level. Indeed it is central in the algebra, and so commutes with D, although more strongly we have that $C^{2} D=D C^{2}=D$.

We see also that $A C \bar{A}=C^{3}=\bar{A} C A$, leading to the more general cancellation of crossings $A C^{2 k-1} \bar{A}=$ $C^{2 k+1}$ for $k>0$, again true at the diagrammatic level.

Lemma 5.2. In $B \dot{M} W_{2}$ we have

$$
A^{n}-\bar{A}^{n}=\left(s-s^{-1}\right)\left(A^{n-1} C+A^{n-3} C^{3}+\cdots+C^{3} \bar{A}^{n-3}+C \bar{A}^{n-1}-\sum_{i=1}^{n} A^{n-i} D \bar{A}^{i-1}\right)
$$

Proof.

$$
\begin{aligned}
A^{n}-\bar{A}^{n} & =\sum_{i=1}^{n} A^{n-i}(A-\bar{A}) \bar{A}^{i-1} \\
& =\left(s-s^{-1}\right) \sum_{i=1}^{n} A^{n-i}(C-D) \bar{A}^{i-1} \\
& =\left(s-s^{-1}\right)\left(A^{n-1} C+A^{n-3} C^{3}+\cdots+C^{3} \bar{A}^{n-3}+C \bar{A}^{n-1}-\sum_{i=1}^{n} A^{n-i} D \bar{A}^{i-1}\right)
\end{aligned}
$$

Remark 5.3. The terms in a product can be reordered cyclically before closure so that

$$
c l_{2}\left(\sum_{i=1}^{n} A^{n-i} D \bar{A}^{i-1}\right)=\operatorname{cl}_{2}\left(\sum_{i=1}^{n} \bar{A}^{i-1} A^{n-i} D\right)=X_{n}
$$

which represents the element $X_{n} \in \mathcal{C}_{0,1}=\mathcal{C}$ in the skein of the annulus which has the same diagrammatic representation as the P_{k} in the Hecke algebra in Definition 2.6
Corollary 5.4. We have the expansion

$$
\begin{aligned}
{\left[D_{1,0}, D_{1, n}\right] } & =c l_{2}\left(A^{n}-\bar{A}^{n}\right) \\
& =c l_{2}\left(\left(s-s^{-1}\right)\left(A^{n-1} C+C \bar{A}^{n-1}\right)+\left(A^{n-2}-\bar{A}^{n-2}\right) C^{2}\right)-\left(s-s^{-1}\right)\left(X_{n}-X_{n-2}\right)
\end{aligned}
$$

Theorem 5.5. In \mathcal{D} we have $\left[D_{1,0}, D_{1, n}\right]=\left(s^{n}-s^{-n}\right) D_{2, n}+Z_{n}$ for some $Z_{n} \in \mathcal{C}_{0,1}$.
Proof. We prove this by induction on n in two separate cases, either when n is odd, or when n is even.
The case $n=1$ is immediate since $A-\bar{A}-\left(s-s^{-1}\right) C=-\left(s-s^{-1}\right) D \in \mathcal{I}$ and so $c l_{2}\left(A-\bar{A}-\left(s-s^{-1}\right) C\right)=$ $\left[D_{1,0}, D_{1,1}\right]-\left(s^{1}-s^{-1}\right) D_{2,1}$ lies in $\mathcal{C}_{0,1}$.

When $n=2$ we have from lemma (5.4) that $A^{2}-\bar{A}^{2}-\left(s-s^{-1}\right)(A C+C \bar{A}) \in \mathcal{I}$. Then $l_{2}\left(A^{2}-\bar{A}^{2}-\right.$ $\left.\left(s-s^{-1}\right)(A C+C \bar{A})\right)=\left[D_{1,0}, D_{1,2}\right]-\left(s^{1}-s^{-1}\right)\left(s+s^{-1}\right) D_{2,2}$ lies in $\mathcal{C}_{0,1}$.

Assume now that $n>2$. By our induction hypothesis, theorem 5.5, for $n-2$ we know that

$$
\left[D_{1,0}, D_{1, n-2}\right]=\left(s^{n-2}-s^{-(n-2)}\right) D_{2, n-2}+Z_{n-2}
$$

where $Z_{n-2} \in \mathcal{C}_{0,1}$. Apply a single Dehn twist about the $(0,1)$ curve. Then

$$
\left[D_{1,1}, D_{1, n-1}\right]=\left(s^{n-2}-s^{-(n-2)}\right) D_{2, n}+Z_{n-2}
$$

since $\mathcal{C}_{0,1}$ is unaffected by this Dehn twist. We can see diagrammatically that

$$
c l_{2}\left(A^{n-2} C^{2}-\bar{A}^{n-2} C^{2}\right)=\left[D_{1,1}, D_{1, n-1}\right]
$$

Our induction hypothesis then shows that

$$
\begin{equation*}
c l_{2}\left(A^{n-2} C^{2}-\bar{A}^{n-2} C^{2}\right)=\left(s^{n-2}-s^{-(n-2)}\right) D_{2, n} \text { modulo } \mathcal{C}_{0,1} \tag{5.4}
\end{equation*}
$$

This provides us with one part of the expression for $\left[D_{1,0}, D_{1, n}\right]$ in corollary 5.4. We calculate the other part by means of the following lemma.

Lemma 5.6. We have $c_{2}\left(A^{n-1} C+C \bar{A}^{n-1}\right)=\left(s^{n-1}+s^{-(n-1)}\right) D_{2, n}+Y_{n}$ for some $Y_{n} \in \mathcal{C}_{0,1}$.
Proof. Lemma5.6 is immediate for $n=1,2$.
For $n>2$ use induction on n, and equation (5.4).
Now $c l_{2}\left(A^{n-1} C+C \bar{A}^{n-1}\right)=\operatorname{cl}_{2}\left(A^{n-2} C A+\bar{A} C \bar{A}^{n-2}\right)$. Expand $A^{n-2} C A$ and $\bar{A} C \bar{A}{ }^{n-2}$ as

$$
A^{n-2} C A=A^{n-2} C\left(\bar{A}+\left(s-s^{-1}\right)(C-D)\right)=A^{n-3} C^{3}+\left(s-s^{-1}\right) A^{n-2} C^{2}-\left(s-s^{-1}\right) A^{n-2} C D
$$

and

$$
\bar{A} C \bar{A}^{n-2}=\left(A-\left(s-s^{-1}\right)(C-D)\right) C \bar{A}^{n-2}=C^{3} \bar{A}^{n-3}-\left(s-s^{-1}\right) \bar{A}^{n-2} C^{2}+\left(s-s^{-1}\right) D C \bar{A}^{n-2}
$$

Then

$$
\begin{aligned}
c l_{2}\left(A^{n-2} C A+\bar{A} C \bar{A}^{n-2}\right) & =c l_{2}\left(A^{n-3} C^{3}+C^{3} \bar{A}^{n-3}+\left(s-s^{-1}\right)\left(A^{n-2} C^{2}-\bar{A}^{n-2} C^{2}\right)\right) \text { modulo } \mathcal{C}_{0,1} \\
& =\left(s^{n-3}+s^{-(n-3)}\right) D_{2, n}+\left(s-s^{-1}\right)\left(s^{n-2}-s^{-(n-2)}\right) D_{2, n} \text { modulo } \mathcal{C}_{0,1} \\
& =\left(s^{n-1}+s^{-(n-1)}\right) D_{2, n} \text { modulo } \mathcal{C}_{0,1}
\end{aligned}
$$

using Lemma 5.6 for $n-2$ and equation (5.4).
This establishes Lemma 5.6

We complete the induction step for Theorem 5.5 using Corollary 5.4 and equation (5.4). This shows that

$$
\begin{aligned}
{\left[D_{1,0}, D_{1, n}\right] } & =c l_{2}\left(\left(s-s^{-1}\right)\left(A^{n-1} C+C \bar{A}^{n-1}\right)+\left(A^{n-2}-\bar{A}^{n-2}\right) C^{2}\right) \text { modulo } \mathcal{C}_{0,1} \\
& =\left(s-s^{-1}\right)\left(s^{n-1}-s^{-(n-1)}\right) D_{2, n}+\left(s^{n-2}-s^{-(n-2)}\right) D_{2, n} \text { modulo } \mathcal{C}_{0,1} \\
& =\left(s^{n}-s^{-n}\right) D_{2, n} \text { modulo } \mathcal{C}_{0,1}
\end{aligned}
$$

6. Appendix

In the first subsection we state the BMW analogue of a classical result of Przytycki. In the second we show that our results on the Kauffman skein algebra are compatible with the analogous result about the Kauffman bracket skein algebra obtained by Frohman and Gelca FG00.
6.1. Przytycki. In Prz91, Przytycki described a linear basis of the Homflypt skein algebra of a surface. This basis is the set of unordered words on the set $\left\{\pi_{1}(F) \backslash 1\right\} / \sim$, the set of non-identity conjugacy classes in the fundamental group of F. For the torus, this implies that the Homflypt skein algebra has a basis given by unordered words in $P_{\mathbf{x}}$ for $\mathbf{x} \in \mathbb{Z}^{2}$. A rough statement of the idea of the proof is that the diamond-lemma-type equalities that are used to show that the Homflypt polynomial is well-defined in S^{3} generalize to 3-manifolds of the form $F \times[0,1]$. However, the details are quite technical, so we state the following analogue of his theorem for the Kauffman skein algebra without proof.

Theorem 6.1. The algebra \mathcal{D} has a basis given by unordered words in the elements $D_{\mathbf{x}}$, subject to the relation $D_{\mathbf{x}}=D_{-\mathbf{x}}$.
6.2. Frohman and Gelca. Here we show that our presentation of the Kauffman skein algebra of the torus is compatible with Frohman and Gelca's presentation of the Kauffman bracket skein algebra of the torus, which we recall below. This algebra is defined in the same way as the Kauffman skein algebra, but using the Kauffman bracket skein relations:

Given any 3-manifold, there is a natural map $\operatorname{Sk}_{s}(M) \rightarrow K_{s}(M)$, which follows from the fact that the Kauffman bracket skein relations imply the Kauffman skein relations. If $M=F \times[0,1]$ for some surface F, then this is an algebra map.
Lemma 6.2. The algebra map $\mathrm{Sk}_{s}\left(T^{2} \times[0,1]\right) \rightarrow K_{s}\left(T^{2} \times[0,1]\right)$ takes the generator $D_{\mathbf{x}}$ to $e_{\mathbf{x}}$.
Proof. The closure of symmetrizer f_{n} in the annulus gets sent to the (closure of the) Jones-Wenzl idempotent in the Kauffman bracket skein algebra of the annulus, because both symmetrizers are uniquely determined by the way they absorb crossings and caps. Under the identification $K_{s}\left(S^{1} \times D^{2}\right)=\mathbb{C}[x]$, the closure of the Jones-Wenzl idempotent is sent to the Chebyshev polynomial $S_{n}(x)$, which is defined by

$$
S_{n}\left(X+X^{-1}\right)=\frac{X^{n+1}-X^{-n-1}}{X-X^{-1}}
$$

The elements e_{n} are other version $T_{n}(x)$ of Chebyshev polynomials, which are defined by

$$
T_{n}\left(X+X^{-1}\right)=X^{n}+X^{-n}
$$

Then all that is left to show is that the $S_{n}(x)$ and $T_{n}(x)$ satisfy the power series identity in Definition 2.3 .

Now let us recall the description of the Kauffman bracket skein algebra of the torus given by Frohman and Gelca.

Theorem 6.3 ([FG00]). The Kauffman bracket skein algebra $K_{s}\left(T^{2}\right)$ has a presentation with generators $e_{\mathbf{x}}$ and relations

$$
\begin{align*}
e_{\mathbf{x}} e_{\mathbf{y}} & =s^{d} e_{\mathbf{x}+\mathbf{y}}+s^{-d} e_{\mathbf{x}-\mathbf{y}} \tag{6.2}\\
e_{\mathbf{x}} & =e_{-\mathbf{x}} \tag{6.3}
\end{align*}
$$

where $d=\operatorname{det}[\mathbf{x y} \mathbf{y}$.
A short computation using this presentation shows the commutator identity

$$
\left[e_{\mathbf{x}}, e_{\mathbf{y}}\right]=\left(s^{d}-s^{-d}\right)\left(e_{\mathbf{x}+\mathbf{y}}-e_{\mathbf{x}-\mathbf{y}}\right)
$$

In other words, the relations we show for $D_{\mathbf{x}} \in \operatorname{Sk}\left(T^{2}\right)$ are compatible with the relations Frohman and Gelca show for the $e_{\mathbf{x}} \in K_{s}\left(T^{2}\right)$.
Remark 6.4. We emphasize that the algebra we describe is much bigger $-\operatorname{Sk}\left(T^{2}\right)$ has a linear basis given by unordered words in the $D_{\mathbf{x}}$, while the Kauffman bracket skein algebra $K_{s}\left(T^{2}\right)$ has a linear basis given by the $e_{\mathbf{x}}$ themselves. This happens because the Kauffman bracket skein relations allow all crossings to be removed from a diagram, so the algebra is spanned (over R) by curves without crossings. However, the more general Kauffman relations only allow crossings to be flipped, and not removed, which means the algebra is spanned (over R) by products of knots (which may have self-crossings).

References

[BB01] Anna Beliakova and Christian Blanchet, Skein construction of idempotents in Birman-Murakami-Wenzl algebras, Math. Ann. 321 (2001), no. 2, 347-373. MR 1866492 (2002h:57018)
[BGSLX16] Francois Bergeron, Adriano Garsia, Emily Sergel Leven, and Guoce Xin, Compositional (km, kn)-shuffle conjectures, Int. Math. Res. Not. IMRN (2016), no. 14, 4229-4270. MR 3556418
[BS12] Igor Burban and Olivier Schiffmann, On the Hall algebra of an elliptic curve, I, Duke Math. J. 161 (2012), no. 7, 1171-1231. MR 2922373
[BW89] Joan S. Birman and Hans Wenzl, Braids, link polynomials and a new algebra, Trans. Amer. Math. Soc. 313 (1989), no. 1, 249-273. MR 992598 (90g:57004)
[Che95] Ivan Cherednik, Double affine Hecke algebras and Macdonald's conjectures, Ann. of Math. (2) 141 (1995), no. 1, 191-216. MR 1314036
[Che05] , Double affine Hecke algebras, London Mathematical Society Lecture Note Series, vol. 319, Cambridge University Press, Cambridge, 2005. MR 2133033 (2007e:32012)
$\left[\mathrm{CLL}^{+} 18\right]$ Sabin Cautis, Aaron D. Lauda, Anthony M. Licata, Peter Samuelson, and Joshua Sussan, The elliptic Hall algebra and the deformed Khovanov Heisenberg category, Selecta Math. (N.S.) 24 (2018), no. 5, 4041-4103. MR 3874690
[CM18] Erik Carlsson and Anton Mellit, A proof of the shuffle conjecture, J. Amer. Math. Soc. 31 (2018), no. 3, 661-697. MR 3787405
[DRV13] Zajj Daugherty, Arun Ram, and Rahbar Virk, Affine and degenerate affine BMW algebras: actions on tensor space, Selecta Math. (N.S.) 19 (2013), no. 2, 611-653. MR 3090238
[DRV14] , Affine and degenerate affine BMW algebras: the center, Osaka J. Math. 51 (2014), no. 1, $257-283$. MR 3192543
[FG00] Charles Frohman and Răzvan Gelca, Skein modules and the noncommutative torus, Trans. Amer. Math. Soc. 352 (2000), no. 10, 4877-4888. MR MR1675190 (2001b:57014)
[GH06] Frederick M. Goodman and Holly Hauschild, Affine Birman-Wenzl-Murakami algebras and tangles in the solid torus, Fund. Math. 190 (2006), 77-137. MR 2232856
[KT87] Kazuhiko Koike and Itaru Terada, Young-diagrammatic methods for the representation theory of the classical groups of type B_{n}, C_{n}, D_{n}, J. Algebra 107 (1987), no. 2, 466-511. MR 885807 (88i:22035)
[LZ02] Bin Lu and Jianyuan K Zhong, The Kauffman polynomials of generalized Hopf links, Journal of Knot Theory and Its Ramifications 11 (2002), no. 08, 1291-1306.
[Mel17] Anton Mellit, Homology of torus knots, arXiv e-prints (2017), arXiv:1704.07630.
[Mor10] Hugh R Morton, A basis for the Birman-Wenzl algebra, arXiv preprint arXiv:1012.3116 (2010).
[MS17] Hugh Morton and Peter Samuelson, The HOMFLYPT skein algebra of the torus and the elliptic Hall algebra, Duke Math. J. 166 (2017), no. 5, 801-854. MR 3626565
[Mur87] Jun Murakami, The Kauffman polynomial of links and representation theory, Osaka J. Math. 24 (1987), no. 4, 745-758. MR 927059
[Prz91] Józef H. Przytycki, Skein modules of 3-manifolds, Bull. Polish Acad. Sci. Math. 39 (1991), no. 1-2, 91-100. MR 1194712 (94g:57011)
[RJ93] Marc Rosso and Vaughan Jones, On the invariants of torus knots derived from quantum groups, J. Knot Theory Ramifications 2 (1993), no. 1, 97-112. MR 1209320
[Sch16] Olivier Schiffmann, Indecomposable vector bundles and stable Higgs bundles over smooth projective curves, Ann. of Math. (2) 183 (2016), no. 1, 297-362. MR 3432585
[She16] Thomas Shelly, Skein theory and algebraic geometry for the two-variable Kauffman invariant of links, Doctoral Dissertation (2016).
[SV11] O. Schiffmann and E. Vasserot, The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials, Compos. Math. 147 (2011), no. 1, 188-234. MR 2771130 (2012f:20008)
[SV13] , Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on \mathbf{A}^{2}, Publ. Math. Inst. Hautes Études Sci. 118 (2013), 213-342. MR 3150250

Department of Mathematical Sciences, University of Liverpool, Peach Street, Liverpool L69 7ZL, UK
E-mail address: morton@liv.ac.uk
Department of Mathematics, University of California, Riverside
E-mail address: apoko001@ucr.edu
Department of Mathematics, University of California, Riverside
E-mail address: psamuels@ucr.edu

[^0]: ${ }^{1}$ To clarify a possible point of confusion, the Kauffman bracket skein relations are defined in the Appendix. Computations with the Kauffman bracket skein relations are much simpler because "all crossings can be removed." See also Remark 6.4
 ${ }^{2}$ We thank Negut for pointing this out.
 ${ }^{3}$ The Hall algebra is graded by K-theory, and in many cases of interest this is a free abelian group of rank 2 or greater.

[^1]: ${ }^{4}$ To be clear, when we say "non-unital algebra map," we mean $s_{n}(x+y)=s_{n}(x)+s_{n}(y)$ and $s_{n}(x y)=s_{n}(x) s_{n}(y)$, but that $s_{n}(1)$ is not the identity in $B M W_{n}$, but instead is another idempotent.

