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Abstract 

Cell migration requires cells to sense and interpret an array of extracellular signals to precisely co-ordinate 

adhesion dynamics, local application of mechanical force, polarity signalling and cytoskeletal dynamics. 

Adhesion receptors and growth factor receptors exhibit functional and signalling characteristics that 

individually contribute to cell migration. Integrins transmit bidirectional mechanical forces and transduce 

long-range intracellular signals. Growth factor receptors are fast acting and highly sensitive signalling 

machines that initiate signalling cascades to co-ordinate global cellular processes. Syndecans are 

microenvironment sensors that regulate GTPases to control receptor trafficking, cytoskeletal remodelling 

and adhesion dynamics. However, an array of crosstalk mechanisms exists, which co-ordinate and integrate 

the functions of the different receptor families. Here we discuss the nature of adhesion receptor and growth 

factor receptor crosstalk mechanisms. The unifying theme is that efficient cell migration requires precise 

spatial and temporal co-ordination of receptor crosstalk. However, a higher order of complexity emerges; 

whereby multiple crosstalk mechanisms are integrated and subject to both positive and negative feedback. 

Exquisite and sensitive control of these mechanisms will ensure that mechanical forces and pro-migratory 

signals are triggered in the right place and at the right time during cell migration. Finally, we discuss the 

challenges, and potential therapeutic benefits, associated with deciphering this complexity. 

 

 
 
 
Summary Points 
 
Cell migration requires precise co-ordination of adhesion dynamics, mechanical force application, polarity 
signalling and cytoskeletal dynamics. 
 
Crosstalk mechanisms exist that integrate integrin, growth factor receptor and syndecan signalling, 
trafficking and function. 
 
Spatial and temporal regulation of crosstalk mechanisms fine-tunes cell migration by co-ordinating adhesion 
dynamics, GTPase signalling, cytoskeletal dynamics and application of actomyosin-dependent traction forces 
onto the matrix. 
 
Adhesion receptor and growth factor receptor crosstalk is subject to feedback mechanisms and a higher 
order of complexity; enabling functional integration of multiple crosstalk mechanisms. 
 
Mathematical modelling and systems biology approaches will be essential to fully dissect the complex 
regulatory mechanisms co-ordinating cell migration. Understanding this complexity will provide insight into 
the fundamental mechanisms that drive cell migration, but also how these mechanisms are dysregulated in 
disease. Ultimately, these insights will inform patient stratification, efforts to prevent acquired drug 
resistance and development of novel therapeutic approaches in cancer. 
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Introduction 

Cell migration plays a critical role in many physiological and repair processes, including developmental 

morphogenesis, maintenance of tissue homeostasis, wound healing and immune surveillance, and drives the 

pathogenesis of numerous neoplastic and inflammatory diseases.  The topological, biophysical and 

biochemical characteristics of the local microenvironment directly control cell migration1. Consequently, to 

enable efficient migration, cells sense and interpret an array of extracellular signals to precisely co-ordinate 

adhesion dynamics, local application of locomotive mechanical forces, polarity signalling and cytoskeletal 

dynamics1.  

 

The extracellular matrix (ECM) is a 3-dimensional scaffold providing positional, structural and chemical 

information to co-ordinate cellular functions2. Haptotactic migration is characterised by directed cell motility 

towards or along an immobilised ECM substrate. However, in vivo, cells encounter a complex 

microenvironment incorporating fibrillar and laminar ECM substrates of varying rigidities and porosity. 

Moreover, cells are exposed to soluble growth factors and guidance cues, which may be diffusible or 

immobilised on ECM at discrete sites or as gradients.  

 

As growth factors can bind a range of ECM proteins, the matrix can essentially act as a reservoir with the 

capacity to retain and release growth factors, following specific environmental or cell-mediated stimuli. The 

ECM is metastable; an apparently stable scaffold, that is subject to dynamic cell-mediated mechanical 

deformation, remodelling and turnover3. Thus, mechanical- and matrix metalloproteinase-mediated ECM 

remodelling and degradation can regulate the bioavailability of growth factors and chemokines4. Emerging 

evidence suggests that detection of disparate matrix and growth factor stimuli within a complex 

microenvironment, provides exquisite spatial and temporal control of the cellular processes required to drive 

cell migration5. 

 

Signals initiated downstream of individual adhesion receptors and receptor tyrosine kinases are relatively 

well understood1,6,7, but the complex regulatory mechanisms that co-ordinate crosstalk between these 

different classes of receptor remain largely obscure. Evidence of adhesion and growth factor receptor 

crosstalk has existed for some time, but only recently has it been possible to gain insight into the mechanisms 

that orchestrate adhesion and growth factor receptor crosstalk spatially and temporally. Here we discuss 

emergent concepts in the field and consider how these regulatory mechanisms might co-ordinate different 

functions associated with cell migration (Figure 1). 
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Fig 1:  Adhesion receptor-growth factor receptor crosstalk regulates cell migration 
A) Cell migration requires precise co-ordination of integrin-associated complex (IAC) dynamics, mechanical force 
application, mechanotransduction, polarity signalling and cytoskeletal dynamics. IAC dynamics are co-ordinated by 
receptor trafficking and mechanotransduction, membrane protrusion is spatially regulated by GTPase activity and actin 
dynamics. B) Crosstalk between integrins, GFRs and syndecans fine-tunes signalling outputs to spatially and temporally 
control cell migration. 
________________________________________________________________________________________________ 
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Integrins: Mechanochemical Signalling Hubs 

Integrins are the major class of ECM-binding adhesion receptor and functionally integrate the extracellular 

microenvironment with the inside of the cell. Integrins are transmembrane receptors that relay mechanical 

signals bidirectionally across the membrane, between the ECM and the contractile cytoskeleton.  Thus, 

integrins enable cells to sense the mechanical properties of matrix and also to exert forces on ECM to control 

cell migration, invasion and tissue rigidity1.  

 

Integrin cytoplasmic domains lack inherent enzymatic activity, however, clusters of ligand-bound integrins 

recruit networks of hundreds of cytoskeletal and signalling molecules (collectively termed the “adhesome”). 

By establishing links to both the actin cytoskeleton and signalling moieties, and converting mechanical stimuli 

into biochemical outputs, integrin-associated adhesion complexes (IACs) regulate cell migration by co-

ordinating mechanical force transmission and by propagating signals that drive membrane-distal intracellular 

events1,8-10. Thus, integrins can be considered bidirectional mechanochemical signalling machines that 

dynamically recruit signalling networks to control global cellular functions. Indeed, the signalling machinery 

at IACs can influence nearly all biological processes in metazoa1. 

 

Recruitment of protein networks to clustered integrins, at the cell-matrix interface, leads to spatial 

compartmentalisation of force transmission and mechanochemical signalling. Therefore, to co-ordinate local 

application of mechanical forces, pro-migratory signalling and cytoskeletal dynamics, cell migration requires 

precise spatial and temporal regulation of IAC dynamics1,11. So, dysregulation of any of the processes that co-

ordinate adhesion dynamics by, for example, unconstrained activation or inhibition, has a major impact on 

cell motility12-17.  

 

Cell migration relies fundamentally on co-ordination of integrin engagement and IAC turnover. Therefore, 

regulatory mechanisms exist that enable cells to fine-tune local integrin-mediated mechanical and chemical 

signalling. The integrin family is composed of 24 different heterodimers (pairs of - and -subunits). Each 

integrin heterodimer exhibits differential selectivity for specific ECM ligands. Moreover, the mechanical, 

biophysical and signalling properties of each heterodimer, within this large and diverse family, can be 

profoundly different. The signalling networks established, and the mechanical forces transmitted, following 

engagement of different integrin heterodimers, elicit highly divergent effects on cell migration. 

Consequently, even integrin heterodimers that have the capacity to engage the same ECM ligand can induce 

highly differential effects on cell migration; for example, the fibronectin-binding integrins, 51 and 

V318,19. Engagement of 51 leads to dynamic IAC turnover, random cell motility and signalling via the 

small GTPase RhoA. Whereas, V3 suppresses IAC turnover and adhesion component dynamics, drives 

directionally-persistent migration and inhibits fibronectin-induced RhoA activity13-15. These differences are, 
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at least in part, due to differential mobility kinetics of individual receptors within IACs and their ability to 

sustain mechanical force transmission.  At the single molecule level, ligand-engaged V3 is immobile and 

stationary in IACs, whereas 51 exhibits actin-driven centripetal movement. Moreover, V3 functions as 

a mechanosensor due to a rapid on/off binding rate, relative to 51, and requires clustering and 

recruitment of adaptor proteins to stabilise and reinforce adhesion. By contrast, 51 supports high ECM 

forces and regulates the magnitude of adhesion strength20,21. These heterodimer-specific characteristics are 

also likely to be mediated by recruitment of distinct adhesome signalling networks to the different integrins. 

So on-going studies are employing proteomic techniques to dissect heterodimer-specific signalling networks, 

in order to determine how they co-ordinate cell migration and global cellular processes. 

 

 

Fig 2: Receptor trafficking controls bioavailability and function of integrins and growth factor receptors 
A) Integrin trafficking. Integrins are endocytosed via clathrin-dependent and -independent routes, and traffic to the 
early endosome (EE). Integrins are predominantly recycled rather than degraded109. Integrin recycling is generally 
associated with a fast short-loop pathway from the EE which is dependent on RAB4 and RAB35, or slower long-loop 
pathway from the perinuclear recycling compartment (PNRC) which is dependent on RAB11 and ARF666. Integrins 
trafficked to the late endosome (LE) or lysosome can also be recycled, and the ECM ligand is degraded. This process has 
been shown to be mediated by CLIC3 for α5β1110. B) GFR signalling and trafficking - Exemplar RTK: EGFR. Ligand 
engagement triggers dimerization. Active ligand-bound EGFR forms a back-to-back homodimer, interacting primarily 
through trans- and juxta-membrane domains. EGFR activation induces an asymmetrical orientation of the tyrosine 
kinase domains (visualisation aided by monomers as different colours), which triggers autophosphorylation111. 
Signalling effectors are recruited to phosphorylated tyrosines, and mediate downstream signalling (PI3K-AKT and RAS-
RAF-MAPK pathways shown in purple and green, respectively)112. EGFR activation stimulates receptor internalisation 
via clathrin-dependent and -independent routes113. Ubiquitin moieties on EGFR are detected by the ESCRT (Endosomal 
Sorting Complex Required for Transport) complex which sorts EGFR for lysosomal degradation, or recycling114. 
________________________________________________________________________________________________ 
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The impact that different integrins can have on cell migration demands that mechanisms exist to fine-tune 

the bioavailability and functions of different heterodimers. Consequently, during cell migration in vivo, 

heterodimer-specific integrin engagement and delivery to the cell-ECM interface is tightly regulated by 

receptor trafficking mechanisms (Figure 2A). Integrins are constitutively internalised and intracellular 

trafficking pathways regulate localised targeting of integrins back to the cell membrane22-24. Accordingly, co-

ordination of receptor internalisation, sorting, recycling and degradation spatially and temporally segregates 

engagement of, and signalling from, specific integrin heterodimers23,25-27. As a result, integrin trafficking 

mechanisms operate to fine-tune integrin engagement and signalling during cell migration. 

 

Receptor crosstalk mechanisms introduce an additional level of complexity to the regulatory systems that 

orchestrate integrin function and signalling; most notably via crosstalk with growth factor receptor tyrosine 

kinases and/or syndecans. The common characteristic is that such co-operative mechanisms impact receptor 

engagement, signalling and trafficking. Accordingly, these mechanisms provide potential for positive and 

negative feedback mechanisms and afford further opportunity to fine-tune receptor function and 

downstream outputs. 

 

Growth Factor Receptor: Tuneable Signalling Machines 

Growth factor receptors (GFRs) are receptor tyrosine kinases (RTKs) that act as key regulators of cellular 

processes, such as proliferation, differentiation, survival and cell migration28. Accordingly, aberrations in GFR 

signalling have been linked to numerous diseases and disease-related processes. Stimulation of GFRs with 

extracellular ligands typically triggers an autophosphorylation cascade and activation of the RAS-RAF-MAPK 

and PI3K-AKT signalling cascades, but the specific signalling response is RTK-, ligand- and cell type-dependent 

(Figure 2Bi: Exemplar RTK - EGFR). Ligand engagement usually triggers rapid receptor endocytosis, which can 

either lead to receptor degradation or recycling24 (the balance of which can be dictated by the specific 

stimulus29). An important facet of GFR function is that receptor internalisation is key for sustaining or 

modulating receptor signalling following stimulation; the so-called “signalling endosome” model (Figure 2Bii: 

Exemplar RTK – EGFR)6,24. Thus, GFR endocytosis is not simply a mechanism to switch off RTK signals, but a 

pre-requisite for a complete signalling response. 

 

Crosstalk between cell-ECM adhesions and GFRs has long been evident in the phenomenon of anchorage-

dependent cell survival. Whereby, GFRs signal inefficiently without integrin-mediated adhesion and initiate 

growth arrest or anoikis (detachment-induced apoptosis)30-34. However, accumulating evidence has led to 

the definition of numerous crosstalk mechanisms integrating integrin and GFR function. 

 

Integrin-GFR crosstalk can be mediated by a diverse range of mechanisms affecting receptor expression, 
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activity, signalling and trafficking35. Thus, adhesion receptor and GFR crosstalk provides mechanisms by which 

IACs, representing localised foci of mechanical and biochemical signal transduction, are co-ordinated spatially 

and temporally by GFRs. Equally, integrins can directly influence the subcellular distribution, clustering and 

expression of GFRs35. 

 

Mechanisms of Integrin-GFR Co-operation and Signal Integration  

Figure 3 shows the nine major mechanisms that enable integrin and growth factor receptor crosstalk; 

exemplar mechanisms are identified and discussed below, but this list of examples is not exhaustive. Some 

of the crosstalk mechanisms were initially characterised as co-ordinating global cellular functions, such as 

transcription, proliferation and cell survival, however, it is highly likely that all of these mechanisms will also 

directly impact cell migration. 

 

 

Fig 3: Integrin-growth factor receptor crosstalk mechanisms  
Schematic depictions of integrin-GFR crosstalk mechanisms, with representative examples. Green arrows represent 
signalling. A) Integrin and GFR co-clustering positively regulates their signalling. B) Multivalent ECM molecules function 
as linkers co-ordinating integrin and GFR engagement and distribution. C) Integrins stimulate GFR signalling in a growth 
factor-independent manner. D) Integrins recruit negative regulators to suppress GFR signalling. E) Integrins upregulate 
expression of GFRs, and vice versa. F) Integrins activate growth factors (e.g. TGFβ) via mechanical force application or 
modulation of proteases, enabling juxtacrine or autocrine stimulation of GFRs. G) Integrins and GFRs initiate 
concomitant signalling by activation of common signalling pathways. H) Integrins and GFRs can undergo co-
internalisation, and I) co-recycling; reciprocally controlling their availability at the plasma membrane. 
________________________________________________________________________________________________ 
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Integrins and GFRs often co-localise at the cell surface, however few examples of direct binding exist30. 

Despite this, aggregation of integrins causes GFR co-clustering, creating a permissive environment by bringing 

GFR monomers into proximity with each other and common downstream signalling effectors (Figure 3A)36. 

GFRs may also influence integrin clustering, for example knockdown of EGFR results in increased membrane 

diffusion and decreased clustering of Drosophila orthologs of integrin β137. Lipid raft plasma membrane 

microdomains have been implicated in these processes, as specialised regions that gather integrins and GFRs 

into signalling platforms38. Some ECM components can be engaged both by integrins and by GFRs (Figure 3B), 

for example tenascin-C can be bound by both EGFR and αVβ3, and therefore act as linkers co-ordinating the 

function of the receptors39,40. By controlling receptor clustering and actin dynamics, it is highly likely that 

these mechanisms co-ordinate cell migration, as well as survival. 

 

Integrins can also regulate the activity of GFRs by mechanisms that are more direct than simply creating a 

permissive environment. Integrins are reported, in certain circumstances, to activate GFRs in a ligand-

independent manner (Figure 3C). Integrin-dependent adhesion to fibronectin or collagen can stimulate EGFR 

phosphorylation in the absence of growth factor stimulation, via a mechanism that requires IAC signalling 

components (p130CAS and Src)41,42. Interestingly, ligand-independent activation of EGFR produces a different 

pattern of receptor tyrosine phosphorylation42. Integrin-mediated GFR activation may therefore induce 

unique signalling outputs compared to canonical ligand stimulation. Integrin-mediated ligand-independent 

activation of GFRs has been demonstrated for multiple other integrin subtypes and GFRs including platelet-

derived growth factor receptor and hepatocyte growth factor receptor (c-MET), regulating cell migration and 

invasion, respectively30,43,44. Importantly, adhesion stimulated activation of GFRs does not appear to be a 

universal phenomenon and may be ECM ligand- and cell type-specific45. 

 

Integrins can negatively regulate GFR activity, via recruitment of RTK inhibitors to IACs, such as tyrosine 

phosphatases that dephosphorylate GFRs46,47 (Figure 3D). One example of this is the recruitment of the 

phosphatase TCPTP (T-cell protein tyrosine phosphatase) by integrin α1β146. Binding to collagen promotes 

an interaction between the integrin α1 cytoplasmic domain and TCPTP and promotes TCPTP-dependent 

dephosphorylation of EGFR, VEGFR2 and TGFβR2, and suppresses growth factor-dependent functions 

including survival, migration and differentiation46-48. 

 

Integrins and GFRs can affect the expression and surface levels of one another (Figure 3E). For example 

overexpression of αVβ3 upregulates EGFR expression49, and sustained stimulation with HGF increases 

integrin α2β1 levels50. Integrins can also indirectly affect GFR function by interacting with, and/or modulating 

the activity of, growth factors (Figure 3F). Integrin-mediated activation of the growth factor TGFβ through 

mechanical force or proteases enables juxtacrine or autocrine stimulation of GFRs51. Integrin αVβ6 activates 
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TGFβ by binding and applying actomyosin- and RhoA-dependent force to latency-associated peptide (LAP) to 

induce a conformational change, releasing TGFβ from its inactive complex51,52. Whereas αVβ8 integrin 

activates TGFβ by promoting MT1-MMP-mediated cleavage of LAP53. Some integrins are also reported to 

bind select growth factors, such as αVβ3 which can bind insulin-like growth factor-1 and -254,55 and FGF156-58 

to modulate cell migration. Integrin binding to growth factors promotes signalling of the corresponding GFR, 

possibly suggesting that integrins are involved in presenting growth factor to the GFR30, although co-

receptors such as syndecans may also be involved in this process7.  

 

Thus, integrin-GFR crosstalk can influence the activity of both receptor families, in a positive or negative 

manner. These mechanisms can be mediated indirectly, for example by a divalent ECM ligand, through 

facilitative mechanisms such as influencing receptor expression and clustering, and by direct mechanisms 

such as the recruitment of phosphatases to directly control receptor activity or local force-dependent 

activation of growth factor. However, in addition to promoting GFR signalling in a collaborative manner, 

integrins can independently activate common signalling pathways, enhancing signalling concomitantly 

(Figure 3G). Key shared pathways include RAS-MAPK, PI3K-AKT, and the downstream regulation of Rho-

family GTPases. For example, the ‘FAK-Src’ complex, established at sites of integrin-ECM interaction, 

phosphorylates many RTK signalling effectors59,60, including PI3K to stimulate RTK-dependent survival 

signalling61. The fully phosphorylated ‘FAK-Src’ complex also binds GRB2 and connects adhesion signalling to 

RAS activation and the MAPK cascade59. Additionally, GFRs can activate FAK directly or indirectly via Src, and 

both are central nodes downstream of both integrin and GFR signalling30. 

 

Concomitant signalling between integrins and GFRs can also regulate integrin-mediated force sensation62, 

likely via EGFR- and PKC-dependent control of myosin-II contractility63,64. Moreover, Src-mediated 

phosphorylation of EGFR is required for rigidity dependent localisation of EGFR to early IACs62. As Src is not 

recruited to IACs in a force-dependent manner64, a likely candidate for this role is the Src substrate p130CAS 

which is mechanically-sensitive and involved in EGFR localisation64,42,65. By controlling MAPK and AKT 

signalling, Rho-family GTPase activity, adhesion dynamics and contractility, concomitant signalling 

mechanisms must play a major role in co-ordinating and fine-tuning cell migration. 

 

Recent work has demonstrated that GTPase signalling, converging downstream of αVβ6 integrin and EGFR, 

acts as a switch between integrin-mediated tumour cell migration and force-dependent activation of TGFβ52. 

This raises the intriguing notion that potential for a higher order complexity exists, whereby concomitant 

integrin-GFR signalling co-ordinates the activation of other GFR-dependent signalling networks. 

 



 
 

11 

Integrins and GFRs have shared trafficking routes, including those for internalisation and recycling30, 66,67 and 

crosstalk between the receptor families affects the endosomal trafficking of both receptor types. Integrins 

and GFRs often exhibit a reciprocal relationship whereby the function of one receptor directly impacts the 

internalisation of the other (Figure 3H). For example, EGFR activity triggers internalisation of both EGFR and 

α2β1 integrin through different endocytic pathways68. By contrast, HGF stimulation promotes co-

internalisation and co-trafficking of c-MET and β1 integrin, promoting sustained signalling from internalised 

c-MET69. Thus, co-internalisation of surface receptors functions as a key mechanism regulating receptor 

surface bioavailability in a co-ordinated and functionally integrated manner. While this mechanism was 

shown to regulate survival signalling, by co-ordinating the availability of integrins at the cell-matrix interface, 

it is likely to also influence mechanical force transduction and cell migration. 

 

Integrin and GFR recycling is an important determinant of spatiotemporal receptor delivery and distribution 

at the cell-matrix interface, and controls IAC dynamics and cell migration (Figure 3I). Growth factor 

stimulation can directly control whether specific integrin heterodimers recycle through the rapid short-loop 

recycling pathway, or the slower long-loop pathway25,27,70. Integrins and GFRs can also recycle in a co-

ordinated manner together. For example, α5β1 integrin and EGFR co-recycle71. Rab-coupling protein (RCP) 

binds directly to both β1 and EGFR, physically linking them, and enables co-ordinated delivery of both 

receptors to the membrane; impacting cell motility and EGFR signalling71. Co-ordinated regulation of 

receptor recycling has direct consequences for receptor availability at the cell surface, dynamics and levels.  

 

RTK endocytosis is required to propagate a complete growth factor-induced signalling response (“signalling 

endosome” model)6,24. Recent work has demonstrated that internalised integrins continue to signal via FAK 

on endosomes and that endocytosis is required for complete ECM-induced, integrin-mediated MAPK, AKT 

and FAK signalling and resistance to anoikis72,73. The parallels between the “signalling endosome” model for 

RTKs24, and the “endoadhesome” model for integrin signalling72, raises the exciting possibility that integrin 

or GFR signalling on endosomes sustains or modulates signalling from cooperating receptors; introducing 

further complexity and potential for feedback mechanisms. Endosomal signalling, crosstalk and feedback 

would enable fine-tuning and spatial constraint of signalling kinetics and could potentially play an important 

regulatory role in the co-ordination of migration. This prospect, and the role such mechanisms play in cancer, 

will doubtless be the focus intensive study over coming years. 

 

Due to the role of GFRs in regulating cell survival and proliferation, to date, many mechanisms of adhesion 

and GFR crosstalk have not been studied in the context of cell migration. However, the critical role that these 

mechanisms play in controlling receptor bioavailability and signalling outputs, means that they will play major 

regulatory roles in directing and co-ordinating cell migration.  
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The impact of specific ligands on GFR conformation and signalling kinetics is a new and rapidly developing 

field.  Structure-function studies have revealed pronounced differences in strength and stability of GFR 

dimers formed, following engagement of different ligands6,74. Compared to EGF, the epiregulin and epigen 

ligands induce structurally unstable and weak EGFR dimers. However, surprisingly, these less-stable 

asymmetric dimers promote sustained and exaggerated EGFR-dependent signalling. By modulating the 

downstream signalling outputs, engagement of the different ligands induces EGFR-dependent 

differentiation, rather than proliferation74. Understanding the conformational dynamics of RTK stability and 

activation kinetics has led to novel approaches to design and screen for RTK-targeting drugs, which target 

specific active conformations, in order to overcome drug resistance mechanisms in cancer75.  

 

In the context of cell migration, an appealing model is that as cells navigate through ECM they encounter 

nanoscale quantities of locally-immobilised growth factors, enabling restricted activation of small clusters of 

RTKs in membrane subdomains. The local interpretation of these discrete signals would allow spatially 

constrained regulation of signalling kinetics to fine-tune migration. Moreover, by initiating differential 

signalling responses following engagement with different ligands, the same RTK would have the capacity to 

induce different migration modulating effects. It will be important in the future to determine the extent to 

which the IAC environment, and its impact of the architecture of lipid microdomains, modulates GFR dimer 

structure, symmetry and signalling kinetics.  

 

Syndecans: Environmental Sensors and Signal Integrators 

 

Syndecans play key regulatory roles in many physiological processes, including wound healing, angiogenesis, 

inflammation and neuronal patterning7,76. Syndecans are type-I transmembrane heparan sulfate 

proteoglycans (HSPGs) that act as adhesion receptors engaging ECM molecules and co-receptors for growth 

factors, cytokines and morphogens7,76,77.  While not the primary receptors of ECM molecules or growth 

factors, syndecans cooperate with the prototypic receptors through simultaneous ligand engagement (Figure 

4A).  

 

Syndecan extracellular domains are substituted with long unbranched heparan sulfate chains that mediate 

adhesive interactions with heparin-binding domains (HBDs) in ECM macromolecules. The glycosaminoglycan 

chains also associate with HBDs in a range of different growth factors and GFRs, regulating immobilisation of 

growth factors, establishing gradients or essentially presenting growth factors to GFRs to promote 

dimerisation78. As nearly all classical ECM macromolecules contain at least one HBD, this means that 

syndecans have a potentially very large repertoire as adhesion receptors. By contrast, a more restricted 

group of growth factors and GFRs have HBDs and are potential syndecan substrates (including amphiregulin,  
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Fig 4: Syndecans: Integrators of integrin and GFR trafficking and signalling 
A) The role of syndecans and the impact of syndecan shedding on cellular functions. Syndecans act as ECM 
receptors (i) and co-receptors for growth factors and GFRs (ii) and co-operate with integrins to initiate a full 
adhesion response (iii). Syndecan extracellular domain shedding terminates syndecan signalling (iv), 
competes with intact syndecans for ECM ligands (v), and growth factors or GFRs (vi), and inhibits crosstalk 
with integrins. B) Syndecans regulate adhesion complex dynamics by controlling ARF6-dependent integrin, 
and potentially GFR, recycling. 
________________________________________________________________________________________________ 



 
 

14 

heparin-binding-EGF, FGF2, IGFBP, VEGF, PDGF-B, PIGF, TGFβ, HGF, FGFR and VEGFR2)79,80. FGFs bind to 

FGFRs with high affinity, but this interaction is stabilized and subsequent signalling events are amplified in 

the presence of HS81,82. 

 

The extracellular core proteins of syndecans are also reported to directly bind to integrins, both in cis and in 

trans, and to GFRs26,83-87. Indeed, in the case of syndecan-1, binding of integrin V3 to the syndecan 

extracellular domain provides a ‘docking face’ for IGF1R85-87. Syndecan-4 can simultaneously bind EGFR and 

α6β4 integrin to form a trimolecular complex that is required for EGF-mediated motility85. Due to these 

properties, efforts are underway to develop anti-angiogenic and invasion inhibitory drugs based on different 

syndecan extracellular core proteins85,86,88,89. 

 

Syndecans can function as ECM adhesion receptors and physically link integrins, growth factors and GFRs, via 

both heparan sulfate chains and direct protein-protein interactions. Consequently, syndecans are uniquely 

placed to co-ordinate adhesion receptor GFR crosstalk mechanisms7. However, a further level of mechanistic 

complexity is introduced by the fact that syndecan extracellular domains can be cleaved, at a membrane-

proximal site, by a range of secreted and membrane-associated proteases90. Shed ectodomains compete with 

intact syndecans for ECM ligands, growth factors or GFRs; impacting the signalling capacity of both the 

syndecan and the prototypic receptor90-92 (Figure 4A).  

 

It is becoming increasingly clear that syndecan signalling plays an equally important role in co-ordinating and 

integrating adhesion and GFR function during cell migration. Accumulating evidence is leading to a model of 

syndecans as molecular antennae that sense and interpret the biochemical and biophysical properties of the 

local microenvironment and initiate a wave of signalling outputs to spatially and temporally co-ordinate the 

migratory response (Figure 4B).  

 

Surprisingly little is known about the cytoplasmic signals initiated directly downstream of syndecans 

following association with growth factors. However, it is clear that binding of syndecans to ECM ligands 

initiates a co-ordinated cascade of cytoplasmic signalling events, so it is likely that associations with growth 

factors and/or GFRs will also activate specific signal transduction mechanisms. 

 

The short, well-conserved, cytoplasmic domains of syndecans interact with a number of signalling molecules 

and adaptors and are vital for their pro-migratory function. Syndecan-4 engagement by ECM ligand leads to 

a well characterised series of small GTPase modulatory events that regulate cytoskeletal reorganisation, 

integrin trafficking and IAC dynamics. Syndecan-4 stimulation initiates IAC disassembly in response to rapid 

induction of RhoG activity, through a mechanism consistent with caveolin-mediated integrin endocytosis93. 
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This is followed by a wave of Rac1 activation and suppression of RhoA activity, which enable formation of 

protrusive lamellipodia and nascent IACs94. Subsequently, RhoA is activated to promote stress fibre formation 

and force application95,96. Finally, syndecan-4 activates ARF6 to drive 51 integrin recycling and co-ordinate 

IAC dynamics15. Modulation of RhoG, Rac1 and RhoA are regulated by syndecan-4-mediated PKC activity, 

whereas regulation of syndecan-4-dependent ARF6 activity is controlled by Src. Src-mediated syndecan-4 

phosphorylation suppresses ARF6 activity to promote recycling of V3. By acting as a switch to dictate 

whether 51 or V3 integrins are delivered to the cell-matrix interface, syndecan-4 exhibits precise 

control over IAC dynamics and the biomechanical response to the local microenvironment during cell 

migration15. 

 

During cell migration in vivo, the stimuli that initiate temporal activation of GTPase activity, must be spatially 

constrained to ensure that receptor trafficking and IAC and cytoskeletal dynamics are precisely co-ordinated. 

It is interesting to note that Src, the kinase that regulates syndecan-4-dependent 51 or V3 recycling can 

be activated both by integrin-mediated adhesion and by GFR signalling. Raising the possibility that syndecan-

4 functions as a nexus integrating both ECM-associated and growth factor signals in order to co-ordinate 

integrin recycling. Indeed, ARF6 has also been implicated in trafficking of GFRs, and can be directly activated 

by GFR signalling97-102, so it is conceivable that these mechanisms may also control GFR recycling. The 

emerging picture, therefore, is that syndecan-4 operates as a microenvironmental sensor that integrates 

multiple physical and biochemical extracellular signals in order to orchestrate cell migration; determining 

where and when specific receptors should be engaged.  

 

Interestingly, the equivalent phosphorylation site in syndecan-2 has been shown to be phosphorylated by 

EphB2 RTK and regulates neuronal morphogenesis103. So, it is feasible that other syndecans regulate similar 

mechanisms, but the specific cargos and stimuli are likely to be dependent on cellular and microenvironment 

context. 

 

Concluding Remarks 

 

Complex regulatory networks and trafficking itineraries control receptor signalling to precisely co-ordinate 

efficient cell migration. Integrins, GFRs and syndecans each exhibit functional and signalling characteristics 

that directly and individually contribute to cell migration. Integrins are mechanosensitive and 

mechanoresponsive signalling hubs that enable bidirectional transmission of locomotive forces and distal 

propagation of signalling outputs. GFRs are highly sensitive signalling machines, with rapid kinetics, that 

initiate kinase cascades to co-ordinate transcription and GTPase activity. Syndecans are microenvironmental 

sensors that regulate GTPases to control receptor trafficking, cytoskeletal remodelling and adhesion 
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dynamics. However, an array of crosstalk mechanisms adds further strata of complexity to the system. 

Moreover, the individual crosstalk mechanisms are not mutually exclusive and growing evidence suggests a 

higher order of complexity; whereby multiple receptor crosstalk mechanisms are integrated. It is likely that, 

in vivo, regulation and integration of these mechanisms will be subject to both positive and negative feedback 

that will depend fundamentally on the spatiotemporal restriction of kinase, phosphatase and GTPase activity 

downstream of extracellular signals. Exquisite and sensitive control of these mechanisms will ensure that 

mechanical forces and pro-migratory signals are triggered in the right place and at the right time. 

 

In order to dissect positive and negative feedback pathways, within mechanisms that integrate multiple 

extracellular stimuli with cascades of kinase, phosphatase and GTPase activity, it will be necessary to employ 

mathematical modelling and systems biology approaches. Ultimately, this will enable a greater 

understanding of the fundamental processes that co-ordinate physiological cell migration and will also help 

us to understand how these processes are dysregulated in disease.  

 

To date, most studies analysing adhesion and GFR crosstalk in cell migration have relied on in vitro models, 

usually using 2D substrates. While these approaches permit dissection of complex signalling pathways and 

analysis of adhesion dynamics and traction forces, they are poor substitutes for 3D microenvironments 

encountered in vivo. Recent developments in microscopy and tissue engineering enable detailed analysis of 

cells in 3D ECM, organomimetic 3D co-culture systems, ex vivo organoids and in vivo. Consequently, it is now 

imperative to extend these studies to determine the impact of receptor crosstalk in complex 

microenvironments. Indeed, while many of the mechanisms described in this review orchestrate cell 

migration, it is probable that they will have differential effects on different modes of migration (e.g. 

mesenchymal, ameoboid, streaming and collective migration); suggesting that specific mechanisms will be 

dominant during particular developmental, morphogenesis, homeostatic and disease-associated events. 

 

Integrin- and GFR-mediated processes such as proliferation, gene expression, cell survival and cell motility 

are exploited by tumour cells to promote cancer progression, invasion and metastasis104 and are recognised 

as clinically relevant targets for cancer therapeutics105-107. However, integrin-targeting drugs have not met 

initial expectations in the clinic, and RTK-targeting agents, almost universally, result in acquired drug 

resistance6,105. Integrin-GFR crosstalk between has been implicated in the lack of efficacy of an integrin 

targeting drug, as low-doses of V3/5-targeting cRGD/Cilengitide promoted VEGFR recycling, angiogenesis 

and tumour growth108. Essentially, inhibition of one pro-angiogenic receptor, accelerated the pro-angiogenic 

functions of another receptor. Cilengitide has subsequently failed to reach the primary endpoint in a Phase-

3, and three separate Phase-2, clinical trials. This evidence alone provides a compelling rationale to 

understand the complex regulatory mechanisms that integrate integrin, GFR and syndecan function.  



 
 

17 

By using systems-level approaches to dissect adhesion receptor and GFR crosstalk mechanisms, it should 

ultimately be possible to design novel therapeutic strategies to target metastasis-promoting mechanisms, 

reduce acquired drug resistance and stratify patients to predict when specific treatments are likely to be 

effective. However, such endeavours will have to reach beyond the field of cell biology and will demand 

integration with large-scale clinical datasets. 
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