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Abstract

In this thesis, a formalism is presented that allows the construction of supersymme-
try algebras in arbitrary dimension in such a way that the space-time SO(¢,s) and
R-symmetry transformations are disentangled completely (for odd dimensions) or al-
most completely (in even dimensions). This is done by first taking multiple copies
of the underlying spinor representation and defining complex bilinear superbrackets
on the resulting space. Real supersymmetry algebras are then obtained by imposing
signature-dependent reality conditions. This construction generalises and includes sym-
plectic Majorana spinors. For dimensions up to twelve, we classify all supersymmetry
algebras of any space-time signature whose R-symmetry groups are real forms of the R-
symmetry group of complex superbrackets based on charge conjugation matrices. While
not providing a full classification up to isomorphism, this method allows one to identify
cases where more than one supersymmetry algebra exists for a given signature with
any number of supercharges. In particular, for Lorentz signature, we find alternative

‘type-*’ or ‘twisted’ superalgebras with non-compact R-symmetry groups.

This formalism is then applied to five- and four-dimensional N' = 2 supersymmetry
algebras and is used to derive vector multiplet theories in any signature. In five di-
mensions, the physical Lagrangians and supersymmetry representations are found by
imposing signature-dependent reality conditions on a holomorphic master Lagrangian
and associated supersymmetry variations to obtain signature-dependent theories. Four-
dimensional Lagrangians are found through the dimensional reduction of these La-
grangian and supersymmetry representations. In four-dimensional Minkowski signature
the existence of a ‘twisted’ supersymmetry algebra with U(1,1) R-symmetry is demon-
strated and the vector multiplet theory derived from this algebra is shown to necessarily
have ghost fields.

Additionally, an alternative classification of the NV = 1 and N = 2 supersymmetry
algebras is performed in five and four dimensions following the method of [1], classifying
the possible superalgebras in each signature up to isomorphism. In five dimensions
there is a one-parameter family of superalgebras, and in four dimensions the space of

superbrackets is found to have the same structure as the associated space-time R%*.
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1 Introduction

Symmetries are the foundation of most approaches to modern physics. Supersymmetry
is a proposal that extends the conventional symmetries of particle physics by allowing
fermionic generators, in doing so circumventing the Coleman-Mandula theorem |5, 6].
While there has been no experimental evidence of supersymmetry so far, it is a mathe-
matically fertile area that is interesting in its own right. In particular, supersymmetry is
a necessary feature of superstring theory that is a candidate for a ‘theory of everything’
that unifies particle physics and gravity. In turn, attempts to unify the variety of string
theories lead to M-theory [7,8] and non-perturbative completion of the Type IIB string
theories led to F-theory [9].

Supersymmetric theories in non-standard signatures arise in string theory in a variety of
situations. For example, string theory with local N = 2 worldsheet supersymmetry has
a four-dimensional target space with signature (2,2) and excitations corresponding to
self-dual gravity and self-dual Yang-Mill theory [10,11]|. F-theory can be interpreted as
a theory in signature (2,10) and hidden symmetries of M-theory imply an embedding
into a theory of signature (2,11) [12]. Exceptional field theory also leads to supergrav-

ities with non-standard space-time signature [13].

The different formulations of string theory are related by T-duality and S-duality. T-
duality relates string theories compactified on a circle of radius R with another com-
pactified on a circle of radius 1/R, and S-duality relates strongly-coupled theories to
weakly-coupled theories. In [14-16] the existence of a web of dualities connecting differ-
ent types of type-II string theories and M-theories using a chain of T and S-duality was
revealed. Allowing T-duality transformations over time-like directions naturally leads
to relations between theories of different space-time signature, leading to M-theory in
different eleven-dimensional signatures, Type-II* theories in Minkowski signature and

a variety of Type II theories in all other ten-dimensional signatures.

10



Chapter 1 — Introduction 11

Euclidean signature theories are used to study non-perturbative effects in the Euclidean
path integral formalism, such as instantons. The time-like reduction of Minkowski the-
ories leads to Euclidean theories. Solutions of these Euclidean theories can then be used
to generate stationary solutions in Minkowski signature by dimensional uplifting. In [17]
there are examples of dynamically changing space-time signature, so understanding the
effects space-time signature has on the physical theories is useful here. Supersymmetric

two-time theories have also been studied in [18,19].

Existing work on this topic has certain shortcomings. Common methods of obtaining
Fuclidean and exotic signature theories involve doctoring a Minkowski signature the-
ory by flipping signs and inserting factors of ¢, or dimensional reduction over time of
theories in Minkowski signature to obtain a FEuclidean theory in one dimension fewer,
such as in [20-27|. However, dimensional reduction may not be able to reach all Eu-
clidean theories (for example, see Chapter 5 where it is shown there are four-dimensional
supersymmetry algebras that cannot be found from dimensional reduction unless one
performs a reparametersation of the supercharges). In most cases, the fermionic terms
are omitted, or the reductions are carried out in an on-shell formalism (however [20]
and [28] fully include the fermions in an on-shell formulation). In [26] the supersymme-
try variations of the fermions were found by analytic continuation of the Killing spinor
equations, these were then used to find the bosonic terms of the on-shell Lagrangian of

five-dimensional vector multiplets coupled to supergravity.

It is therefore desirable to develop a systematic manner of constructing and relating
supersymmetric theories with arbitrary space-time signature. Said systematic construc-
tion should start with the supersymmetry algebra, which is then used this to construct
a (preferably off-shell, where possible) representation of the algebra on fields and then

building a Lagrangian invariant under this representation.

The goal of this thesis is to provide a systematic manner for the construction of super-
symmetry algebras and then to apply it to build physical theories. To do this a formalism
is introduced that allows one to construct supersymmetry algebras in any space-time
dimension and signature, with any number of supersymmetries. This is achieved by first
complexifying an arbitrary sum of irreducible spinor modules (spin representations) and
then defining a complex superbracket. Then by applying signature-dependent reality

conditions on this complexified space, real supersymmetry algebras are obtained in



12 Chapter 1 — Introduction

that signature. Symplectic Majorana spinors are a well-known example of such a con-
struction, complexifying and then imposing a reality condition, which this formalism

naturally incorporates and generalises.

This construction has the additional benefit of producing manifestly R-symmetric spinors,
where the action of R-symmetry and Spin has been separated. When constructing phys-
ical theories disentangling R-symmetry from the Lorentz symmetry is highly useful: it
makes writing terms in a Lagrangian and supersymmetry representations easier and

offers an insight into necessary reality conditions of fields in the Lagrangian.

Starting from a complex supersymmetry algebra and restricting to a real form does not
necessarily lead to inequivalent supersymmetry algebras. To aid in this classification, R-
symmetry groups are calculated in all signatures for dimensions up to 12. As a guiding
principle, having a different R-symmetry allows one to identify non-isomorphic super-
symmetry algebras. In the scope of this formalism, some isomorphisms are outlined
between supersymmetry algebras, but the complete classification of supersymmetry al-
gebras up to isomorphism is left to further work. Finally, this chapter ends by discussing
dimensional reduction and T-duality in terms of this framework to provide demonstra-

tive examples of its usage and its ability to provide interesting insights.

A similar approach, in ten and eleven dimensions, was used in [29,30], however here the
supersymmetry algebras were obtained from contractions of orthosymplectic Lie super-
algebras. Since it is not known whether all Poincaré Lie superalgebras (in any signature)
can be obtained as contractions of a larger algebra, the construction outlined here pro-
vides a useful alternative. While the orthosymplectic framework naturally provides
BPS-charges (also called polyvector extensions or central-charges). Such BPS-charges

can be added to our construction, as in [31], though this is left to future work.

The complete classification of superbrackets on real and complex spinor modules has
been carried out in [1], but a classification of super-Poincaré Lie algebras up to isomor-
phism has not been attempted. Necessary and sufficient condition for two Poincaré Lie
superalgebras to be isomorphic were added in [3], which also performs the classification
explicitly in N = 2 superalgebras in four dimensions. It is demonstrated that the space
of N = 2 superbrackets in all four-dimensional signatures is parameterised by the same
vector space of the underlying space-time, R%*, in all signatures, though this is a chance

alignment in four dimensions and is not a general statement. Details on this are also
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included in this thesis in Section 2.9 and the explicit calculations in four dimensions are

included in Chapter 5.

Chapter 3 details this formalism for constructing superalgebras in arbitrary dimension
and signature with manifestly R-symmetric spinors, providing all relevant information
for a reader to construct supersymmetry algebras in dimensions up to 12. This chapter

involves work from [4], that is to appear soon.

Having the ability to construct a supersymmetry algebra in arbitrary signature and di-
mension allows one to study the effects of supersymmetry in any signature and dimen-
sion. In pursuit of this goal, we consider vector multiplets in five and four dimensions.
In both cases, we begin with the supersymmetry algebra in an arbitrary signature and
construct off-shell Abelian vector multiplet representations of these superalgebras. De-
scriptions of the supersymmetry algebras are also provided in the formalism of [1], and
that outlined in Chapter 3, and explicit isomorphisms are provided, where applicable,

in terms of both formalisms.

In five dimensions there is a unique minimal algebra, up to scaling, that in all cases
is ‘A" = 2.1 In each signature, these minimal superalgebras are found by imposing a
signature-dependent reality condition on a complexified supersymmetry algebra. This
complexified supersymmetry algebra has a complex rigid off-shell vector multiplet rep-
resentation and an associated Lagrangian that is invariant under these transformations
(referred to as a holomorphic master Lagrangian). The signature-dependent reality
properties of the spinor modules induce reality conditions on the complexified represen-
tations and Lagrangians, in doing so deriving N = 2 five-dimensional vector multiplet

theories in a particular space-time signature.

For the five-dimensional Euclidean theory we find that the scalar and vector kinetic
terms always come with a relative sign difference, as predicted indirectly in [25], demon-
strating that the supersymmetry algebra mandates this relative sign. In five dimensions,
where there is a unique A = 2 superalgebra in each signature, we find the relative
sign choices in the Lagrangian to be completely determined by supersymmetry. In all
cases, agreement is found with [26], where the bosonic on-shell Lagrangians for five-

dimensional vector multiplets coupled to supergravity were obtained for all signatures

! Counting in multiples of the number of supercharges in the minimal four-dimensional superalgebra,
so that A = 2 implies eight real supercharges.
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by analytic continuation of the Killing spinor equations from Minkowski signature.

The work in five dimensions can be found in Chapter 4 and is based on [2].

In even dimensions, the space of potential supersymmetry algebras is larger, so four
dimensions provided a good step up that demonstrates more features of supersymmet-
ric theories in an arbitrary signature. In each four-dimensional signature, the space of
N =2 superbrackets (with which we define a superalgebra, as is outlined in Section 2.8)
is four-dimensional. In Euclidean and neutral, (2,2), signature it is shown that all these
superbrackets lead to isomorphic supersymmetry algebras, leading to a single unique
supersymmetry algebra up to isomorphism in these signatures. In Minkowski signa-
ture, there are two distinct N = 2 supersymmetry algebras, distinguished by their U(2)
and U(1,1) R-symmetry. The supersymmetry algebra with U(2) R-symmetry is the
standard and well-known N = 2 supersymmetry algebra, while the U(1,1) R-symmetric

I

supersymmetry algebra is similar to the ‘twisted’ or ‘type-*’ supersymmetry algebras

in Type II* supersymmetry as in [14,15].

An important distinguishing feature of these ‘twisted” Minkowski signature theories is
that some fields have the ‘wrong sign’ in front of their kinetic term, meaning all fields
cannot have positive-indefinite energy. While this raises concerns about whether these

theories are stable, they naturally arise in string theory as described in [14].

Explicit off-shell vector multiplet representations of the four-dimensional N = 2 super-
algebras are then found in all signatures. These vector multiplet representations are
obtained by the dimensional reduction of the five-dimensional vector multiplet repre-
sentations found in Chapter 4. There are six five-dimensional signatures (0,5), ..., (5,0)
that can be reduced along a time-like or space-like direction resulting in ten different
four-dimensional theories, two in each four-dimensional signature (0,4), ..., (4,0). The
knowledge obtained in the discussion of supersymmetry algebras — that Euclidean and
neutral signature have a unique N = 2 supersymmetry algebra and Minkowski signature
has two — is used to determine which theories are isomorphic and provide explicit local

field redefinitions that relate them in Euclidean and neutral signature.

The scalar manifold is special Kéhler in Lorentz signature and special para-Kéhler in
Fuclidean and neutral signature. For each signature, we obtain two theories, one with

and one without a relative sign difference between the scalar and vector kinetic terms
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(and other conventional differences related to the signature-dependence of the spinor
module). The two Minkowski signature theories are inequivalent; the theory with scalar
and vector kinetic terms with the same sign corresponds to the regular N = 2 vector
multiplet theory and the theory with a relative minus sign arises from the twisted N = 2
superalgebra. In Euclidean and neutral signature, the two Lagrangians are shown to be
equivalent, and a local field redefinition that changes this relative sign (and all other
conventional differences) is provided. In doing so, we confirm the result that the relative
sign between scalar and vector kinetic terms is conventional, as was first outlined in [25].
However, the transformation proposed there is a strong-weak coupling duality, acting
non-locally on the vector potential, while we give a local field redefinition defined at the
level of the off-shell vector multiplet representation and is induced by an isomorphism

of the underlying supersymmetry algebras.

Chapter 5 concerns four-dimensional N = 2 supersymmetry algebras and vector multi-

plet theories. Based on the work in [3| (currently available in e-print).

To recap, the outline of this thesis is as follows. We begin with Chapter 2 that introduces
preliminary mathematics and physics that are used throughout the thesis. This includes
general information on the construction of the spinor module in arbitrary signature and
the classification of supersymmetry algebras as originally derived in [1]. The formal-
ism for systematically constructing supersymmetry algebras is outlined in Chapter 3,
which also includes the calculation of R-symmetry groups in all signatures up to twelve.
Chapters 4 and 5 then study N = 2 supersymmetry in five and four dimensions, making
use of the formalism developed in Chapter 3 to derive physical theories (supersymmetry

representations and Lagrangians) with off-shell rigid vector multiplets.



2 Background Material

2.1 Conventions and Notation

K(n) is the algebra of n xn matrices over K = {R,C,H,H'}. mK(n) =K(n)a...eK(n)
is the m-fold direct sum of algebras K(n).

K(n) acts naturally on K”. mK(n) has m inequivalent irreducible representations,

where one factor acts on K" and all others act trivially.

(A, B)aigebra is used to mean the algebra generated by elements A, B and all possible

combinations, for example
<i7j7 k)algebra = H7

where the identity of H is implied because it can be obtained by squaring any element.

1, is the n x n identity matrix.

Spinor Index Conventions

In this thesis the same conventions as [20] will be used for spinor indices. Dirac spinors
¥ € S have lowered indices, ¥ = 1),,. y-matrices are endomorphisms on the spinor module

with index structure v, = (,yu)aﬁ .

The matrices A and C representing a sesquilinear and bilinear form on S are A = A*?
and C = C*? so that

A()HX) = )‘;AaﬁXﬁ7 C()‘7X) = AacaﬁXﬁ' (2'1>

16
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The inverse matrices are then A~! = A;}j and C~! = ;é

In some sections we will work with Dirac spinors with a sesquilinear form, A, in these

cases indices are raised and lowered using A and A7, i.e. \* = AP Ag and A, = A;}g)\ﬂ .

Other parts of the thesis, namely those that use extended spinors (and the sub-case of
doubled spinors) have a bilinear form C on S, so this controls raising and lowering the
spinorial indices: such that \* = C*8 Ag and Ay = C&é)\ﬁ )

Spinor indices are very rarely used explicitly and will mostly be suppressed as a result.

Complex conjugation of spinor bilinear quantities is done without changing order, e.g.
\TCx)* =ATC*x*.

Expressions involving y-matrices, A and C, such as A = Iy, and B = (CA YT, are
relationships between matrices not maps. Whilst the definitions of A, C', 7, and all de-
rived quantities are basis dependent, all spinorial quantities appearing in Lagrangians
and supersymmetry transformations are covariant with respect to Lorentz transforma-
tions because all spinor and other indices are contracted. Therefore the results are

independent of the representation of the spinor module.

Bilinear Forms on C¥

On CV we will usually use the NW-SE conventions, to match the convention used with
symplectic Majorana spinors that have SU(2)-indices. This is done so that notation

can be universal. For a bilinear form M we write
M(z,w):ziijﬂ, i,7=1,...,N.
Raising and lowering the indices are done using M;; and its inverse M “ such that
ZiIMiij, ZiZZiji,

Usually, two bilinear forms are considered on CV, a symmetric bilinear form called &
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and an antisymmetric bilinear form called J, whose Gram matrices are

0 1
=

2

S=1y, J-=

S oz

These are motivated and used in Chapter 3.

2.2 Super Vector Spaces and Modules

2.2.1 Super Vector Spaces

A super vector space is a Zs-graded vector space [32], such that V' can be decomposed

as
V=W+W. (2.2)

A homogenous vector v € V; has parity |v| = i. Elements with parity 0 are called even
elements (or sometimes bosonic when used in a physics circumstance) and those with

parity 1 are called odd (or fermionic in a physics perspective).

If V has a finite dimension with V having dimension p and V; having dimension ¢ then

V is said to have dimension p|q.

A superalgebra, A, over K is a super vector space equipped with a bilinear multiplica-
tion Ax A - A such that |ab| = |a|+|b| for a,b € A. The Clifford algebra is a superalgebra,

and will be discussed in more detail later.

A Lie superalgebra (also called a super Lie algebra) is a super vector space with a
product called a Lie superbracket (also called a supercommutator) that satisfies two

conditions:

[2.y] = ~(-1)" ¥y, 2] (2:3)

and

(D)=, [y, 1] + (1), [z, 2]] + (1M, [, 9]] = 0. (2.4)

This is the super Jacobi identity, the generalisation of the Jacobi identity of a regular
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Lie algebra. For even elements, the Lie superbracket is the regular commutator, and

for odd elements, it is the anticommutator.

2.2.2 Modules and Supermodules

A module over a ring is a generalisation of a vector space over a field, replacing the
scalars of the field with elements of a ring R [32]. A left R-module M is made from
an Abelian group (M, +) and a ring R with identity 1g, equipped with an operation
-t Rx M — M such that for all r,s € R and =,y € M we have

r-(z+y)=r-z+r-y
(r+s)-x=r-z+r-x
(rs)-x=r-(s-x)

1R'$=$.

A right R-module is defined analogously but with multiplication happening from the

right, replacing r - ¢ with x - r, etc.

In particular the real /complex spinor module is a real /complex Clifford module (equipped

with a Sping(¢, s)-invariant bilinear form, as outlined later in Section 2.5) [1,32].

Supermodules are the generalisation of a super vector space, extending the scalars to
include odd variables that are elements of a superalgebra, A = Ag+ A;. A supermodule

is a Zs-graded module over a superalgebra. It is a module M with a decomposition

M = Mg+ M. (2.5)

For a left A-supermodule the multiplication by elements a € A satisfies the above axioms

for a module and additionally
la-z| = |a| + |x|. (2.6)

For a right A-supermodule we replace left multiplication with right multiplication. Sim-
ilarly to a super vector space, elements of Ag and M are called even and A; and M;
are called odd.
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2.2.3 Parity Change Functor
On a super vector space (or module) V' =V + Vi, we define the parity change morphism
IT 33, 34]:

M(Vo) = Vi, T(Vi) ="V, (2.7)
e.g. a field K is replaced by II(K) = KO so for any K-super vector space W we have

(W) = KO g w. (2.8)

Any map between super vector spaces/modules preserves parity, so II is a functor be-
tween the category of supermodules to itself. Avoiding any more category theory, this
implies that any results we obtain using commuting elements also apply when we move
to purely anticommuting elements. In Chapter 3 we will work with commuting spinors
when defining superalgebras (following the conventions of [1]) before moving to an-
ticommuting spinors to write physical Lagrangians and supersymmetric variations in
Chapters 4 and 5.

2.3 Para-complex numbers, Quaternions and Para-quaternions

2.3.1 Para-complex and e-complex Numbers

An e-complex number combines complex and para-complex numbers .
zeC, Ce={z=x+iey | z,yecR} st. i?=e==<l. (2.9)

In both cases, we will call x the real part of the e-complex number and y the imaginary
part. We see that C_; corresponds to the regular complex numbers — we may sometimes
omit the subscript — and C,; are the para-complex numbers — omitting the subscript
we may refer to these as C’. In this thesis we will usually use e = 7,1 to refer to the

para-complex unit and 7 = i_1 to refer to the complex unit.

We define the e-complex conjugate of z, usually written z* or Z as

25 =2 —iey. (2.10)

! Para-complex numbers are sometimes called split-complex numbers, double numbers or hyperbolic
numbers
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We use this to define the modulus of an e-complex number:

|2| = Vzz* = /2% - ey?. (2.11)

We see that C,; contains zero divisors and it is not a division algebra or a field. The
group of invertible elements is isomorphic to SO(1,1); it is not connected and the four

components correspond to z = texp(et) and teexp(et).

Alternatively, we can describe para-complex numbers in terms of a pair of real numbers
(and analogously describe para-complex manifolds in terms of entirely real coordinates

called adapted coordinates). Defining z, = x + y, we see that

|z| = Vz42- = /a2 — 2. (2.12)

This makes the isomorphism C’ 2 R&R explicit, with the extra ingredient of conjugation

(a real structure) that takes the pair (z;,2-) to (z_, z4).
2.3.2 Quaternions
The quaternions g € H are defined by
H = {qo + q17 + g27 + gsklq; € R}, (2.13)
where
2 .2 2 ey oL . o
i“=j"=k"=-1, ijk =-1, ij =k, ki =7, jk =1. (2.14)
H = Cl(y) as real associative algebras:
Cl2,0y = {71, 72)algebra- (2.15)

Where 'y% = 'yg = —1. These generate the element 19 = 172 which necessarily squares

to —1. Mapping 1 — ¢,72 — 7 and y12 — k gives an explicit isomorphism.

The quaternions are a real four-dimensional associative algebra. The conjugate of a

quaternion is

¢ =q-qi—qj— g3k (2.16)
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with which we can define the norm
N(q)=qq" =q3+ ¢+ + G5 (2.17)

As this is positive definite, it is common to use the modulus of a quaternion as the norm

instead. This is
1
gl = (N (q))z. (2.18)

Moreover, as they have non-negative norm they do not have zero-divisors so are a (non-

commutative) division ring.

We can write a quaternion as a pair of complex numbers:
q="(qo+iq1) + (g2 +1ig3)j = u +vj. (2.19)

H is also equivalent to the matrix algebra

(“* U*), u,veC, (2.20)

vt
where v and v are the same u and v as in (2.19). One can show

det(M(q)) = N(q) = uu™ +vv™. (2.21)

Matrices of this form with unit determinant belong to the group SU(2) which is there-

fore isomorphic to the group of unit quaternions U(1, H).

Any matrix M (q) with non-zero determinant can be written as the product of a real
number and a matrix with unit determinant. The group of invertible quaternions is

therefore
H* = {q e HIN(g) # 0} 2 R™® x SU(2). (2.22)
(2.20) can be generalised to quaternionic matrices. Given a quaternionic matrix

Q=Qo+iQ1 +jQ2 +kQs3, QeH(n), Q;eR(n), (2.23)



Chapter 2 — Background Material 23

defining
Q:U+jV, U=Q0+’iQ1, V:Q2+iQ3, U,VEC(H), (224)

this can then be written as a 2n x 2n complex matrix:

v Vv

M(Q) = (_V* o

) e C(2n), (2.25)

with det(M(Q)) = det(Q).

On H"™ we can define the Hermitian form
<qi’pi> _ _(ql)*pl - (qt)*pt(qt+1)*pt+1 T+ (qn)*pn’ (226)
which is invariant under the group U(t, s, H).

U(n,H) is isomorphic to Sp(p,q). A general element of the Lie algebra u(p,q,H) has

the following form

X Y
u:(y* Z)Eu(p7Q7H)7 XT:_Xu ZT:_Z- (227)

Xisatxt, Y atxsand Z a sxs quaternionic matrix. Writing each of X, Y and Z
using (2.20) we obtain a generic element of the Lie algebra sp(p,q). As the groups are
connected this means the two associated Lie groups are isomorphic too. In particular,

U(2,H) = Sp(2) = Spin(5) and U(1,1,H) = Sp(1,1) = Spin(1,4) will be used.

2.3.3 Para-quaternions

The para-quaternions q € H' are defined by
H' = {qo + q17 + q2J + gzklg; € R}, (2.28)
where

it=-1, =k =41, ijk=+1, ij=k, ki=j,  jk=-i. (2.29)
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H = Cl1,1) 2 Cl(p2) as real associative algebras:
Cl(o,Q) = <'71a72>a1gebra» (2.30)

where 'y% = 'y22 = +1. These generate the element 12 = 12 which necessarily squares to

—1. Mapping 71 = 7,72 = k and 712 — ¢ gives the explicit isomorphism. Similarly,
C’l(l,l) = (71a’)/2>algebra- (231)

Where now ’y% = —1. This change means 7%2 = +1, so we can obtain the para-quaternions

by setting 1 — ¢ and 12 — k instead.

They are a real four-dimensional associative algebra. The conjugate of a para-quaternion

is
q" =qo0 - qui — q25 — g3k, (2.32)
which then is used to define the norm
N(g) =aq" = g5 +¢i - 45 - G5. (2.33)

N(q) can be zero when ¢; # 0, meaning the para-quaternions permit zero-divisors so H’

is not a division ring unlike the quaternions.

H' is equivalent to R(2) as a normed algebra, with the norm provided by the determi-
nant. We can map H’' - R(2) by

1 1 1 1
1—>( 0), i—>(0 ), j—>(0 ), k‘—>( 0). (2.34)
0 1 -1 0 1 0 0 -1

qgotq3 q1 +(I2)

So that

(2.35)
q2—4q1 qo—4g3

q—>M(q)=(

It is easy to show det(M(q)) = N(q). The group of invertible para-quaternions,

(H)" ={q e H'|N(q) # 0}, (2.36)
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is therefore isomorphic to GL(2,R), and the subgroup of unit quaternions
U(1,H") = {ge H'|N(q) = 1} 2 SL(2,R). (2.37)

(2.35) can be extended to a mapping of para-quaternionic n x n matrices, @ € H'(n),
to 2n x 2n real matrices. A para-quaternionic matrix can be decomposed into four real

matrices according to
Q=Qo+Qui+Q2j+Q3k,  Q;cR(n). (2.38)
This can then be mapped to a 2n x 2n real matrix in an analogous manner

Qo+Q3 Q1+Q2

M(Q) =
(@ (Q2 —Q1 Qo-Qs

) e R(2n). (2.39)

A para-quaternion can also be considered a pair of complex numbers, writing
q="(qo+qi)+ (g2 +qsi)j=u+vj, uveC (2.40)

H' can also be viewed as a normed algebra with the norm given by the determinant of

2 x 2 complex matrices of the form
~ U v
o[ 7). »”
vt

with the same u and v from (2.40). Matrices of this form with unit norm are the stan-
dard form of SU(1,1) = SL(2,R) = U(1,H’). Similarly to before, det(M(q)) = N(q).

(2.41) too can be generalised to para-quaternionic matrices
Q:U+jV, UZQO+’iQ1, V:QQ-‘rng, U,VEC(TL) (242)

This can then be written as a 2n x 2n complex matrix:

u Vv

@ ([ )

) e C(2n), (2.43)
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On H™ we can define the definite Hermitian form
(¢ p") = (¢")p" + ...+ (¢™)D", (2.44)
which is invariant under the group U(n,H’).

U(n,H") is isomorphic to Sp(2n,R). A general element of the Lie algebra u(N,H') is a

anti-Hermitian matrix. Being anti-Hermitian means we can decompose u € u(N,H') as

u=ug +iuy + jug + kus, up =-ug, ul =u; i=1,2,3, wup,u; eR(n).  (2.45)

Using (2.39) we can then write this as a real matrix

M(u) = (“O Tus +“2) - (A B ) e sp(2n, R). (2.46)

U2 —uU1 Up — U3 C —AT

As the groups are connected, this means the two associated Lie groups are isomorphic.

2.3.4 e-quaternions

Similarly to the definition of e-complex numbers we can combine quaternions and para-

quaternions into an e-quaternion. An e-quaternion, with € = £1, is
He = {qo +iq1 + jgz + kqs|q; e R} (2.47)
such that ¢, 7, k obey
2 2 72 Lo Lo o .
“=-1,j"=k"=¢, ijk=¢ ij=k, jk=1i, ki=e€j. (2.48)

H,, is the para-quaternions, and H_; is the quaternions. H without a subscript always

refers to the regular quaternions. This notation will be primarily used for convenience.

2.4 Clifford Algebras

The tensor algebra T' (V') of a vector space, V', over a field K, is the algebra of tensors on

V' with multiplication given by the tensor product [35]. A rank N tensor is an element
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of TN (V'), where
T™VNV)=V®*N =Ve..0V (2.49)

T°(V) is defined to be the base field of the tensor product, K. T(V) is the sum of all
™ (V)

T(V):éTN(V):K@VEB(V@V)@(V@V@V)@... (2.50)
N=0

Given a vector space equipped with a quadratic form @, the Clifford algebra generated
by V., CI(V'), is the quotient algebra of the tensor algebra with the ideal generated by
v®v-Q(v)Id for all veV [36-38|:

CU(V) =T(V)/(vev-Q(V)Id). (2.51)

When V = R we call the associated real Clifford algebra Cl g, for brevity we write
Clm o = Clyy, or Clo , = Clyy,. All real Clifford algebras, Cl; 5, are isomorphic to mK(n),
with K e {R,C,H} for m = {1,2}.

The real Clifford algebras obey the following isomorphisms,
Cloo®Clyo = Clopia, Clon®Clag=Clyng, Clsy®Clig 2 Clgir. (2.52)
These lead to the Bott periodicities
Clp+g 2 Clpo®@R(16), Clyp+g = Clon ® R(16), Clgiata 2 Clsy @ R(16). (2.53)

Using these isomorphisms, and CI®1 2 R(16) and Cl% ® C’lg‘i% = R(16),

we can classify all real Clifford algebras, as seen in Table 2.1

s—tmod 8 | Cly

0,6 R(2%)

7 R(2°T) @ R(2T)
1,5 C(27)

2,4 H(25)

3 H(27") @ H(2F")

Table 2.1: Classification of real Clifford algebras, Cl; 5, with d =¢ + s.
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If instead V' = C¢ we obtain the complex Clifford algebra, Clg. All Clifford algebras
considered in this thesis are real or complex Clifford algebras. All complex Clifford

algebras, Cly, are isomorphic to mC(n), for m = {1,2}.

The complex Clifford algebras obey
Clyro 2 Cly ®c (C(Q) (2.54)
Applying this to Cly 2 C and Cly 2 C & C we find

. C(Qg), d even,

U casy e @), dodd (2:55)

Clifford algebras have a natural Zs-grading. Defining the grade involution
a:v—>-v (2.56)

we see that a? = 1, so that we can decompose CI1(V) into two eigenspaces
CL(V) =Cl®(V) +CINV), (2.57)

such that a(z) = 2 for 2 € CI1%(V) and a(y) = —u for y € CI*(V).

C1°(V) is called the even subalgebra, and CI'(V) is the odd subalgebra. They are

V)= @D TV vev-Q)Id,  CI'(V)= @ T (V)vev-Qu)ld.
N=0 N=0

(2.58)

All real even Clifford algebras, C’lgs, are of the form mK(n), with K € {R,C,H} for
m = {1,2} with CI{, ¢ Cl; ;. Indeed one can show that

Clys1, s>0,
o, =4 (2.59)
Cls,t—l, t>0.

Similarly all complex even Clifford algebras are of the form mC(n) with m € {1,2}.
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The complex Clifford algebras and their even subalgebra are related by
Cl9 = Cly, (2.60)
On a Clifford algebra C1(V') we define the spinor norm ¢
g(z)=ztex, xecClIV). (2.61)
The operation ! reverses the order of the tensor product:
=r, 0. 01 (2.62)

The Pin group, Pin(V'), is the subgroup of the Clifford algebra (regarded as a group
with product given by multiplication) with unit spinor norm, i.e., they can be written
as products of unit vectors (with respect to the quadratic form (). The Pin group
is sensitive to the signature of the quadratic form ). In particular for V = R”? and
V =R?P, Pin(p, q) 2 Pin(q, p).

There exists a map from Pin(V') to O(V):
a®uvea =pla)v, aePin(V), p(a)eO(V). (2.63)

We see that a and —a are both mapped to p(a), so that Pin(V') double covers O(V).
The action Pin(V') corresponds to a collection of reflections in some hyperplane depen-

dent on the form of a.

Spin(V') c Pin(V') is the subgroup of even elements (with respect to « in Pin(V):
Spin(V) = Pin(V) n C1°(V) (2.64)

Pin(V') is the double-cover of O(V'), and Spin(V') is the double-cover of SO(V') under

the same map
boveb =pb)v, beSpin(V), p(b)eSO(V). (2.65)

An element of Spin(V') corresponds to an even number of reflections, which always
maintain orientation so that Spin(V’) double covers SO(V'). Note that unlike Pin,

Spin(p, ¢) = Spin(q, p).
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All elements of Spin(V') can be generated by quadratic elements of the Clifford algebra
(elements of the form v®w). This defines spin(V'), the Lie algebra associated to Spin(V')

spin(V) ={beCI°(V) | b=veow, |v=w =1} (2.66)

2.5 Spinor Modules

2.5.1 Clifford Modules

Clifford algebras are a unital associative algebra, which is a ring that also has a scalar
multiplication. The Clifford module is a R-module where the ring is the Clifford alge-
bra [38]. In this thesis we consider real and complex Clifford modules where R = Cl; ¢

and R = Cl; 5 respectively.

The algebra mK(n) has m inequivalent irreducible representations, with one factor
K(n) acting on K™ and the rest acting trivially. All Clifford algebras and even Clif-
ford algebras are of the form mK(n). Therefore Clifford algebras (and even Clifford
algebras) have a unique irreducible module ¥ when m = 1, or precisely two irreducible
modules X1 # X3 when m = 2. The most general Cl; s-module (or C’lgs-module) is of

the form S = pX¥ or S = p1X1 ® p2Xs. This is also true for complex Clifford modules.

For a real or complex Clifford module, this has 2057 real or complex dimension. Upon
the Clifford module we can act by elements of the Clifford algebra, producing further
elements of the Clifford module. We will use this ability to multiply by Clifford algebra
elements to convert bilinears of spinors into space-time SO(p, q) scalars, vectors, and

tensors.

2.5.2 Spinor Modules

A real/complex spinor module is a Clifford module equipped with a Sping (¢, s)-equivariant
bilinear form. The construction of Sping(¢,s)-equivariant bilinear forms is dealt with
in Section 2.8. As all Clifford algebras on V = R%* and C? are of the form mK(n), the

spinor module is isomorphic to K™".

The complex spinor module, usually referred to as S in this thesis, is complex-irreducible

in odd dimensions. Elements of S are called Dirac spinors in physics and, as a result, it
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may be referred to as the Dirac spinor module. In even dimensions, S can be decomposed

into two inequivalent irreducible semi-spinor modules, S,, such that
S=S,+S_, (2.67)

where elements of the complex semi-spinor modules, S;, are called Weyl spinors by

physicists (and thus they will sometimes be referred to as the Weyl spinor modules).

S always has the natural Spin (¢, s)-invariant complex structure, I, that is multiplication

by the complex unit i:
I:X—i), AeS. (2.68)
Consider the complexification of S,
S®rC=S®gS. (2.69)

In Section 2.8, it will be shown there always exists an additional Spin(¢, s)-invariant
real or quaternionic structure (or both) on S. The presence of a Spiny(¢, s)-invariant

real or quaternionic structure(s) implies that S =S, so that
SerC=SeS. (2.70)

Real spinor modules, usually called Sg or S when the context is clear, can be irreducible
or reducible regardless of dimension. If it is reducible, S can be decomposed into two

real semi-spinor modules, such that
S:S++S_. (2.71)

These real semi-spinor modules may be equivalent or inequivalent. They are equivalent
when the even Clifford algebra is simple. If they are inequivalent then the even Clifford
algebra is of the form 2H(n) or 2R(n) (the only non-simple possibilities). When S is
reducible but S, 2 S_ it follows that S is the complexification of either S.:

S:S+®S_ESiEBSiESi®(C. (272)

S and S are not necessarily distinct, i.e. for some signatures S 2 S when S carries

a Sping(t, s)-invariant real structure. If S and S are inequivalent then we find that
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S, ¢S always.

To summarise we have the following possibilities

1. S8

(a) and S is irreducible. Elements of S are called Majorana spinors.

(b) and S'=5, +S_, with S, # S_. Elements of S, are Majorana-Weyl spinors.

2. S

11

S

(a) and S is irreducible. The irreducible spinors are Dirac spinors.

(b) and S = S, +S_, with S, 2 S_. This implies S, = S, and the irreducible
spinors are Weyl spinors.

(¢) and S =S, +S_, with S, ¥ S_. This implies S = S, ® C, the irreducible

spinors, elements of 5., are Majorana spinors.

2.5.3 Schur Algebra and Group

In this thesis, we make frequent use of the so-called Schur algebra. The Schur is the

algebra of endomorphisms of a spinor module, S, that commute with Spiny (V') [1]:
C($) = Zisnats) (spin(V)) = Endey (). (2.73)

Here S can be the real or complex spinor module. In particular, the Schur algebra of
the complex spinor module in any signature is always isomorphic to H, in odd dimen-
sions, and 2H, or C(2) in even dimensions. For shorthand, abusing language we may
refer to ‘the’ complex/real Schur algebra which corresponds to the Schur algebra of the
complex/real spinor module, C(S)/C(S).

The invertible elements of C(.S) form the Schur group C(.5)*, which are are elements of
the general linear transformations of .S, GL(S), that commute with Sping(V'):

C(S)" = Zgrs) (spin(V)). (2.74)

The Schur group of the complex spinor module is, therefore, the group of invertible
quaternions or para-quaternions, H in odd dimensions. In even dimensions it can be

2H; or GL(2,C).
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2.6 Physics Reformulation

In physics it is common to work with a representation of Cl; s = Clg in terms of ~-

matrices. The y-matrices are elements of (C(%l) that obey the Clifford algebra [20,37]
YA + Ayt = 2P v =1, t+s, (2.75)

where n*" is the inverse of the space-time metric 7,,; it is a diagonal matrix with ¢
entries of —1 followed by s entries of +1. The ~-matrices act on complex spinors that

are elements of S = C%.

The first t y-matrices are chosen to be anti-Hermitian, and the following s y-matrices

are chosen to be Hermitian.

All other elements of the Clifford algebra are then products of these y-matrices:
[d7 ’Y‘UJ7 7“V7 ,y,U«l/P7 etc. € Clt,&

where we have used the notation y#1+Yn = 4l#1 nl The shorthand (™) = A1 ]

will also be used.

Given a spinor A we can construct quantities with spacetime indices by multiplication

with ~-matrices, e.g. Y* X, Y*Y .

On the complex spinor module we can define a Spin,(t, s)-equivariant sesquilinear or
bilinear form. These are complex valued; real quantities can then obtained by taking
the real or imaginary parts of the sesquilinear or bilinear forms. spin(t,s) c Cly is
generated by Clifford algebra elements of the form ¥, so a sesquilinear/bilinear form,

B, is Sping-equivariant if it satisfies (with no sum)
B A") = B(). (2.76)
For a general sesquilinear form, A(:,-), defined by

A:SxS-C, (2.77)
AN x) = ATAx = A5 A% xg,
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Sping (¢, s)-invariance implies the Gram matrix A must satisfy
(7)1 = (~1) Ayt A, (2.78)
This is solved by

A=1l v, 7=1,..,t. (2.79)

This generalises the 7y found in spinor bilinears in Minkowski-signature theories. We
will refer to this as the Dirac sesquilinear form (though it will not be used often), and

A A is the Dirac conjugate of .

We will call the Spiny(t, s)-equivariant bilinear form C, and define it by

C:SxS—C, (2.80)
C(\, x) = ATOx = A\aCx5.

This will be referred to as the Majorana bilinear form; the Majorana conjugate of X is

A= ATC. The Gram matrix of this bilinear form, also called C, is commonly known as

the charge conjugation matrix. To be Sping (¢, s)-invariant, C must satisfy
(T =rCyrCc™, =1, (2.81)
In odd dimensions, there is a unique choice of C', and in even dimensions there are two,

one with each value of 7. They are conventionally known as C_,2. It is always possible

to choose a basis where C' = CT = C7! (for both Cs simultaneously in even dimensions).

The symmetry of the bilinear form is equal to the symmetry of the Gram matrix C":

C(\x) =0C(x,\) — CT=0C, o=xl. (2.82)
The symmetry of Cy will be called o..

In even dimensions, we can define another matrix that anticommutes with the other

2In the conventions of [37] these were defined by an invariant n = —7, explaining this name.
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y-matrices
N+ 2
e = (=) 2 1D (2.83)

7. commutes with the generators of Spin(t,s) and satisfies (7.)? = 1, so we can use it

define chiral spinor modules, S =S, & S_, which are the +1 eigenspaces of .

Yeds = £X;, A, €S, (2.84)

From the matrices A and C we can define a third matrix B = (CA™)T that allows one
to define a one-parameter family of real or quaternionic Spin(t, s)-invariant structure

on S:

JO@ N 5 o*B*A*, la| = 1. (2.85)

A real or quaternionic structure is an anti-linear involution that squares to € = +1 or
—1 respectively. J 1) 5 a real structure, and J (=D(9) 5 g quaternionic structure.
Observe that

(JOEN2(\) = B*BA (2.86)

We see the value of € is controlled by the product B*B = ¢, such that a J(@ is a
real structure when B*B = +1 and a quaternionic structure when B*B = —1. The
form and properties of B, and therefore J((®) are signature-dependent because A is

signature-dependent. It can be shown that

B*B =g (1)t (-1)" D72, (2.87)

When J©(@) = D@ e it is a real structure, one can define Majorana spinors that
are invariant under J, such that J(\) = \. J(@) 350 links the Dirac and Majorana

conjugate
JEO@(ATA) o ATC (2.88)
If v, commutes with B then J(9(®) ig a real or quaternionic structure on S.,:

VB = By, = J©O©)(s,)eS,. (2.89)
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If 7, anticommutes with J (©)(®) changes the chirality of a spinor

VB =-By, = J(e)(a)(gi) €S-, (2.90)

2.6.1 Commuting vs. Anticommuting Spinors

In this thesis, we work with commuting spinors when defining superalgebras. When
constructing physical theories we will then work with anticommuting spinors. A com-
muting spinor is an element of the complex or real spinor module, say S, and to define
anticommuting spinors we replace this with ILS where II is the parity change functor
discussed earlier. IS is a purely odd super vector space with dimension (0|dg), where
dg is the dimension of S. Because parity change is a functor, any results found with
commuting spinors translate to anticommuting with minimal changes: we need only
to invert all symmetry statements. For example, if we need a symmetric bilinear form
with commuting spinors, we need an antisymmetric bilinear form with anticommuting

spinors.

However, a physical theory involves spinor fields that depend on space-time. A com-
muting spinor field is a section of the spinor bundle, S(R%*) = R4 x § — R%*| the trivial
bundle over R** with fibres S [20]. We cannot just replace S with TI(S) here, as the
super vector bundle R x ILS — R»* has no non-zero sections. This is because the local
components of a section must be purely odd superfunctions, which requires the base of
the bundle to have a non-trivial odd part. Therefore we also have to replace R“® with
REslds = RES « M where M is an internal, purely odd parameter space of dimension
dg. R%#s xTIS - R%* has non-trivial sections and can therefore be the anticommuting

spinor bundle. An anticommuting spinor field is a section of this bundle.

2.7 Super-Poincaré Algebras

A super-Poincaré algebras, g, is a Zg-graded algebras of the form [3]

g=9o+01, (2.91)
go=s0(V)+ V.

go is the regular Poincaré algebra whose Lie bracket is defined by

[A,B]=AB - BA, [A,v] = Av, [v1,v2] =0, (2.92)
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where A, B eso(V) and v,v1,v9 € V.

The odd subalgebra g; is an arbitrary sum of irreducible spinor modules, associated to

V =R". 50(V) has a spinor representation, pg.
[A,s] =ps(A)s, [s1,82] =TI(s1,82) € V. (2.93)

For s, s1, 82 € g1. The definition of II(-,-) is discussed in Section 2.8.

In a physical context, we usually write P, for the generators of V', M,,,, for the generators
of SO(V') and @ for the supersymmetry generators that are usually called supercharges.
The bosonic generators obey [39]

[P;u sz] =0, [M;uu Pp] = i(nuppu - nuppu)a (2-94)
[M,uzza Mpo] = Z.(Tllu,p]\mjcr - nuaMzzp - anMua + UVUMMP)?

where 7, is the space-time metric of R%S.

Supersymmetric field theories are then made of multiplets, which are representations of
a super-Poincaré algebra. Each field in a multiplet is a representation of the Poincaré

algebra alone, and are transformed into one another by supersymmetry.

2.8 Classification of N-extended Super-Poincaré Algebras

This section follows [1] heavily and outlines important foundational concepts for the rest
of the thesis. The original paper also contains information on Zs-graded Lie algebras,
though, as they are not used here this is omitted. In addition, some additional proofs

and remarks are omitted where deemed appropriate.

Definition — An N-extended Poincaré algebra (also called an N-extended super-Poincaré
algebra) of V' = RP? is a super Lie algebra g = go + g1 where
o gozp(V)=V+so(V).

e g; is the sum of N irreducible spinor or semi spinor modules, S, of p(V') with

trivial action on V.

e The superbracket, {S,S} c V (also referred to as IIg as outlined shortly).
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Note that the (super-)Jacobi identities are automatically satisfied as [[z,y],z] = 0 for

xr,Y,z €91

To define on g the structure of a super Lie algebra we need a superbracket, j* : V2. - V.
Classifying such superbrackets is equivalent to classifying so(V')-equivariant mappings,

j:V* > \V28*. The space of so(V)-equivariant mappings is called 7.

B is the space of SO(V)-equivariant bilinear forms on S. Clifford multiplication, 7 :
VeS=zV*®S — S (this is the restriction of the natural Clifford module multiplication
on S to just V') provides the isomorphism between J and B. Given (3 € B we define

Jr(B) v €V > By(v7) = f(y(v),) € ST @S (2.95)

We see that j, : B - J. We can therefore determine all possible superbrackets by

finding all bilinear forms. A superbracket is be built from a bilinear form according to

<H5('7')7U> :B(W(U)'a')a (2-96)

where Il is used in place of {-,-} to refer to the superbracket built from a particular 3.
The classification of so(V')-equivariant bilinear forms on S is equivalent to describing
the Schur algebra, C(.5).

Definition — the Schur algebra C(S) is the algebra of so(V) (and hence spin(V'))-
equivariant endomorphisms of S. C(.S) depends only on the spacetime signature and is
isomorphic to K, K(2) or 2K for K = {R,C, H}.

Before describing so(V')-equivariant bilinear forms and the Schur algebra it is first use-

ful to define an admissible bilinear form.

Definition — an admissible so(V')-equivariant bilinear form $ on S has the following

properties

e [ has a definite symmetry, i.e. it is either symmetric or antisymmetric. We encode
this in the symmetry o () such that 8(s,t) = o(8)B(t, s).

e Clifford multiplication is S-symmetric or S-antisymmetric. This is called the type

7(f) such that 5(v(v)s,t) = 7(8)B(s,7(v)t).
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o [f the spinor module is reducible, i.e. S =5, +S5_, then S; are mutually orthogonal
or isotropic. This is the isotropy ¢(3), which is +1 when § is orthogonal and -1

when § is isotropic.

Note sometimes the more compact og and 73 will be used, when the context is clear,
instead of o () and 7(5).

A superbracket is a symmetric Sping (¢, s)-equivariant vector-valued bilinear form:

B(’V(U)'a ) € VQS* = B(’Y(U)SJ) = B(’Y(U)t?‘g)? s,tes. (2'97)

B(v(v)t,s) = osmB(v(v)s,t) so only bilinear forms with o7 = +1 define a non-vanishing

superbracket.

Definition — 3 is a super-admissible bilinear form when og73 = +1, so-called because

they naturally define a superbracket.

Having a type implies a bilinear form is so(V)-equivariant, so all admissible bilinear
forms are so(V)-equivariant. spin(V') = so(V) is a subalgebra of the Clifford algebra
composed of elements of the form ~(v)y(w), inserting this into both arguments of the

bilinear form:

BOy(w)y(w)s, v(v)y(w)t) = 7B(s,1). (2.98)

As 7 =21, 72 =150 3 is spin(V) 2 s0(V) equivariant.

Definition — given an admissible g € B, an endomorphism A € C is called -admissible
if
e Ais -symmetric or f-antisymmetric. The S-symmetry of A is o5(A).

e Clifford multiplication commutes or anticommutes with A. This is the type of A,

T7(A). 7(A) = +1 if it commutes and 7(A) = -1 if it anticommutes.

e When S is reducible, AS, c S, or AS, c S¢. In the first case the isotropy of A is
t(A) = +1 and in the second ¢(A) = 1.

Having a definite type means that A is an so(V)-equivariant endomorphism. Therefore
given an admissible bilinear form [ and a ([-admissible A, - A = B(A-,-) € B, is
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admissible and the invariants are multiplicative:

o(B-A)=0(B)r(A), 7(B-A)=7(B)r(A), «(B-A)=upB)T(A). (2.99)

If A is not S-admissible then - A is in general not admissible. It will be demonstrated
that there exists a canonical bilinear form A from which we can construct a basis for all

admissible bilinear forms using the Schur algebra.

It is always possible to decompose RP? as
RPI 2RI+ RPIO psg or RPIxRPPLROYIP pey. (2.100)
For V =Vj + V3, as above, there exists a canonical isomorphism of Zs-graded algebras
Cl(V) 2 Cl(V1)®CI(Va), (2.101)

where ® is the Zs-graded tensor product of Zs-graded algebras. We can then build
the spinor module as the tensor product of the spinor module built from CI(V;) and
Cl(Vg)

S =585 (2.102)

We then build bilinear forms (and thus superbrackets) from tensor products of bilinear
forms on this product space. Therefore for a complete classification we need only con-
sider 3 cases, spacetimes of signature (m,m), (0,k) and (k,0). In each signature, we
will derive the canonical bilinear form and the Schur algebra, in doing so providing a
basis for all bilinear forms. We will then provide the invariants of said bilinear forms.

Following this, we discuss how to combine these cases to describe the general signatures

(p,q)-

(m,m)

Let U and U* be two complementary isotropic subspaces of V' = R™" = U + U*. Using
the standard scalar product, (-,-), on V' we identify U* with the dual space of U:

U*(u) =2(u,u*), welU, u" eU”. (2.103)

The spinor module can be realised as S = AU that has decomposition S = A*" U +
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AU = S, +S_, where S, and S_ are inequivalent irreducible so(m,m)-submodules.

We define an irreducible Cl,, ,,)-module on S = AU with Clifford multiplication ~:

y(u)s=uAs, y(u*)s=-u"=s, uwelU, u' eU" (2.104)
e )y () A () = 2wV, A=A =0. (2105)

where — is the interior product. The second line is the familiar equations defining a
Clifford algebra.

We define the nilpotent endomorphisms of S ¢, and ¢, for a e AU and e AU”
€a=ANS, Lo=0a-Ss. (2.106)
The Lie algebra so(m,m) has the graded decomposition
so(m,m) =g 2+g°+g% =y +sl(U) + €2y (2.107)

such that s((U) = [wy+,er], [¢°,¢7] c g*™7 with g"*7 = 0 if |i + j| > 2. 1,2y and €,2p are
Abelian subalgebras.

An so(m, m)-equivariant endomorphism E of S is

ES:E = :ts:t, Sy € S:t' (2.108)

This corresponds to the chiral projection matrix in physics, that is often called ‘5’ in
four dimensions or ‘“y,’ more generally. In this case, this is the only endomorphism that

exists on S, meaning the Schur algebra is C(S) 2 R @ R with a basis given by Id, E.

We can give an admissible bilinear form f on S by fixing a volume form, vol € AU on
U™ and defining

FNUNUY=0 if i+j+m, (2.109)

i(i+1)

f(s,t)vol = (-1)"2 sAt, seAU, tea™U. (2.110)

The space B of so(m,m)-equivariant bilinear forms is two dimensional, with basis f
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and fp = f(E--). Note that E is both f- and fp-admissible. It has invariants

o(E)=0p,(E)=(-1)", 7(E)=-1, «(F)=+1. (2.111)
m | f fE
0O | +—-+ | +++
1 | ——= ] ++-
2 | ——4+ | —-++
3 | +-—-|-++

Table 2.2: Invariants (o, 7,t) of admissible bilinear forms in signatures (m,m).

(k,0)

First we work in even dimensions, setting k = 2m. We can decompose R?™ = R™ + R™

for some isometry ": R” — R™.

On S we can define a Clifford structure for m =0 or 3 mod 4.

_ wsv m=0 mod 4,
v(v)s=vs, (0)s= (2.112)
wa(s)v m=3 mod 4.

For v e R™, o € R™. w is the volume element of Cl,, = e1...em. « is the grading auto-

morphism from Section 2.4, that, in particular, takes v — —v, v e R™.

If m=1,2 mod 4 we instead use
v(v)s=wvs, ~(0)s=1ia(s)v. (2.113)
Using these definitions, one finds, for all m, that
v(0)? = ~(v,0)Id,  7(0)" = ~(0,0)Id, Y(v)y(D) +Y(D)y(v) = 0. (2.114)

Which correctly gives a Clifford algebra structure on S. Note that m-even implies
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{w,v} =0 and m-odd means [w,v] = 0.

9 +1 m=1,3,
w” = (2.115)
-1 m=2/4.

We seek a canonical bilinear form, which we shall call h. The form of h varies depending
on the value of m mod 4 again. For m = 0,2 the S is reducible to two inequivalent Weyl
spinor modules, for m = 1 it is reducible but the two Weyl spinor modules are equivalent

and for m = 3 it is irreducible.

We can identify AR™ and Cl,, by identifying e;; A... Ae;, — €;,...e;, . Clifford multipli-

cation of v € R™ and ¢ € Cl,, is given by
vp=vAp-v=¢p, ¢v=vAa(d)+z-a(d). (2.116)

The standard scalar product (-,-) on R™ induces a standard scalar product on AR™
(that we will call the same name). It is invariant under exterior and interior multipli-
cation by unit vectors v € R™. It is also invariant under left and right multiplication by

unit vectors v € R™, so that it is Pin(2m)-invariant.

For m =0 or 3 mod 4 then h = (-,-) is the admissible Pin(2m)-invariant scalar product
on S. If m =1 or 2 we must extend S = AR™ to AC™ so that (-,-) is a symmetric
complex bilinear form on S. h = Re(c-,-) is then a symmetric real bilinear form where

c is the complex conjugation operator.

We now seek an h-admissible basis for the Schur algebra to find all bilinear forms. The

basis depends on m, and we will deal with each in turn.

If m = 0 mod 4 then Cy,0 = R@® R, with an h-admissible basis given by Id and F = «
(the grade automorphism from above). E has invariants 7(E) = -1, 0(E) = o3 (F) = +1
and ((E) = +1. The space of admissible bilinear forms is then span{h,hg} and they
have invariants (o,7,¢)(h) = (+1,-1,+1) and (o, 7,¢)(hg) = (+1,+1,+1).

For m = 3 mod 4, Ca, 0 = C with h-admissible basis given by Id and J = L,-ao.. L, is left
multiplication by the volume element of Cl,,, w = ej...€,,. This has invariants 7(J) = -1

and o(J) = —1. The associated bilinear forms have invariants (o,7)(h) = (+1,-1) and



44 Chapter 2 — Background Material
(07 T)(hJ) = (_17 +1)'

For odd k = 2m + 1 we consider the decomposition R* = Reg + R?™, where eq is a unit

vector. First we remark the following

S ®C=S m=0 mod 4,
Somro={ o (2.117)
S2m,0 m=1,2,3 mod 4.

We can deal with m =1 or 2 mod 4 in tandem. The Schur algebra has an h-admissible

basis given by
Id, I:s—is, J=Ly,-¢c, K=1J, E=«a,  FI, FEJ FK, (2.118)

where once again L,, is left multiplication by the volume element of Cl,,. One can show

that these operators obey the following relations:

I’=J%=-1, E?=+1,

(I,J}=[I,E]=0 =— K?=-1, (EI)*=-1, (2.119)
(J,E}=0 if m=1mod4 = (EJ)*=+1,

[J,E]=0 if m=2mod4 — (EJ)*=-1.

For m =1 mod 4 we find C 2 C(2) and when m =2 we find C ~ He H.

The invariants of the endomorphisms and the resulting bilinear forms can be found in
the following table

m | Id I J K FE EI EJ FK
1 | +++ | -4+ | =4+ | —++ | +=+ | ==+ | +=+ | +——
2 |44+ | =+ | =+ | ——F [ =+ | ==+ | =+ | -+ +
m | h hr hy hi hg her | hes | heEk
1 [ 4=+ — =+ — =+ | m == | 4+ | =4+ | ++— | ++—
2 4+ =+ -+ -4+ +++ | -+ =+ | ==+

Table 2.3: Invariants (o, 7,¢) Schur algebra basis elements and associated bilinear forms
in signatures (2m,0) with m =1,2 mod 4.

For odd k£ = 2m + 1 we consider the decomposition RF = Reg + R?™ where eq is a unit
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vector. First we remark the following

S ®C=S m=0 mod 4,
Somero=1 "0 m (2.120)

ngg m = 1, 2, 3 mod 4.

For m = 1,2 we have the Clg,,-invariant complex structure I defined previously. [ is

also a Clyp,-invariant complex structure on So,, 0 ® C when m = 0.

Given a representation «y of Cla,, on Sy, 0 we can extend this to a representation 7 of

Clam+1,0 on Soms1,0:

(R = A(R™), (2.121)

. Y(wom) if m=1or3 mod4
(eo) = (2.122)
I -y(wam) if m=0or2 mod4

One can show that 7(eg)? = -1 and {F(eg),7(v)} = 0 for v e R?™.

(2.120) implies that we can the same canonical bilinear form as before for m =1,2,3
mod 4, which was (-,-) for m =3 and Re(c-,-) for m =1,2. In m = 0 mod 4 we must now
use h = Re(c-,-). These bilinear forms are Pin(2m + 1)-invariant; by Schur’s lemma for

m =1,2,3 and by remarking that h is invariant under J(eg) explicitly for m = 0.

For m =0, 1,2 the Schur algebra is four dimensional, given by Id, I : s — is,

L,-c m=1,2 mod 4,
J = (2.123)

a-¢c m=0 mod 4.

and K =IJ. For m = 1,2 this is isomorphic to H, and for m =0 this is H 2 R(2). The
resulting invariants are the same as the corresponding entries in Table 2.3 for m = 1,2

and as detailed in the relevant paragraph for m = 0.

For m = 3 the Schur algebra is one dimensional, C @ R, and the space of admissible

bilinear forms is similarly one dimensional, B = Rh.
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(0,k)

(0,k) works very similarly to (k,0). In this section I will outline any key differences,
which are mostly just changes in behaviour of m. We begin with even, k = 2m and we

use the decomposition R%?™ = R%™ 4+ R%™ for some isometry ~: R%™ — RO™,

The volume element of Cl,,, w, obeys

9 +1 m=1,3,
w” = (2.124)
-1 m=24.

w (anti)commutes for m-even (m-odd).

We define the Clifford algebra representation on Sp 2., with m = 0,1 according to

~ wsv m=0 mod 4,
v(v)s=vs, v(0)s= (2.125)
wa(s)v m=1 mod 4.

For v e R%™, s ¢ S. The spinor module is reducible for m = 0 and irreducible for m = 1.

When m = 2,3 the representation is instead

v(v)s=vs, v(0)s=1ia(s)v. (2.126)
The Weyl spinor modules are (in)equivalent for m =2 (m = 3).

For (k,0) we used that AR™ = Cl,, and used the standard scalar product on AR™. In

this case we consider

R%™ = iR™° c Cl,, = Cl,, ® C. (2.127)

Following the same logic

Clom = ClQ,p + Clgy,, = Cly, +iCL. (2.128)
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We define the isomorphism

¢ : Cly — Clom, (2.129)
o(a) = jdeg(a) g

For an element a € Cl,, with pure degree. We can then define a scalar product (-,-)
on Cly,, by the condition that ¢ is an isometry for the standard scalar product on
AR™ =Cl,,

For m =0,1 (-,-) is the canonical admissible Pin(0, 2m)-invariant scalar product on S.
For m = 2,3 we extend the scalar product to the symmetric complex bilinear form (-, -)¢

on S = AC™. The canonical bilinear form on S is then h = Re(c:,-).

The Schur algebra for m = 0 is isomorphic to R @ R, with basis elements Id and F = «.
They have invariants o(F) = o, (F) = +1, 7(E) = -1 and «(E) = +1, and the associated

bilinear forms have invariants (o, 7,¢)(h) = (+1,+1,+1) and (o, 7,¢)(hg) = (+1,-1,+1).

When m =1 the Schur algebra is C 2 C, an admissible basis is given by Id and J = Ly, -c.
Note that w is the volume element of Cly,. The admissible bilinear forms then have a
basis h and hy with invariants (o7)(h) = (+1,+1) and (o,7)(hy) = (-1,-1).

We can deal with m = 2,3 in tandem. The Schur algebra has an admissible basis given
by

Id, I:s—1is, J=L,- ¢, K=1J, E=a FI, FEJ FEK. (2.130)
These basis elements obey the following relations

I’=J%=-1, E?=+1,

(I,J}=[I,E]=0 =— K?=-1, (EI)*=-1, (2.131)
{J,E}=0 if m=2mod4 = (EJ)*=+1,

[J,E]=0 if m=3mod4 — (EJ)*=-1.

For m =2 mod 4 we find C  C(2) and when m =3 we find C 2 He H.

The invariants of the endomorphisms and the resulting bilinear forms can be found in
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the following table

m | Id I J K E EI EJ EK
1 | +++ | —++ | ——+ | ——+ | +—+ | ——+ | —++ | —+-—
2 | +++ | —++ | -+ | -+ |-+ | =+ | +—= | +—-
m | h hy hy hk hg hgr | hgy | hek
1 | +++ | —++ | ——+ | ——+ | +—F+ | ——F+ | —++ | —++
2 | +4++ | -+ | -+ | -+ | +—-F | =+ | +—-=| +--

Table 2.4: Invariants (o, 7,¢) Schur algebra basis elements and associated bilinear forms
in signatures (0,2m) with m =2,3 mod 4.

Bilinear forms in odd dimensions are then built similarly as in (k,0). Analogously, we
write R%2"*1 = Reg + R%?™ with (eg, ep) = —1. The spinor module of (0,2m + 1) relates
to that of (0,2m):

S ®C=S m=1 mod 4,
Soomir =1 " o (2.132)

S(]’Qm m= O, 2, 3 mod 4.

On Sp 2, we defined a representation 7 of Clg2,,. We extend this to a representation

4 of Clp,2m+1 on Sp2m+1 according to

F(RYF™) = y(R*?™), (2.133)

~ p(wam) if m=0or2 mod 4,
(eg) = (2.134)
I-p(way) if m=1or3 mod 4.

When m = 0,2,3 we can use the same h as the original even dimension. For m =1
we must use the complex bilinear extension of h, setting h = Re(c-,-) analogous to the

m =0 case in signatures (k,0).

We now describe the Schur algebra for each m. For m = 0 the Schur algebra C = RId
and the space of admissible bilinear forms is one dimensional. The bilinear form has

the invariants (o7) = (++).

For m # 0 we define

J=L, a-c, (2.135)
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where we have again used grade automorphism « and complex conjugation operator c.

W = wWo,m, the volume element of Clg,.

Using I as before and J we can generate the basis of the Schur algebra. We have
Id, I, J, K=1J (2.136)

In all cases I = -1 and {I,.J} =0. For m = 1,2, J? = —Id (which implies K2 = -1) and
C = H. Finally for m =3, J? = +Id (so K2 = +Id) and we see that C = H' = R(2).

m | Id I J K
1 | ++ —+ — ——
2 | ++ —+ —+ —+
3 | +++ | —+— | +—-+ | +—--
m | h h[ h] hK
1 | ++ —+ —— ——
2 | ++ —+ —+ —+
3 | +++ | —+— | +—+ | +——

Table 2.5: Invariants (o,7) ((o,7,¢) for m = 3) Schur algebra basis elements and asso-
ciated bilinear forms in signatures (0,2m + 1) with m =1,2,3 mod 4.

Combinations

We now discuss how to calculate signatures (p, q). Setting
V=RPI=Vi+Vy, st. Vi=R™, V=R or ROF (2.137)

The associated spinor module to V; will be called S;. S; is a spinor module of so(V;) so

the product space, S; ® Sg is a spinorial so(V; + V2)-module.

Given an admissible bilinear form [ on Sy there is a unique (up to scaling) admis-
sible bilinear form (51 on S; such that 7(52) = ¢(81)7(B1). Correspondingly, given a
Bo-admissible endomorphism As on Ss there is a unique [1-admissible endomorphisms
A1 on Sp such that 7(As) = t(A1)7(A7). This means the Schur algebra of S =51 ® Sy
and Sy are equivalent; C(S) = C(S2) 3.

3This is expected, because S and Sz have the same signature
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We can calculate the invariants of the products A = A1 ® Ay and -1 ® (B2 by the

following rules

7(8) =7(B1) =(B1)T(B2), o(B)=0(Br1)o(B2), «(B)=1t(B1)(B2), (2.138)
T(A) = 7(A1) = 1(A1)7(A2), 05(A) =0p,(A1)os,(A2), (A)=1(A1)(A2).

We have shown on pseudo-Euclidean space, Vo = R*? or R%* there exists a canonical
Pin(V3)-invariant bilinear form, he. This has invariants o(hg) = +1 and 7(hg) = -1 for
Vo = RFY or 7(hg) = +1 for Vo = R%*. If Sy is reducible then ¢(hy) = +1.

Therefore there exists a canonical bilinear form A = h; ® ho from which we can then
construct endomorphisms from the product of two endomorphisms on each factor. In

doing so, we can repeat the construction outlined above for any spacetime RP»9.

2.9 Supersymmetry Algebra Isomorphisms

While [1] focused on the construction of superalgebras, it did not consider whether the
resulting superalgebras are unique (up to isomorphism). At the beginning of [3], we

extended this research to include and solve this problem.

Theorem — In all signatures (¢, s) except (1,1), two Poincaré Lie superalgebras, (g, [-,-])
and (g, [,-]"), are isomorphic if and only if there exists ¢ = ¢0"-a € Pin(V')-C(S)*, where
Y' e Pin(V) and a € C(S)*, such that

I (¢s1,982) = £p(I1(s1,52)), Vs1,82€8 (2.139)

¢ is the imagine of 1)’ under the homomorphism Ad: Pin(V) - O(V). Pin(V)-C(S)*
is the subgroup of GL(S) that is generated by Pin(V') and C(S)*. Note that Pin(V")

normalises C(5)*.

Proof — Every isomorphism ¢ : (g,[-,-]) and (g,[-,-]") maintains the grading, mapping
g; = go. More than this, it also maps V c g; to V because V is the kernel of the
representation of gg on g; that is induced by the adjoint representation of g with either

bracket (that on the bosonic and fermionic generators).
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Let us define
o =0¢ly e GL(V), ¢ =¢|seGL(S) (2.140)

¢ also induces an automorphism & of so(V') = go/V = (so(V) + V)/V. The subalgebra
¢(s0(V)) c so(V) + V is conjugate to so(V) by a translation. Up to composition of
¢ by an inner automorphism of (g, [-,-]") we can assume ¢(s0(V') = so(V'), so we can
identify § = @lso(v) € Aut(so(V). This implies that ¢ is an isomorphism between the

two superalgebras if and only if the derived automorphisms &, p, ¥ satisfy

§(A)p(v) = p(Av) (2.141)
§(A)v(s) = ¥ (As) (2.142)

for all Aeso(V),veV and se€S. (2.141) means that £ = C,, with C,: A > - A- 7!

denoting conjugation by ¢. We can therefore write (2.141) as a condition on ¢ alone:
p € Narvy(so(V)) ={A e GL(V)[A™(;-) = A(,-), A # 0} (2.143)

Here is where the signature dependence enters. A linear transformation that normalises
the Lie algebra so(V') preserves the standard scalar product up to a factor for all
signatures (t,s) # (1,1). Further if ¢ # s there are no anti-isometries and A is necessarily

positive. This means
peCO(V)={AecGL(V)|A*(-,-) = A(-,), A>0}=R-0O(V), (2.144)

CO(V) is the linear conformal group.

(2.142) goes one further than this and shows that ¢ € CO(V') for all signatures (t,s) #
(1,1) too. Assume t = s > 2 and € € GL(V) is an anti-isometry. We will prove there is no
1 € GL(S) normalising the image of spin(V") in EndS that acts on spin(V') 2 so(V') as €.

Proof — The homomorphism Ad : Pin(V) - O(V) is surjective, so we can assume

without loss of generality that ¢ exchanges space-like and time-like vectors:
plei) =ei, (e =ei, (2.145)

where (e, ...€, €], ..., €;) is an orthonormal basis. e; are the time-like vectors and e} the
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space-like. § must then interchange e;e; with —ejej (i # j) and e;e} with —eje; = eje;

(1,7 arbitrary in this notation).
Let us first consider the case t = s = 2, * and derive the rest by induction.

In (2,2) the real Clifford algebra is Cly 2 = R(4) with even subalgebra C’lg}2 ~ 2R(2).

We can therefore consider S = R? ® R? and give a Clifford representation as
Yer =J®L, Ve, =K®I, 7y =1d®J, 7 =1d®K. (2.146)

Where I,.J,K = I.J are pairwise anticommuting operators on R? that obey the para-
quaternion algebra, such that I? = =1 and J? = K2 = +1. This is done explicitly in

Chapter 5 but the details are not strictly necessary here.

s50(V') is generated by pairwise multiplication of the Clifford generators, these pairs are

YerVeo =1 ®Id, Ve, Ve, =J @K, e Ve, =—J®J (2.147)
Yea Vel = KoK, YexVely = -K®J, Yey Vel = Id® 1.

Allowing us to read the effects &: it preserves the elements J ® K and K ® J and inter-
changes I[d® [ < -I®Idand J® J < K ® K.

A generic element of 1) € End(S) has the form
Y=Id Ag+ I ® A1+ J® As + K ® As, (2148)

with A, € End(R?). (2.142) gives the following equations

V- (JOK)=(JoK) 1, - (KeJ)=(K®e.J)- v, (2.149)
V-(Id®J)=—(Ide 1), % (K®K)=-(J®.J) 1. (2.150)

This has no solution except ¢ = 0 (and thus A, = 0) confirming the proposition above.

The irreducible Clifford module in (¢t + 1,t+ 1) is S = R? ® (R?)®® with the Clifford

4This applies readily to research contained later in this thesis about four-dimensional vector multi-
plets, see Chapter 5.
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algebra representation given by

Ve =T @i, Ve =J ®F;, (2.151)
Yerss =1d® I, e,y = K®Id, (2.152)

where 7;,7; are the Clifford generators of signature (¢,¢).

1 has the same form as in (2.148) with the caveat that A, € End((R?)®") instead.
(2.142) results in the equations

AT = AV Aa 1%F,  AdViT; = FiiAa- (2.153)
These equations imply, by induction, that Ag =0 and therefore ¢ = 0.

A homothety with factor y on S and a simultaneous homothety with factor u? on V' de-
fines an automorphism of any super Poincaré Lie algebra, so we will consider ¢ € O(V')
instead of CO(V'). There exists 11 € Pin(V') such that Ad(v1) = ¢ and/or ¥, € Pin(V)
such that Ad(y2) = —¢ for any choice of V. All solutions take these form and any
solution solves (2.142).

1 therefore corresponds, up to an element of the Schur group C(S)*, to the pre-image
11 of ¢ or P9 of —p under the adjoint map. Such a 1) satisfies (2.139).

Any solution (¢, ¢) defines an isomorphism from (g, [-,-]i1]) to (g, [, -] ]) or (g, [+, -]-II])
to (g,[-,-]Jir]). Further (g,[-,-]n]) and (g,[-,-]-t]) are isomorphic °, so we have proven

the theorem.

The classification of Poincaré Lie superalgebras up to isomorphism is reduced to the

classification of the orbits
On =C(S)* - Pin(V)-1I (2.154)

of the group %ﬁé%‘/) on (Sym?2S*@V )0 (V) Pin(V)/Sping (V) = O(V)/SOu(V) =

Zs or Zy ® Zs depending on the signature (,s).

This can be realised by simply replacing (A, v, s) with (A4, -v,s) for Aeso(V),veV,seS.
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From now we restrict to when ¢+ s = dimV is even because in odd dimensions there is

only a single super-admissible bilinear form. In even dimensions

{[1], [e1], [w], [wer]} V' is indefinite, ¢,s odd,
SRLLORS 1 V  is indefini (2.155)
Sping (V) {[1],[e1], [et+s], [et+s€1]} is indefinite, t,s even, :
{11, [ea]} V' is definite.

€1, ..., €45 1S an orthonormal basis for V and w = e1...e145. w € y(Pin(V))nC(S)* so we

have two cases. First if V' is indefinite and ¢, s are both even then

C(S)" - v(Pin(V)) =C(S)" - y(Sping (V) uC(S)" - v(Sping(V)er) (2.156)
UC(S)" - v(Sping(V)ers) uC(S)™ - v(Sping(V)ererrs)

And second when V is definite or V' is indefinite and ¢, s are odd

C(8)" -y (Pin(V)) =C(8)" -7 (Sping (V) uC(S)" - v(Sping(V)e1). (2.157)

Therefore the orbit Or is given by

On =C(S)* - TLUC(S)* ey, - ITTUC(S) e, - TLUC(S) Yerern, - 1T (2.158)

when V is indefinite and ¢, s both even and

O =C(S)" -TTUuC(S)™ e, - 1L (2.159)
when V is definite or V is indefinite and ¢, s are odd.

Therefore when V' is indefinite and ¢, s are even, two super-Poincaré algebras (g, [-,]m)
and (g’,[-,-]f;) are isomorphic if and only if +II, +e11I, +epsIT or +ejes 1T is related to

IT" by an element of the Schur group.

And when V is definite or V' is indefinite and ¢, s are odd, then two super-Poincaré
algebras (g, [-,-]m) and (g',[-,-];;) are isomorphic if and only if +IT or +e;II is related
to IT” by an element of the Schur group.
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2.9.1 Schur Group Action on Vector-valued Bilinear Forms

An element a € C(S)* acts on a symmetric vector-valued bilinear form, Il € (Sym?S* ®

R%$)SPino(45) iy the contragredient /dual representation:
(a,Mg) > Mz =a-Tlg = Mg(at a™t). (2.160)

Consider a one-parameter subgroup a(u) = exp(uA) with A € C(S) (such that a is as
element of the Schur algebra regarded as a Lie algebra). This gives the corresponding

infinitesimal action
(A1) > a-Tg = -z(A-,) - 1s(, A). (2.161)

If 5 is admissible and A is S-admissible then 3(A-,-) defines a new admissible bilinear
form. Recall that (IIg,v) = (7, -) by definition, so that

<H5(A'v ) + Hﬂ('v A')7 U) = B(’Yv'y ) + 5(7@'7 )
=(7(A) + 05(A)) B(Ay,-) = ((A) + 05(A)) Ba(V07,°) (2.162)
=(7(A) + o5(A))(Ilg, (A:-)).

Therefore the infinitesimal action of a Schur algebra A on a superbracket Ilg is

=27(A)g,, 7(A)os(A)=1,
ATl =~(7(A) +05(A))g, = . (A, EA; BEA; ) (2.163)
T og =-1.

If B is a super-admissible bilinear form we see that a S-admissible Schur algebra element
A € C(S only acts non-trivially if 54 is super-admissible. The connected component of
the stabiliser group of Ilg is generated by elements A that satisfy 7(A)og(A4) = -1.
Writing a = exp(uA) again, the stabiliser group is

Stabe(s+)(Ilg) = {a € C(S)"|B(wa-, a-) = By, )}, (2.164)

in physics, this is called the R-symmetry group of the supersymmetry algebra (de-
fined using the superbracket IIg). Up to conjugation the stabiliser only depends on the
C(S)*-orbit of IIz and is therefore isomorphic for all superbrackets that define isomor-
phic super-Poincaré algebras. This makes R-symmetry a useful classification tool for

supersymmetry algebras and is one that will be employed in Chapter 3.
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2.10 Real Forms
A real form of a complex Lie algebra g, is a real Lie algebra, go, that satisfies [40]
g=g0®C. (2.165)

Similarly, a real Lie group, G, is a real form of a complex Lie group, G, if G¢ = G®C.

In general, a complex Lie algebra can have many real forms. There are two readily
accessible unique real forms of a complex semisimple Lie algebra; the split real form
and the compact real form. A real form gg of a complex semisimple Lie algebra g is split
if in each Cartan decomposition gg = €y @ pg, the space py contains a maximal Abelian
subalgebra of go (which is its Cartan subalgebra). The compact real form is compact,
as the name suggests, and can be obtained from the split real form by a “Weyl unitary

trick’ taking
g0 =t ® po —~ go = to ® iPo. (2.166)

Given a compact real form and an involutive automorphism 7T we can find all real
forms by a similar method. An involutive automorphism, T, of g satisfies Tg7" ! = g
and T2 = 1. All possible involutive automorphisms have a basis given by complex

conjugation and

1, 0 0 1
T={"7 =I,, or T= 7= J,. (2.167)
0 -1, -1, 0

Given such an automorphism we can decompose gg into the +1 eigenspaces of T
go = to @ po, (2.168)

where Tk = k for k € &y and T'p = —p for p € pg. ¥y is a subalgebra of gy and pg is its

orthogonal complementary subspace.

If go is a compact real form of g all other real forms are obtained by decomposing gg

into the +1-eigenspaces of T and performing the Weyl unitary trick

g0 = €0 ® po — 9o = go = o @ ipo. (2.169)
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gy is a different real form of g that is not necessarily different for each possible T
Therefore finding the real forms of a simple complex Lie algebra, g, is equivalent to

finding all involutive automorphisms of the compact real form gg.

Chapter 3 provides a manner to derive supersymmetry algebras whose R-symmetry
groups are real forms of O(N,C), Sp(2N,C) and GL(N,C), or the products O(N, C) x
O(M,C) and Sp(2N,C) x Sp(2M,C). Note that o(N,C) is a real form of o(N,C) &
o(N,C), and similarly sp(2N,C) is a real form of sp(2N,C) @ sp(2N,C).

2.11 N =2 Vector Multiplets

In this thesis A/ = 2 rigid vector multiplet theories are used as examples of physical the-
ories derived using the supersymmetry algebras formalism in Chapter 3. This section
will provide a brief overview of the conventional manner of defining a vector multiplet
for the reader’s convenience. This mostly follows [20], though the notation has been
altered to follow the conventions in this thesis. We will focus on those with Abelian
gauge groups only, for simplicity, as this was done in our papers [2] and [3] and in the

respective thesis chapters, Chapter 4 and 5.

We will begin first by discussing the conventional definition of a Minkowski signature
N =2 vector multiplet theory in five dimensions before moving onto four dimensions,
deriving the Lagrangian through dimensional reduction as we will also do in this thesis
in Chapter 5. In this section space-time indices in five-dimensions will be u,v,... =
0,...,4 and in four-dimensions they will be m,n,... =0,..,3 in Minkowski signature and

m,n,...=1,...,4 in Euclidean signature.

Five Dimensions

A five-dimensional N = 2 off-shell vector multiplet contains the vector field A, a
symplectic Majorana fermion \* with ¢ = 1,2, a scalar field ¢ and a triplet of auxil-
iary fields packaged as a real, symmetric SU(2) tensor Y. An SU(2) tensor obeys
(Yij)* = eipep Y ® = Y;;. This is induced by the reality condition of the fermions, that
obey

(\)* = -BNej;. (2.170)

This involves the matrix B = (CA)T = B = —(Cv)? as was outlined in Section 2.6.
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Reality conditions like this and their generalisation are studied in Chapter 3. The 4, j
indices of A and Y% are so-called SU(2) indices that are raised and lowered with i,

which is the Levi-Civita symbol in two dimensions:

)\i = €ij>\j, )\Z = )\iji, (2171)

using the NW-SE conventions as is standard. Contracted fermion terms use the Majo-
rana conjugate, X = (A\\)T'C, with the single charge conjugate matrix in five-dimensions,

more details on this are available in Chapter 3. Spinor bilinears are then written

Ayt y = ()\i)TC’yul"'“TXjeﬂ. (2.172)

The five-dimensional Poincaré superalgebra involves a superbracket given by

{Qia, Qjs} = —%(’Y“C_l)aﬁpwfij, (2.173)

with has an off-shell representation:

1 1 g P
SAM = SeA do=cEN, oY= —%g%w), (2.174)

A 1 g A iy

The supersymmetry parameter, €', is also a symplectic Majorana spinor obeying the
same reality condition as \*. As this is an off-shell representation, additional terms can
be added to the Lagrangian and these variations will not change. The superbracket is

invariant under SU(2) transformations that act entirely on the 7,7 indices.

Generalising to ny multiplets, we require the supersymmetry variations to hold for each

vector multiplet individually, so that
wl _ L 1 1.1 G _ (oI
JAM = 7€ A do’ = 56)\ , oY = —5€ AN (2.175)

, 1 g ‘ g
SN = —Z’y“"F/{VEZ - %ﬁalez - Y”Iej, I=1,..ny.
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The following Lagrangian is invariant under the variations in (2.175)

1 , 1 1.
L1,4) =( - ZFLF"“ - 5@0’8%" - 5/\1;3%’ + Yy JJ)fU(a) (2.176)

1 [ pd oK USI JNK Uil yjIy K

+ ( - ﬁs“”p”TAMFVpFJT - é)\ YELAT - 5)\1 NYi | Frok (o).

F* is the field strength of A¥*. The coupling coefficients are the derivatives of the
pre-potential F(o):

o 0 o o0 0

Frj(0) = =—=—=F(o F 0)=————=F(0). 2.177

15(9) 0ol 9o’ (@), 17x(0) 0ol 9o’/ do K (@) ( )

The pre-potential F (o) is an arbitrary cubic polynomial in o, i.e. Fjjxr = 0. This is

a necessary condition for the interaction terms to be invariant under both gauge and

supersymmetry. In contrast, if we were to work with a superconformal vector multiplet

that is a representation of the five-dimensional Minkowski signature superconformal al-

gebra then F (o) must be a homogenous polynomial of degree 3.

We can interpret o as a map from space-time, RY*, to a ny-dimensional Riemannian
manifold M with metric given by F7;. The metric F7; is a Hessian metric derived from
F(o), which is a polynomial of degree at most 3. The resulting manifold is called an

affine special real manifold |20, 39].

The Lagrangian is not invariant under general coordinate transformations of M, only
affine transformations, o/ — Rﬂa‘] +a!, with constant and invertible R§ and constant

1 1

a'. Hence o' are affine coordinates, in analogy to (1,3) signature theories they are

often also called special coordinates.

Additional references for five-dimensional vector multiplet theories can be found in [41-
43|, where they were studied using string theory, and [44-47] which use superconformal
vector multiplets. Additional terms also arise in the supersymmetry variations due to

the special supersymmetry transformations in the superconformal algebra.

Four Dimensions

Four-dimensional vector multiplet Lagrangians can be found by dimensional reduction,
usually from five or six dimensions [20,39]. This section will summarise [20], of which

the physical aspects in this thesis were based upon, where a Minkowski-signature five-
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dimensional theory was reduced to Minkowski and Euclidean signature four-dimensional
theories. The explicit details will be omitted here, though in Chapter 5 the dimensional
reductions from any five-dimensional signature to any four-dimensional signature are

demonstrated in detail.

Dimensional reduction is assumed to be along the 0 direction for a time-like reduction
and the 4 direction for a space-like reduction. For shorthand, this will be referred to as
#, which is 0 or 4 depending on the context. In doing so, the conventions for the four-

dimensional space-time indices m,n agree with those given at the start of this section.

The field content of ny four-dimensional A = 2 off-shell vector multiplet involves com-
plex or para-complex scalar fields, X!, symplectic Majorana spinors, A\’ 6, the epony-
mous vector fields A™ and auxiliary fields Y%/, The scalar fields are complex in
Minkowski signature and para-complex in Euclidean signature.” Using the language of
e-complex numbers we can call this an e-complex scalar field and treat the two cases in

tandem.

Compared to five dimensions the vector has lost one degree of freedom and the scalar
has gained one (going from a real scalar field to an e-complex scalar field). This is
because, upon dimensional reduction, the components of the vectors along the removed
dimension become the extra scalar fields. Reducing along a space-like direction, and
setting A;e = b’ the kinetic term of the vector field becomes
L Ry ey s el o o ramy

_ZF’“’F - z_LFm”F +(-1) §8mb 0"’ (2.178)

Combining these new scalar fields b! with the scalar fields o such that X' = ! +4.b’,

with € = (=1)!, we can write
1 1 1 _
-5 ol ™o + (-1)t§ambfame = —EamxfamXJ, (2.179)

where we have used the e-complex conjugate of X, X! = ¢! —4.b! and t is the number
of time-like dimensions of the daughter theory, e.g. in Minkowski signature ¢ = 1 and for

Euclidean signature ¢ = 0. Note the sign difference of the b’ kinetic term in Euclidean

6 An equivalent formulation in terms of a pair of Majorana spinors is possible and well-known, which
is also discussed in Chapter 5.

7 Alternatively one could write these theories using a pair of related real coordinates, called ‘adapted
coordinates’ but this is not used in this thesis.
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and Minkowski signature was necessary to allow the writing in terms of an e-complex

scalar field in both cases.

In five dimensions the pre-potential was a real function F(o) which is now extended
to an e-holomorphic function F(X) by simply substituting o with X’. The coupling

matrices become

O2F(X)
oX10x 7’

92F(X)

f[J(X): OXIox7’

Fri(X) = (2.180)
with F(X) = (F(X))*, the e-complex conjugate of F(X). Because F(o) is a cubic
polynomial, we can write F7;(X) and its conjugate in terms of the real fields ¢! and

bl
Fry(X) = Frs(o) +ib" Fryx, Frs(X)=Frs(o) —idb" Fryx. (2.181)
Therefore we can write
F1(0) = 5 (F(X)1g + F(X)15) = Nig (X, X). (2.182)
Nrj(X,X) is an e-Kéhler metric with potential

1 o

K(X,X)= 5(ijXI + Frx?h), (2.183)
such that N7y = % This is not a generic e-Kéhler potential, as it can be expressed
in terms of a e-holomorphic prepotential (X ). This is the defining feature of an affine
special e-Kéahler manifold [20, 39).

In four dimensions we can split the field strength of the vector field into self-dual and
anti-self-dual field strengths, given Fj,, = 0 An — Op Ay and its dual F;w = %emnqupq

we define

1 1 -
Fimn = §(an+Z_an) (2184)

such that Flin,, = %emnqufq = +F.mn. The dimensionally reduction of the Chern-
Simons term in the five-dimensional Lagrangian, see (2.176), combines with the Maxwell
term to allow one to write the Lagrangian in terms of self-dual and anti-self-dual field

strengths.
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The dimension of the complex spinor module in five and four dimensions is the same, so
dimensional reduction does not affect the symplectic Majorana spinor, or the associated

matrices B and C. Spinor bilinears and the reality condition are the same.

However in even dimensions we can define ~y,, which anti-commutes with all y-matrices,
and use it to construct the projectors I', = %(1 +7,). For the dimensionally reduced

theory =, is proportional to the removed Clifford algebra generator, this is
Vo =~V Yt (2.185)

The factor of i, arises to allow one to write entirely e-holomorphic terms involving the
spinors; this is shown in greater detail in Chapter 5. With this the symplectic Majorana
spinor can be decomposed A’ = A’ + AL, In Minkowski signature the chiral pieces, A%,

are not symplectic Majorana-Weyl spinors, one can show
(\)* = -BM ey, (2.186)
however, in Euclidean signature, one can define symplectic Majorana spinors that obey
(AL)* = —iB¥ N ey, (2.187)

where Bi’s arises from relating the five-dimensional B to the four-dimensional B ma-
trices in each signature (similar calculations are found in Chapter 3). Here x refers
only to complex conjugate, not e-complex conjugation as the para-complex elements

are associated to the scalar manifold, not to the spinor module.

The dimensional reduction of the superbracket gives

1
{Qia, Qjp} = —5(’Ym0_1)a,apm€ij, (2.188)

where we have chosen to ignore a central-charge like term arising from the dimensional
reduction. This is invariant under U(2) for Minkowski signature and SO(1,1) x U(2)
U*(2) for Euclidean signature, due to the presence of Weyl spinors in four dimensions
allowing additional transformations the R-symmetry groups are larger than in five di-

mensions.
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The full dimensional reduction of the Lagrangian follows the standard procedure, see
[20] or Chapter 5 in this thesis for details. The resulting Lagrangian is true for both

signatures:

1
L= (Bl B Fry (X) + o B Fry (X))

1 m % - ij -
- 53,71)(18 XN (X, X) +Y'YIN (X, X)
1, _ _
- —(AIﬁA{ + NN )Np (X, X) (2.189)
MNAFr (XN + NaF(X)N])

-mn

(
( Ny E N F e+ Ny N F k)
-

L\DIS Ools

NOXEYE Frare + NOXIYE Fr ).

This is invariant under the following signature-independent supersymmetric variations,
where the ~ is understood to be the e-complex conjugate for the scalar fields X! and the

Majorana conjugate for \':

oxt = zaAﬁ, oXT =de N,

5AI (e+'ym)\ +é 'ym)\l)

1 _ _
0% = =5 (€M) + ey, (2.190)
1 g . y
5)\{_1 _ _4 mnF—Imn i %5)([61_ _ YIUE.,.]',
1 A )
o = 27 ympl et éﬁXIei ~ylide ;.

Note that, in Minkowski signature, this Lagrangian is in terms of the so-called old

conventions that are related to the new conventions, established in [48], by setting
Frew)(x) = (Old)(X) (2.191)
An analogous rescaling is possible in Euclidean signature, replacing i with e.

These two examples, of five-dimensional and four-dimensional vector multiplets, pro-
vided one of the key motivations for this thesis. The space-time signature controls
the signs of the kinetic term for the b’ scalar fields in the Lagrangian, which in turn

affects the scalar manifold by forcing the usage of complex or para-complex scalar fields.
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One of the primary goals of this thesis was to assess the extent to which this sign differ-
ence between the scalar and vector field kinetic terms is mandated by supersymmetry
and see if alternate pathways can avoid it. For example, reducing a five-dimensional
Euclidean theory to four dimensions may result in a different theory. This is explored
in Chapter 4 and 5, that also include any signature theories in both dimensions. The
formalism that was developed to deal with the Lagrangians and supersymmetry vari-
ations, initially called ‘doubled spinors’ in [2] and [3]|, was then generalised to allow
similar constructions in any signature and dimension and can be found in Chapter 3.
In Euclidean signature, it was shown the sign difference can be removed (though the
scalar field remains para-complex). In Minkowski signature an alternative N/ = 2 theory
is found that has a sign difference that cannot be removed, therefore necessarily having
ghost fields.

2.12 Supersymmetry in Ten Dimensions

2.12.1 Type ITA and Type 1IB

In ten dimensions we can define two types of N = 2 superalgebra, one where the super-
charges are of opposite chiralities (a.k.a. A = (1,1)) and one where the supercharges
are both the same chirality (a.k.a. N =(2,0)). The first kind of superalgebra arise from
a string theory called Type ITA (and also the less common Type ITA*) and the second
gives Type IIB (and similarly Type IIB* and IIB’). We will give more details on the

alternative theories in Section 2.12.3.

The low energy limit of string theory is described by ten-dimensional supergravity. The
features we wish to study (that are present in our four-dimensional theories too) are
visible at this level so we will exclusively discuss supergravity. As they have a different
superalgebras, Type ITA and Type IIB supergravity have different field contents. Note

that the starred theories have the same field content as the non-starred versions.
The Type IIA supergravity multiplet contains the graviton, g,,, a pair of chiral grav-
itino, 94, and 1_,, the Kalb-Ramond two form, B,,,,, odd-dimensional Ramond-Ramond

gauge fields, A, and C},,, the dilaton, ¢, and the dilatino.

The gravitini can be combined into a single Majorana vector-spinor v, = ¥y, +9_,.
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The chirality matrix is I';; = I'y...T'10, such that I'119, = 4., In [14]| pseudo-Majorana
spinors are also used, but are omitted here and the distinction between pseudo- and

regular Majorana is ignored for brevity.

These fields form a representation of the Type IIA superalgebra, which is (with spinor

indices suppressed)
{Q.Qy="C)"'P, (2.192)

for a Majorana supercharge, @), that can be split into Majorana-Weyl supercharges, Q.,
such that Q@ = Q, + Q.

The bosonic Lagrangian is, with conventional normalisation and omitting higher-order

terms,

Lia= [ d"xy/=g(e (R + 40" $0,¢ — H*) - G5 - G3) + [ §G4 ANGaABy+ ...
(2.193)

where G is the 2-form field strength of the 1-form gauge potential A, and Gy is the
field strength of C\p.

The gravitini both obey the same reality condition,
(Ph)* = BYL, (2.194)

so they can be combined into a single Majorana gravitino that satisfies the same reality
condition, (WU#)* = BUH.

The kinetic term for the gravitini is of the form
VPO, = Py, TH PO,y + 4, THPOY_,. (2.195)

As our formalism involves the definition of spinors and superalgebras, it is this term

that is particularly important to us.

Type IIB supergravity contains the same field content, except the gauge potentials

have even dimensions, which are a 0-form axion y, two form B/w and a self-dual 4-form
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D, po, and the two gravitini (with the same chirality), T/)L = d}iu.

The Type IIB superalgebra is
{Q+i,Qqj} = (THC) ' P65 (2.196)

The supercharges are Majorana-Weyl spinors of a single chirality, @;, that was arbi-

trarily chosen to be +.

The bosonic Lagrangian density is, once again with conventional normalisation and

omitting higher-order terms,
Lirg = f A2 /=g(e (R + 40" 0, — H?) - G2 - G2 - G2) + ... (2.197)

Similarly G1, G3 and G5 are the field strengths of the axion, 2-form and 4-form respec-
tively.

The kinetic term for the gravitini is proportional to

W TP AT 6 (2.198)

2.12.2 T-Duality

Conventional (space-like) T-duality links type ITA and Type IIB, but if we allow the
compactified dimension to be time-like we can reach other ten-dimensional supergravi-

ties that correspond to different types of string theory, called ITA*, IIB* and IIB’.

Type ITA* is obtained from Type IIB following a time-like T-duality, and Type IIB* is
similarly obtained from Type ITA using a time-like T-duality. Alternatively one could
allow a ‘mixed’ T-duality, where one theory is compactified on a space-like circle is
T-dual to one compactified on a time-like circle. This means the signature of the two
theories must differ by one, so this way we can reach other space-time signatures. The
starred theories have different signs in the Lagrangian but identical field content to the

non-starred versions.

This section will focus on the effects T-duality has on the fermionic pieces, especially

the supersymmetry algebra, as this is what we will be concerned with later. The au-
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thor used [49] was used for general information on T-duality. On the bosonic pieces,
T-duality exchanges the even/odd R-R tensor fields with the odd/even R-R tensor fields
so that the Type IIA Lagrangian is mapped to the Type IIB Lagrangian.

In the following a space-like T-duality will be considered to act on the X? direction,

flipping the sign of the right-moving components of X?:
X; - X7,  Xi-o-Xp (2.199)
This must also be true for the superpartners of X% /R the world sheet fermions ¢% /R
Vi > =0 YR YR = —Yhe (2:200)
Time-like T-duality will act on the X° direction, such that X% - —X%, thereby inducing
WE > =0 VR PR = Yk (2.201)

The zero-modes of the world-sheet fermions (with periodic boundary conditions) satisfy

the Clifford algebra, up to normalisation,
{vg,v0} =", (2.202)
so that one can associate the zero-mode of the right-moving fermions with the I'-matrices
W o o T, (2.203)

Therefore we can interpret T-duality can be interpreted as a transformation on the I'-
matrices that swaps the sign on I'? or I'?. One can show that the following implements

the necessary change
I =Tirrer, T =p0,0%°, |8 =1. (2.204)

Where T'%9 is the I-matrix associated with the direction the T-duality is performed
and T, = (=i)'T...T'g is the (1,9) signature chirality matrix. One can show that this

correctly implements the T-duality transformation on the I'-matrices, such that

[0/ = 10/, ™ =1, m=0/9, (2.205)
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For a space-like T-duality this is always unitary transformation, but for a time-like I'
only when 8 = £1 is this a unitary transformation, for 8 = +i it is real but not unitary.
Under this transformation A =I1,7, becomes A=TAT.

Alternatively, we may wish to leave the ['-matrices invariant and implement the trans-
formation onto the spinorial states. Considering the Ramond sector ground state, that
is obtained by applying a spin operator Sz and Si onto the NS-groundstate |0), giving
|Sp) = Sp|0) and |Sg) = Sg|0). In Type ITA |S) and |Sg) are Majorana-Weyl fermions
with opposite chirality, and in Type IIB they are Majorana-Weyl fermions with the

same chirality.

Recasting T-duality as a transformation acting on the left and right-moving spin oper-

ators we set
S, - S, =S5, Sg— Sr=TSkg. (2.206)
This changes the chirality of Si: we observe that I',T = -I',T so that
I,Sg=+Sp = T.Sp=T.TSgr=-TT,Sg = FSk. (2.207)

The space-time supercharges are the integral of the spin operators at zero momen-

tum [50], so the transformation is passed on to the supersymmetry algebra.

Say @ is the supercharge associated to Sg, such that Qr - T'Qr under T-duality.

One can show that

{Qr,Qr} = (P"C)™' B, (2.208)
= {TQr,TQr} = %{QRaQR}-

Choosing 8 = +i gives the conventional sign on the superbracket according to [14]. More
details about this choice can be found in Chapter 3 Section 3.11.3.

2.12.3 Type IIA* and IIB*

The conventions in this section follow the original formulation in [14]. This is slightly
different from the conventions that are used in Chapter 3, any differences will be de-

scribed in that section.
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The Type ITA* and IIB* field content is the same as ITA and IIB respectively, the dif-
ferences between the theories are in the definition of the spinorial aspects, that induce

various sign differences in the Lagrangian.
The conventional writing of the Type ITA* superbracket is
{Qiia Q:!:j} = i(FMC)_lpu (2~209)

such that we can no longer combine this into a superbracket for a Majorana supercharge

Q=0Q++Q-.
The bosonic Lagrangian is

4
L[[A*:/dlox\/—g(€_2¢(R+4au¢au¢_H2)+G%+Gi)_[§G4/\G4/\B2+...

(2.210)
The kinetic terms of the Majorana-Weyl gravitini have a different sign,
1E+MF“VP8V¢+,, - ﬁ_upr&ﬂb_p, (2-211)
however, this can be compensated for using the chirality matrix, [',,
by TP sy = - TPy (2.212)

SR Nl N

The Type IIB* superbracket is similarly twisted, putting the ‘wrong sign’ on the i = j = 2

component:
{Q4, Q+j} = (F#C)_IPM%]’- (2.213)

The reality condition on the supercharges is the standard SO(2)-Majorana reality con-

dition:
(QL)" = BQ,. (2.214)

The twist in (2.213) can be compensated for by taking Q2 — iQ2, such that the super-
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bracket becomes the same as in Type IIB
{Q+i,Q4s} = (THC) ' PLoy5. (2.215)
However, this modifies the reality condition to
(QL)" = BQLnji. (2.216)

We see that one can move around the relative sign between the kinetic term signs or

the reality condition of the ¢ =1 and i = 2 components, but it cannot be eliminated.

The Type IIB* bosonic Lagrangian is
Lirg = f A0 /=g(e 2 (R + 40" $du0 — H?) + G2 + G2+ G2) + .. (2.217)

There is a sign difference between the terms involving the p-forms in the starred theories.
This feature is shared by the vector multiplet theories obtained from the ‘twisted’ or
‘type-*’ four-dimensional superalgebras with U(1,1) R-symmetry group. The standard
N = 2 vector multiplet has the same sign for the scalar and vector kinetic terms, but
the twisted version necessarily has a different sign. These are first hinted at in Chapter

3 and are discussed in detail in Chapter 5.

Additionally, there is the Type IIB’ theory, that is the S-dual of the Type IIB* theory.
S-duality is a duality between coupling limits of the same theory, so they have the same

supersymmetry algebra but different bosonic Lagrangians:
Lip = f d"a/=g(e (R + 40" $0,¢ - H*) + G5 - G5+ G3) + ... (2.218)

We see the sign of the kinetic term of Bs and G5 have changed. The analysis of Chapter
3 focuses on the superalgebras so the differences between Type IIB and Type 1IB’ will

not be discussed.

2.12.4 Exotic Signature Theories in String Theory

The mixed T-dualities are dualities between Type II string theories in different ten-
dimensional signatures. The types of spinor one can define varies with signature. More

details can be found in Chapter 3.
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A Majorana condition can be defined in (0,10), (2,8) and (4,6) (and the mirror signa-
tures) but one cannot have Majorana-Weyl spinors. As a result, one can only define
Type IIA style superalgebras with Majorana supercharges. Type IIA* theories cannot
be defined because to do so we need Majorana-Weyl spinors. The superalgebra is the
standard Type IIA algebra in (2.192).

In (3,7) and (7,3) signature there is no Majorana condition, so one works with symplectic

Majorana-Weyl spinors, mandating Type IIB superalgebras with the superbracket
{Qui, Qus} = (TMC) ' Peyj. (2.219)
with chiral supercharges that satisfy the symplectic Majorana reality condition
(Q4)" = BQleji. (2.220)

Moving to different signatures changes the sign of the kinetic terms in the Lagrangian.
These are intimately related to the definition of the superalgebra, which is induced in-
turn by the signature-specific features of the spinor module. Additionally, there may
be more than one possible superalgebra (for a given N'), such as in (1,9) where one can
define ITA, ITA*, IIB and IIB*, which also affect the signs in the Lagrangian.

Each Type ITA and Type ITA* bosonic Lagrangian is of the form
Lira-= f 02 /=5(e 22 (R + 40" $0,u¢ — sy H) + 5962 + 54G2) + .. (2.221)
with signature-dependent signs sy, s; = 1 for ¢ = 2,4.
Similarly, every type IIB, IIB* and IIB’ Lagrangian has the following form
Lip = [ A2 /=g(e (R + 40" $0u¢p + sy H?) + 51G7 + 53G5 + 55G2) + ... (2.222)

which again has signature-dependent signs sg,s; = +1 for ¢ = 1,3,5. The signs are

collected in the following table.
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Si(gglzit(;l)re TTtIIIley SH | s2 | 84 Signature | Theory | sg | s1 | s3 | S5

) —_ + + . - < -
(1,9) A | + | - | + (1,9) IIB*

A* | — | — | _ 1B R R R R

(2,8) MA | + |+ - s | + |+ -]+

(4,6) A | — | + | + (3,7) M | - | + |+ | -

(5’5) 1A S R (5,5) 1B S I R

| A* | + | - | mB* |+ -1+ =

(674) IIA —+ + — IIB + + _ +

(8,2) A | - |+ | + (7,3) B | - |+ |+ <

(97 1) ITA S R (9,1) 1B S I R

| A* | + | - | « m* | + -+ =

(10,0) | TA | + [+ |- B | + |+ -+

Table 2.6: Signs in bosonic Lagrangian of Type II theories.

A similar paradigm is explored in Chapter 4 and 5. In five dimensions each signature
has a single unique minimal superalgebra, so the signs in a supersymmetric Lagrangian
are determined by the signature. One can realise more than one minimal superalge-
bra in some four-dimensional signatures; this affects the signs in the Lagrangian along
with the signature-dependent aspects of the spinor module. This is paralleled in the
ten-dimensional signatures, where the possibility of defining different types of superal-
gebra and signature-dependence of the spinor module affect the signs in the Lagrangian.
This means one can have different theories with different sign attributions in the same
signature. Instead of using T-duality, the theories in this thesis are constructed ab ini-
tio by imposing signature-dependent reality conditions on a complexified holomorphic

Lagrangian.



3 Extended Supersymmetry Algebras

3.1 Introduction

This chapter details a method of constructing supersymmetry algebras in any signature
and dimension with supercharges that are elements of an arbitrary number of copies of
irreducible spinor modules. All relevant details are included in all signatures in up to
12 dimensions in an entirely self-contained manner that allows a reader to construct a

superalgebra in any of these scenarios from first principles.

We begin by outlining the complexification of these extended spinor modules and the
bilinear forms upon them. Then we define a signature-dependent real structure on the
complexified spaces to obtain a real supersymmetry algebra that can then be used to
define a physical theory. In doing this, we are generalising the Majorana and symplectic
Majorana constructions and expand on the doubled spinor formalism in our previous
work (also with Vicente Cortes) 2] and [3], and work by others such as [14].

In odd dimensions, this process disentangles the R-symmetry group from the Lorentz
group — such that R-symmetry transformations act only an internal space — and almost
entirely in even dimensions, where R-symmetry transformations may act on each Weyl
spinor module with a different sign. R-symmetry transformations then act entirely on
the internal index that enumerates the spinor modules. When constructing physical
theories, this is highly useful; it makes writing terms in a Lagrangian and supersym-
metry representations easier and offers an insight into necessary reality conditions of
fields in the Lagrangian. In addition, the reality condition of the spinors are related to
the scalar target geometry and can induce different target space geometries than the

standard cases.

Next, we investigate the uniqueness of the resulting superalgebras, which are not neces-

73
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sarily unique. Maps between some families of isomorphic families are included. To do
this, R-symmetry is used to identify non-isomorphic superalgebras, thereby providing
a classification tool that is constrained by signature and dimension. All R-symmetry
groups captured by our formalism are calculated for each signature in up to 12 dimen-
sions. While not providing a full classification up to isomorphism, it provides all known
supersymmetry algebras and more. Additionally, this method allows one to identify
cases where more than one supersymmetry algebra exists for a given signature and

dimension of the spinor representation. In particular, for Lorentz signature, we find

‘type-*

" algebras with non-compact R-symmetry groups.

Finally, we introduce some physical examples, detailing how they arise in this formal-
ism. In particular, we look at the dimensional reduction of superalgebras in various
scenarios and T-duality including exotic signatures (like in [14,15]. As this formalism
disentangles R-symmetry from the Lorentz index, dimensional reduction is straightfor-
ward. Later chapters in this thesis use this construction to derive five-dimensional and

four-dimensional vector multiplet theories.

Commonly used notation
e D - dimension of space-time, with signature (¢,s), with indices u, v ete.
e S — the complex spinor module, indices «, 5 etc. but often suppressed.
e S — the real spinor module.

ds = 92031 — dimension of the spinor module (number of components of real/Dirac

spinor).

S® CK -~ ‘K-extended (complex) spinor module’.

e N — number of copies of the real spinor module, which is then complexified.

K=N or 2N - resulting number of copies of C in the complexification. Value

depends on whether S has spin invariant real structure.

Indices on CK are i, j etc. When /if we ‘double again’ for Weyl spinors the indices

will be I, J etc. which run from 1,..., Ny + N_. Spinor indices are «, 3.
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Note that in this chapter, we work exclusively with commuting spinors, following the
previous mathematical work this is based on. Changing to anti-commuting (Grass-
mannian) variables is a perfectly understood functor, as outlined previously, and all-
important structures transfer, see Section 2.2.3. Working with Grassmannian variables
effectively inverts all symmetry statements (exchanging symmetric and antisymmetric
where it arises) and does not have any effect on the conclusions. As physical theories are
written in terms of anti-commuting variables, this is a distinction that is worth keeping

in mind.

3.2 Useful Formulae

The following formula are used extensively throughout this chapter and are provided
here for ease-of-reference. These include D = 2,6,10, 0, = —o_ and in D = 4,8,12,

o+ =0_, as motivated in the text.

+iCs D=2,6,10
Cif)/* = (31)
C: D=4,812

+iCy D=2,6,10
1 Cl = (3.2)
-C; D=4,8,12

+i0,0_Bs =%iBs D =2,6,10

Bivs = (3.3)
oc,0_Bz =Bz D=4,812
-1 Fio,0_Bs =+(-1)iB: D=2,6,10
v+By = (1) iov0-Bs = (-1)iB; (3.4)
(-1)!o,0_Bz = (-1)'Bs D =4,8,12

. +iB: D=2,6,10
Y= (3.5)
B:  D=4,8,12

F

3.3 Complexified Spinor Modules

A generic supersymmetric theory involves N supercharges, which are the spinorial gen-
erators of a super-Poincaré algebra, g = so(t, s) +R"* +5 as outlined in Section 2.7, where
s is an arbitrary sum of irreducible real spinor modules. This section describes the com-
plexification of this sum of real spinor modules, which is dependent on the space-time

dimension and signature. Eventually, we will use these complexified spinor modules to
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define a real supersymmetry algebra with manifest R-symmetry.

First, we begin in odd dimensions. As outlined in Section 2.5, recall that in odd dimen-
sions, the real spinor module can be reducible or irreducible as a real module. However,
in odd dimensions, one cannot define chiral spinors, and one finds that when the real
spinor module is reducible S 2 S so we do not need to consider the reducible case sepa-

rately.

The real spinor module is either equivalent to the complex spinor module, S ~ S, or in-
equivalent, S #.S. When the real and complex spinor module are equivalent, one cannot
define a Spin(t, s)-invariant real structure on S. In signatures without a real structure,
we will find we can always define a Spin(¢, s)-invariant quaternionic structure instead,
this was motivated briefly in Section 2.6 and is detailed in further details in this chapter,
Section 3.5.

Complexifying the real spinor module means taking
S - SerC. (3.6)

For our two possibilities, either S 2 S so that there is a real structure on S or S ¢ S with

no real structure on S, the complexification of the spinor module is

S Real structure exists,
SorC= (3.7)
S®r C No real structure.

Where the second line is the complexification of the complex spinor module. Therefore

when we complexify N copies of the real spinor module we obtain

S®c CY  Real structures exist,
58V L (S@rC)®Y 2 (SepC)@c CV =1 © (3.8)
S®c C*V  No real structures.

We will call the objects on the right the K-extended spinor modules, and refer to it in
shorthand as S ® C¥ where it is understood that K = N when S ¢S and K = 2N when
S=S.

In even dimensions the complex spinor module is reducible, i.e., Dirac spinors can be

decomposed into Weyl spinors. The complex semi-spinor modules S;, also called the
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Weyl spinor modules, are inequivalent and complex irreducible. The real spinor mod-
ule can be irreducible or reducible, able to be decomposed into two real semi-spinor
modules S = S, +.5_. These real semi-spinor modules may be equivalent, S, = S_ or
inequivalent, S, 2 S_.! Finally S= S or S 9, determined by whether one can define a

Spin(¢, s)-invariant real structure on S.

Therefore in even dimensions, we need to consider the complexification of
oN ON. eN-
S and STt e ST

the former when S is irreducible and the latter when S is reducible. The complexification

of the first is the same as in odd dimensions:

Se®c CV  Real structures exist,
58V L (S@rC)®N = (SerC)@c CN = 1" © (3.9)
S®c C?N  No real structures.

When S is reducible and the two real semi-spinor modules are isomorphic one finds that
S 2 5, ®r C and there never exists a real structure on S so that S @ S. Therefore, in

this case, an arbitrary sum of irreducible spinor modules is
SN+ @ GON- & GON+HN- o GON (3.10)
In the last equation we have defined N = N, + N_. The complexification of this is
SN (S, @p C)®V = 5N » 8N 2 S CF. (3.11)

This is again of the form S ® C¥| like in odd dimensions.

When the two semi-spinor modules are inequivalent, there are two possibilities, either
a real structure exists on S, or not. If a real structure exists then S, = S, ® C, and if

not S, = S,. Therefore, SN+ @ S®N- has the complexification

S, ®CNoS_eCM Real structures exist,
5Ot g GON- 17T (3.12)
S, @ C*N+ @ S_ @ C2N-  No real structures.

Similarly to before we will abbreviate this to S, ® C¥+ @S_ ® CX-, where K, = N, when

'Recall, as in Chapter 2 Section 2.5 this is when the even Clifford algebra is simple.
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there is a Sping (¢, s)-invariant structure on S and K, = 2N, when there is not.

We see that there are two distinct types of K-extended spinor module: in odd dimen-
sions, or even dimensions when the real spinor module is irreducible, or when the real
spinor module is reducible, and the real semi-spinor modules are equivalent, the complex
supercharges are elements of S® CX. In the remaining case, in even dimensions when
the real semi spinor is reducible, and the real semi-spinor modules are inequivalent, the
complex supercharges live on S, ® CX+ @ S_ ® CX-. To construct a superalgebra, we
need a vector-valued bilinear form, so we now need to define a complex bilinear form
on these complex spaces. From now on the C subscript will be omitted from the tensor

product.

The quantity N is not necessarily what is often called N, the ‘number of supersymme-
tries.” In odd dimensions, we will pick the convention that A/ = K; that is N = N when
we have a spin-invariant real structure and N' = 2N when we have no such real struc-
ture. In even dimensions we use a similar convention, classifying algebras as (N,,N_),
where N, are the number of copies of each chiral spinor module, where N, = K, in the

same way, or simply N = K, = K_ when we have equal numbers of both chiralities.

For example, in (1,4) signature the real and complex spinor module are isomorphic.
Therefore the complexification of a single ‘real’ spinor module gives us S® C? such that
spinors come in SU(2) doublets. As a result, both N' = 1 and N = 2 are used. We
prefer to use N = 2 as two copies of the spinor module are used to define a superalgebra
and they have the same number of supercharges as 4D N = 2 theories. In (2,3), one
can define a real structure, so the real and complex spinor module are distinct. The
equivalent supersymmetry algebra would therefore only be called N = 2 (this turns out
to be the smallest possible supersymmetry algebra, with all superbrackets on a single

copy of the real spinor module vanishing).

3.4 Bilinear Forms

To summarise the previous section; we work with complexified extended spinors that

are elements of the spaces

SeCf o S,eCFeS oCH. (3.13)
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On these spaces, we require a Sping(¢, s)-invariant product. For this we will focus on
bilinear forms (on complex spaces we could also use a sesquilinear form) as we are
primarily interested in the complexification of real spinor modules taking a complex

bilinear form on is the natural complex extension of a bilinear form on the real space.

We construct a bilinear form on these product spaces from tensor products of bilinear
forms on each factor. The following section details our choices and conventions for
bilinear forms on each factor individually and then specialises to those that can define

a superbracket, and therefore a superalgebra.

3.4.1 Bilinear forms on the complex spinor module, S

For a sesquilinear or bilinear form, 3, on the complex spinor module, we define two

invariants: the symmetry o and the type 7

B()HX) = UB(X>)‘)? (314)
BN X) = T8N X). (3.15)

An admissible bilinear form has o,7 € {£1}. Having a definite 7 = +1 implies Spin,

invariance: for a given «-matrix (so that the following does not imply a sum over n)

BOY" A ymx) = B A, x) = TB(A, X)- (3.16)

We see that a single y-matrix is an infinitesimal isometry or anti-isometry depending

on the value of 7. Therefore for a spin generator (once again no sum over m,n)

BO™AATX) = T2 B( ™A X) = B, ) (3.17)

All admissible bilinear forms on the real and complex spinor module were defined in [1].

Recall in Section 2.6 we detailed the construction of a sesquilinear and bilinear form on

the spinor module. The sesquilinear form, A, was given by

A:SxS—-C (3.18)
AN X) = AT Ay = N5 AY x g

We will refer to this as the Dirac sesquilinear form (though it will not be used often).
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The complex bilinear form was defined by

C:SxS-C (3.19)
C(\x) = ATOx = M\ C*x 5.

This will be referred to as the Majorana bilinear form. The Gram matrix of this bi-
linear form, also called C', is commonly known as the charge conjugation matrix. The

symmetry of the bilinear form is equal to the symmetry of the Gram matrix C', such
that CT = oC.

In odd dimensions, there is a unique choice of C' (up to equivalence) with a definite
o and 7, and in even dimensions, we have two, one with each value of 7. They are
conventionally known as C_,. The symmetry of C'y will be called .. Knowing that -,

anti-commutes with all v-matrices one finds
Civys o< Ck. (3.20)

It is always possible to choose a basis where C'= CT = C7!, for both C’s simultaneously.

This, along with our previous choice of v, = (=i)2 *'v;...7p implies we can assume

+iC; D =2,6,10
Cuye = (3.21)
C: D=4,8,12

Locking in a basis is not strictly required, but it is useful for the explicit formulas given

later for examples of isomorphisms between superalgebras.

We stress that at this point this is a complex-valued bilinear form, and will only be real

after the imposition of a reality condition.

Given a bilinear /sesquilinear form, say S(-,-), we can insert elements of the Clifford

algebra in the first argument to obtain tensorial quantities

Bp :SxS - Tpa ﬁp('f) = ﬁ(fy(p)v ')7 (322>
€.g. 51:SXS_)RD®C;CD7 51(.7,)25(,},/‘«,’,)_

Where TP = (CP)®P are complex-valued tensors of rank p. The second quantity, the

vector-valued bilinear /sesquilinear form, is of particular relevance as it will be used to
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define the Lie bracket between the supercharges, and thus a super-Poincaré algebra.
This is dealt with in Section 3.6.

The symmetry of the rank-p tensor-valued bilinear forms are given by

p(p-1)

BOPINX) = 0BG PN = (-1) "7 0P B( Py, ) (3.23)

(p-1)
Where the (—1)p 7 factor has come from rearranging the indices of v(P). For the
vector-valued bilinear form the coefficient reduces to simply o7; vector-valued bilinear

forms with o7 =1 are symmetric.

We will restrict to using the Majorana bilinear forms exclusively, making the description
as ‘Majorana-like’ as possible. As outlined in greater detail later Section 3.10, when us-
ing complex-valued bilinear forms on the complex spinor module, the choice of bilinear
form is mostly irrelevant. In odd dimensions, Schur’s lemma tells us invariance group
is the trivial group because the spinor module is complex-irreducible. When we take
multiple copies of the spinor module, we end up with spaces of the type S ® C¥, and
any transformations are therefore restricted to the C¥ factor. Our choice of bilinear
form on S is therefore almost trivial in odd dimensions. In even dimensions, the spinor
module is not complex-irreducible, but this leads to groups that act infinitesimally as

only Id or v, on the S factor.

In this chapter, the extended complex spinor modules arise from the complexification
of an arbitrary sum of real spinor modules, so working with a complex bilinear form
is the natural complex extension of this. Additionally, a bilinear form is easier to
use when working with a reality condition, as we do not have to undo the complex
conjugation in the sesquilinear form. The form of the Majorana bilinear form is only
dimension-dependent and does not change with signature unlike the Dirac sesquilinear
form A. The ‘Majorana flip properties’ are well known, and this makes dealing with
spinor bilinears easy in Lagrangian descriptions of the theory. Also, the use of C' makes
calculations involving the reality conditions easier as these involve B, which has various

easily calculable relations with C and ~,.
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3.4.2 Bilinear forms on the Weyl Spinor modules, S,

As we have settled on using the Majorana bilinear forms on S, we will now detail their
behaviour on the complex semi-spinor modules, also known as the Weyl spinor modules.
As we are working with Weyl spinors, we are in even dimensions where we have access

to two potential Majorana bilinear forms.

Equivalence of C, and C_

As was mentioned in the Section 3.4.1, the two charge conjugation matrices are pro-
portional, obeying (3.1). Recalling that v. AL = £A., for AL € S., we can extend this

proportionality to the Majorana bilinear forms acting on S,
C(i)(',Si) = C’(i)(',i%Si) o< C(;)(',Si). (3.24)

Here the bracketed signs are not linked to the unbracketed signs. The first argument
can be either Weyl spinor module, S, or S_,? though we will find in a given spacetime
dimension the bilinear form will vanish with one of these. As the first argument is arbi-
trary, this proportionality holds for the tensor-valued bilinear forms that add an element
of the Clifford algebra into the first argument. Using (3.1) we find the proportionality
to be

iCi+(,S.) D=2, 6, 10,
C(i)('78i) = ' G)( ) (3.25)
:I:C(;)(',Si) D =4, 8§, 12.

Once again, these are basis dependent, but we have chosen to work with the basis
outlined earlier that provide as helpful proportionality. We will use these relations to

demonstrate features of Weyl spinors and later for isomorphisms between superalgebras.

Restriction of bilinear form to Weyl spinor Modules

C, is a bilinear form on S and we wish to see how it works under the decomposition
S =S, +S_. We have four restrictions of the bilinear form (and all those derived from

it through the insertion of Clifford algebra elements) to consider

C(S.,S,),  CO(S,,S.), C(S.,S.), C(S,S.).

ZNote that the complex semi-spinor modules are always inequivalent so that the complex bilinear
forms on the K-extended complexified spinor module can be expressed in terms of Ay € S; without
redundancy regardless of signature.
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For a particular dimension, as the properties of C' do not depend on the signature, either
the homogeneous or mixed terms will be zero for both bilinear forms. This is to be ex-

pected as the Majorana bilinear forms are proportional when restricted to Weyl spinors.

In Section 3.6 we will define a superbracket using the vector-valued bilinear form — and
in doing so a super-Poincaré algebra— so we will detail this calculation first. Consider

the orthogonal vector-valued bilinear forms

C+('Y#)\ia X:l:) = kc—(’yﬂ)‘i’Xi)
= 047+ Ce (VHxe, As) = koo C_(7* x4, A1) (3.26)

- 0'+T+C+(’YHX17 )\i) = U—T—Cﬁ-(”)/#Xiv )‘i)

Where k =1 or k =i dependent on dimension according to (3.1). By definition 7, =

—7_ = -1 so we obtain
0O (VX2 As) = =0-Ch (Y, As) (3.27)

We see that only when o, = —o_ are the vector-valued Majorana bilinear forms entirely

orthogonal, i.e. non-zero on S; or S_ alone.

On the mixed chirality vector-valued bilinear forms we obtain the opposite sign

Ci(Y¥ s, x5) = kC_(v"As, x7)
= 07+ Ce (VHxF, As) = 0T kC_ (¥ x5, A1) (3.28)

= 0. Ce(V'x5,As) = 0-Co(V'x5, ML)

We can see that only when o, = o_ can the final line hold. Both conditions cannot be
satisfied simultaneously, so we see that the restriction of the vector-valued bilinear form
is either orthogonal (homogeneous terms only, mixed terms are zero) or isotropic (the
opposite). This is the ‘isotropy’ of the vector-valued bilinear form. In D = 2,6,10 we
have o, = —o_ so that these signatures are always orthogonal (allowing the definition
of Type ITA and IIB string theory, for example) and D =4,8,12 have o, = o_ and thus

are always isotropic.

The isotropy of the vector-valued bilinear form does not hold universally for all tensor-

valued bilinear forms (those with first argument ’y(p))\, for a general element of the
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Clifford algebra with p indices). Consider the orthogonal scalar-valued bilinear form,

Ci(As, xx) = KO- (Asy X2) (3.29)
- U+C+(Xi))\i) = U—C+(X:t7)\:t)

Opposite to the vector-valued bilinear form, the orthogonal scalar-valued terms are only

non-zero if o, = o_ (the mixed terms are non-zero when o, = —o_).

Generalising this to the insertion of any element of the Clifford algebra in the first

argument

Cy (7(p)>\i»Xi) =kC_ (’7(p)>\i,Xi)
= 0, 7PC, (VP xi, ML) = 0P C_ (v P i, ML) (3.30)
e (_1)pU+C+(’7(p)Xiy)\i) = U—C+('Y(p)Xiv /\i)

And we obtain the opposite sign for the mixed-chirality terms.

We can therefore define the isotropy ¢, of the rank-p tensor-valued Majorana bilinear

form 3

tp=(-1)Pos0- (3.31)

We see that isotropy of the rank-p tensor-valued Majorana bilinear form alternates. ¢g
is the same as ¢ in [1], which is the isotropy of the scalar-valued bilinear forms. Because
isotropy alternates, supersymmetric theories with chiral superalgebras cannot have chi-

ral mass terms.

Differing slightly from their conventions, we will call Majorana bilinear forms with
t1 = +1 orthogonal bilinear forms and those with ¢; = —1 isotropic bilinear forms, though
strictly it is the vector-valued bilinear form that is orthogonal or isotropic. We are pri-
marily concerned with defining superalgebras, and this depends only on the properties
of the vector-valued bilinear form, so this naming convention is convenient. As the
properties of the Majorana bilinear forms are dimension dependent, we will sometimes
call the dimensions with an orthogonal /isotropic (vector-valued) bilinear form ‘orthog-

onal/isotropic dimensions’ too.

3previous equation leads to Z+ but recall that o = +1 s.t. o l=0
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tp provides a quick guide for permissible terms in a physical theory. Provided the terms
are not already zero according to (3.23), theories with ¢, = 1 can have entirely chiral
terms proportional to

My Pxe 20, AyPyr=0 iff Lp=+1 (3.32)
For example if ¢y = 1 one can have chiral mass terms provided the scalar-valued bilinear
form is symmetric (else A\ = 0). Those with ¢; = 1 can be used to define a chiral su-

peralgebra (provided the superbracket is non-vanishing, which will be discussed in 3.6)

and have entirely chiral kinetic terms.

If 1), = =1 then only mixed-chirality terms are possible,

AyP e =0, Ay Pz 20, iff 4, =-1. (3.33)
For our purposes the most important case is when ¢; = —1, then we require both chiral-

ities in equal number to define a superalgebra otherwise the superbracket vanishes.

3.4.3 Bilinear forms on CK

We now wish to define bilinear forms on the other factor of the extended spinor module
S® CK. Recall that K = N or 2N depending on whether we have access to a real
structure on the complex spinor module, as outlined in Section 3.3. Once again we only
wish to consider bilinear forms as they are most compatible with implementing a real

structure on S ® C¥.

Our model complex bilinear form will be called M, and our index conventions are as

follows

M:CKxcK s cC (3.34)
M(w,z):wiszji i,j=1,...,.M

This index convention is chosen to replicate the usual NW —SE convention for symplec-

tic Majorana spinors. We will only consider bilinear forms with a definite symmetry,
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and this symmetry is encoded as oy,
M(w,z) =opyM(z,w), M;; = op M, oy = 1. (3.35)

We therefore have two cases, symmetric and antisymmetric bilinear forms. Given a
symmetric bilinear form on CX it is always possible to reparameterise C¥ such that
M;; = 6;5, the K x K identity matrix. This bilinear form will be called 4(-,-) or just 6,

referencing the Gram matrix ¢;;.

Similarly given an antisymmetric bilinear form it is always possible to reparameterise
CX such that M;; = (Jk)ij given by

0 1
K =2k,
-1 O
(J)ij=4( 0 1p O (3.36)
1, 0 0 K=2k+1.
0 0 0

(J2)i; is the Levi-Civita symbol ;;. Often the K subscript will be omitted when the
context is clear. When K is odd, the resulting bilinear form is degenerate, effectively
removing one factor of C. Therefore when working with an antisymmetric bilinear form
on CX we will only consider even values of K. The bilinear form represented by the
Gram matrix (Jx );; will be called J(-,-) or just J.

Invariance Group

The group acting on CX under which these bilinear forms are invariant will be called

Gcx. For the two choices of M these are, by definition

O(K,C) M=,
Gex = (3.37)
Sp(K,C) M =J.

These will be used to calculate the R-symmetry group, which will be subgroups of these
two groups (or products of subgroups). In many cases, the R-symmetry group will be

a real form of these groups with different signatures able to realise different real forms.
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3.4.4 Bilinear forms on K-extended Spinor Module
0Odd dimensions

In odd dimensions, the complexified spinor module is always of the form S® CX. A
bilinear form on S® CX can be made from the tensor product of a bilinear form on each
factor. As a shorthand, this will often be called 5 =C ® M and is defined by

B:(SeCH)x(seCl)-c, (3.38)
BN, x") = (AT Cx M.
The symmetry of the tensor product is a product of the symmetries of each bilinear

form. The type is inherited from the bilinear form C on S as the y-matrices do not
touch the C¥ factor.

ﬁ()\i,xi) = O'Co'Mﬁ(Xi,)\i) 08 =0C0M, (3.39)
BN, X') =1eB(N,A*Y) = m3=TC. (3.40)

From this, we realise that regardless of the spacetime dimension (which mandates the
value of o) we can have a bilinear form on S ® C¥ with either symmetry value by
selecting M. This will be necessary for the following section where we will define su-

peralgebras using symmetric vector-valued bilinear form.

We can then use this to build rank-p tensor-valued bilinear forms gP:

AP (SeCHYx (SeCK) - 17, (3.41)
BOHPIN,X') = (YN O My,

To build a superbracket we only need the vector-valued bilinear form, 8', and will focus

on this from now on.

Even Dimensions

In the cases where the real spinor module is irreducible, we work with spinors that live
on S® CX that work identically to odd dimensions.

In signatures with a reducible real spinor module we work with spinors that are elements
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of S, ® CE+ @ S_® CX-. As we have shown the two (vector-valued) Majorana bilinear
forms are orthogonal or isotropic on S = S; +S_, determined by ¢1. This quantity is
unaffected by the C¥ factor.

With an orthogonal tensor-valued bilinear form we can have K, # K_. In these cases,
the bilinear form on CX* will be called M.. We can define the bilinear forms on each

Weyl spinor module individually, we write

P (S, @ CE4) x (S, @ CF+) - TP, (3.42)
Be(YPN XY = (v PN T Cx ML,
B (S.e@CE ) x (S_e@CK) - 1P, (3.43)

Bo(vPINE D) = (YA T ON M.

For notational clarity we omitted the subscript from C', though it could be either choice,
C, or C_, available in even dimensions . The total rank-p tensor-valued bilinear form
on S, ® CX+ @S_® CX- is then 82 @ 7.

For an isotropic tensor-valued Majorana bilinear form we necessarily need the same

number of each chirality. The rank-p tensor-valued bilinear form is

BP:(Sy @ CK) x (S @ CF) - 17, (3.44)
BOPINLXG) = (PN OxM;.

The complex spinors are elements of S, ® CKX @ S, ® CX. It is natural to combine the
Weyl spinors into Dirac spinors, A* = AZ + A? | so that one works with S® C¥. For even
dimensions with isotropic bilinear forms (D = 4,8,12,...) we will therefore construct
superalgebras with supercharges that are elements of the K-extended spinor modules

S ® CK regardless of whether the real spinor module is reducible or irreducible.

3.5 e-quaternionic structures

To define a physical theory, we need a real supersymmetry algebra, but up to this point,

we have only defined a complex bilinear form that would produce a complex-valued su-

4Note, we could have a different Majorana bilinear form on each Weyl spinor module though from
(3.25) we can see they are proportional up to a factor of ¢ which can be removed (as shown in 3.10.2)
so the choice of C is irrelevant.
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peralgebra. Therefore we need a real structure on the complexified (extended) spinor
module. Taking the real or imaginary part of the bilinear forms defined above is an op-
tion, though it is one that does not lead to manifestly R-symmetric spinors. Instead we
use a reality condition on S® CX or S, ® CX+ @ S_® CX-; only considering the elements
that are invariant under said real structure. A widely-used example of this is Majorana
and symplectic Majorana spinors, the following section generalise these concepts and
gives a prescription on how to define real structures on the extended spinor module in

any signature and dimension.

Real structures on S® C* and S, ® CK+ @ S_ ® C*- will be made from the product of
two real or two quaternionic structures on each factor, so this section follows a similar
plan to the previous where we define the necessary parts on each factor then on the

total product space.

3.5.1 e-quaternionic structures on the complex spinor module, S

From the matrices A and C in Section 3.4 we define a new matrix B
B=(CA™H, (3.45)

In a given odd-dimensional signature this is a unique choice, as there is a single A and
C. There are two possible choices for C' in even dimensions and hence two possible
choices for B, which will called B_, = (C_,A™1)7.

With B we can define a one-parameter family of Sping (¢, s)-invariant real or quater-

nionic structures on S:
JEO@ XS B A, o] =1 (3.46)

A real or quaternionic structure is an anti-linear involution that squares to € = +1 or —1
respectively. J (+1(@) 5 a real structure, and J("D(®) is a quaternionic structure. The
value of € is controlled by the product B*B = ¢, such that a J((®) is a real structure
when B* B = +1 and a quaternionic structure when B*B = —1. The form and properties

of B are signature dependent, it can be shown that
B*B = o(-1)!(-1){t+D/2, (3.47)

To make the text more legible, the (a) superscript will sometimes be omitted when the
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phase is unimportant.

Along with the natural complex structure on S given by multiplication by 4, that we

will call I, J(-1) defines another complex structure that anticommutes with I:
IJ(N) =ia™B* X", JI(\) = J(i\) = —ia” B*\*. (3.48)

I and J are Sping (¢, s)-invariant endomorphisms and are therefore in the Schur algebra
of the complex spinor module, C(S). Defining K = IJY e C(S) we see that I, JCD | K
pair-wise anti-commute and K? = —1 such that together I and .J -1 generate an algebra

isomorphic to H.

Similarly, in signatures with I and J* we define K = IJ®*D and obtain an algebra
isomorphic to H' 2 R(2). I, J*D K are all Sping (¢, s)-invariant and thus are contained
in the Schur algebra. Indeed from Section 2.8, we saw the Schur algebra in odd di-
mensions can only be H or H' so in this section we have derived all possibilities, having

derived the form of the Schur algebra elements in a language more familiar to physicists.

As I always exists, we refer to J (¢) as an e-quaternionic structure rather than just
a complex and real structure, as together they generate an algebra H,. Recall a —1-

quaternion is a regular quaternion, and a +1-quaternion is a para-quaternion.

In a physical theory, the phase of the reality condition, «, is not free. It is chosen so

that the vector-valued bilinear form is real. For more details, see Section 3.6.

3.5.2 e-quaternionic structures in even dimensions

In even dimensions, we have two possible charge conjugation matrices and two corre-

sponding Spin(t, s) invariant e-quaternionic structures
JOW NS BN, o =1 (3.49)

The subscript on Jie)(a) refers to B being used to define the structure. Later, we will
use different numbers of each Weyl spinor module, when this is done the particular «
on each chirality will possess a subscript a, as we do not mandate the structure to act

the same on each Weyl spinor module.
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Along with I, Jie) and J© generate a larger Schur algebra in even dimensions. If both
J; and J_ have the same value of € then this is isomorphic to 2H,. If they have different
values of €, one obtains a Schur algebra isomorphic to C(2) (which contains both the
quaternions and para-quaternions as sub-algebras but as they overlap on C c C(2) it is

not H + H'). This exhausts all possibilities for C(S) in even dimensions.

In the following table the type of structures given by J (©) are described in physically

relevant signatures. There is a natural (¢,s) < (s,t) symmetry, though in even di-

)

mensions one must also replace JS? with JT(6 . For example, if we have (t,s) JEY i

signature (s,t) there will be a quaternionic structure Ji_l). See Appendix 3.13.2.

D (0,D) (1,D-1) | (2,D-2) | (3,D-3) | (4,D-4) | (5,D-5) | (6,D-6)
1 +1 +1

2 | -1.,+1_ | +1,+1_ +1,,-1_

3 -1 +1 +1 -1

4 | =14,-1- | +1,,-1_ +1,,+1_ —1,,+1_ -1,,-1_

) -1 -1 +1 +1 -1 -1

6 | +1,,-1_| -1,,-1_ -1,,+1_ +1,,+1_ +1,,-1_ -1,,-1_ -1,,+1_
7 +1 -1 -1 +1 +1 -1 -1

8 | +1ly,+1- | —1.,+1- 1.,-1_ +1,,-1- +1,,+1- -1,,+1_ -1,,-1_
9 +1 +1 -1 -1 +1 +1 -1
10 | —14,+1- | +14,+1_ +1.,-1_ -1,.,-1_ -1.,+1_ +1.,+1- +1,.,-1_
11 -1 +1 +1 -1 -1 +1 +1
12| -1,,-1_ | +1,.,-1_ +1,,+1_ -1.,+1_ -1,,-1_ +1,,-1_ +1,,+1-

Table 3.1: Entries are the values of ¢ for each signature-dependent J(9). In even dimen-

sions the sign subscript corresponds to the e-value of Jie).

If Jie) is a real or quaternionic structures on S it is not necessarily a real or quaternionic
structure on the Weyl spinor modules S, alone. As (Jie))Q()\) =+, for A € S, we have

two possibilities

TSw) =Sw, SISy =S (3.50)
Only the bracketed signs on S, are linked, with the non-bracketed signs on Jie) being
unrelated. In the first case, Jie) will be called a Weyl-compatible structure and the
second case it will be called Weyl-incompatible, and similarly we will refer to the sig-
natures themselves as Weyl-compatible and Weyl-incompatible as we will show it is a

signature-dependent quality. In Weyl-compatible signatures the Weyl spinor modules
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are self conjugate, i.e (S;)* =S..

In Weyl compatible signatures the real spinor module is reducible and the real semi-
spinor modules are inequivalent. In Weyl incompatible signatures the real spinor is
either irreducible, or it is reducible and the real-semi spinors are equivalent. Therefore
Weyl-compatibility is required to work with entirely chiral theories or theories with an
arbitrary number of each chirality. If the signature is Weyl-incompatible the complexi-

fied spinors are elements of S ® CX.

In 3.4.2 it was shown that only orthogonal bilinear forms can be defined on S, ® CX
alone, therefore to construct a chiral superalgebra we require both an orthogonal bilin-

ear form and a Weyl-compatible e-quaternionic structure.

Isotropic bilinear forms require an equal number of spinors of both chiralities that can
naturally be combined into Dirac spinors. With a Weyl-compatible reality condition,
one could define a different reality condition on S; and S_, so that they cannot be
combined into a single reality condition on S. However, in this thesis, when using an
isotropic bilinear form, we will only require the reality condition to be the same on both
chiralities, allowing one to work with Dirac supercharges and fermions. The complex

supercharges are then elements of S ® CX.

If Jf) is an e-quaternionic structure then B} B, = e. The properties of B are signature

and dimension dependent, and we find that in signature (¢,s), with D =t + s,

i} iB*y. B, =(-1)""'B*B_ D =2,6,10,
BiB, = (3.51)
B*y.By =(-1)!B*B.  D=4,812.

This can be found using (3.4) and (3.5) from the Useful Formulae found at the start
of this chapter. We see that in the orthogonal dimensions, D = 2,6, 10, Jie) are both
real or quaternionic structures, i.e. (JJEE))2 = (JSE))2 = ¢, when the number of time-
like direction, ¢, is odd (for example in Minkowski signature in 10 dimensions), and in

isotropic dimensions, D = 4,8, 12, they are the same type of structure when ¢ is even.

Further, if they are both real /quaternionic structures, they are necessarily Weyl-compatible.

To see this we remark that Weyl-compatibility means that B, commutes with ~,, and
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this implies

B_=(-1)"'B_. D=2,6,10,
Biv: =v.By = (3.52)
B_=(-1)!B.  D=4,812.

Here we used (3.3) and (3.4) from the Useful Formulae. By inspection the equation
for B_ only makes sense when t is odd in the orthogonal dimensions ¢ is even in the
isotropic dimensions — these two criteria correspond exactly with the requirement that

both Jie) are real or quaternionic.

Weyl-compatibility is a property of the spacetime signature and it alternates as we in-
crement t. As we change signatures the matrix A gains or loses time-like y-matrices
and so does B = (CA™Y)T. Therefore changing from t to t + 1 means there is one
extra/fewer y-matrix in B, changing whether v, (anti)commutes with B, causing the
structures Jie) to alternate between being Weyl-compatible and incompatible. Further,
Weyl-compatibility(-incompatibility) implies that both Jie) and J on S have the same

(opposite) value for e.

Finally, Jie) and J© are proportional on the Weyl spinor modules

@ BIAL =ia*B*AL = J9UN(\,)  D=26,10

77008 = ()
a* BNt =Fa BN = JOTY(\) D=4,8,12

(3.53)

To obtain this, we used (3.5). We see the two e-quaternionic structures are proportional,

with modified phases depending on the dimension.

3.5.3 e-quaternionic structures on CX

Next, we need to define an e-quaternionic structure on C¥. Our conventions will be the

following, once again tailored to the NW — SE convention,
_](6) 2t (Zj)*Lji (354)
If L? = 1 then j(9) is a real structure, if L? = -1 then it is a quaternionic structure.

Strictly, L can be any matrix that squares to +1. However, we will restrict the form of

L to matrices are involutive automorphisms of the Lie algebras o(K,C) and sp(K,C)
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under conjugation, i.e.

L-g-L'=g, g=0o(K,C) or sp(K,C). (3.55)

This results in the real R-symmetry group being a real form of the complexified R-
symmetry group in the cleanest possible manner. In the Appendix provide an example
of a real R-symmetry group when L is not an involutive automorphism of the complex-

ified R-symmetry Lie algebra.

Given an involution of a complex Lie group/algebra, there is a corresponding real form.
By finding all involutions we exhaust all possible real forms, though each involution
does not necessarily produce a different real form. The involutive automorphisms of
o(K,C) and sp(K,C) are different, so we will consider both separately. Real forms and

their relations to involutive automorphisms were discussed in Section 2.10.

o(K,C)

Using complex conjugation and the following matrices,

1, 0 0 1y
1g, I,=|"7 , Ji = , K=p+q=2k, 3.56
K P (0 _]lq) K (—Itk 0) p+q (3.56)

we can construct all involutive automorphisms of o(K,C). We can only use Jx when

K is even.

L =1k, 1, , define j(e) = j(”), a real structure and L = Ji define j(e) = j(’l), a quater-

nionic structure.

Recall that GE = O(K,C) when the bilinear form on the C¥ factor is M = §. When
we work with such a bilinear form, we will only consider L’s of the forms outlined in
(3.56), whether in odd or even dimensions. These forms of L will often be called the

canonical choices for L.
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sp(K,C)

Working with sp(K,C) means K is even, we set K = 2k, for a real structure we have

the following possibilities for L

0 1 1 0
1g, Jr = , L= only when K =2, 3.57
K K (_]lk; 0 ) 1,1 (0 _1) Yy ( )
1, O 0 0
~ 0 -1, O 0 1 0
I27‘,28 = i = e R k=r+s.
0 0O 1, O 0 I

o 0 0 -1,

Once again, along with complex conjugation these form a basis for all involutive auto-
morphisms of the algebra sp(K,C). Note that I~2r723 cannot be used when K =2, I
takes it place, but generally conjugation with I, is not an involutive automorphism
for sp(K, C).

L= ]lK,ILl,fgr,gs make j(E) = j(+1), a real structure and L = Jx make j(e) = j(‘l), a

quaternionic structure.

Gé( = Sp(K, C) when the bilinear form on the C¥ factor is M =.J. The choices for L in
(3.58) are the canonical choices for the reality condition when we choose to work with
M=J.

3.5.4 e-quaternionic structures on S CX and S, ® CX+ @ S_ @ CK-.

0Odd dimensions

To construct a real structure on the S ® CX we have two choices — the product of two
real or two quaternionic structures. Recall that the type of structure is dependent on
the possible J(©) available in each signature. Therefore in odd dimensions, we have
only one type of structure on S, and in even we have two (which may both be real or
quaternionic). So once again the choice we make on the CK factor is determined by the

behaviour of S.

The real structure on S ® CX is

p=J9 e\ 5 aB* (V) Lj. (3.58)
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Elements of S® C¥ that are invariant under this real structure are the real spinors of the
theory. The restriction of all tensor-valued bilinear forms to these elements is entirely
real or imaginary (and therefore real after multiplication by i), we choose the phase «

so that the vector-valued bilinear form is real.

When K is odd, we cannot define quaternionic structures on C¥ because a quaternionic
structure requires an even number of dimensions. This does not impede defining a real
structure on S® CX — K is odd only if S has a real structure, so being limited to real
structures on C* never prevents the definition of a real structure on the product space,

indeed it is the only choice.

If we only have access to a quaternionic structure on S the extended spinor modules
are always of the form S ® C?* so once again we can always define a real structure on
the product space because there is no impediment to defining a quaternionic structure
on C%*. A corollary is that in signatures without a real structure on S we cannot have

theories with an odd number of supersymmetries within this framework.

Even Dimensions

Recapping, in even dimensions we have Weyl-compatible and -incompatible e-quaternionic
structures. Weyl-compatible e-quaternionic structures are maps from S; to S, and both
have the same e. Weyl-incompatible structures are maps from S, to Sz, with one having
€ =1 and the other € = -1.

Weyl-compatible e-quaternionic structures work exactly the same as in odd dimensions,
replacing the Dirac spinor module with either Weyl-spinor module. Both Jf) have the
same value of € so restrict the form of j() in the same way. Real structures can be

defined on each Weyl spinor module individually:
pa(Ay) = aB(y (ML) L. (3.59)

These are a real structure provided B*B = L? = . The canonical choices of L that we
will consider are those listed above. The total real structure is then p = p, + p_. For
superalgebras with both chiralities present, we can have different real structures defined

on each chirality.

Weyl-incompatible signatures link the two Weyl spinor modules. In terms of Weyl
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spinors, the model real structure is of the form
p(NL) = aB(y(\5)" Lji. (3.60)

Here the choice of B is meaningful, as BiB, = -B*B_, so the form of L we would
choose depends on the choice of B. This reality condition can be written as a reality
condition on S ® CX:

p(AN) = p(AL) + p(AL) = @By (AL) Ljs + aB{oy(A}) " Ljs = aB(y (X)". (3.61)

3.6 Defining a Real Superalgebra

We now turn to defining a super-Poincaré algebra whose supercharges are elements of
the complex extended spinor modules outlined in the previous sections. The form of
the complex extended spinor modules is dependent on the signature. They are of the
form S ® CX for odd dimensions and even-dimensional signatures with isotropic bilin-
ear forms and/or Weyl-incompatible reality conditions. In even-dimensional signatures
with orthogonal vector-valued bilinear forms and Weyl-compatible reality conditions
the supercharges are elements of S, ® CX+ @ S_ @ CX-.

To define a Poincaré superalgebra we need a superbracket for the supercharges, Qfl,
that is proportional to the spacetime translation generators, P, € R%*_ in other words
a superbracket is a real-valued vector-valued bilinear form 5. Fortunately, we have al-
ready outlined the pieces we need to obtain a real vector-valued bilinear form on the
complexified spinor modules (that will be isomorphic to an arbitrary sum of irreducible

real spinor modules after imposing a reality condition).

This section will first discuss reality conditions imposed on the complex extended spinor

modules before describing how this relates to defining a superbracket.

3.6.1 Reality Conditions

The K-extended spinor module, either S® CX or S, @ CX+ @ S_ o CX- | is equipped with
a bilinear form, 5 or 8 = B, @ _, that up to this point is complex-valued, as are all

derived rank-p tensor-valued bilinear forms. On these spinor modules we have shown

Sthe Lie bracket on the bosonic sector so(t,s) + R"* is the standard Lie bracket as outlined in
Chapter 2 Section 2.7.
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how to define a real structure, p or p; @ p_. Real K-extended spinors are the elements

of S® CX that are invariant under p, i.e. those that satisfy
p(N) =X = (\)*=aBNLj. (3.62)

The form on the right is how we will usually specify a reality condition. The subspace

invariant under this reality condition is isomorphic to
(SeCK)y = 5N (s, ® CE*)P+ @ (S_ @ CH-)P- = §ON+ g GON- (3.63)

where K and N are related as outlined in Section 3.3. While we have ended up with
a module isomorphic to an arbitrary sum of irreducible real spinor modules (where we
started), in doing so, we will find we have disentangled Lorentz and R-symmetry trans-

formations, which act on the internal C* factor as is shown in Section 3.8.

On this invariant subspace we need a real vector-valued bilinear form, i.e. one that

satisfies
([CeM](+*A,x))" =[C®M](vA, x). (3.64)

From (3.62) we see the reality properties of the spinors is determined up to a phase
a, we choose to fix the value of o such that the vector-valued bilinear form is real.
This is done to avoid factors of ¢ in the Lagrangian and superalgebra but is otherwise
entirely conventional. In an alternative formulation, one could permit any value for «
and compensate by multiplication of M by the necessary factor to guarantee the reality
of the vector-valued bilinear form, as is seen in [14]. Relating the two is not difficult,

an example is contained in Section 3.11.3.

To fix o we calculate

([C®M](+"A, X))

(V"X Ox My,
AW BN L) ¢ BX Ly My, (3.65)
o?rp(-1) (v*A) BT C Bx! (LT ML) 5.

Tp means the 7 associated to the choice of B, = B_, as this is not necessarily the same
as the choice of sign for C, in odd dimensions this can be ignored. Going further requires

fixing the signature, L and M (and the choice of B and C' in even dimensions). For all
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possible choices, BTC*B = +C and L" ML = +M % so that o = +1 is the only necessary

compensating factor. This fixes « to a sign, so one can choose between o = +1 or o = +i.

In odd dimensions the sign is conventional, though if one wishes to make the Majorana
vector-valued bilinear form proportional to the vector-valued Dirac sesquilinear form,
such as in our five-dimensional paper |2]| and the five-dimensional work in Chapter 4, a

particular sign choice is required.

On S, ® CX+ o S_® CX- each summand has a complex bilinear form, 8, and A_ and real
structure, p; and p-. The phase of p, and p_ are chosen such that the vector-valued
bilinear forms 3! and B! are real, respectively. The relative sign choice of o affects
physical theories. For example in (1,9) signature the difference between the Type ITA
and Type ITA* theories can be expressed as to whether the two Weyl spinor modules
have the same or different phase in the reality condition. More details on these can be
found in Section 3.11.3.

By considering the subspace (S ® CK)? = SN or (S, ® CK+)P+ @ (S_ ® CK-)P- and
selecting the phase of the real structures p or p., we have constructed an extended
spinor modules with a real-valued Spin(, s)-invariant vector-valued bilinear form, with

which we can define a superbracket, and in doing so a super-Poincaré algebra.

3.6.2 ..on S®CK

The supercharges are Q € (S®CX)?, the p-invariant subspace of S® CX. A superbracket

requires a map, K from the spinor module to R”¢ defined by an anticommutator,
K :Sym(S® CH xS CK) - R". (3.66)
With explicit indices this is
{QL, @) = (K")2,P,. (3.67)

K is a symmetric Sping(¢, s)-invariant vector-valued bilinear form, and (K “)ﬁfﬁ is its
Gram matrix. On (S® CX)? we defined a real symmetric Spiny(t, s)-invariant vector-

valued bilinear form, 3|, = C'® M. This vector-valued bilinear form, 3, is symmetric if

5This only holds for when L is one of the canonical choices outlined in Section 3.5.3.
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ogTR = +1:
BOYA x) = B(x, A). (3.68)

Recall for 3 =C ® M, oy = ocog and 1753 = 7¢. We call bilinear forms with ogmg = 1

super-admissible, because it can be used to define a superbracket, as will now be shown.

Given any Majorana bilinear form on S we can create a super-admissible bilinear form on
S®CX by choosing M such that 03T =ocoyT = 1. We choose M to be symmetric when
ocTc = +1 so the resulting combination is super-admissible. And when oc7o = -1 we
choose an antisymmetric M to obtain a super-admissible bilinear form. Our canonical
forms for a symmetric and antisymmetric bilinear form on C¥ were called § and J

respectively. In summary:

ocTC = +1 > M = (5, (3.69)

ocotc=-1-> M =J.
Assuming = C ® M is super-admissible, K is set to be proportional S(y*-,-):

BN X) = (AT CxI My = Ny (RE™) 3,

such that the superbracket is given by
{Qh, Q%) = kMY (1C) 5P, (3.70)
with supercharges @Q° that satisfy the reality condition p(Q°) = Q' i.e.
(@) =aBQ Ly (3.71)

In odd dimensions this construction leads to unique superbracket, as there is a sin-
gle choice for C' and this mandates the choice of M. A corollary of this is when the
Majorana bilinear form is not super-admissible it is not possible to define an odd-K
superbracket, for CX with K-odd the bilinear form .J is degenerate and thus equivalent
to the even superbracket with K —1 supercharges. Recall that K can only be odd when
we have a spin-invariant real structure, such that S 2S. Combining these two facts, we
see that we can only define theories with an odd number of supersymmetric generators

when we have a spin-invariant real structure on S and a super-admissible Majorana
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bilinear form. This prevents ‘N = 1’ theories in signatures where one may expect them

due to the existence of Majorana spinors, such as (2,3).

There is no impediment to defining a superbracket when K is even. We can always use

a Majorana bilinear form and a compensating bilinear form on C¥.

It was shown in Section 3.4.2 that orthogonal signatures have ¢; = 1 which means that
0.7y = 0_T_, so both are either super-admissible or not. In isotropic signatures we have

04Ty = —0_T- so they always have one super-admissible bilinear form and one not.

For an orthogonal vector-valued bilinear form in even dimensions, one can have either
C but both have the same choice of M (as it was shown they are both super-admissible

or they are both not). One can write the superbracket in terms of chiral supercharges

if desired:
{Qh @4} ={Qla, Q14 +{QL0 @74} (3.72)

In isotropic dimensions one Majorana bilinear form is super-admissible, and one is
anti-super-admissible. Call the super-admissible bilinear form C', and the anti-super-
admissible bilinear form C” (either could be C. depending on dimension), we then have

two possible superbrackets

{Qh Q3} = k67 (") Py (3.73)
{Qh, QL) = kJI(4C") 5Py (3.74)
Later we will show these two bilinear forms (regardless of reality condition) are isomor-

phic for Weyl-compatible reality conditions. In Weyl-incompatible signatures, these two

superbrackets can be shown to be equivalent but doing so modifies the reality condition.

If desired these can be written in terms of chiral supercharges
{QZ’Q%} = {Qianiﬁ} + {Qi—aa ‘_7'_6} = Q{Qiaa QJ_B} (375)

The constant k is a free choice, in our previous work we have chosen it to be —% to
match the standard choice for symplectic Majorana spinors (it is also in this guise that
one can show it is equal to the sesquilinear form on a single Dirac spinor, but this is

not needed for this chapter, see [20]).



102 Chapter 3 — Extended Supersymmetry Algebras

3.6.3 ..onS,CK:+9S_®CK-

In (and only in) orthogonal Weyl-compatible signatures do we work with supercharges
that are elements of (S, ® CX+)P+ @ (S_ ® CH-)P-. In these signatures both Majorana

bilinear forms are super-admissible or anti-super-admissible.

On each Weyl spinor module alone we define a superbracket independently:

{QLa: 15} = (K’i)ZBP#- (3.76)
Where we again interpret (K4 )ZB as the structure constants of a real symmetric Sping (¢, s)-

invariant vector-valued bilinear form on S,. We set K% to be proportional to a super-

admissible C ® M so that the superbracket is given by
{Qlar @y} = kMY (4#C) 5Py (3.77)

If the Majorana bilinear forms are super-admissible, we can then define a superalge-
bra using only elements of a single Weyl spinor module, obtaining a (1,0) or (0,1)
superalgebra. If they are not super-admissible, then the minimal superalgebra in that

dimension involves two Weyl spinor modules.

To summarise, in this formalism a superalgebra is completely specified by a pair of a
complex Sping (¢, s)-invariant vector-valued bilinear form and reality condition, though

said pair is not necessarily unique. Pictorially,

Superalgebra <= (Bilinear form, Reality Condition). (3.78)

3.7 Matrix Notation for Weyl Spinors

In this section, we will introduce a notation that makes calculations easier when dealing
with Weyl spinors in even dimensions. Essentially we are ‘doubling’ the spinor module
once more to incorporate the two Weyl spinors modules. We also employ matrix meth-
ods when dealing with chiral spinors we can simplify some calculations and calculate

symmetry algebras and groups.

Using the natural embedding S. ¢ S we combine the two Weyl spinor modules into a



Chapter 3 — Extended Supersymmetry Algebras 103
single ‘doubled-again’ spinor module

(AL AT ) = (AL, A AL L M) e 895 @ 89K c g9 _g o ORI (3.79)

Later these are used again in Chapter 5 where X, with I = 1,..., K, + K_, is used as
shorthand for (Ai, )\1_) In doing so we can write the calculations in a shorter manner,

though it is not necessary in this chapter.

Orthogonal and isotropic bilinear forms in this notation can then be written

—. = MZ 0 X]
()xi, )\’_) ( ()J Mff) (X;) Orthogonal, (3.80)

Ji -

N[0 M\ [
()\ﬁr, )x’_) ! X;-r Isotropic. (3.81)

Mj' 0 X-

Where M is the bilinear form chosen on the C%+ factor, M’ on the C*- factor,
1,7 =1,..., K, and %,3’ =1,..., K_. For isotropic signatures, necessarily M = M’ and
K+ = K,.

In addition, we have a real structure, p, which is either Weyl-compatible or incompatible.

For a Weyl-compatible reality condition, we write this as

PN =" B (M) Ly, p(AL) = B (V) LY (3.82)

A\ (o*B'Li; 0 ALY
- p(Ag) _ ( . ﬁ*B’*L’M) (A]) . (3.83)
d AV

Here B and B’ can refer to either B..

Weyl-incompatible reality conditions are written as

- : A 0 Li\(N\
p(A’)=a*B*(Ai)*Lg‘ﬁp( :) =oz*B*( ’ )( ) : (3.84)
* AL Li 0 J\X

Often when writing expressions we will suppress the ¢, indices and write them as a
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vector-of-vectors and block matrices

( _) (]\04 ]\3,) (ii) Orthogonal, (3.85)

( _) (J\OJ ]\04) (iJr) Isotropic. (3.86)

When we do this, we will change the indices such that normal matrix multiplication

[>~1
[>~1

+9

[>~1
[>~1

+9

makes sense for the resulting expressions. This means that that J alone represents J;;,

so the above with M = J translates to
0o -J
) . (3.87)
-J 0 X_

. 0 in 1 _
(AZ,AZ)(JJ” O)(;)=(A+,
A} gL 0 (A,
p(A_)—B ( . B*L’) (A_)' (3.88)

For a final example, we would write (3.83) as
Using this notation we only need to consider linear transformations which act on the

[>~1

expanded internal space CX+*%- with no transformations acting on the internal space
at all. This disentangling of spinor and internal indices with respect to the action of
the Schur group is the main advantage of this notation. It reflects that while the Schur
group only acts on internal space in odd dimensions, it can act differently on the chiral
components in even dimensions. By doubling the auxiliary space, any chiral effects are
encoded in the larger matrix acting on this doubled space. Afterwards, this effects on
each Weyl spinor module can be reconstructed and rewritten in terms of Id and -,

acting on the original spinor module.

3.8 R-Symmetry Group

3.8.1 Complexified R-Symmetry Group

The R-symmetry group is the invariance group of the vector-valued bilinear form (and
the associated superbracket) that commutes with Sping(¢,s). Initially, we define a
complex vector-valued bilinear form, before imposing a reality condition. The invariance

group of the complex vector-valued bilinear form will be called the complexified R-



Chapter 3 — Extended Supersymmetry Algebras 105

symmetry group, G%, ie.
BV R, R) = B(y",) = ReGh. (3.89)

GR is the real R-symmetry group, it is the subgroup of the invariance group of the

bilinear form that commutes with the reality condition, and will be a real form of G%.

Before enforcing a reality condition, we have three cases, odd-dimensional superalgebras
and even dimensions with orthogonal and isotropic bilinear forms. We will treat each
in turn. The complex R-symmetry group depends only on the dimension, not on the
signature. Signature dependence enters through the reality condition via the matrix B,

whose definition is signature-dependent).

Odd Dimensions

When S is complex irreducible, Schur’s lemma implies that the complexified R-symmetry
group acts trivially on the S factor, acting entirely on CX. The invariance group on C¥
we called Gcr and this is therefore also the complexified R-symmetry group, G%. This
group is O(K,C) or Sp(K,C) if we chose a symmetric or antisymmetric bilinear form

on CF respectively.

Therefore in odd dimensions an R-symmetry transformation is given by
A= RN, (3.90)

where Rij does not act upon the spinor indices. The corresponding R-symmetry Lie

algebra element is written rij such that Rij = exp(rij)-

The need for a symmetric or antisymmetric bilinear form on C depends on the dimension
(because the symmetry of the Majorana bilinear form depends only on the dimension).

We find that the complex R-symmetry group in odd dimensions is

. |Oo(k,C) D=13911,
Sp(K,C) D=5,T.



106 Chapter 3 — Extended Supersymmetry Algebras

Even Dimensions
Orthogonal Bilinear Form

In orthogonal dimensions, our R-symmetry ansatz will be

A A A 0)(A A0\ (M
=t — R =+ = =t = J ~ j— . (392)
A A 0 BJ\A 0 sz. b

With i=1,...,K, and 7 = 1,..., K_. The matrices Aij and B% act only on the internal

spaces CK+ and CK- because due to Schur’s lemma R-symmetry transformations are

inert on the spinor indices.

Invariance of the vector-valued bilinear form implies

M 0 M 0
RT( . M,) R= ( . M,) : (3.93)
which, after inserting the components of R, becomes
ATMA 0 M 0
o B™™B] \o0o M) (3.94)

Recall that both M and M’ are of the same form (either identity or J) but of potentially
different size (M is K, x K, and M’ is K_ x K_). These equations for A and B define
O(K,,C) and O(K_,C) if the two Majorana bilinear forms are super-admissible or
Sp(K,,C) and Sp(K_,C) if the Majorana bilinear forms are anti-super-admissible.

Therefore we obtain the complexified R-symmetry groups as

— O(K+7(C) x O(K_,(C) D= 27 107 (3 95>
Sp(K,,C) x Sp(K_,C) D =6. '

GC

Isotropic Bilinear Form

In isotropic signatures, we make a similar ansatz to orthogonal signatures with different

A and B, but necessarily with K, = K_ = K,

)o()-0B)0)-(5 2)E) e
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To preserve the vector-valued bilinear form implies

R" (]\04 ]\04) R= (]\04 ]\04) : (3.97)

This leads to

0 ATMB 0 M
(BTMA 0 ):(M 0)' (3.98)

This is solved by B = M~1(AT)"'M and therefore

A 0
R= (0 Ml(AT)lM)' (3.99)

A must be invertible for this to make sense but is otherwise unconstrained, i.e. A €
GL(K,C). We observe

(MY AT M)(M (AT M) = M ((AA)T) M. (3.100)

A is in the fundamental representation and M~1(AT)~'M is the contragredient/dual
representation (that also has undergone a change of basis given by M) of GL(K,C). R is
the direct sum of two representations of GL(K, C), which is a (reducible) representation
of GL(K,C) in its own right. In isotropic dimensions the complex R-symmetry group

is therefore

G%=GL(K,C)  D-=4,812. (3.101)

Summary Table

We, therefore, have a few possibilities for the complexified R-symmetry group, and
they are presented below. In addition, we list the available charge conjugation matrix

and its invariants in each signature. This table is a useful reference for following sections.

Invariants are from [37|. Here invariants were given as € = —o and 1 = —7. The table is

mod 8 but it was included here for physically relevant dimensions.
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D o T L M Gex G%

1 +1 | +1 | N/A| 6 | O(K,C) O(K,C)
C, [ -1| -1 | +1 | J | O(K,C) | O(K,,C)xO(Kk_,C)
C_|+1| 41 | +1 | 6 | O(K,C)

3 -1| -1 | N/JA| § | O(K,C) O(K,C)

1 C,|-1] -1 ] -1 [ 3§ | O(K,C) GL(K,C)
C_|-1|+1 | -1 | J | Sp(K,C)

5 -1|+1|N/A| J | Sp(K,C) Sp(K,C)

6 C.|+1| -1 | +1 | J | Sp(K,C) | Sp(K,,C) xSp(K_,C)
C_|-1| +1 | +1 | J | Sp(K,C)

7 +1| -1 | N/JA| J | Sp(K,C) Sp(K,C)

8 C,|+1| -1 | -1 | J | Sp(K,C) GL(K,C)
C_|+1| +1 | -1 | 6 | O(K,C)

9 +1| +1 [ N/A| ¢ | O(K,C) O(K,C)

10 C, | -1] -1 | +1 | J | O(K,C) | O(K,,C)xO(K_,C)
Co|+1| +1 | +1 | 6 | O(K,C)

11 1| -1 [N/A | § | O(K,C) O(K,C)

12 C,|-1] -1 | -1 | s | O(K,C) GL(K,C)
C.|-1] +1 | -1 | J |Sp(K,C)

Table 3.2: Table summarising the previous sections

3.8.2 Real R-symmetry Group

We recall that (in our prescription) a superalgebra is defined by a complex vector-
valued bilinear form on the complexified spinor module and a reality condition. Given
the vector-valued bilinear form obtained from a bilinear form 5 with a reality condition
given by p, we then seek the transformations that leave the bilinear form invariant and
commute with the reality condition. This is the real R-symmetry group. An element
R € GR obeys

BV R, R-)=pB(",-)  p(R)=Rp(:). (3.102)

Different definitions of the R-symmetry group exist: some authors define the R-symmetry
group to be the invariance group of the superalgebra and Lagrangian. In other cases
the theory may enjoy accidental conformal symmetry and generators of the R-symmetry
algebra are associated with superconformal generators. For example with N = 4 super
Yang-Mills the R-symmetry group is often written as SU(4) and not U(4) as a U(1)

factor falls out of the R-symmetry group as it is attributed to the superconformal alge-
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bra.

In addition, it is common to give the R-symmetry groups as the connected components,
for example as SO(2) in Type IIB string theories. In our table we will give the groups
defined by our conventions, which will usually be slightly larger disconnected groups,
using the same example our prescription gives the R-symmetry for Type IIB string the-
ories as O(2).

The R-symmetry groups for all signatures with dimension < 12 will be calculated in the
following section. As we are now considering reality conditions too, we now have five sce-
narios — odd dimensions and the four cases in even dimensions: Weyl-compatible orthog-
onal, Weyl-compatible isotropic, Weyl-incompatible orthogonal and Weyl-incompatible

isotropic spinor modules.

Finally, we present a table summarising this information. The R-symmetry group is

then used in further sections to determine those superalgebras that are isomorphic.

Odd Dimensions

In odd dimensions we work with complex-irreducible Dirac spinors, with a real structure
defined on S® CX. Due to Schur’s lemma we found that G§ = Ggx which was O(K,C)
or Sp(K,C).

A generic reality condition is
(\)* = aBXN Lj;. (3.103)
Invariance under an R-symmetry transformation leads to
(R'))"'Lyj=R,Li  —-RL'=L"R. (3.104)

All canonical choices for L have a definite symmetry, i.e. LT = +L, such that the above

equation can be written

R*L=LR. (3.105)
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Lie algebra elements rij obey the same equation
r*L=Lr = r=L""L. (3.106)

This equation demonstrates that the R-symmetry Lie algebra is a real form of the com-
plexified Lie algebra, g%, see Section 2.10 for more details. For each involution on a Lie
algebra we have an associated real form (that is not necessarily different). As described
in 3.5.3 the matrix L in real and quaternionic structures defined on C¥ were limited to
those that are involutive automorphisms of the complex Lie algebras we obtained from

complex R-symmetry Lie algebra.

In odd dimensions, we only need to focus on the real forms of O(N,C) and Sp(N,C).
The possible real forms we can access from our two complex groups are dependent on
the signature, as this controls the value of € in the e-quaternionic structures on S and
therefore the type of structure chosen on C¥, which were defined by choice of the rep-

resentative matrix L.

In Table 3.3 we list the real forms and the corresponding involution, and the type of

structure needed on the spinor module needed to realise this involution

G% Gr ¢ L
O(K,C) O(K) 1| o
O(p,q) +1 | Ip,
SO (K) | -1| Jx
Sp(K,C) | Sp(K,R) [+1| o
Usp(27‘, 25) +1 IQT,QS

USp(K) -1 JK

Table 3.3: Real forms of O(N,C) and Sp(XN,C) and the corresponding structure on S
needed to realise them. p+¢=K and 2r +2s=K

We can see that there is a broader possibility of R-symmetry groups in odd-dimensional
signatures that have a real structure on S allowing multiple Majorana spinors or ‘twisted’
Majorana spinors with different reality conditions on each Majorana spinor. We can
choose the ‘signature’ of the R-symmetry group (we can have definite or indefinite or-
thogonal groups), or we can realise Sp(K,R) or USp(2r,2s). Those with a quaternionic
structure are restricted to either having SO* (K) if the Majorana bilinear form is super-
admissible or USp(K) if it is not.
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Next we summarise this for each odd-dimensional signature up to D = 11:

D (0,D) @.D-1) (2.D-2) (3.D-3) (4.D-1) (.D-5)] (6,D-06)
1 O(p,q) O(p,q)

3 SO™(K) O(p.q) O(p.q) SO*(K)

5 USp(K) USp(K) | Sp(K,R), USp(2r,2s) | Sp(K,R), USp(2r,2s) USp(K) USp(K)

7 | Sp(K,R), USp(2r,2s) | USp(K) USp(K) Sp(K,R), USp(2r,2s) | Sp(K,R), USp(2r,2s) | USp(K) | USp(K)
9 O(p,9) O(p,9) SO*(K) SO*(K) O(p,9) O(p,q) | SO*(K)
11 SO*(K) O(p,9) O(p.q) SO*(K) SO*(K) O(p,g) | O(p,9)

Table 3.4: R-symmetry groups possible in each odd dimension in any signature, p+q = K.

From this table provides some useful insights. When K =1 only the group O(1) = Zy
is defined. Therefore only signatures with O(p,q) R-symmetry can have a ‘N = 1’
algebra. The signatures with SO*(K) R-symmetry group only quaternionic structures
on S so we cannot have K-odd theories. This means that in 11 dimensions N = K =1
algebras can only be defined in (1,10), (2,9) and (5,6); these give M, M* and M’ theories
respectively [14]. For K = 2 the R-symmetry groups are commonly known by different
names — SO*(2) 2 SO(2), Sp(2,R) 2 SU(1,1) and USp(2) = SU(2).

Orthogonal Weyl-compatible

In orthogonal Weyl-compatible signatures we found the two Weyl spinor modules can
be used independently, each working like in odd dimensions, so we do not need any

additional calculations. The complex R-symmetry groups were

¢ |O(K,,C)xO(K_,C) D=2,10,
GS = (3.107)
Sp(K.,C) xSp(K_,C) D =6.

We can define different reality conditions on both chiralities if desired (defined with
different L) and in doing so, obtain a different real form in each factor of the product.
However, we recall that Weyl-compatibility implies that both Jf) have the same € (i.e.
they are both real or quaternionic structures on the Weyl spinor modules). Therefore

we cannot realise drastically different groups on each factor.

In the following table, we have listed the possible R-symmetry groups obtainable in

orthogonal Weyl-compatible signatures
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G% Gr €
O(K4,C) x O(K-,C) O(p+,9+) xO(p-,q-) +1
SO*(K,) xSO*(K-) -1

Sp(K+,C) x Sp(K_,C) | (sp(k:.R) or USp(2r4,254)) x (Sp(K_,R) or USp(2r_,25_)) | +1
USp(K,) x USp(K_-) -1

Table 3.5: Real forms of O(N,C) and Sp(N,C) and the corresponding structure on S
needed to realise them. p+¢g=K and 2r +2s = K

Orthogonal Weyl-incompatible

As they are Weyl-incompatible the spinor module is of the form S ® CX, however, R-
symmetry transformations can act differently on the Weyl spinor modules. As a result,

in this signature, it is useful to use the matrix notation.

Weyl-incompatible e-quaternionic structures link the two chiralities, transformations

must be compatible with the reality condition. In matrix notation, this means that R

(i) wo2). o

Where for a Weyl-incompatible signature this implies

R*(O L):(O L)R. (3.109)
L 0 L 0

For our previous ansatz, we obtain

0 AL 0 LB
- . (3.110)
BL 0 LA* 0

satisfies

Which leads to

B=LA* L. (3.111)
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AeO(K,C) or Sp(K,C), and we see that

A0
R:(O LA*L_l). (3.112)

This is a reducible representation of O(K, C) or Sp(K, C); R is the direct sum of the fun-
damental representation and the conjugate representation that has also undergone a ba-
sis transformation given by L. The R-symmetry group of orthogonal Weyl-incompatible

signatures is, therefore, O( K, C) if the Majorana bilinear forms are super-admissible and
Sp(K,C) if they are not.

Isotropic Weyl-compatible

Previously we found that for isotropic signatures an R-symmetry transformation is given
by

A 0
R- (0 M-l(AT)-lM)‘ (3.113)

For the following calculations we find that working with the associated Lie algebra

element is easier, this is

a 0
7= 0 MM (3.114)

Where we define a such that A = e%, and therefore R = e”". As described earlier, R is a
representation of the same group as A, and therefore r is a representation of the same

Lie algebra as a.

In isotropic signatures, M = § or M = J can be realised, as the two Majorana bilinear
forms have opposite superadmissibility. However, we will see that this choice of M is
irrelevant. Additionally, we will also find that the exact form of the reality condition is
irrelevant too (not dependent on the form of L chosen); the only thing that will matter
if we have a real or quaternionic structure on C¥X. In Section 3.10 we show there is
a map between the two choices of Majorana bilinear form and maps between possible

reality condition choices, demonstrating this further.

Specialising to Weyl-compatible signatures, to commute with the reality condition
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r = T. (3.115)
0 L 0 L

For r given in (3.114) this implies

means that r must satisfy

a=L"'a*L, M'a"M=LYM'a"M)*L. (3.116)
Rearranging the final equation in (3.116) we get
a=(MLM ) a*(MLM™). (3.117)

However for M = § obviously MLM™! = L and we find that even for M = J we see that
MLM™ = L when we choose one of our canonical choices for L (L=1d, L= I~27«723 or

L =J). Therefore we only seek an a that solves
a=L"'a"L. (3.118)

As the signature is Weyl-compatible, we only have access to two real or two quaternionic

structures on S depending on the signature, restricting possible values of L.

Real Structures on S

We shall first deal with real structures, such that L is given by either Id or I, , if M =9
or L is Id or j2T723 if M =J.

For L = 6 equation (3.118) means that a € gl(K,R), though we also find this to be true

for any L that defines a real structure with either bilinear form on S.

For L =1, , we see that

1w wo T

a=1,,a"1,, = a=| . (3.119)
Wy oz

Where w is a pxp real matrix, z is ¢xq, x is pxq and y is gxp. We see that aisa K x K

matrix with K? real numbers. On dimensional grounds, this implies that a € gl(K,R),

though with an unconventional representation, as it is the only possible Lie group it
could be.
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If M =J we only consider L =6 and L = fQT,QS for our canonical forms of L. Obviously

for L = 0 we obtain a € gl(K,R) again. For L = jgf,‘,gs we find that @ must have the form

WX
a:(Y Z). (3.120)

Where W, X, Y, Z are % X % matrices that also obey V =1, ;V*I, s for V =W, XY, Z.

They are of the form
Vi iV
V= ( L 2). (3.121)

With the same reasoning for the previous case, a is a representation of gl(K,R). This
means that r € gl(K,R) in isotropic Weyl-compatible signatures with real structures,
regardless of the choice of M and L (this is explained later when we show the choices
to be isomorphic). The R-symmetry group is then given by GL(K,R).

Quaternionic Structures on S

If the signature has quaternionic structures we can only realise one form for L = J. A
matrix a € gl(K,C) that satisfies (3.118) defines the Lie algebra u*(K) = g[(%,H). a

has the form

a:(”"* y) z,y € M (C). (3.122)
_y x 2

Upon exponentiation this retains the same form

X Y
A=e"= , X,YeGL(E,(C). (3.123)
-Yy* X* 2

7 is also a representation of u*(K) and the R-symmetry group is U*(K).

Isotropic Weyl-incompatible

Once again Dirac spinors are the building blocks as the bilinear form is isotropic and

the reality condition is Weyl-incompatible.
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For this calculation it is easier to use the R-symmetry group element. Commuting with

the reality condition means R obeys

R*(O L):(O L)R. (3121
L 0 L 0

For the form given in (3.113) this equation is

0 AL 0 LM (AT M
(Ml(AT)lML ) ) (LA 0 ) (3.125)

This is two copies of the equation

AY(ML)A = (ML). (3.126)

This defines the unitary group U(p, q) where (p, q) is the signature of the matrix M L.
For some choices of M and L their product M L will not be diagonal, giving an A that is

an unconventional representation of the unitary group, but a representation all the same.

For M = ¢ the signature depends entirely on L and is (K,0) for L =4, (p,q) for L =1, ,
and (k,k) for L = J (where K = 2k). Setting M = J we obtain signature (k,k) for
L =46, (2r,2s) when L = Iy 9 and (K,0) when L = J.

The following table summarises the isotropic signatures

M| L Gr M| L Gr
WC|[ o | o |GLIK.R)|[[WI[ o | o U(K)
0 Ipq | GL(X,R) 0 Ipq U(p, q)
s | J U"(K) s | 7 | Uk k)
J | 6 |GL(K,R) J| o U(k, k)
J IQT’QS GL(K,R) J IQT’QS U(27’,28)
J | J U (K) J | J U(K)

Table 3.6: Real forms of GL(XK,C) obtained in our description and corresponding struc-
ture on S® CX needed to realise them. K =2k = 2r+2s = p+q. WC means the signature
is Weyl compatible and WI means the signature is Weyl incompatible.
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3.8.3 Tables of R-symmetry Groups in Even Dimensions

We now present the results for each signature in dimensions up to twelve. We begin by
first outlining the possible (1,0) or (0,1) algebras, theories in which the supercharges
form a single Majorana-Weyl spinor. Following this, we define (1,1), (2,0), (0,2)
and N = 1 superalgebras in even dimensions, where the supercharges are either two
Majorana-Weyl, a symplectic Majorana spinor or a Dirac spinor. Finally, a table for
general (K, K_) supersymmetry algebras is presented. Though technically the general
table is all that is required, the specific cases are presented because they are used very

often in physics.
(1,0) or (0,1) algebras
First, we will discuss those theories with minimal superalgebras that have a single

Majorana-Weyl spinor, therefore having ds/2 real supercharges.

This is only possible in signatures which are Weyl-compatible with orthogonal bilinear
form. They are just a single Majorana-Weyl spinor. They, therefore, have a Zo symme-

try in the same way that a single Majorana spinor in odd dimensions does.

DIO,D) [ (LD-1)| (2.D-2) | 3,D-3) | (4,D-4) | (5,D-5) ] (6,D-6)
2 | - s =

4 _ _ _ _ _

6 _ _ _ _ _ _ _

8 _ _ _ _ _ _ _

0| - Zs - - - Zs -

2| - - - - - - -

Table 3.7: R-symmetry groups possible in even signatures for ‘A = %’ algebras with ds/2
supercharges. A dash means no such algebra can be defined.

We remark that F-theory does not come with a super-Poincaré algebra in 12 dimensions

[51], instead the supercharges obey
{Q+,Q+} = CTMN Zyn + CTMNPRES 7 RS- (3.127)

Where Zy v and Zynvpgrs are BPS-charges. These are currently outside the scope of

this construction, but the author wishes to pursue this in the future.
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For dimensional reasons, F-theory requires a spinor with 32 real components, which
is possible in (2,10), as the Weyl condition and Majorana condition take the 26 com-
plex numbers (128 real numbers) and halve it twice. Majorana-Weyl spinors can only be
defined in (2,10), hence the ambiguous statement that F-theory has two time-like dimen-
sions. However, our analysis is only interested in super-admissible bilinear forms leading
to a super-Poincaré algebra which is not possible here with only a single Majorana-Weyl
spinor as the bilinear form is isotropic. We have not considered extensions to the alge-

bra, so this is not covered in our analysis.

In 10 dimensions the only signatures that allow a Type I string theory are (1,9) and
(5,5); we see this in the table above where they are represented by their Zo R-symmetry

group.

(0,2),(1,1),(2,0) or N =1 algebras

More signatures have a minimal superalgebra that has ds supercharges, which are often
called (2,0) or (1,1) algebras in orthogonal dimensions (like 6 and 10) and A = 1 super-
algebras in isotropic dimensions (like 4 and 8). This is because in isotropic signatures we
necessarily need equal copies of both, so we cannot have ‘(K,,0)’ algebras, necessarily
need algebras of the form (K, K') which are then called N' = K algebras with the chiral

spinors combined into a single Dirac spinor.

In orthogonal dimensions, both Majorana bilinear forms are super-admissible (in 2 and
10 dimensions) or anti-super-admissible (in 6 dimensions). Weyl-compatible signatures
have both Jie) defining a real or quaternionic structure on the Weyl spinor modules.
For orthogonal Weyl-compatible signatures with a super-admissible Majorana bilinear
forms and Jf) both giving real structures we can define a (1,1) superalgebra with
Zo x Zs or a (2,0) superalgebra with R-symmetry group O(1,1) or O(2). If however
we have super-admissible Majorana bilinear forms, but J(¢) are quaternionic structures
on S, we can only define a (2,0) superalgebra with SO(2) R-symmetry. When the
Majorana bilinear forms are anti-super-admissible we can only define a (2,0) algebra
with R-symmetry group given by SU(2) if J (9+ are quaternionic structures or SU(1,1)

if they are real structures.

Orthogonal Weyl-incompatible can only have a (1, 1) superalgebra which therefore needs

a super-admissible Majorana bilinear form. The result is a Zs R-symmetry group be-



Chapter 3 — Extended Supersymmetry Algebras 119

cause both chiralities are needed to define a reality condition, which then links the

R-symmetry transformation on the Weyl spinor modules.

For isotropic signatures, we have the N/ = 1 algebras. In Weyl-compatible signatures,
we have an SO(1,1) R-symmetry group, and in isotropic Weyl-incompatible signatures

we have a U(1) R-symmetry group.

D] (0,D) (L.D-1) (2.D-2)] (3.D-3) | (4,D-1) (5.D-5) (6,D-06)
2 7 0(1,1),0(2), Zy x Zs Za

4 - U(1) SO(1,1) | U(1) -

6 - SU2) - SU(L, 1) - SU(2) -

8 | SO(1,1) U(1) - U(1) SO(1,1) U(1) -

10 ZQ 0(1,1)70(2)722 XZQ ZQ SO(Q) ZQ 0(1,1)?0(2),ZZXZZ Zg

12 - U() SO(1,1) U(1) - U(1) SO(1,1)

Table 3.8: R-symmetry groups possible in even signatures with ds supercharges

In (1,9) the superalgebra with Zg x Zo R-symmetry is that of Type IIA or A* theories
(this is discussed further in Section 3.11.3). The superalgebra with O(2) R-symmetry
gives a Type IIB theory and that with O(1,1) R-symmetry gives Type IIB*.

Any signatures without an entry in this table have a minimal superalgebra with 2ds real
supercharges — in orthogonal signatures these would be of the (2,2) superalgebras, and
in isotropic signatures they would be N =2 algebras (for example in (0,4) the minimal

superalgebra is N = 2).

General (K, ,K_)

Below we present the even-dimensional R-symmetry groups for any signature in even
dimensions, followed by a table of all signatures, combining the general table for odd

and even dimensions.

D] (0,D) (1,D-1) (2,D-2) (3,D-3) (4,D-4) (5,D-5) (6,D—6)
2 | O(K,C) | O(ps,¢+) xO(p-,¢-) | O(K,C)

4] U(K) U(p,q) GL(X,R) U(p.q) U*(K)

6 | Sp(K,C) | USp(K,) x USp(K_) | Sp(K,C) X Sp(K,C) | USp(K,) x USp(K_) | Sp(Xk,C)
8 | GL(K,R) U(p,q) U*(K) U(p,9) GL(K,R) U(p,q) U*(K)
10 | O(X,C) | O(p+,g:) xO(p-,¢-) | O(K,C) | SO*(K,) xSO*(K-) | O(K,C) | O(p+,9+) xO(p-,q-) | O(K,C)
12] UY(K) U(p,q) GL(K R) U(p,9) U*(K) U(p,q) GL(K R)

Table 3.9: R-symmetry groups possible in each even dimension in any signature. p;+q; =
K., p-+q-=K_and K, +K_=2K. X = (Sp(K,,R) or USp(2r,,2s,)) x (Sp(K_,R)
or USp(2r_,2s_))
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Table of R-symmetry groups in all signatures up to D =12

D (0, D) TD-1) (Z.D-2) (B3,D-3) 14,D-1) 5. D-5) 6,D-6)
1 O(p,q) O(p, q)

2 O(WN,C) O(p+,9+) x O(p-,4-) oW, C)

3 SO*(N) O(p,q) O(p,q) SO*(N)

4 U*(N) U(p, q) GL(VN,R) U(p,q) U* (W)

5 USp(WN) USp(WV) Sp(N,R), USp(2r,2s) | Sp(N,R), USp(2r,2s) USp(N) USp(N)

6 Sp(W,C) USp(N5) x USp(N2) Sp(W, C) X Sp(V,C) USp(N;) x USp(MN-) | Sp(W,C)
7 | Sp(WNV,R), USp(2r,2s) USp(W) USp(N) Sp(NV,R), USp(2r,2s) | Sp(N,R), USp(2r,2s) USp(N) USp(N)
8 GL(W,R) U(p, q) U (W) U(p,q) GL(W,R) U(p,q) U*(N)
9 O(p,q) O(p,q) SO*(N) SO*(N) O(p,q) O(p,q) SO* (W)
10 O(N, C) O(p+,9+) x O(p-,4q-) oW, C) SO*(N:) xSO* (M) O, ) O(p+,4+) x O(p-,¢-) | O(W,C)
11 SO* (V) O(p, q) O(p,q) SO*(N) SO* (V) O(p,q) O(p,q)
12 U*(N) U(p,q) GL(N,R) U(p,q) U*(N) U(p,q) GL(N,R)

Table 3.10: p+q =N, 2r+2s =N. py+q; = Ny, p-+q = N_.. X = (Sp(K,,R) or USp(2ry,2s,)) x (Sp(K_,R)
or USp(2r_,2s_)). Note — In odd dimensions N is the number of copies of the complex spinor module involved in the
construction. In even dimensions N is the number of Dirac spinor modules in all cases, except when we have Weyl-compatible
signatures with orthogonal bilinear forms and these are described using N, and N_, the number of positive and negative
spinor modules.
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3.8.4 R-Symmetry transformations on S

In the following section, we will describe briefly how the previously calculated R-
symmetry transformations (in our matrix notation) look when acting on a Dirac spinor
in a more conventional notation. In even dimensions we can define -,, and this can be
involved in R-symmetry transformations because it anticommutes with all y-matrices
and hence commutes with Spin(¢,s). We will show that a generic Lie algebra element
acts on S either trivially or up to a factor of .. This is because the R-symmetry group
has to necessarily commute with Spin(¢,s) so it cannot be another y-matrix or combi-

nation thereof.

7. acts on the Weyl spinors Ay € Sy as v, AL = +A.. We can always choose a basis where

1 0
Ve = (0 _1), (3.128)

the 1’s in this matrix are to be understood as identity matrices acting on the spinor

indices. In matrix notation, v, A% = A% acts on (A2, \') as the matrix

Ix 0
=701 3.129
(0 —HK) 7 ® 1k (3.129)

Orthogonal Bilinear Forms

In orthogonal Weyl-compatible signatures the R-symmetry transformations act inde-
pendently on each Weyl spinor module and act entirely on the internal CX+ factor.
This is because the Weyl spinor modules are complex irreducible modules (so we can
apply Schur’s lemma exactly like odd dimensions) and the reality condition is defined
on a Weyl spinor module alone. If K, # K_ the only manner to consider an R-symmetry

transformation is on each spinor module independently.

When K, = K_, we can combine the Weyl spinors into Dirac spinors. It is possible to
recast a generic infinitesimal R-symmetry transformation to act in terms of ~,.. Given

a generic R-symmetry Lie algebra element

a 0
r:(o b)’ (3.130)
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we rewrite this in terms of ¢ = %(a +b) and d = %(a —b) so that

r:(g 2)+(§ _Od)=(Id®c)+(’y*®d). (3.131)

We can see that, at most, R-symmetry generators act as identity or 7, on the S factor.
In this case, it is somewhat artificial and can be expressed in a manner where the trans-
formations act independently on each chiral spinor module. In the remaining cases, we
will do something similar, but the two successive transformations will be inseparable

and dependent on one another.

For a Weyl-incompatible orthogonal signature, the reality condition links the two chi-
ralities, and indeed we find the R-symmetry transformations on the two Weyl spinor

modules are linked. We found
a 0
r= . 3.132
(0 La*L-l) ( )

a acts entirely on S, and La*L~! is the compensating infinitesimal transformation on S_
to maintain the reality condition. This can be recast into transformations that act on the
entire spinor module S =S, +S_. Using that conjugation by L and complex conjugation

are involutions, we decompose a into eigen-matrices under their composition

1
a.=(as La*L7h). (3.133)

So that we can write

r= (a0+ a0+) " (ao _2_) =(1®ay)+ (7« ®a). (3.134)

This is slightly different from the previous case with Weyl-compatible signatures because
a4 and a_ are functions of a alone. However we see that similarly the generators of the
R-symmetry group can be written in a way where they act either as Id or v, on S.
The construction outlined in this chapter is ‘manifestly R-symmetric’ up to this level

for orthogonal Weyl-incompatible signatures.
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Isotropic Bilinear Forms

On an isotropic vector-valued bilinear form, v, generates a potential R-symmetry trans-

formation. Under
P e USR=) U U (3.135)
We see a general vector-valued bilinear form transforms as

BN X) =(N)TCxL My + (4N O My (3.136)
(YN )T Cem X My + (7" AL)T Ce ™ X, My = B(v# A, x). (3.137)

In matrix notation the transformation in (3.135) is

A

(i*) — exp(wy. ® 1) (A+) . (3.138)

Commuting with the reality condition forces w to be real in Weyl-compatible signatures
and w to be imaginary in Weyl-incompatible signatures. This gives the SO(1,1) or U(1)
subgroup of the R-symmetry group that often appears following dimensional reduction
from odd to even dimensions. Additionally we could have R-symmetry group elements

that act as v, on S and simultaneously act non-trivially on the CX factor.

Given our generic form of an R-symmetry transformation in isotropic signatures,

a 0
r= 0 _m-aTur ) (3.139)

we notice, again, that conjugation by M and transposition are both involutions so that

we can split ¢ into eigen-matrices of the combination of these two operations
_ ~ _1 1T
a=ay+a-, with ai—g(aﬂ:M a" M). (3.140)

Therefore we can write

r= (ao* _2+) ¥ (C;‘ ao_) = (e®as) + (1®a). (3.141)

From this, we conclude that in isotropic signatures R-symmetry generators act up to a
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factor of v, on S.

3.9 Recap of Construction

The previous section allows us to classify superalgebras according to the choice of bilin-
ear form and reality condition (which are dimension- and signature-dependent quantities

respectively);
Superalgebra <= (Bilinear Form, Reality Condition). (3.142)
To do so, we do the following:

e Find charge conjugation matrix details for the particular signature, contained in
Table 3.2.

e Pick a C and use the correct form of M for the invariants.

e Select a reality condition. In even dimensions, it is easier to use the corresponding

B, that goes with the choice of C., though this is not strictly necessary.

e Calculate « so that the vector-valued bilinear form is real with chosen reality

condition.

Worked example

By using the presented tables, one can reconstruct how to define a manifestly R-
symmetric theory in each signature. For example — in (2,7) the complex spinor module
is equivalent to the real spinor module, so for N copies of the irreducible spinor module,

we use complexified spinors that are elements of S ® C?V.

From the Table 3.2 we see that o7 = +1 in 9 dimensions, therefore we use a symmetric

bilinear form on C?¥ to obtain a super-admissible bilinear form,
[C®d](\x) = (A CxX/ 6y, (3.143)

with 7,5 =1,...,2N. Using Table 3.1 we see that B defines a quaternionic structure on
S in signature (2,7). Therefore we define real spinors as those invariant under a real

structure that combines a quaternionic structure on CX with the quaternionic structure
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on S:
(\)* = aBXN Jj;. (3.144)

For an R-symmetry transformation A\’ — Rj»)\j . The bilinear form chosen on CX means
the complex R-symmetry group is G% = O(2N,C). The requirement that the R-

symmetry transformation must commute with the reality condition implies
R=-JR*J (3.145)

The real form of O(2N,C) that satisfies this equation is SO*(2N), under which A’

transforms in the fundamental representation. This is also verified by Table 3.10.

3.10 Superalgebra Isomorphisms

In even dimensions, this construction can produce many possible superalgebras that are
not necessarily unique. Namely, these choices are: the choice of Majorana bilinear form
in even dimensions (which mandates the choice of M on C¥), the choice of By to define
the reality condition and the choice of L in the reality condition (which is constricted
by the choice of B.). In most cases some or all of these choices are irrelevant, and in the

following section we detail explicit relationships between said choices where applicable.

If two superalgebras are isomorphic, they necessarily have the same R-symmetry group
(see Section 2.9). The converse is not necessarily true, for example, in orthogonal Weyl-
compatible signatures one can define the superbracket and reality condition on each
Weyl spinor module alone so one can have a Type ITA and a Type IIA*-like algebra

that have the same R-symmetry group but are not isomorphic.

In orthogonal dimensions, we find the choices of B and C' do not affect the R-symmetry
group, and we demonstrate relations between the two choices. For orthogonal vector-
valued bilinear forms with a Weyl-compatible reality condition, the chiral spinor mod-
ules function like in odd dimensions, so transformations are not necessary. An orthogo-
nal vector-valued bilinear form along with a Weyl-incompatible reality conditions results

in an R-symmetry group of O(K,C) or Sp(K,C) always and all choices are equivalent.

Isotropic supersymmetry algebras vary depending on the reality condition. For isotropic

Weyl-compatible signatures, the R-symmetry group is always GL(K,R) or U*(K) and
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any choices are irrelevant. In isotropic Weyl-incompatible signatures, the choice of B
and C' do have an effect, as the resulting choice of M and L defines the R-symmetry
group, for two choices of M and L that give the same R-symmetry group we will give
a map between the two descriptions. To maintain the signature of M L, which defines
the R-symmetry group (as shown previously in Section 3.8.2), both will be changed by

any map between the two isomorphic superalgebras.

In the following section, we will detail some isomorphisms between superalgebras. In
some cases, the resulting reality condition is not in a canonical form and may need
another reparameterisation of the spinor module to place it in these forms. These are
transformations between superalgebras only, and more transformations may be needed
to link Lagrangian theories that arise from them. For a worked example of implementing

these transformations in a Lagrangian, see Chapter 5.

3.10.1 Isotropic Bilinear Form Map, S

First, we will discuss a very useful map, that for orthogonal dimensions changes the re-
ality condition (leaving the bilinear form invariant) and for isotropic dimensions changes
the bilinear form (leaving the reality condition invariant when it is Weyl-compatible,

and changing it when it is Weyl-incompatible). Namely, it is
AL AL A s N g (3.146)

And in matrix notation this is

A A Id 0 \([A
=S = . (3.147)
A A 0 —-JJ\A

This is derived in the case of isotropic bilinear forms as a motivational example.

With this relatively simple transformation, we can make critical changes. For example,
it is used heavily in Chapter 5, where it is used to relate the superalgebras obtained in
(0,4) and (2,2), and in (1,3) it relates the U(2) R-symmetric N = 2 algebra expressed

in Majorana and symplectic Majorana spinors.

This map has varying effects on the reality condition depending on whether we are
in Weyl-compatible or Weyl-incompatible signatures. We will discuss this after first

discussing its effect on isotropic and orthogonal bilinear forms.
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Isotropic Bilinear Forms

Recall that for an isotropic bilinear form if Cy ® § is super-admissible, so is C+ ® J. The

isotropic vector-valued bilinear form [Cy ® J] is explicitly
(YN Cax Tji + (YN T Card i (3.148)
Using (3.1) we can write this in terms of the other charge conjugation matrix
(PN Cox Jji + (PN CxL i = = (WA T CoxL Jji + (v N) T Coxd Ty (3.149)
In our matrix notation, this equation is
((V“Ai)T!(v”Ai)T)f?i(;; ‘ﬁf)(ii)::((vﬂAi>T,<v“Aé>T)czz(;; 'j?f)(ii).
(3.150)

And for [Cz ® §] we have

. , , . . . 0 05\ [
(WMV@W%HW%VQM%%«Wmﬂwwﬂw@@n8)@3'
‘7 —
(3.151)

Seeking a transformation that links (3.150) and (3.151) we set

A ofr
E)-s(2) -

ST(O J)S:(O ]1). (3.153)
-J 0 10

so that the two vector-valued bilinear forms are equal, we find

1 0
S=(O _J). (3.154)

In doing so, we have quickly motivated the map given at the start of this section. To

this means that S satisfies

summarise we have shown an equivalency of (complex, due to no reality condition)
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superalgebras defined by an extended spinor module with bilinear form C, ® J and
Cs ® ¢ in isotropic signatures.
Orthogonal Bilinear Forms

Orthogonal bilinear forms are entirely chiral, and obviously, the map leaves the vector-

valued bilinear form [C ® M ](y* A4, x+) invariant. On the negative chirality spinors
(AT CX Mjj; = (7R OO My Jyi i (3.155)

For both our choices of M = {6, J} we find Mj;Jy;J;; = Mj; so that this transformation

is entirely inert on orthogonal vector-valued bilinear forms.

Recall that in dimensions with orthogonal Majorana bilinear forms they both necessarily
have the same superadmissibility, meaning there is a single choice of M, so it is useful
that the map does not change the bilinear form on C¥. It does, however, change the

reality condition.

Weyl-compatible signatures

Beginning with spinors A} that obey a generic reality condition (the bracketed signs are

not linked to the non-bracketed signs)
(AL)* = aByN.Lj;. (3.156)

This map is not needed for orthogonal Weyl-compatible bilinear forms, so this is not
considered here (these theories act like two independent copies of an odd-dimensional
theory with unique superalgebras on each chirality). This means that L is given by one
of our canonical choices L = {0, J, 1171,1:27«,25} 7. We define the transformed spinors \Iﬂi

using the map given above
L R S 18 (3.157)
Obviously W obeys the same reality condition as A%

(U)" = aB) ¥ Ly (3.158)

"For isotropic Weyl-compatible signatures, where relate one bilinear form with M = ¢ and one with
M = J so that we only consider reality conditions using L = §, 11 1 or Iz, 25
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Calculating the reality condition for ¥* is not so trivial:

(T1)* = —(aBy\ Lij) Jji (3.159)
= —OzB(i)‘ljl_Jlkijin.

For the different choices of L we find

=0 Lij = dij,

-Ji  Lij = Ji,

~(Iar26)1i Lij = (Iz25)ij,
+(I1)ig L= (L))

JikLijJji = (3.160)

For all choices but L = I1 1 we see that U’ obeys the same reality condition as A2. When

L =111 we have an erroneous minus sign on (¥°)*. So far we have
(U)* = aB. W, (I11) i, (T1)* = —aB, W (I11) . (3.161)

In this form, the two chiralities have different reality conditions and therefore cannot be
combined into a Dirac spinor. This is fixed in different ways depending on the isotropy

of the vector-valued bilinear form and is discussed case-by-case, detailed later.

Weyl-incompatible signatures

Now we will test the transformation on Weyl-incompatible reality conditions. A generic

Weyl-incompatible reality condition is
()\li)* = OéB(i))\];'Lji. (3.162)
The transformed spinors, U, then obey

(T1)* = (\)*" = aB(yN Lj; = aB) U* Jy; L, (3.163)
(U2)* = =(N")*Jji = —aBy N, Lij Jji = ~aB) U5 Ly; Jji. (3.164)

We now have a sign difference between the two Weyl spinors. How we deal with this

changes based on whether the Majorana bilinear forms are orthogonal or isotropic.

To evaluate the two products in these equations we consider L =6, L = I; ; and L = j27-725
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for real structures and L = J for quaternionic, once again ignoring L = I ; as the map

only has limited use with orthogonal bilinear forms:

ka(SjZ' = Ji;, (5ij]'¢ = Jii, (3.165)
Jrjdji = =0k, Jrjdji = =0k,

i 0 Ins, - 0 I
ka(IQ""vZS)ji = " ) (I2r,28)kj<]ji = i ;
_Ir S 0 ki _Ins O y

)

0 -1 0 1
(J2)kj(T11)ji = (_1 0 )ki’ (L1.1)ki (J2)5i = (1 O)ki.

Many of these are non-canonical reality conditions, and how we deal with them depends
on the isotropy of the vector-valued bilinear form. It can always be solved by a redefi-

nition of the spinors and examples are provided in the following section.

We have outlined the primary effects of the map on orthogonal and isotropic bilinear
forms, and Weyl compatible and incompatible reality conditions. We will now combine

these to outline the effects in the four resulting combination.

Orthogonal Weyl-compatible

Here the map has no affect, having an orthogonal bilinear form implies that either Ma-
jorana bilinear form mandates the same M and being Weyl-compatible means that the
choice of L defines the R-symmetry group entirely. The choice of reality condition can
be made independently on each semi-spinor module. Like in odd dimensions, choosing

L selects the R-symmetry group entirely, and we cannot map between the choices.

Recall that the phase, «, in the reality condition is fixed by the requirement the vector-
valued bilinear form is real up to a sign only. Therefore we can define non-isomorphic
algebras with the same R-symmetry group in these signatures. This is discussed further
in the 3.11.3.

Orthogonal Weyl-incompatible

In these signatures, we have a fixed M but we have already shown the map is inert on
orthogonal vector-valued bilinear forms anyway. Weyl-incompatibility means that all
possible L choices (that are canonical for our choice of M) are accessible, however, and
the R-symmetry group (which is O(K,C) or Sp(K,C)) is not affected by choice of the
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reality condition. From the equations in (3.166) we see that we can change L in the
reality condition but may also need to reparameterise the spinors to obtain a canonical

bilinear form.

In these signatures (3.3) implies that B,yAs = —iBz)A:. We therefore cannot remove
the sign difference in (3.163) and (3.164) when L # I; ; so a further transformation is
required. This sign difference can be dealt with by the next transformation R in Section

3.10.2 proceeding this section.

Isotropic Weyl-compatible

The map transforms the two bilinear forms between each other, and the effect on the
reality conditions was demonstrated previously in (3.160), explicitly for all choices but
L = I; we found that U’ obeys the same reality condition as A%, so we are already

done. When L = I ; we have an erroneous minus sign on (¥*)*:

(%) = aB. W, (I11)ji, (3.166)
(U)* = —aB, W (I11).

In this form, the two chiralities have different reality conditions and therefore cannot
be combined into a Dirac spinor. However, (3.3) implies that in isotropic signatures

B(4)¥. = £B() V. so that we can fix this sign difference:

(T0)* = @Bﬂl’i(h,ﬁji, (3.167)
(\Iﬂ_)* = C)éBq:\I’J;(Il71)ji.

In this case, we have changed from B; to Bz, while all other cases have maintained the

original choice of B,.

Isotropic Weyl-incompatible

In isotropic Weyl-incompatible signatures, the R-symmetry group was determined by
the product M L. This map changes M, so we should expect this map to have a com-
pensating change in the reality condition (such that the signature of M L is maintained)

because isomorphic superalgebras have the same R-symmetry group.
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For Weyl-incompatible signatures we have

(U')* = —aBz)U* Ji; L,
(T°)* = =(N")*Jji = —aBy N, Lij Jji (3.168)
= —OCB(i)‘I/]iijsz‘ = +aB(;)‘Il’iijsz-.

Where we have again used (3.3) to obtain the final expression. We see that similar to
the orthogonal Weyl-incompatible case it may be more natural to change B, to B so

that they have the same sign, depending on the product of matrices in the two equations.

We see that for all but L = I ; the two equations are identical so that it is more natural
to take the final line of (3.163) and (3.164) and find the new reality conditions matches.
With I ; the minus sign cancels out the original so that we do not need to change the
chosen B matrix. Alternatively, these changes must be made as we recall that one B
defines a real structure, and the other a quaternionic structure, and we must change
which to match the structure defined by L.

When L = I3, 95 or I1; we are no longer in one of our conventional choices for L. For a
starting L = 2,25 we can correct this using a further reparameterisation of the spinors.
If

. {0 I
(U9)* = aB, e (3.169)
“Ls 0 ),

We see that the righthand side is antisymmetric, so we wish to rotate to the canonical
form with the matrix J while preserving the bilinear form (which is [C' ® §]). To do

this, we define

Y'=-I,,0',  for 0<i<k or k<i<K. (3.170)

Doing this, one finds that

(') = aB. Jj;. (3.171)
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For L =I; ; we see it is still a real structure with signature (1,1), so we map to Iy i:

Pl = %(\111 +0%), yP= %(qﬂ -2, (3.172)

To summarise, for Weyl-incompatible signatures we have shown [C. ® J](A, x) = [C: ®
0](¥, Q) such that

(A)* = aB A - (U)* = ~aB: ¥ Jj;,

(A)* = aBN Jj; » (U9)* = aB: ¥,

AY)* = aB N (Iap96) i =~ (U9)* = aB: 97 Jj;,
Y = aB N (I11) i = (99 = aB. W (I11) ji.

3.173
3.174
3.175

(
(
(
(3.176

)
)
)
)

The first two shows how the map works transforming Majorana to symplectic Majorana
and back again. The third and fourth equations need the additional change of basis so
that the reality condition is in the canonical forms presented. In each case, one finds

the signature of M L is maintained, such that the R-symmetry group is the same.

3.10.2 Reality Condition Map, R

Next, we introduce another useful isomorphism that can be used for manipulating re-
ality conditions for both orthogonal and isotropic dimensions. It exchanges B, and B_
in the reality condition. For an orthogonal vector-valued bilinear form it changes the
bilinear form from C. ® M to Cz ® M, in addition to changing the sign of the reality
condition. In isotropic dimensions it does this without changing the bilinear form or

choice of L, demonstrating that the choice of B is irrelevant in isotropic dimensions.

The transformation is that we set
1

1
Nohe NG

= (1 +y )\ (3.177)

A= %

—'L'}/*)\Iﬂ/ —_— \IIi:

Orthogonal Dimensions, D =2,6,10
In this section we assume that A and ¥ in equation (3.177) obey
AD) =B MLy, ()" = B.B. V. L. (3.178)

For theories with orthogonal vector-valued bilinear forms, it is natural to consider this
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map acting on the chiral spinors; we see this works as

, 1 , 1 . .
\p;:_2(1+¢7*)A;=—(1ﬂ)A;:@A;. (3.179)

V2 V2

Note that this map maintains the chirality of the spinors (as . commutes with (1+iv.)).

This gives us the reality condition on the projected spinors as

(U2)* = VFI(AL)* = iVxia B M. L, (3.180)
=i BV Lj; = Fa. B, Wl Lj;. (3.181)

This sign between the two chiralities is what is needed to sort out the sign problem men-
tioned in the previous summary about the effects of S on orthogonal Weyl-incompatible

structures.

Recall that for an orthogonal bilinear form, if [C} ® M] is super-admissible then so is
[C_® M]. Using (3.1) and (3.3) we find these two super-admissible bilinear forms are
related by

[Ce®@ M](vAL, x,) = +i[C-® M](v"AL. x,)- (3.182)
The map above already removes this factor of +i:
[C+®M](7“Aivxi): [C—®M](’Yﬂ£iagi)' (3183)

From (3.3) we know that in orthogonal Weyl-compatible signatures a superalgebra with
a [Cy ® M] bilinear form with chiral spinors A’ that obey (\.)* = aiB_)\iLji is equiv-
alent to a theory with reality condition given by (A")* = xia, By N L;;. Further we have
just shown it is also equivalent to a superalgebra defined using a C_ bilinear form with
spinors defined by W% = v/Fi\l whose reality condition is given by (¥%)* = iaiB_¢iLﬁ
or (W1)* = Fa,B.yplLj;.

From this, in orthogonal Weyl-compatible signatures, we conclude that the choice of C
and B in the bilinear form and reality condition is unimportant, as we can always rewrite
the spinors to compensate. The only distinguishing feature of these superalgebras is the
choice of a,. They are fixed up to a sign so we have two choices, o, = a_ and a; = —a_.
Later we will show that Type ITA superalgebras are an example of the former, and the

Type ITA* superalgebra is an example of the latter.
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Isotropic Dimensions, D =4,8,12

In isotropic dimensions it is natural and convenient to consider only Dirac spinors \!
and U, Choosing (\)* = BN L;; we see that

()\i)* = OzB,)\jLﬂ — (\I/Z)* = _Z'O(BJr\I/iji. (3.184)

To calculate this (3.3) and (3.4) were used. We see that we have effectively swapped

B_ and B,, defining a new reality condition with phase —ia.

Using that in isotropic dimensions 7,Cy = Civ., we see an isotropic vector-valued

bilinear form is unchanged by this transformation

(Y™ AT Cux? My

O™ )WL+ i ) M
=%(\Iﬂ')T((fym)TCi 1 (Y™ Oy + iy, (™) O + i(ym)TCi'y*)Qiji (3.185)
=%(\Pi)T((vm)TCi + (7™ CL (1) = i(Y™) Care + z’(vm)TCi%)Qj M;;

=(y" 'L My;.

Therefore we have shown the choice of B, or B_ in the reality condition is unimportant

in isotropic dimensions (up to compensatory factors of 7).

In the isotropic Weyl-incompatible signatures the R-symmetry group is always GL(K,R)
when Jf) are real structures and U*(K) when they are quaternionic. If they are quater-
nionic there is one choice for L, and when they are real all choices lead to the same
group, so the particular choice of L does not matter either 8. This map shows that the
choice of B is irrelevant, and the S map shows the choice of bilinear form is irrelevant;

all supersymmetry algebra definitions in this formalism are equivalent in this case.

8See Chapter 5 for an example of how to relate reality conditions with L = § and with L = T,, 4.
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3.11 Some Applications in Physics

To aid in using the formalism in physical theories, this section will demonstrate some

applications of the formalism and give explicit examples of its usage.

The first examples will concern dimensional reduction, where there are two primary
avenues to explore for this formalism. First, we can justify the reduced theories R-
symmetry groups in terms of the parent theories groups, and motivate their origin.
Second, we can demonstrate how the spinors in the parent theory decompose into those

in the daughter theory.

Next, we specialise to ten dimensions, demonstrating how the Lorentzian signature Type
ITA, Type ITIA*, Type IIB and Type IIB* theories arise in this formalism and then ex-
panding the scope to include exotic theories in alternative signatures. The discussion
will be presented in terms of our formalism and how this relates to the other common

descriptions will be described.

We will only explicitly deal with reduction by one dimension, along a time-like and
space-like direction. For more than one step the following can be composed together,
or it can be done all in one go (as is common say from ten dimensions to four) using a
slightly different methodology. This will not be discussed here, as we will instead use

group theory to derive the daughter theories of these dimensional reductions.

3.11.1 Dimensional Reduction

Dimensional reduction is a commonly used technique in physics to derive lower di-
mensional theories from higher dimensional theories. The formalism presented in this
chapter allows one to perform dimensional reduction quite smoothly, and we can also
use this to inform ourselves about the supersymmetry algebras in nine and ten dimen-
sions which provides some insights into T-duality. This section will provide some details

on performing dimensional reduction, including common physical examples.

Odd to even dimensions

The space-time indices of the higher dimensional theory are M =0, ..., D. Here we use
the conventions that when doing a space-like direction we remove the final direction

(going from (D +1) to D dimensions this is the Dth direction) and when doing a time-
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like reduction we remove the 0th direction. Therefore the lower dimensional space-time
indices are are pu = 1,..., D for a time-like reduction or u =0, ..., D — 1 for a space-like

reduction.

When we reduce from an odd to even dimensions the dimension of the Dirac spinor
module does not decrease, making this step simpler than the previous. We equate the

higher dimensional spinors and ~y-matrices to the lower ones:

{%»7(D+1) =7.} Space-like reduction,

Z@H) = )\l@)a P = (3.186)

{70 =9v+,7.} Time-like reduction.
The removed ~-matrix is proportional to the projection operator, 7., a representation
can always be chosen such that for a space-like reduction I'(p,1) = 7« and for a time-like

reduction 'y = iv,.

The charge conjugation matrix of the D+ 1-dimensional theory is equal to one of the two
charge conjugation matrices the even D dimensions. This can be inferred from Table
3.2, if the lower-dimensional theory is orthogonal it is a C'y and if it is isotropic it isa C_.
The bilinear form is then C', ® M or C_® M with the M inherited from the parent theory.

The reality condition is inherited from the higher dimensional theory, though one will
need to rewrite the B matrix in terms of the lower dimensional B matrices. When
going from odd- to even-dimensions the dimensionally reduced B matrices satisfy, first

for orthogonal dimensions

B(t,S) - (C(A(t,S))—l)T _ (C,(A(t’s_l))_l)T _ B£t78_1), (3187)
B(t,s) _ (—1)t(—ic_(A(t_1’s))_1)T _ (—1)tB£t_1’S),

and for isotropic dimensions this is

B®) = (C(AGN) )T = (O (At D)y T = gl (3.188)
B(t,s) _ (—1)t(—iC+(A(t_1’S))_1)T _ (—1)t+1iB£t_1’s).

At least one of the e-quaternionic structures in the reduced signature has the same € as
the e-quaternionic structure in the parent signature when going from odd dimensions

to even dimensions, so that the daughter theories can have the same L.
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A detailed version of this is in [3] and this thesis in Chapter 5.

Even to odd dimensions

Here the dimensionality of Dirac spinors halves as we dimensionally reduce, but we can
(very roughly) equate the Weyl spinors of the parent theory with the Dirac spinors of
the daughter theory. The charge conjugation matrices and y-matrices must halve. In
dimension too. We must be careful how we do the embedding, though fortunately there

are not too many possibilities.

In the odd-dimensional daughter signature, we only have a single C', but it will always
be related to one of the two even-dimensional parents ones. When the parent it is
orthogonal the daughter theory has the same invariants as C_; when the parent theory
is isotropic the daughter theory’s charge conjugation matrix has the same invariants as

C.. We embed it according to

¢V ocgs, d=59 o CcYVocWgl, d=3 7 11. (3.189)

The bilinear form on the extended spinor module of the parent theory is then assumed
to be €41 @ M with whatever C(?*1) is in the above formula and M = {8, J} is the
correct choice to make the bilinear form super-admissible. If the parent theory bilinear
form is different, one can use the maps contained in Section 3.10 to obtain a formulation

in the correct form.

Finally we have to choose an embedding of the y-matrices, those in the parent theory
will be called T'ys, with M =1,...,d + 1 if we are reducing along a space-like direction
and M =0,...,d if we are reducing along a time-like direction. The y-matrices of the

daughter theory are vy,, with u=1,...,d always. We embed the y-matrices as follows

FN:’YN(X)UL F(d+1):1®02 or I'p=i1®o0s. (3190)
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We only have (and will remove) either I'(4,1y or I'g if we wish to reduce along a space-like

or time-like direction. We define I', according to the conventional

T, = (=) []r, (3.191)
I

and choose the v, such that

T, =1®o0s. (3.192)

Note that it is always possible, as the daughter theory is in odd dimensions, there are
two inequivalent representations of the Clifford algebra that vary up to a sign on v(y),

so here we assume that this was chosen correctly so that the above holds.

For completeness we then have the other charge conjugation matrix, from (3.1) given

as

" -c@ggy, d=59 o CPV-cDegy d=3711. (3.193)

We can therefore decompose the d + 1 dimensional spinors into d dimensional spinors

according to
. (1 » , 0
M=yl e (0) . N =it g (1) . (3.194)

where \! and )\%_ are the spinors in d + 1 dimensions, of which we have K, and K_
respectively, and v the spinors in d dimensions, of which we now have K, + K_. We
may need to transform the 1)° quantities to put the bilinear form and reality condition

into canonical forms.

We are now able to dimensionally reduce the vector-valued bilinear form. We have two
cases, namely orthogonal and isotropic vector-valued bilinear forms. We begin with

an orthogonal vector-valued bilinear form with K, positive and K_ negative chirality
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spinors

(TMAL)T O M;; + (TN T O D (3.195)
=) DM 8 (o (;) Yo ((1)) + (H)TCDGTME o (o (f))% ((1’)

(3.196)

=((M")Tc<d>¢%i + (v“w%>Tc<d>¢5M§;) ®1 (3.197)

(O g (1‘04 z\g')ﬂ ol (3.198)

Where 4,7 = 1,...,K and 4,5 = K, +1,..., K, + K_ until the final line where we have
combined the indices so that 7,5 =1,..., K, + K_. M and M’ will be of the same form,
either § or J, but are K, x K, and K_ x K_ matrices respectively.

Note if M = ¢ this is already correctly lined up so the d dimensional theory has vector-

valued bilinear form
(YO Doy, =1, K+ K . (3.199)

However, if M = J we are not in the canonical, in that

JK 0
+ +J . 3.200
( 0 JK-) Ko+K ( )

We then need a change of basis for 9 to realign the spinors into a canonical form (this

will also affect the reality condition).

And for isotropic dimensions, remembering that K, = K_ and M = M’ necessarily in

these dimensions, we find the following
(CMANTCEDNT N (DM T @D\ (3.201)

1) . (7u¢5)TC(d)¢ijg® (o1 (?))T ((1)) (3.202)

i j 1
=(y"9")TC DI M, (o4 (O))T (O

:(7M¢i)T0(d)¢j (]0\4 1\04) ® 1. (3.203)
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Where 7,5 =1,...,K and 7,j = K + 1, ..., 2K until the final line where we have combined
the indices so that 4,7 = 1,...,2K. In the final expression M represent the original K x K
Gram matrices inherited from the parent theory. We then will want a transformation

to take this into our canonical form too.

We then need to consider how the reality condition reduces. Due to our different
embedding for C' we have different factorisations of the B matrices depending on whether
the parent is orthogonal or isotropic. First dimensionally reducing along a space-like

dimension, from (¢,s+1) to (¢,s) we find

-Bt9) g glo Orthogonal,
Bl _ 102 g (3.200)
B®) @ gt Isotropic,

Bt9) @ g+t Orthogonal,
B+ 2 ! 8 (3.205)

B @ gloy Isotropic.
And along a time-like direction, from (t+1,s) to (¢,s) we find

-1)*1Bts) g ot Orthogonal,
B£t+1,s) _ (-1) 1 g (3.206)

iB9) @ 020} Isotropic,

iBt5) @ gyott! Orthogonal
B - ! ’ (3.207)
(-1)"1B(t9) g g+l Isotropic.

Some of these will be useful for explicitly working out the dimensional reductions in the

following section, though all were included for completeness.

3.11.2 Dimensional Reduction Examples

In the following section, we will use group theory to demonstrate reductions from 6D
to 3D and 4D, in doing so motivating some families of theories that are used in the

literature and show some new possible reductions.

We will dimensionally reduce a 10D theory to 9 dimensions and explore T-duality in
exotic signatures while doing so. We will also use group theory to discuss the reduction

to 4D, but not do this explicitly as this is not particularly enlightening.
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6D to 4D

6D N =1 superalgebras (also called N/ = 2 in 4D units) become 4D N = 2 theories upon
dimensional reduction. In 6D we have the following collection of A/ = 1 theories (defined

by their R-symmetry group).

D] (0,6) | (1,5) | (2,4) | (3,3) | (4,2)| (5,1) | (6,0)
6 No | SU(2) | No |[SU(1,1) | No | SU(2)| No

and in 4D we have the following N = 2 theories

D | (0,4) (1,3) (2,2) (3,1) (4,0)
4 [U(2) | U2) or U(L,1) | GL(2,R) | U(2) or U(L,1) | U (2)

We first remark that we have three possible signatures for the internal space to obtain
a 4D theory from a 6D theory — the compact manifold we reduce upon can have two
space-like, two time-like or one space-like and one time-like direction. Therefore we
expect to either obtain an SO(1,1) or SO(2) subgroup in our 4D R-symmetry groups

which can be attributed to the holonomy of this internal space.

The only 6D theory that can reach (0,4) is (1,5) reduced along a time-like and space-like
direction, taking the original SU(2) R-symmetry and adding an SO(1, 1) factor to obtain
U*(2) 2 SO(1,1)xSU(2). Similarly, to reach (2,2) we can only start from (3,3) and re-
duce along a space-like and time-like direction — therefore we see the original SU(1, 1) R-
symmetry is supplemented by a SO(1,1) factor to obtain GL(2,R) » SO(1,1)-SU(1,1)

In Minkowski signature we have two 4D superalgebras, one with a U(2) R-symmetry
group and one with U(1,1). We also have two possible parent theories, a (1,5) theory
with SU(2) R-symmetry (which is then reduced along two space-like directions) and
a (3,3) with SU(1,1) R-symmetry (which is then reduced along two time-like direc-
tions). Either path gives us an R-symmetry subgroup attributed to the internal space
of SO(2) 2 U(1). Using the local isomorphisms

U(2) ~U(1)-SU(2),  U(1,1) ~U(1)-SU(1, 1), (3.208)

we see the (1,3) theory with U(2) R-symmetry would be obtained from the reduction
of the (1,5) theory, and the one with U(1,1) R-symmetry is derived from the (3,3)
theory. This is in agreement with [3] and Chapter 5 where we obtained the U(1,1)
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theory from a (2,3) 5D theory, and the U(2) from the reduction of a (1,4) theory, whose
only possibles parents are the (3,3) and (1,5) 6D theories respectively.
6D to 3D

We could also reduce the 6D theories to 3D. Similarly, these can be motivated through

group theory alone. In three dimensions we have the following A = 4 theories

D (0,3) (1,2) (2,1) (3,0)
3 1S07(4) | O(p,q) | O(p,q) | SO*(4)

First, we note the isomorphism SO*(4) = SU(1,1) x SU(2) R-symmetry group. We
can identify two potential parents for this theory. Interpreting the SU(1,1) = SO(1,2)
factor as the holonomy group of the internal space, we see it matches the reduction of
a (1,5) parent with SU(2) R-symmetry. Alternatively, we could say the SU(2) = SO(3)
factor comes from the reduction of a (3,3) theory with SU(1,1) R-symmetry. Both
possible paths to the (0,3) theory produce an identical R-symmetry group as expected

as the R-symmetry group only has one possibility in this signature.

In (1,2) signature we have three possibilities: O(4), O(1,3) and O(2,2). Remarking
that SO(4) z SU(2) x SU(2), we could get to the theory with O(4) R-symmetry from
the entirely space-like reduction from (1,5) with one SU(2) = SO(3) factor arising
from reduction along three space-like directions and the other being inherited from
the R-symmetry of the (1,5) theory. Similarly for the theory with O(2,2) R-symmetry,
knowing SO(2,2) 2 SU(1,1) x SU(1,1) this would be obtained from the reduction of a
(3,3) theory with one SU(1,1) ~» SO(1,2) factor corresponding to the reduction being
along a space with signature (1,2) and the other factor coming from the SU(1,1) R-
symmetry of the (3,3) theory. As SO(1,3) » SL(2,C) this has no ‘geometric’ parent

theory and cannot be obtained from dimensional reduction.

10D to 4D

N = 4 theories in 4 dimensions can be obtained through the compactification of 10-
dimensional theories. We will now explore how this arises in our formalism. The only
superalgebras with the correct number of supercharges, 16, are in (1,9), (5,5) and (9,1),
corresponding to Type I theories (this is ignoring other effects that may reduce the total

number of supersymmetries through compactification).
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For the Euclidean signature, (0,4), the R-symmetry group is U*(4) that contains SU*(4)
SO(1,5). We can see that this could be a reduction of a (1,9) theory where the (1,5)
compactified dimensions giving rise to an internal SO(1,5) R-symmetry, or it could be

the (5,5) in much the same way.

Similarly, the standard (1,3) theory with U(4) R-symmetry has a well-known (1,9) sig-
nature origin, due to SU(4) 2 SO(6). This provides a natural geometric interpretation
for the SO(6) subgroup. For the alternative (1,3) theory with U(2,2) R-symmetry, we
remark that SU(2,2) = SO(2,4), demonstrating that this should arise from the com-
pactification of a (5,5)-signature parent theory. There is also a possible U(1,3) theory,
but this has no geometric justification because SU(1,3) 2 SO*(6).

Finally the N =4 (2,2) has GL(4,R) R-symmetry. This contains SL(4,R) = SO(3,3).
Only the (5,5) theories could be reduced to (2,2), correctly giving once again the SO(3, 3)

subgroup we see in the R-symmetry group.

3.11.3 T-Duality

In ten dimensions there exists Type ITA and Type IIB string theories, and derivatives
of these, often called Type ITA*, Type IIB* and Type IIB’, as outlined in Section 2.12.
There is a web of dualities found in [14, 15| that links them (and M-theory in eleven
dimensions). T-duality is an example of a map between superalgebras that is not in-
cluded in our discussion above, in that T-duality relates two theories with different
R-symmetry, which our basic isomorphisms outlined above could never do. In the fol-
lowing section, we outline how the existence of T-dualities can be inferred from the

available nine-dimensional superalgebras.

T-duality maps Type IIA theories, which have one of each chirality, to Type IIB theo-
ries which have 2 of the same chirality. By using space- and time-like T-dualities, many
different string theories can be reached, which were called ITA, ITA*, T1IB, IIB* and
IIB’ [14]. In the following section, we will detail how this is captured in this formalism,

as there are conventional differences which can be clarified.

Basic T-duality links theories that have been compactified upon a circle, on the nine free
dimensions we expect to have a regular nine-dimensional theory and all that comes along

with it, including a superalgebra. Given the reduction of ten-dimensional superalgebras
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(which in this formalism is given by the pair of bilinear form and reality condition)
we can see the T-dualities as maps between supersymmetry algebras that have the
same contraction to nine dimensions. Given two ten-dimensional superalgebras that
dimensionally reduce to the same superalgebra in nine dimensions, there exists a T-
duality between them. If they reached the nine-dimensional superalgebra after a both
undergoing a space/time-like reduction they are related by space/time-like T-duality if
one was space-like and one was time-like reduced we have the mixed T-dualities. In
the second part of this section, we will define the nine-dimensional superalgebras in our
conventions and how this relates to T-duality, performing the dimensional reduction

explicitly.

Space-like T-duality

We will implement a space-like T-duality on a Type ITA supersymmetry algebra and
obtain a Type IIB algebra. A type IIA theory involves two Majorana-Weyl supercharges
with opposite chirality. Let us work with Ay € S. that obey:

(>\+)>’r = O[B+>\+, ()\_)* = OZB+>\_, (3209)
ToA, =+, ToA =)

Here the choice was made to use B, in the reality condition without loss of generality
because either choice of B matrix can be mapped to one another. Similarly, the bilinear
form is C, ® § can be chosen as we have shown that a bilinear form with C_ is equivalent

in ten dimensions. The vector-valued bilinear form is then
(TN Cox = (MPA)TCoxs + (TP T O (3.210)
A T-duality transformation acts trivially on A, = A, but on A_ it acts as

A > A =Th, T=p0T% |8=1. (3.211)

Equation (2.207) in Chapter 2 tells us that A_ is now a positive chirality state, such
that TS_ =2 S,. To avoid ambiguity we shall relabel them 5\1 =\, and 5\% =

T-duality here is a unitary transformation acting on S_, so we must also transform all

matrices acting on it, this includes A, B, and C,. The associated matrices that act on
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(the original) S, do not change. The vector-valued bilinear form on S_ becomes

(T*A)TCox- - (MIDITTC T2 (3.212)

To retain the same form of the vector-valued bilinear form on S_ we require

~ _ _ 1
C,=(rH et = @a. (3.213)

This places it into our conventional forms and allows one to write
rIOYITTC T+ (ADTTTCL T2 (3.214)

- y 1 0
=AY C My, My = |-
0 +W

Note that in (2.212) we effectively used a bilinear form with Gram matrix CT'., which

is not a choice considered in this formalism.

Similarly A must transform as A = TAT' = A for a space-like reduction. This affects

the matrix By = (C’+A_1)T, and one can show this transforms as

~ 1
B, - B, = @&' (3.215)
Therefore the reality condition for A is
()\+) = aB+/\ Lji, Lz‘j = 0 % . (3.216)
B

Choosing 8 = +1 so that 5% = 1 puts us in the conventional description of type IIB
theories, which aligns with our conventions for writing vector-valued bilinear forms
(such that a symmetric complex bilinear forms always having a Gram matrix M;; = d;;)
and reality condition defined by L;; = §;;. These choices give us an SO(2) R-symmetry
as expected for Type IIB.
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Time-like T-duality

First we will consider Type ITA — Type IIB* under a time-like T-duality. For a time-like
T-duality A = —A. The reality condition is therefore

- A 1
()\7_"_) = OéBJr)\]Lji, Lij = (

. ) : (3.217)

- ©

C, is not signature-dependent, so it does not depend on the type of T-duality, and thus

the vector-valued bilinear form is the same

. y 1 0
(FM)\:)TC+X1M]'Z‘, Mij = 1 . (3218)
0 +5

Let us consider elegant choices for 3 such that 3% = +1 == f = +1, +i. We immediately
see that the sign in the reality condition and bilinear form are necessarily opposite. Ad-
hering to our prescription of symmetric complex bilinear forms always having a Gram
matrix M;; = §;; we choose 8 = 1, so that we see the spinor definitions of Type IIB*
manifests in our formalism as choosing L;; = n;; for the reality condition and M;; = d;;
for the bilinear form (giving us an SO(1,1) R-symmetry). In [14] the choice with 8 = +i

was preferred, this swaps L and M in our formalism.

To summarise, the difference between Type IIB and Type IIB* manifests in our for-
malism as the choice of L in the reality condition. Choosing L = ¢ gives the Type 1IB
superalgebra and choosing L =7 gives the Type IIB* superalgebra that has an SO(1,1)
R-symmetry group.

Now let us consider going from Type IIB to Type IIA*. The difference between Type
ITA and Type ITA* is more subtle than for the B and B* theories.

We begin with A} and A2, which we can combine together such that
(D) =aB N, DAL = +2L. (3.219)
The vector-valued bilinear form is then

(DAL Co i (3.220)
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time-like T-duality induces
Mo =2 Ao =7, T=p0,T1"% (3.221)

What could have been called 5\3 has been named A_ for clarity (as it now has negative

chirality) and we have discarded the superfluous superscript on S\}r

(07

=5

B\ (3.222)

and the vector-valued bilinear form on the negative chirality states is similarly scaled

by [%

1

(PHA%)TCq—X% = /62

() oy, (3.223)
Once again we could choose 3 = +1 such that 32 = 1, to maintain our conventions that
the vector-valued bilinear form is +C; on S;. This means we have a different reality

condition on both chiralities:
(7“5\+)* = OZB+5\+, (5\7)* = _OZBJrS\,. (3224)

If instead we chose 8 = +i such that 3% = -1 we have the same reality condition on each
part, but necessarily different signs on the vector-valued bilinear forms of either chiral-

ity (and thus kinetic terms in Lagrangian). It is this way that Type IIA* is given in [14].

Any of these statements separate Type IIA and Type IIA*. To summarise, Type ITA
has the same reality condition on both chiralities and the same vector-valued bilinear
form on both chiralities. Type ITA* has a sign difference between the reality conditions
OR vector-valued bilinear forms on S; and S_. We can always change between the two
equivalent Type ITA* descriptions by taking A_ - iA_. In our formalism, it arises with

a sign difference in the reality condition.

These provide a cautionary tale when using this formalism. The relative choices of
a (which is only determined up to a sign) in the reality condition on S, and S_ will
have changes at a Lagrangian level and should be made with care. Particular physical
theories correspond to particular choices of reality condition and bilinear form — as seen
here Type ITA and Type ITA* differ by a reality condition which informs the Lagrangian

through supersymmetry.
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3.11.4 N =2 superalgebras in Nine Dimensions

In nine dimensions the bilinear form on S is super-admissible, so we use a symmetric
bilinear form on CX, thus leading to R-symmetry groups that are real forms of O(K,C).
We will denote the nine-dimensional bilinear form as C° ® §, constructed from the nine-
dimensional Majorana bilinear form C? (the two in ten dimensions will be called C19).
C? has invariants (o,7) = (+1,+1), C° have invariants (o,7) = (¥1,%1). In 10D we
will always use C'0 as it is mathematically convenient, and we have seen previously the

choice is irrelevant.

In nine dimensions we obtain the following R-symmetry groups which have an associated

unique superalgebra (as we are in an odd dimension).

(0,9) (1,8) 2.7) | (3.6) (4,5)
0(1,1) or O(2) | O(1,1) or O(2) | SO(2) | SO(2) | O(1L,1) or O(2)

Table 3.11: N = 2 R-symmetry groups in nine dimensions, the R-symmetry group for
(s,t) is the same as (t,s).

Where we have an SO(2) R-symmetry group we know we only have a quaternionic
structure on S (effectively the complex structure picks an orientation, locking the group

to SO(2) instead of O(2)). To summarise we deal with reality conditions of the form

(A)* =aB"IN = GRr=0(2), (3.225)
iV~ o B(ts '77’1' — Gr=0(1,1), 3.226
XY = aBE) Ny, Gr=0
i\ * -« S EZ —_— R= 2). 3227
A B9 N, Gr =50

3.11.5 10D to 9D Dimensional Reduction

The basis for the ten-dimensional Clifford algebra is I', within which we embed the

nine-dimensional gamma matrices, v,, according to
F“=’yﬂ®01, I'g=Id®oy or Ty=ildQ® oo, (3.228)

using the same basis for dimensional reduction as was described earlier.

A is the product of the first t gamma matrices. For a time-like reduction, i.e. signature
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(t+1,s) is reduced to (t,s) we will define A as
AWLS) — T T, (3.229)

For a space-like reduction, where A®st1) s reduced to A(t’s)7 Atst) = DT, as

standard. In this basis we find
= ®o;. (3.230)
And the 10D chiral projection matrix I'. = (—z')”gf‘l...f‘w is
T, =1®0s. (3.231)

In Type ITA we have two spinors of opposite chirality, say A.. Using the standard form

of o3 into nine-dimensional spinors, ¥' and 1? as

et
A=l e (0) : (3.232)
A= ((1)) : (3.233)

Alternatively, given two spinors of the same chirality, say Al and A2, like in a Type I11B

theory, we will decompose them as

M=yle ((1]) , (3.234)
M=yle ((1)) : (3.235)

Reality Condition Reduction

Here we will only deal with B (with p + ¢ = 10) for ease of use, this is without loss
of generality as we recall that we can map between theories with BJ(rp D and BP? used

in the reality condition anyway. A space-like reduction gives

Bt @g; ¢ even,

BEt,s+l) _ B(t,s) ® Uwi+1 _
Bt @1 t odd.

(3.236)
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And a time-like reduction gives

iB&®) @05 t even,
B£t+178) - B(t78) ® Z.O'3Ui — . 3 (3237)
-B&) @gy ¢ odd.

The second factor in the tensor products does not affect the reality of the 9D spinor
bilinears (they would come in pairs and therefore cancel). Indeed they capture the
Weyl-compatibility of the ten-dimensional signature; we observe that when the ten-
dimensional signature has an even number of time-like directions we have a oy or
oo factor that exchange chiralities, as in these signatures the bilinear form is Weyl-
incompatible. When the ten-dimensional theory has an odd number of time-like direc-
tions the reality condition is Weyl-compatible, so we get Id or o3 which do not mix the

two chiralities.

For an example allow us to reduce the (0,10) Type IIA algebra (could also be called
N =(1,1) or N = 1) superalgebra to (0,9). (0,10) involves a single Majorana spinor

that can be written in terms of a Weyl-incompatible reality condition as
(M) =aBOO) (3.238)

Decomposing into nine-dimensional quantities, we see this reads

() @ ((1)) =a(BY g0 (v’ ® ([1))) =aB"9y? g (1) , (3.239)

0
ove o [0 (0,9) 1 (1 09 1 - [1
(V*)* ® ) =a(BV ®0) (Y @ 0 )=aB"Yt @ o) (3.240)
. 1 .
Ignoring the (O) vector we write
(") = aBONyIn;;. (3.241)

This leads to a (0,9) AN =2 superalgebra with an O(1,1) R-symmetry group.

Reduction of Vector-valued Bilinear Form

Next, we need to reduce the vector-valued bilinear form. This has a different form in
the Type ITA and Type IIB theories.
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The type IIA vector-valued bilinear form reduces as

(3.242)

mp VOB @ 1
(F“)\+)TC}OX++(FHA_)TCEOX_:(('Y VO ® )

-i()TC¢ i @1

The final component creates a central charge in the lower dimensional super-Poincare
algebra, the vector-valued bilinear form reduces into the nine-dimensional one, and thus
so do the superalgebras. We then need to assess how the reality condition embeds, which
is determined by the parent and daughter signature (as B is signature dependent) as

described above.

The type IIB vector-valued bilinear form gives

(3.243)

) ) LT 09 '5'1 1
<W&F@%WFC”¢> Wf®)

()T OOy 1

Summary

Without explicitly performing all reductions, the following diagram summarises all re-
ductions to nine dimensions and then provides the type of T-duality (space-like, time-like

or mixed) linking the ten-dimensional superalgebras.

The signature of the compactified dimensions gives the type of T-duality. For example,
we have a time-like T-duality when both ten-dimensional superalgebras have the same
time-like reduction (and therefore the same starting signature) and we get a mixed T-
duality when one ten-dimensional superalgebra was reduced along a time-like direction
has the same reduction as one reduced over a space-like direction (so that the starting

signatures differ).
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"AIpoWWIAS-Y I}
I9}Je pouwreu oIk selqod[elodns [eUOISUSWIP-OUI d} SOUWIRU [BRUOIJUSAUOD I} UOALS oIk selqef[elodns [euolsuaWIp-uo) oY J,

“A)renp-7, POXIW © Sol[dwWl oUl] UsaIs ® pur A)[enp-J, oyI[-oWI)
' AQ poJRIal 9IR SOLIOS() OM) S([) SURSUWI SUI[ PRAIND Pal ® ‘Ajpenp-J, oqi[-eoevds @ A( poje[al oIe AS() SURSUI SUI[ PIAIND
ON[q Yy UOIDNPAI SYI[-0WI) ® 0} SPUOdSeIIod MOLIR PAI PUR UOIIONPaI oaxI[-90rds ® 0) SpuodsorIon MOLIR oaN[q Y SUOISUSWIIP
Ul 0} selqag[eiodns [RUOISUSWIP-UL) JO UOIONPSI [RUOISUSTIIP oY} 0} UOIJR[Al IBY) PUR SSI)I[enp-J, oY} JO OIRWLSYDS Y

(¥'9) (59) (9°¢) (LT) (8°1) (6°0)

(2)0s (2)0S (1ol |(@o (1ol |@o

Y

(1‘1)o (1‘1)o

| L1 |[ A1 || V1L VIT] [vII] Eill | 1L | d11 || V1L VIT] [ vII]
Nl N
(6°) (9°7) (L°¢) (8°2) (6°T) (01°0)



154 Chapter 3 — Extended Supersymmetry Algebras

3.12 Conclusion and Outlook

This chapter presented a formalism for defining supersymmetry algebras with mani-
festly R-symmetric spinors in any signature and dimension with an arbitrary number

of supersymmetries.

Next, for physically relevant dimensions (up to 12), the R-symmetry group was calcu-
lated in all signatures. This is a useful result in its own right (the dimensional reduction
section included some usage of the R-symmetry group) and also provides a guide to
which supersymmetry algebras are expected to be isomorphic. The construction does
not necessarily lead to unique supersymmetry algebras, this was investigated and these

choices were classified up to the scope of this construction.

After this, some physical examples were given using this formalism, namely dimensional
reduction and T-duality. The most detailed examples of this formalism are in Chap-
ters 4 and 5 also heavily use this formalism to give Lagrangians and supersymmetry
variations. For example, this chapter predicts four-dimensional Lorentzian signature su-
persymmetry algebras with U(1,1) R-symmetry, which are justified in these chapters.
The supersymmetry algebras and R-symmetry groups calculated here give a guiding
hand to defining physical theories, though the full effects this construction can have on
the Lagrangian description of theories is a significant undertaking and could be pursued
further.

The original inspiration for this work was to provide a physics-tailored version of that
found in [1], which was done for the case of N/ = 2 supersymmetry algebras in [20]. This
was then expanded to include a formalism for an arbitrary number of supercharges. Re-
formulating this construction in the terminology and methodology found in the original
paper is a possible avenue for future work, such as calculating the Schur algebra for the

extended spinor modules in any case.

Additionally, the original paper [1| was itself expanded in [31] to include polyvector ex-
tensions that generalise central charges and [3]| that provides a manner of determining
the isomorphism classes of superalgebras but does not provide a full classification. This
is another potential area for future development; including polyvector extensions/central
charges in this framework and expanding the classification to ensure that all possible

supersymmetry algebras are contained within it.
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3.13 Appendix

3.13.1 Superadmissibility Implies Dynamical Spinor Fields (and Vector-
Spinor)

This chapter used commuting spinors; a super-admissible bilinear form has a symmetric
vector-valued bilinear form with commuting spinors. Physical theories are written in
terms of anticommuting (Grassmann-valued) spinors. A super-admissible bilinear form
on anticommuting spinors is antisymmetric. A kinetic term is proportional to the vector-

valued bilinear form

B(Y*X, 9 ) o< Ay 9N (3.244)
Using our invariants, o and 7, the kinetic term can be rewritten

MHPOUN = —oTOAYH A (3.245)

Where we have gained an additional minus sign due to the Grassmannian variables.

This means the total derivative is equal to
DAV N) = MO+ O MM A = (1= o) MO\ (3.246)

We can see that if o7 = —1 then the kinetic term is proportional to a total derivative,
which we do not want if we require dynamical spinor fields. super-admissible bilinear

forms have o7 =1 so the kinetic term is not a total derivative.

Supergravity theories with fermions also have vector-spinor fields too. From (3.23) we

see that the symmetry of the rank-3 tensor-valued bilinear form, which is equal to

3(3-1)

(-1)" 2 or’=-0r (3.247)

is opposite that of the vector-valued bilinear form. This means a super-admissible bi-
linear form gives a symmetric rank-3 tensor-valued bilinear form (with anticommuting

spinors).
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The standard way of writing the kinetic term of a vector-spinor is proportional to the

rank-3 tensor-valued bilinear form
B PPy, 0utp) o< Yy P (D)) (3.248)
And once again one can show

au(d_},ur)/#ypwp) = (1 - 0-7-)11[_)#7“”9(8,/@%) (3.249)

Where the sign difference from o; = —o3 is compensated by relabelling indices. Once
again a super-admissible bilinear form means the vector-spinor kinetic term is not a

total derivative.

So given a super-admissible bilinear form, we can always define dynamical spinor and
vector-spinor fields. We also know from (3.31) the isotropy alternates, so that the
vector-valued and rank-3 tensor-valued bilinear form have the same isotropy, so this
argument applies to chiral theories too. A super-admissible bilinear form and a reality
condition define a (Poincaré) superalgebra which naturally permits multiplets whose

fermion fields are always dynamical.

3.13.2 Proof of Signature Flip =— B, <« B_.

Consider the (t, s) signature y-matrices, which obey (not a sum)

-1 1<t

(7:)? = , (3.250)
+1 1>t

And we define the (s,t) signature y-matrices as 7, = iy(pm+1) (Where D =t + s) such

that they correctly obey

92 -1 1<s
()" = (3.251)
+1 1> 8

Both theories have the same charge conjugation matrices, C'y and C_ and an A given
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by

A3 =5y, (3.252)

ACD = ol Yl = Dy
We then see that, using C = kC_~, (k is the constant from (3.1))

B&tvs) — (C+(A(tfs))71)T (3253)
= (kC_r. (AB)™HT

Using our definitions for A®*) we find

Y (A = (=) y1p (1) em
= (=1)* (=)' 3+1-7D (3.254)
= (-1)"(=)"(=0)* g
_ (_1)st(_i)D(A(s,t))—1 _ (_1)st+%(A(s,t))—1

Such that

B = (RC_(-1)"7 (ACD) 1) = j(-1)"+3 B (3.255)
— (BE—t,s))*Bs_t,s) _ (Bgs,t))*Bgs,t)

3.13.3 Non-canonical Reality Condition
Allow us to consider a bilinear form C' ® J on S® C¥ and a reality condition
(\)*=aBN ()i, p+q=K. (3.256)

As r e sp(K,C) means r can be written

b
= (a T) , b =bc=c (3.257)

c —-a

In the presented formalism this is a non-canonical reality condition, as it does not lead
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naturally to a real form. For this example, we set p > ¢ so that we can write

1x 0 K
Lg=| * ,  d=p-—-. (3.258)
0 Iy, 2

To be invariant under the reality condition an R-symmetry Lie algebra element r obeys
r=L"'r"L. (3.259)

After some calculation finds that r has the form

al 0 b1 0
0 0 db?

r= SR (3.260)
cc 0 -ay O

; T
0 icc 0 -a3

where a1,b1,c; are d x d complex matrices and as, ba, co are ¢ x ¢ complex matrices, b;
and ¢; are symmetric. This is a generic element of sp(2d,R) + sp(2¢,R), to see this we
take

. ( (al b1T) 7 (az sz) ) e sp(2d,R) + sp(2¢, R). (3.261)

While this calculation is for one particular case; we see the algebra obtained is still a
subalgebra of the complexified R-symmetry Lie algebra. One expects the associated
superalgebra to be like the sum of two supersymmetry algebras, one with Sp(2d,R)
R-symmetry and one with Sp(2¢,R). The study of other such reality conditions will be
left to further work.



4 Five-dimensional Superalgebras and Vector Multiplets

4.1 Introduction

The minimal supersymmetry algebra in all five-dimensional signatures is ‘A’ = 2’ in that
they can be written in terms of a single Dirac spinor (which has twice the dimension
a real spinor would have if they could be defined) or in terms of doubled spinors (two
Dirac spinors equipped with a reality condition, which are symplectic Majorana or a

pair of (twisted) Majorana spinors).

First, we will derive these supersymmetry algebras in terms of Dirac spinors, using
natural quaternionic and para-quaternionic models for the Clifford algebras and spinor
modules. Following this, we will reformulate this in terms of doubled spinors (the N = 2
case of the N-extended spinors formulated in Chapter 3). Five dimensions is an ap-
pealing testing ground for the formalism because there is a single Majorana bilinear
form and a single e-quaternionic structure on S, therefore in each signature there is a
unique supersymmetry algebra in terms of doubled spinors. We will define the possible
superalgebras in each five-dimensional signature, derive off-shell representations of the
superalgebra and then construct a Lagrangian invariant under these transformations for
ny interacting vector multiplets. Said Lagrangians are found by deriving a holomorphic
master Lagrangian that is restricted by signature-dependent reality conditions induced

by the doubled spinor module’s reality properties.

Applying the formalism to the relatively straightforward case of five-dimensional N = 2
vector multiplets allows a controlled study of the features of supersymmetric theories in
arbitrary signatures. As there exists a unique minimal superalgebra in each signature,
it allows a controlled setting for the study of which features of supersymmetric field

theory are mandated by supersymmetry and what are signature-dependent.

159
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Section 2.11 recapped the original construction for five-dimensional vector multiplets,
following the work of [20]. This paper’s methodology formed the basis for this line of
work and is adapted and used here, though the language is moderately different to align
with conventions introduced in the papers [2], [3] and yet to be released work that forms
Chapter 3 in this thesis.

This chapter is based on [2].

4.2 Conventions

Most of the conventions in this section follow the universal conventions used in this the-
sis, see Section 2.1, but there are some additional definitions that this chapter adheres
to that are listed here.

Gamma matrices will be labelled, in all signatures with p = 1,2,3,4,5. For signature

(t,s), the first t gamma-matrices square to —1 and the remaining s matrices square to +1.

0Odd dimensions permit two choices of for the gamma matrices that differ up to a sign
on ~v5. In this chapter the representation is chosen such that in signatures where ¢ is

even

Yuvpor = Epvpor (4. 1)

and in signatures with ¢t-odd the y-matrices satisfy

Yuvpor = L€ uwpor- (4.2)

The opposite sign choice in each condition is possible, but making these allow a unified
writing in five dimensions that is useful after reducing to four dimensions. Further de-

tails on this can be found later.

We will interpret min(t,s) as the number of time-like directions. Therefore (0,5) and
(5,0) are both considered Euclidean with a different metric convention (mostly positive
vs mostly negative), we have two Minkowski theories (1,4) and (4,1), and two exotic
two-time theories (2,3) and (3,2). Generally, the Euclidean, Minkowski and exotic
theories differ up to factors of +i due to the different definitions of various properties of

the spinors and other signature-dependent quantities induced by the change of metric
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convention.

4.3 Five-dimensional Clifford Algebras and Spinor Modules

Five dimensional Clifford algebras, Schur algebras and spinors are intimately related to
the quaternions and para-quaternions. We will use these relations to construct elegant
models for the Clifford algebras and spinor modules. In Table 4.1 various facts about
the Clifford algebras, Schur algebras and spinor modules are collected for each of the

five-dimensional signatures.

Signature | Clys | CIY, | C(S) | C(Sr) Gr S
(0,5) 2H(2) | H(2) | H SU(2) Sk
(1,4 C@4) |H(2)| H SU(2) Sr
2.3) | 2R@) | R4 | & SUL,1) | Sz&C

9H(2) | H(2) | H SU(2) Sw
C4) |H(2) | H SU(2) Si

H

) H

) R
(3,2) C(4) | R(4) | H H' SU(1,1) | Sp=5r:®C

) H

) H

Table 4.1: Summary of five-dimensional signatures, including the Clifford algebras and
their even sub-algebras, the Schur group of the complex and real spinor modules, the
R-symmetry group

From Table 4.1 we see that the even Clifford algebra is the same for the (¢,s) and (s, 1),
so that the spinor modules in (¢,s) and (s,t) are equivalent. Therefore we can just
consider three cases, (0,5), (1,4) and (2,3) with the results in (¢, s) being applicable
to (s,t).

Additionally the five dimensional spin groups are isomorphic to quaternionic or para-
quaternionic groups. In particular, Spin(5) = Sp(2) = U(2,H), Spin(1,4) = Sp(1,1)
U(1,1,H) and Spin(2,3) = Sp(4,R) 2 U(2,H’). Since Spin(p, q) = Spin(g,p) so we need
only look at these three. Details of these isomorphism can be found in Section 2.3.2
and 2.3.3 where the properties of quaternions, para-quaternions and groups using them

were discussed.

This section outlines (para-)quaternionic models for the Clifford algebras in 5 dimen-
sions and use these to build the spinor module and extract the necessary data about

the bilinear forms.
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To define the five-dimensional Clifford algebras acting on HE we will use

D:(O 1), E:(l 0). a3
10 0 -1

D and E are anticommuting involutions (i.e. they square to identity).

4.3.1 Euclidean Signature

Using D and FE along with left and right multiplication by a quaternion ¢, L, and R,
respectively, we can define a representation of Cl(g5) in terms of quaternionic 2 x 2

matrices acting on H?:
1_ 2 _ 3 _ 4 _ 5_
v =D v =DFEL; ~v° =DEL; v*=DELy v’ =-F. (4.4)

In this representation, a spinor is then a pair of quaternions, ¢*, with a Spin(5)-invariant

bilinear form. By definition the standard Hermitian form is Sp(2) = Spin(5) invariant:
(¢',p") =a'p" + 3" (4.5)

To obtain a real-valued Spin(5)-invariant bilinear form we simply take the real part.
This bilinear form is admissible, with symmetry o = +1 and type 7 = +1. The Clifford
generators are isometries of the scalar product and are involutions, so they are symmet-

ric with respect to the scalar product (which corresponds to 7= +1).

We can generate more Spin(5)-invariant bilinear forms using the Schur algebra, the
algebra of endomorphisms that commute with Spin(5). Spin(5) is generated by the

following elements

v'9*=EL;, +%*=EL;, +'%'=ELi;, v'4°=-DE, +*y*=-L;,  (46)
v*y'=Lj, 4°y"=-DLi, +°v'=-Li, 7’y =-DLj, 7'y’ =-DL.

This algebra is isomorphic to sp(2). By inspection, we see that none involve right

multiplication (which commutes with D, E and L,) so the Schur algebra is
6(5(075)) = <Id,] =R;,J= Rj, K= _Rk>a1gebra ~ H. (47)

The Schur group is the invertible elements of this, which is C(S(5))* = H*, the group
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of invertible quaternions.

Taking the real part of the standard hermitian form, Re(,-), we construct additional
bilinear forms by inserting I, J and K into the first argument, which selects the , j

and k-imaginary parts respectively. Table 4.2 gives the invariants of each bilinear form:

Bi ol T
Bo = Re(-,-) + |+
Bl_ €<I,> - +

Re(J-,-) | - | +
ﬁ4—R€<K,> - +

Table 4.2: Symmetry, o, and type, 7, of bilinear forms in (0,5).

Only By = Re(-,-) is super-admissible. Next, we calculate the action of the Schur algebra
on the space of bilinear forms. To do this, we remark that L, and R, are isometries of
the standard scalar product that square to —1, so they must be g-skew. D and F are
isometries but are involutions so they must be g-symmetric. L, and R; commute with

all operators, while D and E anti-commute.

A | 7(A) | 0p, | 08 | 08, | 08,
1d + + + + +
1 + - - + +
J + - + - +
K + - + + -

Table 4.3: Type, 7, and f3;-symmetry, og,, of the Schur algebra basis elements, A, in
(0,5).

Recall that elements with 7(A)og, (A) = -1 leave the superbracket Ilg, invariant, such

an A is then a generator of the R-symmetry group. For 8y we see
Stab(HBO) =(I, J>K>algebra ~ 5u(2) (4.8)

so that the R-symmetry group of an N = 2 theory in Euclidean signature in five dimen-

sions is SU(2).
Alternatively, one can show that for a generic element of the Schur group

=ald+bl +cJ +dK e C(S(p))" (4.9)
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We obtain
Mg, (2 Z-) = (a® + b* + ¢ + d*)g, (-, -). (4.10)

So that Z is equivalent to a unit quaternion which isomorphic (as a multiplicative group)
to SU(2).

4.3.2 Minkowski Signature

For our (1,4) model we use the same space as in (0,5), H?, upon which we define the

Cly 4 representation
y'=-R,E  4*=R,DL; ~*=R,DL; ~'=R;DL, ~°=R,DE. (4.11)
All products of two distinct y-matrices are

¥'4? = EDL;, 7'4*=EDL; +'v*=EDL;, +'v°=-D, +**=-L; (4.12)
Vy'=Lj, 4"’ =EL, y4'=-Li, ¥ =ELj, 4%’ =EL.

This is isomorphic to sp(1,1). Again, none of the even elements involve right multipli-

cation by unit quaternions; therefore the following are in the Schur algebra
C(S(1,0)) 2{1d, I =R;,J = Rj, K =~ Ry )algebra = H. (4.13)
For the original bilinear form, we choose
(¢".p')=q'p' - 7P (4.14)

This is manifestly Sp(1,1) = Spin(1,4) invariant. We follow the regular construction

for bilinear forms, and find the following set of invariants

B; o|T
,Bo—R(i(,) + -
ﬁl_ 6<Iv> — | -

Re(J-,-) | - | +
ﬂ4—Re<K,) - |+

Table 4.4: Symmetry, o, and type, 7, of bilinear forms in (1,4).

f1 = Re(I,-) is the only super-admissible bilinear form. The type and S;-symmetry of
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each Schur algebra basis element is

A | 7(4) OB0 | 981 | 982 | 983
Id | + + + + +
I |+ - - - -
J | - - + - +
K | - - + + -

Table 4.5: Type, 7, and S3;-symmetry, og,, of the Schur algebra basis elements, A, in
(1,4).

From this we extract the elements such that 7(A)B1(A) = -1 and obtain
Stab(Ilg, ) = (I, J, K )algebra = su(2). (4.15)

Inserting a generic element of the Schur group, Z = ald+bl +cJ +dK = C(S(; 4y)", into

the superbracket obtained from (7 we obtain
Mg, (Z,Z) = (a® +b* + ¢* + d*)Mg, (-, ). (4.16)

This again tells us Z € H*, the group of unit quaternions, giving the expected SU(2)
R-symmetry group.

4.3.3 Exotic Signature

Here we can take a basis identical to that in (0,5) but replace the quaternions with para-
quaternions. The order of the y-matrices is also rearranged, so the first two correspond

to the time-like directions as is convention.
1_ 2 _ 3_ 4 _ 5_
v =DEL; v =DELy ~° =D ~*=DEL; v’ =-F (4.17)
is a representation of Cl(; 3) that acts on pairs of para-quaternions, ¢t e H?,

The standard canonical Hermitian form on H 2
(¢ p)=ap +Tp d.pel (4.18)

is invariant under is U(2,H") = Sp(4,R) = Spin(2, 3) as outlined in Section 2.3.3. This is

the spin group, and it is once again generated by the unit even elements of the Clifford
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algebra. All products of two y-matrices are then

! vy’ =-EL;j, y'2'=Li, 74’ =-DL;j, ¥*7*=-EL, (419

= sz
vyt =-Lj, ¥*7°=-DLy, ¥’y'=ELi, ~°y°=-DE, ~'3°=-DL.
This is a basis of the Lie algebra sp(4,R). This basis is the same as Sp(2) in the (0,5)
example with quaternions replaced with para-quaternions. Similarly, the Schur algebra
is then right multiplication by para-quaternions, as the elements contained in Spin(2, 3)

are in terms of left-multiplication by para-quaternions only
C(S(Q,g)) = <Id, I=R;J= Rj, K= _sz>algebra ~H. (4,20)

As I? = —Id and J? = K? = Id, the Schur algebra is isomorphic to the para-quaternions
H'. The Schur group is then C(S(2,3))" = H'™*, the group of invertible para-quaternions.

We once again consider the standard Hermitian bilinear form on pairs of para-quaternions,
(+,-), take the real part and insert Schur algebra elements to obtain additional Spin(2, 3)-

invariant bilinear forms. We obtain the following collection of bilinear forms and invari-

ants
B; o|T
Bo = Re(-,-) + |+
ﬁl = 6([, > - +
Re(J-,) | - | +
ﬁ4 = Re(K, Y| - |+

Table 4.6: Symmetry, o, and type, 7, of bilinear forms in (2,3).

Bo = Re(,-) is the super-admissable bilinear form. We once again calculate the interac-

tion with the Schur algebra basis elements and bilinear forms:

A | 7(4) OBp | Op1 | OBa | T3
Id | + + + + +
I |+ - - + +
J |+ - + - +
K |+ - + + -

Table 4.7: Type, 7, and B;-symmetry, og,, of the Schur algebra basis elements, A, in
(2,3).
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And we find
Stab(ﬂﬁo) = (I, JyK)algebra ;511(1,1). (4.21)

Multiplying both arguments by a generic Schur group element Z = ald + bl + ¢J + dK

we obtain
Re(Z-,Z-) = (a* + b* = ® - d*) Re(-,"). (4.22)

Note — these calculations were identical to (0,5) as we have just replaced quaternions

with para-quaternions.

Similarly we could find, using Z = ald + bl +cJ +dK € C(S23))"
Mg (Z,Z) = (a® +b* = ¢* - d*)Mg,, (4.23)

confirming the R-symmetry group as SU(1,1), which is isomorphic to the group of unit

para-quaternions.

4.3.4 Physics-style Reformulation

As models presented above are not in the conventional style used in physics, we will
now translate them to the standard language. As usual, we will follow the conventions
of [1,20] and use commuting spinors in the mathematical analysis before using anticom-
muting (Grassmannian-valued) spinors for the Lagrangians. As described previously in
Section 2.2.3 this introduces no additional problems, effectively just inverting all sym-

metry statements.

From Sping (¢, s)-invariant complex sesquilinear form on S,
A(A x) = ATAy, (4.24)

we can obtain two bilinear forms from this by taking the real and imaginary parts. The
invariants of each depend on the properties of the Gram matrix A. It is straightforward

to show

t(t+1)

Al =(-1)"2 A (4.25)
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Re[A] is symmetric when A is Hermitian and antisymmetric when A is anti-Hermitian,
and vice versa for Im[A]. y* commutes with A when ¢ is even and anticommutes when
t is odd, this is unaffected by taking real or imaginary parts so both Re[A] and Im[A]
have the same type. Table 4.8 lists the invariants of Re[ A] and Im[A] in each signature.

Re[A] | Im[A]
(075) (+7+) (_7+)
(174) (_7_) (+7_)
(2a3) (_7+) (+7+)
(3’2) (+’_) (_’_)
(4a1) (+’+) (_’+)
(5a0) (_7_) (+’_)

Table 4.8: Invariants, (o = 1,7 = £1), of bilinear forms derived from Dirac sesquilinear
form for t +s = 5.

In (0,5), (1,4), (4,1) and (5,0) Re[A] is super-admissible and in (2,3) and (3,2) Im[A]

is super-admissible.

We can obtain two further bilinear forms from the complex Sping (¢, s)-invariant bilinear

form,
C(\x) =A"Cx, (4.26)

once again by taking the real and imaginary part. In five dimensions the charge conju-

gation matrix is a ‘C_’ with invariants ¢ = +1 and 7 = —=1. To summarise

Re[C] | Im[C]
All'sigs. | (=,+) | (=, +)

Table 4.9: Invariants, (o = 1,7 = +1), of the real and imaginary parts of the Majorana
bilinear form for t + s = 5.

Neither of these are super-admissible; in each five-dimensional signature we have a single
super-admissible bilinear form on S. The only possible real-valued superbracket with

Dirac supercharges is therefore

Re[y" A .pP, t=0,1,4,5
{Qa:Qp} = " : (4.27)
Im[y*A ™ 0P, t=2,3
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This will be called the superbracket on Dirac spinors, with the associated bilinear form

called the bilinear form on Dirac spinors.

Let m be the standard sesquilinear form on C*, m(\, x) = Afx. The Dirac sesquilinear
form A q)(+,-) is then equivalent to m(-, Ay 5)-). Writing ¢\, p' e H? as ¢' = u' +v'j and

p'=w' + 2%, with u®,v%, w', 2% € C we see that
9= Re(q,p)(05) = Relq'p' + @°p*] = Re[m(Z,W)] = Re[Z'W'] (428

with Z1 = (u!,v!,u?,0?) e C* and W' = (w!, 2!, w?, 2?) € C1. The (0,5) subscript was

added to specify this was the choice of hermitian form on H? in the (0,5) model only.

Ao5) = Id so that Re[A] corresponds directly to the super-admissible bilinear form
Bo = Re(,)(0,5)-

For (1,4) the super-admissible bilinear form is 81 = Re(l-,-)(; 4y where I = R; and
<'a‘>(1,4) is

Re[(q,p)(1.4)] = Relg'p" - 7°p"]- (4.29)
A(1,4) =71 = —R;E in our model so that
Re[Aq1,4)(,)] = Re[m(+, A(1,4)')] = Re[g(+, -R:E)] = Re[g(R; E-,-)]. (4.30)

Now Eq' = ¢' and Eq* = -¢* so that Re[g(E-,-) = (,-)(1.4)].- Re[m(-,A(14y-)] is there-
fore equivalent to 81 = Re(I,)(1 .4y

Similarly writing ¢*,p* €e H? as ¢ = v’ + v%j and p’ = w’ + 2'j, with v, 0%, w', 2% € C one

can show that for the standard hermitian form on H'?
Im;[(:, Li-)(273)] = Re[m(Z,W)] (4.31)

where I'm; is the i¢-th imaginary component and m, Z and W are defined as above. The

bilinear form on C* is

Im[A(23)(5)] = Im[m(-, Aca,3)')] = Re[m (-, =iA2.3))]- (4.32)
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In the para-quaternionic model Ay 3y =172 = —L; so that
Re[m(-,=iA@,3))] = Imi[(, (L)) 2.3)] = Rel(-,) 2.9)]- (4.33)

Two L; factors come from iA( 3y and the other is from (4.31). We see that the super-
admissible bilinear form Sy = Re[(,-)(2,3)] corresponds to Im[A(23)(:,-)] so that in
all cases we see the analysis from the (para-)quaternionic models and the common

formulation in physics agree.

4.4 Doubled Spinor Formulation

Equation (4.27) is not the usual way a (1,4) theory is written; usually, it is written in
terms of symplectic Majorana spinors. In (0,5), (1,4), (4,1) and (5,0) we can define
and use symplectic Majorana spinors, though in (2,3) and (3,2) we will need a twisted
Majorana condition. This section specialises the N -extended spinor construction to the
case of five-dimensional N = 2 theories, thereby providing a self-contained example of
the construction and its uses, beginning from defining the extended spinor module and

the superbracket and through to writing down a Lagrangian theory.

(0,4), (1,4), (4,1) and (0,5) do not have a Spiny(t, s)-invariant real structure on S, in
other words B* B = -1 so that J(¢) is a quaternionic structure (also a complex structure).
This means the complexification of the real spinor module is S® C? which is isomorphic
to S@S. It is usually called N' = 2 as we work with two copies of the complex spinor

module (with a reality condition).

In the signatures with a real structure, (2,3) and (3,2), the complex spinor module
and real spinor module is distinct S £ .5, but the Majorana bilinear form is not super-
admissible, so we cannot define a A = 1 algebra (this can not be circumvented by using
another bilinear form, as a Majorana reality condition necessarily equates the Dirac
sesquilinear form and the Majorana bilinear form). Therefore the minimal algebra is
defined on S ® S, and we work with its complexification S@& S = S ® C2, so the minimal
superalgebra in all five-dimensional signatures is A/ = 2 and involves spinors that are
elements of (S ® C?)7.

Recall that the construction disentangles Spin(t,s) and R-symmetry transformations,

with the latter being moved entirely onto the internal index, i.e. acting upon the C?
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factor.

In five dimensions the Majorana bilinear form is anti-super-admissible, so on S® C? a

super-admissible complex bilinear form is
b=C®Jy, b, X")=(\)Cxeji. (4.34)

Where the distinction between the previously outlined bilinear form on S alone is needed,
this may also be called the doubled spinor bilinear form. Here we have renamed J3 to
€ji, as it is the Levi-Civita symbol in 2 dimensions and this is how it is conventionally
written. As we usually name bilinear forms with the same name as their Gram matrix,
and to align with the literature, we will now call it £(+,-). For completeness, ¢(-,-) is an

antisymmetric bilinear form on C? defined by

s(z,w) = zzszji, €=¢&4 = ( 1 0) . (435)

Later when writing Lagrangians and supersymmetric variations, when writing terms

involving doubled spinors with closed indices, the internal 7, j indices will be omitted,

e.g.
My = Ny eji (4.36)
Following the construction, we define the complex superbracket from b. This gives
{Qiar Qjs} = k(3" C NapPucij. (4.37)

As stated previously, conventionally k = —%, this choice will be motivated in the next
section. Where the distinction is needed this will be called the doubled spinor super-
bracket.

Reality Conditions in Five Dimensions

Whether J(O(@) defines a quaternionic or para-quaternionic structure depends on B* B,

in each five-dimensional signature this is

e |71 (0:5).(14),(4,1) and (5,0), (4.38)
+1 (2,3) and (3,2).
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J( is a real structure in (2,3) and (3,2), and a quaternionic structure in (0,5) and
(1,4). We therefore use symplectic Majorana spinors in (0,5), (1,4), (4,1) and (5,0) and
Majorana or twisted Majorana spinors in (2,3). From the Table 3.10, we expect an

R-symmetry of SU(2) in (0,5) and (1,4) and SU(1,1) in (2,3).

We can then build a signature-dependent real structure, p, on S® C2 !

0 1
Eij = (035)7 (174)a
) ) -1 0
p(N\') =a"B*(M)"Lyj;, Lij= (4.39)
1
nzg (2,3>
1 0

In (2,3) we have two choices for L that give real structures, L = {J,n}, though either
gives the same R-symmetry group. As they result in the same R-symmetry group, there

should exist an isomorphism between them which is detailed in Section 4.4.

To ensure the vector-valued bilinear form is real a = 1 in (0,5) and (1,4) and a = +7 in
(2,3).

The spinors invariant under p obey the reality condition
(\)* = aBN Lj;. (4.40)

Under this reality condition the complex spinor and the doubled spinors vector-valued
bilinear forms (and therefore superbrackets) are related. For example, with the sym-

plectic Majorana condition

[C_®e](v"A,x) = (V" A)TCx! = (v*AHT O
_ (a*B*()\l)*)T(’y“)TC’Xl _ (’Y#AI)TC(OZ*B*(Xl)*) (4.41)
= —a* (T(A)A(" A, X) + (A(Y"A, X))
= —(=1)"2a* Re[A(v* ), x)].

Where we have identified A!, ! with \, x € S, the spinors of the complex spinor version

of the superalgebra.

!Note that we have chosen to use 1 in place of I,1, which is the diagonalisation of 7. The two
descriptions are equivalent, as shown later.
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In (1,4) the conventional choice is o = -1, as in [20]. This gives a coefficient of -2, which

corresponds to the conventional k = —% in (4.37). In each signature the reality condition

will be chosen so that the superalgebra on the doubled spinor module is given by (4.37)
with k = —%. This amounts to selecting one of the particular signs for « in (4.40). For

(0,5) this means that & = +1, and in (4,1) and (5,0) we get a = +1 and -1 respectively.

For the twisted Majorana reality conditions, this is slightly different; the Dirac super-
bracket is constructed with I'm[A]:

[Cecl(y",x) = (W) Ox' - (AT Ox?
= (BN (") Ox - (*A1)TC(aBx)" (4.42)
=" (ATAy"x - (") A™X)
=2(-D)'a*iIm[A(Y* )\, x)].

Keeping the same normalisation, this means that in (2,3) we o = +i and in (3,2) a = —i.

A superbracket is defined from the vector-valued bilinear form, so this extends to the

proportionality of the complex spinor superbracket and the doubled spinor superbracket:
— {Qa,Qp} < {Qh, Q%3 (4.43)

Indeed, it is stronger than that: all tensor-valued bilinear forms are proportional, so that
we can say the complex spinor module and the p-invariant submodule of the doubled

spinor module are isomorphic, i.e.
S~ (SeC?)". (4.44)

Note that this only confirms what we already know, that S® C? is the complexification

of the complex spinor module S and is included here as an easy verification of this fact.

Equivalence of Majorana and twisted Majorana Reality Condition

We defined the reality condition with an off-diagonal reality condition to demonstrate
the relation to a single Dirac spinor (with no reality condition) clearer. However, we

know that regardless of the choice of real condition N = 2 superalgebras in (2,3) and
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(3,2) have Sp(2,R) 2 SU(1,1) R-symmetry; therefore each reality condition is equiva-

lent.

We have three choices of the matrix L in the reality condition, namely

1oy , (1 o fo 1
o T ) O R

As the previous sections have given the reality condition with 7, we shall relate this to
both § and 7. We begin with spinors, A, that satisfy

(\)* = aBXNn;; (4.46)
and wish to relate these to spinors with reality condition

(T))* = BBWn);, (4.47)
(¢")" =vB¢' =vBN 4. (4.48)

In each case the vector-valued bilinear form should remain as b(v*-,-) = [C' ® e](7*-,"),
as this is the only super-admissible choice. Those with L = n’ are a pair of O(1,1)
Majorana spinors in the language of [14], and those with L = ¢ have an O(2) Majorana

condition.

Changing the reality condition so that L =7’ is just rotating A’ to an eigenbasis of the

matrix n
Tl o2 o220 )2 (4.49)
U’ obey a diagonalised reality condition
(¥°)* = aBWn);. (4.50)

Such that § = a. Under this transformation the vector-valued bilinear form on the

doubled spinor module is unaffected

(YN OxIeji = (W) CQey;. (4.51)
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Where Q' is related to x* analogously to how ¥’ came from \'.

Further, this is equivalent to a reality condition with L = §. We set

_1+i

V2

1-4

1 2 2 _
(>‘ _)‘)a ¢_\/§

P! (A +22). (4.52)

¢! and ¢? are a pair of independent Majorana spinors; it is easy to show
(¢")" =iaB¢". (4.53)
This too leaves the vector-valued bilinear form invariant:
(YA Oxeji = (46" Cej. (4.54)

Where once again ¢ is defined from y* like ¢’ is from \. Two equal vector-valued

bilinear forms lead to two equal superbrackets and two equivalent superalgebras.

However, the rewriting in (4.49) and (4.52) makes the isomorphism with the vector-
valued bilinear form on a Dirac spinor, Im[A(v*)\, x)], less obvious. As a result, we

prefer to give the reality condition in the off-diagonal form.

4.4.1 R-Symmetry

An R-symmetry transformation must commute with Spin(¢, s), leave the vector-valued
bilinear form/superbracket invariant and commute with the reality condition. There
are two scenarios to consider for the latter due to the different reality conditions used.
These calculations were performed in Section 3.8, but here we will give a slightly differ-

ent derivation.

The bilinear form on the doubled spinor module is the same in all signatures, giving
us a complex R-symmetry group of Sp(2,C) in each signature. The different reality
conditions reduce this to a different real form. The real form corresponding to the auto-
morphism Jo is USp(2) = SU(2), and the real form from §, n or " is Sp(2,R) = SU(1,1).
We will prefer the special unitary groups to highlight the similarities and differences

between the signatures.

Using a slightly different approach than in Section 3.8, we can instead derive this by
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remarking that the symplectic Majorana constraint is invariant under transformations

(_“* ”*). (4.55)

This group is isomorphic to GL(1,H) using the map between complex matrices and

of the form

quaternionic matrices given in Section 2.3.2.

The R-symmetry group in signatures (0,5),(1,4),(4,1) and (5,0) is then

GL(1,H) nSp(2,C) = SU(2). (4.56)

The group that commutes with the twisted Majorana constraint is GL(1,H"), which

can be represented as 2 x 2 complex matrices of the form

(“ ”*) . (4.57)

The total R-symmetry group for the (2,3) and (3,2) theories is therefore
GL(1,H") nSp(2,C) = SU(1,1). (4.58)

We recall that due to Schur’s lemma these R-symmetry transformations act entirely on
the internal C? factor, hence the name SU(2) or SU(1, 1) indices for the associated i, j

indices of this C? space.

4.5 Summary of Doubled Spinor Formulations
The following Lagrangians and supersymmetry representation are in terms doubled

spinors, which are elements of S ® C? equipped with a complex bilinear and a reality

condition.

The bilinear form on S ® C? is

b(A,X) = [C®c]l(Ax) = (\) Cxeji. (4.59)
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This is used to define the superbracket, which is

1
{Qingﬂ} = _E(WMC_l)aﬂPygij (4.60)

The choice of reality condition in each signature is chosen so that the doubled spinor
superbrackets are proportional to the complex spinor superbracket in each signature.

They are as follows:

Reality Condition
(0,5) | (\")" = BNeji
(1,4) (/\Z)’r = —B)\J€ji
(2,3) ()\Z)* ZZ'BAJT]U
(3, 2) ()\7,)* = —iB)\]UZ'j
(4,1) ()\z)* IB)\]&fji
(5,0) | (\")* =-BNej;

Table 4.10: Reality Condition in each signature, B = (CA™')7 is signature dependent.

The signatures with symplectic Majorana spinors ((0,5), (1,4), (4,1) and (5,0)) have
SU(2) R-symmetry and those with twisted Majorana spinors ((2,3) and (3,2)) have
SU(1,1) R-symmetry.

4.6 Field Content

It is well known that N = 2 supersymmetry in five dimensions permits a vector multiplet

representation [20, 39
(AP N0, YY) n=1,2,3,4,5 i=1,2. (4.61)

With the eponymous vector field, A*, a pair of spinors, A, subject to the signature-
dependent reality conditions outlined in the previous section, a scalar field, o, and a

triplet of auxiliary fields packaged as a real, symmetric SU(2) or SU(1,1) tensor, Y.

For these fields to be a representation of the complex supersymmetry algebra they

transform according to

0A* = aeyt N, 00 = ae, §YY = vellghd), (4.62)
ON' = By - Fe' + bJoe' + injej.
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This is an off-shell representation, so is independent of any field equations/Lagrangian.

If (4.62) are to be a representation of the superalgebra (4.60) then the coefficients, which

are arbitrary complex numbers, have to obey

1
_5:_2ab:4aﬂz—uy:2alg—%b—3u?y (463)
ab uy
—+—==0
af + 1 + 5

The reality of the coefficients is signature dependent, as the corresponding spinors bi-
linears reality varies due to the different reality conditions. The reality properties of

each coefficient is collected in the following table

Parameter | Real Imaginary
t=0,..,5 Never
t=0,2,4 t=1,3,5
t=0,...,9 Never
t=0,2,4 t=1,3,5
t=0,1,4,5|t=2,3
t=0,1,4,5|t=2,3

LIRS IR

Table 4.11: The reality properties of the coefficients in the supersymmetry transforma-
tions.

These were found by requiring éo and §A* to be real, and that A" and Y% to obey
the same reality conditions as A\* and Y% respectively. These are related to the reality

properties of the associated spinor bilinear, for example, a is real when €\ is real.

The complex conjugate of a general spinor bilinear of arbitrary rank Ay#t~#ry is

(ftrx)* = (AT Oyt ydeg)* (4.64)
=a*(\YTBIC* Bx' Ly Lyje . (4.65)

One can show BfC*B = (~1)*C and the combination Ly;Lijej; has L=¢fort=0,1,4,5

and L =7 for t =2,3. In these two cases
Eki€ljEji = Elky  MkiMj€ji = —Elk- (4.66)

Note that the « in this equation is that from the reality condition, and is not to be



Chapter 4 — Five-dimensional Superalgebras and Vector Multiplets 179

confused with that in (4.62).

As (Y*)* = By*B7! it follows that

CRR (—l)TtB’y‘“l“'WB_l (4.67)

so that

(Xvul...urx)* _ (—1)t(r+1)X‘yM1"'MTX. (468)

Combining all these we see that in five-dimensions using the conventions for the spinor

module outlined in this section

(;\Pyul...urx)* _ (—1)t(r+1)X’)/M1mMTX. (469)

The reality of the coefficients immediately follows. We see that in all signature the
vector-valued bilinear form (r = 1) is real, as it should be because this is used to define

the real supersymmetry algebra.

SU(2) and SU(1,1) Tensors

As outlined in Section 2.11 the N = 2 vector multiplet in (1,4) vector multiplets in-
volved Y% a real, symmetric SU(2) tensor whose reality properties are induced by the
reality condition of the spinors. In (2,3), however, the spinors have a twisted Majorana
reality condition that makes the R-symmetry group SU(1, 1), so the auxiliary fields are
be modified to be a real, symmetric SU(1,1) tensor. We will recap the SU(2) tensors

then define SU(1,1) tensors in comparison.

For a generic member of SU(2) the following holds

b 0 1
U= ( ¢ ) eSU2), U'=eUsT  e= ( ) (4.70)
_b* a* _]. 0

This demonstrates the equivalence of [2] and [2] as real representations.
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Under SU(2), Y% € Sym(2,2,C) transforms as

Vi S UL Uy = (v (4.71)
Y - UYUT =Y’

An SU(2)-invariant reality condition is imposed on Y, reducing the degrees of freedom

from 3 complex variables to 3 real variables

(Yij)* = 6ik€jlykl (4'72)
Y >V — (V)" =eY'el.

The raising and lowering of 4, j indices are done using ¢;;, as this is involved in the

bilinear form for the spinor terms. This means that for an SU(2) tensor (Y¥)* = Y;;.

In (2,3) and (3,2) signature the R-symmetry group is SU(1,1). Therefore Y must be
an SU(1,1) tensor, which conjugate differently to SU(2) tensors.

A generic member of SU(1,1) satisfies the following

b 0 1
v=|" eSU(L,1) U'=nUny 1= : (4.73)
b* a” 10

Similarly this demonstrates the equivalence of [2] and [2] as real SU(1,1) modules.

Analogously Y% € Sym(2,2,C) transforms under SU(1,1) according to
Y -UYU =Y".

We once again seek a reality condition on Y% that is invariant under SU(1,1). This is

given by
(YY) = nan Y™, (4.74)
This reality condition is correctly SU(1,1) invariant, that is (Y')* = nY'n.

Care should be taken with raising and lowering indices in (2,3) and (3,2), as raising

and lowering indices is no longer equivalent to complex conjugation. The bilinear form
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on C? is still €;j so this is used to raise and lower the 7, j indices but 7;; is used when

complex conjugating. As a result (Y)* #Y;; in (2,3) and (3,2).

4.7 Lagrangian Description of Theories

Naturally after a multiplet is obtained, a Lagrangian description of the theory is de-
sired. Taking the original Lagrangian calculated for Minkowski signature and removing
knowledge of the coefficients/signs for each term we obtain

L =(%FF,{VFJW + %00”018“0‘] + %Yﬁx’ + sy YiyTH )}'1 (o) (4.75)

+ (Hlaﬂ”p"TAﬁF,prji + O N A FI AT + 95NNV ).7—“1 1K (0).
This is a ‘holomorphic master Lagrangian’ that encodes knowledge of the real forms —
these real forms correspond to five-dimensional theories in different signatures. We will
implement signature-dependent reality conditions on this to obtain the vector multiplet

theory in the signature.

The s, = sp = s) = sy = =1 are signs, so that the conventional normalisations of the
kinetic terms are maintained. Once again, I,J =1, ..., N enumerate the vector multiplets
with the coupling coefficients determined by a function F(o)

0 o 0 0

FIJ(U)Zi_}—(O')v }-IJK(U):WW&T_K (o).

4.
ool 0o’ (4.76)

To maintain gauge and supersymmetric invariance the prepotential, F'(o), is a polyno-
mial of degree no more than 3. As usual for five-dimensional theories, the scalar kinetic
term describes a non-linear sigma model with metric Fr;. F(o) is often called the
prepotential. Before imposing a reality condition, it is a holomorphic Hesse potential
of a complex Riemannian manifold. After forcing o to be real we obtain the expected

very special real geometry expected, see Section 2.11.
As noted in [20] the spinor term is written as a partial derivative, not a covariant
derivative with respect to the Levi-Civita connection of F7j; the term containing the

connection is identically zero as Nl xl )Ejz' =0.

After varying the above Lagrangian using the transformations (4.62) the following re-
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quirements on the coefficients are obtained 2, where t is the number of time-like direc-

tions.

Spa=-28)[ Sya =—8)b 2syu = =8\
3(910( = ﬂ:Qit(ggﬁ* 4920& = —93u 62y = 936 (4.77)
asp = 8bly asy = ybs asy = 8abs.

* _ the sign ambiguity in this equation is explained in the next section. Note that «

here is not the « in the reality condition.

Which combined with (4.63) gives the following

1
S L2 AN D LA K SV (4.78)
2 Sx Sy S

Coefficient of Chern-Simons term

As noted, there is an ambiguity concerning the sign of the Chern-Simons term

1 [ pK
iﬁs“”p“Aqume. (4.79)
Here we have chosen to keep the definition of €,,,,r the same in all signatures, such
that €19345 = 1. However, the sign of this term can be changed with a different choice

of the v-matrices.

The coefficient of the Chern-Simons term depends on the chosen representation of the
Clifford algebra. In odd dimensions, we have the freedom to choose the volume element
of the Clifford algebra to vary by an overall sign. This sign enters the calculation when
we look at the invariance of the Lagrangian under supersymmetry, due to the presence

of terms containing ¢#”?7+,, in the variation of the Lagrangian.

Recall we made the following choices for the Clifford algebra representation

€ t-even
Yuvpor = reer . (4.80)
~i€uvpor t-odd

2Whilst I have performed these calculations as part of the work, they are relatively standard,
repeating those in [20] with arbitrary coefficients and have been omitted due to space considerations.
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This makes the coefficient of the Chern-Simons term positive in all signatures

1
+ﬁ5‘“’p‘”ALFI;]pF£. (4.81)

Primarily this makes the dimensional reduction of this term straightforward, without
having to have the five- and four-dimensional Levi-Civita symbols normalised differently,
i.e. we have €19345 = +1 and 1934 = +1, whilst in [20] €12345 = +1 and 1034 = —1 was

needed to align the four-dimensional terms correctly.

4.8 Lagrangians and Supersymmetric Variations

In this section, the Lagrangians and supersymmetric variations are presented for each

signature, after imposing the reality conditions outlined in the previous sections.

For the correct physical interpretation, the Minkowski theory must have a positive-
definite Lagrangian, in our conventions, this means the kinetic terms have a negative
sign. In the other signatures, the overall sign of the Lagrangian has no natural choice.
Other signatures will have their overall sign chosen to look like the Minkowski theory

as much as possible.

4.8.1 Minkowski Signature

(1,4)

In (1,4) signature Table 4.11 and (4.78) implies the following sign choices
So = S\ = Sp = —Sy. (4.82)

We can choose all physical fields to have the correct negative sign for their kinetic terms

(the sign of the auxiliary field Y is irrelevant).
Lo paw Yo 1ou 0 151000 oIvijd
L=|- ZF’“’F - §8HJ oMo” - 5)\ AN + Y Y9 )\ Fry (4.83)

1 - S
+ (ﬂgll‘VPUTA{LFI;]pFOI-i _ é)\I,YHVFl;]V)\K _ %)\I’L}\Jj}/iﬁ()fIJK
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SAL = §%AI Sol = %af syl = _§g(zﬁ)\ﬂ)l7 (4.84)
4 1 g . g
SN = —ZVWFI{VE’ - %ﬁalez - Y”Iej.

This agrees with [20] except for the sign of the Chern-Simons ‘AFF’ term, this is the

conventional choice explained previously in 4.7

(4,1)

We interpret (4,1) to be a Minkowski signature theory with a mostly-negative conven-
tion. Table 4.11 and (4.78) tells us the signs obey

-85 =8\ =S8F = =Sy (4.85)

This has created a difference between the scalar and vector kinetic terms, but this is
necessary to line up with the mostly-negative convention. In a mostly-negative conven-
tion, a positive-definite scalar kinetic term has a plus sign, with the rest still requiring

negative, which is a choice we can make here

~Sy =8\ =8F =—8y = —1. (4.86)
We then obtain
Lot pgw Yy 1o g 151000 | oIvigd
L=\ = FLE™ + 50,0" 0% - SN BN + Yy | Fiy (4.87)
L ywpor 4T pd ok 51 g K Ls1iyJjvK
+ ﬁé‘ A/.LFl/pFO'T - g)\ Yy Fl“’)\ - 5)\ A }/z] ]:[JK
1 1 . 1 .. .
AL = fmf ol = gaf syl - —§g<%ﬂ>1, (4.88)

4 1 1 , g
I I I I
SN = —Z—l'y"”FWel + 5)30 € -Y";.
The remaining differences amount to factors of +¢ on terms involving the fermions.
These are induced from the signature-dependent reality conditions imposed on the
spinor module. Considering min(t,s) as ‘time’ the two Minkowski Lagrangians agree,
up to conventional differences of the kinetic term signs and fermionic term’s reality

properties.
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4.8.2 Euclidean Signature
(0,5)
For (0,5) we get the following sign attribution

—Sg =S\ =8p=-Sy =—1.

185

(4.89)

If we were using the OS framework for Euclidean theories, we would require that the

action is bounded from below. This cannot be the case because changing the overall

sign of the Lagrangian always leaves at least one kinetic term with the wrong sign. One

of the vector or scalar kinetic terms will be negative-definite and the other positive-

definite. This sign attribution has the scalar field flipped from the canonical choice in

the associated (1,4) Minkowski signature theory.

This sign difference was predicted in [26], using Killing spinor equations to derive bosonic

Lagrangians. The ab initio derivation in this chapter shows there is no choice, and this

particular relative sign attribution is mandated by supersymmetry.

1 1 1- 3
L =( - ZFlfVFJW + 58#018”0‘] - 5)\18)\‘] + Yigwﬂ)fu

1 T 1< 1<p ;
+(ﬂgﬂllﬁ AﬁFl-jprﬁi_g)\],y#l/Fl;]V)\K_5)\]1)\Jj}/i§()‘7_-IJK
SAL = lay Mo sel=tad syl - _lguwj)f

23 ) 12 2 9 s

SN = —}l’y“l’Fiyei + %ﬂalei - Yijlej.

(5,0)
Here we get

Sg =S\=Sp=-Sy =—1.

(4.90)

(4.91)

(4.92)

Once again, this action is indefinite. We again observe a sign flip from the associated

Minkowski action ((4,1) in this case).
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1 1 1- i
L =( - ZFJ”FJW - iﬁpalﬁ“aj - gklﬁ)\“’ + yéYUJ)]:U (4.93)

urvptor =

1 - L
. (ﬂg,ul/pO'TAIFJ Jalis %AI,Y;WF[LIU)\K _ %AIZ)\J_]}/:L'?)FIJK

oA = sey N sl =ca ey S, (4.94)
) 1 g . g

The factors of +i on the fermionic terms, due to the difference in the exact details of

the spinor module.

4.8.3 Exotic Signatures

(2,3)
We get the following sign attributions

—S5;=8\,=8p =58y =—1. (4.95)

Giving us the Lagrangian, with arbitrary overall sign,

1 1 1- ’
L :( - ZF,{VFJW + 5(%018"0‘7 - ixfﬁx’ - YéY”")Fu (4.96)
1 oT 1< NG ]
+ (ﬂe“l’p Al F] FE - gx\lfy“l’F;fl,)\K + iAIZ)\J]}/;;ﬁ()fIJK
P A D S —%E“Z‘AJ”, (4.97)

) 1 1 A g
SN = —ZVWFHIVGZ + 55‘0161 + iY”Iej.
(3,2)
In this signature, we get the signs as

Se =8\ =8p =8y =—1. (4.98)
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Which results in a Lagrangian as follows

1 1 1- -
L :( — ZF'L{VFJMV _ §auo_la/LUJ _ 5)\[5)\J _ }/éyw‘])fIJ (4.99)

1 7 - 1—7 .

+ (ﬁEHVpUTAIILFZZIPFg _ gAI,yMVFl;]V)\K _ 5AIZ)\JJ}/;§()?[JK
1 ; . o
AL = 5@,&\[ Sol = %E)\I Yl = —%E(Zﬁw)[, (4.100)
. 1 g . y

(5AZI — _Z_l,ylll/Flfyez _ %ﬁdlel + iYUIEj.

Similarly, in (2,3) and (3,2) signature the kinetic term for o shows a similar effect,
transitioning from mostly-positive to mostly-negative changes the sign of the scalar

kinetic term. In addition, we obtain conventional factors of i on the fermionic terms.

4.9 Conclusion

In this chapter we derived two descriptions for the minimal superalgebras in each five-
dimensional signature, first in terms of Dirac spinors and then applying the formalism of
Chapter 3 to define the doubled spinor constructions (that generalises the conventional
manner of using symplectic Majorana spinors). Following this, the doubled spinor
formalism was used to derive physical Lagrangians and supersymmetry variations in
each signature by imposing signature-dependent reality conditions on a complexified
holomorphic master Lagrangian. In doing so, we found signs and coefficients in the
Lagrangian are controlled by supersymmetry. These Lagrangians and supersymmetry
representations will be used to derive four-dimensional theories by dimensional reduc-

tion.

From the obtained Lagrangians, we see the attribution of signs and coefficients in the
Lagrangian are fixed up to an overall sign by supersymmetry. In five dimensions, there
exists a single one-parameter family of superalgebras up to isomorphism in all cases, so
that the relative signs are entirely determined. In other dimensions, as is demonstrated
in four dimensions, there may be multiple possible superalgebras in multiple families

and therefore distinct theories with different relative signs between the kinetic terms.

Additionally the alternating sign (as the number of time dimensions increase) is neces-
sary to ensure that the reduction from (p+1,¢q) and (p,q+ 1) to (p,q), with p+ q =4,

produce a theory with the same scalar geometry (either Kéhler or para-Kéhler).
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In [26] the same relative sign between the vector and scalar kinetic term in theories with
even number of time-like dimensions. This what found using Killing spinor equations for
the bosonic terms in a supergravity theory, and thus provides verification of this work. In
contrast, we included the fermionic terms and were working with rigid supersymmetry.

The bosonic terms and fermion supersymmetry variations also agree with [52].



5 Four-dimensional Superalgebras and Vector Multiplets

5.1 Introduction

This chapter focuses on four dimensions, applying the same methodology that we ap-
plied in five dimensions. First, we derive and classify the A’ = 1 and N = 2 superalgebras
in all four-dimensional signatures. This is done by using models for the spinor module
in each signature and studying the space of bilinear forms on the spinor modules. Fol-
lowing this, we apply the N-extended spinor formalism (for the case of doubled spinors
again) to derive four-dimensional N = 2 superalgebras in arbitrary signature with man-
ifestly R-symmetric spinors. Finally, N = 2 off-shell vector multiplet theories, including
Lagrangians and supersymmetry representations, are derived via the dimensional re-

duction of the five-dimensional Lagrangians and representations found in Chapter 4.

The first section deals with defining the superalgebras in terms of Dirac spinors (com-
plex spinors) using signature-dependent models that use the natural symmetries of the
respective Clifford algebras and spinor modules in each signature. In five dimensions
there was a unique super-admissible bilinear form in each signature, but in four di-
mensions there are four linearly independent super-admissible bilinear forms. Applying
the results of Section 3.10 we determine whether these lead to genuinely unique N = 2
superalgebras in each signature, finding in Euclidean and the exotic two-time signature
(which is also called neutral signature) there is a unique superalgebra up to isomorphism
and in Minkowski signature there is two. In each signature, the space of super-admissible
bilinear forms is parameterised by the same vector space of the underlying space-time,
R%*. We then study which superalgebras are obtained by dimensional reduction from

five dimensions.

Next, the N/ = 2 four-dimensional supersymmetry algebras are reformulated in terms of

the N-extended spinor formalism, often referred to as doubled spinors in this chapter.

189
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In comparison to five dimensions, four-dimensional supersymmetry algebras are much
richer. As it is an even dimension, we have access to two Majorana bilinear forms and
two potential Spin(¢, s)-invariant e-quaternionic structures, in addition to Weyl spinors.
Due to the many possible combinations of bilinear forms and reality conditions, there

are multiple possible doubled spinor superalgebras, at least superficially.

In this chapter, supersymmetry representations and Lagrangians are found by dimen-
sional reduction, as opposed to restricting a master Lagrangian as was done in five
dimensions. Each four-dimensional signature can have two possible five-dimensional
origins (one reduced over a time-like direction, one reduced over a space-like direc-
tion) and we find them to differ by signs and coefficients in the representations and

Lagrangians.

For example, we obtain, in both Euclidean and neutral signature, two superficially
different theories, one from a time-like reduction and one from a space-like reduction.
However there is only a single superalgebra up to isomorphism in (0,4) and (2,2), so
they should provide isomorphic Lagrangians and associated supersymmetry variations.
We will find this to be true and provide explicit local transformations needed to relate
the two Lagrangians and supersymmetry variations. In Minkowski signature we find
two families of superalgebras, distinguished by their R-symmetry group (which is U(2)
or U(1,1)) and provide maps between the members of each family. The U(1,1) R-
symmetric theory, obtained from dimensional reduction from (2, 3), has ghost fields with

negative-definite energy and are similar to twisted or type-* theories found in [14,26,53].

5.2 Four-dimensional Clifford Algebra and Spinor Modules

As we did in five dimensions, it is useful to define explicit Clifford algebra models for
each signature and calculate the bilinear forms and resulting space of superbrackets.
Using the classification of the Clifford algebra and spinor modules we can choose natu-
ral models that readily and easily describe the spinor module and the Clifford algebra

representation.

We primarily focus on the case of A = 2 superalgebras. ! Therefore we specialise to the
case where the spinor module is S, the complex spinor module. Following Section 2.8

we need to derive a basis for the space of bilinear forms and the Schur algebra in each

"However we find some things to say about A = 1 superalgebras which are detailed as we go along.
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signature, using these to define the space of super-admissible bilinear forms. Then, to
classify which of the resulting super-admissible bilinear forms lead to unique superalge-
bras, we study the orbits of the group % on (Sym?S* ® V)Spino(v) — however
in four-dimensions we find it is sufficient to study the effects of C(S)* alone.

Table 5.1 and 5.2 summarise useful information about the Clifford algebras, Schur al-
gebras and spinor modules in four dimensions. The models for the spinor module will
use this information to form models for the spinor module and bilinear forms upon it

that exploit the natural symmetries in each signature.

Cly | CIY | S [S:]cCS)|c(sy)
C4)|cCc@|ct|c?]| aC C

Table 5.1: The complex Clifford Algebra Cly, the even subalgebra (Clg, the complex
spinor module, S, the complex semi-spinor modules S; and associated Schur algebras
C(S) and C(S.) in four dimensions.

Signature | Cl, | Ol S S, c(S) | C(s.)
(0,4),(4,0) | H(2) | 2H Sk St oH | 2H
(1,3) R(4) | C(2) Sz ®C S, | C2) | C

2.2) [R@) [ 2RQ) | S26C | SmeC|2R@) | 2R
(3,1) H(2) | C(2) | Sp=5k:®C | Sgs C(2) | C(2)

Table 5.2: Classification of the real Clifford Algebras Cly, the even subalgebra Clg, the
relationship between the complex and real complex spinor module, Sg and S, and the
complex and real semi-spinor modules, Sg; and S, and associated Schur algebras C(S)
and C(S,) in each four dimensional signature.

The following is heavily based on the paper [3], though the notation and conventions vary
slightly. This was done to unify the notation for all three models. Mainly the notation
used for the Minkowski and neutral signature models are unified, and thus different from

[3] and the Clifford algebra representation in Euclidean signature is slightly different.

5.2.1 Minkowski Signature — (1,3) and (3,1).

Though Cl; 3 2 R(4) and Clz; = H(2), the even Clifford algebras are the same 01?73 =
C’lg,1 = C(2) so the Sping(1,3) and Sping(3,1) representations are equivalent. Addi-
tionally the Schur algebras are the same, both C(S) = C(2) so results obtained for (1, 3)

are applicable to (3,1) too. We see that one can define Majorana spinors, as the real



192 Chapter 5 — Four-dimensional Superalgebras and Vector Multiplets
and complex spinor modules are distinct.

We will now outline a natural model for the Clifford algebra and S to explicitly calculate

the invariants of the bilinear forms and Schur algebra. First, we remark that
Cl173 = 01072 ® Cll,l = R(Q) ® R(2) (5.1)

A real spinor is then an element of Sk = R* ~ R2@R?. First, we will begin by defining a
Clifford representation that acts on Sg = R? ® R? before extending this to the complex
spinor module S because ultimately concerned with N = 2 theories in terms of Dirac

spinors that live on S.
We can identify C as R? equipped with a complex structure so that
S=Sg®Cz Sy ®R*=R?@R*®@R?. (5.2)

Additionally, Sg ® R? = Sg @ Sg, such that this is equivalent to the usual A/ = 2 super-

algebra in terms of a pair of real spinors.

We choose the following basis for R(2):

]1:(1 0), f:(o 1), J:(O 1), K:U:(l 0). 53
01 -1 0 10 0 -1

1, J, K satisfy
(I,J}=0, I?’=J?=1d — K?=-Id, {K,I}={K,J}=0. (5.4)

This basis makes the isomorphism R(2) 2 H’ explicit, though we will not use the para-

quaternions explicitly in this model.
I is a complex structure with which R? can be identified with C = (R?, ).

We can define the Cl; 3 representation on Sg R?®R? as

Y={®K, m=Ko&l, (5.5)
Yo=J®1, y3=1I®1.
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The even Clifford algebra is

Cl(l],3 = CZO,S =< 707i|i =1,2,3 >algebra=< K® K7 J® K7 leJ >algebra (56)

By inspection we notice that the elements Id ® Id and I ® J commute with the even
Clifford algebra, and therefore spin(1,3). (I ® J)? = -1 so that the Schur algebra is

C(S[R) =<1e1,I®J >algebra= C. (57)

To obtain a Clifford representation acting on S = R? ® R? ® R? we can take (5.17) and
trivally extend it via v, = 7, ® 1. Therefore the Schur algebra is larger as we have no

restrictions on the transformations on the third factor:
C(S)=C(Sr)®R(2)2zCe®R(2) 2C(2). (5.8)

The Schur group is therefore C(S)* ¥ GL(2,C). Id,I,J, K are a basis for R(2) so the
following is a basis for C(S) = C(2)

Ild=191®1, Li=19lel,

Ir=101®J, I3=1010 K, (5.9)
E=1I®J®1, FLi=1I®J®I,

FIy, =1 J®J, FI;=1®JQ®K.

Previously we have defined 7, = iv97y1727y3 using our conventions in Chapter 3. In
this model, the complex structure on the third R? is multiplication by I, inducing the

complex structure 1 ® 1 ® I on S. This takes the place of multiplication by ‘4’ so that

Vo= (Id®Id® )yoy1y2y3=1®J®I=-FE. (5.10)

The eigenspaces of v, are the complex semi-spinor modules S, also known as the Weyl

spinor modules.

In comparison to C(S(g4y) = 2H and C(S(s2y) = 2H', C(S(1,3)) contains both the para-

quaternions, generated by

{Id,Il,IQ,Ig} CC(S(l’g)) (511)
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and the quaternions, generated by
{Id,Il,EIQ,EI;g} CC(S(L:)))). (512)

However the subalgebras do not commute, and they intersect on the subalgebra <
Id,T; >= C so the Schur algebra is not H @ H'. Further the Schur algebra contains
the Lie subalgebra sl(2,R), generated by Z, and sl(2,C) that is generated {Z,, EZ,}.

We now wish to define bilinear forms on S. These are products of bilinear forms on
each factor. From g, the standard positive-definite symmetric bilinear form on R? we

define the following basis of bilinear forms on R?
g('v')7 g[('v') :g(I'v')) gJ('?’) :g(‘]'a’)v gK()) :g(K7) (513)

gy and g are split-signature symmetric bilinear forms and gy is the Kéhler form con-

structed from ¢ and I.

The symmetry of the endomorphisms Id, I,.J, K with each of these bilinear forms is

a(b) | op(I) | op(J) | op(K)
g + - + +
g | - | - | - -
gy + + + -
gx |+ + - +

Table 5.3: The symmetries and b-symmetries of the endomorphisms on R? for each
bilinear form, b.

On Sk = R? ® R? we can then make 16 bilinear forms by taking all possible tensor
products of {g,97,97,9x}. Of these combinations, only two are admissible (they all
have definite symmetry, but only two have a definite type). Symmetry and type can be
calculated using Table 5.3.

g®gr | — | +
gr®grg | — | —

Table 5.4: A basis for the admissible bilinear forms on Sr and their invariants.
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From these we can then make eight admissible bilinear forms on S (the third factor in
each y-matrix is the identity, so the third factors does not affect the type when moving
to S). From Section 2.8, we expected the space of admissible bilinear forms to be eight-

dimensional, and this is verified here.

From now on we will only focus on the super-admissible bilinear forms, those with
o1 = +1. These will be used to define supersymmetry algebras, and we wish to learn
which super-admissible bilinear forms lead to isomorphic superalgebras. The super-

admissible bilinear forms and their invariants are found in Table 5.5.

Bi ol T |
Bo=9r®gr®g | - | — | -
PL=9r®gx ®gs | — | — | +
Po=91®gr ®gr | — | — | +
B3=9g®gr®gr |+ |+ |-

Table 5.5: A basis of super-admissible bilinear forms on S and their invariants.

To check these have been derived correctly, remark that the basis in (5.9) is admissible

with respect to [y, and the other bilinear forms can be found to be
Br() = Bo(Ze,0),  Ba(,0) =Bo(Ts,), B3(-) = Bo(Er>). (5.14)

so they could have been derived by insertion of Schur algebra elements into Fy, though

here it was more convenient to find them in an alternative manner.

We now seek the B;-symmetry and type of each Schur algebra basis element to determine

the structure of the space of super-admissible bilinear forms. This is found in Table 5.6.
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A | 7(A4) | 05(A) | 95 (4) | 05,(A4) | 95,(A)
Id + + + + +
7 + + - + -

Ly + - + + -

I3 + + + - -

E - + + + +
EIl = + - + -
ET, - - + + -
EI3 - + + - -

Table 5.6: Type 7(A) and fB;-symmetry og, (A) of the Schur algebra C(S) basis elements
A.

An element A with og,(A)7(A) = +1 map the superbracket Ilg, to another superbracket
and those with og,(A)7(A) = -1 leave Ilg, invariant. Calculated in the following table
are all values of 03,(A)7(A):

A | 05, (A)T(A) | 05, (A)T(A) | 05,(A)T(A) | 05,(A)7(A)
Id + + + +
T - + + -
Zo + + - -
I3 + - + -
E _ _ _ _
E7 + - - +
LT, - - + +
EI; - + - +

Table 5.7: 0p,(A)7(A) = +1 of the Schur algebra C(S) basis elements A.

Which gives the following stabiliser algebras

11, Stabiliser

g, | <Ly, E,EILy, EZ3 > u(l) ®su(2)
My, | <Ts, E, BT, ET, > u(1) ® su(1, 1)
g, | <Zy,E,EZ;,EZ3 >z u(1) @ su(1,1)
1_1/33 <11,15,135, FE >~ u(l)@su(l,l)

Table 5.8: Stabiliser Lie algebras of the basis of superadmissible bilinear forms Ilg,

The stabiliser algebras of the superbrackets are the R-symmetry algebras, so we see that
there are two families of N = 2 superalgebras, as expected from Chapter 3, those with

U(2) R-symmetry and those with U(1,1) R-symmetry. Here we derive the stabiliser
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Lie algebra, and at the Lie algebra level u(p,q) 2 u® su(p,q).

Notice that E stabilises all bilinear forms so that the bottom half of the table is obtained
from the top half of the table by flipping signs. E generates a U(1) subgroup that acts
trivially on all superbrackets. Removing F, the Schur group C(S)* effectively acts as
R>0 x SL(2,C) 2 R*? x SOy(1,3) = CSOy(1,3), where CSO(t, s) is the linear conformal
group. The space of superbrackets can then be identified with Minkowski space R!3
with scalar product given by (8;, ;) = 1i;-

Generally, superbrackets that vary by a scale factor are considered to be the same so
that we can focus on the SL(2,C) subgroup of the Schur group GL(2,C). This will act
on the four-dimensional space of super-admissible bilinear forms. SL(2, C) is the univer-
sal cover of SOy(1,3) which has two real inequivalent four-dimensional representations
— the vector representation and Weyl spinor representation. The vector representation
has five open orbits (future and past directed time-like, space-like and null vectors) and
the spinorial representation only has 1. We see immediately we have at least two open
orbits, because Ilg, has a compact stabiliser group and Ilg, have non-compact stabiliser
groups, and will motivate the third. Therefore it acts upon the space of superbrackets

in the vector representation.

SO(1,3) has six orbits: space-like, future- and past-pointing time-like and future- and
past-pointing null vectors and the origin. The origin corresponds to the degenerate
superbracket that produces the trivial supersymmetry algebra (pictorially those with
Q = 0). However, the superbrackets II,3 and II_g define isomorphic supersymmetry
algebras, so there are only four distinct non-isomorphic types of Lie superalgebras, as
future- and past-pointing time-like and null vectors are in the same family of superal-

gebras.

The time-like orbits of IL.. g, give rise to one family of superalgebras, that is the standard
formulation of A/ = 2 superalgebras in Minkowski signature, with U(2) R-symmetry.
Time-like orbits have the stabiliser group SO(3) = SU(2), which is the non-abelian part
of the R-symmetry U(2) 2 U(1) - SU(2).

The space-like directions correspond to Ilg, with 7 = 1,2,3. Space-like orbits have the
stabiliser group SO(1,2) = SU(1,1) which is the non-abelian part of the R-symmetry
group U(1,1) 2 U(1)-SU(2). These give isomorphic non-standard ‘twisted’ supersym-
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metry algebras, similar to those found in [14].

Null vectors correspond to partially degenerate superbrackets. Consider the super-

bracket H%(ﬁo+ﬂ1) 2; ,31(-,-) = B()(IQ-,-) such that %(50 +p61) = ﬁo(%(]l +IQ)-,-). As
73 = +1 we can define the projection operator

1
Pr =5 (1+Tp). (5.15)
PfQ projects onto the £1 eigenspaces of Zo. The supercharges live on the four-dimensional
submodule PfQS ~ Sg. Spinors in P22S are in the kernel of H1(60+,6’1)' I> acts as the
2
identity on P+I 2S so that F and EZy are equivalent. None of the other elements except
Id have the same invariants with Sy and (1 so the Schur algebra has basis Id and F,

giving an algebra isomorphic to C.

The stabiliser group of 111 (Bo+B1) is the one-dimensional group generated by E, which is
2

isomorphic to U(1). This is precisely the R-symmetry group of an N = 1 superalgebra.

SO(2) = U(1) is the expected little group for null vectors on R(3).

5.2.2 Neutral Signature

From Table 5.2 we see Cla 2 = R(4) and the real spinor module is Sk = R* 2 R? ® R? so
we can once again use a model like the above, with S = R? ® R2 ® R? again. The even
Clifford algebra is C’l%2 ~ 2R(2) which implies we can decompose the spinor module
into two inequivalent real semi-spinors Sg = Sg; + Sg_, this means that in this signa-
ture there are Majorana-Weyl spinors. However, though one can define Majorana-Weyl
spinors there is no N = % algebra whose supercharges are a single Majorana-Weyl spinor

because the Majorana bilinear forms are isotropic.

For easy reference, we recall the Schur algebras of the various spinor modules are
C(S) =2R(2) =2H', C(S:)=R(2)=H', C(Sr)=2R, C(Sg:)=R. (5.16)

R(2) = H' is used to draw parallels to the Euclidean signatures (where the Schur algebra
of the complex spinor module is 2H instead) and to highlight the presence of two in-

variant real structures on S. The real (semi-)spinor module(s) are the complexification

2 As we have shown they are isomorphic, we could have chosen any of the space-like bilinear forms
Bi instead of 81 without loss of generality.
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of the complex (semi-)spinor module(s). The semi-spinor modules are self-conjugate as

complex C l%z modules.

Following the same prescription as the previous model, we define a Cl3 2 representation
acting on Sg = R2 @ R? as

1=J®1I, vwm=K®&lI, (5.17)
3=1®J, wu=10K.

spin(2,2) is generated by

V' =-Tel, Y4 =JeK, y4'=-JeJ (5.18)
Yr=KeK yy'=-KeJ ~i=-l1el

By inspection we see that 1® 1 and I ® I commute with all spin generators. I ® I is an

involution so that the Schur algebra of the real spinor module is
C(Sr)=<1®1,I®1>=2R. (5.19)

Bilinear forms are built with tensor products of {g,9r,97,9x} again. The Clifford
algebra has changed, so the elements with definite type have changed, the admissible

bilinear forms are:

g | T

gegr | — | -
gr®g | — |+

Table 5.9: A basis for the admissible bilinear forms on Sg and their invariants.

Again we extend the Clifford generators by adding a third factor of 1 to each tensor
product, vy, = 7, ® 1 to obtain a representation on S. On S we then have the expected
basis of 8 admissible bilinear forms by tensoring one of {g,9r,97,9x} with the two
admissible bilinear forms on Sg. Of these four are superadmissible, their invariants are

contained in the following table



200 Chapter 5 — Four-dimensional Superalgebras and Vector Multiplets

Bi ol T
Br=g®gr®g | - |- |+
Po=g®gr®gy | — | — | +
B3=9g®gr®grx | — | - | +
Ba=gr®g®gr | + |+ | +

Table 5.10: A basis of super-admissible bilinear forms on S and their invariants.

The spin generators act trivially on the third R? factor, meaning the Schur algebra on

the complex spinor module is
C(S) =C(Sr) ®R(2) 2 2R ® R(2) = 2R(2) = 2H". (5.20)

An admissible basis for the Schur algebra of the complex spinor module is therefore

obtained by adding I, J, K to the basis elements of the real Schur algebra:

Ild=191el, =101,

I,=1010®J, I3=101QK, (5.21)
E=I®l®l, EL=I®I&I,

EL,=1®I®J, FI3=IQI®K.

F is again proportional to ., in our conventions
Ye=m1Y2Yy3Y4=-1®I®1=-F. (5.22)
Using the basis (5.22) we can see the super-admissible bilinear forms are related by
Ba(e0) = Pr(Z20),  B3(e) = u(Zsy0),  Bal) = Bu(ELy, ). (5.23)

The Schur algebra can be written as the direct sum C(S) = C(S), @C(S)- x H' @ H' with

the projectors
1
P (lelelzlelel) (5.24)
Such that P.C(S) = C(S).. The individual H' factors are then spanned by the operators

l,=P.(1eol1®l), ILL=P.(1elsl), (5.25)
Ji=P.(1®1®J), K.=P.(1®1l®K).



Chapter 5 — Four-dimensional Superalgebras and Vector Multiplets 201

This provides an alternative basis for the Schur algebra but it does not consist of ;-
admissible elements. This is because o(g) = +1 and 04(I) = -1 so that I, J, and K.
do not have a definite f;-symmetry, as the first factor of each is (1 £ 1I).

Using the admissible basis, we find the following collection of invariants for each Schur

algebra basis element

A | 7(A) |95 (A) | 05 (A) | 08(A) | 95,(A)
Id + + + + +
7 + - + + -
Is + + + - -
15 + + - + -
E - + + + +
BT - - + + -
ET, - + + - -
EIg - + - + -

Table 5.11: Type 7(A) and B;-symmetry o, (A) of the Schur algebra C(S) basis elements
A.

Again we calculate og,(A)7(A) to determine the effects of the Schur algebra on the

space of superbrackets, in doing so classifying the space of superbrackets.

A | 05 (A7(A) | 08,(A)7(A) | 05,(A)T(A) | 95,(A)7(A)
1d + + + +
Il - + + -
Lo + + - -
75 + - + -
E — - — —
ET, + - - +
ETy - - + +
FI; - + - +

Table 5.12: 0,(A)7(A) = +1 of the Schur algebra C(S) basis elements A.

It is worth noting that the contents of the tables of invariants in Minkowski and neutral
signature are superficially the same, this is a coincidental occurrence and not reflective
of any underlying properties. Indeed the explicit form of the Schur algebra basis and
the resulting bilinear forms are different. The tables are repeated here to make this

section self-contained.
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I, Stabiliser
<1.,E,EL, ET; >= R & sI(2,R)
<I3,FE,FT,FIo, >~ R @5[(2, R)
Hgg <1y, FE,FE1,,E13 >§R@5[(2,R)
<T,I5,75, F >2 R @5[(2,R)

Table 5.13: Stabiliser Lie algebras of the basis of superadmissible bilinear forms Ilg,

Though the details are identical, the resulting algebras are different as now E? = +1
so that it generates a subgroup isomorphic to R>?. The other generators produce a
subalgebra isomorphic to s[(2,R) = s0(1,2). The full R-symmetry group according to
Table 3.10 is GL(2,R), which is validated here as gl(2,R) 2R & sl(2,R).

FE acts trivially on all superbrackets so if one only considers isometries the effective

action of the Schur group to be
C0y(2,2) 2R x S0y(2,2) c C(S) = GL(2,R) x GL(2,R). (5.26)

However, neutral signature spacetimes allow anti-isometries that exchange the space-like
and time-like direction. We can realise anti-isometries in this model as: & = Py + J_,
that interchanges Ilg, <« Ilg, and llg, < Ilg,, and §& = P_ + J,, that interchanges
IIg, <> 1, and Ilg, <> ~Ilg,. These are in the Schur group, so that the total effective

action of the Schur group is
000(2,2) U£1000(2,2). (527)

Once again, we see the Schur group acts as the linear conformal group associated with
the spacetime signature. Identifying the space of superbrackets with R?*2 one finds that
IIg, and Ilg, are time-like directions and Ilg,, IIg, are space-like.

S0y (2,2) has four orbits: the open orbits of space-like and time-like vectors, the three-
dimensional orbit of non-zero null vectors and the origin (which once again corresponds
to the trivial supersymmetry algebra). The stabiliser of space- and time-like orbits is
SOp(1,2) = SL(2,R, which contained within the R-symmetry group GL(2,R). & ex-
changes space-like and time-like vectors so that under the Schur group there are only

three orbits.
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The orbit of null vectors can be explored in the same manner as in Minkowski signature.
Without loss of generality we consider the superbracket 111 (B1+82)" The bilinear form
2

can be written
1 1 1
S(Br+B2)=5(9@9r®(9+95))=g®greg|5(1+J) (5.28)
J? = +1 so we can construct the projectors
g 1
P} =§(ﬂ®]l®(]lj:<])) (5.29)

that project onto the +1 eigenspaces of (1 ® 1 ® J). The four-dimensional projected
space P’S is in the kernel of II L(B1+pa)? and supercharges therefore live on P/S = Sg.
This is the unique A = 1 superalgebra in terms of Majorana spinors in signature (2,2).
The stabiliser group of I1 1(61+62) is generated by E. E? = +1 so the connected compo-
nent of this group is isomorphic to SOy(1,1). Again this aligns with Chapter 3 where
we calculate the R-symmetry group to be SO(1,1).

Once again we remark that the R-symmetry group of the supersymmetry algebras is
associated to the stabiliser of the corresponding orbit, which is SO(1, 1) for the N' =1 al-
gebra and SO(1,2) 2 SL(2,R) for the A/ = 2 algebra. Similarly to Minkowski signature,
the full R-symmetry group contains an additional Abelian factor, but the non-Abelian

factor is the stabiliser of the associated orbit.

Finally, there is no orbit associated with a possible N = 1/2 algebra whose supercharges
are Majorana-Weyl spinors. This agrees with the fact the vector-valued bilinear forms
are orthogonal, with ¢(8;) = +1. Therefore one cannot define a superbracket with a

single Majorana-Weyl spinor.

5.2.3 Euclidean Signature

In both Euclidean signatures (using our conventions where min(t, s) is time, we inter-
pret both (0,4) and (4,0) as being Euclidean) the Clifford algebra is Cly 4 = Cly o = H(2)
and the real spinor module, which is equal to the complex spinor module due to lack
of real structure, is Sg =S = H2. The real spinor module decomposes into two inequiv-
alent semi-spinor modules, Sg = Sgy + Sr_, as does the complex spinor module and
the corresponding semi-spinor modules are equal Sg, = S.. This can be seen from the

even Clifford algebra, Cl8’4 = 2H, which further implies the existence of two quater-
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nionic structures on S that are also a quaternionic structure on S; alone. Under these
structures the Weyl spinor modules are self-conjugate, i.e. Sy = S, (in the language
of Chapter 3 this means the structure is Weyl compatible). Therefore one can have
symplectic Majorana-Weyl spinors. The complex spinor module is therefore also self-
conjugate. There is no real structure so one cannot define Majorana spinors. The Schur

algebra of the real and complex spinor module is
C(S) =C(Sr) = 2H, (5.30)

and the Schur group is therefore C(S)* = 2H".

Therefore it is natural to work with a spinor module that is a pair of quaternions acted
upon by quaternionic matrices. Recall that in Chapter 4 we used a similar representation
of Clp 5 in terms of quaternionic matrices acting on spinors that were elements of S 5) =
H?2. Indeed, the two are related directly by dimensional reduction, and we can then use
the ~* for i = 1,2, 3,4 from before 3:

v'=D +*=DEL; ~*=DEL; ~*=DEIL,. (5.31)

Where D and E were anticommuting involutions acting on H? given by

D:(O 1), E:(l 0). 5:3)
1 0 0 -1

7° has been removed and is proportional to the chirality matrix
Ve = 71727374 = —E. (5.33)

We see that E acts proportional to the identity on the summands S = H + H, which are

identified with the semi-spinor modules S=S, +S_. =— S, =H

spin(4) is generated by

7172 = FL;, ,7173 - EL], 7174 =FLy;, (534)
Yy =-Ly, Yy*=L;, ¥*v'=-Ls

*Note that this representation differs from the representation in [3], where we used the dimensional
reduction of a Cl; 4 algebra, while in this thesis here we used the dimensional reduction of a Clys.
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We see that this acts exclusively by left multiplication and does not mix the semi-spinor
modules. This has fewer elements than spin(5) signature, so naturally, we expect the

Schur algebra to be bigger. Indeed we now notice that as before in (0,5) the operators

T,={I,J,K}, a=1,2,3, (5.35)

commute with spin(4) but so do EZ, due to the removal of any elements containing the

matrix D. The Schur algebra is therefore

C(S) = C(SR) =<1, F1, >algebra= 2H. (5.36)

Previously we used the Spin(5)-invariant bilinear form

<q,p>=q'p' +qp° (5.37)

This is restricted to be Spin(4) c Spin(5)-invariant by interpreting it as the direct sum
of the bilinear form on each factor H individually, forbidding mixing of ¢! € S, and
¢®> €S_ (and p' and p?). As we have already seen spin(4) does not contain any elements

that mix the semi-spinors. We write

h:-HeH - R (5.38)
h(q,p) = Re < q,p >= Re(qp), ¢,peH

So that our canonical admissible bilinear form g = h @ h. This is symmetric and has
definite type 7(g) = +1 (for the same reasons as the (0,5) Clifford algebra), so it is an
admissible bilinear form. As o(g)7(g) = +1 it is super-admissible and can be used to

define a superbracket.

The larger Schur algebra means the space of admissible bilinear forms is also larger, both
now being 8-dimensional. L, and R, are isometries of the standard scalar product that
square to —1, so they must be g-skew. D and E are isometries of g but are involutions
so they are g-symmetric. L, and R, commute with all operators, while D and £ anti-
commute. Using these facts we can calculate all the invariants listed in the table below

for each basis element of the Schur algebra
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A | 7(A) | 04(4) | o(A)7(A)

1d + + +

Il - + -
1273 - - +

E + - +
ET, - - +
E.’Z,-273 - + -

Table 5.14: Type 7(A) and B;-symmetry o, (A) of the Schur algebra C(S) basis elements
A.

We see that all eight bilinear forms are admissible (so they form a basis of all admissible

bilinear forms) and four are super-admissible. They are

{62|Z = 1727374} = {g(a ')7 g(IQ'v')v 9(1.3'7')7 g(EIl'a )} (539>

The associated superbrackets, IIg, are a basis for the space of symmetric Spin(4)-
invariant vector-valued bilinear forms on S, which is equivalent to the space of Poincaré
Lie superalgebra structures. Once again we wish to study the action of the Schur alge-
bra on this space to determine the orbit structure and in doing so the number of distinct

superalgebras.

To calculate the invariants we used

+o,(A) if [A,B]=0

—o,(A) if {A,B}=0 (5.40)

O—g(B',-) (A) =

A | 7(A) | 08,(A) | 05, (A) | 05,(A) | 08,(A)
1d + + + + +
I + - + + -
I - - - + +
I3 - - + - +
E - + + + +
EL - - + + -
El, + - - + +
El3 + - + - +

Table 5.15: Type 7(A) and B;-symmetry og,(A) of the Schur algebra C(S) basis elements
A.
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Calculated in the following table are all values of og,(A)7(A):

A |05, (A)T(A) | 05, (A)T(A) | 05,(A)7(A) | 05,(A)7(A)
Id + + + +
A - + + -
I + + - -
I3 + - + -
E - - - -
ET; + - - +
FEI, - - + +
e - + - +

Table 5.16: 0p,(A)T(A) = +1 of the Schur algebra C(S) basis elements A.

This gives us the stabiliser algebra for each superbracket:

I, Stabiliser
<T,BE,FI,,FI3>=Ra® 5u(2)
Hﬂz <13, FE,E1,,E1, >;R®5u(2)
<Io,E,FI|,FI3>>Ra® 511(2)
115, <T1,I5, 15, FE >2 R & su(2)

Table 5.17: Stabiliser Lie algebras of the basis of superadmissible bilinear forms Ilg,

Id rescales the bilinear forms. F generates the one-dimensional kernel of the repre-
sentation, acting trivially on all brackets. Factorising this from the Schur algebra we

obtain
<1d,7,,ET,>>Resu(2) @su(2) 2 Reso(4), a=1,2,3. (5.41)

The SO(4) group acts in a four-dimensional irreducible representation. Each su(2)
factor acts non-trivially, so this is the vector representation. The Schur group then
effectively acts as the linear conformal group CSO(4) = R*xSO(4). Once again we see

the space of superbrackets can be identified with the spacetime R»* = R%?* in this case.

SO(4) has two orbits, the open orbit of non-zero vectors and the origin. The origin

gives the trivial superalgebra.

Each of the superbrackets on S has a stabiliser Lie algebra of R +su(2) x R @ s0(3)
u*(2), as expected in (0,4) where the R-symmetry group is U*(2). The orbit of non-

zero vectors has stabiliser group SO(3). We see once again the non-abelian factor of
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the R-symmetry group is the stabiliser group of the corresponding orbit. Therefore
there is a single unique N = 2 superalgebra in Euclidean signature up to isomorphism,

corresponding to the orbit of non-zero vectors.

In summary, we see the space of N = 2 superbrackets in all four-dimensional signatures
is parameterised by the same vector space of the underlying space-time, R, in all
signatures. The types and number of distinct superalgebras correspond to the orbit
structures on the group SO(t,s), with the R-symmetry being the stabiliser group of
these orbits (times an additional factor). This is not a general feature of supersymmetry
algebras, just a coincidence in four dimensions. For example in (1,7) the superbrackets
exhibit the same RY? structure (we can see this because again in (1,7) we have U(2)

and U(1,1) R-symmetry once more).

5.2.4 Dimensional Reduction

The unique super-admissible bilinear form on S, ;) was given by Re[A] for t=0,1,4,5
and I'm[A] for t = 2,3 where A, ) is the Spiny(t, s)-invariant sesquilinear form defined

by its Gram matrix, also called A )
Ay (A x) = ATAg g x- (5.42)

This sesquilinear form is also Spiny(¢’, s’)-invariant for ¢’ + s’ = 4, provided ¢’ < ¢ and
s’ <t such that Sping(t',s") c Sping(t, s).

We can relate the five-dimensional A .y matrix to the four-dimensional A oy matrix
and write the five-dimensional sesquilinear form as a Spiny(t', s")-invariant bilinear form
on Sy ¢y 2 C*. Taking the real or imaginary part of this will give super-admissible bi-

linear form on S, oy that we can relate to the previous chapter.

Let m be the standard sesquilinear form on C*, m(\, x) = ATx. We see that A,y (50) =
m(:, A(t,s)). For each signature m(:,-) can be related to the bilinear form given in the
particular model (which varies depending on signature) and by writing A ) in terms
of four-dimensional quantities one can relate the bilinear form to a super-admissible

bilinear form obtained in these models.

The y-matrices generating Clps will be called I'y,...,I's. Our conventional choice is
that I'1...I's = 1. The other five-dimensional Clifford algebras, Cl; s, will then be the
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first ¢ generators replaced with I'; = —iI';. For example the generators of Cly3 are

F/17F,2ar37r4ar5-

Four-dimensional y-matrices will be written with lower-case . They will be related to

the five-dimensional I'’s in a case-by-case basis.

Time-like dimensional reductions are always performed over the 1-direction and space-

like reductions always remove the 5-direction.

Reduction (0,5) — (0,4).
We relate the Clifford generators as

F,u = ’7}“ ,U = 1a 2a3747 (543)

where we have removed the 5-direction as we have reduced over a space-like direction.
The removed I's =I'7...I'y is then equal to the chirality matrix v, = I's = —F in terms of

quantities in the Section 5.2.3.

A(075) = A(0,4) =1 so that
Re[A5)(--)] = Re[m(-,-)]. (5.44)

The model in Section 5.2.3 used spinors that are elements of H?. Knowing that H? =~ C?,
we can express the bilinear forms on H? as bilinear forms on C*. Writing ¢’ = u’ + v

and p’ = w' + 25, with u,v%, w’, 2% € C we see that
9(¢,p) = Re[a'p" + @p*] = Re[Z'W'] = Re[m(Z,W)], (5.45)

with Z7 = (u!, v, u?,v?) e C* and W' = (w!, 2',w?, 2%) € C*. Therefore (0,4) algebra
obtained from the dimensional reduction of our (0,5) superalgebra corresponds to that

defined using (1 in the previous model.

Reduction (1,4) — (0,4)

The y-matrices are

Yo =Tps1, p=1,2,34. (5.46)
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As we reduce along a time-like direction the A matrices are different:
A(174) = Fll = —iFl = —i’yl...’)/4. (547)

In the quaternionic model E operates as —71...v4 and multiplication by i on C* corre-
sponds to right-multiplication R; = I = Z; on H? = C*, so that A(1,4) corresponds to the

operator EZ;. One can show
Re[Aq1,4)(-,))] = Re[m(-, A(1,4)')] = Re[m(, EZy")] = —g(-, ~ET1) = Bu, (5.48)

where g and m are related as above. 4 is another basis element in the space of super-
admissible forms, but it is in the same orbit as ; (all super-admissible bilinear forms

are in the same orbit in (0,4)) and we can use A = ﬂ:%(]d— E7,) to map (3 to f4.

For time-like reductions the chirality operator is
Yo =i0] =T9..T5 = y1...74, (5.49)

so that F once again corresponds to —7y.. To link to [20] we can write I} = o so that

Y+ = iyg as before.

Reduction (1,4) - (1,3)

As is convention in (1,3) signature we will call the time-like direction 0 and the space-
like directions 1, 2,3 so that

Ti=9%, D=7, =123 (5.50)

A space-like reduction keeps the A matrix the same, so that A 4y = A(1.3) =70 70 acts
as I ® K ® 1 in Section 5.2.1.

We can write 2% € C* as 2' = 2' + 3* and w' = v’ + iv® with u’,v", 2%, y* € R such that
Re[m(z,w)] = z'u’ + y'0'. (5.51)

The right-hand side is equivalent to the standard symmetric bilinear for on R®. The
model in Section 5.2.1 is in terms of R2®@R2®@R? 2 R® and g ® g ® ¢ is the standard

bilinear form on R®. The real part of m is therefore equivalent to ¢ ® g ® g.
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The real part of the Dirac sesquilinear form is then

Re[A(1,4)(,)] = Re[m(-, Aqay)] = 9( ) @ g( K) ® g(+,-) = =fo. (5.52)

By belongs to the time-like orbits under the Schur group R>?-SOqg(1,3) which have
R-symmetry group U(2).

In a space-like reduction the chirality operator is
Y% =I5 =01 Tol'sT4 = iv97172793 = Vs, (5.53)
where we have defined 75 = 79172773 to match up with the definitions found in [20].
Reduction (2,3) — (1,3)
After removing the 1 direction, we set
Y0 =T5 vi=Tia, i=1,2,3. (5.54)

The two A-matrices are Ay3y = I'1I'y and A 3) = 70. In this representation I'} =
TiTsT4Ts = v0y17273. The conventional choice for . = ivpy1727374 80 we can write

Agazy = T1T% = ~ivey0 = i0.- (5.55)

v+ = —F in Section 5.2.1, where E=1® J® 1, and 79 =1 ® K ® 1 so in total v,y =
-I®9K®l.

Im[Ag3)(,)] = Im[m(-, Aa,3))] = Im[m (-, —iv:70) ] = Re[m(-,v:70)].  (5.56)

Re[m] is equivalent to g ® g ® g and therefore

Im[A(Q,S)('v )] =g ®g(~,]-) ®g(-,I') = Bs. (5'57)

Ps is in the space-like orbits (with stabiliser group SOg(1,2)) that have a U(1,1)
R-symmetry group. Therefore the two predicted (1,3) superalgebras with U(2) and
U(1,1) R-symmetry groups can be realised as the reduction of a (1,4) and (2,3) su-
peralgebra. This confirms the analysis of Chapter 3, and follows logically because the
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R-symmetry group of (2,3) N =2 theories is SU(1,1) ¢ U(2).

Reduction (2,3) - (2,2)

We now work with the convention that the four-dimensional 1,79 are time-like and

3,74 are space-like; we set
v =T1, 72=0% =03 =TI (5.58)
The reduction is space-like reduction Ay 3) = A(29) = 7172. We see that
Im[A(23)(+)] = Im[m(-, Aa,3)')] = Re[m(:, —iv172°) |- (5.59)

The model Section 5.2.2 y1v9 = I®@1®1 and multiplication by ¢ corresponds to 11 ®1.
Again Re[m] =g ® g ® g and we obtain

Im[A(Q,?))("')] =-g(~I)®g(,")®g(-, 1) =P (5.60)

Due to the presence of anti-isometries (2,2) signature superalgebras only have a single
N =2 orbit (that of time-like and space-like vectors) with R-symmetry group GL(2,R),

which we obtained here.

The chirality operator is
Y = F5 = 1“1...1“4 =—=Y1---Y4- (561)

Reduction (3,2) - (2,2)

The y-matrices are related by
n=Ty 12=T% 7y=T4 =I5 (5.62)
The volume element is
Ve = =71727374 = ~L5T3T4 05 = il']. (5.63)
So that A(g 3y = T1T'5T'y = —iv.y172. Therefore

Im[A@3) ()] = Im[h(-,TT5T%)] = Re[h(-, il T5T%)] = Re[h(:, —v+m1v2:)]-  (5.64)
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In the model in Section 5.2.2 v, = -F = -I®I®1 and 7172 = -1 ® 1 ® 1. Re[m] is
equivalent to g ® g ® g and we get

Im[A2) ()] =-9(-) @g( I)®g=p1. (5.65)

B1 is in the single orbit of space- and time-like vectors with R-symmetry group GL(2,R).
As we already knew, dimensionally reducing a (3,2) or (2,3) superalgebra to (2,2)
results in isomorphic superalgebras as there is only one family of N = 2 superalgebras

in (2,2) up to isomorphism.

5.3 Doubled Spinor Formulation

Now we turn to describing the possibilities for N = 2 four-dimensional supersymmetry
algebras in the formalism of Chapter 3. All information can be found in Chapter 3
but is repeated here to make this chapter self-contained. Doing so leads to physical
theories with manifestly R-symmetric spinors and provides another working example of
the formalism. Compared to five dimensions there are many more possibilities in four

dimensions, providing a natural step-up.

Now that we are in even dimensions there are two charge conjugation matrices with two
associated bilinear forms. The four-dimensional charge conjugation matrices are C_
with invariants (o_ = —1,7_ = +1) and C, with invariants (o, = -1,7. =-1). o_7_ = -1
so that a super-admissible bilinear form on S®C? is given by C_®.J; = C_®c. The other
Majorana bilinear form is super-admissible, o7, = +1, so another super-admissible bi-

linear form on S ® C? is given by C, ® 4.

In even dimensions there are two corresponding B matrices that each define a Sping(¢, s)-

invariant e-quaternionic structure on S
T (N) = a* BIA. (5.66)

Both Jie)(a) and J9® are Weyl-compatible, i.e. J(E)(O‘)(Si) € S., or Weyl-incompatible,
J©O)(S,) e Sz. Recall signatures in which Jie)(a) and J9®) have the same ¢ value
are Weyl-compatible (both are quaternionic or para-quaternionic structures), and when
their € values are different the signature is Weyl-incompatible (one is a quaternionic

structure and the other a paraquaternionic structure).
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(0,4) and (4,0) are Weyl-compatible signatures with B} B, = —1. Therefore only the
standard symplectic Majorana reality condition is possible, with either choice of B

matrix:
(\)* = aBNej;. (5.67)

In the Minkowski signatures (1,3) and (3, 1) are Weyl-incompatible and have B} B, = +1
and B*B_ = —1. Therefore the following reality conditions on S ® C? are possible:

()\Z)* = OéB,)\jEji, ()\Z)* = CMBJr)\i = ()éB+)\j5ji, ()\Z)* = ozB+)\j(Il,1)ji. (5.68)

Finally in (2,2) Jf)(o‘) are Weyl-compatible and both have ¢ = +1. We can therefore

have reality conditions of the form
(A = aB A =aB Ny, (M) = aB N (I1) i (5.69)

As we did in five dimensions, when writing reality conditions we will use the off-diagonal

(0 ) (510

instead of I7 ; as this is the form found in the papers [2] and [3]. They are related by

matrix

the map found in Section 4.4.

In (0,4) and (2,2) the choice of bilinear form and reality condition is irrelevant as all
choices of bilinear form and reality condition lead to isomorphic supersymmetry alge-
bras with the same R-symmetry group. In (1,3) both the reality condition and bilinear
form together determine the R-symmetry group and we do not always end up with
isomorphic superalgebras (there are two families, one with U(2) and one with U(1,1)

R-symmetry). Isomorphisms are described later in Section 5.7.

Not all these supersymmetry algebras (combinations of bilinear form and reality condi-
tion) are realised by dimensional reduction of five-dimensional supersymmetry algebras.
This is similar to the previous section where different reduced theories ended up with
different four-dimensional supersymmetry algebras based on different bilinear forms,

though now we are framing this analysis in the doubled spinor framework.
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5.3.1 Supersymmetry Algebras Obtained by Dimensional Reduction

To derive four-dimensional theories from the five-dimensional theories we first need to
discuss the dimensional reduction of the constituent matrices, A, B, C, involved in the

definition of the bilinear forms and reality conditions.

Note that the conventions in this section are different from those in the previous Dimen-
sional Reduction part in Section 5.2.4. Here we use a convention where the y-matrices
for the 5D theories are always 7y to 74, removing the 0 or 4 direction when we perform
a time-like or space-like reduction respectively. The four-dimensional v matrices are

then the remaining 1, ...,v4 or 7o, ...,73.

5.3.2 Dimensional Reduction of A, B,C.

In the following always ¢t + s = 5. In 5 dimensions the charge conjugation matrix corre-
sponds to the C_ in 4D

oo =c? (5.71)

When we reduce across a space-like dimension, the reduced direction will be assumed to
be 74, and for time-like, it will be 7y. The projection matrix can be found to be 7, = 75
for a space-like reduction or 7, = iy for a time-like reduction*. Where it is clear the
4 superscript will be omitted, especially as only four-dimensional charge conjugation

matrices will be written with + subscripts.

As a result of this, all four-dimensional supersymmetry algebras obtained in this form
have a superbracket defined using the bilinear form C* ® e. Where applicable later we
will give isomorphisms to equivalent supersymmetry algebras with superbracket derived
from C% ® 4.

The five-dimensional A matrix in signature (¢, s) contains both the (¢,s-1) and (t-1, s)

A-matrices (provided t—1<0or s-1<0) :

AW LA = A1) _ A1) (5.72)

“Chosen to match with [20]
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Similarly, the inverse contains the two corresponding inverses
(AED) ! = (21) e = (AGSD) = (ACD) g = (1)l (AT (5.73)
This means that the B matrices reduce for a space-like reduction as
B®2) = (CO(AL) T = (CH(Al="D)y T = D), (5.74)
And for a time-like reduction, we obtain
BUS) = (03 (AG) )T = (1) (Chp (A1) )T (5.75)
After a time-like reduction v, = ivp and C%vy, = C?, so this can instead be written
— B = (<) (~icH AN T =~y (5.76)

5.3.3 Five-Dimensional Supersymmetry Algebras

The five-dimensional supersymmetry algebras were defined in Section 4.4 In five di-
mensions we have a single Majorana bilinear form, which is a ‘C_’, i.e. 7(C) = +1.
o(C) = -1 so that on S ® C2 one has to use the super-admissible bilinear form C' ® ¢
and there is no other possibility. The reality condition is signature-dependent, and is

contained in the following table (which is repeated from Section 4.5)

Reality Condition
(0, 5) ()\Z)* = B)\j{:"ji
(1,4) ()\Z)* =—B)\J€ji
(2, 3) ()\z)x— = iB/\Jnij
(3,2) | (\")" =—iBNn;;
(4,1) ()\Z)’r :B)\Jgji
(5,0) (AZ)* = —B)\]Eji

Table 5.18: Reality condition in each five-dimensional signature, B = (CA™)7 is signa-

ture dependent.

Four-dimensional Reality Conditions

Using the above we obtain the following reality conditions in the four-dimensional sig-
natures. Here I have introduced the notation (f, s) that signifies the theory is a (-1, s)

signature theory obtained from reduction from (¢, s) and similarly (¢, ¢) which signifies
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the spacetime of the theory has (¢, s—1) signature and was derived from the dimensional

reduction of a (¢, s) theory.

Reality Condition
(0,3) | (\)* = B_Neji
(1,4) ()\Z)* = —iB+)\j€ji
(L0 [ () =-B Ve
(2,3) | (\')" =BV
(2,2) | (\)"=iB_Nn;
(3,2) | (X\')" = B: N
(3,2) | (\)"=—iB_Nn;
(4, 1) (/\1)* = —iB+)\J€jZ’
(4,1) | (X\')" = B_Ney;
(5,0) (/\Z)* = —iB+)\j€ji

Table 5.19: Reality Condition in each four-dimensional signature, B = (CA™)7 is
signature dependent.

In all four-dimensional theories obtained from dimensional reduction the bilinear form
on S® C? is always C* ® . All doubled spinor constructions (the pair (Bilinear Form,
Reality Condition)) in (0,4) and (2,2) are isomorphic, with U*(2) and GL(2,R) R-
symmetry respectively. The two (1, 3) theories are not, with that coming from (1,4) be-
ing in the U(2) R-symmetry group family and that from (2,3) has U(1,1) R-symmetry.
The following section will catalogue all possible doubled spinor constructions in each

signature and where possible give maps between them.

5.3.4 (0,4)

In all (0,4) N =2 theories, no matter the choice of reality condition and bilinear form,
the R-symmetry group is U*(2) = R>? x SU(2). All choices are isomorphic and maps

between them are provided.

There are two choices for C' (with C, forcing M = § and C_ forcing M = J) and two

for B that both lead to quaternionic structures, which means we can only have reality



218 Chapter 5 — Four-dimensional Superalgebras and Vector Multiplets

conditions with L = e. They are collected in the table below °:

C_®e, (\)*=aB_XNej < (0,3)
C_®e, (V)" =BBej< (1,4)
Cy®6, (¢')" =yB-¢leji
C,®0, (£)*=06B,fey;

Gr=U"(2) — (5.77)

We can see that to map all we need two types of transformation: one that interchanges
B_ and By in the reality condition, while leaving the vector-valued bilinear form alone,
and one that changes the vector-valued bilinear form from C_ ® ¢ to C; ® 4, leaving
the reality condition alone. By composing these maps, we can then relate all four real

superbrackets possible within the doubled spinor construction.

Reality Condition Map, R

This is an example of the R map from Chapter 3 applied to the case of an isotropic
Weyl-compatible supersymmetry algebra, more details can be found in this chapter in
Section 3.10.2.

We want an isomorphism that changes B_ with B, in the reality condition, and preserve

the bilinear form, i.e. mapping between the doubled spinors A’ and 9° in (5.77).

Given a doubled spinor \* with reality condition

(\)* =aB_NLj; (5.78)
and a second doubled spinor, 1%, that obeys

(1')* = BB Ly;. (5.79)
We wish to find a linear transformation A\’ - 1*. We make the ansatz
1

S(al + by )y’ (5.80)

)\’:\/_

5The names of each spinor have no specific meaning, they are just for keeping track in the following
section.
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Assuming a # +b, so that al + by, is invertible

Y= %(a*l + b )N, (5.81)

with a,b € C with |a|® + [b|? = 2 and ab* + a*b = 0.

With this ansatz we find

()" = %((n by ) (V) = %(al +by)aB N L, (5.82)

1 . 1 .
=—aB_(al +bv.)NL;; = —aB.(avy. +bL)N L.
\/5 ( 7) j \/5 +( Y ) J

This calculation used that in (0,4) signature v, B- = B_~, = B,. Comparing this to

1

ﬁﬁ&(m + by )N Lj; (5.83)

(¢¥")* = BB Ly =

we see that a, b, a, 8 must obey

ab=a"B, aa=bp. (5.84)

This is implies that |a| = |b]. This equation can be solved by requiring a = 1, b = g
Additionally we required that |a|? + |b]> = 2 and ab* + a*b = 0. From Table 5.19 we see
the phases of the two reality conditions obtained from dimensional reduction satisfy
B = —ia, and as they are phases |§| =1 so both of these equations hold. Therefore a =1

and b = —7 so that
1
V2

1

A=
V2

(L—iy )y = ¢' = —(L+ip )N (5.85)

One can easily show that under this change the transformed quantities have the same

chirality as the previous spinors

1

Yethe = Yu \/5(1 i )AL = —= (1 + 07 )7 AL = 2L (5.86)

V2

Either vector-valued bilinear form, regardless of choice of C' or M, is unchanged under
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this transformation:
. . 1 . ; . .
(vaZ)TCiXJMji = §(ym(1 +iv )Y )TC'i(l +17.) QY M,
=5 )T((v )TCs =7 (VM) Come + iy (V™) Ce + iy )TCw*)QJMj‘ (5.87)
=(y"") T CLY M.
Where we have used that v,Cy = Cyv. in (0,4) and defined €2 from yx analogously to

how %) is defined from A. The vector-valued bilinear form is the same in terms of A’ and

", so this transformation only exchanges the reality conditions.

Caution is needed, however, as this does not mean the regular scalar-valued bilinear

form is invariant. This transforms as
) ) 1 . ; . )
(AT Cux? My = 5((1 + i )P ) T Cu (1 + iy )Y M
1 . )
=§(¢I)T(Ci _'Y*Ci’}’* +i’Y*Ci +iC¢’Y*)QJMj' (5.88)

=i(¢") " Oy ¥ Mj;

This occurs in the Lagrangians of the two (0,4) theories resulting from dimensional re-
duction, detailed in Section 5.6. This is dealt with through further reparameterisations

of the field content. See this section for more details.

Writing this transformation in terms of Weyl spinors
1

V2

1

No=—(1-ip)y', = A= ﬁ(lﬂ')wi (5.89)

this can be translated into matrix notation:

)‘I = RIija R=

= — 5.90
V20 0 1+i 0 (5:90)
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Bilinear Form Map, S

Note — this is map S found in Chapter 3 applied to the case where K = 2.

If we wish to map the complex vector-valued bilinear forms [C_®¢] to [C ®d] together
whilst retaining the reality condition. In (5.77) this corresponds to transforming A’ into
#" or ¥ into &'. As we have shown that A\’ can be mapped to ¥ we can just map A’ to

¢* without loss of generality.

To do this, it is useful to use matrix notation. Recall the vector-valued bilinear form

given by [C_ ® £] is written

A ANTC X eji + (AT O\ ey (5.91)
. . 0 €4 Xj 0 -eY[x
i\T i\T Ju +1 _ L A
> ((vAL) ,(v“M))C—(eﬂ 0)(Xj)—(m+,m)c_(_6 0)(£)

Using C_Ay = C_ (v A:) = £C1 A\, this can be recast into a vector-valued bilinear form

using C',:

rnrn)e (D)) brnrnte () ) e

The vector-valued bilinear form [C ® §] in matrix notation is

(v2,."0_) Cs (]? ]é) (%) (5.93)

We seek a linear transformation that relates A’ and ¢!. We find

0 e 0 1
M=gl ¢/ — g7 S = . 5.94
g0 0 Lo (5.94)

This is solved by

1 0
S:(O _g) (5.95)
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Explicitly in terms of the components, this is

X = ¢! (5.96)
)\Z_ = (}5{'6]'1'

S is block-diagonal, so it manifestly preserves chirality. Up to this point, the map
can be used regardless of signature, though it does not necessarily preserve the reality
condition (we will use it in (1,3) signature too, where the reality condition will also
change). In (0,4) the reality condition is Weyl compatible, and we see that ¢’ has the

same reality condition as A%, provided o = 7. ¢ satisfies
(1) = (BN epi)eji = aBAL = aB.¢ e ;. (5.97)
Which once again requires a = 7.

One can show this behaves identically for 1° and ¢ provided 8 = 8, as expected as
the transformation does not act on the spinor indices so that B, or B_ in the reality
condition is irrelevant. Therefore this mapping preserves the reality condition for either

choice of B matrix, interchanging C, ® 6 and C_®«¢.

Summary for (0,4)

The following diagram summarises the situation, where S is the map that exchanges
vector-valued bilinear form, named after the matrix representing the linear transforma-

tion in the matrix notation, and similarly R is the reality condition exchanging map.

(C-®e,(N)* =aB-Ngj;)

(C_®¢e, (V") = BB.ej;)

S S

(Cy®6,(¢")" =yB-¢eji) (Ci®6,(£)" = 0B.8¢j:)

5.3.5 (1,3)

(1,3) is an isotropic and Weyl-incompatible signature, with J, a para-quaternionic
structure and J_ a quaternionic structure. The existence of a real structure allows an

N =1 algebra made from Majorana spinors, but as it is isotropic no ‘N = 1/2 algebra



Chapter 5 — Four-dimensional Superalgebras and Vector Multiplets 223
whose supercharges are Majorana-Weyl spinors of a single chirality.

Isotropic, Weyl-incompatible signatures have U(p,q) R-symmetry group, so for N = 2
algebras we can have U(2) or U(1,1) R-symmetry. As shown previously, a supersym-
metry algebra with U(2) R-symmetry is obtained from reduction from (1,4) and the

reduction from (2,3) results in supersymmetry algebra with U(1,1) R-symmetry.

We have two choices for bilinear form, as in all four-dimensional signatures they are
C;®0 and C_®e¢, and three choices for reality condition when N = 2, with L = {8, I1 1,¢}.
In the following section we will use the diagonalised form of I7 1, n which is the matrix
defined in (5.2.3).

Standard N =2 superalgebra, G = U(2).

Two combinations result in a U(2) R-symmetry group, namely the usual writing in term

of symplectic Majorana spinors and Majorana spinors. To summarise:

C e, (N)* =aB.Ney < (1,
Gr=U(2) — s (A)T=aBNei < (LA (5.98)
C.®6,  (U)*=BB,U.

In this chapter, we use the symplectic Majorana description to write the Lagrangians

in Section 5.6. Derivations in terms of Majorana spinors can be found in [39].

These two descriptions are therefore isomorphic, and maps between them are already
known, though using S from the previous section we can give a marginally more elegant

map.

The original manner of relating symplectic Majorana and Majorana spinors, found in

the appendix of [20], is to set

A= %(\Pl —i0?), (5.99)
A= iBi&(\lﬂ +i0?). (5.100)

V2a

One can show that U’ obeys the correct reality condition. One finds the vector-valued
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bilinear forms are related by

B1e. @ 6](vw,0) (5.101)

«

[C-®e](v"AX) =

In our prescription, the vector-valued bilinear form restricted to the real points of their
respective reality condition is real, so g should be real, though obviously setting o = 3

allows this to two vector-valued bilinear forms to be totally equal.

It was already demonstrated that S exchanges the vector-valued bilinear forms C, ® §

and C_ ® €, but it interacts differently with a Weyl-incompatible reality condition:

(T)* =(\)" =aB Neji = -aB ¥’ =aB, ¥’ (5.102)
()" = ~(N)*eji = —aB_Neyieji = aB_\. = aB ¥’ = aB, ¥’ (5.103)

Here we used that B.vy. = Bz, which is true in all four-dimensional signatures. We
see correctly that the map S exchanges the symplectic Majorana and Majorana reality

conditions, with phases « = 3, while simultaneously exchanging the bilinear forms.

Twisted N =2 Superalgebra, Gr = U(1,1)

The remaining four choices all have a U(1,1) R-symmetry group. Each no longer has

the same matrix for the bilinear form and reality condition, M and L. They are:

C_®e¢, (A)* = aB X
Gr=U(1,1) — C-®s W)* :5B+¢f777ﬂ&(2’3) (5.104)
C,®9, (0")" =vB.¢’nj;

C, ®6, (fl)>€ = 5B_§j5ji

S and T are useful again here. S exchanges the bilinear form but does not leave the
reality condition invariant. Applying S to A’ obtains the supersymmetry algebra whose

spinors are £ in (5.104):

(€)= () = aBAL (5.105)

= OéB+§ZEjZ' = —OéB_fz{;‘jZ’,
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and the negative chirality spinors obey

(€)= ~(N)*eji = —aB. Ney; (5.106)

= —aB+§{sjl- = —OzB_€{8ji.

where we have used Biv. = Bx. We can see that S maps the two supersymmetry al-
gebras whose spinors are A’ to that with & with phases that obey § = —a. Using the
matrix notation this is that \! = SIJ§J.

S can also be used to map the superalgebras with ¢’ to ¢’, though we will need an

additional transformation on top. Setting ¢ = S’ JQJ, we find that

(1) = (¥})" = aBylay

= aB, ey imji, (5.107)
(1) = ~(¢))*eji = ~aBypFn e
= _OCBJrq)’inkjEji-
The two products involved are
-1 0
Mij€sk = = My (5.108)
0 1 ik
1 0
€ijNjk = = nz{k' (5.109)
0 =1/,

Therefore the reality conditions for ®° are

(01)* = aB,®lyl;, (91)* = aB, Py, (5.110)

P! obeys the diagonalised form of the reality condition given for ¢. This can be undone

by implementing

o= (8110, g

% (0! - d%). (5.111)

Sl
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The new parameterisation obeys the reality conditions:
. 1
(") = aB+%(<I>1 - 3% = aB, ¢, (5.112)

(¢*)* = ozB+i2(<1>1 +®?) = aB.¢".

%
— (¢')" = aB¢/ ;. (5.113)

So the new description has the same phase for 1* and ¢*: v = . This additional

transformation does not change any of the bilinear forms:

PehTe,rt + (e o1
=é(7(p)(¢1 — )T CL (vt - 0v?) + %(’y(”)(cﬁl +6*NTC, (v +0?) (5.114)
=(’y(p)g251)TC’+v1 + (’y(p)gﬁQ)TCJrUZ.

Where v are related to Y? in the same manner ¢* and ® are related. We can compose

these two maps to obtain a new map:

wh=soh o), wi= (o) ad). (5.115)
o N N G}
In the matrix notation ®* and ¢ are related by F
1 1 0
o -F o) p- LQ (1) ‘01 ? (5.116)
0 0 1 -1

We can then represent the map that takes )* — ¢° as the linear transformation T'= SF~*

1 1 0 0
11 -1 0 0

Yl =T, ¢7, T:SF‘1=—2 0 o0 11l (5.117)
0 0 1 1

Finally, we seek a map that maintains the bilinear form C'; ® § and exchanges the reality

condition for ¢ and &, so that any remaining maps can be formed by composition. We
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can immediately assume the transformation is block-diagonal, without loss of generality,

as we wish to preserve chirality. Defining U such that

¢t =U",¢, (5.118)

preserving the bilinear form C, ® ¢ in matrix notation leads to

U= (g (u_ol)T). (5.119)

U is a 4 x 4 matrix acting upon &/ so that u is a 2 x 2 matrix acting on ¢!, with a

corresponding complimentary transformation (u=*) on £°.

The reality condition change implies that

u'n= —gs(u_l)T. (5.120)

This can be solved using

1 0
u=(0 ﬂ). (5.121)

For definiteness, we will choose

100 0
0« 0 O
U= ' (5.122)
001 0
0 0 —i
In components this reads
¢L=¢&, 61 =g, (5.123)

ot =€t 2= e

Testing the reality conditions, one finds their phases are related by § = —i~.
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Finally, we can then relate A\ and v’ by composing the maps already obtained.

=T 67 =T, U7 €% =71 U7 (57K A" (5.124)
=vi N, v=TUS™

Therefore
1 1.0 0
1 |- 0
V=_— 5.125
V210 i1 ( )
0 1 -1
This induces the reality condition
1ye 1 1, ;2
(A" = ﬁ53+(¢_ +i7)
. L 1, 2
=8B, — (i + ¢~ 5.126
=B\

A similar calculation gives (A\2)* =i8B,\2, and the same for all other combinations of

1= 1,2 with the two chiralities, so that the phases are related by « =1i8.

Summary for (1,3)

The following commuting diagram summarises the previous section, detailing the rela-
tions between the six real superbrackets in (1,3). There are two distinct isomorphic
superalgebras with different R-symmetry that can be realised in a few different ways

using the doubled spinor formalism.
(Co®e,(N)* =aBNes)  (C®e,(N)* = BBN) > (C_ e, (1)* = aBaipiny)
S S T

(Cr®0,(0') = BB V) (Cr®0,(¢) =0B-gejy) Y ces (@) - VB¢ ;i)

U(2) family U(1,1) family



Chapter 5 — Four-dimensional Superalgebras and Vector Multiplets 229

5.3.6 (2,2)

In (2,2) we have access to two real structures defined by B, and B_, and therefore two
choices for L = 6,11 1. As in all 4D signatures we have two Majorana bilinear forms on
S that lead to the super-admissible bilinear forms C, ® § and C_ ® ¢ on S® C2. All
choices lead to the same GL(2,R) R-symmetry group.

C_®e, (A\)*=a1B_Nnj < (2,3)
C_®e, (V")* =B1Bupnji < (3,2)
Cy®6, (¢") =mB-¢'n;i

Cr®0d, ()" =8B,

C.®8, (A)*=aB A"

C,®6, (V)" =pyB, U

C_®e, (P)* =B d!

C_®e, (E)*=0,B.E

Gr = GL(2,R) «—— (5.127)

Once again the names of the spinors and the phases have no meaning, just for book-
keeping purposes to make the following discussion of isomorphisms legible. We see that
we need three transformations, one that relates theories with different vector-valued
bilinear forms but maintains reality conditions, one that exchanges B, < B_ while

preserving the bilinear form and one that exchanges d;; <> 7;; in the reality condition.

R and S are candidates for the first two, as (0,4) and (2,2) are both Weyl-compatible,
so the maps work in a similar manner and we will derive the third. S works fine when

the reality condition involves L = § but for L =7 it also exchanges B, and B_.

For L = § one can show, repeating the same steps as before, A* = S’IJ<I)J and ¢! = SIJEJ

(which both have a reality condition involving L = 4.

Now we test when L =7, anticipating the answer we set A\ = SIJéJ and we see

(£)* = (\)" = a1 BNy = a1 By, (5.128)
(€9)* = (~Ngji)* = —a1 B_Njeji = ~ayB-¢  n;;

where the second lines arises because g, j€5; = ;. We observe there is a sign difference
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between the reality condition of the chiral pieces. This is fixed using B.7v. = B so that
B¢ =+B €L and

— (&))" = 1B, (5.129)
(€1)* = a1 B_&lny;.

So we see we have obtained the correct description for ¢ with the correct reality con-

dition (setting 0 = a1) and bilinear form. Using the R map we can map this to ¢'.

R behaves the same as it did in (0,4). This will be demonstrated using A\* and 4 that
satisfy

(A\Y)* = a1 BN Ly;, (5.130)
()" = B1Bu Ly, (5.131)

though it also holds for any two reality conditions that differ by swapping B, and B_.

Setting
1

A=
V2

(1 -y, (5.132)

we find this implies again that

(U")* = —iaB, Win;;. (5.133)

Where this time we observe that A = yy; means that similarly to (0,4), v+ B- = B_y, =
B+-

We seek a transformation that only changes § <> 1 in the reality condition. Beginning

with W? which, in matrix notation, has the reality condition

AN 6 0\ (¥
i =a9B . 5.134
(‘V—) " +(0 %‘)(‘I’]— o
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Using B.v.« = B we can rewrite this as

\Ili ZCMQB_ 6ij 0 \Iji .
43 0 —d;)\vL

Anticipating the final result again, we write

V=@ N, Q-

o o o =
4

o = o

- o o o

We find A has the reality condition (written in matrix notation)

)\i = CYQB_ mj 0 )\i .
)\Z_ 0 i )\Z_
This is equivalent to that of A’ in the table provided o = .

This transformation maintains the C_ ® ¢ bilinear form,

231

(5.135)

(5.136)

(5.137)

(O C-Weji = ("U)C_QL - (05)C_Q2 + (Y U2)C_Q; ~ (Y1) C_ X2

= (P(=iA2)C-(ixh) - (A C-x2
+ (A Coxi = (3" (IA1) C-(=ix3)
= (’Y“Ai)C—Xj&?ji-

(5.138)

This also applies to the vector-valued bilinear form as there are no transformations on

the spinor indices. One can also show that A! = Qlﬂb‘].

We have now derived a sufficient number of linear transformations to get between all

superalgebras, any remaining can be found by composition, e.g. Zf = (SQ_:[S_l)IJé].

Summary for (2,2)

The above is summarised in the following commutative diagram; we see all potential real

superbrackets are isomorphic with all resulting in an R-symmetry group of GL(2,R).



232 Chapter 5 — Four-dimensional Superalgebras and Vector Multiplets

=7\ % —i R AN i
(Cy ®0,(E") =02B.E") (Cy ®6,(D")* =v,B_D")

5| E

(C_®¢, (V)" = BB, T) (C_®¢e,(A)* = apB_AY)

e

(C-®e, (V)" = BiBiin;;) (C-®e,(N)* =a1B-Nnj;)

><

(C+ ®0, (gl) 51B+§J77J2) (O+ ® 0, (¢l) =mB- ¢J77JZ)

5.4 Four-dimensional N = 2 Vector Multiplets and their La-

grangians

The following section will detail N = 2 vector multiplets and their Lagrangians for each
four-dimensional signature. These representations of supersymmetry are found by di-
mensional reduction. This methodology was chosen to emulate the original paper by
Cortes and Mohaupt in [20].

This chapter makes use of the work found in Chapter 4 where we derived five-dimensional
vector multiplets and Lagrangians in all signatures. It also builds on the standard
derivation of four-dimensional multiplets can be found in Section 2.11. This section will

summarise the information necessary to construct the Lagrangians.

The theories in this section involve ny interacting four-dimensional off-shell vector mul-
tiplet, which has the field content

(XN ALY, T=1,..,ny (5.139)
where X! are e-complex scalar field depending on the signature, A/ are doubled spinors
with signature-dependent reality condition, Al{ are vector fields and ng are real SU(2)
or SU(1,1)-tensor also depending on signature. Whether the scalar fields are complex

or para-complex is a property of the resulting signature, not of the reduction or the

starting signature. The pattern alternates, so for t-even we have para-complex scalar
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fields and t-odd we have complex scalar fields X!. The conventions of the spinor terms
are inherited from the parent theory (up to rewriting quantities in the natural four-

dimensional matrices A, B, C as outlined in the previous sections).

The two real fields packaged into the e-complex scalar fields X! = o/ +i.b! have different

1

origins. ¢! are the real scalar fields inherited from the five-dimensional parent and b’

arise as the dimensionally reduced component of the five-dimensional vector fields.

In five dimensions there are six possible signatures, (¢,s) with ¢ + s = 5, which have
ten different reductions to four-dimensional signatures, (¢, s") with ¢’ + s’ = 4, of which
there are five. We find the dimensionally reduced Lagrangians come in four forms (called
Type 1, 2, 3 and 4 in the following section) where the coefficients of all terms are the
same though the underlying spinor definitions (and those induced onto Yj;) are different

due to the different parent theories.

Compared to [20], there are various factors of —1 and ¢, which arise due to slightly
different conventions for dimensionally reducing Clifford algebras and reality conditions
employed here. The majority of these are self-explanatory. Additionally, following the
Lagrangians there is a short explanation of how to match the results contained here

with the standard form in the literature such as in [39].

The five-dimensional coupling matrix F7y, which was the Hessian of the cubic prepo-
tential F (o’ ), where ol are the scalar fields of the five-dimensional theories, gives new
coupling matrices in the four-dimensional theories. By extending F(o!) to e-complex
values X' = o +i.b’ we obtain an e-holomorphic prepotential that gives rise to affine
special e-Kéhler. For t-even the scalar fields live on a special para-K&hler manifold and

for t-odd we obtain regular Kéhler manifold.

Note that the parameterisation here is in the so-called ‘old conventions’. Though it is

not done in this thesis, one can change to the ‘new conventions’ by setting

Flew) - L plota) (5.140)

21,
As the Hesse potential is a cubic polynomial, so is any prepotential obtained by dimen-
sional reduction. In four dimensions any e-holomorphic prepotential defines a valid vec-

tor multiplet theory provided the scalar and vector coupling matrix N7y = Re[ Fr;(X)]
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is non-degenerate. In this spirit, though when obtained by dimensional reduction Frjx
is a constant, the Lagrangians will contain F7;x and Frsx to make the Lagrangians
valid for a general e-holomorphic prepotential. Removing the restriction to cubic prepo-
tentials also allows four-fermion terms that contain Fjjx. These will not be included,
though they can be derived by considering the supersymmetric variations and the La-
grangian and allowing terms proportional to Fr k1, see the appendix of [20] for further

information.

In Euclidean and neutral signature the expressions contain both ¢ and e. In these signa-
tures 7 arises from the natural complex structure on the spinor module, and e arises from
the action of the para-complex tangent bundle of the scalar manifold. In Minkowski
signature factors of ¢ can arise from both the spinors and the complex tangent bundle

of the scalar manifold.

5.5 Dimensional Reduction

This section goes through the dimensional reduction of each five-dimensional term,
demonstrating how the Lagrangians were obtained. In this section u,v are the five-
dimensional space-time indices and m,n are used for the four-dimensional space-time
indices. The dimensionally reduced direction will be called #, which is equal to 0 or 5

depending if the reduction is time-like or space-like respectively.

Recall that the isotropy of the rank-p tensor-valued bilinear form alternates, and the

scalar-valued bilinear form is orthogonal i.e.

AX = A + Aoxo, MY = Ay ™ X+ A X (5.141)
S\,YmnX — 5\+,YmnX+ + S\_anx_'

We split terms involving bilinears of spinors using these decompositions.
The five-dimensional Lagrangians and supersymmetric variations can be found in 4.8.

5.5.1 Supersymmetry Variations

The vector field A splits into the four-dimensional vector A™ and a scalar field b = A#.

The value of §A* is the same in all five-dimensional signatures and so it is in all four-



Chapter 5 — Four-dimensional Superalgebras and Vector Multiplets 235

dimensional theories:
I Y m L ma I w1 1_ g
JA™ = 56’}/“)\ - JA"™ = 3&7 A 0b" =A™ = 2&7 A (5.142)

The scalar field is unaffected by dimensional reduction. The generic supersymmetric

variation had the form
do! = ae)! (5.143)

where a = % or % depending on the signature. This too is unchanged by dimensional

reduction. Combining o and b into the e-complex scalar field, X! = ¢! +ib!, we find

5X"=é(a+ %igy#)/\l =ae(1+ ;—aiev#))\l : (5.144)

This motivates the definition of the chirality matrix I'y = %z’gy# and corresponding
projectors I'y = %(1 +T,). T = e, for t-even signatures, as defined earlier, but agrees
with ., when ¢ is odd. From now on all chiral projections are doing using I'., so that
Ty =+,

Doing so makes d X entirely chiral:

1
ox' = 2ae(§(1 + F*))AI = 20, \!. (5.145)

For 6 X!, where the bar represents e-complex conjugation, we similarly find
6XT=2ae N (5.146)

M\ is unchanged by dimensional reduction, though it can now be split into positive and
negative chirality parts A’ = X% + A\* using the projectors I'y. The generic form of 6\

variation was
SN = By FLe + bgo’ e +uy e, (5.147)

The b here is inherited from the conventions of the five-dimensional chapter and is not
to be understood as a scalar field, just a coefficient, with b’ being reserved for scalar

fields.
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The term proportional to Y% is unchanged by the reduction. The ~ - F term reduces

according to
v Fl 5y FLy 2Ty #9,08 =~ - FI - 24Ti 90'T, (5.148)

The substitution I'y = I'y — I'_ and some rearrangement was made. 1T = +1 if the
reduction is along a space-like direction and T' = —1 if the reduction was along a time-
like direction. The second term is combined with the o-term to obtain a term in X.

This results in

SN = By FIeé 4 bIX Tt +uY e, (5.149)
N = pymrEl e bIX T+ uY e (5.150)

To get the term proportional to X one needs explicit values of a,b,T which always
happen to align so that this rewriting is possible (recall that a and b are related by

supersymmetry).

vi

i
be separated into chiral parts

and therefore 5Yz§ , is unchanged by the dimensional reduction, though it can now
6Y%§ - y(E‘*’(ﬂ)‘{j) * g—(z‘ﬁ)‘{r]‘))- (5.151)
5.5.2 Lagrangian

The kinetic terms for the scalar, spinor and auxiliary field are left unchanged, just

removing terms corresponding to the removed dimension:

1- .
%"a“a’a“aj - NON s VY i=1,2,3.4,5 (5.152)

S 1- .
»é’amafamat’ - Emmamvsmgyw m=1,2,3,4. (5.153)
sy = —1 was filled in as this was chosen in all five-dimensional signatures. Commonly

the fermion kinetic term is split into chiral parts:
MmN = X Ama, T + X Ama, A7 (5.154)

The vector kinetic term always has the same sign, but the resulting kinetic term for
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b= A7 is determined by whether the reduction is space-like or time-like,

| I T T o ramg
_ZF‘“’F s —ZanF mn_ Eﬁmb "y, (5.155)
where again T' = 1 if reduced along a space-like direction, and 1" = -1 if reduced along a
time-like direction. How this interplays with s, controls whether the geometry is spe-
cial Kéahler or para-Kéahler, and one always finds T = s, when the number of time-like

directions in four-dimensions ¢’ is even and T = —s, when ¢’ is odd.

bI6

By combining ¢! and b’ into a e-complex fields X' = o + i, we get the kinetic term

for X1 as

%"amxf oM X (5.156)

The coupling coefficients are given as the derivatives of the pre-potential F (o) which
is a polynomial in of of maximum degree 3. F;;(0) and Frsx (as F(o) is cubic this

no longer depends on o) are then defined as

o 0 o o0 0

F =~ F Frik = — ———=F (o). 5.157
15(9) Ool 0o’ (@) LK = 56T 957 9ok () ( )

We wish to transform these quantities to depend on X!; we can expand around o to
find

Fri(X) = Fry(o) +icFrib™, (5.158)

This implies that

Fr)(X) = Frs(0) —icFrixb™, (5.159)

which terminates here as Frjiy, = 0.

We define Fry(X) and Fryr(X) as the XX and X% derivatives of F7;(X) and

SInstead of using para-complex scalar fields (i.e. when € = +1), one can instead work with adapted
coordinates, real scalar fields X7 = o/ +b’. This is not done here, but the details and use of these fields
can be found in [20].
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Fr7(X) respectively,

Frix(X) = i7:1J(X)a Frg(X) =

——Fri(X). 1
However we notice that

_ _ ; L

Frig(X) = aX—KfIJ(X) = aX—K(fU(U) +icFyb”)
dol ot oM
= fIJLaX—K + ZeFIJKaX—K +ich f[JLMax—K (5.161)
0 .
= ]:IJLaXK(UL +’L€bL) = f]JK

and the same for Fryx(X) = Frjx. With Fryx the original 3-0 coefficient of F(o).
However for appearance, the Lagrangians will be written with F7 ;5 (X) and Fr g (X)

to generalise the Lagrangians to include F(X) not obtained from dimensional reduction.

The five-dimensional Lagrangians involved Fj;. This is conventionally rewritten as
N77(X) where N7j(X) = Re[Fr;(X)] = Fr7(c). The kinetic terms for X7, A/ and Yé

are therefore

" _ 1_ y
(%amxfamXJ = gAY X sy Yy )N,J. (5.162)

With that in mind, we turn to the interaction terms, which are going to use the chiral

decomposition too.

The first interaction term was chosen to always be of the form

1
ﬁg“”PJTAﬁFVi,Fg. (5.163)

The dimensional reduction of this term results in

1 -
be EJ pRmn (5.164)

with the dual field strength tensor FIL = %&nnqu P4 The coefficient is always the same
regardless of whether the reduction is over a time-like or space-like direction. This term

combines with the kinetic term to allow us to split the kinetic term into self-dual and
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anti-self dual pieces. Writing

1 1

Fl = §(F,fm + ,—eﬁ,{m) (5.165)
we can therefore combine
—iFTI,mFJm”NI g+ ibl Fy,Frm = —i(Fg’mnF;]m"}} (X)) + Bl FI™ Fry(X))
(5.166)
The second interaction term was
O N A FI NS F k. (5.167)
This reduces to
O N AT NE Fr e+ Ny™# 0,07 MNE Fr i (5.168)

= QQS\I’ymnFrim)\Kf[JK + QQQS\IVmV#ame)\K]:[JK.

Where # corresponds to the dimensionally reduced direction. The first term is just

rewritten in terms of the chiral spinors:

GQXivmanmn

A Frywe + 0N ™ F) A Fryk. (5.169)

To write the second term in a totally e-holomorphic form we add an identically zero
term, 22’6925\130‘])\[(}'”[{, to the second part to get

20N FFr N + 20,0 FF N7 . (5.170)
Finally, we have the ‘A\Y"’ interaction term which we just split into chiral pieces
0N NIV EFr e > 0NN YE Frywe + 0NNV E Fp g (5.171)

5.6 Four-dimensional Lagrangians and Supersymmetry Rep-
resentations
The supersymmetry variation parameters are doubled spinors denoted €’ that obey the

same reality condition as \?, which depends on the parent signature and is collected in

Table 5.19. In each of these Lagrangians the bilinear form is C_ ® € and so the 4,5 = 1,2
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are raised and lowered using %/ and €ji. We use the NW-SE convention such that

)\i = €ij)\j, )\z = >\j6ji, 6ik8kj = —5ij. (5172)
The operation = denotes e-complex conjugation for the scalar fields X!, but Majorana

conjugation with C_ for the spinors, Ai = X7 C_.

For t-even the Lagrangians are real under simultaneous complex and para-complex
conjugation, which acts on both the target space and the spinor module. The scalar
fields X! are para-complex, and the chiral )\fg include the para-complex unit e and the
self-dual and anti-self-dual projections of tensors, F} uw and F, are also defined using
projections which include a factor e. This is because these fields are vectors on the

para-complex target space manifold.

The overall sign of the Lagrangians is fixed so that the kinetic term for the vector field
has a negative sign. This choice is so that in Minkowski signature the term gives the
correct positive kinetic energy for the vector field. This is not affected by the mostly-

plus or mostly-minus convention, see Chapter 4.

The Lagrangians and supersymmetry representations will be provided without comment

with discussion to follow.

5.6.1 Type 1: (1,4) - (0,4), (1,4) - (1,3) and (5,0) - (4,0).
Lagrangian

These will be (1,4), (3,0) and (1,4).

-mn+*t —

L- 4(F1 FIF1y(X) + Bl FI™ Fr(X))
_lameamXJNU(X,X) YIIY N (X, X)

AN + NN )N (X, X) (5.173)
TAF (XN + NAF1(X)A))

A Frywe + Noy™ L N Frk)

-mn

l\')|s OO|& |,J>|I—‘[\')|H

-5
-7 (A
( A ymn
-

/\IZ)\J]YK}-]JK + 5\£i)\{j}/;§{-7':IJK)
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(,7( 4), (8,0) have X! = o + eb! ergo a para-complex scalar field, composed of the 5D
ol and the reduced Component of the vector field (A7)? =, For (1,4) it is a complex
scalar field - X7 = ¢! +4b7.

This is identical to that found in [20], except for the term X{iA{jYiﬁ(}"UK which had
an erroneous 5715( in place of Yzﬁ( . In Section 5.7 it is demonstrated how to use the map
S to rewrite this Lagrangian in terms of Majorana spinors so to align with the common

form in the literature.

Representation

sXT=ie Al oXT=ie

5A[ 2(e+'ym)\ +€_ vm)\l)

1, _
05 = =5 (Bl + &) (5.174)
. 1 g . g
5}\£@ _ _4 mnF_Imn i %aXIEZ_ _YI’Lj€+j
A 1 A N y
oL = -7 m”FJ{mneZ - %ﬁXIei - the_j

5.6.2 Type 2: (0,5) - (0,4), (4,1) > (3,1) and (4,1) - (4,0).
Lagrangian
The theories include (4,1), (0,3) and (4,1).

1
L= (Bl B Fry (X) + o B Fry (X))

1 _ _ .. _
+ 5ameamXJz\fU(X,X) +YYIN (X, X)
1, _ _
- —()\]ﬁ)\f + NN )Np (X, X) (5.175)
N IF (XN + NFFr(X)N)

NEFryk + Ny™ FY NS Fr k)

-mn

]
Lty
]

l\DI»—loolr—l

NEXNDYE Frye + NXDYE Firyx)

For (0,%) and (4,1) X! is a para-complex scalar field, and for (4,1) it is a complex

scalar field.
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It should be noted that some of the theories obtained from the reduction of Type 1 and

Type 2 theories have the same signature and a different form, but may or may not be

isomorphic. These Lagrangians are isomorphic in (0,4) and (4,0) but not in (1,3) and

(3,1).

Representation

XTI =g\l

Y =

SN = -

oAl = -

5.6.3 Type 3: (2

Lagrangian

1, I I
(@) rE N

,3) > (1,3) and (2,3) —»

oxXT=e N, §A] = 2(mmx +EymAL)

(5.176)
1 1 . g
VL + SAX L Y e
411 mnF—fmn z_ %ﬁXI A YIUE ~

(2,2).

(2,3) and (2,3). The scalar fields X! are complex for (2,3), and para-complex for (2, %)

L=- Z(F_fmnF;”""JEU(X) + Fl FI™F (X))

1 _ _ | _
+ —ameamXJNU(X, X)-Y"Y N (X, X)

+
l\Dl@-OOIHhklr—‘[\')I)—t

N+ NN )Ny (X, X) (5.177)

N E NEFr ke + Ny N Frk)

>~
£

-5
~ S(NLFFL (XN, + XgF (X))
(X
(

i)\iné{}_]JK + Xii)\ijy;?}:IJK)
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Representation

5XI=€+)\{r 5X' =€ )\I (SAI = 2(e+'ym)\ +€_ 'ym)\I)

. _
0V = =5 (ex@jy + ALy (5.178)
1 1 o
5A£Z=—4 Al el +5 X1t +iyTie,

ST = - ! ALY A lﬁX’Iei +iY e
4 2
5.6.4 Type 4: (3,2) - (2,2) and (3,2) > (3,1).

(3,2) has para-complex scalar fields, and (3,2) has complex scalar fields.
Lagrangian

L=- Z(FI FIm (X)) + L FIm™ Fr (X))

O
1 _ _ | _
- —amxfamXJNIJ(X,X) -~ Y'Y N (X, X)

NN+ NN )N (X, X) (5.179)

>/ |

TAF L (X)N] + NgFr(X)N)

A Frywe + Noy™ L N Frk)

-mn

wl»—lools )Jkll—‘l\DI}—l

-5

-5

( mnFJ
(AMXIJ YKJ:IJK + ;\ii)‘{jYi?ﬁ”K)
Representation

ox1 = ia)\l 6XT =ie N, (5AI ) (€+’ym)\ +é ’ym/\l)

)
0Yj = =5 (e + @A) (5.180)
) 1 ) ) .
SAL = -7 ALY e —aXf e vivTie,;

1 , g
YLD —5Xf el vivTie;

4 +7TLTL -

oAl = —
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5.6.5 Discussion

The presented Lagrangians and supersymmetry representations are highly similar, vary-
ing only up to factors of +1 and . These are due to the definitions of the doubled spinor
module, more precisely the signature-dependent reality conditions that change the re-

ality properties of various terms.

The relative signs between the kinetic terms of the scalars o = Re[X '] and bf = Im[X ]
has already been outlined, and it controls whether the target geometry is complex or
para-complex. This aligns with the Abelian factor of the R-symmetry group [20],
which were U*(2) =z SO(1,1) x SU(2) in (0,4), U(2) = U(1) - SU(2) in (1,3) and
GL(2,R) = SO(1,1) - SL(2,R) in (2,2). When the Abelian factor is U(1) the tar-

get space geometry is complex and when it is SO(1,1) it is para-complex.

The relative sign between the kinetic terms of the various fields depends on the parent
signature. In five dimensions the difference between the scalar and vector kinetic terms
is a feature mandated by supersymmetry, but in four dimensions this is not always the
case. In (0,4) and (2,2) the sign is arbitrary and can be changed through field redefini-
tions as shown below, arising from the fact there is a single unique N = 2 superalgebra
in each signature but multiple possible doubled spinor formulations that lead to a dif-
ferent sign for these terms. In (1,3) the sign is linked to the R-symmetry group (which
is linked to the signature of the parent theory). With U(2) R-symmetry we get the
canonical sign attributions, but with U(1,1) R-symmetry (obtained from the reduction

of a (2,3) theory) we get ‘ghost’ scalar fields, X I with negative-definite kinetic energy.

From the classification of A/ = 2 Poincaré Lie superalgebras in Section 2.8 or equivalently
our knowledge of the R-symmetry groups arising from the doubled spinor formulation,
we can identify the theories that should be equivalent and provide maps between them.
In Section 5.3, we found maps that relate the doubled spinor superalgebras, which will
we implement on the Lagrangians and supersymmetry variations. However, they do not
often align perfectly and we find that a reparameterisation of the scalar fields is also

necessary in (0,4) and (2,2).
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5.7 Maps between Equivalent Theories

Previously in Section 5.3 we derived a transformation R that exchanges B, and B_ in
the reality conditions of the two (0,4) and (2,2) theories together. In this section A

will be the spinors with reality condition

(\)* =aB_NLj; (5.181)
and A’ those in the second theory whose reality condition is

(\)* = BB N L. (5.182)

L =¢1in (0,4) and n in (2,2). Though other possible reality conditions exist in (2,2)

we focus only on those obtained by dimensional reduction.

Under R, A and \ were originally related by

) 1 -
Ao (1 =i )N 5.183
\/5( V) ( )

However, the vector multiplet theories used I'x = ev., so that on the Lagrangian and

supersymmetry representations we should implement

, 1 -
A= — (1 —iel ). 5.184
ﬁ( ) (5.184)

The chiral projections are therefore related by

1

A=
)

(1Fie)\l. (5.185)

Let us record the changes this induces in the various bilinears (in all cases the 7, j indices

are suppressed as they are closed). The scalar bilinear transforms as

1 ~
) eieTu —iel ) O_(1 - iel, )X
1 ~
=§~TC_(1 + (ie)? - 2iel’, ) A (5.186)

= —jeel'
—— €.\ = Fied ), (5.187)
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The vector-valued bilinear form is unchanged by this transformation

1 ~
vl —>§€T(1 — el )TC_A*(1 - ieT,) A
1 ~
:§~TC,(1 — (ie)? —iel, + el )Y A
=evH A

= &7\ = &7 A5

Finally, we have the bilinear with v*¥ inserted is

1 ~

D) egeTu —iel, )T O_(1 - ieD, )y™ A
]_ ~
:§~Tc_(1 + (ie)? - 2iel’, )y A

= —jeey" T, A

= "L = Fiee M L.

The supersymmetric variation of the transformed spinors 65\1 is

. 1 1 ) |
N = =V e + SAX L - Y e

-mn
1

1

1 A g
»=—(--y"F! (1—z’e)€1+55)(1(1”'@)@“_—(1—z'e)Yf”g+j).

-mn

v2' 4

(5.188)

(5.189)

(5.190)

(5.191)

(5.192)

This should be equal to %(1 —ie)dAL. Note that 1+ie = ie(1 - ie) so we can write

1

V2

-mn

Therefore the transformed supersymmetry variation is

- 1 . 1 . g
SAL = —Z’ym"F_Imnéﬁr + ieEﬁXI & -yl

and similarly for SA’ we find

. 1 ) 1 . .
SN = ——ymrpl & - ie§ﬁXI?+ ~ylije_;.

4 +mn-—

1 ) 1 ) .
(1-ie)( - ZW"FI &+ ie5ﬁXfe“_ -YTe,)

(5.193)
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Explicit mapping in (0,4)

Using these calculated quantities, we can then relate the two different theories obtained
in each signature. As the calculations are mostly the same only (0,4) will be done
in-depth, though the features of the transformation for (2,2) are almost identical up to

coefficient differences which amount to factors of —1 and 4 on various terms.

We have two possible parent theories, (1,4) reduced along a time-like direction (for
shorthand this is called (1,4)) and (0,5) reduced along a space-like direction (similarly
called (0,3)).

We begin with the (0,3) theory and apply S to obtain

—-mnt -

L=- Z(FI FI" Frp(X) + FLp FY™ Fra(X))
1 _ _ g _
+ -ameamXJNU(X,X) + YT IN (X, X)

TN + NN )N (X, X) (5.194)

>0

>/:|

TgF L (X)N + NLFF (X)X

—z'e;\ mnFj]mn)\ f[JK +i6§\{’)’mn +mn)\ fIJK)

MIHOOIHHMHL\DI»—'

—_~ o~ o~ o~

NN Y Fr e — NN YE Fr ).

S transforms the associated supersymmetric variations into

oxT = —z‘eax 6XT =iee N
(5AI 5 (e+'ym)\ +é ’ym/\l)

1
2

o1 : : g
oA = ‘17mnF—Imn€1 +ie—ﬁXIe’_ ~YTe,

oY = —s (e ) + e @N)) (5.195)

I 1 1 _ ,
ONT = i S —zeEﬁXIe’Jr ~YTe_;
The Lagrangian and supersymmetry representation do not yet look like those in the
(1,4) signature theory, though now the spinor bilinear and reality condition are the

same. The scalar kinetic terms have different signs, and two interaction terms differ by
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factors of Fe. In the (1,4) theory we had
1, .z < 7 K £
- g( —ieXN Ay N Fr e vie Ay E NS Frok)
1 ~ .~ . ~ .~ . —
- 5( - i€/\£z)\{JS/;§{f[JK + ieA{l/\i]}/;g{f[JK).

Additionally, the variations for 6 X’ are not in the same form as the Type 1 variations,

they are

oxT=ig AL, sXxT=ie M
and the A’ terms are also not in the same form, they are supposed to be

1

1

ST = —Z—l'ymnF_Imnei - §ﬁXIei_ ~Ylie,,
o1 o 3
5)‘£Z = _Z'yman'rnnez— - %ﬁXIGi— - YI”E_J"

One can see that the terms involving X! can be fixed by rewriting in terms of X! =

—eX!. This corrects the sign of the kinetic term,
1 - 1 _
+ §ame O™ XNy - —iamxf O"X'Nyy, (5.196)
and fixes the 6X and 6! supersymmetry variations.

The prepotential is a function of X7, so we need to calculate the effect this has on it
and its derivatives. The prepotential is a paraholomorphic function and it transforms
as a scalar, so that F(X) = F(X). The Jacobian is

ox! s
W = —6(5 e (5197)
The derivatives, therefore, transform as
Fr=-eFr, Frj=Fr;, Frx=-eFix (5.198)

.7:-12—6?[, ﬁIJ:ﬁIJy ﬁIJK:_e]_:IJK-

One can see that this corrects all differences between the two Lagrangian and therefore

the two Lagrangian obtained from dimensional reduction, written using paracomplex
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scalar fields are related by using the following maps

| y be —eX'
N > (1 el N, N (5.199)

Additionally in the superconformal formulation for supergravity, the Einstein-Hilbert
term has the prefactor —e(X!F; — F;X'). Under the reparameterisation X' = —eX’
this changes sign, meaning this provides an exact matching of signs to that in [26]. The
full treatment of arbitrary signature N = 2 supergravity is future work that the author

wishes to pursue one day.

This transformation is superficially similar to that in [25,54] that acted on the sym-
plectic vector (X!, Fr) by e by making a strong-weak duality-like transformation of the

field equations..

The duality transformation flips the sign of the vector kinetic term and leaves the sign
of the scalar field. Though the transformations differ only by an overall sign, their
transformation is non-local and does not include the fermionic terms. The transforma-
tion presented here is local and was found as a corollary of an isomorphism between

two Euclidean N = 2 superalgebras.

5.7.1 Minkowski Signature in terms of Majorana Spinors

The standard literature ala Van Proeyen/de Wit on N = 2 vector multiplets employs
the chiral formulation, where chirality is also encoded in the i, j indices. This provides
a few differences with our notation. This section will not get to a total matching of the

relevant terms, but will provide sufficient detail to show they can be in the same form.

In our formalism an isotropic vector-valued bilinear form C, ® ¢ is written
(YN Caxl i + (7 AT Coxd oy (5.200)
and in the chiral formulation this is
(AT Cxi + (AT L. (5.201)

The standard Majorana spinor formulation corresponds to the doubled spinor descrip-

tion with C, ® § as the bilinear form with a standard Majorana reality condition,
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(U")* = aB, ¥, as expected, though this is slightly hidden. The rank-2 tensor-valued

bilinear form is antisymmetric
(OHTC A0 = (BT O A Bt (5.202)

so that using ¢;; to close the indices results in the term vanishing. Therefore we are

forced to use
(U Cr Wie,; (5.203)

as seen in the literature. This means we cannot have the same bilinear form for all the
possible tensor-valued bilinear forms if we wish to use C, ® § to define the superbracket.
In this way, it makes the C_ ® ¢ description ‘more natural’ as it allows one to consider

the same C? bilinear form for each possible tensor-valued bilinear form.

We can rewrite the Lagrangian in Section 5.6, which is in terms of symplectic Majorana

spinors, in terms of Majorana spinors using the map .S. For reference this was

A=t (5.204)
A= T ey

A! are symplectic Majorana spinors with (A\*)* = aB_\N €j; and U’ are Majorana spinors
with (U%)* = aB, V"

The vector-valued bilinear form in our formalism is
[C_o®ce](ANFx) = /_\ivuxzeji + Xﬂ’y“xieﬁ. (5.205)
This is mapped to
—[C-®e](MAtx) = —TiArQL 55 - B AL 55 (5.206)
by S. Note the additional minus sign picked up, which arises because to transform

C_ to C; we must commute 7y, through the v* first. On the kinetic term (which has
X = OuA, 2=0,¥) we get a sign difference that matches [39].

S transforms the vector-valued bilinear forms into one another, but it does not work
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like this on the scalar- and tensor-valued bilinear forms. We observe

[C-@e](Ax) = (M) Coxlei+ (AT Coxleys
= (WD) Cx e - ()T Caxlei (5.207)
= (U)HTC, Qe - (U CL O epicijesi
= (U)HTC,Qeji — (B)TC. ey
#[CL®0](T,Q)

The same holds for [C_ ® e](7"*" A, x) too. Therefore the AAY term transforms as

()\iI)TC_)\iJY;fFUK + ()\i_I)TC’_)\];‘]EffIJK (5.208)
=V WY E Fryk - (‘I’iI)TC+‘I’j;J}/;§(ﬁIJK'

And the AM\F interaction term becomes

()\iI)TC_’y : F,JA{KEji]:[JK + ()\Z‘,I)TC_’V : F;])\J,'Kaji]'—}]}( (5.209)
=(UNTCory - FIW  eji Fryw — (BT Cry - FW N i e

Both of these have a sign difference between the two terms. We can remove this sign

X! iXx!
( ) N ( ) (5.210)
Fr 1F

This is highly similar to the reparameterisation we had to perform in (0,4), replac-

difference by taking

ing the natural para-complex unit in that signature with the natural complex unit
in (1,3). This transformation keeps the Fj;; and Njj terms the same, and changes
Frix = —iFrx and Fryx — +iFrri. We, therefore, have the terms in the same form
given in the literature. In (1,3) X! are complex scalar fields, and this does not change

the sign of their kinetic term.

It is common in the literature to write the kinetic term for the spinors using the covariant

derivative. The necessary pieces are already present in our Lagrangian —
1,< - 1, _ -
- §(A£m{ + NN )Ny - Z(Aﬁ(ﬁfu)ﬂ + N Fr)A]). (5.211)

The Cristoffel symbol for the Levi-Civita connection for Fjy is AIJK = %NIL]:JKL for
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a Kéhler manifold such that the second term is equal to

N(DF )N+ XA (Fr)A])

MO X T Fryi) V" N + N0, X5 Fryw )y \]) (5.212)

>l
£~

8 XKNJP]:PKL) ”)\K+>\I(8 XKNJP]:pKL)’y“)\ )N[J

-5
-5
~ (MO X NipNTCFQ 1)y N + N (0, XK N p NPT 11 )7 N])
-5
-5

MIH»&IH»&IHA&I}—H&I»—‘

MO XA e VAL + M9, X T A e )V AL )N
Therefore (5.211) becomes
1, 1. - . _
- i(Afﬁ/\f + §A£ IN + N0, XA e )V NE + N0, X AT IV NE)Npy - (5.213)
1, 1o
—E(ALBM + §ALHA{)NU
with DAL = 9\ + AT 5.0, X M\E and DAL =9\ + AT .0, X7 \E.

This also works after applying S as both terms are vector-valued bilinear forms; they

are unchanged by the transformation, up to a sign. Implementing S we obtain

1, _ _
+§(\111LB\IJZ + UL BU )N, (5.214)



Future Directions

This final section will discuss possible future avenues for research and open questions
posed by this thesis. These were alluded to in the text but are stated here for easy

reference.

First, there are areas where the formalism in Chapter 3 could be expanded. A full
classification of supersymmetry algebras up to isomorphism is desirable and could be
performed within the scope of this formalism. A few isomorphisms between superalge-
bras were presented in this thesis, but not in a systematic and exhaustive manner that

would be required for a full classification.

Another immediate area for expansion of this formalism could be including BPS/poly-
vector/central charges. This has been done in [31]|, which is based on the formalism
in |1] that this thesis used heavily for inspiration. The author expects the manner of

producing superalgebras presented is readily amenable to this type of extension.

T-duality was explored as a map between supersymmetry algebras of different signa-
tures. String theory with negative branes leads to dynamically changing space-time

signature [17| and fully exploring this in our context would be an interesting prospect.

Additionally, while we used the work of [1,3,31] heavily the same terminology and for-
mulation were not used. A dictionary between the two formalisms would be desirable.
This would involve recasting the analysis performed in Chapter 3 in the style of these
papers; i.e. in terms of Schur algebras, analysing the space of super-admissible bilinear
forms. One would need to calculate the Schur algebra for an arbitrary number of irre-
ducible spinor modules in arbitrary signature and study the orbit of these larger Schur
algebras on the space of superadmissible bilinear forms, as was described in Section

3.10. This would provide a full classification of supersymmetry algebras.

253
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Supergravity theories are commonly made using the ‘superconformal method’ [28,55-58]
where a superconformal supergravity theory is derived and gauged to derive a super-
Poincaré supergravity theory. Expanding the formalism to include the extra generators

found in the superconformal algebra would, therefore, be necessary.

A full supergravity theory involves vector multiplets, hypermultiplets and Weyl multi-
plets, at least. Having already derived the vector multiplet content (which would also
need some correcting to make supersymmetry local), a similar analysis of hypermul-
tiplets and the Weyl multiplets in any signature could be performed. The author has
already performed a precursory investigation into hypermultiplets. The obvious starting
point would be in five and four dimensions, having already obtained the vector multiplet
here. A similar analysis could also be performed in different signatures, for example,
this could be a thorough exploration of Type II supergravities that fully demonstrates
how supersymmetry causes the sign changes observed in [14] and are detailed in this
thesis in Section 2.12.
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