
The draft genome of strain cCpun from
biting midges confirms insect Cardinium
are not a monophyletic group and reveals a
novel gene family expansion in a symbiont
Stefanos Siozios1, Jack Pilgrim2, Alistair C. Darby1, Matthew Baylis2,3

and Gregory D.D. Hurst1

1 Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool,
Liverpool, UK

2 Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of
Liverpool, Liverpool, UK

3 NIHR Health Protection Research Unit in Emerging and Zoonotic Infections (HPRU-EZI),
University of Liverpool, Liverpool, UK

ABSTRACT
Background: It is estimated that 13% of arthropod species carry the heritable
symbiont Cardinium hertigii. 16S rRNA and gyrB sequence divides this species into
at least four groups (A–D), with the A group infecting a range of arthropods,
the B group infecting nematode worms, the C group infecting Culicoides biting
midges, and the D group associated with the marine copepod Nitocra spinipes.
To date, genome sequence has only been available for strains from groups A and B,
impeding general understanding of the evolutionary history of the radiation.
We present a draft genome sequence for a C group Cardinium, motivated both by the
paucity of genomic information outside of the A and B group, and the importance of
Culicoides biting midge hosts as arbovirus vectors.
Methods:We reconstructed the genome of cCpun, a Cardinium strain from group C
that naturally infects Culicoides punctatus, through Illumina sequencing of infected
host specimens.
Results: The draft genome presented has high completeness, with BUSCO scores
comparable to closed group A Cardinium genomes. Phylogenomic analysis based on
concatenated single copy core proteins do not support Cardinium from
arthropod hosts as a monophyletic group, with nematode Cardinium strains nested
within the two groups infecting arthropod hosts. Analysis of the genome of cCpun
revealed expansion of a variety of gene families classically considered important
in symbiosis (e.g., ankyrin domain containing genes), and one set—characterized by
DUF1703 domains—not previously associated with symbiotic lifestyle. This protein
group encodes putative secreted nucleases, and the cCpun genome carried
at least 25 widely divergent paralogs, 24 of which shared a common ancestor in the C
group. The genome revealed no evidence in support of B vitamin provisioning
to its haematophagous host, and indeed suggests Cardinium may be a net importer
of biotin.
Discussion: These data indicate strains of Cardinium within nematodes cluster
within Cardinium strains found in insects. The draft genome of cCpun further
produces new hypotheses as to the interaction of the symbiont with the midge host,
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in particular the biological role of DUF1703 nuclease proteins that are predicted as
being secreted by cCpun. In contrast, the coding content of this genome provides no
support for a role for the symbiont in provisioning the host with B vitamins.

Subjects Evolutionary Studies, Genomics, Microbiology
Keywords Cardinium hertigii, Culicoides biting midges, Genome sequence, Phylogenomic analysis,
Gene family expansion, Heritable symbionts

INTRODUCTION
Invertebrates form a diverse range of symbiotic associations with heritable bacteria,
microbes that pass from a female to her progeny. Ranging from less-intimate to highly
specialized, these associations can confer novel phenotypic traits on their individual host,
and thus may represent major drivers of both ecological and evolutionary dynamics
(McLean et al., 2016; Sudakaran, Kost & Kaltenpoth, 2017; Ferrari & Vavre, 2011).
Heritable bacteria can supplement the nutritionally imbalanced diet of hematophagous or
sap feeding species with vitamins or essential amino acids, thus expanding the niche
of the species (Rio, Attardo &Weiss, 2016;Hansen &Moran, 2014). Other symbionts exert
protective effects against biotic or abiotic stress, including natural enemies (predators,
parasitoids, fungi, bacteria, and viruses) (Brownlie & Johnson, 2009; Hansen, Vorburger &
Moran, 2012) and heat stress (Dunbar et al., 2007). Notably, some heritable bacteria
are parasitic and have evolved to manipulate host reproduction to increase the frequency
of infected females and facilitate their own transmission (Hurst & Frost, 2015).
These effects have further prompted their application in vector and pest management
(Iturbe-Ormaetxe, Walker & O’ Neill, 2011).

Cardinium (Bacteroidetes) is a bacterial genus found in a wide range of
arthropod species that has a wide variety of impacts on host individuals,
including feminization (Weeks, Marec & Breeuwer, 2001; Groot & Breeuwer, 2006),
parthenogenesis induction (Zchori-Fein et al., 2001), and cytoplasmic incompatibility (CI)
(Hunter, Perlman & Kelly, 2003; Gotoh, Noda & Ito, 2006; Perlman, Kelly & Hunter, 2008;
Ros & Breeuwer, 2009), alongside the capacity to improve host fitness (Weeks &
Stouthamer, 2004). First discovered in 1996 (Kurtti et al., 1996), it is now estimated that
c. 13% of arthropod species carry the symbiont (Weinert et al., 2015). Cardinium
infections are found in a diverse set of arthropods, but its incidence is heterogeneous,
with pronounced “hotspots” in arachnids (including spiders, mites, and harvestmen),
diaspidid scale insects, parasitoid wasps, planthoppers, whiteflies, and biting
midges (Duron et al., 2008; Zchori-Fein & Perlman, 2004; Gruwell, Wu & Normark, 2009;
Nakamura et al., 2009; Chang et al., 2010; Morag et al., 2012; Lewis et al., 2014; Mee et al.,
2015). Further symbioses are observed with plant parasitic nematodes (Noel &
Atibalentja, 2006; Denver et al., 2016), copepods (Edlund et al., 2012), non-marine
ostracods (Schön et al., 2018), and oribatid mites (Konecka & Olszanowski, 2018)
suggesting that the true diversity of the genus is yet to be appreciated. This wider clade
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Cardinium represents the sister group to the amoeba symbiont Amoebophilus asiaticus
(Nakamura et al., 2009; Schmitz-Esser et al., 2010; Santos-Garcia et al., 2014).

Phylogenetic analyses of Cardinium based on two gene sequences (16S rRNA and gyrB)
inferred the existence of at least four monophyletic groups designated as A, B, C,
and D (Nakamura et al., 2009; Edlund et al., 2012), resemblingWolbachia super-groups in
terms of host-affinities (Lo et al., 2002). Group A is the largest and the most studied of the
three groups and has been found in various arthropod species. Group B has been
found in plant parasitic nematodes (Noel & Atibalentja, 2006; Denver et al., 2016) and is
represented by Cardinium strains cHgTN10, an endosymbiont of the soybean cyst
nematode Heterodera glycines (Noel & Atibalentja, 2006) and cPpe, an endosymbiont of
the plant parasitic nematode Pratylenchus penetrans (Brown et al., 2018). Group C
consists of a phylogenetically distinct clade of Cardinium strains known only from species
of Culicoides biting midges, an important group of hematophagous pests and vectors
of arboviruses and parasites (Nakamura et al., 2009; Morag et al., 2012; Lewis et al., 2014;
Mee et al., 2015). Finally, group D have been found as a constituent of the bacterial
communities associated with the marine copepod Nitocra spinipes (Edlund et al., 2012).

To date, genomic characterization has been restricted to A and B group Cardinium
strains. Three insect-associated A-group Cardinium strains have been sequenced.
These include the CI-inducing Cardinium endosymbiont (cEper1) of the parasitic wasp
Encarsia pergandiella (Penz et al., 2012), the Cardinium endosymbiont (cBtQ1) of
the whitefly Bemisia tabaci (Santos-Garcia et al., 2014) and the Cardinium endosymbiont
(cSfur) of the planthopper Sogatella furcifera (Zeng et al., 2018). These genome sequences
have indicated that convergent phenotypes, like CI, have a divergent genetic basis in
Cardinium from Wolbachia. Moreover, the cEper1 Cardinium genome suggests the
symbiont may supplement B-vitamin provision (Penz et al., 2012), a phenotype that would
be important in bloodsucking vectors. More recently, the genome sequences for two
B group Cardinium strains from nematodes have been completed. These are the genomes
of the Cardinium endosymbiont (cHgTN10) from H. glycines (Showmaker et al., 2018)
and the Cardinium endosymbiont cPpe from P. penetrans (Brown et al., 2018).
However, there is no available genome for the C clade Cardinium, which is particularly
notable in the light of the pest and vector status of the host species.

In this paper, we present an annotated draft genome sequence for a Cardinium
endosymbiont from clade C, carried by the biting midge Culicoides punctatus, hereafter
cCpun, and use this genome data to estimate the relationship between C clade Cardinium
and those of A and B groups; improving our understanding of strain relatedness that
currently rest on the sequence of two loci. We further use the genome sequence to infer
potential aspects of the symbiosis between this microbe and Culicoides biting midges.
The study of midge symbionts is important, as the symbiosis may potentially have
an impact on the physiology of a bloodsucking host, and (by parallel with Wolbachia) its
vector competence for arboviruses and other pathogens. The difficulty of growing midges
in insectary culture has presented a challenge to determining the effect of the
symbiont on the host experimentally. Analysis of the cCpun genome and comparison to
the previously sequenced Cardinium genomes as well as their sister species A. asiaticus
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(Schmitz-Esser et al., 2010) was therefore undertaken to provide insight into the evolution
and life style of clade C Cardinium.

MATERIALS AND METHODS
Genome sequencing, assembly, and annotation
Culicoides punctatus female midges were collected from Leahurst Campus, University of
Liverpool, UK using UV light traps and identified from wing morphology and by
cytochrome c oxidase subunit 1 barcoding as in Pilgrim et al. (2017). DNA was extracted
from single individuals using the QIAGEN DNAeasyTM Blood & Tissue Kit following
the protocol for purification of total DNA from Insect. All samples were tested for
Cardinium infection using a PCR assay based on 16S rRNA Cardinium specific
primers Car-sp-F 5′-CGGCTTATTAAGTCAGTTGTGAAATCCTAG-3′; Car-sp-R
5′-TCCTTCCTCCCGCTTACACG-3′ (Nakamura et al., 2009). Whole-genome
sequencing was carried out by the Centre for Genomic Research, University of Liverpool
using the Illumina TruSeq Nano library preparation protocol. Two short-insert (∼550 bp
insert size) paired-end libraries were constructed from two pooled DNA samples of
three individuals each. The libraries were multiplexed and sequenced using 2/3 of a lane on
an Illumina HiSeq 2500 platform, yielding 2 � 125 bp paired reads. Adapter removal
and quality trimming of the raw Illumina reads were performed with Cutadapt
version1.2.1 (Martin, 2011) and Sickle version 1.2 (Joshi & Fass, 2011).

Identification and filtering of symbiont reads were performed using a similar approach
to that used previously (Pilgrim et al., 2017). Briefly, a preliminary assembly of the quality
trimmed dataset was performed using SPAdes version 3.7.0 (Nurk et al., 2013)
using the following parameters (-k 21,33,55,77, –careful, –cov-cutoff 5). The initial
contigs were visualized using taxon-annotated GC-coverage plots (Fig. S1) with Blobtools
(Kumar et al., 2013; Laetsch, 2016). Additional tblastx searches (Altschul et al., 1997;
Camacho et al., 2009) were conducted against a local genomic database consisting of
Cardinium genomes—cBtQ1 and cEper1 endosymbionts of the whitefly B. tabaci and the
parasitic wasp E. pergandiella, respectively (Santos-Garcia et al., 2014; Penz et al., 2012),
that of Cardinium strain cHgTN10 from H. glycines (Showmaker et al., 2018) and
the more distantly related Acanthamoeba endosymbiont A. asiaticus (Schmitz-Esser et al.,
2010)—with an e-value cut-off of 1e-6. Cardinium contigs were extracted and
checked for contamination by blastx searches against the non-redundant (nr) protein
database. Cardinium-specific reads were subsequently retrieved using Bowtie2
(Langmead & Salzberg, 2012) and samtools (Li et al., 2009) and re-assembled de novo
using SPAdes as described above. All contigs larger than 500 bp were checked for potential
host or other bacteria contamination using blastx searches against nr database and
all contaminant contigs were removed from the final assembly. Subsequently, we evaluated
the quality of the assembled contigs using the reference-free assembly validation tool
REAPR (Hunt et al., 2013). REAPR uses read pairs mapping information to identify
potential assembly errors and assign quality scores on each base of the assembly.
The error calls were then used to break the pre-assembled contigs at every potential
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miss-assembly position using the aggressive option “-a.” Finally, the broken assembly was
scaffolded using SSPACE (Boetzer et al., 2011) using the default parameters.

The cCpun draft genome was annotated using Prokka version 1.12 (Seemann, 2014) and
the completeness was assessed using BUSCO v3 based on the presence of 148 universal
bacterial marker genes (Simão et al., 2015). Clusters of Orthologous Groups (COG)
functional categories were assigned using the eggNOG database (Huerta-Cepas et al., 2016)
while additional domains were assigned by searches against the Pfam protein database
(Finn et al., 2016). The k-mer fraction of the filtered reads were computed with Jellyfish
v2.2.3 (Marçais & Kingsford, 2011) and used to determine the repeat fraction of cCpun
genome using GenomeScope (Vurture et al., 2017). Finally, comparison of the repeat
density (repeats � 200 bp and at least 95% identity) between the Amoebophilaceae
genomes was performed using MUMmer-plots (Kurtz et al., 2004).

Ortholog identification, comparative, and phylogenetic analyses
The genome sequences of the three available arthropod-associated Cardinium strains
Cardinium hertigii cEper1 (Penz et al., 2012), Cardinium hertigii cBtQ1 (Santos-Garcia
et al., 2014) and Cardinium cSfur (Zeng et al., 2018), the two nematode-associated
endosymbionts cHgTN10 and cPpe (Showmaker et al., 2018; Brown et al., 2018) and the
Acanthamoeba endosymbiont A. asiaticus (Schmitz-Esser et al., 2010) were obtained
from GenBank and used for comparative analyses (accession numbers GCF_000304455.1,
GCF_000689375.1, GCA_003351905.1, GCA_003176915.1, and GCF_000020565.1,
respectively). The genomes of Cyclobacterium marinum DSM 745 (GCF_000222485.1)
andMarivirga tractuosa DSM 4126 (GCF_000183425.1), two free living Bacteroides species,
were used as outgroup for the phylogenetic analyses (based on Santos-Garcia et al., 2014).
All GenBank retrieved genomes were re-annotated using Prokka software as described
above in order to mitigate the effect of inconsistencies due to alternative annotation
practices. Orthologous groups of proteins were identified between cCpun, cEper1, cBtQ1,
cSfur, cHgTN10, cPpe, andA. asiaticus using an all-vs-all BLAST search and Markov Cluster
(MCL) clustering approach as implemented in OrthoFinder method (Emms & Kelly, 2015).
Core, accessory and strain-specific orthogroups between the five genomes were visualized
with an UpSet plot using the UpSetR package (Conway et al., 2017).

Phylogenetic reconstruction was performed on a set of 278 single copy core protein
sequences shared between the six Cardinium genomes, the genome of A. asiaticus and two
free living Bacteroides species (Cyclobacterium marinum andM. tractuosa) that were used
as outgroup. To this end, a super-matrix was generated by concatenating the
protein alignments of the 278 core proteins and trimmed with trimAl version 1.4
(Capella-Gutiérrez, Silla-Martínez & Gabaldón, 2009) using the “automated” option.
The best substitution model (LG+F+R4) was selected using ModelFinder
(Kalyaanamoorthy et al., 2017) and phylogenetic inference was performed using the
maximum likelihood (ML) criterion as implemented in IQ-TREE v1.6.6 (Nguyen et al.,
2015). The robustness of the inferred tree was finally assessed with the ultrafast
bootstrap approximation method as implemented in IQ-TREE using 1,000 replicates
(Hoang et al., 2018). Alternative phylogenetic hypotheses were tested by constrained tree
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searches using the approximately unbiased (AU) test (Shimodaira & Goldman, 2002)
as implemented in IQ-TREE v1.6.6. Additionally, the distribution of the phylogenetic
signal across the concatenated super-matrix was calculated as described in
(Shen, Hittinger & Rokas, 2017). Briefly, for each of the 278 core protein alignments the
log-likelihood score for the best ML tree topology under concatenation and an alternative
conflicting topology was calculated under the same substitution model (LG+F+R4).
The difference in the gene-wise log-likelihood scores (DGLS) between the two alternative
topologies was used as a measure of the phylogenetic signal and to visualize the proportion
of core genes supporting each conflicting phylogeny. Finally, an independent
phylogenetic analysis was performed on a subset of 46 core ribosomal proteins in IQ-TREE
v1.6.6 as described above in order to further test the robustness of our phylogenetic
inference. Phylogenetic trees were drawn and annotated online using the EvolView tool
(He et al., 2016).

Analyses of the DUF1703 gene family expansion
Genome analysis revealed an expansion of the DUF1703 gene family. To analyze this
expansion further, a protein sequence alignment of the DUF1703 gene family from
Cardinium together with selected Open Reading Frames (ORFs) with sequence similarity
retrieved as best BLAST hits formNCBI’s nr database was performed usingMAFFT v7 and
default parameters (Katoh & Standley, 2013). Ambiguously aligned positions were
subsequently removed using trimAl version 1.4 and the “automated” option. A ML
phylogenetic analyses was performed with IQ-TREE version 1.6.6 and the phylogenetic
tree were constructed and annotated as described above. Additionally, a neighbor-net
phylogenetic network was inferred from the translated nucleotide alignment of the cCpun
DUF1703 paralogs using SplitsTree version 4.12.6 (Huson & Bryant, 2006; Bryant &
Moulton, 2004) and default parameters. A pairwise identity and similarity matrix of
the cCpun DUF1703 amino acid sequence paralogs were constructed using the
Needleman–Wunsch global alignment method and the BLOSUM62 substitution matrix as
implemented in EMBOSS package (Rice, Longden & Bleasby, 2000). Putative signal
peptides were predicted on the SignalP 4.1 Server (Petersen et al., 2011) using the sensitive
D-cutoff settings. Detection of putative recombination events was performed using
the RDP4 software package (Martin et al., 2015). Recombination Detection Program
(RDP) implements several methods for detecting recombination signals including MaxChi
(Smith, 1992), GENECONV (Padidam, Sawyer & Fauquet, 1999), BottScan (Salminen et al.,
1995), Chimera (Posada & Crandall, 2001), and RDP (Martin & Rybicki, 2000). Global
parameters were as follow: P-value cutoff was set to 0.001 using a Bonferroni correction and
significance was evaluated from a permutation test based on 1,000 permutations. Detected
signals were considered significant only when they were confirmed by multiple methods.
Inference of recombination signals can be particularly misleading when diverse sequences are
analyzed. To avoid such misalignment artefacts, the 25 complete DUF1703 paralogs were
grouped into three groups on the bases of nucleotide sequences similarity (>65%) and the
analyses was repeated for each group separately. Finally, the results were also confirmed with
PhiPack implementing the pairwise homoplasy index (PHI) algorithm (Bruen, Philippe &
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Bryant, 2006). Residue composition and conservation within the core nuclease PD-(D/E)XK
site of the DUF1703 homologs were illustrated with sequence logos using the Skylign tool
(Wheeler, Clements & Finn, 2014).

Nucleotide sequence accession numbers
The raw reads and the cCpun draft genome assembly have been submitted to the
DDBJ/EMBL/GenBank database under the BioProject accession number PRJNA487198
(WGS project QWJI00000000).

RESULTS AND DISCUSSION
General features of cCpun draft genomes
The final assembly of the cCpun draft genome consists of 57 scaffolds larger than 500 bp
(N50 = 41.6 kb, largest scaffold = 116 kb) comprising a total size of 1,137,634 bp
(52 scaffolds � 1,000 bp) with an average GC content of ∼33% and an average depth of
coverage 90� (Table 1; Fig. S2). Overall, the cCpun genome shares many characteristics
with those of the previously sequenced Cardinium strains cEper1, cBtQ1, cSfur,
cHgTN10, and cPpe including similar genome size of around one Mb and
comparable GC content (33.7–38%) (Table 1). No plasmids were inferred based on the
presence of scaffolds with atypically higher read coverage compared with the average
coverage of the complete assembly, presenting a contrast to the previously sequenced
arthropod-associated Cardinium (cEper1 and cBtQ1) (Table 1; Fig. S2).
Nevertheless, we were able to detect several regions with sequence similarity to elements of
the two plasmids found in cEper1 and cBtQ1. Matching regions were mainly transposases,
suggesting that these might be remnants of ancestral plasmid invasion/s.

Table 1 Genome Features of cCpun draft genome and its closest relatives.

cCpun cEper1** cBtQ1** cSfur cHgTN10 cPpe A. asiaticus

Number of scaffolds 57* 1 11 1 1 27 1

Plasmids 0 1 1 0 0 0 0

Total size in kb 1,137 887 (58) 1,013 (52) 1,103 1,193 1,358 1,884

GC content (%) 33.7 36.6 (31.5) 35 (32) 39.2 38.2 35.8 35

CDS 917 841 (65) 709 (30) 795 974 1,131 1,557

Avg. CDS length (bp) 993 911 (733) 1,033 (1,389) 1,052 997 941 990

Coding density (%) 80 85.5 (82.1) 79.7 (80.1) 75.7 81.4 78.3 81.8

rRNAs 3 3 3 3 3 3 3

tRNAs 37 37 35 35 37 34 35

Ankyrin repeat proteins 46 18-19 26 29 27 32 54

Reference this study a b c d e f

Notes:
a Penz et al. (2012).
b Santos-Garcia et al. (2014).
c Zeng et al. (2018).
d Showmaker et al. (2018).
e Brown et al. (2018).
f Schmitz-Esser et al. (2010).
* contigs > 500 bp.
** chromosome (plasmid).
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Although absence of plasmids has also been reported previously for A. asiaticus, the sister
species of Cardinium clade (Schmitz-Esser et al., 2010), the presence of low-copy-number
plasmids in cCpun cannot be ruled out.

A total of 917 protein coding genes were identified with an average length of 993 bp
corresponding to a coding density of around 80% (Table 1; Table S1). cCpun harbors a
single set of rRNA genes with the 16S separated from 5S and 23S and encode a
complete set of 37 tRNA genes. The identification of 117 out of the 148 BUSCO marker
genes (BUSCO score = C: 79% (S: 79%, D: 0%), F: 2.7%, M: 18.2%, n: 148) (Fig. S3)
was comparable to that observed for the previously sequenced and complete cEper1 cSfur
and cHgTN10 genomes, which suggests that cCpun is a near complete genome.
Overall, the redundancy in cCpun as assessed through MUMmer-plots is lower than both
A. asiaticus and cBtQ1 previously described as highly repetitive (Santos-Garcia et al., 2014)
(Fig. S4). K-mer frequency analysis of the Illumina reads estimated the repetitive
fraction of cCpun genome to be circa 13%.

Phylogenomic analyses place cCpun as an outgroup of both other
insect and nematode Cardinium strains
Recently, a new family named Amoebophilaceae was proposed to include the Cardinium
clades as well as the amoeba-associated A. asiaticus (Santos-Garcia et al., 2014).
Currently, at least four major phylogenetic clades of Cardinium related bacteria have
been described (Nakamura et al., 2009; Edlund et al., 2012) with possible evidence
for additional clades (Chang et al., 2010). However, the phylogenetic (evolutionary)
relationships between these clades are not clear. Previous phylogenetic studies based on
partial 16S rRNA and gyrB sequences failed to provide a consistent phylogenetic
placement for the arthropod and the nematode Cardinium clades (Morag et al., 2012;
Nakamura et al., 2009).

We established the relationship of this group across a concatenated set of 278 single
copy core protein coding genes as well as a subset of 46 ribosomal protein genes
shared between the seven Amoebophilaceae genomes. The results of both analyses
clearly support the position of the midge Cardinium clade (C) as a sister group to both
the other arthropod and nematode Cardinium clades (clades A and B) and confirm that
the arthropod-associated Cardinium do not form a monophyletic group (Fig. 1A).
Constrained tree tests for two alternative topologies (a) nematode Cardinium as sister
group of all other arthropod Cardinium and (b) cCpun and nematode Cardinium as a
monophyletic group resulted in significantly worse trees (AU test, p < 0.01).
This inference was further supported by analysis of single protein phylogenies
(Figs. 1B and 1C). A total of 157 out of the 278 single copy core genes (56%) support the
monophyletic grouping of the B group Cardinium strains (cHgTN10, cPpe) with the
A group (cEper1, cBtQ1 and cSfur) in exclusion of cCpun (p < 0.001, Fisher’s exact test).
In contrast, only 68 genes (24%) support the monophyletic grouping of cCpun
with the A group strains while a small subset of genes (n = 52; 19%) supports the
monophyletic grouping of cCpun with cHgTN10 and cPpe.
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Genome content comparisons estimate both a core Cardinium
genome, genes associated with an insect-symbiont lifestyle, and
cCpun specific genes and gene families
The OrthoFinder clustering algorithm identified a total of 2,015 ortholog protein clusters
across the seven Amoebophilaceae genomes (A. asiaticus, cHgTN10, cPpe, cCpun, cEper1,
cSfur, and cBtQ1). The seven genomes share a core of 415 ortholog clusters of which
278 consist of single-copy genes (Fig. 2). The cCpun genome codes for a substantial
number of unique proteins (Fig. 2; Table S2). Specifically, among the 812 ortholog clusters
predicted for cCpun, 190 clusters—including 204 protein coding genes—were assigned as
strain-specific (Fig. 2). Of these genes, 40 were predicted to code for proteins of less
than 70 amino acids and likely represent either annotation artefacts or pseudogenised
gene fragments.

The majority of cCpun specific proteins, 138 (∼67%), had neither significant matches
(blastp, e-value � 10-10) in the NCBI-nr database, nor predicted functional domain.
These were assigned as hypothetical proteins. Amongst the remaining 66 predicted
cCpun-specific protein clusters, those with ankyrin-repeat domains were particularly well
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represented in the strain specific set (Table S2). The abundance, diversity and presumably
eukaryotic origin ANK repeat containing proteins has long led them to be considered likely
to be involved in symbiotic interactions, and this has been demonstrated in a few
cases (Siozios et al., 2013; Nguyen, Liu & Thomas, 2014; Voth, 2011; Pan et al., 2008).
A total of 46 ANK repeat proteins were present in the cCpun genome, which represents the
largest expansion of this gene family in Cardinium, comparable to the expansion of
this family in A. asiaticus (54 ANK proteins) (Schmitz-Esser et al., 2010). In total, 20 out of
the 46 ankyrin repeat-containing proteins identified in cCpun were not found in the
other Cardinium strains, suggesting potential host-specific functions. Among the
remaining strain-specific protein clusters, 13 were assigned as putative mobile elements
(transposases), three putative transporters, a DNA repair protein RecN, two putative
GNAT-family acetyltransferases and a homologue of the hemolysin transporter protein
ShlB (Table S2). Finally, a folylpolyglutamate synthase (FolC) homologue involved
in the tetrahydrofolylpolyglutamate biosynthesis pathway and a putative riboflavin
biosynthesis protein RibBA were also detected. Absence of the complete pathway for the
de novo biosynthesis of folate in cCpun suggest that FolC probably participates in the
folate salvage pathway (folate to polyglutamate) as suggested also by the presence
of a dihydrofolate reductase homologue (De Crécy-Lagard et al., 2007).

Candidate proteins related to the adaptation of Cardinium to arthropod hosts
(as opposed to Amoeba and nematode) were identified as being in the four

cCpun unique
core genome

A. asiaticus

cHgTN10

cCpun

cBtQ1

cEper1

cPpe

cSfur

Figure 2 Genome content comparison across the seven Amoebophilaceae genomes. UpSet plot
showing unique and overlapping protein ortholog clusters across the seven Amoebophilaceae genomes
cCpun, cEper1, cBtQ1, cSfur, cHgTN10, cPpe, and Amoebophilus asiaticus. The intersection matrix is
sorted in descending order. Green bars represent the orthogroup size for each genome ordered by their
phylogenetic relationships. Connected dots represent intersections of overlapping orthogroups while
vertical bars shows the size of each intersection. The core orthogroup and the cCpun unique orthogroup
cluster are shown with the blue and the orange bars respectively. The plot was generated using UpSetR
package in R (Conway et al., 2017). Full-size DOI: 10.7717/peerj.6448/fig-2
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arthropod-associated Cardinium strains (cCpun, cSfur, cEper1, and cBtQ1), and not
Amoebophilus and the nematode-associated Cardinium strains (cHgTN10 and cPpe).
The four strains from whitefly, wasp, planthopper and midge uniquely share
11 ortholog protein clusters (Fig. 2). Among them we observed the virulence-associated E
family protein previously detected in the plasmids harbored by cEper1 and
cBtQ1 (Penz et al., 2012; Santos-Garcia et al., 2014) and a nicotinamide
mononucleotide transporter.

cCpun possesses both afp-like and type IX secretion systems
Intracellular microbes utilize a variety of specialized protein secretion systems in order to
invade and interact with their eukaryote host (Tseng, Tyler & Setubal, 2009; Dale &
Moran, 2006). A common characteristic of the Amoebophilaceae genomes is
that all encode for a putative afp-like protein secretion system presumably
involved in host-microbe interactions (Penz, Horn & Schmitz-Esser, 2010; Penz et al., 2012;
Hurst et al., 2007). This system was also observed in the cCpun genome (Fig. 3)
(Penz, Horn & Schmitz-Esser, 2010; Penz et al., 2012; Santos-Garcia et al., 2014).
The organization of the AFP-like genes clusters is conserved between the
four Amoebophilaceae genomes and suggests operon-like structures (Fig. 3).

We additionally identified seven components of the type IX secretion system (T9SS) in
cCpun, a system related to gliding motility and pathogenicity in several members of
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the phylum Bacteroidetes (McBride & Zhu, 2013; McBride & Nakane, 2015). cCpun is the
third Cardinium strain reported to retain components of the T9SS system (Santos-Garcia
et al., 2014; Zeng et al., 2018). Four of these protein clusters with homology to the
core components of the T9SS (GldK, GldL, GldM, GldN) are shared between cCpun,
A. asiaticus, cBtQ1, and cSfur while an additional three proteins with homology
to the lipoproteins GldD, GldJ, and GldH are uniquely shared between cCpun and
A. asiaticus with exception the GldJ which was also found in the cSfur genome in
two identical copies (Table S3). More recently, core components of the T9SS secretion
system were found on the plasmid of Cardinium cBtQ1 (Santos-Garcia et al., 2014).

Originally described in Flavobacterium johnsoniae, the T9SS is unique among
the phylum Bacteroidetes having important role in secretion of proteins involved both
in gliding motility and pathogenicity (McBride & Nakane, 2015; Sato et al., 2010).
The presence of the Gld homologs in cCpun as well as A. asiaticus supports an ancestral
origin of the T9SS machinery which was subsequently lost from cEper1 and the
nematode clade (cHgTN10 and cPpe). The functional role of the T9SS components in
Cardinium is unknown. The gene set identified as present in the clade is small compared to
that known for active T9SSs (which may have more than 18 components). The low
number of genes identified may either reflect co-option of other (unidentified) genes into
the secretion process, or a function outside of secretion. However, it is tempting to
speculate that the T9SS machinery in Amoebophilaceae has progressively been replaced by
the AFP-like protein secretion system. This hypothesis is supported by the complete
absence of Gld homologs in both cEper1 and the nematode strains, which suggests that the
T9SS is dispensable and likely undergoing gradual loss due to genome reduction processes
(Toft & Andersson, 2010).

The cCpun genome contains an expansion of the DUF1703 gene family
Expansion and contraction of gene families in microbial genomes constitute a major
source of both genetic and functional novelty, contributing to their adaptation to changing
environments (Bratlie et al., 2010). Despite a tendency for evolution to eliminate
redundancy and streamline genomes, endosymbiotic bacteria and intracellular pathogens
often contain multi-gene families. Interestingly, the majority of the expanded gene
families in these host-associated microbes encode putative effector proteins enriched
in eukaryotic domains including ANK, LRR, and TPR repeats, F-box and U-box domains
(Domman et al., 2014; Wu et al., 2004; Siozios et al., 2013; Schmitz-Esser et al., 2010).

Inspection of the cCpun genome revealed the presence of an expansion of
hypothetical proteins related to the DUF1703 protein family (Knizewski et al., 2007)
not previously observed in other Cardinium genomes, or other heritable microbes. A total
of 25 gene paralogs coding for hypothetical proteins of this family were identified (Fig. 4).
The DUF1703 family contains a group of modular proteins consisting of an
N-terminal AAA-ATPase like domain (Pfam ID: PF09820) and a C-terminal PDDEXK_9
nuclease domain (Pfam ID: PF08011). In addition to the 25 paralogs, six genes were found
to contain only the AAA-ATPase like domain whilst two genes contained only the
nuclease domain (Fig. 4B). All partial genes were detected near the borders of the
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cCpun scaffolds and may be artefactually truncated. Our estimate of gene family size is
thus conservative.

The members of the DUF1703 gene family display in cCpun are diverse, as attested by
an average amino acid identity of just 39% amongst members (Fig. S5). This extensive
divergence of paralogs suggests that the expansion of this gene family is not recent.
Moreover, the pairwise comparison suggest at least three main expansion waves (Fig. S5).
Phylogenetic analysis indicates that all but one of the Cardinium cCpun DUF1703 carrying
protein sequences form a single cluster closely related to those found in Simkania,
an intracellular bacterium member of Chlamidiales known to be associated with protozoa
(Fig. 4A). Notably, two of the simkania’s paralogs are encoded on its pSn plasmid,
suggesting possible roots for horizontal dissemination of the DUF1703 genes.
The exception is the gene CCPUN_02500, which forms a distinct group with homologs
identified in Cardinium strain cSfur and the only intact DUF1703 carrying homolog in
cHgTN10, and which is closely related to homologs found in Rickettsia and
metagenomically-recovered sequences belonging to uncultured members of the
Bacteroidetes and Gammaproteobacteria (Anantharaman et al., 2016).

Although larger, the expansion of the DUF1703 gene family is not unique to the cCpun
genome. Amongst the most recently sequenced Cardinium genomes (cSfur and cPpe)
we identified smaller expansions of the DUF1703 family (Figs. 4A and 4B). In contrast, the
genomes of cEper1, cBtQ1, and cHgTN10 contain only a single gene homolog whilst
no homologs were detected in A. asiaticus or free-living relatives (Fig. 4B). Reconstruction
of the phylogenetic relationships between the homologs clearly show that members
from the same organism group together suggesting that independent expansions took
place after divergence from the common ancestor. Surprisingly, the eight paralogs
identified in cPpe genome are more closely related to their Rickettsia counterparts than the
rest of the Cardinium homologs, indicating possible independent acquisition. Our results
suggest that the DUF1703 genes have probably originated in Cardinium after they
diverged from A. asiaticus, presumably by horizontal gene transfer (HGT) with later
expansion in the lineage leading to cCpun, cSfur, and cPpe.

Phylogenetic network analyses revealed several reticulation events within the DUF1703
gene family in cCpun indicating frequent recombination among gene family members
(Fig. 4C). We further investigated the extent of recombination using different methods
implemented in RDP4 software (Martin et al., 2015). Due to the limited sequence
similarity between the members of the DUF1703 family we restricted our analyses to group
of sequences sharing at least 65–70% nucleotide similarities since misalignment artefacts
can confound the identification of true recombination signals. We detected evidence
of intragenic recombination in all examined groups with multiple methods (Table S4)
suggesting that DUF1703 paralogs in cCpun readily recombine. Despite the
extensive recombination, no apparent homogenization between the members of this gene
family is observed as suggested by the limited sequence similarity and the absence of
monophyletic clustering of cCpun paralogs. Overall, our results point to a HGT scenario
for the origin of Cardinium DUF1703 gene family with subsequent expansion in the
cCpun genome, and variation produced both by mutation and recombination.
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To gain a better insight into the role of DUF1703 proteins we sought to investigate the
distribution and abundance of proteins containing the AAA-ATPase and PDDEXK_9
domains in other prokaryotes and eukaryotes. We searched the Pfam database for
protein sequences containing the two domains and exhibited similar architecture with
Cardinium homologs. In most cases, DUF1703 containing genes occurred in low copy
number per genome. Most species carried fewer than four copies whilst only 9.8%
of the species contained 10 copies or more (Fig. 5), ranking cCpun among the species with
the largest number of DUF1703 paralogs. Species with higher abundance of DUF1703
paralogs are scattered across the prokaryotic taxonomy suggesting that DUF1703
protein expansion has occurred on multiple occasions within bacteria.

The reason for the expansion of the DUF1703 gene family in cCpun and its putative
functional role is yet unknown. It is notable that DUF1703 genes have been also identified
in the Rickettsia endosymbiont infecting biting midges (Pilgrim et al., 2017).
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Mirroring the pattern for midge Cardinium, the midge Rickettsia genome also contains
multiple DUF1703 paralogs compared to other Rickettsia species with evidence of
intragenic recombination (p < 0.001, PHI test, 1,000 permutations). However, Cardinium
cCpun and Rickettsia DUF1703 carrying genes are phylogenetically unrelated (Fig. 4A)
suggesting independent evolutionary histories, and independent expansion of this
gene family in the two groups of midge symbionts. These data suggest this gene family may
have a particular function in symbiosis with midges.

The biological role of the DUF1703 is still unclear. A recent transcriptomic study of the
Cardinium strain cEper1 in its host E. suzannae showed that its only DUF1703 gene
homolog is moderately transcribed in both sexes (Mann et al., 2017). Notably, a putative
signal peptide cleavage site was predicted for 10 out of 25 DUF1703 paralogs in
cCpun (Table S5) suggesting that they are potentially secreted, acting against DNA/RNA
outside of the symbiont. Surprisingly, no signal peptides were detected in any of the
paralogs identified in cSfur and cPpe (data not shown). It is noteworthy that an intact
DUF1703 homolog of bacterial origin has been previously reported as component of the
Maternal-Effect Dominant Embryonic Arrest (“MEDEA”) factor, a selfish genetic
element reported in Tribolium castaneum (Lorenzen et al., 2008). PD-(D/E)XK nucleases
constitute a large and functionally diverse superfamily of proteins which includes
among others restriction endonucleases, Holliday junction resolvases, transposases, and
DNA repair enzymes (Steczkiewicz et al., 2012). Recently, dual PD-(D/E)XK nuclease
domains have been identified in a wide range of toxins from diverse intracellular bacteria
(Gillespie et al., 2018; Lindsey et al., 2018). More interestingly, some of these
domains have been directly linked with the induction of reproductive parasitism in the
form of CI inWolbachia (Beckmann, Ronau & Hochstrasser, 2017). Structural comparison
of the PD-(D/E)XK core nuclease site from Cardinium and Rickettsia DUF1703
homologs and that of the CI-like toxins show considerable differences, especially in the
sequence between the catalytic residues (Asp, Glu, and Lys) (Fig. S6). In addition,
the AAA-ATPase domain associated with the DUF1703 nuclease is not found in the
CI-like toxins of Wolbachia and related proteins (Gillespie et al., 2018) which might
suggest these proteins have different functions. The biological role of CardiniumDUF1703
proteins remains to be determined.

Putative horizontal gene transfers as a source of genes in the cCpun
genome
Horizontal gene transfer has been previously reported as the source of several genes in
A. asiaticus, cEper1, and cBtQ1 (Penz et al., 2012; Santos-Garcia et al., 2014; Schmitz-Esser
et al., 2010). Many of the HGT genes were found to be shared with members of
the Alphaproteobacteria that have an intracellular lifestyle, especially species within the
Rickettsiales order, consistent with HGT within the shared environment of the cell.

In accordance with previous observations of symbiont genomes, our results indicate
that HGT has likely shaped the accessory genomes of cCpun (Table 2). The majority of the
accessory genes of cCpun for which homologs could be assigned in the database are
more similar to corresponding genes of bacterial species outside Bacteroidetes, with a bias
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to genes within the Proteobacteria having closest sequence similarity (Table 2; Fig. S7). For
cCpun-specific genes, closest sequence matches lay within bacterial species known to be
associated with other arthropods including Rickettsia and Wolbachia, as well as the
amoeba-associated bacteria Candidatus Paracaedibacter acanthamoebae and Candidatus
Jidaibacter acanthamoeba (Table 2). Four of these genes clustered with gene sequences
from torix group Rickettsia, which are also found in midges. Three of these genes
encode putative transposases, and one is a hypothetical protein that in other Rickettsia is
located on a plasmid hypothesized to be important in determining the host-symbiont
interaction (Gillespie et al., 2015).

Among the putatively horizontally exchanged gene set were ORFs encoding a carbonic
anydrase (CA), an amino acid permease, and a putative chromosome-partitioning protein.

Table 2 Example of cCpun genes likely originated from HGTs.

Gene id Length
(AA)

Annotation Taxonomy of the Best BLAST
hit, (GenBank accession)

E-value AA identity (%)

CCPUN_00040 308 Hypothetical protein, putative
transposase

Rickettsia endosymbiont of
Culicoides newsteadi, (WP_
094649760)

2E-128 64

CCPUN_00530 328 Hypothetical protein, putative
transposase

Rickettsia endosymbiont of
Culicoides newsteadi, (WP_
094649760)

3E-124 62

CCPUN_01090 346 Hypothetical protein, putative
transposase

Rickettsiales bacterium,
(PCJ29205)

6E-133 58

CCPUN_02050 379 Hypothetical protein, putative
transposase

Rickettsiales bacterium,
(PCJ24349)

5E-55 44

CCPUN_04150 328 Hypothetical protein, putative
transposase

Rickettsia endosymbiont of
Culicoides newsteadi, (WP_
094649760)

9E-125 59

CCPUN_04430 297 Hypothetical protein, putative
transposase

Rickettsiales bacterium,
(PCJ25778)

9E-136 65

CCPUN_01120 218 Carbonic anhydrase Lysobacter sp. Root494, (WP_
056131435)

2E-95 59

CCPUN_03570 551 DNA repair protein RecN Rickettsiales bacterium,
(PCJ29272)

2E-175 48

CCPUN_03900 258 Hypothetical protein, putative
transposase

Candidatus Paracaedibacter
acanthamoebae, (WP_
038464592)

3E-114 67

CCPUN_06490 469 Arginine/agmatine antiporter Gammaproteobacteria bacterium
39-13, (OJV90723)

4E-112 43

CCPUN_07910 266 Chromosome-partitioning protein
Spo0J

Candidatus Phycorickettsia
trachydisci, (WP_106874767)

9E-101 57

CCPUN_07920 327 Sporulation initiation inhibitor protein
Soj

Candidatus Phycorickettsia
trachydisci, (WP_106874768)

5E-135 62

CCPUN_08840 436 Folylpolyglutamate synthase Wolbachia pipientis, (WP_
010963010)

0E+00 76

CCPUN_08910 340 Hypothetical protein Rickettsia felis, (WP_039595314) 2E-155 73

CCPUN_03830 426 Hypothetical protein Aedes aegypti, (XP_001656120) 2E-60 39

CCPUN_08280 1,360 Hypothetical protein Aedes albopictus, (KXJ68548) 5E-72 27
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Finally, two cCpun-specific genes encoding hypothetical proteins had their closest
homologs within Aedes mosquitoes (Table 2; Fig. S7). Notably, the two proteins also have
partial similarities with a large ankyrin repeat containing protein (Aasi_1610) previously
identified in A. asiaticus (Schmitz-Esser et al., 2010). Although both cCpun proteins
had their ten top hits assigned to Aedes sequences, the partial similarities to A. asiaticus
suggest that they might be fragments of an Aasi_1610 distant homolog. Note, the number
of these genes derived from HGT may be even higher since the majority of the
accessory genes did not have any significant matches on the GenBank database, and many
of these likely represent HGT events from as yet uncharacterized genomes.

The presence of CAs gene is interesting. Among the Amoebophilaceae,
CA homologs were detected only in cCpun, cSfur, and cHgTN10 and not in other
Cardinium strains nor A. asiaticus, Notably, the three Cardinium homologs do not form a
monophyletic group, with cHgTN10 and cSfur homologs being clustered together and
more closely associated with a putative CA previously identified in the Rickettsia
endosymbiont previously found in biting midges (Pilgrim et al., 2017) (Fig. S8). Our results
suggest that the Cardinium CA homologs have independent evolutionary histories
and probably originated from independent horizontal transfer events into the
three genomes.

The function of these CAs is not clear. CAs are ancient and ubiquitous multi-class
zinc-containing metalloenzymes that catalyze the interconversion of CO2 to bicarbonate
(Smith & Ferry, 2000; Smith et al., 1999) and are involved in a variety of biochemical
processes including respiration and pH homoeostasis (Gai et al., 2014). Studies
have shown that CAs are essential for microbial growth in free living bacteria under
ambient air with low levels of CO2 (Mitsuhashi et al., 2003; Merlin et al., 2003;
Kusian, Sültemeyer & Bowien, 2002). However, whilst CAs are common in many bacterial
groups, they are less commonly observed in the genomes of obligate intracellular
bacteria (Ueda, Nishida & Beppu, 2012). Studies suggest that intracellular pathogens
may rely on CAs for virulence and survival within the host cell (Valdivia &
Falkow, 1997), possibly through regulating the phagosome pH during the infection
(Nishimori et al., 2014). An intriguing hypothesis is whether CAs might actually play a role
in the survival of Cardinium outside of the host in comparable way to the role of
CAs in free living bacteria, and thus facilitating its horizontal transmission.
Interestingly, the plant-mediated horizontal transmission of Cardinium bacteria
between phloem sap-feeding insects has been previously reported, supporting such a
scenario (Gonella et al., 2015).

cCpun lacks a biotin or other B-vitamin biosynthetic pathways, indicating it is
unlikely to act as a source of these vitamins to its haematophagous host.
Indeed, putative homologs of the complete biotin transport system (BioY: CCPUN_01590,
BioM: CCPUN_08370, and BioN: CCPUN_08380) were detected, suggesting that
cCpun may depend on external provision of biotin from the host. The presence of a
complete biotin transporter gene set contrasts with other Cardinium genomes, which lack
these transporters, but may carry complete operons for the synthesis of biotin, lipoeta
and pyridoxal 5’-phosphate (vitamin B6) (Penz et al., 2012). Exception is the recently
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sequenced strain cSfur which encode for both a biotin transport system and a complete
operon for biotin synthesis (Zeng et al., 2018).

CONCLUSIONS
In the present study, we expanded the current genomic information from Cardinium
lineages by presenting a new Cardinium draft genome belonging to the divergent
and poorly studied group C. Phylogenomic comparison clearly nests the B group
nematode-associated Cardinium symbionts within the clade A and C symbionts derived
from insect strains, indicating that inference previously made on the basis of two gene
sequences can now be regarded as supported robustly. The lack of monophyly of
strains of Cardinium symbiotic with arthropods resembles the pattern for Wolbachia,
where nematodeWolbachia strains are nested within a diverse set of arthropodWolbachia
strains (Gerth et al., 2014). Heritable microbes occasionally switching between
distant host phyla may be more common than previously considered, with the pattern
observed in Wolbachia (nematode and arthropod infections), torix Rickettsia
(leech and arthropod lineages) and here in Cardinium.

Comparative genomics also provides some insight into whether the three Cardinium
clades consist different species. The assignment of systematic names in symbiotic bacteria
has been a controversial field, owing to the intimate association with their hosts and
their ability to exchange genetic material. Nakamura et al. (2009) had previously proposed
the use of the single species name “Candidatus Cardinium hertigii” to describe the
three Cardinium clades (A, B, C) based on morphological similarities and comparable
substitutions in the 16S rRNA gene with other symbiotic bacteria. The paucity of
Cardinium genomic data and the complete absence of phenotypic information on all but
clade-A suggest that is still early to apply an accurate systematic framework. However, the
extensive genomic diversity between Cardinium clades suggest that Cardinium
clades may be best described as separate species. Future genomic and phenotypic data
will allow us to revise the taxonomy within Cardinium lineage.

The presence of Rickettsia alongside Cardinium in midges presents an opportunity to
examine whether the genomes show any convergent properties and if HGT has occurred.
Comparison of the gene content of the cCpun Cardinium strain with the RiCNE
Rickettsia symbiont of Culicoides newsteadi revealed some similarities. Expansion
of the DUF1703 gene family and presence of a carbonic anhydrase gene were notable.
However, neither case reflects HGT in the intracellular environment of midges,
with the same pattern being independently derived. This separate derivation indicates
the possession of these genes may be convergent properties, biologically related to
symbiotic life in biting midge hosts, rather than HGT within a shared environment.

Finally, our data indicate that the Cardinium symbiont in biting midges is unlikely to
serve as a source of B vitamins to its haematophagous host. Contrary to the cEper1
genome, a biotin synthesis system was not observed in the cCpun genome, and indeed the
presence of a biotin transporter system indicates the symbiont may in fact be an
importer of biotin, and thus a B vitamin sink rather than source. This result perhaps
reflects the mixed trophic relationship of biting midges, where larval phases are aquatic
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and detritivores, and the adult phase either haematophagous (female) or reliant only on
sugar sources (males). It is likely that B vitamins are acquired heterotrophically in the
larval phase in sufficient quantities such that selection for symbiont-mediated
supplementation is low. Given that a major vector species, including Culicoides imicola,
harbours Cardinium (Morag et al., 2012), future work should likely focus on their effects
on vectorial capacity alongside the putative facilitation of Cardinium-midge
interactions from the DUF1703 gene family and carbonic anhydrases.
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