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Abstract12

Fuzzy probability offers a framework for taking into account the effects of both aleatoric and epistemic13

uncertainty on the performance of a system, quantifying its level of safety, for example, in terms of a14

fuzzy failure probability. However, the practical application of fuzzy probability is often challenging due15

to increased numerical efforts arising from the need to propagate both types of uncertainties. Hence,16

this contribution proposes an approach for approximate calculation of fuzzy failure probabilities for17

a class of problems that involve moderately nonlinear performance functions, where uncertain input18

parameters of a model are characterized as random variables while their associated distribution pa-19

rameters (for example, mean and standard deviation) are described as fuzzy variables. The proposed20

approach is cast as a post-processing step of a standard (yet advanced) reliability analysis. The key21

issue for performing an approximate calculation of the fuzzy failure probabilities is extracting probabil-22

ity sensitivity information from the reliability analysis stage as well as the introduction of intervening23

variables that capture – to some extent – the nonlinear relation between distribution parameters and the24

failure probability. A series of relatively simple illustrative examples demonstrate the capabilities of the25

proposed approach, highlighting its numerical advantages, as it comprises a single standard reliability26

analysis plus some additional system analyses.27
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1. Introduction30

Probability theory has been widely accepted by the engineering community as a means to account31

for the unavoidable effects of uncertainty on the performance of built systems. Hence, the development32

and application of methods for uncertainty quantification within a probabilistic framework has been33

the subject of active research, see e.g. [1, 2, 3, 4, 5, 6]. While classical probability theory offers a most34

appropriate framework for describing aleatoric uncertainty, such may not be the case for those situa-35

tions where uncertainty arises due to lack of knowledge, vagueness, imprecision, etc. For such cases,36

non-traditional models for uncertainty quantification may become more suitable, as they may take into37

account both aleatoric and epistemic uncertainty [7, 8, 9]. Among these non-traditional models, fuzzy38

probability offers a most convenient framework, as it allows characterizing aleatoric uncertainty through39

probability distributions while the imprecision on the probabilistic model is described through fuzzy40

sets. In this way, it is possible to perform an analysis where probabilistic information and imprecision41

are preserved explicitly, thus providing valuable insight on the behavior of a system, its level of safety42

and its sensitivity with respect to the imprecision in the specification of the probabilistic model [7]. In43

other words, the framework provided by fuzzy probability can be seen as a collection of probabilistic44

models which are indexed by the fuzzy model.45

The above discussion clearly indicates that fuzzy probability may convey much more information than46

a traditional probabilistic analysis. Although this is certainly a most attractive feature, the practical47

application of fuzzy probabilities can become extremely challenging. In this sense, it should be recalled48

that traditional probabilistic analysis usually demands considerable numerical efforts, as repeated sys-49

tem analyses are required in order to quantify the effects of uncertainty [3]. Hence, performing fuzzy50

probability analysis usually becomes even more challenging, as an additional layer (that is, the fuzzy51

description of the probabilistic model) is included in the analysis as well. The whole problem becomes52

even more challenging when focusing on the calculation of failure probabilities, that is, probabilities of53

ocurrence of a certain undesirable event. This is due to the fact that failure probabilities are usually54

small (e.g. 10−3 or less), as they involve events of rare ocurrence. In view of this challenge, several55

approaches have been developed for coping with problems involving fuzzy probabilities (and in gen-56

eral, imprecise probabilities [7]) and failure probability estimation, including optimization approaches57

[10, 11], specially devised sampling approaches [12, 13, 14, 15, 16], approximation concepts [17], sur-58

rogate models [8, 18], etc. A common feature among these approaches is that they cope (to a certain59

extent) simultaneously with both aleatoric and epistemic uncertainty.60
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The purpose of this contribution is proposing an approach for computing failure probabilities within the61

framework of fuzzy analysis in an approximate way. That is, the objective is characterizing the failure62

probability associated with a problem in terms of its associated membership function. The proposed63

approach is cast for the particular case where a probabilistic model describes the uncertainty in the64

input parameters of a system while the distribution parameters (e.g. mean and standard deviation)65

of that probabilistic model are characterized by means of fuzzy sets. The novelty of the proposed ap-66

proach is that it involves a single standard reliability analysis that estimates the probability of failure of67

a system considering a prescribed probabilistic model plus some additional system analyses. Then, the68

imprecision due to the fuzzy distribution parameters is captured by retrieving probability sensitivity69

information from the reliability analysis stage [19] in combination with the application of intervening70

variables [20, 21]. In this way, numerical efforts associated with the calculation of fuzzy failure probabil-71

ities are drastically reduced, as it becomes the byproduct of a standard reliability analysis. The scope72

of application of the proposed approach comprises systems where the performance function exhibits a73

moderately nonlinear behavior with respect to the uncertain input parameters of the associated model.74

The rest of this paper is organized in the following way. Section 2 describes the specific problem studied75

in this contribution, that is, calculating the fuzzy failure probability associated with a system. Section76

3 presents the proposed framework for approximating fuzzy failure probabilities. The application of77

this framework is evaluated in Section 4 by means of some relatively simple illustrative examples. The78

paper closes with conclusions and challenges for future work in Section 5.79

2. Problem Statement80

2.1. Failure Probability: Precise Distribution Parameters81

Assume that there is a certain system of interest whose performance must be quantified. For that82

purpose, a numerical model of the system is formulated using a suitable technique, for example, the83

finite element method [22]. During its definition, nx input variables of this model are identified as84

uncertain and are characterized as independent random variables Xi, i = 1, . . . , nx with associated85

probability density function fXi(xi|θi), where θi is a vector of dimension ni × 1 (i = 1, . . . , nx) that86

contains distribution parameters such as mean, standard deviation, etc. The joint probability density87

is denoted as fX(x|θ), where x = [x1, . . . , xnx ]
T , θ = [θT1 , . . . ,θ

T
nx ]

T and (·)T denotes transpose; the88

associated joint cumulative density function is FX(x|θ).89

The above discussion highlights the fact that the performance of the model becomes uncertain due to90

3



the uncertainty in its input parameters. In such situation, some particular realizations of the random91

inputs may cause an undesirable behavior whose chance of occurrence can be quantified in terms of the92

classical failure probability integral pF , which is equal to:93

pF =

∫
g(x)≤0

fX(x|θ)dx (1)

where pF denotes failure probability and g(x) is the so-called performance function [23], which assumes94

a value equal or smaller than zero whenever a realization x of the random input variables causes95

the system’s response to exceed a prescribed threshold level; in the following, it is assumed that the96

performance function is twice differentiable. In practical situations, no closed form solutions exist97

for the failure probability integral. Hence, failure probabilities are often assessed resorting to either98

approximate techniques [23] or simulation methods [1, 3], which can comprise substantial numerical99

efforts due to the necessity of repeatedly evaluating the numerical model for different realizations of the100

uncertain input parameters.101

2.2. Failure Probability: Fuzzy Distribution Parameters102

The structure of eq. (1) indicates that the value of the failure probability pF is dependent on the103

selection of the distribution parameters θ; hence, pF = pF (θ). In practical situations, determining the104

precise values of these distribution parameters may become challenging due to issues such as insufficient105

knowledge, errors in measurements, lack of data, etc. In such scenario, it may be appropriate to describe106

these distribution parameters as fuzzy sets. Thus, the fuzzy set θ̃l,i associated with the l-th distribution107

parameter of the i-th random variable is:108

θ̃l,i =
{(
θl,i, µθ̃l,i(θl,i)

)
: (θl,i ∈ Θl,i) ∧

(
µθ̃l,i(θl,i) ∈ [0, 1]

)}
,

l = 1, . . . , ni, i = 1, . . . , nx (2)

where θl,i denotes the value of the l-th distribution parameter associated with the i-th random variable109

which belongs to the fundamental set Θl,i and µθ̃l,i(θl,i) is the membership function. Two important110

issues to be noted from the above characterization are the following. First, the fundamental set Θl,i111

contains all physical values that the distribution parameters θl,i may assume, while the fuzzy set θ̃l,i112

associates a membership to each value contained in the fundamental set. Second, in classical set theory,113

the membership of an element to a set is binary; that is, an element either belongs or not to a set (this114
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is denoted as crisp set). Instead, in fuzzy sets, the membership µθ̃l,i(θl,i) represents the degree with115

which θl,i belongs to θ̃l,i.116

It is assumed that the fuzzy sets θ̃l,i possess only one element θl,i for which µθ̃l,i(θl,i) = 1 and that they117

are convex [7, 9], i.e.:118

µθ̃l,i
(
θCl,i
)
≥ min

(
µθ̃l,i

(
θLl,i
)
, µθ̃l,i

(
θRl,i
))
, ∀ θLl,i, θCl,i, θRl,i ∈ Θl,i (3)

such that θLl,i ≤ θCl,i ≤ θRl,i, l = 1, . . . , ni, i = 1, . . . , nx. A schematic representation of a convex fuzzy set119

as described above is shown in Figure 1.120

θl,i

µθ̃l,i(θl,i)

0

1

θRl,iθLl,i θCl,i

µθ̃l,i(θ
R
l,i)

µθ̃l,i(θ
L
l,i)

µθ̃l,i(θ
C
l,i)

Figure 1: Schematic representation of membership function associated with convex fuzzy set

The fuzziness associated with the distribution parameters propagates to the probabilistic model121

implying, for example, that there is a fuzzy set of cumulative density functions (instead of a single122

cumulative density function). This idea is represented schematically in Figure 2, where it is assumed123

for simplicity that ni = nx = 1. Figure 2(a) illustrates the membership function associated with124

the distribution parameter while Figure 2(b.1) illustrates the fuzzy cumulative density function. It is125

important to note from Figure 2(b.1) that there is actually a collection of different cumulative density126

functions, each of them with an associated membership value µ; Figure 2(b.2) further clarifies this point,127

by illustrating the membership function of the cumulative density function associated with a specific128

realization x∗ of the uncertain input parameter. Due to the fuzziness in the probabilistic model, the129

failure probability becomes a fuzzy set as well. This is shown in Figure 2(c). However, the membership130

function associated with the failure probability is – in general – not known analytically as there is no131

closed form expression for the failure probability integral in eq. (1). One possibility for determining132

its membership function in a discrete way is applying the so-called α-level optimization strategy [7, 9],133

which consists in constructing crisp sets of the distribution parameters by selecting elements from the134

support of the associated fuzzy set which possess a membership value equal or larger than a certain135

threshold α, where α denotes the membership level under analysis; clearly, 0 < α ≤ 1. The crisp set136
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associated with the distribution parameter is:137

θl,i,αk =
{
θl,i ∈ Θl,i : µθ̃l,i(θl,i) ≥ αk

}
,

l = 1, . . . , ni, i = 1, . . . , nx, αk ∈ (0, 1] (4)

where αk, k = 1, . . . , Nc denotes the α-cut value under consideration and Nc is the number of discrete138

cuts considered for analysis; θl,i,αk denotes the set of possible values of θl,i for a given membership value139

αk. Figure 2(a) illustrates the crisp set θαk ; recall that in the Figure, it is assumed that ni = nx = 1 and140

hence, indexes l and i are omitted. Once the α-cuts of the distribution parameters have been defined141

as indicated above, the crisp set of the failure probability p
F,αk

for the specific α-cut value is given by:142

p
F,αk

=
{
pF :

(
θl,i ∈ θl,i,αk , l = 1, . . . , ni, i = 1, . . . , nx

)
∧

pF = pF (θ)}
(5)

The crisp set p
F,αk

is represented schematically in Figure 2(c).143

x

FX(x)

0

(b) Fuzzy random variable

x∗

FX(x∗)

0
1αk

FX,αk
(x∗)

µ = 0

µ = 1

(b.1) (b.2)

θ

µθ̃(θ)

0

1

αk

θRαk
θLαk

θαk

(a) Fuzzy distribution parameter

pF0

1

αk

pRF,αk
pLF,αk

p
F,αk

µp̃F (pF )

(c) Fuzzy failure probability

1

µ = αk

Interval analysis for
α-cut equal to αk

FRX,αk
(x∗)

FLX,αk
(x∗)

µF̃X(x∗)(FX(x∗))

Figure 2: Schematic representation of α-level optimization strategy

Given the assumption that the sets θl,i,αk , l = 1, . . . , ni, i = 1, . . . , nx are compact and convex, these144

sets are fully described by their minimum and maximum values, which are denoted with superscripts145

(·)L and (·)R, respectively, as shown in Figure 2(a). Moreover, as eq. (1) establishes a continuous146
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mapping between the fuzzy distribution parameters and the failure probability, the crisp set p
F,αk

is147

also fully described by its minimum and maximum value, as shown in Figure 2 with superscripts (·)L148

and (·)R, respectively. Hence, the description of the crisp set p
F,αk

involves the solution of the following149

two optimization problems [9].150

pLF,αk =min
θ

(pF (θ)) , θl,i ∈ θl,i,αk , l = 1, . . . , ni, i = 1, . . . , nx (6)

pRF,αk =max
θ

(pF (θ)) , θl,i ∈ θl,i,αk , l = 1, . . . , ni, i = 1, . . . , nx (7)

Note that the two optimization problems described above correspond actually to performing an interval151

analysis problem for the α-cut equal to αk, as indicated in Figure 2. Provided that sufficient α-cut levels152

are considered, it is possible to generate a discrete approximation of the sought membership function153

µp̃F (pF ).154

The introduction of fuzziness on the distribution parameters implies that the failure probability becomes155

fuzzy as well, as already discussed above. The advantage of such formulation is that both probabilistic156

and imprecise information are kept explicitly and separated. That is, for different membership values,157

the crisp set associated with the failure probability is known explicitly. Such information is of utmost158

value for practical analysis, as it may reveal the sensitivity of the failure probability with respect to159

the level of imprecision in the distribution parameters. Nonetheless, the characterization of the failure160

probability as a fuzzy variable may become extremely challenging, as the application of the α-level161

optimization scheme described above demands solving a number of optimization problems involving162

the failure probability integral as defined in eq. (1), yielding the whole procedure extremely demanding163

from a numerical viewpoint. In view of this issue, the rest of this contribution proposes a framework164

for reducing the numerical efforts associated with the calculation of fuzzy probabilities.165

3. Approximate Representation of Fuzzy Probability Applying Intervening Variables166

3.1. General Remarks167

The challenge of applying the α-level optimization scheme as described previously consists in solving168

the optimization problems in eqs. (6) and (7). A possible means for decreasing the numerical cost169

associated with this step is approximating the failure probability pF (θ) with a surrogate model pSF (θ)170

that is an explicit function of the distribution parameters θ. However, the construction of such surrogate171

model may not be straightforward, as the functional dependence of the failure probability with respect172
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to the distribution parameters may be quite involved. In such situation, the application of intervening173

variables may become helpful. Intervening variables were originally developed in the field of structural174

optimization, see e.g. [24, 25], and are actually nonlinear functions of the basic variables (in this case,175

the distribution parameters) and their main characteristic is that the quantity depending upon them176

(in this case, the failure probability) behaves more linearly with respect to these intervening variables177

than with respect to the distribution parameters. Hence, intervening variables may have the potential of178

reducing the nonlinearity of the problem. While intervening variables are used customarily in structural179

optimization [24, 25], there are few examples of its application for uncertainty quantification, see e.g.180

[20, 21, 26, 27].181

The above discussion highlights the potential benefits of applying intervening variables. However, their182

practical application demands prescribing their functional form. Such selection has been performed183

in the past resorting to a physical understanding of a particular system combined with sensitivity184

analysis, see e.g. [20, 21]. However, for the problem at hand, the selection of the functional form of the185

intervening variables becomes a problem by itself, as it is not obvious how the distribution parameters θ186

affect the failure probability pF (θ). Thus, in the following, a criterion for selecting the functional form187

of the intervening variables is discussed, where ξj(θ) denotes the j-th intervening variable such that188

j = 1, . . . , nξ. As these intervening variables depend on the distribution parameters, they are termed189

as intervening variables associated with the distribution parameters.190

3.2. Approximate Representation of the Performance Function Through Physical Intervening Variables191

Before moving into the issue of prescribing a functional form for the intervening variables associated192

with the distribution parameters, first it is proposed to construct an approximate representation of the193

performance function g(x). Such approximation (denoted in the following as gS(x)) will actually allow194

to formulate later on the sought intervening variables associated with the distribution parameters.195

The approximate performance function gS(x) is chosen as linear with respect to the physical intervening196

variables ηi(xi), i = 1, . . . , nx, that is:197

g(x) ≈ gS(x) = g0 +
nx∑
i=1

gi
(
ηi(xi)− ηi

(
x0i
))

(8)

where gi, i = 0, . . . , nx are real, constant coefficients and x0 is an expansion point associated with198

the random input parameters of the problem. The expansion point is selected as the expected value199

of the random input variables assuming that the distribution parameter vector is equal to θ0, that200
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is x0 = EX|θ0 [x], where EX|θ0 [·] denotes expectation with respect to the probability density function201

associated with the random variable vector X given the distribution parameters θ0. Details about the202

selection of θ0 are discussed in Section 3.4.203

The physical intervening variables ηi(xi), i = 1, . . . , nx are a function of the input parameters of the204

system and could be regarded as model-based. This is the reason for denoting them as physical, in205

contrast to the intervening variables ξj(θ), j = 1, . . . , nξ associated with distribution parameters that206

affect the probabilistic description. The physical intervening variables are chosen to be of the power207

type [28, 29], that is:208

ηi(xi) = xmii , i = 1, . . . , nx (9)

where mi, i = 1, . . . , nx are real, constant coefficients. Numerical experience in problems of stochastic209

finite element analysis [20] and fuzzy structural analysis [21] indicates that the intervening variables of210

power type may be applicable in case of moderately nonlinear performance functions, as encountered211

in a number of problems of linear static or linear dynamic structural analysis.212

The coefficients gi, i = 0, . . . , nx and mi, i = 1, . . . , nx are chosen by enforcing the following three213

conditions [20].214

(a) The value of the exact and approximate performance functions at the expansion point must be215

equal, that is, g (x0) = gS (x0).216

(b) The first order derivatives of the exact and approximate performance functions at the expansion217

point are equal, that is, ∂g (x0) /∂xi = ∂gS (x0) /∂xi, i = 1, . . . , nx.218

(c) The second order derivatives of the exact and approximate performance functions at the expansion219

point are equal, that is, ∂2g (x0) /∂x2i = ∂2gS (x0) /∂x2i , i = 1, . . . , nx. Clearly, this condition220

excludes second order mixed partial derivatives.221
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The enforcement of the three conditions described above provides 2nx + 1 equations that allow deter-222

mining the values of the sought coefficients:223

g0 = g
(
x0
)

(10)

mi =

 1 if
∂g(x0)
∂xi

= 0

1 + x0i
∂2g(x0)/∂x2i
∂g(x0)/∂xi

if
∂g(x0)
∂xi

6= 0
, i = 1, . . . , nx (11)

gi =

 0 if mi = 0

1
mi

∂g(x0)
∂xi

(x0i )
mi−1 if mi 6= 0

, i = 1, . . . , nx (12)

The above equations take into account some ill-conditioned cases that can be found when some of the224

partial derivatives are equal to zero. For a more detailed description on the criteria for constructing225

the approximation of the performance function, it is referred to [20, 21].226

It is emphasized that the approximate representation of the performance function as proposed in eq. (8)227

does not play a direct role in evaluating failure probabilities. Instead, it is used as a means for deriving228

a functional form for the intervening variables associated with the distribution parameters, as discussed229

in the following.230

3.3. Identification of Intervening Variables Associated with Distribution Parameters231

The identification of the functional form of the intervening variables associated with the distribution232

parameters ξj(θ), j = 1, . . . , nξ demands gaining some insight on how the distribution parameters θ233

affect the failure probability pF (θ). In order to gain this insight, the so-called first order reliability234

method (see, e.g. [23]) is applied in the following. It is emphasized that this analysis is not intended235

for probability estimation but for deducing a functional form for ξj(θ), j = 1, . . . , nξ only.236

The first step of the analysis is projecting the problem from the space of physical random variables237

to the standard normal space. Recalling the assumption of independent random variables (see Section238

2.1), such projection is accomplished by imposing FXi (xi|θi) = Φ(zi), i = 1, . . . , nx, where Φ(·) is the239

standard Gaussian cumulative density function, zi is a realization of the standard Gaussian random240

variable Zi and FXi(·|θi) is the cumulative density function associated with the random variable Xi241

[23].242

Once the reliability problem has been projected into the standard normal space, the failure probability243

is given by pF (θ) = Φ(−β(θ)), where β(θ) is the reliability index, that is roughly approximated244

considering the value of the performance function and its gradient at the origin of the standard normal245
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space (z = 0) [23]:246

β(θ) =

(
g(t(z|θ))

||∇zg(t(z|θ))||

)∣∣∣∣
z=0

(13)

where || · || denotes Euclidean norm, ∇z denotes nabla operator, i.e. ∇z = [∂/∂z1, . . . , ∂/∂znx ]
T

247

and t(z|θ) is the vector-valued transformation function whose i-th component is xi = ti(zi|θi) =248

F−1Xi
(Φ(zi)|θi). It is remarked that eq. (13) provides a rough estimate of the actual reliability index;249

however, it is recalled that this rough estimate is not applied for probability estimation but for visual-250

izing how the distribution parameters affect the failure probability.251

By introducing the approximate representation of the performance function gS(x) of eq. (8) (that252

comprises the physical intervening variables ηi(xi), i = 1, . . . , nx) into eq. (13), it is found that:253

β(θ) =
nx∑
i=1

 gi (ηi(ti(0|θi)− ηi (x0i ))√∑nx
i=1

(
gi

(
∂ηi(ti(zi|θi))

∂zi

)∣∣∣
zi=0

)2

+
g0√∑nx

i=1

(
gi

(
∂ηi(ti(zi|θi))

∂zi

)∣∣∣
zi=0

)2
(14)

In view of the above discussion, it is proposed to construct the surrogate model for the failure probability254

as:255

pF (θ) ≈ pSF (θ) = Φ

(
h0 +

nξ∑
j=1

hj
(
ξj(θ)− ξj

(
θ0
)))

(15)

where hj, j = 0, . . . , nξ are real, constant coefficients (whose calculation is discussed in Section 3.4);256

θ0 is a reference value of the distribution parameters (whose selection is discussed in Section 3.4); and257

ξj(θ), j = 1, . . . , nξ denote the intervening variables associated with the distribution parameters, which258

are selected based on eq. (14) and are equal to:259

ξj(θ) =
ηj(tj(0|θj))√∑nx

i=1

(
gi

(
∂ηi(ti(zi|θi))

∂zi

)∣∣∣
zi=0

)2
, j = 1, . . . , nx (16)

ξj(θ) =
1√∑nx

i=1

(
gi

(
∂ηi(ti(zi|θi))

∂zi

)∣∣∣
zi=0

)2
, j = nx + 1 (17)

11



where the total number of intervening variables is nξ = nx + 1.260

It is observed that the approximation proposed in eq. (15) comprises the standard Gaussian cumulative261

density function, whose argument is a function of the distribution parameters. A similar approximation262

has been proposed in [30] within the context of reliability-based design optimization. However, when263

comparing the approximation in eq. (15) with that of [30], it is noted that the major difference is that264

the one proposed herein includes intervening variables, which help in improving the quality of the ap-265

proximation. In addition, it is observed that the intervening variables associated with the distribution266

parameters as proposed in eqs. (16) and (17) possess a functional form that is dependent on both the267

physical intervening variables and the transformation functions ti(zi|θi), i = 1, . . . , nx. As shown in268

Appendix A, the intervening variables ξj(θ), j = 1, . . . , nξ can become nonlinear functions of the distri-269

bution parameters and hence, may capture to some extent the nonlinear relation between distribution270

parameters and the failure probability.271

3.4. Construction of Approximate Representation of Fuzzy Probability272

Once the intervening variables associated with the distribution parameters have been defined, it is273

possible to proceed to construct the approximation of the failure probability pSF (θ). The first issue to be274

addressed is the selection of the reference value of the distribution parameters θ0. A possible criterion275

is selecting this reference value to be equal to the value of the distribution parameters for which the276

membership function is equal to 1, that is θ0l,i = {θl,i ∈ Θl,i : µθ̃l,i(θl,i) = 1}. Recall that due to the277

assumptions in Section 2.2, there is a single value for which the membership function is equal to 1.278

Moreover, other choices for the reference value θ0 could be devised based on the particular problem at279

hand.280

The second issue for constructing the approximate representation of the failure probability is calculating281

the coefficients hj, j = 0, . . . , nξ associated with eq. (15). It is proposed to calculate these coefficients282

based on the information drawn from a single standard reliability analysis carried out considering that283

the distribution parameters are equal to their reference value θ0. Such analysis can be performed284

with any appropriate method (e.g. Monte Carlo simulation, Line Sampling [3], Subset Simulation [1],285

etc.), providing both the failure probability pF (θ0) and its sensitivity ∂pF (θ0) /∂θl,i, l = 1, . . . , ni, i =286

1, . . . , nx. It is important to remark that estimates of the probability sensitivity with respect to dis-287

tribution parameters can be obtained as a byproduct of a standard reliability analysis, as discussed in288

[19, 31, 32, 33, 34]. That is, the gradient of the probability with respect to the distribution parameters289

can be estimated with no additional evaluations of the performance function.290
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Following the ideas described above, the coefficient h0 is calculated by enforcing the condition that the291

failure probability value provided by the standard reliability analysis is equal to the probability provided292

by the surrogate model at the reference value for the distribution parameters, that is pF (θ0) = pSF (θ0).293

This yields:294

h0 = Φ−1
(
pF
(
θ0
))

(18)

The rest of the coefficients hj, j = 1, . . . , nξ are calculated by enforcing the condition that the gradient295

of the failure probability drawn from the standard reliability analysis equals the gradient obtained from296

the surrogate model at the reference value of the distribution parameters, that is ∂pF (θ0) /∂θl,i =297

∂pSF (θ0) /∂θl,i, l = 1, . . . , ni, i = 1, . . . , nx. This yields the following system of nθ =
∑nx

i=1 ni equations:298



∂pF (θ0)
∂θ1,1

∂pF (θ0)
∂θ2,1

...
∂pF (θ0)
∂θni,nx

 = φ(h0)



∂ξ1(θ0)
∂θ1,1

. . .
∂ξnξ(θ0)
∂θ1,1

∂ξ1(θ0)
∂θ2,1

. . .
∂ξnξ(θ0)
∂θ2,1

...
. . .

...
∂ξ1(θ0)
∂θni,nx

. . .
∂ξnξ(θ0)
∂θni,nx


︸ ︷︷ ︸

J(θ0)T


h1
...

hnξ

 (19)

where φ(·) denotes the standard Gaussian probability density function and J (θ0) is the Jacobian matrix299

associated with the set of intervening variables ξj(θ), j = 1, . . . , nξ evaluated at θ0. Depending on the300

particular problem being studied, the above system of equations may not be determined, as it may301

occur that nθ 6= nξ. Hence, this system of equations is solved by means of the Moore-Penrose inverse,302

yielding the following expression for the coefficients hj, j = 1, . . . , nξ.303


h1
...

hnξ

 =
1

φ(h0)

(
J
(
θ0
)T)+



∂pF (θ0)
∂θ1,1

∂pF (θ0)
∂θ2,1

...
∂pF (θ0)
∂θni,nx

 (20)

In the above equation, (·)+ denotes Moore-Penrose inverse, which can be computed using singular value304

decomposition [35]. The main advantage of the scheme described above for determining the coefficients305

hj, j = 1, . . . , nξ is that they are calculated based on the information retrieved from a single standard306

reliability analysis. Moreover, note that the Jacobian matrix J (θ0) can be calculated analytically for307
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certain distribution types, as discussed in Appendix A.308

3.5. Scope of Application309

The proposed approximation for the failure probability as an explicit function of the distribution310

parameters as presented in eqs. (15), (16), (17), (18) and (20) has been derived based on several ap-311

proximation concepts. First, the performance function is represented approximately as a linear function312

in terms of some physical intervening variables (see eq. (8)) without considering interaction between313

the random variables. Second, the intervening variables associated with the distribution parameters314

are deduced based on the first order reliability method, introducing a very rough approximation for315

the reliability index. Finally, the surrogate model for the failure probability is calibrated based on the316

value of the probability and its sensitivity at a reference value of the distribution parameters. It is clear317

that all of these assumptions play a determinant role in the quality of the resulting approximation for318

the failure probability. Hence, it is expected that the proposed approximation is applicable for cases319

where the performance function is moderately nonlinear with respect to the uncertain input parameters320

x. Such assertion is based on two observations. First, moderately nonlinear performance functions321

may be conveniently approximated by physical intervening variables, as suggested in [20, 21]. Second,322

moderately nonlinear performance functions should not exhibit drastic changes in the associated failure323

probability when the distribution parameters are perturbed.324

3.6. Summary of Proposed Approach for Calculating Fuzzy Failure Probabilities325

The practical application of the proposed framework for calculating fuzzy failure probabilities com-326

prises the following steps.327

(a) Problem Setting. Define the problem to be analyzed in terms of its performance function g(x),328

the probability density function fX (x|θ) describing the uncertainty on the input parameters of the329

system and the fuzzy description of the distribution parameters θ̃l,i, l = 1, . . . , ni, i = 1, . . . , nx.330

Furthermore, identify a reference value of the distribution parameters θ0 using, for example, the331

criterion suggested in Section 3.4.332

(b) Reliability Analysis. Conduct a reliability analysis for the case where the distribution parameters333

are equal to their reference value θ0 using any appropriate approach, for example Monte Carlo334

simulation, Importance sampling, Line Sampling, Subset Simulation, etc. Retrieve the failure335

probability pF (θ0) and its sensitivity ∂pF (θ0) /∂θl,i, l = 1, . . . , ni, i = 1, . . . , nx.336
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(c) Approximate Representation of the Performance Function. Calculate the performance337

function and its first and second order derivatives (excluding cross terms) at a reference point x0
338

chosen, for example, using the criterion proposed in Section 3.2. For calculating the partial deriva-339

tives, apply any appropriate scheme: analytical, semi-analytical or numerical, see e.g. [36]. Com-340

pute the coefficients associated with the approximate performance function according to eqs. (10),341

(11) and (12).342

(d) Surrogate Model of Failure Probability. Define the intervening variables associated with the343

distribution parameters following eqs. (16) and (17). Calculate the coefficients hj, j = 0, . . . , nξ344

associated with the surrogate model of the failure probability applying eqs. (18) and (20).345

(e) Fuzzy Analysis. Determine the membership function associated with the failure probability by346

means of the α-level optimization strategy described in Section 2.2. For solving eqs. (6) and (7),347

consider the surrogate model of the failure probability and apply any appropriate optimization348

algorithm. As the surrogate is an explicit function of the distribution parameters, the numerical349

cost associated with this step should be small.350

4. Examples351

4.1. General Remarks352

This section analyzes the application of the proposed approach for calculating fuzzy failure probabil-353

ities. In the examples presented, reliability analysis (see step (b) of Section 3.6) is performed by means354

of Importance Sampling (see, e.g. [3]). A brief overview on this simulation approach can be found in355

Appendix C. In addition, each of the aforementioned illustrative examples is solved considering two356

different strategies for approximating the failure probability as an explicit function of the distribution357

parameters:358

(a) The surrogate model proposed in eq. (15) but where the argument of the standard Gaussian cu-359

mulative density function is a linear polynomial with respect to the distribution parameters, as360

discussed in detail in Appendix B. In other words, direct variables are considered instead of inter-361

vening variables. This approximate representation is termed in the following as Linear.362

(b) The proposed approach as described in Section 3.6. This is termed in the following as Proposed.363

The membership functions are represented in a discrete way applying the α-level optimization strategy.364

The associated optimization problems at each α-cut are solved applying an appropriate global search365

algorithm.366
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4.2. Example 1: Linear Performance Function Involving Gaussian Random Variables367

This example comprises the analytical performance function g(x) = 3
√
nx −

∑nx
i=1 xi, where the368

random variables Xi, i = 1, . . . , nx = 2 are independent and follow Gaussian distributions with mean369

value µi and standard deviation σi. The imprecision on the characterization of these distribution370

parameters is described by means of fuzzy sets whose membership functions are shown in Figure 3.371
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Figure 3: Example 1 – Membership function associated with mean value µi and standard deviation σi

The reliability problem is solved applying Importance Sampling considering N = 300 samples of372

the uncertain input parameters. This ensures that the failure probability associated with the reference373

value of the distribution parameters is estimated with a coefficient of variation smaller than 10%.374

Figure 4 illustrate the failure probabilities calculated in an exact and approximate way for a total375

of 1000 realizations of the distribution parameters; these realizations are generated at random within376

the minimum and maximum bounds for the distribution parameters. In the figure, the exact failure377

probability is calculated by means of a closed form solution available for this particular example while378

the approximate failure probability is calculated using either the Linear approximation or the Proposed379

surrogate model. In addition, the figure includes a line with slope of 45◦ that serves as a reference. It is380

seen from Figure 4 that the Proposed approximation exhibits good accuracy, as almost all samples lie381

on the reference line. Such behavior is not surprising, as for the example being studied, it can be shown382

that the proposed surrogate model for the failure probability can capture perfectly the functional form383

of the exact failure probability with respect to the distribution parameters. On the contrary, the results384

provided by the Linear approximation exhibit a poor agreement. This highlights the beneficial effect of385

introducing intervening variables for approximating the failure probability with respect to distribution386

parameters.387

Figure 5 shows the membership function associated with the failure probability in terms of three388

curves: the Reference membership function (which is deduced based on the closed form solution for389
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Figure 4: Example 1 – Comparison between exact and approximate failure probability for 1000 realizations of the
distribution parameters

the failure probability) as well as the membership functions generated by means of α-level optimization390

considering the different approximations for the failure probability, that is Linear approximation or the391

Proposed approximation. It is noted that the Proposed approximation exhibits an almost perfect match392

with the Reference, while the Linear approximation deviates considerably from the Reference.
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Figure 5: Example 1 – Membership function associated with the failure probability

393

4.3. Example 2: Shallow Foundation394

This example involves estimating the membership function associated with the probability that the395

vertical displacement below a shallow foundation resting over an elastic soil exceeds a prescribed thresh-396

old. Figure 6 illustrates the general layout of the problem. The elastic soil is composed of two layers:397
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a sand layer of 9 [m] thickness and a gravel layer of 21 [m] thickness; these layers rest over an infinitely398

stiff rock bed. The Young’s moduli of each of the soil layers (denoted as E1 and E2, respectively) are399

modeled as lognormal random variables whose distribution parameters are characterized by means of400

the fuzzy sets shown in Figure 7. The soil withstands a shallow foundation of 10 [m] width, which401

applies a distributed load whose intensity q is characterized by means of a lognormal random variable402

with fuzzy distribution parameters as shown in Figure 7.403

Rock bed

Sand

55 [m]

21 [m]

q

55 [m]10 [m]

Displacement of interest

9 [m]

Gravel

Figure 6: Schematic representation of elastic soil layer subject to loading due to a shallow foundation

20 30 40
0

0.5

1

4 6 8
0

0.5

1

80 100 120
0

0.5

1

15 20 25
0

0.5

1

8 10 12
0

0.5

1

0.4 0.5 0.6
0

0.5

1

Figure 7: Example 2 – Membership function associated with mean value and standard deviation of: Young’s modulus of
sand (µE1

and σE1
) and gravel (µE2

and σE2
); and loading (µq and σq)

The vertical displacement below the center of the foundation is calculated by means of a small finite404

element model comprising a total of 160 quadrilateral elements in plain strain, resulting in 320 degrees-405

of-freedom. The finite element model takes advantage of the symmetry of the problem. The threshold406

level for the vertical displacement is set equal to 0.07 [m]. It is important to note that given that the407

response of interest is a displacement, the associated performance function is actually a (moderately)408

nonlinear function with respect to the Young’s moduli.409
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The failure probability and its sensitivity are estimated applying Importance Sampling considering a410

total of N = 300 samples, thus ensuring that the coefficient of variation of the failure probability (for411

the reference value of the distribution parameters) is approximately 12%.412

Figure 8 compares the failure probabilities calculated with a Reference solution and the different ap-413

proximations of the failure probability for 300 realizations of the distributions parameters. As in the414

first example, these realizations of the distribution parameters are generated at random within their415

minimum and maximum possible values. Furthermore, it should be noted that the Reference failure416

probability corresponds to an estimate generated using Importance Sampling with a total of N = 1000417

random samples; such number of samples ensures a sufficiently small coefficient of variation.418

10-15 10-10 10-5 10010-15

10-10

10-5

100

Figure 8: Example 2 – Comparison between reference and approximate failure probability for 300 realizations of the
distribution parameters

The results presented in Figure 8 suggest that there is an overall good match between the Reference419

results and those produced with the different approximations. Nonetheless, some discrepancies for the420

case of the Linear approximation are observed for small values of the reference failure probability, where421

it tends to overestimate the probability.422

Figure 9 shows the estimates of the membership function computed using the different approximations423

of the failure probability (as discussed in Section 4.1) and those produced with a Reference solution.424

In this case, the Reference solution is obtained by applying the so-called vertex method (see, e.g. [9])425

at each α-cut while the failure probability is calculated by means of Importance Sampling considering426

N = 1000; validation calculations indicate that for this particular example, the vertex method is427

appropriate for computing the minimum and maximum failure probability for a given α-cut. The428

results in Figure 9 indicate that the Proposed approach is capable of capturing the overall behavior of429
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the membership function, although some differences arise for small membership values. Additionally, it430

is observed the Linear approximation cannot capture the left branch of the membership function; such431

issue was expected in view of the results presented in Figure 8.432
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Figure 9: Example 2 – Membership function associated with the failure probability

4.4. Example 3: Shear Frame Subjected to Horizontal Load433

The third example comprises a 15 degrees-of-freedom shear frame model subjected to horizontal load,434

as illustrated schematically in Figure 10. Each interstory stiffness ki, i = 1, . . . , 15 is characterized by435

means of independent lognormal random variables. The mean values and standard deviations of these436

stiffnesses are modeled as fuzzy, with membership functions as indicated in Figure 11. The objective is437

determining the fuzzy probability associated with the event where the roof displacement x15 exceeds a438

threshold of 0.075 [m]. In a similar way as discussed for the previous example, it is to be noted that439

the associated performance function is actually (moderately) nonlinear with respect to the interstory440

stiffnesses.441

x1

x2

x15

80 [kN]

80 [kN]

80 [kN]

k1

k2

k15

Figure 10: Example 3 – Schematic representation of shear model subjected to horizontal load
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Figure 11: Example 3 – Membership function associated with mean value and standard deviation of interstory stiffness
(µki

and σki
, i = 1, . . . , 15)

The failure probability and its sensitivity are estimated applying Importance Sampling considering442

a total of N = 300 samples, thus ensuring that the coefficient of variation of the failure probability (for443

the reference value of the distribution parameters) is approximately 11%.444

Figure 12 compares the performance of the different approaches for approximating the failure probability445

as a function of the distributions parameters. In this Figure, the abscissa of each point corresponds446

to the failure probability calculated by means of a Reference solution (that is, Importance Sampling447

considering N = 1000 samples) while its ordinate is the failure probability calculated with one of the448

approximate approaches. It is observed that the results produced with the Proposed approach are closer449

to the reference line than those produced with the Linear approximation.450
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Figure 12: Example 3 – Comparison between reference and approximate failure probability for 300 realizations of the
distribution parameters

The membership function associated with the failure probability calculated by means of the different451

approximate representations of the failure probability and a Reference approach are shown in Figure452
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13. In this case, the Reference solution is obtained by applying α-level optimization and Importance453

Sampling considering N = 1000; it is to be noted that the numerical efforts required for producing the454

reference solution are considerable, as the failure probability must be calculated for several different455

combinations of the distribution parameters at each α-cut. The results in Figure 13 show that the456

Linear approximation exhibits a good match with the Reference in the right branch of the membership457

function, however it is not that accurate in the left branch. On the contrary, the Proposed approach458

produces an overall good estimate of the membership function.459
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Figure 13: Example 3 – Membership function associated with the failure probability

4.5. Additional Remarks460

The results presented in this Section indicate that the failure probability associated with a system461

can present considerable variations (of several orders of magnitude) due to the effects of imprecision on462

the distribution parameters of the probabilistic models. This highlights the value of explicit modeling463

of epistemic uncertainty, as it can reveal valuable information on the sensitivity of a reliability problem.464

5. Discussion and Conclusions465

The results presented in this contribution suggest that the application of intervening variables asso-466

ciated with the distribution parameters may be of great help for producing an approximate representa-467

tion of the failure probability. Such finding complements some conclusions drawn in other contributions468

about the effectiveness of physical intervening variables [20, 21].469

The major advantage of the proposed framework for calculating fuzzy probabilities is that it decouples470
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the aleatoric and epistemic steps of analysis. In this way, the proposed framework becomes extremely471

convenient from a numerical viewpoint, as it comprises a single reliability analysis plus some additional472

analyses of the system. Moreover, the proposed framework can become quite attractive from a practical473

point of view, as it may be seen a post-processing step of a standard reliability analysis that conveys474

additional information (in this case, the membership functions) with little additional effort.475

While the above conclusions are encouraging, they cannot be generalized, as the examples analyzed476

involve: moderately nonlinear performance functions; certain prescribed distribution types (Gaussian477

and lognormal); and relatively small numerical models of the physical system (which were chosen on478

purpose in order to carry out validation calculations). Hence, future research efforts aim at revising479

the aforementioned issues, in order to extend the range of application of the proposed framework. In a480

similar way, the proposed framework could be extended to more general cases, such as characterization481

of fuzzy probability density functions applying, for example, the probability density evolution method482

(PDEM, see e.g. [37]).483
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Appendix A. Intervening Variables Associated with the Distribution Parameters: Gaus-491

sian and Lognormal Cases492

Consider the case where the random input variables of a problem are characterized as Gaussian, that493

is Xi ∼ N (µi, σ
2
i ), i = 1, . . . , nx, where µi and σi denote the mean and standard deviation and N (·, ·)494

denotes Gaussian distribution. In such case, the intervening variables associated with the distribution495
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parameters become:496

ξj(θ) =
µ
mj
j√∑nx

i=1

(
gimiµ

mi−1
i σi

)2 , j = 1, . . . , nx (A.1)

ξj(θ) =
1√∑nx

i=1

(
gimiµ

mi−1
i σi

)2 , j = nx + 1 (A.2)

In case the random input variables of a problem are characterized as lognormal, that isXi ∼ LN (µi, σ
2
i ), i =497

1, . . . , nx, where µi and σi denote the mean and standard deviation and LN (·, ·) denotes lognormal dis-498

tribution, the intervening variables associated with the distribution parameters become:499

ξj(θ) =
emjµ

G
j√∑nx

i=1

(
gimiσGi e

miµGi
)2 , j = 1, . . . , nx (A.3)

ξj(θ) =
1√∑nx

i=1

(
gimiσGi e

miµGi
)2 , j = nx + 1 (A.4)

where µGi = ln
(
µ2
i /
√
µ2
i + σ2

i

)
and σGi =

√
ln (1 + σ2

i /µ
2
i ) are the mean and standard deviation of the500

natural logarithm of the lognormal random variable.501

The expressions for the intervening variables as shown in eqs. (A.1), (A.2), (A.3) and (A.4) are explicit502

functions of the distribution parameters. Hence, the Jacobian matrix J(θ) associated with the inter-503

vening variables can be calculated analytically for these cases. For the sake of brevity, these analytical504

expressions are not included here. However, the interested reader can obtain these expressions upon505

request.506

Appendix B. Approximation of the Failure Probability Considering Direct Variables507

A possible means for approximating the failure probability as an explicit function of the distribution508

parameters is resorting to eq. (15) but assuming that the argument of the standard Gaussian cumulative509

density function is a linear polynomial with respect to the distribution parameters, that is:510

pSF (θ) = Φ

(
hL0 +

nx∑
i=1

ni∑
l=1

hLl,i
(
θl,i − θ0l,i

))
(B.1)

where hL0 and hLl,i, l = 1, . . . , ni, i = 1, . . . , nx are real, constant coefficients. This approximation511

is termed as Linear in the following and clearly, it does not involve intervening variables; instead, it512

24



involves direct variables. However, note that the resulting approximation for the failure probability513

becomes nonlinear with respect to the distribution parameters due to the presence of the standard514

cumulative density function.515

The coefficients required for the linear approximation can be calculated by enforcing that the exact516

failure probability and its derivatives are equal to their counterparts associated with the linear approx-517

imation at the expansion point θ0. Thus:518

hL0 = Φ−1
(
pF
(
θ0
))

(B.2)

and:519

hLl,i =
1

φ (hL0 )

∂pF (θ0)

∂θl,i
, l = 1, . . . , ni, i = 1, . . . , nx (B.3)

where φ(·) denotes the standard Gaussian probability density function.520

Appendix C. Estimation of Probability and Its Sensitivity Applying Importance Sampling521

Importance Sampling (see, e.g. [3]) is a simulation technique that allows estimating failure probabil-522

ities. It introduces an importance sampling density function fIS(x|θ) which allows drawing samples of523

the random input X such that g(x) ≤ 0 with high frequency. The estimator of the failure probability524

when applying Importance Sampling is:525

pF (θ) =

∫
g(x)≤0

fX(x|θ)

fIS(x|θ)
fIS(x|θ)dx

≈ 1

N

N∑
k=1

I
(
x(k)

) fX (x(k)|θ
)

fIS (x(k)|θ)
, x(k) ∼ fIS (x|θ) (C.1)

where I(·) is the indicator function which is equal to one if g
(
x(k)

)
≤ 0 and zero otherwise and526

x(k), k = 1, . . . , N are independent, identically distributed samples drawn according to fIS (x|θ). In527

this contribution, the importance sampling density function is centered at the design point [23], pre-528

serving the standard deviation of the reference probability density function. Moreover, as the types of529

problems considered herein comprise moderately nonlinear performance functions, the design point is530

identified applying the so-called Hasofer-Lind-Rackwitz-Fiessler algorithm [23].531

In a post-processing step, it is possible to estimate the partial derivative of the failure probability with532
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respect to distribution parameters by means of the following expression [19].533

534

∂pF (θ)

∂θl,i
=

∫
g(x)≤0

∂fX(x|θ)
∂θl,i

fIS(x|θ)
fIS(x|θ)dx

≈ 1

N

N∑
k=1

I
(
x(k)

) ∂fX(x(k)|θ)
∂θl,i

fIS (x(k)|θ)
, x(k) ∼ fIS (x|θ) (C.2)

Analytical expressions for the derivative of the probability density function with respect to a distribution535

parameter ∂fX (x|θ)/∂θl,i can be found for several types of distributions (see, e.g.[19]).536

References537

[1] S.-K. Au, Y. Wang, Engineering Risk Assessment with Subset Simulation, John Wiley & Sons,538

2014.539

[2] J. Li, J. Chen, Probability density evolution method for dynamic response analysis of structures540

with uncertain parameters, Computational Mechanics 34 (5) (2004) 400–409. doi:10.1007/s00466-541

004-0583-8.542

URL https://doi.org/10.1007/s00466-004-0583-8543
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