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ABSTRACT  26 

Lack of disease surveillance in small companion animals worldwide has contributed to a 27 

deficit in our ability to detect and respond to outbreaks. In this paper we describe the first 28 

real-time syndromic surveillance system that conducts integrated spatio-temporal analysis of 29 

data from a national network of veterinary premises for the early detection of disease 30 

outbreaks in small animals. We illustrate the system’s performance using data relating to 31 

gastrointestinal disease in dogs and cats. The data consist of approximately one million 32 

electronic health records for dogs and cats, collected from 458 UK veterinary premises 33 

between March 2014 and 2016. For this illustration, the system predicts the relative reporting 34 

rate of gastrointestinal disease amongst all presentations, and updates its predictions as new 35 

data accrue. The system was able to detect simulated outbreaks of varying spatial geometry, 36 

extent and severity. The system is flexible: it generates outcomes that are easily interpretable; 37 

the user can set their own outbreak detection thresholds. The system provides the foundation 38 

for prompt detection and control of health threats in companion animals. 39 

 40 
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Introduction 50 

Surveillance systems have been developed globally for animal and/or public health purposes, 51 

facilitating the prevention and control of disease or infection nationally and regionally. 52 

During the past decade, the emergence of new diseases1 and the increasing threat of bio-53 

terrorism have motivated the development of syndromic surveillance systems in public health 54 

focused on the early detection of health threats that require effective public health action2,3. 55 

Syndromic surveillance uses health-related data that precedes diagnosis. Although data of this 56 

kind are less specific than data from confirmed diagnoses they are typically more timely, 57 

which is an important consideration for real-time or near-real-time analysis and 58 

interpretation4. In veterinary medicine the development of systems for early health-event 59 

detection has followed a similar path to that previously taken in public health5. A recent 60 

inventory of current and planned European veterinary syndromic surveillance systems 61 

showed wide interest in European countries for syndromic surveillance, but also highlighted 62 

the novelty of this field6. 63 

Small companion animal populations largely lack co-ordinated national and international 64 

disease surveillance. This has produced a deficit in our understanding of the dynamics and 65 

burden of the full range of endemic/emerging diseases in companion animals and leaves these 66 

populations susceptible to the emergence of health threats. Lack of disease surveillance also 67 

has implications for human health, as approximately 75 percent of new and emerging 68 

diseases are zoonotic7. However, as health records become digitised in veterinary practices 69 

they become more available for research8, providing an opportunity to improve companion 70 

animal syndromic surveillance in clinical settings and the possibility of linking this with 71 

human syndromic surveillance. Recently, electronic syndromic surveillance data on 72 

companion animals has become available in real-time on a national scale in the UK through 73 

surveillance schemes such as the Small Animal Veterinary Surveillance Network 74 
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(SAVSNET)9. SAVSNET harnesses the growing volume of patient electronic health records 75 

(EHRs) available from small animal practices and complementary data from diagnostic 76 

laboratories to improve animal and human health through rapid and actionable research and 77 

surveillance. 78 

Here we propose a real-time syndromic surveillance system that uses a spatio-temporal 79 

model in conjunction with Bayesian inference for the early detection of health-event 80 

outbreaks. Specifically, we use a Markov Chain Monte Carlo (MCMC) algorithm to generate 81 

samples from the Bayesian predictive distribution of the underlying spatio-temporal surface. 82 

These samples are then used to compute predictive probabilities at given thresholds; a high 83 

predictive probability at a particular location and time gives an early warning of a possible 84 

disease outbreak. The system provides end-users (i.e. practising veterinary surgeons) 85 

decision-support tools for immediate analysis and easy interpretation of their data. As an 86 

example, we apply our model to small companion animal EHRs collected over two years by 87 

SAVSNET from a large network of UK veterinary premises. We illustrate the feasibility of 88 

our proposed surveillance system using gastrointestinal (GI) disease in dogs and cats as an 89 

example. 90 

Gastrointestinal (GI) disease is one of the four syndromes for which SAVSNET 91 

currently gathers information for every consultation it receives. GI disease affects animal 92 

welfare, can be expensive to manage and may be transmissible to other pets10 or, more rarely, 93 

to people11. Current approaches to preventing and controlling GI disease in companion 94 

animals have focussed on individuals or small groups of animals. This seems to have had 95 

little impact on GI disease, which remains one of the commonest reasons for presenting for 96 

veterinary care in the UK9,10,12-15, although precise data to confirm this has been lacking. A 97 

more coordinated population-scale approach to GI disease surveillance in companion animals 98 

is needed. 99 
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  This paper focuses on the early detection of a GI disease outbreak, which we define as 100 

an unexplained, spatially and temporally localised increase in the fraction of GI consultations 101 

amongst all consultations. We illustrate the performance of our proposed surveillance system 102 

on simulated GI disease outbreaks of varying spatial extent and severity. This is, to our 103 

knowledge, the first surveillance system that conducts integrated spatio-temporal analysis of 104 

data from a national network of veterinary practices so as to enable real-time detection of 105 

spatially and temporally localised changes in reporting patterns across the network. 106 

 107 

The paper is structured as follows. First, we give details of the SAVSNET and socioeconomic 108 

data used in this paper. We then give the rationale for our methodological approach, describe 109 

the spatio-temporal stochastic model that is the foundation of our surveillance system, and 110 

report the results of fitting our model to our SAVSNET-acquired data. We then simulate 111 

spatio-temporal GI outbreaks by perturbing the actual SAVSNET data in various ways to 112 

demonstrate the ability of the surveillance system to achieve timely outbreak-detection. 113 

Finally, we discuss the similarities and differences between our proposed system and other 114 

approaches in the literature, and also extensions for joint human and veterinary surveillance. 115 

 116 

Data sources 117 

SAVSNET 118 

Data collection 119 

Data were collected electronically in near-real-time from volunteer veterinary premises or 120 

sites using a compatible version of the practice management system (PMS) namely RoboVet 121 

(VetSolutions, Edinburgh) and Teleos Systems Ltd (Birmingham). This study used data for 122 

dogs and cats collected over the period between 1st March 2014 and 29th February 2016.  In 123 

our analysis we included data from an increasing number of premises as they enrolled in the 124 
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RoboVet and Teleos systems.  By 29th February 2016 we had data from 216 practices 125 

(amounting to a total of 458 distinct premises) located in England, Wales and Scotland. The 126 

data were extracted from consultations where a booked appointment was made to see a 127 

veterinary surgeon or nurse, including out-of-hours consultations. Through the SAVSNET 128 

system a compulsory, single-question questionnaire is appended at the end of each 129 

consultation allowing the attending veterinary surgeon or nurse to categorise the main reason 130 

for the animal’s presentation into syndromes (currently GI disease, respiratory disease, 131 

pruritus and renal disease) or other routine veterinary interventions (i.e., trauma, neoplasia, 132 

‘other sick’, vaccination, ‘other healthy’ or post-operative check-up). A full description of the 133 

SAVSNET data collection protocol has been described by Sánchez-Vizcaíno et al.9 The data 134 

for this study were gathered on a consultation-by-consultation basis, and include the date the 135 

animal was seen, unique identifiers for practice, premise and animal, the animal description 136 

(including species, breed, sex and date of birth), the syndromic level classification and the 137 

full postcode of each veterinary premise and pet owner.  138 

Data were only gathered if the owner had not opted out of study participation. The 139 

collection and use of these data were approved by the University of Liverpool’s Research 140 

Ethics Committee (RETH00964); as such all collection and use of these data were performed 141 

in accordance with the relevant guidelines and regulations. 142 

 143 

Data management 144 

Text-based data for species and breed were cleaned to deal with misspellings or the use of 145 

non-standard terms by mapping to standard terms. A full description of this cleaning 146 

procedure has been described elsewhere16. For this study we classified each animal’s breed as 147 

purebred or crossbred. 148 
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To identify localised outbreaks we needed to geocode all postcodes. The text-based data 149 

for each owner's full postcode were automatically cleaned by applying mapping rules of 150 

typical misspellings (e.g. letter ‘O’ instead of zero). Any remaining records containing 151 

erroneous postcodes were discarded from our outbreak prediction as they could not be 152 

geocoded. Similarly, if the age of the animal was recorded outside the range 0 to 25 years 153 

then the record was excluded. SAVSNET records with missing data were removed before the 154 

analysis. If an animal attended a veterinary premise on more than one occasion during the 155 

study period we included all attendances without adjustment, on the grounds that multiple 156 

visits occurring within a short time period (e.g. within a few days) would likely indicate a 157 

more serious illness episode.  158 

 159 

Data summary   160 

Of the 1,211,326 consultations collected between 1st March 2014 and 29th February 2016, 161 

72.3% were for dogs and 27.7% for cats. In 80.7% of all records a valid age, breed and 162 

owner’s full postcode were recorded. Gastrointestinal disease accounted for 4.0% of all 163 

presentations, amongst which 91.5% were recorded between Monday and Friday. Amongst 164 

animals presenting for GI disease, there was not a notable gender bias; 48.5% of dog 165 

consultations and 50.6% of cat consultations with a recorded sex were female. Where the 166 

breed was identified, 84.9% of dog consultations and 17.2% of cat GI consultations were 167 

purebreds. In animals with a date of birth recorded within the range 0 to 25 years, 65.4% of 168 

dog GI consultations and 47.4% of cat GI consultations were under eight years. The age 169 

profile of dogs and cats presenting for GI disease at SAVSNET veterinary premises stratified 170 

by sex and breed is shown in Table 1. Data for the two species were analysed separately. 171 

 172 

Measure of Deprivation 173 
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We used the pet owner’s home postcode to assign a measure of deprivation to each owner 174 

using the most recent English17, Scottish18 and Welsh19 Indices of Multiple Deprivation 175 

(IMD) produced by their respective governments. A detailed description of how each 176 

government has developed their own measure of deprivation can be found elsewhere20-22. The 177 

three country-specific IMD measures are not directly comparable. We therefore included 178 

country as a three-level factor and rescaled the ranks of each country's set of IMD scores to 179 

the range 0 to 1. For example, if for England the maximum rank was 32,000 and a location 180 

had rank 100 then the owner IMD explanatory variable would be assigned a value of 181 

100/32,000. 182 

 183 

Outbreak detection modelling 184 

Rationale 185 

As noted earlier, we define an outbreak as an unexplained spatially and temporally localised 186 

increase in the fraction of GI consultations amongst all consultations.  The term 187 

“unexplained” refers to the fact that, for reasons that are well understood, some areas or times 188 

of year will experience higher fractions of GI consultations than others because of spatial 189 

variation in the local population susceptibility or temporal variation in the region-wide 190 

susceptibility to GI. We adjust for these known effects using measured explanatory variables, 191 

as described below in the section on explanatory variable selection.  We then equate 192 

“unexplained” to “stochastic” and include this in our model as a latent, spatially and 193 

temporally correlated process Si,t, where i denotes premise and t denotes time, in days. By 194 

definition, the expected value of each Si,t is zero, and our goal is to determine where and 195 

when its actual value is materially greater than zero. Note that the natural pattern of GI 196 

consultations will always be subject to fluctuations in time and space that cannot be explained 197 

fully by measured variables.  It follows that outbreak detection is not a statistical hypothesis-198 



 

9 
 

testing problem. Our approach acknowledges this by the fact that the actual value of Si,t  will 199 

never be exactly zero. Our formal solution is therefore to calculate, for each premise i and 200 

day t, the predictive probability q (i.e. the probability conditional on all available data up to 201 

and including day t) that Si,t > l, where l is a user-specified threshold representing an effect 202 

large enough to be of practical concern. We then declare an outbreak affecting premise i if 203 

this probability exceeds q0, the required positive predictive value per premise, say q0=0.95 or 204 

0.99.  As with any prediction problem using observational data, it is not possible 205 

simultaneously to control both the positive and negative predictive probabilities.  206 

 207 

Prediction model 208 

To accommodate the spatial and temporal correlations that would characterise an outbreak of 209 

GI disease, we use a spatio-temporal mixed effects regression model, and fit the model using 210 

Bayesian inference. We define our binary response variable ௝ܻ,௜,௧  to take the value 1 if the ݆௧௛ 211 

consultation at the ݅௧௛ premise on day ݐ is a GI disease presentation and 0 otherwise. 212 

Conditionally on an unobserved, spatio-temporally structured random effect ௜ܵ,௧, the ௝ܻ,௜,௧  are 213 

distributed as mutually independent Bernoulli variables with probabilities ݌௝,௜,௧ defined by 214 

ିଵ൫݌௝,௜,௧൯ = ௝݀,௜,௧் ߠ + ௜ܵ,௧               (1) 215 

where ିଵ(. ) is the quantile function of the standard Normal distribution. The vector ௝݀,௜,௧   216 

denotes  the set of explanatory variables and ߠ their associated regression parameters. We 217 

discuss selection of explanatory variables, ௝݀,௜,௧, below. 218 

The spatio-temporally structured collection of random effects for all premises and days is 219 

written as 220 ܵ = ൫ܵ(ଵ)் , … , (ܵఛ)் ൯்     (2) 221 
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where (ܵ௧) = ൫ ଵܵ,௧, … , ܵ௡,௧൯்and we denote by ߬ and ݊, respectively, the total numbers of days 222 

and premises contained in the data-set. The complete vector S follows a multivariate Normal 223 

distribution with mean zero and covariance matrix that incorporates the spatio-temporal 224 

context of the data. Specifically, we assume that, conditionally on its past, (ܵ௧) follows a 225 

multivariate Gaussian distribution with mean vector  ߮ܵ(௧ିଵ) and spatial covariance matrix	Ω, 226 

which we construct as follows. Firstly, we associate with premise ݅ a polygon consisting of 227 

all points closer to premise ݅ than to any other premise; the resulting polygons, ௜ܸ 	are called 228 

Voronoi polygons. Secondly, we define the neighbours of ݅ to be the set ܰ(݅) of premises 229 

whose Voronoi polygons are contiguous with ௜ܸ. Finally, we define distance-decay weights 230 

௜௞ݓ = 	 ൜ሾ1 + ௜௞ݑ) ⁄ߜ )ଶሿିଵ			if	݇ ∈ ܰ(݅), ߜ > 0	0																																													otherwise		     (3) 231 

Where ݑ௜௞ is the distance between premises ݅ and ݇, and ߜ is a scaling parameter with units 232 

of distance. We then specify the conditional distribution of each ௜ܵ,௧ given all other ܵ௞,௧ to be 233 

Normal with mean ݉ߩ௜௧ where  234 ݉௜௧ = ∑ ௪೔ೖௌೖ,೟ೖ∈ಿ(೔)∑ ௪೔ೖೖ∈ಿ(೔) ݇	݈݈ܽ	ݎ݋݂								, ≠ ݅   (4) 235 

and variance ߪଶ ∑ ௜௞௞∈ே(௜)ൗݓ . Together, these modelling assumptions imply that the so-called 236 

full conditional distributions of the ௜ܵ,௧ that together determine the joint distribution of S are 237 

of the form 238 

௜ܵ,௧|ܵ௞,௧, ܵ௞,௧ିଵ~ܰ(݉ߩ௜௧ + ,௜௧ିଵ݉ߩ߮ ഑మ∑ ೢ೔ೖೖ∈ಿ(೔) ݇	݈݈ܽ	ݎ݋݂										,( ≠ ݅   (5) 239 

Using these full conditional distributions, we can simulate from the Bayesian predictive 240 

distribution of the random effects ௜ܵ,௧ using an MCMC algorithm based on auxiliary variable 241 

techniques as described in Section 4.3 of Rue & Held23. Our system is intended to be run in 242 

near-real-time, but the MCMC computations eventually become prohibitive as the time-span 243 

of the data, ߬, grows. To counteract this, we run the MCMC algorithm on a moving nine-day 244 
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window, which is long enough to capture the temporal correlation in the data. Over a time-245 

window of this size, the effects of any systematic time-trend or seasonal effect in the fraction 246 

of GI consultation is negligible, which removes the need to include these as explicit terms in 247 

the model; see also section below on selection of explanatory variables. 248 

We adopt the following set of mutually independent priors for each of the model 249 

parameters: 250 

• θ ~ MVN (0, 103I) 251 

• log σ2 ~ N (-5, 9) 252 

• ρ ~ Uniform (0,1) 253 

• ϕ ~ Uniform (0,1) 254 

• δ ~ Uniform {1,2,…,100} 255 

These were chosen to be vague, in the sense that they have little effect on our predictive 256 

inferences for the random effects ௜ܵ,௧. Prediction is the primary goal in this application. 257 

However, if inferences about the model parameters are required, samples from their 258 

Bayesian joint posterior distribution are produced automatically as a by-product of the 259 

MCMC algorithm. 260 

 261 

Outbreak detection 262 

Let ݁௜,௧ denote the exceedance probability for premise i on day t, i.e. the probability that Si,t > 263 

l conditional on all available data up to and including day t, where l is the user-specified 264 

threshold value. To calculate the ݁௜,௧, we generate ܯ posterior samples ௜ܵ,௧(ଵ), … , ௜ܵ,௧(ெ) from the 265 

joint predictive distribution of the random effects ௜ܵ,௧ using an MCMC algorithm, and 266 

calculate 267 ݁௜,௧ = ଵெ∑ Iቀ	ܵ ௜,௧(௠) > ݈ቁெ௠ୀଵ       (6) 268 
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where I( ௜ܵ,௧(௠) > ݈) takes the value 1 if 	ܵ ௜,௧(௠) > ݈ and 0 otherwise.  For this calculation to be 269 

accurate, we need the MCMC algorithm first to run for a sufficiently long time, called the 270 

burn-in period, to have reached convergence and then for a further ܯ iterations to feed 271 

equation (6), where ܯ is sufficiently large that the sampling error on the right-hand-side of 272 

(6) is negligible. We used a burn-in period of 5000 iterations, followed by 273 50,000= ܯ 

iterations. 274 

The spatio-temporal model was fitted using the R package ‘caramellar’24. 275 

 276 

Explanatory variable selection 277 

Generalised Linear Models (GLMs) are unsuitable for outbreak detection modelling because 278 

the parameter estimates and standard errors assume that the observations are independent; 279 

hence, they do not take account of spatial and/or temporal correlation. Nevertheless, we can 280 

use a standard probit regression model to establish whether there is a prima-facie case for 281 

including each explanatory variable in our outbreak prediction model, equation (1), using the 282 

following rule. We retained an explanatory variable if its effect was nominally significant at 283 

the conventional 5% level. This inclusion rule is conservative in the sense that in the presence 284 

of spatial or temporal correlation the standard probit regression analysis is likely to over-state 285 

the significance of individual regression effects. For both species, this led us to discard the 286 

explanatory variables pet insurance, micro-chipping and neutering status and to retain the 287 

following: 288 

• the three-level factor ‘COUNTRY’ for the pet owner's home address (i.e. England, 289 

Scotland or Wales); 290 

• the two-level factor ‘WEEKDAY’ with values 0 and 1 indicating if the consultation date 291 

is a weekend day (Saturday, Sunday or public holiday) or a working weekday (Monday 292 

to Friday), respectively; we considered using day of the week as a factor on 7 levels, but 293 
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this did not improve the fit significantly using a likelihood ratio (deviance difference) 294 

test. 295 

• the two-level factor ‘GENDER’ with values 0 and 1 corresponding to ‘female’ and 296 

‘male’, respectively; 297 

• the two-level factor ‘PUREBRED’ with values 0 and 1 corresponding to crossbred or 298 

purebred, respectively; 299 

• the continuous variable ‘AGE’ denoting the animal's age, in years and AGE2 = AGE x 300 

AGE, both included because the quadratic term improves the model fit; 301 

• the continuous variable ‘IMD’, is the rescaled deprivation measure relating to the pet 302 

owner's home address (as described above in our section on data sources). 303 

As noted earlier, fitting the model to moving nine-day windows of data removes any long-304 

term trend or seasonal effects. The resulting provisional GLM is 305 

ିଵ(݌) = ஼ை௎ே்ோ௒ߙ	 + ஼ை௎ே்ோ௒ߚ ⨯ 	IMD ଵߠ 306    + ܻܣܦܭܧܧܹ⨯	 + ଶߠ 	⨯ GENDER + ଷߠ ⨯ PUREBRED + ସߠ ⨯ AGE + ହߠ 	⨯  ଶ          (7) 307ܧܩܣ

where ݌ denotes the probability that a presentation of a dog or cat (depending on the species 308 

evaluated) to a SAVSNET veterinary premise is recorded as a GI disease consultation. The 309 

first two terms on the right-hand side of equation (7) capture the interaction between country 310 

and IMD, so as to account for the fact that the three countries use different IMD measures, 311 

whilst ߠଵ, ,ଶߠ … ,  ହ are regression parameters for the remaining explanatory variables in the 312ߠ

model. The GLM outputs for dogs and cats can be found as Supplementary Tables S1 and S2 313 

online, respectively. 314 

All computation was carried out using R version 3.4.025. 315 

 316 

Outbreak simulations 317 



 

14 
 

Our model’s ability to identify an outbreak, i.e. its sensitivity, is influenced by factors 318 

including the outbreak’s duration, spatial extent and the number of infected animals 319 

presenting at premises in the locality. In each of our simulations, we construct an outbreak by 320 

adding varying numbers of aberrant GI disease to the actual (baseline) SAVSNET-recorded 321 

cases in a specified set of premises over a specified number of consecutive days. 322 

 323 

Simulation model 324 

We use the actual SAVSNET total consultations for dogs during February 2016, together 325 

with their associated explanatory variables, to simulate a step increase in the proportion of GI 326 

disease cases affecting one or more premises from a given day ݐ଴,	 corresponding to 15 327 

February 2016, by augmenting equation (1) with an extra term as follows 328 																																								ିଵ൫݌௝,௜,௧൯ = ௝݀,௜,௧் ߠ + ௜ܵ,௧ + ݐ)I௜ߛ ≥  ଴),                                             329ݐ

(8) 330 

where the indicator function I௜ for premise ݅ has value 1 for premise ݅ and all days  ݐ ≥  ଴ if 331ݐ

premise ݅ is affected by the outbreak, and has value 0 otherwise. By varying the value of 332 ߛ 

we can control the probability of a GI case at an affected premise.  333 

For each simulation, we proceed as follows: 334 

(1) use the actual SAVSNET consultations during February 2016 to fit the no-outbreak 335 

model using equation (1) and to generate simulated realisations of ௜ܵ,௧; 336 

(2) for ݐ ≥  ௝,௜,௧ 337݌ ଴, use the actual explanatory variables and the simulated ௜ܵ,௧ to computeݐ

using equation (8) with ߛ > 0; 338 

(3)  use the computed values of ݌௝,௜,௧to simulate case and control flags (1 or 0 339 

respectively) and use these to reassign each actual SAVSNET data consultation as 340 

either a case or control. 341 

See supplementary material for detailed R-code. 342 
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 343 

Simulation scenarios 344 

We applied our simulation model to three sets of premises, which we selected based on their 

numbers of neighbours, defined to be other premises within an 8km radius, with the 

additional constraint that none of the sets of premises were within each other’s 8km radius. 

The selected sets of premises, which we designated as dense, medium and sparse, had 6, 3 

and 0 neighbours, respectively. The SAVSNET data gave no indication that these selected 

premises are atypical or that they experienced a genuine outbreak during February 2016. See 

Figure 1 or 2, in each of which the top row, labelled ‘baseline’, is the actual SAVSNET data 

prior to simulating an outbreak. The premises at the centres of the three sets reported similar 

total numbers of consultations during February 2016 (349, 268 and 350 for dense, medium 

and sparse, respectively) and similar proportions of GI consultations (0.036, 0.055 and 0.042 

for dense, medium and sparse, respectively). Using these three sets of premises, we simulated 

under 15 different scenarios as follows. 

Scheme 1. The outbreak only affects the central premise of each set. For each, we simulate 345 

outbreaks of different severities, in which the probability of a case is 0.1, 0.15 or 0.2. This 346 

gives a total of 9 scenarios. 347 

Scheme 2. The outbreak affects the central premise and all of its neighbouring premises. This 348 

leads to another 6 separate scenarios, as Schemes 1 and 2 are identical for the sparse set. 349 

 350 

Performance evaluation 351 

 We use each scenario to generate a simulated set of consultations for February 2016, to 352 

which we fit our model using equation (1). To assess the capability of our model to detect 353 

outbreaks we then use the predictive distribution ௜ܵ,௧ from which we compute summary 354 

statistics, including exceedance probabilities and times to detection. We set the positive 355 
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predictive value of the system at q0 = 0.9. We set values of the reporting threshold at l = 0, 356 

0.3 and 0.6.  Note that l = 0 corresponds to an observed pattern exactly equal to expectation 357 

and is analogous to, although formally different from, using statistical rather than clinical 358 

significance in hypothesis testing. We do not recommend using l = 0 in practice, but use it 359 

here only as a benchmark to compare the system’s performance under different scenarios. In 360 

a genuine application, the threshold value l would be chosen to represent a clinically 361 

significant increase in reporting rate, and the positive predictive value q0 to balance 362 

sensitivity against specificity. Note, in this context, that because ௜ܵ,௧  is measured on the probit 363 

scale, the increase in the fraction of GI cases corresponding to a fixed increase in ௜ܵ,௧ 364 

necessarily depends on the baseline fraction. For example, if the expected fraction is 0.5, 365 

which corresponds to setting ௝݀,௜,௧் ߠ = 0 and ௜ܵ,௧ = 0 in equation (1), then a log(2) threshold 366 

for ௜ܵ,௧  represents a fraction  (log(2)) = 0.756, i.e. an increase of 0.256. In contrast, for a 367 

baseline fraction 0.1, a  log(2)	threshold now represents a fraction 0.278, i.e. an increase of 368 

0.178. 369 

 370 

Simulation results 371 

For each of the three regions (sparse, medium, dense) we ran our model a hundred times on 372 

the baseline data, where each run had a different random seed; we did not detect any false-373 

positives with ݈ = 0. Given the February 2016 baseline data, in Table 2 we report the credible 374 

intervals of the regression parameters estimated from the outbreak detection model’s MCMC 375 

samples.   376 

Our model detected a simulated outbreak in 14 out of the 15 outbreak scenarios when the 377 

reporting threshold was set at ݈ = 0 (Table 3). The model detected an outbreak on the first 378 

day of its actual onset in six scenarios, one day after onset in a further seven scenarios and 379 
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two days after onset in a further one scenario (Table 3). Alerting timeliness was inversely 380 

related to outbreak severity (Table 3). 381 

Figures 1 and 2 give a more detailed illustration of the performance of our outbreak 382 

detection methodology in response to a step change in the proportion of cases, for Schemes 1 383 

and 2 respectively and with the threshold value ݈ = 0.  Figures 1 and 2 also illustrate the use 384 

of a traffic-light system whereby, rather than fixing a single value for the positive predictive 385 

probability, q, we report a categorised value of the exceedance probabilities at each premise 386 

on each day to indicate the strength of the evidence for an outbreak. 387 

We focus on the sparse and dense sets of premises since the central premises of these 388 

two sets	 had almost identical numbers of consultations. Recall that under Scheme 1 the 389 

outbreak affects only the central premise of each set. Also, the prediction algorithm exploits 390 

the estimated spatial correlation amongst the fractions of GI cases at different premises. As a 391 

consequence, the system is better able to detect an outbreak at a single premise when this 392 

premise does not have close ‘outbreak-free’ neighbours whose fractions of GI cases are as 393 

expected. In effect, the model smooths its predictions over a range corresponding to its 394 

estimated correlation range; Figure 3 shows an example of this phenomenon. This explains 395 

why, under Scheme 1 (Figure 1), the system delivers a stronger detection signal for the sparse 396 

than for the dense set.  Under Scheme 2 (Figure 2), the results for the sparse and dense sets 397 

are more similar. Also, because the outbreak affects more premises in the medium, and dense 398 

sets, their results show generally stronger detection signals than in Scheme 1, as indicated by 399 

the increased number of traffic-lights tending towards red in Figure 2 compared with Figure 400 

1. 401 

Results of our model’s performance using the reporting thresholds ݈ = 0.3 and ݈ = 0.6 402 

are available in the supplementary files; see Table S3 and Figures S1 and S3, and Table S4 403 

and Figures S2 and S4, respectively. An increase in the reporting threshold value l necessarily 404 
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reduces the probability that an outbreak will be declared and increases its time to detection 405 

(Tables S3 and S4, Figures S1-S4). This underlines the point that the choice of l must be 406 

made in context and has nothing to do with the inherent quality of the outbreak detection 407 

algorithm. 408 

 Setting the probability of a case to 0.1 and with ݈ = 0, the model’s performance was 409 

compared with similar models in the sparse, medium and dense regions: 410 

a) Model without covariates  ିଵ൫݌௝,௜,௧൯ = ௜ܵ,௧. All the variation is accounted for by the 411 

latent term ௜ܵ,௧ so in a real-world application this model would be more prone to false-412 

positives; in the context of scheme 1 our simulations showed this model to be more 413 

sensitive. Comparing this model with the full model (Equation 1) we find they are 414 

identical in terms of timeliness but the model without covariates shows more strength 415 

of the evidence for the outbreak in that the exceedence probabilities are higher 416 

overall. 417 

b) Model without spatial correlation – scheme 1. In the presence of the outbreak only 418 

occurring at the central premise we found this model to be more sensitive at detecting 419 

outbreaks since the surrounding premises will not influence, and hence reduce, the 420 

inferred effects of the outbreak at the single central premise. Compared with the full 421 

model (with spatial correlation) we find this model to be identical in terms of 422 

timeliness for the sparse and dense regions, but the outbreak is now detected in the 423 

medium region with a one-day lag.  Overall, the exceedence probabilities are higher 424 

in all regions. 425 

c) Model without spatial correlation – scheme 2. With the outbreak spread over the 426 

neighbouring premises, this model was less sensitive as the neighbours did not 427 

influence, and therefore support, the detection of the outbreak. In particular we did not 428 

detect the outbreak in the medium and dense regions. 429 
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 430 

 431 

Discussion 432 

Syndromic surveillance systems offer the opportunity to enhance the public and animal health 433 

community’s ability to detect, and respond quickly to, disease outbreaks5. The last decade has 434 

seen a growth in the field of disease surveillance in companion animals, notably in the UK9,26 435 

and in the USA27,29. However, to the best of our knowledge, this is the first surveillance 436 

system that conducts integrated spatio-temporal analysis of data from a national network of 437 

veterinary practices so as to enable real-time detection of spatially and temporally localised 438 

changes in reporting rate patterns across the network.  439 

We have illustrated the applicability of our proposed surveillance system using 440 

gastrointestinal disease syndrome in dogs and cats as an example. The system is fed with 441 

electronic health records (EHRs) collected in real-time through SAVSNET from volunteer 442 

veterinary premises across the UK. We applied our system to 15 simulated GI disease 443 

outbreaks of varying spatial extent and severity, amongst which the system was able to detect 444 

14 of the 15. Had these been real outbreaks, the proposed surveillance system would have 445 

triggered timely investigations, which ultimately would have aided control strategies. The 446 

system requires the user to specify a reporting threshold corresponding to an increase in case 447 

incidence (reporting rate) that would be considered large enough to be of practical 448 

importance. Given this reporting threshold, the system delivers the predictive probability, q, 449 

at each location (here, veterinary premise), that the threshold is currently exceeded. Declaring 450 

an outbreak when this probability is greater than a specified value q0 is equivalent to fixing 451 

the positive predictive value of the system (per location, per day) at q0.  Alternatively, 452 

reporting the actual value of q gives an indication of the strength of evidence for an outbreak. 453 
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Increasing the value of the reporting threshold, l, necessarily reduces the value of q and 454 

consequently increases the average time to detection of an outbreak at a fixed value of q0.  455 

A critical component of a syndromic surveillance system is the application of optimal 456 

disease aberration detection methods. Most of the methods used in veterinary and public 457 

health surveillance systems are concerned with detecting disease-outbreaks and health-related 458 

threats in time rather than in space30-38. However, disease incidences vary naturally in both 459 

space and time. Thus, for example, these techniques may be late at detecting outbreaks that 460 

start locally when the surveillance region is large39. In contrast, our proposed method has the 461 

advantage of being able to directly incorporate data for each individual animal’s consultation, 462 

including the date of the visit and the location of the pet’s owner.  In temporal aberration 463 

detection algorithms, explanatory variables such as seasonality and day-of-the-week effects 464 

would generally be incorporated, but most of these methods cannot easily include individual-465 

level explanatory variables.  466 

Earlier spatio-temporal aberration detection methods have been introduced by 467 

Rogerson40,41. However, these approaches lack measures of uncertainty associated with the 468 

identified clusters and are unable to account for covariate information. Also, they are based 469 

on an assessment of global pattern change throughout the geographical area under study, as 470 

opposed to our method, which is used to detect the specific geographical location of an 471 

outbreak. Prospective space-time scan statistics have also been used in syndromic 472 

surveillance systems for the early detection of disease outbreaks39,42. The space-time 473 

permutation scan statistic uses only case numbers, with no need for population-at-risk data39 474 

and, in contrast to Rogerson’s methods, does operate locally in both space and time.  This 475 

method may therefore be suitable for setting up surveillance systems in the small animal 476 

sector where only case numbers are available. However, it does not acknowledge the 477 

uncertainty associated with any identified clusters, cannot easily incorporate continuous 478 



 

21 
 

covariates, and can only detect outbreaks characterised by excess cases within a specified, 479 

regular shaped affected area, for example a circle or ellipse.  Also, in our context the number 480 

of veterinary premises participating in SAVSNET can change over time due to the ongoing 481 

process of recruiting new premises and/or as a result of premises that could potentially stop 482 

being part of the project. This can lead to biased results if a space-time permutation model is 483 

used, as the method cannot distinguish an increase in cases due to a local population increase 484 

versus an increase in disease risk. 485 

Our spatio-temporal model, in conjunction with a Bayesian inferential framework, takes 486 

account of all sources of uncertainty in both parameter estimation and prediction, and is able 487 

to accommodate spatial, temporal and individual-level covariate information. Other examples 488 

of Bayesian approaches include Markov models43, Bayesian information fusion networks44 489 

and Bayesian hierarchical models45-47. 490 

An earlier near-real-time syndromic surveillance system in small animals has been 491 

developed in the USA utilising EHRs from a similar network of primary care veterinary 492 

hospitals29. Briefly, in this approach the daily proportion of patients with a given clinical or 493 

laboratory finding was contrasted with an equivalent average proportion from a historical 494 

comparison period allowing construction of the proportionate diagnostic outcome ratio 495 

(PDOR)29. Our surveillance system builds upon a similar epidemiological metric by 496 

modelling the spatio-temporal reporting rate of GI disease in dogs and cats as a proportion of 497 

all presentations. The two approaches use different inferential methods: the US study uses 498 

confidence intervals for recognising aberrant health events, whilst our approach uses 499 

predictive probabilities of exceeding policy-relevant thresholds. A more important difference 500 

is that we use a bespoke model that incorporates spatio-temporal covariance structure, with 501 

the aim of detecting outbreaks that are spatially and temporally localised without imposing 502 
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any artificial assumptions on the geometrical shape of an outbreak or the extent of spatial 503 

correlation in disease incidence. 504 

Our inferential paradigm of predictive inference within a generalized linear mixed model 505 

could equally be applied in purely temporal surveillance settings where the aim is the timely 506 

detection of area-wide increases in reporting rate, but in that context we cannot claim the 507 

same level of novelty. 508 

Another USA study explored the feasibility of using veterinary laboratory test orders as 509 

one of the data sources for syndromic surveillance in companion animals28. The inherent 510 

biases associated with the use of laboratory data in veterinary medicine have been described 511 

elsewhere28,48-50. However, the results derived from Shaffer et al.28 demonstrated the stability 512 

and timely availability of test order data for companion animals and the potential of using 513 

these data as a basis for outbreak detection. In addition to EHRs from veterinary practices, 514 

SAVSNET also receives routine downloads of diagnostic test results from commercial 515 

diagnostic laboratories throughout the UK9. Although laboratory test results are less timely 516 

than test orders, future research is warranted to explore whether the former data could be used 517 

to enhance the real-time syndromic surveillance system described here, which is based on 518 

real-time data from consultations in small animal premises. 519 

Raising the reporting threshold, l, and/or the required positive predictive probability, q0, 520 

increases the specificity of the system at the cost of reducing its sensitivity, and conversely. 521 

In our analysis of the simulated outbreaks, we chose different reporting thresholds to 522 

illustrate the performance of our system. However, in any substantive application, the 523 

specified reporting threshold can and should be adjusted so as best to reflect end-users’ (i.e. 524 

veterinary surgeons in practice) preferred balance between sensitivity and specificity. A 525 

pragmatic choice would be to set the threshold to some proportion above the historic average 526 

at each premise.   527 
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End-users (hereafter “analysts”) of a real-time surveillance system will be responsible for 528 

receiving system outputs, interpreting them, and if necessary following up on alarms. 529 

Therefore, in addition to flexibility, another important attribute of a surveillance system 530 

should be that it reports outcomes in an easily interpretable manner. Our system generates 531 

outputs in the form of practice-specific time-series and maps that display the spatio-temporal 532 

evolution of GI disease risk over an area of interest in a user-friendly manner; see Figure 3. 533 

Additionally, we have illustrated the use of a traffic-light device as a visual aid for analysts to 534 

quickly identify potential GI disease outbreaks on a given day at their own premises. The 535 

traffic-light device is based on predictive probabilities for exceedence of reporting thresholds 536 

that can be tailored to the analysts’ needs. 537 

We intend to integrate our daily model-based predictions into the SAVSNET system so 538 

as to make them available to each participating premise through their SAVSNET web 539 

interface. This implementation will include the other two syndromes with outbreak potential 540 

that are currently recorded by SAVSNET (respiratory disease and pruritus). This syndromic 541 

surveillance system should be a step towards facilitating the prompt detection and control of 542 

health threats in companion animals throughout the UK. In addition, the identified temporal 543 

and geographical trends in specific syndromes can be a valuable contribution to the evidence-544 

base when veterinarians are deciding how to treat individual animals in their practice. 545 

One of the challenges of conducting epidemiological studies in the small animal sector is 546 

that information about the population-at-risk (in our study defined as the overall population 547 

of small animals across the UK or target population) is generally lacking. This makes it 548 

impossible to measure parameters typically used in human health surveillance systems, such 549 

as the average incidence in a day or period of days. Other methods must therefore be 550 

employed to approximate, for instance, an incidence rate ratio. Evidence suggests that in 551 

countries with developed pet industries, a high proportion of owned pet animals (pets who 552 
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may approximate the target population) attend a veterinary surgeon51,52. Therefore, although 553 

no single data source can detect all outbreaks that may occur in companion animal 554 

populations, EHRs of the kind that are extensively collected from veterinary practices in 555 

many developed countries may be the best available source to include in surveillance 556 

activities for increasing our capabilities to detect those outbreaks that result from both 557 

endemic and potential emerging pathogens.  558 

One limitation of this study is that the veterinary practices contributing data to our 559 

system were selected by convenience, based on their use of a compatible version of PMS, and 560 

recruited on the basis of their willingness to take part in the SAVSNET project. Hence, the 561 

data used in our system might not be representative of the source population (in our study 562 

defined as the overall veterinary-visiting population across the UK). For this reason, we 563 

aimed to develop a syndromic surveillance system to detect changes in the relative, rather 564 

than absolute, incidence of GI disease presentations in the small animal veterinary premises 565 

participating in SAVSNET. Nevertheless, the practices included in the current study were 566 

widely distributed around the UK and represented 8.5% of those practices that constituted the 567 

source population in 200951. Thus, the number and geographical extent of SAVSNET-568 

participating practices is such that changes in the relative risk of GI disease in this large 569 

network of premises can act as a proxy for changes in the level of GI disease in the wider 570 

source population. 571 

We are aware that the detection of a high relative risk for GI disease could trigger a false 572 

alarm if it is due to a localised decrease in the incidence of diagnosing other syndrome/s and 573 

routine veterinary interventions, leading to a higher than expected fraction of GI disease 574 

consultations. Conversely, a localised increase in the incidence of diagnosing other 575 

syndromes could conceal a genuine GI disease outbreak. If the goal is to detect anomalous 576 

patterns of absolute incidence rather than relative risk, then provided that data are available to 577 
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calculate any changes in the population base of each premise our approach can be modified 578 

accordingly, for example by using a Poisson log-linear version of our spatio-temporal mixed 579 

model rather than the current binomial probit-linear version.  580 

In order to understand and mitigate shared GI disease aetiologies between humans and 581 

animals it would be necessary to develop a ‘One Health’ surveillance system that integrates 582 

human and veterinary healthcare databases. In future work, we intend to adapt the approach 583 

described in this paper to human GI disease surveillance by re-calibrating the model against 584 

data relating to human GI disease presentations at general practitioner surgeries.  A further 585 

extension of the approach would then be to a bivariate model for the joint surveillance of 586 

veterinary and human GI disease risk. A suitable starting point for this would be to replace 587 

the single equation (1) by a pair of equations, 588 

ିଵ൫݌௝,௜,௧൯ = ௝݀,௜,௧் ߠ + ௜ܵ,௧                                    (9) 589 

and 590 

ିଵ൫݌′௝,௞,௧൯ = ௝݁,௞,௧் ′ߠ + ܵ′௞,௧,                                              (10) 591 

where equations (9) and (10) describe the relative risk of GI at veterinary premise i and GP 592 

surgery k, respectively. A bivariate model would allow non-zero correlations between the  ௜ܵ,௧ 593 

and ܵ′௞,௧ corresponding to closely located pairs of veterinary premises and GP surgeries. 594 

 595 

Conclusions 596 

We have demonstrated the feasibility of a real-time spatio-temporal syndromic surveillance 597 

system using as an example small animal veterinary premises in the UK. Our detection 598 

algorithm uses Bayesian predictive inference within a spatio-temporal model. The method 599 

demonstrated promising performance in detecting simulated outbreaks signals of varying 600 

spatial extent and severity at different reporting thresholds. The system is flexible: the 601 

reporting threshold of elevated risk and the positive predictive probability per premise and 602 
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day may be set to whatever levels best meet the needs of a particular application; the system 603 

estimates the parameters of the model from historical data rather than imposing specific 604 

values for these,   and can therefore be re-calibrated to detect outbreaks of any syndrome of 605 

interest. A traffic-light system based on exceedence probabilities offers a visual aid to rapid 606 

identification of potential outbreaks on a given day at each premise. We intend to implement 607 

the system on SAVSNET servers for the early detection of outbreaks in GI and in other 608 

syndromes that that have outbreak potential and are routinely recorded in SAVSNET. 609 

 610 
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Figure 1. The results from our outbreak simulation study when using Scheme 1.  In this 774 

scheme a single premise ݅	 at the centre of each region experiences an outbreak. Here we 775 

choose an exceedence level of ݈ = 0 (see supplementary material for other levels). This 776 

figure shows the results of 9 simulations plus the baseline level. The top row of timeseries 777 

plots is the ‘baseline’, that is the actual SAVSNET data without any simulated outbreak i.e. 778 ߛ = 0. The subsequent rows from top to bottom depict increasing severities of simulated 779 

outbreak labelled according the probability of a case at premise ݅ e.g. ݌ = 0.1 and so on. The 780 

columns, from left to right, relate to the density of the region; ‘sparse’, ‘medium’ and ‘dense’ 781 

respectively. For each simulation we plot the timeseries of the predicted distribution of ௜ܵ,௧ 782 

for premise ݅. In each time timeseries the solid black line is the predicted value of ௜ܵ,௧, shaded 783 

areas are pointwise 50%, 90% and 95% predictive intervals. As an aid to rapid interpretation, 784 

we use a traffic-light system: if the predictive probability, q, is above 0.99 (defined as ‘very 785 

high’) the light shows red, if above 0.9 (‘high’) orange, if above 0.8 (medium) yellow, 786 

otherwise (‘low’) green (no outbreak). The outbreak commences on 15th February. The more 787 

intense the outbreak is the more the traffic light system tends towards red. 788 

 789 

Figure 2. The results from our outbreak simulation study under Scheme 2. The overall layout 790 

and format of timeseries plots is the same as Figure 1, for details see its caption.  The 791 

simulated outbreak begins on 15th February and the timeseries plots are for premise ݅ at the 792 

centre of each region. Here we depict results using Scheme 2, that is premise ݅	and its 793 

neighbours, within an 8km radius, experience an outbreak. Again we choose an exceedence 794 

level ݈ = 0 (see supplementary material for other levels).   795 

 796 

Figure 3. Maps of regions in which we simulated outbreaks where a premise is located at a 797 

coloured dot. These premises were selected for illustrative purposes, the actual SAVSNET 798 
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data shows no indication that they are atypical or that they experienced a genuine outbreak 799 

during February 2016. As the base layer we use map tiles by Stamen Design, under CC BY 800 

3.0: data by OpenStreetMap, under ODbL. The premise at the centre of each outbreak region 801 

is in the middle of the large light grey circle (8km radius).  This figure shows the results of 4 802 

simulations for 17th February 2016 when we use an exceedence level of ݈ = 0; n.b. the 803 

corresponding temporal results are given in Figures 1. and 2. The top and bottom rows relate 804 

to the density of the region, ‘sparse’ and ‘dense’, respectively, and the left and right columns 805 

relate to simulation Scheme 1 and 2 respectively. The simulated probability of a case at the 806 

premise in the centre of each region is ݌ = 0.15.  To aid interpretation, we use the traffic-807 

light system described in Figure 1 caption, as such each coloured circle on the map is derived 808 

from the predicted distribution of ௜ܵ,௧ at each corresponding premise.  Panels (a) and (c) show 809 

when the central premise has neighbours who are not experiencing an outbreak it is less able 810 

to detect the outbreak, panel (c), when compared to a premise without neighbours, panel (a). 811 

If the neighbours also experience an outbreak the system is then better able to detect this 812 

outbreak at central premise, panel (d), compared with when the neighbours did not 813 

experience an outbreak, panel (c). 814 

 815 

 816 

Table 1. Age profile of dogs and cats attending SAVSNET veterinary premises for a 817 

gastrointestinal disease consultation stratified by sex and breed. The number of dog and cat 818 

consultations shown included only animals with a mapped breed, sex and date of birth within 819 

the range of 0 to 25 years recorded. 820 

 821 
Species Sex Breed Number of animal consultations by age category 

 <1 year 1<8 years >= 8 years 

Dog Female Crossbred 429 1089 957 
Dog Female Purebred 2266 6411 4969 
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Dog Male Crossbred 448 1151 916 
Dog Male Purebred 2777 6876 4874 
Cat Female Crossbred 488 1242 2295 
Cat Female Purebred 123 233 403 
Cat Male Crossbred 514 1319 1989 
Cat Male Purebred 142 354 403 

 822 

 823 

Table 2. Regression parameters estimated by outbreak detection model given the baseline 824 

data during Feburary 2016; our outbreak simulation results are based on this data.  Note, the 825 

spatial overall domain of the outbreak simulations is the north west of England hence there is 826 

no country effect; see Equation 7. 827 

quantile weekday 
(weekend) 

weekday 
(workday) 

gender 
(male) 

purebred 
 

age age2 IMD 

0. 025 -1.8 -1.9 -0.010 -0.210 -0.071 8.1e-05 0.018
0.5 -1.6 -1.8 0.060 -0.120 -0.042 2.2e-03 0.160
0.975 -1.5 -1.7 0.140 -0.038 -0.012 4.2e-03 0.310

 828 

 829 

Table 3. Timeliness of a spatio-temporal Bayesian mixed effects regression model at 830 

detecting a simulated outbreak in 15 different gastrointestinal disease outbreak scenarios, at a 831 

reporting threshold ݈ = 0.  In one scenario (NA: not applicable) timeliness could not be 832 

calculated because no outbreak was detected. 833 

 834 

Spatial 
geometry 

Extent Severity 
(fraction of 
GI cases) 

Timeliness (days 
to detection since 
start of outbreak) 

Sparse Confined to central premise 0.1 2 

Sparse Confined to central premise 0.15 1 

Sparse Confined to central premise 0.2 0 

Medium Confined to central premise 0.1 NA 

Medium Confined to central premise 0.15 1 
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Medium Confined to central premise 0.2 0 

Dense Confined to central premise 0.1 1 

Dense Confined to central premise 0.15 1 

Dense Confined to central premise 0.2 0 

Medium Extending to neighbouring premises 0.1 1 

Medium Extending to neighbouring premises 0.15 0 

Medium Extending to neighbouring premises 0.2 0 

Dense Extending to neighbouring premises 0.1 1 

Dense Extending to neighbouring premises 0.15 1 

Dense Extending to neighbouring premises 0.2 0 

 835 

 836 

 837 


