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Abstract 

Choice behaviour is characterised by a calculation of subjective value of all 

choice options followed by the selection of the most subjectively valuable option. 

Neuroeconomics was developed to unify the fields of economics, psychology and 

neuroscience to describe neurobiological processes underpinning observed 

preferences. However, many aspects of the neural computations required to 

compute subjective value are yet to be illuminated. The current thesis aimed to 

describe the spatiotemporal dynamics of subjective valuation within the context of an 

auction paradigm. 

 Brain processes related to subjective valuation were investigated using the 

incentive compatible Becker-DeGroot-Marschak auction task, revealing willingness-

to-pay values for a variety of stimuli. Brain responses in response to stimulus onset 

and eye-fixations were extracted to highlight the electrophysiological response 

during value-based decisions, revealing the temporal evolution of brain processes on 

a scale of milliseconds. Analyses were accompanied by source dipole localisation 

methods to identify possible neural generators of observed responses. 

 Data from four experimental chapters implicated the automatic encoding of 

various magnitudes of subjective willingness-to-pay within multiple cortical activation 

patterns during value-relevant and value-irrelevant contexts. Low value items were 

encoded most prominently by a brain activation component represented over the 

right frontal scalp region, possibly originating from the insula. In contrast, a cortical 

activation pattern with a spatial maximum over the left hemisphere was strongest for 

high value items. Brain components specific to value were present immediately 

following stimulus presentation and persisted throughout an extended time interval 

during free viewing. Further to this, value encoding brain responses were observed 

for both products and product bundles.  

 The current thesis demonstrated the explicit representation of willingness-to-

pay within neural activity recorded by means of EEG. Moreover, low and high 

subjective value was encoded by separate and lateralised brain responses in a 

coarse manner, in contrast to the linear encoding of subjective value within a single 

brain response. The early representation of value within EEG signals, prior to 

conscious deliberation, reiterates the automaticity of the initial valuation process.   
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Chapter 1 

1.1. Introduction 

A large proportion of human behaviour is characterised by higher-order 

decision making processes, requiring individuals to make the most subjectively 

useful option when presented with a variety of alternatives (Rangel, Camerer, & 

Montague, 2008). Over several decades, many theories have been put forward to 

explain choice behaviour, with each new theory accounting for scenarios not 

explainable by its predecessor (Glimcher & Fehr, 2014). Expected utility theory (von 

Neumann & Morgenstern, 1944) posited that adherence to their axiomatic principles 

meant that an individual behaves as if they are aiming to maximise some underlying 

utility function. Later, prospect theory (Kahneman & Tversky, 1979) superseded 

expected utility theory, emphasising the variety of scenarios not explainable by 

expected utility theory. First and foremost, prospect theory highlighted the influence 

of framing on choice behaviour, in that the way in which information is presented to 

an individual often influences the choice they make.  

The relatively new field of neuroeconomics is concerned with describing the 

underlying neural computations governing value-based decision making (Rangel et 

al., 2008). Neuroeconomics utilises the wealth of experimental paradigms from 

economic research, the psychological theories of choice processes, the methods for 

investigating brain processes from neuroscience, and the computational models from 

the field of computer science that can describe decision making. Neuroeconomics 

has produced a wealth of research highlighting how individuals make choices and 

the neural systems governing them, frequently through the use of auction tasks to 

elicit subjective valuations within brain imaging contexts (Peters & Büchel, 2010).  

From a marketing perspective, organisations are becoming increasingly 

sceptical in the use of self-report for revealing individuals’ opinions of their products. 

The affect that individuals experience when presented with a stimulus is difficult to 

measure using self-report methods due to its complexity (Davidson, 2004). 

Additionally, subjects are more likely to give socially acceptable answers 

(Nighswonger & Martin, 1981). Hence, research has aimed to utilise neuroscientific 
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methods to learn about preferences, since neural responses are not influenced by 

subsequent willingness to disclose (Ohme, Reykowska, Wiener, & Choromanska, 

2010). Although the description of a brain valuation system is of great relevance to 

researchers in the field of neuromarketing (Hakim & Levy, 2019), a dysfunctional 

reward system and an altered ability to evaluate stimuli being prevalent across 

several medical disorders gives decision making a clinical relevance. For example, 

reward dysfunctions resulting in impulsive choices are frequently expressed in those 

suffering from attention-deficit hyperactivity disorder (Stoy et al., 2011). Similarly, 

reductions in ventral striatal volume, a primary component of the brain valuation 

system (Bartra, McGuire, & Kable, 2013; Clithero & Rangel, 2014), were found in 

those suffering from attention-deficit hyperactivity disorder (Carmona et al., 2009), 

which was also independent of attentional processes (Scheres, Lee, & Sumiya, 

2008).  

Neuroeconomic research primarily utilises fMRI methods in the aim of 

revealing the brain processes utilised in economic decision-making tasks, 

highlighting the importance of the ventromedial prefrontal cortex, ventral striatum and 

the posterior cingulate cortex (Bartra et al., 2013; Clithero & Rangel, 2014). 

However, the use of electrophysiological methods allows the investigation of neural 

processes on a very fine time scale of milliseconds. In doing so, it is possible to 

observe the engagement of brain processes very early on in information processing 

during the interval immediately following stimulus presentation, although research 

utilising electroencephalography (EEG) is sparse. Thus, the current thesis aims to 

capitalise on the excellent temporal resolution of EEG methods to further understand 

the temporal characteristics of value-based decision making in the brain. 

Additionally, through the utilisation of modern source dipole analysis methods, the 

extent to which brain processes are engaged at distinct time intervals will be 

investigated. 

1.2. Value in Economic Theory 
1.2.1. Auction theory  

Auction tasks are commonplace in modern society. Practically speaking, 

commercial organisations utilise auctions to sell a wide variety of commodities, and 
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government agencies frequently use auctions to assign government contracts, or for 

the privatisation of government firms (Klemperer, 2004). The popularity of eBay, and 

other internet auction websites offering similar services, demonstrate the prevalence 

of auctions in our day-to-day life. Importantly, auction tasks offer an incredibly simple 

tool for testing economic theories. The ability for auction tasks to elicit subjective 

valuations makes them a valuable instrument in the investigation of human decision-

making processes, giving auctions huge empirical implications. 

  Various auction forms have been put forward and built upon, each having its 

own theoretical foundation governing optimal bidding mechanisms. The oldest and 

most prevalent auction form is an English auction (McCabe, Rassenti, & Smith, 

1990). Here, a low price is raised incrementally until only a single bidder is interested 

in purchasing the item being auctioned. At this point, the final bidder purchases the 

item for a price equal to the increment at which the second-to-last bidder dropped 

out. In contrast, a Dutch auction is the descending price complement of the English 

auction (Li, Yue, & Kuo, 2018). Typically, a price is called out that is much higher 

than what anyone should be willing-to-pay for the item. The price is then 

subsequently lowered in small increments until someone is interested in making the 

purchase, at which point this bidder purchases the item for the given price. Other 

common auctions come in the form of sealed-bid designs (Coppinger, Smith, & Titus, 

1980). In sealed-bid designs, a single bid is put forward by each bidder interested in 

making a purchase. In first-price auctions, the highest bidder wins the auction and 

pays a price equal to their bid. In second-price auctions, the highest bidder wins, but 

pays a price equal to the second-highest bid. The second-price sealed bid auction 

was first discussed formally by Vickrey (1961) and is therefore often referred to as 

the Vickrey auction. Similar to the Vickrey auction, we also have the Becker-

DeGroot-Marschak (BDM) auction mechanism (Becker, Degroot, & Marschak, 1964). 

However, rather than having a sale price based on the bids submitted for the object, 

as is the case for the Vickrey auction, the sale price is drawn randomly from a 

distribution of prices encompassing the entire range of values that are expected to 

be put forward. In the BDM mechanism, all bidders who bid greater than (or equal to) 

the randomly selected value will receive the object being auctioned and pay a price 

equal to this value. 
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 Although auctions can vary in their format, they all have one thing in common. 

That is, they are used by a seller to reveal willingness-to-pay (WTP) for the object 

being sold when the seller is not aware of the prices that bidders attach to the object, 

WTP being defined as the maximum amount of resources an individual is willing to 

give up in order to obtain an object (Noussair, Ruffieux, & Robin, 2004). This 

uncertainty regarding subjective valuations, for sellers and bidders alike, is an 

intrinsic feature of auction tasks. In situations wherein the subjective value of an 

object is known to the bidder, which is usually the case when it is valued based on its 

consumption or use by the bidder alone, this is known as a situation of privately 

known values. In theory, these situations imply that knowledge of the valuations that 

other bidders maintain would have no bearing on the personal valuation, since 

values are assigned for personal use. However, it is often the case that valuations 

are made based on several other assumptions. For example, if a bidder intends to 

resell an object upon winning an auction, then the valuations made are now 

dependent on predictions of valuations that other bidders would make.  

 The various auction formats also give rise to different bidding strategies 

(Klemperer, 2004). However, many of the differences between auctions are only 

superficial when it comes to defining strategies, and therefore, these strategies can 

overlap. For example, the Dutch auction is strategically equivalent to the first price 

sealed-bid auction (McCabe et al., 1990). Since these two auction types do not 

provide any feedback to bidders regarding the valuations that other bidders have 

made, the only option is to show interest at your own subjective valuation in a Dutch 

auction, providing the object is still available, or to submit your own subjective 

valuation in a first-price sealed-bid auction. Similarly, bidding strategies overlap 

between the English auction and the Vickrey auction, but only if the assumption of 

private values holds. In an English auction, it is clearly not beneficially to show 

interest after your own subjective valuation has been exceeded since it will only 

result in a loss, just as submitting a bid larger than your subjective valuation in a 

Vickrey auction would likely result in a loss. However, the feedback obtained in an 

English auction in the form of other bidder’s behaviour may influence your own 

valuations if the assumption of private values is not held, in that your perceptions of 

the value of the object may be influenced by observing the behaviour of other 
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bidders. Therefore, the English auction and Vickrey are not strategically equivalent if 

there is inter-dependency of valuation between bidders (Klemperer, 2004).  

 Experimental economics primarily utilise the Vickrey and the BDM auction 

mechanisms to reveal WTP for goods and prospects (Noussair et al., 2004). Second 

price sealed-bid auction tasks such as the Vickrey auction, and other sealed-bid 

auction paradigms such as the BDM auction, by design, aim to reveal the true value 

that bidders assign to an object, and the optimal strategy should be to submit your 

exact WTP. In second-price auction designs, a winning bidder will always get the 

object for either their bid or less, but never more. Overbidding is obviously counter-

productive since overbidding produces a chance of paying a price that exceeds the 

objects true subjective value. However, underbidding not only produces the 

possibility of missing out on a purchase at a price equal to its true subjective value, it 

also results in a chance of missing out on purchasing an object for less than its true 

value. Despite this, over and underbidding is frequently observed (Georganas, Levin, 

& McGee, 2017).  

 The irrational decision maker is often blamed as being the cause of bids that 

deviate from the true value of the object to the bidder (Kaas & Ruprecht, 2006). Note 

that rationality in the economic sense refers to an individual holding consistent 

preferences (Glimcher & Fehr, 2014). Although it is tempting to categorize 

individuals who violate the optimal strategy as being irrational, these decisions may 

not necessarily be a result of irrationality. Plott and Zeiler (2005) discussed the role 

of subject misconceptions in eliciting behaviour not in alignment with optimal 

decision making, utilising the commonly observed disparity between WTP and 

willingness-to-accept (WTA; Tunçel & Hammitt, 2014). WTA is the value that an 

individual is willing to sell something for and it should theoretically be similar to WTP 

for the same item (Yao-ji, Qian, & Cai-mei, 2007). The endowment effect, which is 

the tendency for an individual to value something more when it is in their possession 

in comparison to when valuing it to make a purchase (Thaler, 1980), has been put 

forward as a possible explanation for the WTP-WTA disparity in previous studies. In 

contrast, Plott and Zeiler (2005) argue that the WTP-WTA discrepancy is not a 

reflection of subjective preferences and theory underpinning the endowment effect 

does not explain these observed discrepancies. Rather, misconceptions that 

subjects hold regarding preference revealing tasks can account for violations of 
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optimal decision making (Cason & Plott, 2014; Chou, McConnell, Nagel, & Plott, 

2008). For example, Plott and Zeiler (2005) conjecture that ill-conceived motivations 

to report a value other than their true subjective valuation may result from a lack of 

understanding of the task at hand. Critically, when these motivations are controlled 

for via procedural measures, WTP-WTA gaps are not observed. These procedures 

include providing training regarding the rules of the mechanism being used, allowing 

practice rounds to be carried out, provide anonymity in decisions so that bidders are 

not influenced by how others perceive them, and finally, utilising incentive-

compatible measures such as the BDM mechanism. 

 For the purpose of empirical testing, measures revealing subjective value 

need to be incentive compatible, in that the dominant strategy reveals truthful 

valuations (Plott & Zeiler, 2005). Both the Vickrey auction and BDM auction 

mechanisms are frequently described as being incentive compatible (Kahneman, 

Knetsch, & Thaler, 1990; Rutstrom, 1998; Shogren et al., 2001), though this 

assumption has been questioned (Horowitz, 2006; Karni & Safra, 1987). For 

instance, Karni and Safra (1987) described how the BDM mechanism is not incentive 

compatible during the valuation of lotteries, i.e. for uncertain outcomes. Additionally, 

Horowitz (2006) suggested that this non-incentive compatibility also extends to non-

random goods in context of both the BDM and Vickrey auction mechanisms, 

reasoning that since the price to be paid following an auction is random, a bid is 

likely to be influenced by the distribution of prices. Thus, the dominant strategy is no 

longer to bid their true valuation. Kaas and Ruprecht (2006) indeed highlighted how 

the optimal bidding strategy for risk-averse but rational bidders is to underestimate 

their WTP, possibly explaining underbidding in certain scenarios. Importantly, 

Horowitz (2006) explained that further research is needed to confirm the extent to 

which this compromised incentive compatibility can influence observed effects.  

1.2.2. Prospect theory 

Until 1979, the expected utility theory, originally described by von Neumann 

and Morgenstern (1944), dominated research of decision making under risk. Prior to 

the development of this theory, models explaining economic decisions could not 

account for probabilistic choices, such as is the case when decisions involve lottery 
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tickets with a limited chance of obtaining a gain or loss (Glimcher & Fehr, 2014). The 

expected utility theory implemented three principles to explain choice under 

uncertainty. Firstly, they defined the concept of “lotteries” as an outcome defined by 

a probability and a value, for example, a 25% chance of gaining £5. Secondly, the 

model implied the presence of an underlying continuous utility function whereby two 

choices in a lottery will have equal subjective value with specific gain probabilities. 

Lastly, the concept of independence was described. This states that if an individual 

is indifferent between two lotteries, then this indifference should extend beyond the 

context and indifference should be observed when the lotteries are placed within 

different lotteries indicating the same outcome. Put simply, the model implies that 

subjective utility is obtained by multiplying probability by the utility of the outcome 

(Glimcher & Fehr, 2014).  

 Prospect theory was developed to explain choice behaviour that cannot be 

explained by expected utility theory. Developed in 1979 by Kahneman and Tversky 

(1979), and expanded on in 1992 (Tversky & Kahneman, 1992), prospect theory 

proposes a utility function that is concave for gains, convex for losses, and steeper 

for losses than for gains. Here, individuals frame gains and losses relative to a 

reference point, indicative of their current wealth level. The shape of the utility 

function described results in increased sensitivity to losses than for gains of an equal 

amount, resulting in loss-aversion. Additionally, individuals tend to be risk-seeking 

when dealing with perceived losses, and risk-averse when dealing with perceived 

gains (Grinblatt & Han, 2005). Loss-aversion invokes that preferences are impacted 

much more by losses and disadvantages than they are to gains and disadvantages 

of an equal amount (Kahneman & Tversky, 1984; Tversky & Kahneman, 1991). The 

utility function described by Kahneman and Tversky (1979) is summarised in Figure 

1.1. This utility function is concave in the gains region but convex in the loss region, 

highlighting the increased sensitivity to losses. This effect, known as loss aversion, 

has been observed across many fields, including within stock trading (Haigh & List, 

2005), politics (Mercer, 2005), organ donation rates (Johnson & Goldstein, 2003) 

and also within animal studies (Chen, Lakshminarayanan, & Santos, 2006). 

Interestingly, loss aversion has been observed when individuals missed out on 

options that they deliberated over, but never actually obtained them in the first place 

(Carmon, Wertenbroch, & Zeelenberg, 2003).  
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Figure 1.1. Utility function described by prospect theory, adapted from Kahneman and 
Tversky (1979). The dotted lines illustrate how losses have a much larger impact on 
perceived value than gains of an equal amount, an effect known as loss aversion. 

 Prospect theory describes choices as a two-phase process – editing and 

evaluation. During the editing phase, a preliminary analysis takes place that aims to 

simplify the prospects which will facilitate the decision-making process (Wilkinson & 

Klaes, 2012). Multiple operations can be applied here to create a representation that 

will be passed onto the next phase. For example, different prospects with common 

outcomes are combined, sure outcomes are segregated from prospects, shared 

components between prospects are cancelled out, prospects are simplified, and 

irrelevant prospects are rejected (Glimcher & Fehr, 2014). The second phase is the 

evaluation phase whereby all prospects are evaluated and the prospect offering the 

highest value is assumed to be selected. 

1.2.3. Framing and editing 

The limited capacity for a decision maker to process information has long 

been established, and this limited capacity can be detrimental to the quality of the 

decision made (Boettcher, 2004; Simon, 1956). However, the presence of complete 

information can lead to optimal decision making (Edwards, 1954). Framing refers to 

how inconsistent preferences are shown when identical information, either positive or 

negative, is displayed in different ways (Tversky & Kahneman, 1981). Framing 

effects have been across fields such as politics (Bizer, Larsen, & Petty, 2011), 
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healthcare (Gallagher & Updegraff, 2012; Krishnamurthy, Carter, & Blair, 2001; 

Meyerowitz & Chaiken, 1987; Peters, Hart, & Fraenkel, 2011; Van 't Riet, Ruiter, 

Werrij, & De Vries, 2010) and marketing (Chen et al., 2006; Gamliel & Herstein, 

2012; Ganzach & Karsahi, 1995; McKechnie, Devlin, Ennew, & Smith, 2012; 

Raghubir, 2005; Wu & Cheng, 2011; Zhang & Han, 2012). A central principle of 

game theory is the invariance of choices regardless of the way in which the options 

are presented (von Neumann & Morgenstern, 1944), though this is challenged 

empirically (Kahneman & Tversky, 1984). Framing effects are a key component of 

prospect theory, explaining deviations from rationality as being most likely due to the 

simplification of the decision at hand to account for incomplete information 

(Kahneman & Tversky, 1979). Further work has suggested the potential impact of 

the emotional system on decision making processes. For example, De Martino, 

Kumaran, Seymour, and Dolan (2006) revealed how framing effects may be 

underpinned by the incorporation of emotional information into the decision-making 

process, reflected by increased amygdala activity and its integration in the prefrontal 

cortices. Additionally, a study by Sokol-Hessner et al. (2009) linked emotion to 

decision-making processes by way of emphasising the relationship between affective 

physiological responses, such as skin-conductance, and magnitude of loss 

outcomes. 

 As previously mentioned, Kahneman and Tversky (1979) described choice 

behaviour as a two-stage process comprised of editing and evaluation. However, 

how an option is framed is a way of influencing the representation that individuals 

form before any processing has taken place. Although framing undoubtedly 

influences perceptions, there is debate as to whether positive or negative framing is 

more successful in introducing cognitive bias. A study by Wu and Cheng (2011) 

found that framing product attributes positively produced more favourable responses 

in contrast to negative frames. However, prospect theory makes interesting 

predictions regarding how savings should be framed when a price reduction is 

presented. For example, Gamliel and Herstein (2012) found that presenting a deal 

framed in terms of potential losses increased purchase intent more so than when 

presented relative to its potential gains. This may stem from the increased sensitivity 

to losses, i.e. loss aversion, that prospect theory poses individuals have. Similarly, 

Ganzach and Karsahi (1995) found that framing messages in terms of potential 
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losses increased credit card use in contrast to messages that highlighted the 

benefits of using a credit card.  

 There are also scenarios wherein negative framing is more beneficial for 

introducing attitude change, most prolifically in healthcare. Meyerowitz and Chaiken 

(1987) revealed that pamphlets framing the importance of breast self-examination in 

terms of the potential losses had a much larger impact on attitudes and behaviours. 

However, a meta-analysis by Gallagher and Updegraff (2012) found that framing 

messages relative to the potential gains was more beneficial to encourage 

preventative behaviours regarding healthcare than framing them relative to losses. 

Finally, Shiv, Edell Britton, and Payne (2004) reported that the extent to which 

positive and negative framing influences attitudes depends on motivation. When 

motivation is high, negative framing is more effective than positive, when opportunity 

for processing is either high or low. When motivation is low, negative framing is more 

effective when processing opportunity is low, but less effective when processing 

opportunity is high.  

For marketing, another important factor to consider is whether discounts 

should be framed in absolute or relative amounts (McKechnie et al., 2012). Chen, 

Monroe, and Lou (1998) found that indicating absolute monetary discount was 

perceived as being much more significant for high value products, whereas 

percentage discounts were perceived as more significant for low value products. 

This finding is reiterated by Zhang and Han (2012) who observed higher coupon 

redemption rate for products of a high value when coupons indicated absolute 

discounts.  

 In line with the limited cognitive resources for processing framed information 

(Boettcher, 2004; Simon, 1956), there are also methods for counteracting this 

induced cognitive bias. Framing effects are diminished when weak warning signals 

are given during a product valuation task and eliminated when strong warnings are 

given (Cheng & Wu, 2010). Additionally, this research found that these effects were 

dependent on the level of involvement of the subject. Weak warnings did not deter 

those who were less involved, whereas weak and strong warnings deterred those 

who were highly involved in the task. A second study elaborated on this “debiasing” 

effect using “elaboration” and “consider the opposite”, demonstrating that 
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encouraging subjects to take time to consider the decision can remove framing 

effects (Cheng, Wu, & Lin, 2014).  

1.2.4. Bundle valuation 

 Price bundling is a popular marketing strategy employed by organisations 

involving the combination of multiple products for a set price (Johnson, Herrmann, & 

Bauer, 1999). Price bundling is a strategy designed to benefit prospective buyers, in 

that it reduces transaction costs through the pairing of complementary products, as 

well as benefiting the seller through the reduction of their own transaction costs 

(Dansby & Conrad, 1984). Multiple pricing strategies are utilised in the field of bundle 

pricing to facilitate purchase intent (Olderog & Skiera, 2000). The simplest strategy is 

pure bundling in which products can be sold together for a single, consolidated price. 

Other strategies, described as mixed bundling, involve providing the opportunity to 

purchase two or more products together as a bundle or separately if desired. The 

inclusion of multiple products introduces an important dimension to the decision-

making process. As posed by prospect theory (Kahneman & Tversky, 1979), the 

integration of losses should be perceived as more beneficial than the segregation of 

losses. Therefore, the inclusion of multiple products into a singly priced option will 

integrate the individual losses from purchasing each product within the bundle 

separately. A discount is often offered if the product bundle is purchased rather than 

the products individually, although this discount is not a necessary precursor (Simon 

& Fassnacht, 1993). For example, products within a bundle may offer little benefit if 

owned individually, yet they may offer benefit if used in conjunction. In turn, 

subsequent valuations of a bundle may be larger than the sum of the individual 

product valuations.  

 An important decision for organisations is to decide what products to bundle 

together for marketing. A wealth of research has revealed that products within a 

bundle should be complementary, in that the function of either product is facilitated 

by the other. Guiltinan (1987) poses that bundle valuations are enhanced in contrast 

to the individual products due to decreased effort from obtaining the products 

separately, enhanced customer satisfaction from obtaining products that enhance 

each other, or the enhancement of the image of obtaining all the products. This is in 
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contrast to bundles comprised of substitute products, i.e. two or more products 

performing the same function. In this scenario, bundle valuations may fall short of the 

sum of the individual valuations for each product due to overlapping benefits, an 

effect referred to as sub-additivity. Yan and Bandyopadhyay (2011) proposed a 

framework for bundle pricing and reported that increased product complementarity 

was always beneficial to the marketer, especially when the magnitude of a discount 

was larger. Empirical research of the influence of product complementarity was 

reported by Sheng, Parker, and Nakamoto (2014) who revealed that high product 

complementarity paired with small price discounts produced the greatest perception 

of quality. 

Price framing also extends to product bundling strategies wherein two or more 

products are sold in conjunction. When using mixed bundling, there are tactics that 

organisations use to improve perceptions of the deal at hand. For example, they may 

wish to offer a main product at a given price and offer a discounted price for a 

second, tie-in product. Additionally, they may wish to simply provide a second, tie-in 

product for free if the main product is purchased (Hüttel, Schumann, Mende, Scott, & 

Wagner, 2018; Shampanier, Mazar, & Ariely, 2007). Another method used 

infrequently is offering a second, tie-in product for a token price such as £0.01, but 

only if the main product is purchased (Mao, 2016). Research has aimed to reveal the 

impact that these strategies can have on a consumers’ perceptions of the deal 

presented to them. A study by Harlam, Krishna, Lehmann, and Mela (1995) revealed 

increased purchase intent when a single consolidated price is given for two products 

in comparison to the zero-pricing and discounted tie-in product strategy. Note here 

that each strategy was equal in cost to the consumer, but the framing of the 

message to the consumer is what influences subsequent cognitive bias. However, 

presenting products for free in a bundle can decrease subjective valuations for that 

product when presented individually (Raghubir, 2005). 

1.3. The Decision-Making Process  

The decision-making process is dynamic, involving the accumulation of 

evidence over time until the individual is ready to declare a choice. The decision-

maker may consider the consequences of each action they can take, driven by shifts 
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of attention between each option (Busemeyer & Johnson, 2004). Rangel et al. (2008) 

presented a framework to help study the neurobiology of decision-making and to 

unify the multiple disciplines that neuroeconomics employs (see Figure 1.2). This 

framework describes the discrete phases that each decision goes through, from the 

initial representation formation to the evaluation of the outcome, and any subsequent 

learning that takes place as a result of the outcome.  

 

Figure 1.2. Framework for studying the neurobiology of decision making, adapted from 

(Rangel et al., 2008). 

 According to the decision-making framework (Rangel et al., 2008), the first 

stage of any decision involves forming an initial representation of the available 

options. It is here that we identify possible courses of action and evaluate internal 

and external factors that will inform the assignment of subjective values later in the 

process. As mentioned previously, the way in which the information is framed may 

be an influence at this stage (Glimcher & Fehr, 2014). The second and most critical 

stage is the valuation stage. This stage refers to the ability of the decision maker to 

assign a subjective value to each available option. Rangel et al. (2008) describe 

three hypothetical systems, each system assigning value to options based on their 

function. Firstly, a Pavlovian system that assigns value to evolutionarily relevant 

actions such as approach and avoidance behaviours regarding the consumption of 

food (Balleine, Daw, & O'Doherty, 2009). Secondly, a habit system that assigns 

values based on previous experience, such as waking up and automatically having a 

cup of coffee (Balleine et al., 2009).Thirdly, a goal-directed system that assigns 

value based on action-outcome associations that are updated as a result of outcome 
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evaluation (Balleine et al., 2009). This valuation stage is strongly modulated by other 

factors such as temporal discounting (Ballard & Knutson, 2009) and risk and 

uncertainty (Trepel, Fox, & Poldrack, 2005). The third stage outlined by Rangel et al. 

(2008) is the action selection stage. Here, individuals need to compare the subjective 

values that are assigned to each option and select the most subjectively useful 

option. The fourth stage includes the evaluation of the outcome whereby we evaluate 

the experienced utility of receiving the outcome and assign values to the actions that 

we selected. In the final stage of the process, we must feedback the information 

regarding outcome evaluation into the preceding representation, valuation and action 

selection stages to inform future decisions. The formalisation of the decision-making 

process in these five stages allows researchers to focus on understanding each of 

the computations we must complete in order to reach a decision, as well as how 

future decisions are informed regarding past experience.  

1.4. Neuroeconomics 

Neuroeconomics is a relatively new field of study, emerging only in recent 

decades, that aims to discover the origins of preferences and their calculation within 

the brain (Glimcher, 2003, 2011). Over decades, research regarding choice 

behaviour was dominated by economic theories, beginning with the work of von 

Neumann and Morgenstern (1944), and culminating in prospect theory (Kahneman & 

Tversky, 1979), and eventually cumulative prospect theory (Tversky & Kahneman, 

1992). Regardless of the description, all theories aimed to describe an underlying 

value function that could summarise an individuals’ tendency to maximise subjective 

utility.  

 With the advent of modern brain imaging techniques such as functional 

magnetic resonance imaging (fMRI), it followed that researchers were interested in 

revealing the underlying biology that could represent theories of choice, if they 

existed. Essentially, the field of neuroeconomics was born from the desire to 

understand the neural structures that underpinned choice behaviour (Bossaerts & 

Murawski, 2015).  The aim of neuroeconomic research is summarised concisely by 

Fehr and Rangel (2011), with the authors stating that neuroeconomics is interested 

in describing the variables that the brain computes to make decisions, how neural 
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structures implement these computations, and the implications of this knowledge in 

real world contexts. Research has been very successful in this endeavour, 

highlighting a brain valuation system that may represent what we know to be 

subjective utility (Bartra et al., 2013; Clithero & Rangel, 2014). Other work has 

described the possible neural substrate of loss aversion (Canessa et al., 2017; 

Canessa et al., 2013; De Martino, Camerer, & Adolphs, 2010; Kokmotou et al., 2017; 

Sokol-Hessner, Camerer, & Phelps, 2013; Tom, Fox, Trepel, & Poldrack, 2007), risk 

and uncertainty (Hsu, Bhatt, Adolphs, Tranel, & Camerer, 2005; Mohr, Biele, & 

Heekeren, 2010; Singer, Critchley, & Preuschoff, 2009; Trepel et al., 2005), 

intertemporal choice (Albrecht, Volz, Sutter, Laibson, & Von Cramon, 2011; Kable & 

Glimcher, 2007; Kalenscher & Pennartz, 2008; McClure, 2004) and social 

preferences (Baumgartner, Götte, Gügler, & Fehr, 2012; Fehr & Camerer, 2007; 

Hare, Camerer, Knoepfle, O'Doherty, & Rangel, 2010). 

 Although the decision-making process is complicated, involving the discrete 

stages of valuation, action selection and feedback loops to update future decision 

making (Rangel et al., 2008), studying choice behaviour can be reduced down and 

research can be carried out on simple choices, involving the choice between a small 

number of goods with no informational asymmetries or considerations of optimal 

strategies (Fehr & Rangel, 2011). Fehr and Rangel (2011) also described a 

computational model that the neuroeconomic literature is outlining, whereby choices 

are made by computing and comparing a series of decision and outcome values to 

maximize experienced utility. Firstly, the model posits that the brain computes a 

“decision value” signal for each of the available options at the onset of the decision 

which forecasts the utility of selecting each option. Secondly, the brain must compute 

the experienced utility when the option selected is obtained. Importantly, this allows 

for feedback to be obtained to inform future choices. Thirdly, decisions are reached 

by comparing decision values as is described by models which are referred to as 

drift-diffusion models. Drift-diffusion models posit that choices are made via a noisy 

accumulation of evidence until a decision threshold is reached and a choice is made 

(Krajbich, Armel, & Rangel, 2010; Krajbich, Lu, Camerer, & Rangel, 2012; Krajbich & 

Rangel, 2011). Next, the model suggests that information is integrated regarding 

option attributes and their corresponding attractiveness in order to decide the 

decision value. Lastly, attention modulates the computation and comparison of 
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decision values, either by giving a different weighting to attributes of the options 

when deciding the decision value, or by affecting how decision values are compared 

when making a choice.  

1.5. The Brain Valuation System 

Neuroeconomics has aimed to discover and describe a system of neural 

structures that are responsible for human decision making, with research largely 

governed by the five phases of the decision-making process outlined by Rangel et al. 

(2008). The localisation of these regions in the brain has been pioneered through the 

use of high spatial resolution brain imaging methods such as fMRI. For example, 

Plassmann, O'Doherty, and Rangel (2007, 2010) observed the computation of 

decision values in the ventromedial prefrontal cortex in an fMRI auction task for both 

appetitive and aversive stimuli. Similarly, Grabenhorst and Rolls (2009) observed the 

possible neural substrate of outcome value in an odour experiment whereby the 

orbitofrontal cortex (OFC) tracked relative and absolute pleasantness of a stimuli, 

whereas the anterior insula cortex (AIC) tracked the relative unpleasantness (for a 

review of research investigating decision and outcome values, see Peters & Büchel, 

2010). 

 A wealth of research has highlighted the central tenants of a brain valuation 

system, responsible for various aspects of value-based decision making. This work 

has revealed the prefrontal cortex (PFC) and its various sub-structures as being of 

central importance. The ventromedial portion of the PFC has been found to be 

responsible for the encoding of reward value (Knutson, Fong, Bennett, Adams, & 

Hommer, 2003; Knutson, Taylor, Kaufman, Peterson, & Glover, 2005) and 

anticipated gain probability (Kuhnen & Knutson, 2005), as well as the encoding of 

subjective pleasantness (Grabenhorst & Rolls, 2011) and confidence in choice 

behaviour (De Martino, Fleming, Garrett, & Dolan, 2013). In addition to this encoding 

of value, a previous study has described the role of the medial PFC in encoding the 

happiness of getting a product for free, suggesting the role of the PFC in affective 

valuations (Votinov, Aso, Fukuyama, & Mima, 2016). In addition to the medial PFC, 

Kable and Glimcher (2007) implicated in their study the role of the ventral striatum 

(VS) in delayed rewards, whereby activation in these regions increased as a reward 
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increases but decreases as the delay to the reward increases. The importance of 

both the ventromedial PFC and VS in subjective valuation was emphasised in a 

meta-analysis by Bartra et al. (2013), in that each demonstrated the encoding of 

positive subjective value. Critically, the signals in these two regions were prevalent at 

the onset of the decision as well as the outcome of the decision, and also for 

monetary rewards and primary rewards such as food. This work demonstrated a 

domain-general system in the brain responsible for the encoding of subjective value 

across multiple decision stages and reward types, i.e. a brain valuation system.   

Although the ventromedial PFC and VS are likely to dominate what we refer to 

as a brain valuation system, there are several other brain structures revealed as 

showing some relevance. Despite confusion regarding the function of the posterior 

cingulate cortex (PCC), its role as a central connection hub linking multiple neural 

systems has been established, meaning it is involved in higher cognition (Leech, 

Braga, & Sharp, 2012). Votinov et al. (2016) also implicated the PCC in a choice 

brain circuit wherein the PCC was likely responsible for the integration of information 

in their binary decision task comparing various price conditions. A further meta-

analysis by Clithero and Rangel (2014) not only pointed to the ventromedial PFC and 

VS in the computation of subjective value, but also the PCC. Additionally, the 

authors defined two distinct functional networks, one involving the central 

ventromedial PFC, dorsal PCC and VS, and a second involving the anterior 

ventromedial PFC, left angular gyrus and ventral PCC, each showing co-activation 

within their corresponding network. 

The OFC is frequently highlighted in the literature regarding subjective 

valuation processes, and its functional parcellation has been the question of many 

studies (Kahnt, Chang, Park, Heinzle, & Haynes, 2012; Kringelbach & Rolls, 2004; 

Mackey & Petrides, 2010; Ongur, Ferry, & Price, 2003; Zald et al., 2014). Regarding 

its role in valuation, OFC signals have been shown to represent reward, affective 

value and subjective pleasantness on a continuous scale (Rolls, Grabenhorst, & 

Franco, 2009; Rolls, McCabe, & Redoute, 2008), and also to encode value across 

multiple sensory modalities (Chikazoe, Lee, Kriegeskorte, & Anderson, 2014). An 

animal study by McGinty, Rangel, and Newsome (2016) provided strong evidence 

for this function of the OFC, demonstrating amplified value encoding when fixations 

were made near cues associated with rewards. Grabenhorst and Rolls (2009) 
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revealed complementary roles of the OFC and the anterior insula cortex (AIC), 

whereby the OFC tracked relative subjective (and absolute) pleasantness, and the 

AIC tracked relative subjective unpleasantness. The insula is of great interest in 

neuroeconomic research, specifically prospect theory research, as it is frequently 

described as representing loss aversion processes and risky decision making (see 

Weller, Levin, Shiv & Bechara, 2009). For example, AIC activation has been shown 

to precede riskless choices and risk-aversion mistakes (Kuhnen & Knutson, 2005), 

and following unfair offers in the Ultimatum game (Sanfey, Rilling, Aronson, Nystrom, 

& Cohen, 2003). This is reiterated in animal studies showing insula dysfunction 

producing risk-taking behaviours (Mizoguchi et al., 2015), and maintained activation 

being observed in the AIC following negative outcomes (Jo & Jung, 2016). 

Regarding valuation specifically, a study by Rolls et al. (2008) revealed negative 

correlations between expected value in a decision task and AIC activity, and also 

revealed a relationship between AIC activation and uncertainty. 

Bartra et al. (2013) highlighted in their meta-analysis the importance of two 

distinct patterns of activation – a linear function and a non-linear, “U-shaped” 

function. The authors argue that subjective valuation is a process whereby choices 

are placed on a common scale to facilitate the selection of a choice giving the 

greatest utility to the individual. Therefore, a neural system representing a domain-

general valuation system must encode value in a positive, linear manner. In contrast, 

a structure demonstrating both positive and negative effects would indicate the 

encoding of salience or arousal. Whilst the ventromedial PFC and VS demonstrated 

positive encoding, regions including the AIC, dorsomedial PFC, dorsal and posterior 

striatum and thalamus each demonstrated a U-shaped response to valuation tasks, 

indicating the encoding of salience or arousal. 

1.6. Electrophysiological Correlates of Value 

Although localising the neural origins of information encoding during economic 

valuation is critical, fMRI methods severely lack in their ability to describe the 

temporal characteristics of the same information encoding. Studies utilising 

electrophysiological methods such as EEG have aimed to describe the temporal 

dynamics of valuation and the latencies at which various information is encoded, as 
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well as the oscillatory patterns elicited during decision making. Research has shown 

that the brain has the ability to categorise stimulus as being positive or negative very 

rapidly, as early as 120 ms (Smith, Cacioppo, Larsen, & Chartrand, 2003). Smith et 

al. also reported a negativity bias whereby negative stimuli were classified more 

rapidly, indicating increased attention allocation towards negative stimuli. Further 

research has reiterated the rapid encoding of stimulus attributes, extending to more 

complex information such as signals relating to valuation as early as 150 ms (Harris, 

Adolphs, Camerer, & Rangel, 2011). A later study observed post-decision value 

signals 200 ms following stimulus onset over a posterior region of the scalp, before 

moving to an anterior region at approximately 850 ms (Larsen & O'Doherty, 2014). 

An excellent feature of this study by Larsen and O’Doherty was the simultaneous 

recording of fMRI data, allowing the authors to reveal the neural generator of these 

signals. The intraparietal sulcus was the origin of the earlier, posterior signal, 

whereas the ventromedial prefrontal cortex was the origin of the later, anterior signal. 

Finally, Tzovara, Chavarriaga, and De Lucia (2015) demonstrated the ability to 

predict decision outcomes depending on decision difficulty wherein easy decisions 

can be decoded at approximately 500 ms whereas hard decisions at 700 ms.  

1.6.1. N2 

The N2 event-related potential (ERP) component is a negative wave occurring 

between 200 and 350 ms post-stimulus onset (Folstein & Van Petten, 2008), 

originating from the anterior cingulate cortex (Nieuwenhuis, Yeung, Van Den 

Wildenberg, & Ridderinkhof, 2003). The N2 is commonly observed over an anterior 

region of the scalp (Folstein & Van Petten, 2008), though sub-components of the N2 

vary between posterior and anterior representation (Luck, 2005; Naatanen & Picton, 

1986). In decision making research, investigations into the N2 have described the 

ability of the N2 to encode a variety of information. For example, Telpaz, Webb, and 

Levy (2015) revealed an increased N2 amplitude for more preferred products, and 

Kiss, Driver, and Eimer (2009) revealed an earlier and larger N2 for high reward 

targets. Additionally, Gajewski, Drizinsky, Zulch, and Falkenstein (2016) found 

increased N2 for counter-conformity decisions whereby a product was purchased for 

higher than the average price, or not purchased for a price below the average price. 

The implication of the N2 in counter-conformity decisions implies the role of N2 in 
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conflict processing, a finding that is repeatedly reported (Larson, Clayson, & Baldwin, 

2012; Ma, Pei, & Wang, 2015; Ma, Wang, Dai, & Shu, 2007; Wang, Meng, Liu, 

Wang, & Ma, 2016). The N2 is also reported to be responsible for automatic 

preference encoding (Goto et al., 2017), suggesting the role of the N2 in attentional 

driven processes. In support of this, Folstein and Van Petten (2008) highlight how 

the majority of N2 investigations are focussed on cognitive control, detection of novel 

stimuli and visual attention. Therefore, as Hakim and Levy (2019) point out, despite 

its frequent appearance in valuation studies, it may simply reflect attentional 

processes rather than valuation specific processes, but the direction of attention to 

high and low value targets may make it an indirect measure of valuation processes. 

1.6.2. P2 

The P2 corresponds to a positive wave occurring between approximately 150 

and 250 ms (Ma, Wang, & Wang, 2014), most likely originating from the orbitofrontal 

cortex (Polezzi, Lotto, Daum, Sartori, & Rumiati, 2008) and is observed at anterior 

regions of the scalp, as well as over the vertex (Luck, 2005). Although not frequently 

appearing in economic decision-making literature, its importance has been 

demonstrated. The P2 has been reported to be larger for negative stimuli, indicating 

an increased allocation of attentional resources to stimuli that need to be processed 

more rapidly (Carretié, Martín-Loeches, Hinojosa, & Mercado, 2001; Correll, Urland, 

& Ito, 2006; Huang & Luo, 2006; Jin, Zhang, & Chen, 2017; Wang, Huang, Ma, & Li, 

2012). Similarly, Ma et al. (2014) found that a larger P2 reflected an early 

classification of stimuli via allocation of attentional resources, allowing individuals to 

classify product category membership semantically. In addition to their source 

localisation of the P2, Polezzi et al. (2008) found that the P2 distinguished between 

the predictability of outcomes in an economic decision-making task. Hence, it 

appears that the P2 may be indicative of attentional allocation, similar to the N2 

component, but for the early processing of negative stimuli, and possibly for the 

categorisation of stimuli into general categories. 
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1.6.3. P3 

The P3 wave is a positive deflection occurring over frontal midline electrode 

sites, followed later by a maximum over midline parietal sites (Luck, 2005), 

approximately 300 ms after stimulus onset (Nieuwenhuis, Aston-Jones, & Cohen, 

2005) and is of great relevance in economic decision making research (see Hakim & 

Levy, 2019). The P3 is a component highly sensitive to the motivational significance 

of the stimulus eliciting the response, for example, target stimuli in visual search 

tasks elicited a greater P3 amplitude (Duncan-Johnson & Donchin, 1977). Here, 

motivational significance is task-specific, whereas stimuli can be inherently more 

motivationally significant. For example, regardless of being positive or negative, 

emotionally valent stimuli elicited larger P3 amplitudes (Johnston, Miller, & Burleson, 

1986; Keil et al., 2002). The P3 is also relevant to the processing of outcomes 

indicating monetary gains and losses. Irrespective of a gain or loss, one study 

revealed that the P3 encoded the absolute magnitude of the feedback (Yeung & 

Sanfey, 2004). Similarly, Hajcak, Holroyd, Moser, and Simons (2005) observed 

increased P3 amplitude when individuals received unexpected outcomes in 

comparison to neutral and expected outcomes, and also in response to infrequent 

feedback. However, the authors also revealed increased P3 amplitude to positive 

feedback in comparison to negative feedback, similar to Johnson and Donchin 

(1985), but contrasting with the findings from Yeung and Sanfey (2004) who 

revealed valence-independence of the P3, and other studies demonstrating a 

negativity bias within the P3 (Ito & Cacioppo, 2000; Ito, Larsen, Smith, & Cacioppo, 

1998). The contrasting findings make it difficult to utilise the P3 component in 

preference prediction and it may simply reflect the allocation of attentional resources 

to tasks, making it only an indirect measure of valuation behaviour (Hakim & Levy, 

2019).  

1.6.4. LPP 

The late positive potential (LPP) is a positive component occurring after the 

P3 component, i.e. after 300 ms (Chen et al., 2010), and thus has been referred to 

as a maintained or late P3 response (Cacioppo, Crites, Gardner, & Berntson, 1994; 

Hajcak & Olvet, 2008). The similarity of the P3 to the LPP extends to their scalp 
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distribution, with both showing prevalence over a central parietal region (Cacioppo et 

al., 1994). The LPP is thought to be involved in the categorization of stimuli (Crites & 

Cacioppo, 1996; Ito & Cacioppo, 2000) and is strongly involved in emotional 

processing (Cuthbert, Schupp, Bradley, Birbaumer, & Lang, 2000; Hajcak, Moser, & 

Simons, 2006; Hajcak & Nieuwenhuis, 2006; Keil et al., 2002; Schupp et al., 2000). 

For example, a study by Schupp et al. (2004a) observed larger LPP amplitudes for 

threatening faces in contrast to neutral and friendly faces, and Hajcak and Olvet 

(2008) reported enhanced LPP for emotional stimuli (both positive and negative), 

suggesting a facilitated processing of emotional stimuli which is indexed by the LPP. 

The LPP has also been implicated in purchase decisions, specifically in consumer 

herding, whereby the magnitude of the LPP response reflected the tendency of a 

consumer to choose an option that other consumers have rated as being positive, 

despite having no information regarding the product themselves (Chen et al., 2010). 

Other studies have emphasised the potential use of the LPP as an index of purchase 

intent whereby increased LPP was found for more subjectively preferred products 

(Goto et al., 2019; Goto et al., 2017). The role of the LPP in emotional processes 

suggest the LPP is of great use in economic decision making, allowing researchers 

to use it as an index of product perception. 

1.6.5. ERN/FRN 

Two further components are critical in the understanding of the 

electrophysiological correlates of valuation behaviour – the error-related negativity 

(ERN) and feedback-related negativity (FRN). The ERN is a response normally 

observed in speeded response tasks, typically over frontal and central scalp regions 

(Luck, 2005). For example, ERN amplitude increased when a higher frequency of 

error correction was observed, representing a signal relating to error detection and 

compensation (Gehring, Goss, Coles, Meyer, & Donchin, 1993). Conversely, the 

nature of some tasks require that errors are not known until feedback is provided. 

Hence the FRN is a component observed in response to negative feedback (Miltner, 

Braun, & Coles, 1997). It is believed that the ERN and the FRN are produced by the 

same neural system but in different circumstances (Gentsch, Ullsperger, & 

Ullsperger, 2009; Walsh & Anderson, 2012). 
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The ERN has been described as an index of both error magnitude (Bernstein, 

Scheffers, & Coles, 1995) and monetary loss (Gehring & Willoughby, 2002). 

Similarly, a wealth of research has identified the role of the FRN as an index of loss 

aversion in humans. For example, Kokmotou et al. (2017) revealed a correlation 

between loss aversion and FRN amplitude when evaluating choice outcome. The 

FRN has also been posited as being an index of reward prediction errors, i.e. 

receiving feedback indicating an unfavourable outcome. Hakim and Levy (2019) 

argued that this reward prediction error cannot be used as a direct indication of 

subjective valuations, but it may be an important proxy in indicating the subjective 

value an individual assigns to an outcome. For example, by using reverse inference, 

a marketer may infer the value of a product by the magnitude of a reward prediction 

error response. If a large FRN is indicative of differences between expectation and 

the outcome itself, then this could be interpreted as either effective advertising or an 

inadequate product.  
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Chapter 2 

2.1. Electroencephalography 

2.1.1. Physiological basis of EEG 

Signals in the brain are conducted along billions of neurons (Lent, Azevedo, 

Andrade-Moraes, & Pinto, 2012). Each neuron produces a small change in electrical 

potential as it activates, resulting in observable changes outside of the central 

nervous system in the form of local field potentials in the extracellular space 

surrounding neurons (Herreras, 2016) and also on the scalp as measured by 

electroencephalography (EEG) (Speckmann, Elger, & Gorji, 2011).  Signals are 

propagated along the axon of a neuron, made possible due to the ability of the axon 

membrane to alter its permeability to cations such as sodium (Na+) and potassium 

(K+).  

 The current view in EEG research is that EEG measures the postsynaptic 

currents resulting from synchronised firing of clusters of neurons (Nunez & 

Srinivasan, 2006), in contrast to the earlier belief that EEG measures the action 

potential. Action potentials produce a high-frequency signal, and the ability of cortical 

tissue to act as a filter to high-frequency data means this signal is attenuated greatly 

by distance (Bédard, Kröger, & Destexhe, 2006). This is not the case for 

postsynaptic potentials which, in contrast, are low frequency in nature and can be 

propagated across the scalp. Hence, it is considered that EEG is a much more direct 

measure of neuronal activity than other tools (Teplan, 2002). The measuring of 

synaptic currents resulting from neural activity is a direct measure of the neural 

activity that produced it, albeit a measurement from a relatively large number of 

neurons. In comparison, tools such fMRI only indirectly measure neural activity from 

the resulting haemodynamic responses, though the correlation is strong (Logothetis, 

2003). 

2.1.2. EEG acquisition 

Electroencephalographic methods measure the electrical potentials across 

the scalp by positioning electrodes across the head according to an internationally 
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recognised placement system, such as the 10-20 electrode system (Klem, Luders, 

Jasper, & Elger, 1999) or 10-5 system (Oostenveld & Praamstra, 2001). The 

standardization of electrode placement system allows for the comparison of data 

between labs utilising different EEG acquisition systems.  

 For all research studies outlined in the current thesis, a 128-electrode sponge-

based sensor net was used (Royal Philips, Eugene, Oregon, USA). Figure 1.1 

illustrates the locations of electrodes across the head using this system. This high-

density system gives enhanced coverage of the head, with electrodes positioned 

over the face and other regions not covered by systems utilising fewer electrodes. 

Modern placement schemes for high-density electrode caps benefit from the 

placement of electrodes over the inferior head region, allowing for the recording of 

neural activity from medial and basal temporal regions (Feng et al., 2016; Song et 

al., 2015). Larger spatial sampling also benefits from reducing the aliasing of spatial 

frequency (Tucker, 1993). A saline solution is used as the conducting medium and 

the net is positioned on the head according to three anatomical landmarks – the 

nasion and the left and right pre-auricular points. The Cz electrode was used as an 

initial reference and data was recorded at 1000 Hz with a filter of 0.1 to 200 Hz.  

 

  

Figure 1.1. Distribution of the 128 electrodes across the scalp for the Geodesic sensor net.  
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Whilst each electrode is recording activity across the scalp, the amplitude is 

miniscule and must be amplified and digitized so that they can be visualized on a 

computer. An important step in this amplification process is the use of grounding and 

reference electrodes. In an EEG amplification system, the activity at a given site is 

established using a differential amplifier, whereby activity at an active electrode site 

is the amplified difference between active-ground voltage and the reference-ground 

voltage (Luck, 2005). 

2.1.3. EEG data processing 

 Following the completion of data collection, the continuous EEG data must be 

inspected for the presence of artifactual data. A chief issue with EEG methods is the 

ease at which data can be contaminated by electrical potentials from non-cerebral 

sources. Physiological artifacts can arise from eye-blinks (Hoffmann & Falkenstein, 

2008), head movements (O’ Regan, Faul, & Marnane, 2010), eye-movements 

(Nikolaev, Meghanathan, & van Leeuwen, 2016) and heartbeat (Viola et al., 2009). 

Muscle movements involving the face and neck can also have a variety of effects on 

EEG data, producing different spectral profiles with various peak frequencies 

(Goncharova, McFarland, Vaughan, & Wolpaw, 2003). Non-physiological artifacts 

are also detrimental to EEG recordings, for example, electrical devices produce a 

50/60 Hz noise that greatly contaminates data (Puce & Hämäläinen, 2017).  

 Although artifacts are minimised at the acquisition stage, there are several 

methods to account for the artifacts at the pre-processing stage. In the present 

thesis, all data was corrected using the adaptive artifact correction method described 

by Ille, Berg, and Scherg (2002) implemented in Brain Electrical Source Analysis 

(BESA, GmbH). This method utilises a spatial filter approach for artifact correction, 

separating artifact and brain activity to avoid distortion of the continuous EEG data. 

The method is limited primarily by the researcher being able to accurately define an 

artifact topography with a high signal-to-noise ratio. After correcting the continuous 

data using this method, all data is visually inspected and data epochs containing 

artifacts not characterised by a systematic topography, and not subject to correction 

via spatial filtering, are discarded.  
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2.1.4. ICA 

 Independent component analysis (ICA) was first utilised by Makeig, Bell, 

Jung, and Sejnowski (1996) in the processing of EEG data. ICA works by separating 

summed independent source signals into the original independent signal without any 

prior knowledge of the source processes, i.e. blind separation of source signals 

(Makeig & Onton, 2011). When visualising EEG data, the data is assumed to be a 

mix of signals from independent brain sources. ICA separates the recorded data into 

a set of maximally independent components. Since the continuous data is explained 

by overlapping but unique brain source activations over a period of time, the 

independent components identified must represent the source signals from unique 

brain sources. Similar to the spatial filtering process discussed previously, ICA 

creates what is essentially a set of spatial filters, whereby a single component 

removes variance accounted for by all but one of the unique source signals that 

contribute to the continuous data across all channels (Makeig & Onton, 2011). For 

each of these components, this leaves us with a time series indicating polarity and 

relative amplitude at each time point, along with a single scalp map representing the 

projection of the component onto the scalp. ICA is most useful when applied to 

datasets comprising 128 or more channels (Delorme & Makeig, 2004), but it has 

been shown to be of use with datasets utilising 32 channels (Makeig, 2002). 

 The application of ICA is most frequent in the process of artifact correction 

(Puce & Hämäläinen, 2017), but is also critical in the identification of important brain 

processes to make inferences about cognitive processes (Makeig et al., 1999). 

Artifacts within continuous EEG data can have very stereotypical scalp patterns and 

time courses, making them very easily identifiable using ICA. For example, eye-

blinks produce a strong anterior pattern over frontal electrodes, and horizontal eye-

movements produce two clusters of activation over a left and right anterior region 

with opposite polarity. Similarly, electrocardiographic artifacts arising from heartbeat 

produce easily discernible components due to their distinct temporal and spatial 

patterns, usually observed over posterior regions corresponding to pulses from the 

neck. However, there are some artifacts that ICA struggles to separate. For example, 

50/60 Hz line noise can vary as a result of changing electrode impedance over the 

course of an experiment, producing a spatial pattern that is inconsistent over the 
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recording. Myoelectric responses originating from muscle movement, i.e. 

electromyographic signals, also produce highly variable signals in terms of both 

frequency and spatial distribution, and they can even contaminate signals in the 

alpha and beta frequency ranges wherein brain data is typically observed 

(Goncharova et al., 2003).  

2.1.5. Source dipole analysis 

 EEG methods excel in their ability to investigate the temporal dynamics of the 

process that it is investigating, something which methods such as fMRI do not have 

the ability to do due to the nature of haemodynamic responses. When an electrical 

signal is produced inside of a medium, such as the brain, the signal is conducted 

across the medium, diminishing in strength with distance. If we have a dipole in the 

brain with a known location and orientation, as well as the distribution of 

conductance across the brain, then it is possible to predict the distribution of 

electrical propagation across the scalp when that dipole is active (Luck, 2005). This 

is referred to as the “forward problem”, referring to the prediction of observed 

potentials at given electrodes with a known source generator (Hallez et al., 2007).  

 Solving the forward problem requires a head model characterising the 

conduction of electrical potentials within the human head. The first head models 

were comprised of conduction through a homogenous sphere (Frank, 1952), but it 

was soon realised that the different tissues in the head result in different 

conductivities depending on the medium (Hallez et al., 2007), resulting in more 

realistic head models such as the four-shell ellipsoid head model with different 

conductivities for brain tissue, scalp, bone and cerebrospinal fluid (Blimke, 

Myklebust, Volkmer, & Merrill, 2008). 

 In contrast to the forward problem, we may also be interested in localising the 

source of a given scalp distribution given only the pattern of this distribution. This is 

referred to as the “inverse problem” and is much more complicated than the reverse 

(Luck, 2005). The inverse problem was first described in 1853 (Von Helmholtz, 2004) 

and the author reported how the current distribution inside a conductor cannot be 

uniquely identified given only the distribution of electromagnetic field outside of the 

medium. This is due to the infinite number of unique solutions that produce any given 
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distribution. Nevertheless, there are several inverse solutions utilising parametric and 

non-parametric methods that are used to generate probabilistic solutions of source 

generators (Grech et al., 2008), utilising the same head models previously 

described. A commonly used method is the LORETA algorithm which produces a 

region of maximal activity in the brain, but with a degree of dispersion (Pascual-

Marqui, Michel, & Lehmann, 1994). In the current thesis, data were analysed using 

classical LORETA analysis recursively applied (CLARA), which applies LORETA 

iteratively to reduce the source space and resolve closely neighbouring sources 

(Hyder, Kamel, Boon, & Reza, 2015). A second method used in the current thesis is 

the fitting of a dipole model using a sequential strategy, whereby dipoles were 

sequentially fitted to explain the three-dimensional source currents that contributed 

primarily to the data (Scherg & Berg, 1996; Stancak et al., 2002). Dipole orientations 

were determined based on the peak activation in specific time intervals. 

2.1.6. Strengths & limitations of EEG methods 

 The main benefit of EEG research is the ability to investigate the temporal 

dynamics of brain processes on a scale of milliseconds (Luck, 2005), a feature that 

cannot be matched by many brain imaging methods utilised in neuroscience. 

Methods such as fMRI have a temporal resolution of 4 to 6 seconds, and other 

methods based on haemodynamic responses, such as positron emission 

tomography, can have temporal resolutions upwards of 40 seconds (Aine, 1995). 

The high temporal resolution of EEG stems from the nature of the neuronal 

responses, in that the postsynaptic responses are a direct measure of cortical 

activity, and also from the speed at which these electrical signals are conducted. The 

generation of these electrical potentials in the brain also produces a small 

electromagnetic field that is synchronised with the electrical potentials. These 

magnetic fields are able to be detected by magnetoencephalography (MEG), and 

MEG can therefore be used in a similar way to EEG with the added benefit of 

improved spatial resolution (Hämäläinen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 

1993). However, the volume currents from electrical potentials and the resulting 

magnetic field are orthogonal in nature, in that they occur at right angles with each 

other. This means that the two methods are optimum in detecting specifically 

oriented dipoles in the brain. Whereas MEG is optimised for detecting tangential 
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sources, EEG can detect sources of all orientations (Cohen & Cuffin, 1991). Ahlfors, 

Han, Belliveau, and Hämäläinen (2010) reported in their study a source orientation 

for almost all cortical locations to which MEG was insensitive. This contrasted with 

EEG which was much more insensitive to source orientation.  

 The benefits of EEG extend to the ability to implement it in parallel with other 

complementary methods. Simultaneous EEG and MEG studies combine the 

improved spatial resolution of MEG with the ability to detect all source orientations 

with EEG (Chowdhury et al., 2015; Ding & Yuan, 2013; Ebersole & Ebersole, 2010; 

Henson, Mouchlianitis, & Friston, 2009) and concurrent EEG and fMRI studies 

combine the temporal and spatial resolution of the respective methods (Huster, 

Debener, Eichele, & Herrmann, 2012; Larsen & O'Doherty, 2014).  

 The prevailing limitation in EEG research is the inverse problem, i.e. the 

inability to be certain of the source of brain potentials observed across the scalp 

limits the spatial resolution of EEG techniques greatly. Although the temporal 

dynamics are often of great importance, research questions concerning the spatial 

aspects of a cognitive process are more suited to other functional imaging 

techniques. Although EEG can localise the origin of signals with an accuracy of 1 cm 

(Luck, 2005), making it acceptable to localise general regions of activation, neural 

structures have many sub-divisions, each corresponding to unique functions. For 

example, the importance of the OFC is emphasised across several fields, including 

decision making (Padoa-Schioppa & Assad, 2006), and very fine functional divisions 

of the OFC region have been reported (Kahnt et al., 2012; Zald et al., 2014). The 

inability to estimate with enough degree of certainty the source of signals results in 

the inability to discern the origin of signals from functional sub-regions of neural 

structures. 

2.2. Eye-Tracking 

2.2.1. General principles 

 Eye-tracking entails the monitoring of gaze position relative to the subjects’ 

environment, allowing researchers to identify the nature of how attention is being 

allocated during any given task. In recent years, several eye-tracking systems have 

been developed, including head-mounted eye-trackers, tower-mounted systems, 
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remote eye-trackers allowing free movement within a small distance. Although these 

systems are much less invasive than typical scleral coil eye-tracking techniques (van 

der Geest & Frens, 2002), they tend to compromise on spatial and temporal 

resolution. As is the case with video-based eye-tracking systems, the sampling rate 

of pupil data is restricted to the sampling rate of the cameras utilised by the system.  

 The primary function of eye-tracking methods is to determine periods of eye-

movements, referred to as saccades, and periods of eye-fixations. In general, a set 

of parameters are defined that determine thresholds for characterising a gaze point 

as belonging to a saccade or an eye-fixation. For example, a saccade being defined 

as having a minimum velocity of 30 degrees/sec, acceleration of 8000 degrees/sec2, 

and a minimum deflection of 1 degree (Plochl, Ossandon, & Konig, 2012). In 

contrast, any values that fall short of these thresholds may be attributed as belonging 

to a period of fixation. Periods of fixations must also be of a minimum length, 

typically between 80 and 150 ms (Nyström & Holmqvist, 2010). 

 In the current thesis, the Pupil Labs head-mounted eye-tracker was used 

(Pupil Labs, Berlin, Germany). This system detects the pupil position(s) from a video 

stream of the eye(s) and maps the gaze position onto a video stream representing 

the subjects’ field of view. The native software detects pupil location using a video 

stream of the eye(s). This is done firstly by estimating the pupil region based on the 

strongest response for a centre-surround feature (Swirski, Bulling, & Dodgson, 2012) 

and then finding the edges of the eye (Canny, 1986). The darkest regions and 

reflections on the eye are detected next, before being extracted and converted to 

contours. Candidate pupil ellipses are fitted using ellipse fitting (Fitzgibbon & Fisher, 

1995) before fitting a final ellipse defining the edges of the pupil. Gaze positions are 

mapped using a nine-point calibration procedure and gaze position can be calculated 

relevant to a surface defined with a pre-defined set of surface markers placed in the 

field of view. The sampling rate of the Pupil Labs eye-tracker varied with video 

resolution, in that a 200×200 pixel recording could sample pupil data at 200 Hz, 

whereas a 400×400 pixel recording could sample at 120 Hz. The world view camera 

sampled at 60 Hz.   
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2.2.2. Eye-movement detection 

Eye-trackers produce a vector of raw data comprised of the x and y-

coordinates of the gaze position at any point in time. However, this data needs to be 

analysed further to determine the onset and offset of distinct eye-movement related 

events. For example, the gaze position at any given time point may belong to a 

period of fixation, saccadic eye-movement, period of smooth-pursuit or a blink. Less 

frequently, research identifies the presence of glissades, a period of eye-movement 

following a saccade that is unreliably assigned to either the preceding saccade or the 

following fixation (Nyström & Holmqvist, 2010). Though the distinct types of events 

are well defined qualitatively, the detection of these events within raw data largely 

depends on the algorithm utilised and its corresponding parameters. For example, 

the method that is used to filter the gaze data can have a great influence on the 

detection of events. Event-detection algorithms can be defined broadly based on two 

classes – dispersion-based algorithms and velocity-based algorithms. 

2.2.2.1. Dispersion-based thresholds 

One way of classifying events in gaze position data is using dispersion-based 

algorithms. These algorithms define a fixation based on gaze data being restricted to 

a certain region (i.e. a dispersion threshold), typically of less than 0.5° of visual 

angle, for a minimum duration of time, typically 80 – 150 ms (Nyström & Holmqvist, 

2010). The most commonly used dispersion-based algorithm used, which is also 

utilised in the native software of the Pupil Labs eye-tracking system, is the 

dispersion-threshold identification (I-DT) algorithm (Salvucci & Goldberg, 2000). This 

method begins by using a sliding window encompassing a number of data points 

representing the minimum fixation duration. The window begins at the beginning of 

the gaze data and transitions through the data, one data point at a time, calculating 

the dispersion of the data points in the window by summing the difference between 

the minimum and maximum x-coordinate and the difference between the minimum 

and maximum y-coordinate. If this dispersion is greater than the threshold, it is not a 

fixation. However, if the dispersion is less than the threshold, it is counted as a 

fixation and the window is expanded until the dispersion of the data points exceeds 
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the threshold, at which point a full fixation is defined at the centroid of x and y 

coordinates in the time window.  

Despite the need for only the two parameters of minimum duration and 

dispersion threshold, inconsistencies can arise in dispersion-based algorithms based 

on how the dispersion is calculated, which can in turn yield significantly different 

fixation durations and the number of fixations extracted (Blignaut, 2009). Similarly, 

algorithms may have their own rules for accepting or rejecting fixation candidates, 

and even for merging two or more subsequent fixations, resulting in more possible 

inconsistencies between algorithms (Hessels, Niehorster, Kemner, & Hooge, 2017). 

2.2.2.2. Velocity-based thresholds 

Gaze data comprised of x and y coordinates, as well as time course, allows 

for the calculation of gaze velocity. Using this gaze velocity, velocity-based 

algorithms define fixation candidates based on a predefined velocity threshold, often 

30°/s, wherein a period is labelled as a fixation candidate if the gaze velocity does 

not exceed this threshold. Additional parameters can be utilised to help characterise 

a fixation. For example, the EyeLink system (SR Research Ltd., Mississauga, 

Ontario, Canada) includes acceleration data and motion to make sure a saccade is 

being made, ensuring the eye has moved a significant enough distance to define a 

new fixation. Similar to the dispersion-based algorithms, parameter definitions will 

have a large influence on the events subsequently extracted. However, defining a 

velocity threshold to identify fixation candidates is based on “rules of thumb” 

(Nyström & Holmqvist, 2010), and comparable results between research is difficult 

due to this.   

 The collection of eye-tracking data can sometimes be problematic due to the 

presence of noise. For example, when collecting data from young children. To 

account for this, Hessels et al. (2017) developed a noise-robust algorithm that is able 

to extract fixation events in noisy data, referred to as the identification by two means 

clustering (I2MC) algorithm. The first step in this method is the maximising of eye-

tracking data by interpolating missing data. Secondly, it uses the k-means clustering 

method utilising 2 means, i.e. k = 2 (Jain, 2010), wherein data within a sliding 

window are forced into two clusters. The authors reason that if the current data 
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window encompasses a saccade, there will be few cluster membership transitions 

concentrated at a fixed point. Alternatively, if the current data window encompasses 

a fixation, the transitions of cluster membership will be driven by the noise in the data 

alone and, in turn, will be sporadic. These points of cluster membership transitions 

will subsequently be used to identify fixation onsets and offsets. This algorithm was 

utilised in chapter 7 of the current thesis as an alternative to the I-DT algorithm of the 

native Pupil Labs software.  

2.3. Co-registration of EEG and Eye-Tracking 

Typical EEG experiments are usually very constrained, in that participants are 

often discouraged from making eye-movements during task due to the impact that 

eye-movements can have on brain potential recordings (Plochl et al., 2012). 

However, the synchronisation of brain responses to fixations allows researchers to 

investigate cognitive processes at the point of information processing. The 

implementation of eye-tracking in EEG research is frequently seen in research 

investigating attentional processes (Fischer, Graupner, Velichkovsky, & Pannasch, 

2013), granted that fixations are an important index of attentional allocation. Visual 

search paradigms frequently utilise combined EEG and eye-tracking to investigate 

word predictability (Dimigen, Sommer, Hohlfeld, Jacobs, & Kliegl, 2011) and target 

detection (Dias, Sajda, Dmochowski, & Parra, 2013). 

2.3.1. Advantages of co-registration 

Real-world neuroimaging applications are becoming more prevalent in recent 

years with the improving EEG technology, and other mobile brain imaging 

techniques such as functional near-infrared spectroscopy (McDowell et al., 2013). In 

laboratory experiments, events can easily be synchronised within the brain imaging 

data, such as image presentation on a computer screen. In mobile brain imaging, 

however, it is much more difficult to label events to investigate brain potentials. The 

implementation of eye-tracking allows researchers to investigate brain responses at 

the point of fixation, providing an event trigger critical for highlighting relevant 

portions of EEG data. This allows research to take the well-established findings from 

laboratory experiments and investigate whether the same is observed in realistic 
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scenarios as the context in which a task is completed may influence the cognitive 

processes utilised.  

 Although the influence of eye-movements on brain potentials is well 

established (Plochl et al., 2012), there are several methods and procedures to 

account for this. It is standard procedure to simply discard epochs contaminated by 

eye-blinks or eye-movements. A consequence of this is the possibly detrimental loss 

of data, reducing the signal-to-noise ratio and the extent to which we are detecting 

the underlying neural activity. However, there are multiple tools to reduce this data 

loss. ICA is a strong tool to account for blinks and certain eye-movements (Makeig et 

al., 1996), as well as spatial filtering (Ille et al., 2002), regression (Schlogl et al., 

2007) and dipole modelling (Berg & Scherg, 1991).  

 A notable method for accounting for eye-movements and the linear and non-

linear effects that eye-movements can induce is the Unfold toolbox (Ehinger & 

Dimigen, 2019). This method explains the continuous data in a single regression 

model to account for the inevitable overlap of EEG data epochs in free-viewing 

scenarios. Importantly, it can use regression to account for the linear and non-linear 

effects that eye-movements can have on brain potentials. For example, the size of 

the saccade that precedes a fixation has a non-linear effect on the visual lambda 

response observed approximately 100 ms after fixation onset (Nikolaev et al., 2016). 

However, spline regression implemented in Unfold can remove variance specific to 

the differing saccade sizes.   

2.3.2. Limitations of co-registration 

 The myoelectric nature of eye-movements means that the electrical potentials 

observed when an eye-movement is initiated is magnitudes larger than cortical 

potentials researchers are interested in measuring. Despite efforts to control for the 

influence of eye-movements on brain potentials, the data will inherently have some 

remaining bias from these eye-movements (Nikolaev et al., 2016). Nikolaev et al. 

outlined the impact of eye-movements on brain data, emphasising the saccadic 

spike potential and the lambda response. The saccadic spike potential is a response 

observed at the onset of a saccade, representing a myoelectric response from the 

rotation of the eye. This response scales with the size of the saccade that produced 
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it (Boylan & Doig, 1989; Keren, Yuval-Greenberg, & Deouell, 2010; Riemslag, Van 

der Heijde, Van Dongen, & Ottenhoff, 1988), and is also influenced by the direction 

of that saccade (Keren et al., 2010; Thickbroom & Mastaglia, 1986). The lambda 

response is considered as the eye-fixation related potential (EFRP) equivalent of the 

P1 visual response. Similar to the saccadic spike potential, its amplitude is 

dependent on the size of the saccade that preceded it (Dimigen et al., 2011; 

Nikolaev et al., 2016; Ries, Slayback, & Touryan, 2018; Yagi, 1979), as well as the 

difference in contrast and luminance between the two fixation locations (Kazai & 

Yagi, 2005; Szirtes, Marton, & Breuer, 1982). The influence of eye-movements on 

not only the myoelectric response, but also the brain potentials that are required to 

be investigated, make it much more difficult to interpret the resulting findings. Any 

condition-wise differences in eye-movements, such as a larger saccade amplitude in 

one condition, may induce differences that are wrongly interpreted as being due to 

experimental manipulations.  
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Chapter 3 

3.1. Research Problems 

The brain structures underpinning the brain valuation system have been well 

characterised through meta-analytic analyses of fMRI data (Bartra et al., 2013; 

Clithero & Rangel, 2014). However, the temporal dynamics of brain valuation 

processes are less clearly defined. Little is known about the temporal features of 

valuation processes during incentive compatible auction tasks due to few 

electrophysiological investigations. Research has revealed that subjective value can 

be discerned as early as 150 ms following stimulus onset (Harris et al., 2011; Larsen 

& O'Doherty, 2014; Tzovara et al., 2015), though these never utilised an incentive 

compatible auction design. Furthermore, although the brain valuation system has 

been described well, the poor temporal resolution of fMRI methods results in a 

deprived understanding of when these neural structures are engaged on a fine 

temporal scale of milliseconds.  

Several questions regarding neural computations for subjective valuation 

remain unanswered. Firstly, it remains undecided whether brain components can 

reflect subjective value by indexing WTP. Moreover, if brain components measured 

by EEG reflect WTP, it is unclear whether a single brain component reflects the 

entire subjective valuation process, or whether multiple components explain the full 

extent of subjective valuation. Secondly, the extent to which subjective valuation is 

an automatic process is unclear. Although the automaticity of valuation processes 

has been suggested using fMRI methods (Lebreton, Jorge, Michel, Thirion, & 

Pessiglione, 2009), the degree to which value-related signals were manifested in 

early brain components prior to conscious elaboration is not known. Consequently, 

the use of high-temporal resolution methods such as EEG would allow for the 

elaboration on the automaticity of valuation processes. Thirdly, stimulus-response 

paradigms allow researchers to investigate brain responses immediately following 

the presentation of a stimuli. However, it is unclear how value is computed and built 

in free-viewing situations whereby more elaborate processing takes place in the time 

period extending beyond the immediate post-stimulus interval. Lastly, there is a 

wealth of literature describing the benefits of price bundling to a seller and the 
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potential mechanisms governing the valuation of product bundles (Fang, Sun, & 

Gao, 2017). However, there is limited research investigating the brain processes 

governing the valuation of bundled goods which may shed light on the potential 

mechanisms of bundle valuation. For example, both sub-additivity and super-

additivity are observed with different bundling strategies, such as the pairing of 

disparately priced products to produce a sub-additive effect (Popkowski Leszczyc, 

Pracejus, & Shen, 2008), or the pairing of complementary products to produce an 

additive effect (Harlam et al., 1995), yet the neural computations of such processing 

remains unclear. 

The current thesis investigated brain responses at the point of stimulus 

presentation to reveal brain components for subjective valuation. Extending on this, 

the use of simultaneous EEG and eye-tracking recordings allowed for the 

investigation of brain responses at the point of eye-fixation in free viewing situations. 

To our knowledge, this is the first attempt to reveal the electrophysiological 

correlates of WTP within a BDM auction paradigm. Additionally, the EEG methods 

employed benefited from the temporal resolution to assess the automaticity of 

subjective valuation, as well as the subtleties of bundle valuation. 

3.2. Hypotheses 

 

H1 Subjective values of objects in an auction experiment will be encoded by 

distinct spatiotemporal cortical activation patterns. 

 

H2  Subjective value will be encoded in specific cortical activation components 

equally in different contexts due to the automaticity of valuation processes. 

 

H3  The spatiotemporal activation patterns sub-serving subjective values will be 

determined early on during free viewing period and maintained throughout 

the viewing period. 

 

H4  Pairing a low and high value object into a single product bundle will 

produce a sub-additive effect. The sub-additive effect related to product 
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bundling will be indexed by a spatiotemporal cortical activation component 

showing sensitivity to subjective values. 

 

3.3. Thesis chapters 

 Chapter 4 describes an ERP study utilising EEG which investigated the 

spatiotemporal characteristics of value-based decision making in the brain (H1). A 

source dipole model was developed to describe the computation of low and high 

WTP in different source regions in the brain. The paradigm also employed two 

different rating tasks, only one of which required a computation of subjective value, 

thus allowing the investigation of the automaticity of value-based decision-making 

processes (H2).   

 Chapter 5 examines the time-course of economic decisions in a combined 

EEG and eye-tracking experiment. Through the use of ICA techniques, clusters of 

brain components across subjects were revealed to emphasise the computation of 

subjective value in the brain for low, medium and high value products in a free 

viewing paradigm (H1). The study also describes the evolution of neural processes 

unique to subjective valuation over time by investigating eye-fixation related 

potentials (EFRPs) at distinct time points throughout an extended decision period 

(H3). 

 Chapter 6 is comprised of a further analysis of the data described in Chapter 

5. Through the utilisation of a mostly identical analysis pipeline to Chapter 5, Chapter 

6 aimed to determine whether comparable brain components reflecting subjective 

value were present immediately following stimulus onset (H1, H2). This was achieved 

by analysing brain responses synchronised to stimulus onset. The varying temporal 

overlap between brain responses synchronised to fixation onset acts as a low-pass 

filter. Thus, an investigation into the neural response at stimulus onset will reveal 

more information regarding the high-frequency components relevant to value 

encoding. 

 Chapter 7 extended the combined EEG and eye-tracking method to 

investigate the valuation of product bundles. The brain components encoding 
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subjective value for product bundles were investigated (H1). Additionally, the sub-

additivity from bundling two disparately priced products was examined, as well as 

investigating the neural representation of the sub-additive effect (H4). With the 

addition of varying product complementarity within bundles, the influence of 

complementarity on bundle valuation was also studied. 

 Chapter 8 comprises a general discussion of all experimental findings. The 

implications of the findings are discussed in the context of the current opinions in the 

field of neuroeconomics, and future directions are deliberated.  
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Chapter 4 

 

The neural correlates of economic value and valuation context:  

An event-related potentials study 
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4.1. Neural correlates of economic value and valuation context: an 

event-related potential study 

4.1.1. Abstract 

The value of environmental cues and internal states is continuously evaluated 

by the human brain and it is this subjective value that largely guides decision-

making. The present study aimed to investigate the initial value attribution process, 

specifically the spatio-temporal activation patterns associated with values and 

valuation context using electroencephalographic event-related potentials (ERPs). 

Participants completed a stimulus rating task in which everyday household items 

marketed up to a price of £4 were evaluated with respect to their desirability or 

material properties. The subjective values of items were evaluated as willingness-to-

pay (WTP) in a Becker-DeGroot-Marschak auction. Based on the individual’s 

subjective WTP values, the stimuli were divided into high and low value items. 

Source dipole modelling was applied to estimate the cortical sources underlying ERP 

components modulated by subjective values (high vs. low WTP) and the evaluation 

condition (value-relevant vs. value-irrelevant judgments). 

  Low WTP items and value-relevant judgements both led to a more 

pronounced N2 visual evoked potential at right frontal scalp electrodes. Source 

activity in right anterior insula and left orbitofrontal cortex was larger for low vs. high 

WTP at around 200 ms. At a similar latency, source activity in right anterior insula 

and right parahippocampal gyrus was larger for value-relevant vs. value irrelevant 

judgements. A stronger response for low- than high-value items in anterior insula 

and orbitofrontal cortex appears to reflect aversion to low-valued item acquisition 

which, in an auction experiment, would be perceived as a relative loss. This initial 

low-value bias occurs automatically irrespective of the valuation context. 
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4.1.2. Introduction 

Economic values of stimuli are continuously and automatically encoded in the 

human brain. Previous brain imaging studies show that valuation occurs 

predominantly in the orbitofrontal cortex (OFC), ventromedial prefrontal cortex 

(vmPFC) and the ventral striatum (Bartra et al., 2013; Clithero & Rangel, 2014; 

Padoa-Schioppa, 2007; Raghuraman & Padoa-Schioppa, 2014). Value attribution is 

one of the first stages of any value-based decision (Rangel et al., 2008). Previous 

studies investigated the modulation of event-related potential (ERP) components by 

hedonic aspects of visual stimuli (for a review, see Hajcak et al. 2012). For example, 

a negativity bias reflecting preferential processing of unpleasant stimuli may result in 

greater ERP responses (Delplanque, Silvert, Hot, Rigoulot, & Sequeira, 2006; Huang 

& Luo, 2006; Smith et al., 2003). Some studies identified the role of the late positive 

potential in the encoding of emotional stimulus valence (Foti, Hajcak, & Dien, 2009; 

Macnamara, Foti, & Hajcak, 2009; Moser, Hajcak, Bukay, & Simons, 2006), 

however, the late positive potential also varies as a function of motivational 

significance (i.e., salience; Weinberg & Hajcak 2010). Although the subjective 

pleasantness of a stimulus may contribute to the value of perceived goods, 

economic value is not identical to emotional valence.   

 Electrophysiological studies have highlighted that value-related signals 

appear as early as 200 ms post-stimulus presentation in binary decision tasks where 

a choice between two options is required (Larsen & O'Doherty, 2014; Tzovara et al., 

2015). Differences in ERPs were also observed across multiple time windows 

ranging from 150 to 800 ms (Harris et al., 2011). However, ERPs were not 

investigated in relation to behavioural measures concerning economic value directly. 

Other investigations of the value-encoding phase were focussed within specific brain 

regions (Hunt et al., 2012). A common finding in previous ERP studies investigating 

the representation of value-based preferences in binary reaction time tasks was a 

progression of activations from the occipito-temporal cortical regions to frontal and 

prefrontal sites over the course of the ERP (Harris et al., 2011; Larsen & O'Doherty, 

2014). However, the involvement of a reaction time response in experiments 

investigating the representation of value also adds a motor readiness component to 

ERPs which may interact with activations related to the automatic valuation process 
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occurring in absence of decision making (Gluth, Rieskamp, & Büchel, 2013; Polania, 

Krajbich, Grueschow, & Ruff, 2014). Further, binary decision making as compared to 

reporting hedonic ratings has been found to involve different brain regions, such as 

anterior cingulate cortex (Rolls, Grabenhorst, & Parris, 2010).  

Several ERP components relevant to value-based decision making have been 

revealed in previous literature. The event-related negativity (ERN) and feedback-

related negativity (FRN) are two ERP components that, due to their nature, allow us 

to investigate decision making processes (Walsh & Anderson, 2012). These two 

components are elicited by feedback following decision tasks and are relevant to 

reward-prediction errors (Gehring, Liu, Orr, & Carp, 2012; Nieuwenhuis, Holroyd, 

Mol, & Coles, 2004; Yu & Huang, 2013). Additionally, the P300 ERP component is 

often implicated in which the P300 encodes outcome valence (San Martin, 2012; 

Yeung & Sanfey, 2004). It is generally found that these ERP components are 

specific to outcome processing, though it has been revealed that the eliciting stimuli 

can modulate the ERP magnitude at the outcome stage (Yeung & Cohen, 2006).  

A common method for estimating the economic value of goods is via auction 

tasks such as the Becker-DeGroot-Marschak (BDM) mechanism (Becker et al., 

1964). The BDM mechanism is an incentive compatible method for estimating a 

subject’s willingness-to-pay (WTP) for goods and prospects (Wilkinson & Klaes, 

2012). Previous fMRI studies have established that the brain valuation system 

activates during the BDM mechanism (Chib, Rangel, Shimojo, & O'Doherty, 2009; 

Plassmann et al., 2007, 2010).  

The context in which economic decisions are made can also influence the 

neural activations within the brain valuation system. For example, neural responses 

within valuation regions can be modulated during an auction task in which bids may 

be forced (Plassmann et al., 2007, 2010), passive viewing tasks (Levy, Lazzaro, 

Rutledge, & Glimcher, 2011) and tasks in which value is irrelevant (Grueschow, 

Polania, Hare, & Ruff, 2015; Polania et al., 2014) or where outcomes are uncertain 

(Payzan-LeNestour, Dunne, Bossaerts, & O'Doherty, 2013). Activation of the brain 

valuation system during tasks in which it was not required demonstrates the 

automaticity of valuation processes (Lebreton et al., 2009).  
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 The aim of the present study was to investigate the spatio-temporal aspects of 

brain economic evaluation of everyday household items during a task in which value 

was either task-relevant or irrelevant. Subjects viewed each item but were not 

requested to make a speeded response, rather, they rated the likeability or the 

material features of the item. A BDM auction experiment was used to evaluate WTP 

in a separate session, and the WTP values were correlated with ERPs and 

subjective ratings. 

4.1.3. Methods 

4.1.3.1. Participants 

 Twenty-five healthy participants (14 females) with a mean age of 24 ± 4.67 

(mean ± SD) years took part in the study. The experimental procedures were 

approved by the Research Ethics Committee of the University of Liverpool. All 

participants gave written informed consent in accordance with the declaration of 

Helsinki. Participants were reimbursed for their time and travel expenses. 

4.1.3.2. Procedure 

All experimental procedures were carried out in a dimly lit, sound attenuated 

room. Participants sat in front of a 19-inch LCD monitor. The study was carried out in 

two sessions approximately 2-5 days apart. During the first session, participants 

completed the auction task. During the second session, participants completed the 

rating task. The stimuli comprised 90 everyday household items varying in value 

from £0.75 to £4.00 with a mean value of £2.52 ± £1.01 (mean ± SD) obtained from 

a shopping catalogue. Food items were excluded to avoid confounds arising from 

difference in the appetitive value of stimuli between session 1 and 2 of the study. 

Stimuli were presented in random order. Presentation of stimuli was controlled using 

Cogent 2000 (UCL, London, UK) in MATLAB 7.8 (MathWorks, Inc., USA). 

Experimental protocols and stimulus timings are illustrated in Figure 4.1. 
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Figure 4.1. Experimental protocol. A. Timeline of auction task. A fixation cross was 
presented at the beginning of each trial for 2 s. Following offset of the fixation cross, an 
image was presented for 3 s followed by the bidding options for 4 s. A total of nine options 
were available between £0 and £4 in increments of £0.50. Following the selection of a bid, 
feedback was presented for 1 s to indicate the outcome of that auction. B. Timeline of EEG 
task. A fixation cross was presented at the beginning of each trial for 3 s. Next, an instruction 
was presented for 2 s to indicate the demands of the trial, followed by an image for 3 s. 
Following image offset, a VAS was presented for 4 s to allow either a desirability rating or 
material estimation depending on the preceding instruction.  

4.1.3.3. Auction task 

 The protocol for the auction task was adapted from previous studies 

(Plassmann et al. 2007, 2010) and employed the BDM mechanism (Becker et al., 

1964; Wilkinson & Klaes, 2012). Each stimulus was presented once resulting in a 

total of 90 auctions. 

Each auction consisted of a fixation cross followed by an evaluation stage, a 

bidding period and then feedback. During the evaluation stage, participants 

appraised the stimulus that was presented on-screen. The bidding period required 

the participants to bid on the item. Here, participants were asked to bid between £0 

and £4 in increments of £0.50 giving a total of nine options. During the feedback 

stage, participants were notified as to whether or not the item was won. The outcome 

of an auction was dependent on the bid and a randomly generated number, in which 

the item was purchased when 𝑏 ≥ 𝑟, where b represents the bid and r represents 

the randomly generated number for that auction. At the end of the experiment, three 

auctions resulting in a purchase were selected at random. For each auction selected, 

a price equal to r was subtracted from an initial endowment of £12. Therefore, the 
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actual endowment could vary between £0 and £12. The participant could pick up the 

items won within a few days of completion of the full experiment. 

4.1.3.4. Rating task 

 Approximately 2-5 days following completion of the auction task, participants 

returned to take part in session 2. EEG was recorded continuously using the 128-

channel Geodesics EGI system (Electrical Geodesics, Inc., Eugene, Oregon, USA) 

with the sponge-based HydroCel Sensor Net. The sensor net was aligned with 

respect to three anatomical landmarks (two pre-auricular points and the nasion). 

Electrode-to-skin impedances were kept below 50kΩ and at equal levels across all 

electrodes as recommended for the system (Ferree, Luu, Russell, & Tucker, 2001; 

Luu, Tucker, Derryberry, Reed, & Poulsen, 2003; Picton et al., 2000). The sampling 

rate was 1000 Hz and Cz was used as the initial reference. Data was filtered online 

using a 0.1-200 Hz bandpass filter. 

After fitting the EEG cap, participants completed a computerized rating task. 

Each trial began with a fixation cross followed by an instruction stage, evaluation 

period and then rating. During the instruction stage, participants were presented with 

either the word ‘DESIRABILITY’ or ‘MATERIAL’, which served to cue the participant 

to the required type of evaluation. The evaluation stage began with the presentation 

of one of the visual stimuli, followed by the presentation of a visual analogue scale 

(VAS) for the rating stage. In the value-relevant condition, the participant would have 

to rate the desirability of the preceding stimulus (anchors: “neutral”-“very desirable”), 

while in the value-irrelevant condition, the participant would rate the proportion of the 

preceding stimulus composed of a certain material (for example, “none”-“plastic”). 

Here, the proportion of the scale that is shaded indicated the percentage of plastic 

composition. Desirability and material estimation trials were randomly intermixed 

within blocks. 

Investigating the neural basis of subjective value is complicated by the 

multiple non-specific neural processes elicited during experimental paradigms used 

to reveal subjective value. During the rating task, the only difference between these 

two conditions was the calculation of subjective value for the trials in which 

desirability was rated. Any differences in ERPs between these two trials can, 



59 

 

therefore, be attributed to computation required to report subjective value. Of course, 

automatic processes involved in valuation would still be present. Each stimulus was 

presented in both conditions, yielding a total of 180 trials, split into three blocks. 

4.1.3.5. Median split of WTP values 

 The stimulus set was divided into high and low WTP items using a median 

split of subjective values. In the case of items with identical value on both sides of 

the split, the items with that value were removed in such a manner that there was no 

overlap in value between the two sides and there was an equal number of stimuli in 

each category. For an unequal number of stimuli of identical value on each side of 

the split, stimuli of that value were removed randomly from the side with more. This 

produced two categories of stimuli (high and low value) of equal size for each 

participant, with a mean of 38.48 ± 5.02 (mean ± SD) items remaining in each 

condition. 

4.1.3.6. ERP analysis 

 EEG data were pre-processed using BESA v. 6.0 program (MEGIS GmbH, 

Munich, Germany). Oculographic artefacts and electrocardiographic artefacts were 

removed using principle component analysis based on averaged eye-blinks and 

artefact topographies (Berg & Scherg, 1994). Data were also visually inspected for 

the presence of atypical electrode artefacts due to muscle movement. Data were 

filtered from 1-45 Hz and epochs contaminated with artefacts were excluded 

manually. 

ERPs in response to stimulus presentation were computed separately for 

each level within conditions (High Value Item & Desirability Rating; High Value Item 

& Material Estimation; Low Value Item & Desirability Rating; Low Value Item & 

Material Estimation) by averaging respective epochs in the intervals ranging from 

300 ms before image onset to 1000 ms following image onset. Epochs were baseline 

corrected using a time window of -300 to 0 ms relative to stimulus onset. The mean 

number of accepted trials in each condition (following the median split and artefact 

rejection) was 32.4 ± 5.8 (mean ± SD).  
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4.1.3.7. Source dipole reconstruction 

 Grand average potentials were computed by combining all conditions. The 

grand average waveform was used to define a source dipole model in BESA v. 6.0 

program. Using a sequential strategy (Hoechstetter et al., 2001; Stancak et al., 

2002), Equivalent Current Dipoles (ECDs) were fitted to describe the 3-dimensional 

source currents in the regions contributing predominantly to the data (Scherg & Von 

Cramon, 1986). Six ECDs were consecutively seeded until the source model 

explained 91.6% of the variance. This amount of explained variance is comparable 

to previous ERP source dipole localisation studies (Hämäläinen et al., 1993; 

Schlereth, Baumgärtner, Magerl, Stoeter, & Treede, 2003; Stancak, Johnstone, & 

Fallon, 2012; Vrana, Polacek, & Stancak, 2005), and suggests that the six-dipole 

model explained all major ERP components. Classical LORETA analysis recursively 

applied (CLARA) method, which is an iterative application of the LORETA algorithm 

(Pascual-Marqui et al., 1994), was used as an independent source localisation 

method to confirm the locations of the ECDs (Wright et al., 2015). The orientations of 

ECDs were fitted with the constraint of fixed dipole locations and determined at the 

maximum of the source strength. A 4-shell ellipsoid head volume conductor model 

was employed, using the following conductivities (S/m = Siemens per meter): brain = 

0.33 S/m; scalp = 0.33 S/m; bone = 0.0042 S/m; cerebrospinal fluid = 1 S/m. 

Source waveforms for each condition were exported and analysed using the 

EEGLab toolbox (Delorme and Makeig 2004). Due to the large number of statistical 

tests that this requires, P values were corrected using permutation-based repeated-

measures ANOVA utilising 5000 permutations (Maris & Oostenveld, 2007). For each 

latency identified, mean activation over a 10 ms period was calculated, centred on 

the peak of the observed effect and for each participant. The data were exported to 

SPSS Statistics version 22.0 (IBM Corp, 2013) for further analysis. 

It is important to note the limitations of source analysis techniques due to the 

inverse problem manifesting in the possibility to generate a number of plausible 

source dipole models (Michel & Murray, 2012). Therefore, a priori information, such 

as constraining the source dipole locations to the cortical mantle, has been 

implemented in source dipole localisation methods to reduce the number of possible 

solutions (Michel et al., 2004). To build a plausible source dipole model, we applied 
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two different source dipole modelling methods. Firstly, the sequential method 

consisting of fitting equivalent current dipoles sequentially, and secondly, a 

distributed source dipole modelling method (CLARA). Both methods yielded highly 

convergent source dipole models which mitigates but does not completely overcome 

the limitations associated with the large number of potential source dipole solutions 

given the mathematical features of the inverse problem. 

4.1.4. Results 

4.1.4.1. Behavioural data 

 The high value items had a mean WTP of 2.1 ± 0.87 (mean ± SD) and 

desirability rating of 50.4 ± 29.7, whereas the low value items had a mean WTP of 

0.66 ± 0.62 and desirability rating of 27 ± 25.3. To ensure this finding was not 

confounded by individual differences, a regression model for each participant was 

created with WTP as a predictor and desirability as a dependent variable. This 

produced a mean unstandardized coefficient of 15.5 ± 9.37; a one-sample t-test 

revealed this to be significantly different from zero, t(24) = 8.27, P < .001. A mean 

adjusted R2 of 0.23 ± 0.17 (mean ± SD) was also found across subjects. Therefore, 

desirability of objects was linearly related to WTP (see Figure 4.2). 

 

Figure 4.2. Regression lines for each subject predicting desirability from WTP. Grand 
average regression line is shown in black. 
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4.1.4.2. Source dipole model 

 Figure 4.3 illustrates the ERPs at each electrode site in response to stimulus 

presentation across all conditions in the form of a butterfly plot; ERP components 

and their corresponding latencies and topographies are labelled. Four distinct ERP 

components were observed across the epoch beginning with the visually evoked P1 

component peaking at 99 ms, a component related to the early processing of visual 

stimuli (Hopf et al. 2002) and characterised by the strong positivity over the central 

occipital electrodes with reversed polarity over the frontal electrodes. A P2 

component peaked at 209 ms with bilateral positivity over the occipital electrodes but 

with negativity restricted over a frontal region on the right side of the head 

(Freunberger, Klimesch, Doppelmayr, & Holler, 2007; Luck, 2005). Although clearly 

overlapping with the P2, the N2 component peaking at 243 ms can be differentiated 

by the additional negativity over a frontal region (Folstein & Van Petten, 2008). The 

P3 component (Polich, 2007) emerges at approximately 316 ms in a parietal region 

on the right side of the scalp, before reaching a positive maximum at 354 ms over 

the midline frontal electrodes.  

 

Figure 4.3. Butterfly plot of grand average ERPs in response to stimulus presentation. 
Distinct ERP components are highlighted with arrows (99, 209, 243, 316 and 354 ms). The 
topographic map for each ERP component is also displayed.  
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Figure 4.4A shows the source waveforms and the appropriate topographic 

maps for different ECDs and Figure 4.4B illustrates the spatial localisation of the 

ECDs. ECD 1 was located in the right lingual gyrus (Brodmann area 18; approximate 

Talairach coordinates: x = 18 mm, y = -59 mm, z = 9 mm) with a peak latency at 95 

ms and again at 121ms. ECD 2 showed similar characteristics being located in the 

left lingual gyrus (Brodmann area 18; x = -17 mm, y = -59 mm, z = 9 mm) with a 

peak latency at both 100 ms and 215 ms. Both ECD 1 and 2 showed a positive 

maximum over the medial occipital electrodes and a negative potential over a frontal 

region of the scalp. The latency and the topographical pattern indicate that these two 

sources were equivalent to the visual P1 component. ECD 3 was located in the right 

anterior insula cortex (Brodmann area 13; x = 32 mm, y = 15 mm, z = 0 mm), 

peaking at 233 ms and showing maximum negativity over a frontal region on the 

right side of the scalp. This spatial map corresponds to the frontal portion of the N2 

component. ECD 4 was located in the left orbitofrontal cortex (Brodmann area 11; x 

= -26 mm, y = 34 mm, z = -2 mm) showing a small peak at 230 ms. ECD 4 projected 

positivity over a frontal region localised marginally on the left side. However, this was 

masked by the N2 component. ECD 5 was located in the right parahippocampal 

gyrus (Brodmann area 28; x = 19 mm, y = -17 mm, z = -21 mm), showing two peak 

latencies of 215 ms and 316 ms corresponding to both the P2 and the early P3 

component. ECD 5 accounted for positivity over a posterior region, localised 

primarily on the right side of the scalp. ECD 6 was fitted in the posterior cingulate 

cortex (bordering closely with the anterior cingulate cortex; Brodmann area 31; x = 3 

mm, y = -18 mm, z = 42 mm). The source peaked at 248 ms and 431 ms with 

negativity being distributed across a frontal region of the scalp at 248 ms 

(contributing to the N2 component at the vertex) and positivity at 431 ms. The final 

source dipole model accounted for 91.6% of the total variance. CLARA method was 

used to verify the origins of the fitted ECDs. A mean discrepancy of approximately 15 

mm was found between the location of each ECD and the maxima of the nearest 

cluster. 
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Figure 4.4. Source dipole model of ERPs. A. 
Source dipole waveforms in six ECDs. Peak 
latencies and the topographic maps for each 
of the ECDs are shown. B. Locations and 
orientations of the six ECDs in the schematic 
glass brain.  

 

 

 

 

 

4.1.4.3. Effects of rating task and WTP 

 To test the effect of rating task and value on ERPs, a two-way ANOVA for 

repeated measures was carried out over the latency interval ranging from -200 ms to 

450 ms using permutation analysis (Maris & Oostenveld, 2007) with 5000 

permutations. The F value waveforms were masked inclusively to highlight 

significant latencies that extended beyond three standard deviations of the source’s 

mean baseline amplitude. Figure 4.5 shows the topographies at the peak 

significance of each observed main effect with the corresponding source waveform. 

Activity over a 10 ms interval centred on the peak significance for each effect 

(indicated by the shaded region on the source waveform) was exported for further 

analysis. Table 4.1 and 4.2 summarise the mean amplitude and test statistics for 

each condition over the stated time interval for the main effects of rating task 
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(desirability vs. material) and value (high vs. low); significant interactions are 

highlighted in Table 4.3.  

Table 4.1 
Mean source amplitude ± SDs for both desirability and material estimation conditions 
over the stated time interval for each significant latency and the corresponding ECD. 
F and P values for the relevant ANOVA are also displayed.  

 

Table 4.2 
Mean source amplitude ± SDs for both high and low value conditions over the stated 
time interval for each significant latency and the corresponding ECD. F and P values 
for the relevant ANOVA are also displayed. 

 

Table 4.3 
Mean source amplitude for desirability ratings of high value (HD) and low value (LD) 
items and for material estimation ratings of high value (HM) and low value (LM) items 
for each significant latency and the corresponding ECD over the stated time interval. 
F and P values for the relevant ANOVA are also displayed. 

 

 

 

ECD 
Time Interval 

[ms] 
Desirability Material F(24) P 

ECD2 172 – 182 14.2 ± 23.2 9.32 ± 22.3 9.93 0.004 

ECD3 201 – 211 19.28 ± 14.51 12.04 ± 12.2 17.6 < 0.001 

ECD5 204 – 214 37.26 ± 20.81 27.49 ± 20.09 8.34 0.008 

ECD 
Time Interval 

[ms] 
High Value Low Value F(24) P 

ECD3 195 – 205 10.07 ± 12.85 17.81 ± 15.31 9.19 0.006 

ECD4 228 – 238 5.09 ± 8.07 9.36 ± 8.89 12.57 0.002 

ECD 
Time Interval 

[ms] 
HD HM LD LM F(24) P 

ECD6 424 – 434 7.44 ± 12.76 1.85 ± 10.13 1.47 ± 10.32 5.05 ± 15.2 8.25 0.008 
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Figure 4.5A indicates three significant main effects of rating task on the 

activity from ECD 2, 3 and 5. The waveforms for these ECDs all demonstrate larger 

activation for desirability ratings than for material estimation ratings. Figure 4.5B 

illustrates the two significant main effects of value on the activity from ECD 3 and 4, 

each displaying greater activation for low value items. Despite the main effect of 

value at 233ms in ECD 4, it is important to note the difficulty in discerning the 

differences on scalp topographies due to the dominance of the negativity originating 

from ECD 3 which peaked at approximately the same time. Only one significant 

interaction between rating task and value was observed (ECD 6) which is visualised 

in Figure 4.5C. During the value rating condition, source activation for a desirability 

rating of a high value item was higher than in other conditions. Pairwise comparisons 

indicate that this activation was significantly stronger than during the material 

estimation and high value condition, t(24) = 2.23, P = 0.035, and also the desirability 

rating and low value condition, t(24) = 2.1, P = 0.046, but not the material estimation 

and low value condition, t(24) = 0.65, P = 0.524. No other significant differences 

were found (P > 0.05).  

A possible explanation for this interaction could be a result of task-switching. 

For example, upon presentation of a high value item, participants would need to 

suppress their response if the task required material estimation with a low 

composition of the given material, with the same going for a low value item in the 

material estimation task in which composition was high. To test this, a regression 

model was produced for each subject with desirability as the independent variable 

and material composition as the dependent variable. This produced a mean 

unstandardized coefficient of -0.063 which was not significantly different from zero, 

t(24) = -1.51, P = .145, thus suggesting that task-switching does not adequately 

explain the interaction effect in PCC. 
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Figure 4.5. Effects of subjective value and context on source dipole waveforms. Each line 
represents the source dipole waveform for each condition (D = desirability rating; M = 
material estimation; H = high value items; L = low value items; desirability of high [HD] and 
low [LD] value items; material estimation of high [HM] and low [LM] value items). The shaded 
grey region on the source dipole waveforms indicates a 10 ms latency period in which a 
main effect or interaction was revealed, centred on the peak significance. Topographic maps 
for each condition are displayed. A. ECDs demonstrating a main effect of rating task (ECD 2, 
3 and 5). B. ECDs demonstrating a main effect of value (ECD 3 and 4). C. ECD 
demonstrating significant interaction between rating task and value (ECD 6). 
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4.1.5. Discussion 

 This study explored the cortical representation of value by comparing items 

associated with high or low WTP, and recorded ERPs during passive viewing of 

items in two different valuation contexts, allowing us to disentangle the automatic 

and the elaborate and conscious valuation processes. Results showed increased 

cortical activity following the presentation of low value stimuli at the latency of 

approximately 200 ms, corresponding to the N2 and P2 components of ERPs. 

Although multiple sources contributed to ERP data at this latency, the economic 

value of items only modulated the activation in the right AIC and the left OFC. The 

effects of valuation context were seen in the left LG, right AIC and right PHG.  

 Modulation of source activity within the right AIC peaked at 200 ms, and 

activity was the strongest for rating of low value items. Although overlapping with the 

P2 component, source dipole orientation and topographical differences in the 

negativity over the forehead indicated that the N2 component that demonstrated an 

effect of value was distinct from the P2 component. The N2 potential was previously 

reported as being related to aspects of attentional selection (Codispoti, Ferrari, 

Junghofer, & Schupp, 2006; Naatanen & Picton, 1986; Patel & Azzam, 2005), or 

emotional content of visual stimuli (Olofsson & Polich, 2007). The anterior N2 

component has been related more specifically to novelty detection and cognitive 

control (Folstein & Van Petten, 2008). The present study shows that the right AIC, a 

region known to be involved together with the OFC and amygdala in loss aversion 

(Canessa et al., 2017; Canessa et al., 2013; Markett, Heeren, Montag, Weber, & 

Reuter, 2016; Tom et al., 2007), contributed to effects of economic value on the 

amplitude of the N2 component. Therefore, it is possible that the bias towards low 

value items reflects a loss averse response as low value items could represent 

possible sources of financial loss. However, without more experimental control, it is 

difficult to speculate on the underlying cognitive processes.  

The low-value bias seen in the N2 component might have been boosted in the 

present study by the relatively limited range of value among the items on offer. 

Bartra et al. (2013) report a quadratic pattern within the AIC showing increased 

BOLD signal in response to extreme outcomes, positive or negative, and decreased 

BOLD for neutral stimuli. With a relatively small range of values in the current study 
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(£0 - £4), the low value items may well have been negatively encoded (high arousal). 

In contrast, the high-value items may not have passed a threshold in order to be 

perceived as truly rewarding thus eliciting no arousal response.  

A similar low-value bias was also seen in left OFC at a latency of 233 ms; 

despite falling within the N2 component latency, this effect was characterised by 

increased positivity over the left frontal region but masked by the negativity of the 

N2. The modulation of source activity for this ECD by stimulus value exhibits an 

automatic valuation, independent of the valuation context. Modulation of BOLD 

signal by subjective value has been observed frequently, often within the OFC 

(Clithero & Rangel, 2014). Interestingly, this modulation has been observed for 

various paradigms utilising several measures of value such as hedonicity ratings 

(Grabenhorst & Rolls, 2009; Lebreton et al., 2009), binary choice tasks (FitzGerald, 

Seymour, & Dolan, 2009) and importantly, BDM auctions (Plassmann et al., 2007, 

2010). The same modulation is also found for multiple reward types and across 

multiple stages of the decision-making process (for a review, see Peters and Büchel, 

2010). Further to this, animal research utilising electrophysiological methods have 

highlighted the encoding of subjective value within the OFC (Padoa-Schioppa, 2013; 

Padoa-Schioppa & Assad, 2006). Similar conclusions have been drawn regarding 

the vmPFC (Bartra et al., 2013; Clithero & Rangel, 2014), however given the 

limitations to spatial resolution that EEG presents, the current findings may not 

differentiate the activation of the OFC from the neighbouring vmPFC. The 

emergence of value-based signals in electrophysiological animal research has been 

observed in OFC at latencies as early as 150 ms (Padoa-Schioppa, 2013). Thus, 

formation of subjective value occurs automatically at an early stage and aids 

subsequent decision, regardless of whether this signal is an accurate depiction of the 

ultimate value assigned to the stimulus after further deliberation. 

 The cortical activity in the 200 ms latency range was also modulated by the 

valuation context. Given that the only computational difference between the two 

rating tasks is the presence of valuation, any differences in ERPs between the two 

contexts likely represent the cortical responses associated with attribution of value. 

The first modulation by the context was observed within the latency of the P2 

component at 177 ms; the source activity in the LG was stronger when subjects 

focused on desirability of items, rather than the material compositions. It has been 
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suggested that the P2 is involved in working memory processes (Finnigan, 

O'Connell, Cummins, Broughton, & Robertson, 2011; Lefebvre, Marchand, Eskes, & 

Connolly, 2005; Taylor, Smith, & Iron, 1990; Wolach & Pratt, 2001), visual feature 

recognition (Hillyard and Münte 1984), and attention allocation (Martin-Loeches, 

Schweinberger, & Sommer, 1997). Federmeier and Kutas (2002) reported context-

dependent modulations of the P2 in the left hemisphere which finding accords the 

present study.  

 An effect of the valuation context was also observed in the P2 component at a 

slightly later latency of 209 ms. This modulation was related to an increase in source 

activity in right PHG when evaluating the desirability of items compared to evaluating 

materials. Given the role of the PHG in memory processes (Aminoff, Kveraga, & Bar, 

2013), it is likely here that focusing on the desirability of a stimulus has elicited 

working memory processes to a greater extent or required a greater magnitude of 

attentional allocation. This may be due to the more complex analysis required to 

reach a decision about value rather than a simpler perceptual evaluation. Assuming 

value-based decisions require an in-depth analysis of the stimuli, in contrast to the 

perceptual decision requiring estimation of a single material, this modulation may 

simply be a result of visual feature recognition regarding multiple aspects of the 

stimuli (Hillyard & Munte, 1984). 

 Finally, the right AIC also showed an increased source activity for the rating of 

desirability resulting in greater negativity over the right forehead. Augmentation of 

anterior N2 components have been attributed to attentional processes (Codispoti et 

al., 2006; Naatanen & Picton, 1986; Patel & Azzam, 2005) and it seems the differing 

computational demands of the value-based and perceptual decisions augmented the 

observed N2 in the current study. The additional requirement of value-computation 

for the value-based decision could be the contributing factor to this increased 

amplitude. Indeed, Naatanen and Picton (1986) highlight that the N2 component can 

be modulated by conscious processing of stimuli, and thus, this processing may well 

be value specific.  

 A final modulation of ERPs by the valuation context was observed at 

approximately 429 ms in PCC. The source activity in PCC, manifested as the 

negativity potential at vertex electrodes, was prominent for the rating of desirability of 
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high value items, indicating this activation to be specific to highly valued stimuli in an 

economically relevant context. However, this finding should be interpreted with 

caution due to the lack of statistically significant differences between the desirability 

rating of high value items condition, and the material estimation of low value items at 

the same latency.  

 To conclude, we show that the subjective value of simple household items, 

measured as WTP in an auction experiment, manifests in ERPs in the latency 

window and electrodes corresponding to the N2 component. The value-related 

cortical response, purportedly originating in right AIC and left OFC, is enhanced for 

low-value items possibly by eliciting loss aversion. The low-value bias in these 

cortical regions occurred across two different valuation contexts suggesting that this 

response is a part of an automatic valuation process. In contrast to the subjective 

value, the valuation context modulates the P2 and N2 components with stronger 

cortical responses in left LG, right AIC and right PHG occurring whilst subjects 

focused on desirability than on material aspects of items.  
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Chapter 5 

 

Neural underpinnings of value-guided choice during auction tasks: 

An eye-fixation related potential study 
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This experiment investigated the brain components in response to eye-fixations, 

extracted from independent component analysis, that represent economic valuation 

over the full time course of a decision.  
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5.1. Neural underpinnings of value-guided choice during auction 

tasks: an eye-fixation related potentials study 

5.1.1. Abstract 

Values are attributed to goods during free viewing of objects which entails 

multi- and trans-saccadic cognitive processes. Using electroencephalographic eye-

fixation related potentials, the present study investigated how neural signals related 

to value-guided choice evolved over time when viewing household and office 

products during an auction task.  

Participants completed a Becker-DeGroot-Marschak auction task whereby 

half of the stimuli were presented in either a free or forced bid protocol to obtain 

willingness-to-pay. Stimuli were assigned to three value categories of low, medium 

and high value based on subjective willingness-to-pay. Eye fixations were organised 

into five 800 ms time-bins spanning the objects total viewing time. Independent 

component analysis was applied to eye-fixation related potentials. 

 One independent component (IC) was found to represent fixations for high 

value products with increased activation over the left parietal region of the scalp. An 

IC with a spatial maximum over a frontocentral region of the scalp coded the 

intermediate values. Finally, one IC displaying activity that extends over the right 

frontal scalp region responded to intermediate- and low-value items. Each of these 

components responded early on during viewing an object and remained active over 

the entire viewing period, both during free and forced bid trials. 

 Results suggest that the subjective value of goods are encoded using sets of 

brain activation patterns which are tuned to respond uniquely to either low, medium, 

or high values. Data indicates that the right frontal region of the brain responds to 

low and the left frontal region to high values. Values of goods are determined at an 

early point in the decision-making process and carried for the duration of the 

decision period via trans-saccadic processes. 
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5.1.2. Introduction 

Selecting appropriate courses of action entails a value assignment process 

wherein the most subjectively beneficial action is selected (Rangel et al., 2008). 

Being a function of momentary needs, value itself is unique to the individual and is 

typically revealed via behavioural measures (Schultz, 2017), such as auction tasks. 

The Becker-DeGroot-Marschak (BDM) auction (Becker et al., 1964) is from a class 

of incentive compatible methods that reveal participant willingness-to-pay (WTP) for 

goods and prospects (Wilkinson & Klaes, 2012). BDM auctions have been often 

utilised in value-based decision making research (Chib et al., 2009; Grueschow et 

al., 2015; Hare, O'Doherty, Camerer, Schultz, & Rangel, 2008; Harris et al., 2011; 

Peters & Büchel, 2010; Plassmann et al., 2007, 2010; Weber et al., 2007), though a 

variety of methods for prompting unique valuations are employed (see Peters and 

Büchel, 2010). 

Neuroeconomic research has posited the explicit representation of value 

signals in the brain (Glimcher & Fehr, 2014), with the ventromedial prefrontal cortex, 

orbitofrontal cortex (OFC) and ventral striatum playing prominent roles (Bartra et al., 

2013; Chib et al., 2009; Clithero & Rangel, 2014; Lebreton et al., 2009; Levy & 

Glimcher, 2012). Valuation appears to be largely an automatic process which 

resolves values even if people focus on value-irrelevant aspects of objects such as 

perceptual features (Grueschow et al., 2015; Polania et al., 2014; Tyson-Carr et al., 

2018), or when subjects are not required to valuate items (Plassmann et al., 2007, 

2010). Although BOLD-fMRI methods excel in terms of spatial resolution to isolate 

brain regions responsible for economic valuation, these methods are limited by the 

temporal resolution which allows tracking brain activation on a scale of seconds 

(Shmuel & Maier, 2015). 

Capitalising on the high temporal resolution of electrophysiological methods, 

electroencephalography (EEG) has aimed to show the temporal dynamics of value-

based decisions, though research is sparse. Event-related potential (ERP) signals 

have been shown to represent value in binary decision tasks, even as early as 150 

ms post-stimulus (Harris et al., 2011; Larsen & O'Doherty, 2014; Tzovara et al., 

2015). It has also been demonstrated that activation may progress from occipito-

temporal regions to frontal regions of the scalp over time following stimulus 
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presentation (Harris et al., 2011; Larsen & O'Doherty, 2014). Our recent study 

(Tyson-Carr et al., 2018) revealed that a visual evoked potential component within 

the latency of N2 and originating in the right anterior insula was preferentially 

activated with items having low subjective values. Moreover, Roberts et al. (2018) 

reported that the parietal P200 eye movement-related potential may index attention 

to low value products in a realistic setting. Similarly, magnetoencephalographic 

methods have also been used to classify the neural mechanism of value-guided 

choices (Hunt et al., 2012). In addition to the initial value attribution stage, outcome 

specific modulation of ERPs have also been observed in the P300, which may 

encode valence (San Martin, 2012; Yeung & Sanfey, 2004), and also the event- and 

feedback-related negativity which may be linked to reward-prediction errors (Gehring 

et al., 2012; Nieuwenhuis et al., 2004; Yu & Huang, 2013).  

While previous fMRI and ERP studies shed light on spatial and temporal 

aspects of valuation during economic decision making, the detailed dynamics of the 

valuation process that evolve while an object is being viewed is poorly understood. 

When people evaluate objects to make economic decisions, their valuation evolves 

during free viewing of a visual scene. In free viewing, one or more objects in the 

visual field are explored in a series of saccades and fixations concatenated by trans-

saccadic integration mechanisms (Melcher & Colby, 2008). Objects of greater value 

or those having a pleasant emotional connotation tend to be viewed for a longer time 

than objects of low value or aversive stimuli (Krajbich et al., 2010; van der Laan, 

Hooge, de Ridder, Viergever, & Smeets, 2015). If values are attributed to objects 

automatically, the assignment of an object to a high or low subjective value category 

would be captured by the brain early on during the viewing process and, once 

established, the value category would persist throughout the viewing period. In 

contrast, if values are attached to objects only after a careful exploration, purportedly 

involving volitional effort, objects would be assigned a provisional value, e.g., 

suggested initially by the automatic valuation process, but this value would be 

updated over a series of successive eye fixations. In such case, information about 

brain valuation while people are viewing objects before they decide to purchase 

would likely be encoded in the cortical responses to eye fixations, occurring just 

before a purchasing decision is made. 
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Eye-fixation related potentials (EFRPs) allow for the unveiling of neural 

processes at the point of fixation (Baccino & Manunta, 2005), and are often utilised 

during the free reading of words or viewing of scenes (Dimigen et al., 2011; Fischer 

et al., 2013; Hutzler et al., 2007; Nikolaev et al., 2016; Simola, Le Fevre, Torniainen, 

& Baccino, 2015).  BOLD-fMRI lack the temporal resolution necessary to investigate 

the brain processes occurring on a scale of hundreds of milliseconds, and averaged 

ERPs only pick up information about the cortical activations occurring in the initial 

stage of valuation locked to the onset of visual stimulus. To overcome both of these 

shortcomings, EFRPs can provide a window into the cortical activations occurring 

over the entire period of free viewing accompanying the valuation.  

Firstly, following up on our previous study (Tyson-Carr et al., 2018), we 

predicted that one activation component localised across the right frontal region of 

the scalp would encode low-value items. Since the range of products was expanded 

in the high-value interval in the present study (£0 - £8) compared to our previous 

study (£0 - £4) (Tyson-Carr et al., 2018), it was also hypothesised that other 

components would encode high- or medium-value items independently of the low-

value sensitive component. Based on previous studies reporting the latency of value-

based decision processes within the range of the N2 visual-evoked potential 

component (Harris et al., 2011; Kiss et al., 2009; Larsen & O'Doherty, 2014; Telpaz 

et al., 2015), we hypothesised that value encoding will occur in the latency of the N2 

EEG component. Secondly, it was hypothesised that due to automaticity of valuation 

demonstrated in a number of previous studies (Grueschow et al., 2015; Lebreton et 

al., 2009; Plassmann et al., 2007, 2010; Polania et al., 2014), components would 

categorise the value of objects during initial eye fixations and maintain activations in 

subsequent eye fixations throughout the viewing period; the automaticity of value-

based decision making would manifest in similarity of activation profiles over the 

viewing period for forced and free bids. 

5.1.3. Methods 

5.1.3.1. Participants 

 Twenty-four healthy participants (16 females) with a mean age of 25 ± 5.06 

(mean ± SD) years took part in the study. The experimental procedures were 
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approved by the Research Ethics Committee of the University of Liverpool. All 

participants gave written informed consent in accordance with the declaration of 

Helsinki. Participants were reimbursed for their time and travel expenses. Due to 

technical issues with eye-tracking data, 6 participants were excluded, thus data from 

18 participants were submitted for analysis. 

5.1.3.2. Procedure 

All experimental procedures were carried out in a dimly lit, sound attenuated 

room. Participants sat in front of a 19-inch LCD monitor. The study was carried out in 

a single experimental session involving the completion of an auction task. The stimuli 

included 180 everyday household items varying in value from £0.35 to £8.00 with a 

mean value of £4.30 ± 2.41 obtained from a shopping catalogue. Stimuli were 

presented in random order. Presentation of stimuli was controlled using Cogent 2000 

(UCL, London, UK) in MATLAB 7.8 (MathWorks, Inc., USA).  

5.1.3.3. EEG recordings 

 EEG was recorded continuously using the 128-channel Geodesics EGI 

system (Electrical Geodesics, Inc., Eugene, Oregon, USA) with the sponge-based 

HydroCel Sensor Net. The sensor net was aligned with respect to three anatomical 

landmarks (two pre-auricular points and the nasion). Electrode-to-skin impedances 

were kept below 50 kΩ across all electrodes as recommended for the system (Picton 

et al. 2000; Ferree et al. 2001; Luu et al. 2003). The sampling rate was 1000 Hz and 

electrode Cz was used as the initial reference. The recording bandpass filter was 

0.1-200 Hz. 

5.1.3.4. Eye-tracking recordings 

 Gaze positions were monitored using the Pupil head-mountable binocular 

eye-tracker (Kassner, Patera, & Bulling, 2014). Eye-cameras ran at a sampling rate 

of 120 Hz and the world camera at 60 Hz. Gaze tracking was calibrated using a 9-

point manual marker calibration protocol in which calibration markers were presented 

sequentially on the stimulus presentation monitor. Following calibration, gaze 
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position accuracy was tested using a program that presented markers randomly on 

the screen for the participant to track. If gaze position was not easily discernible, 

calibration was repeated, otherwise the experiment was continued. Pupil Capture 

software v 0.8.1 was used for data collection. Pupil Player software v 0.8.6 running in 

Xubuntu was used for data visualisation and raw data exporting.  

During the auction task, a series of digital fiducial surface markers were 

placed in each corner of the screen in order to define the surface of the monitor 

display. These markers were displayed continuously throughout the trials. Offline 

surface detection was carried out post data-collection but prior to fixation detection to 

allow fixations to be localised relative to the surface.  

5.1.3.5. Auction task 

The protocol (see Figure 5.1) for the auction task was adapted from previous 

studies (Plassmann et al., 2007, 2010) and employed the BDM mechanism (Becker 

et al. 1964; Wilkinson and Klaes 2012). Each stimulus was presented once in either 

a free bid or forced bid protocol, resulting in a total of 180 auctions.  

Each auction consisted of a fixation cross followed by an evaluation stage, a 

bidding phase and then feedback. During the evaluation stage, participants 

appraised the stimulus. Afterwards, they were required to bid between £0 and £8 

using a mouse to select the appropriate option on the screen. Bidding options were 

in increments of £0.50 between £0 and £2 and in increments of £1 between £2 and 

£8. This allowed more resolution at lower ends of the value scale, thus giving a total 

of 11 options. Participants clicked an orange square once satisfied with their bid. The 

screen had a horizontal size of 38.8º and vertical size of 34.7º when participants 

were viewing at a distance of 65 cm, stimuli had a horizontal and vertical size of 

19.5º and the bidding scale had a horizontal size of 34.5º and vertical size of 2.3º. 

After bid selection, feedback was provided as to whether the item was purchased or 

not. The outcome of an auction was dependent on the bid and a randomly generated 

number, in which the item was purchased when 𝑏 ≥ 𝑟, where b represents the bid 

and r represents the randomly generated number for that auction. Following the 

experiment, one of the auctions that resulted in a purchase were selected at random 

and the outcome was implemented. Here, the participant’s endowment of £8 was 
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reduced by an amount equal to r for the implemented auction. The item purchased 

could be picked up within a few days of completion of the experiment.  

 

Figure 5.1. A timeline of the main auction task. A fixation cross was presented for 2 s 
followed by image presentation for 4 s, during which the trial type is indicated. If a ‘?’ is 
presented below the image, individuals are allowed to bid freely after the image has offset. If 
a monetary amount is shown instead, the individuals must bid the reported amount. 
Following bidding, feedback was presented for 1 s to indicate the auction outcome. 

Half of the stimuli were presented in the free bid condition whereas the other 

half were presented in the forced bid condition. In the free bid condition, participants 

were presented with a question mark above the bid amounts, indicating that they are 

free to bid whatever they like for the item. In the forced bid condition, participants 

were presented with a monetary amount above the bid amounts to indicate what 

they are required to bid for the item. Here, the participant cannot select any other 

option and cannot continue until they have selected that option. The only difference 

between these two conditions is the need for a computation of value.  

 After the main auction task, another auction task was conducted without 

recording EEG in order to obtain subjective WTP values for the items presented in 

the forced bid protocol. This is to allow categorisation of stimulus value that is not 

represented by a trivial forced bid procedure in which they have no influence over 

the reported value.  

5.1.3.6. Split of WTP values 

 The stimulus set was divided into three groups of high, medium and low 

subjective value products for both the free bid and forced bid stimuli. To avoid 

overlapping values between these conditions, stimuli were removed randomly so that 

there were six groups of equal size (free bid and low / medium / high value; forced 
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bid and low / medium / high value), with each value category containing unique WTP 

values that did not overlap with any other value category. An average of 118 ± 17.3 

trials were submitted for analysis for each subject, giving 19.7 ± 2.88 trials per 

condition. 

The splitting of WTP into three categories was decided based on our previous 

study (Tyson-Carr et al., 2018) which included a stimulus set that was comprised of 

a relatively small range of subjective values (£0 to £4), split into two value categories 

of low and high value. The expansion of the stimulus value range to between £0 and 

£8 afforded us the ability to include a third value category comprised of products with 

intermediate WTP, increasing the ability to capture brain components for distinct 

increments of value. An increased number of value categories was not possible due 

to limited numbers of epochs. 

5.1.3.7. EEG pre-processing 

EEG data were pre-processed using BESA v. 6.1 program (MEGIS GmbH, 

Munich, Germany). EEG data were spatially transformed to reference-free data 

using common average reference method (Lehmann, 1984). Oculographic artefacts 

and electrocardiographic artefacts were removed using principle component analysis 

based on averaged eye-blinks and artefact topographies (Berg & Scherg, 1994). 

Data were also visually inspected for the presence of atypical electrode artefacts 

occurring due to muscle movement. Data were filtered from 0.5-45 Hz and exported 

to EEGLab (Delorme & Makeig, 2004) for further processing. 

5.1.3.8. Detection of eye-fixations 

Fixations were detected based on the given parameters of 150 ms minimum 

duration and a 1° dispersion threshold (Blignaut, 2009). Each subject made on 

average 3965 ± 792 (mean ± SD) fixations on the screen across the experiment. 

Next, only fixations occurring during image presentation were accepted, resulting in 

1725 ± 299 fixations. Following the splitting of stimuli into three value categories and 

the required exclusion of overlapping stimuli, fixations occurring during trials of 

excluded stimuli were also removed, resulting in 1154 ± 222 fixations. Given the two 

trial types accompanying the three value conditions, this resulted in a mean of 192 ± 
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5.4 fixations for each of the six conditions. Fixations overlapping with artefacts within 

the EEG data were also removed, resulting in 171± 4.6 fixations per condition. In 

addition to the six conditions, fixations were also organised into five time bins. These 

time bins were classified based on five 800 ms intervals encompassing the 4000 ms 

of image presentation. This allowed the organisation of fixations into five discrete 

and equally spaced categories between image onset and offset. These categories 

will be referred to as TB1, TB2, TB3, TB4 and TB5 hereafter. Since the data was 

also split into five time bins, this further reduced the number of fixations per condition 

to 34 ± 2.44 fixations and 8.76 ± 1.5 fixations per trial for every subject submitted for 

analysis. 

5.1.3.9. Eye-fixation related potential analysis 

Since EEG and eye-tracking was recorded with separate systems, the data 

had to be synchronised. A TTL pulse inputted into the EEG data stream indicating 

image onset and the corresponding appearance of the image in the word-view 

camera of the eye-tracking allowed for synchronisation.  

After synchronising eye-tracking and EEG data, EFRPs in response to fixation onset 

were computed separately for each level of value condition (low, medium, high), trial 

type (free, forced) and time bin (TB1, TB2, TB3, TB4, TB5) by averaging respective 

epochs in the intervals ranging from 200 ms before fixation onset to 400 ms following 

fixation onset. Epochs were baseline corrected using an individual baseline in the 

time window of -200 to -100 ms relative to fixation onset (Luck, 2005). This baseline 

was selected to mitigate effects of the saccadic spike potential (SP). Given the 

modulation of the SP by a variety of eye-movement characteristics, baselines 

encompassing the SP may induce differences between conditions due to condition 

specific eye-movements (Nikolaev et al., 2016). 

5.1.3.10. Eye-movement characteristics 

 Since eye-movement characteristics can modulate the pre-saccadic activity, 

the SP and the lambda brain potentials, eye-movement characteristics were 

analysed (Boylan & Doig, 1989; Keren et al., 2010; Nikolaev et al., 2016; Riemslag 

et al., 1988; Thickbroom & Mastaglia, 1986). Saccade amplitude was defined as the 
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gaze distance between saccade initiation and fixation onset, expressed in degrees of 

visual angle, for each fixation. Saccade direction represented the angle between 

these two points for each fixation.  

5.1.3.11. Component clustering  

 EFRPs were input into the EEGLab (Delorme & Makeig, 2004) STUDY 

structure to allow for the clustering of similar independent components (ICs) across 

subjects. Independent component analysis (ICA) was first carried out on the 

concatenated epochs for each subject to identify a set of ICs. Next, ERP and scalp 

map component measures were computed and used to build a pre-clustering array 

for clustering components into 18 clusters. Clustering into 18 clusters was chosen to 

reflect the number of participants submitted for analysis to allow independent 

components to be distributed amongst an appropriate number of clusters for a 

suitable separation of brain components. To restrict analysis to the most significant 

clusters, 95% confidence intervals were computed on the time course of each 

cluster. If the confidence intervals did not exceed zero, i.e. the interval overlaps with 

zero, the cluster was excluded.  

5.1.3.12. Unfold toolbox 

 Free viewing in EEG paradigms allow us to examine neural processes over 

an extended period of time. However, the introduction of free viewing is 

accompanied by overlapping neural responses from subsequent fixation events. 

Thus, any value- or condition-related changes in EFRPs may be confounded by 

associated eye-movements. To control for the impacts of eye movements on EFRPs, 

the Unfold toolbox (Ehinger & Dimigen, 2019) was employed. This toolbox uses 

linear deconvolution to isolate the neural response from events with varying temporal 

overlap.  

  To ensure that the changes in IC clusters were not a result of saccadic eye-

movements occurring within the latency of each epoch, each IC cluster was back 

projected onto the continuous EEG data and analysed using the Unfold toolbox to 

test for the influence of overlapping potentials on the data (see Supplementary 

materials). Firstly, a linear model was defined for the linear deconvolution procedure 
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to estimate potentials across all fixations. Since we were not interested in the 

potentials for each condition, but rather the grand average deconvolution, the 

potentials for each condition were not modelled here. Next, a regression analysis 

was applied to the continuous EEG data using the following formula: 

𝐸𝐸𝐺 = 𝑋𝑑𝑐𝑏 + 𝑒   (Eq. 1) 

where 𝑋𝑑𝑐 encodes covariates for all time samples in the continuous EEG data, 𝑏 

contains the regression (beta) coefficients and 𝑒 the residuals. Next, the regression 

formula was solved for the beta (𝑏) coefficients, wherein these betas represented 

non-overlapping potentials. Since our model did not include terms for any condition, 

the intercept represented the de-convolved brain potentials for each IC cluster. 

5.1.4. Results 

5.1.4.1. Behavioural data 

Mean WTP values were computed for each condition separately. In the free 

bid trials, a mean value of £0.71 ± £0.64 was observed for low value items, £2.23 ± 

£1.14 for medium value items and £5.02 ± £1.50 for high value items. In the forced 

bid trials, a mean WTP value of £0.76 ± £0.85 was observed for low value items, 

£1.99 ± £1.44 for medium value items and £4.31 ± £1.80 for high value items.  

All value categories were significantly different from each other (P < .001). 

There was also a significant difference between free and forced bid trials, F(1,17) = 

8.84, P = .009, ƞp
2 =.342, as well as an interaction between value and trial type, 

F(2,34) = 18.9, P < .001, ƞp
2 =.526. Pairwise comparisons reveal a significant 

difference between medium value items for free and forced bids, t(17) = 2.31, P = 

.037, d = 0.19, and also between high value items, t(17) = 4.15, P < .001, d = 0.43. 

Given that this could potentially confound results when interpreting any main effect 

or interaction including trial type, these analyses will have the addition of a covariate 

analysis with WTP values. 

5.1.4.2. Fixation location data 

The mean saccade amplitude for each condition was calculated and input into 

a 3 (values) × 2 (forced vs. free) × 5 (time bins) ANOVA for repeated measures. 
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There were no significant main effects or interactions between conditions for 

saccade amplitude. 

The circular nature of saccade direction required statistical testing appropriate 

for circular statistics. The mean circular saccade direction for each subject and 

condition was calculated using the CircStat toolbox (Berens, 2009) before being 

analysed using the bpnreg package (Cremers & Klugkist, 2018) implemented in R (R 

Core Team, 2018). A mixed effects model was fitted to assess the interaction 

between value category, trial type and time bin regarding the circular outcome of 

saccade direction. This analysis produced the 95% highest posterior density (HPD) 

intervals, an interval allowing probability statements about the parameters, displayed 

in Figure 5.2. Inspection of the intervals reveal overlapping intervals between all 

value categories, within all time bins, for both free and forced bids, with the exception 

of TB2 for free bids wherein low value products elicited different saccade directions. 

We therefore conclude that saccade direction was only intermittently different 

between conditions, given the overlapping distributions of circular mean directions. 

 

Figure 5.2. 95% HPD confidence intervals for saccade direction measured in degrees of 
visual angle for each condition. 

To aid in the interpretation of EFRPs, fixation data across the screen was 

converted into a 40×40 bivariate histogram to visualise the locations of fixations for 

each condition. During the evaluation stage of the paradigm, a large part of the 
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screen had no relevance to the participant. Therefore, analysis was restricted to two 

regions of interest – the product region of interest (ROI) and the value scale ROI 

(green shaded area of Figure 5.3A-B). The fixation data, comprised of number of 

fixations per histogram bin, across the whole of each ROI were then submitted to a 3 

(WTP categories) × 2 (free vs. forced) × 5 (time bins) repeated measures ANOVA to 

investigate the differences in fixation location between conditions. Given the large 

number of analyses from computing a three-way ANOVA on each histogram bin, P 

values were corrected using the Bonferroni-Holm (Holm, 1979) correction for multiple 

comparisons. Figure 3 summarises the results of all main effects. Firstly, three 

clusters of differences were observed across the product ROI, all indicating a 

significantly increased number of fixations for high value products. Secondly, a small 

cluster of significant differences was found on the left side of the value ROI, 

indicating an increased number of fixations for low value products. Thirdly, the 

cluster of significant differences indicated an increased number of fixations on the 

product ROI during forced bid trials, as well as an increased number of fixations on 

the value scale ROI during forced bid trials. Lastly, participants fixated progressively 

less on the product ROI and more so on the value scale ROI. Interaction effects did 

not indicate significant modulation and therefore did not require further investigation. 
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Figure 5.3. Fixation locations. Heatmaps indicating fixation location differences within 
conditions for the image region (A; green highlighted area) and the scale region (B; green 
highlighted area). Bar graphs showing mean number of fixations per histogram bin. Bar 
graphs also indicate direction of effects for each cluster of differences.  

The same 40×40 bivariate histogram illustrating statistically significant 

differences between conditions was calculated with fixation duration parameters 

across the product and value scale ROI (Figure 5.4). Two major differences are 

observed between the number of fixations and corresponding fixation durations. 

Firstly, an increased number of fixations across the product ROI for high value 

products was paired with irregular differences in fixation duration. This suggests an 

increased number of fixations for high value products, independent of fixation 

duration, due to sporadic differences in fixation duration but a systematic increase in 

number of fixations. Secondly, an increased number of fixations on the product ROI 

during forced bid trials is paired with longer fixation durations during free bid trials on 

the product ROI. Hence, free bid trials elicited fewer but longer fixations, in contrast 

to forced bid trials eliciting many short fixations. 
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Figure 5.4. Fixation durations. Heatmaps indicating fixation duration differences within 
conditions for the image region (A; green highlighted area) and the scale region (B; green 
highlighted area). Bar graphs showing mean fixation duration in each histogram bin. Bar 
graphs also indicate direction of effects for each cluster of differences.  

 

To further explore fixation data within the value scale ROI, fixations were 

extracted for each condition and the location of the fixations along the x-axis of the 

computer screen were normalised between -1 and 1. Transforming the time axis 

allowed for the visualisation of what set of values were being fixated during each 

time bin for each value category and trial type. Figure 5.5A demonstrates in the form 

of a bar graph how individuals were fixating in the centre of the value scale ROI 

regardless of value condition during TB1 for free bids. Fixating the centre of the 

screen during the initial viewing period was likely related to the indication of the type 

of condition (free vs forced) at this spot. However, in free bids, fixation location 

during TB2 was already predictive regarding low value items, with fixation location 

predicting their bid from TB3 onwards. This bias towards the left of the screen was 

reflected in the subjective WTP values in which the mean WTP for low and medium 

value items fall below the middle value of the scale. Figure 5.5B illustrates fixation 
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locations during each time bin and each value category for forced bid trials, though 

no significant relationships were found. 

 

Figure 5.5. Scale fixations x-axis coordinates. Mean x-axis coordinates for fixations on the 
scale normalised between -1 and 1. Mean coordinates for each value category and time bin 
are shown for free bids (A) and forced bids (B). Post-hoc tests are shown: * = P < .05, ** = P 
< .01, *** = P < .001. 

5.1.4.3. Eye-fixation related potentials 

 ICs were clustered into 18 clusters. To identify the most significant clusters, 

confidence intervals were computed across the waveform for each cluster. To be 

submitted for further analysis, 95% confidence intervals had to exceed zero at peak 

component amplitude. This check resulted in nine clusters being submitted for 

further analysis. Mean component amplitude across the whole time course and IC 

maps are summarised in Figure 5.6. The number of components, as well as the 

number of subjects included in the cluster, are also reported.  
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Figure 5.6. EFRP clusters. Independent component clusters for EFRP data that passed 
confidence intervals checks are illustrated with their corresponding waveforms and scalp 
maps. 

 The data from each of the nine clusters were submitted to a permutation-

based repeated-measures ANOVA utilising 2500 permutations. Analysis was 

constrained to latencies between 50 ms and 270 ms to limit analysis to the latencies 

of brain potentials known to be involved in economic decisions (Tyson-Carr et al., 

2018). A single cluster could contain a varying number of components belonging to 

different subjects, with subjects not necessarily contributing an equal number of 

components to any one cluster. Therefore, components belonging to the same 

subject were summated to produce a single component for each subject thus 

allowing for the preservation of the original null hypothesis. Consequently, statistical 

analysis on IC amplitude is in terms of summated component amplitude. 

Firstly, an ANOVA with value category and trial type as independent variables 

was carried out to highlight the influence of these two factors on IC amplitude, either 

individually or interactively. Secondly, to investigate the interaction between value 

category and time bin, an ANOVA with value category and time bin as independent 

variables was carried out. Lastly, trial type and time bin were submitted to an 

ANOVA to investigate the interaction between these two variables. This resulted in a 

set of significant latencies for each cluster illustrating one of the above effects. Our 

method of permutation testing was limited to two factors which produced overlapping 
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factors between the three ANOVAs completed. Hence, these permutation tests were 

used to detect latencies of interest across the clusters. Following extraction of these 

significant latencies, the corresponding omnibus ANOVA was completed to ensure 

the results were robust to the appropriate statistical tests. 

 In order to further restrict analyses, significant latencies were excluded based 

on two criteria. Firstly, significant differences had to be observed for a minimum of 5 

consecutive milliseconds to ensure that the differences were not the result of 

momentary spikes. Next, latencies demonstrating significant interactions were 

excluded if the cluster did not first demonstrate a main effect within one of the 

independent variables. Results are summarised in Figures 5.7A-C. 

 Figure 5.7A highlights all significant latencies that demonstrated a significant 

main effect of value category across clusters. A significant effect of value was 

revealed between 158 and 165 ms in IC1, F(2,34) = 3.46, P = .046, ƞp
2 = .17. High 

value items produced significantly decreased amplitude in comparison to both low 

value items, t(17) = 2.26, P = .033, d = 0.57, and medium value items, t(17) = 2.58, P 

= 0.02, d = 0.65. Separation of value categories was also observed for IC2 between 

50 and 70 ms, F(2,34) = 6.49, P = .004, ƞp
2 = .28, in which significantly increased 

amplitude was demonstrated for high value items in comparison to low value items, 

t(17) = 3.7, P < .001, d = 0.56, and medium value items, t(17) = 2.5, P = .024, d = 

0.5. A similar effect was also demonstrated in IC3 between 148 and 160 ms, F(2,32) 

= 3.97, P = .028, ƞp
2 = .2, with medium value items eliciting greater activity in 

comparison to low value items, t(16) = 2.34, P = .037, d = 0.61, and high value items, 

t(16) = 2.076, P = .041, d = 0.43. However, the component was at its strongest over 

a frontocentral region of the scalp. A statistically significant effect was revealed 

between 85 and 103 ms for IC4, F(2,34) = 3.42, P = .044, ƞp
2 = .167, with high value 

items eliciting significantly increased amplitude in comparison to low value items, 

t(17) = 2.78, P = .015, d = 0.43. A second statistically significant effect of value in IC4 

was revealed between 155 and 214 ms, F(2,34) = 3.7, P = .035, ƞp
2 = .178. Post-hoc 

testing revealed significantly increased amplitude for medium value items in 

comparison to low value items, t(17) = 3.06, P = .004, d = 0.42. 
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Figure 5.7. EFRP cluster effects. Clusters that demonstrate main effects of value category 
(A) or trial type (B) are shown, along with the time course of activations for the value relevant 
effects in IC1, IC2 and IC3 with corresponding effects (C). An interaction between value 
category and trial type (D) and an interaction between value category and time bin (E) are 
also illustrated. 

 Figure 5.7B demonstrates the main effects of trial type (free vs. forced bids). 

Three of the clusters demonstrated significantly increased activation during free bid 

trials. This effect was observed between 190 and 195 ms for IC1, F(1,17) = 5.06, P = 

.038, ƞp
2 = .23, between 172 and 179 ms for IC2, F(1,17) = 4.72, P = .044, ƞp

2 = .22, 

and lastly between 100 and 110 ms for IC5, F(1,16) = 4.9, P = .041, ƞp
2 = .23. In 

contrast, two clusters demonstrated significantly increased activation during forced 

bid trials, firstly between 97 and 105 ms in IC4, F(1,17) = 4.9, P = .04, ƞp
2 = .22, and 

also between 126 and 144 ms in IC6, F(1,17) = 11.8, P = .003, ƞp
2 = .41.  
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 As shown in Figure 5.7A, three significant effects separate different value 

categories. We therefore show in Figure 5.7C the corresponding time course of 

these activations across the 5 time bins in the same latencies. A main effect of time 

bin was observed for IC1 between 158 and 165 ms, F(4,68) = 8.02, P < .001, ƞp
2 = 

.32. Post-hoc testing revealed significantly increased activation in TB1 in comparison 

to TB2, t(17) = 4.66, P < .001, d = 1.25, TB3, t(17) = 4.95, P < 0.001, d = 1.47, TB4, 

t(17) = 4.39, P < 0.001, d = 1.37, and TB5, t(17) = 3.43, P = 0.007, d = 0.91. For IC2 

between 50 and 70 ms, no significant differences between time bins were found. A 

statistically significant effect of time bin was found for IC3 between 148 and 160 ms, 

F(4,64) = 3.1, P = .021, ƞp
2 = .16. Post-hoc tests revealed significantly increased 

amplitude in TB1 in comparison to TB2, t(16) = 2.34, P = 0.03, d = 0.81, TB4, t(16) = 

2.78, P = 0.013, d = 0.91, and TB5, t(16) = 2.77, P = 0.014, d = 0.82. It therefore 

appears that for clusters encoding low and medium value, activity is greatest early 

on during valuation, whereas it is maintained throughout the viewing period for high 

value brain components. 

 The interactions between value category and trial type are reported in Figure 

5.7D. Here, only one significant effect was found for IC4 at a latency between 180 

and 190 ms, F(2,34) = 3.5, P = .041, ƞp
2 = .17. Following on from the main effect of 

value at a similar latency, this interaction appears to be a result of decreased 

amplitude for low value items in comparison to medium value items, t(17) = 3.54, P = 

.002, d = 0.75, and high value items, t(17) = 2.7, P = .012, d = 0.51, in the forced bid 

trials only. 

Finally, the interactions between value and time bin are reported in Figure 

5.7E. The only statistically significant interaction was found in IC2 in the epoch of 

150 and 160 ms, F(8,136) = 2.2, P = .035, ƞp
2 = .11. Post-hoc tests revealed 

significant differences in TB2, TB3 and TB4. In TB2, high value items elicited 

significantly increased amplitude in comparison to low value items, t(17) = 2.19, P = 

.017, d = 0.84. In TB3, medium values elicited increased amplitude in comparison to 

high value items, t(17) = 2.35, P = .028, d = 0.75. Finally, in TB4, high value items 

elicited significantly increased amplitude in comparison to low value items, t(17) = 

2.1, P = 0.048, d = 0.74.  
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Since stimulus onset may have an influence on eye-fixation related potentials 

in the first time bin (Dimigen et al., 2011; Nikolaev et al., 2016), we carried out further 

analysis to account for any confounds. Firstly, we calculated the global field power 

based on the original grand average EFRP for each time bin and subject. Secondly, 

we averaged data across four separate latencies to summarise activity at the latency 

of the P1, P2, N2 and P3 components. Finally, we submitted this data to separate 

ANOVAs to determine whether the average amplitude of the corresponding 

components was influenced by time bin. Significant main effects of time bin were 

revealed for the P1 measured between 50 and 120 ms, F(4,68) = 8.46, P < .001, ƞp
2 

= .33, the P2 between 150 and 200 ms, F(4,68) = 18.9, P < .001, ƞp
2 = .53, the N2 

between 200 and 280 ms, F(4,68) = 21.3, P < .001, ƞp
2 = .56, and the P3 between 

280 and 350 ms, F(4,68) = 23, P < .001, ƞp
2 =.57. All post-hoc tests revealed 

differences between time bin 1 and all other time bins (P < .05), with no other 

differences being present (P ≥ .05). This suggests stimulus onset had a significant 

influence on the grand average EFRPs, and therefore, this may explain the 

differences observed between time bins in IC1 between 158 and 165 ms, and also 

between time bins in IC3 between 148 and 160 ms. However, the lack of differences 

between time bins in IC2 between 50 and 70 ms implies that this cluster is not 

influenced by stimulus onset, and therefore, may represent value-related activity. 

Lastly, although EFRPs have been shown to be modulated by fixation rank (Fischer 

et al., 2013; Kamienkowski, Varatharajah, Sigman, & Ison, 2018), the absence of 

differences between time bins after time bin 1 suggests brain data is not modulated 

by fixation rank in the current study. 

5.1.5. Discussion 

The present study postulated the presence of value-specific cortical activation 

components of which at least some would respond to a specific value category early 

on during the viewing period and maintain their activations throughout the viewing 

period both during free and forced bid trials. The findings largely support our 

predictions. Firstly, unique cortical activation components were observed for high, 

medium and low/medium value products. Additionally, a left, middle, right 

lateralisation effect was found for high, medium, low/medium value products, 

respectively. Secondly, effects were mostly observed within the latency of the N2 
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EEG component, emphasising the importance of this component in economic 

valuation processing. Lastly, the brain component specific to high value did not 

significantly vary throughout the valuation stage, although it was strongest during the 

initial and the final stage of valuation. The maintained component activation for high 

value products suggests the increased cognitive processing required for high value 

items in comparison to low and medium value items. The fixation heat maps 

indicating an increased number of fixations, independent of fixation duration, across 

the product for high value products provides further support for this increased 

cognitive processing, similar to previous studies (Anderson & Halpern, 2017; 

Anderson & Yantis, 2012). 

Brain components encoding distinct categories of stimuli is prevalent across 

many domains. For example, the N170 EEG component has frequently been 

described as being an activation specific to face-processing (Calvo & Beltran, 2013; 

Cao, Jiang, Gaspar, & Li, 2014; Zhang, Luo, & Luo, 2013), as well as encoding the 

emotional valence of faces (Qiu, Wang, & Fu, 2017). Evidence for the encoding of 

emotional valence is also prevalent amongst several other brain components. For 

example, the P1, N1, P2 and N2 components have been shown to respond to stimuli 

with a negative valence (Huang & Luo, 2006; Lithari et al., 2010; Smith et al., 2003). 

It has also been demonstrated that the encoding of negative valence can persist into 

later components such as the LPP (Schupp et al., 2004b). Lithari et al. (2010) 

highlighted the role of the P3 component in the encoding of positive valence, 

however, also emphasised the role of the P2 component in positive valence 

encoding. A rapid categorisation of stimuli according to their economic value may 

encourage fast responses offering the best possible decision outcome (Brosch, 

Pourtois, & Sander, 2010). Results suggest a rapid and approximate categorisation 

of stimuli according to their subjective values in which low and high value items are 

clearly differentiated. Interestingly, a separate scalp pattern was associated with 

medium value products. The presence of a specific component featuring activation 

over the midline scalp regions may be a result of absence of either the left-

hemisphere high-value or the right-hemisphere low-value value allocation. 

Further to the categorisation of subjective value, lateralisation of cortical 

activation was also observed. IC2, which distinguished the processing of high value 

items, was most prominent over the left parietal region of the scalp, whereas IC1 



95 

 

demonstrated a spatial maximum that extended over a right frontal region of the 

scalp and responded to low/medium value products. Hemispheric asymmetry 

regarding the role of the left and right hemispheres, and their relatedness to 

approach and withdrawal behaviours respectively, has long been established (see 

Hakim and Levy, 2019). Similarly, this asymmetry has been observed concerning 

emotions, motivation and affect (Davidson, 1998b; Demaree, Everhart, Youngstrom, 

& Harrison, 2005; Harmon-Jones, Gable, & Peterson, 2010). The affective valence 

hypothesis (Alves, Fukusima, & Aznar-Casanova, 2008) and previous studies 

(Lawrence, Hinton, Parkinson, & Lawrence, 2012; Price & Harmon-Jones, 2011) also 

highlight the role of the left hemisphere in approach behaviour. 

In the ERP domain, Aguado, Dieguez-Risco, Mendez-Bertolo, Pozo, and 

Hinojosa (2013) reported an increase in LPP amplitude over left temporal regions for 

positive facial expressions – also, the encoding of negative affect in the right 

hemisphere has been frequently observed (Ahern & Schwartz, 1985; Balconi & 

Mazza, 2009; Kokmotou et al., 2017; Windmann et al., 2006). Additionally, a left/right 

hemispheric lateralisation during the evaluation of pleasant/unpleasant odours has 

been reported (Cook et al., 2015; Henkin & Levy, 2001). Critically, Pizzagalli, 

Sherwood, Henriques, and Davidson (2005) link approach behaviour with the 

evaluation of rewards allowing us to speculate on hemispheric asymmetry in terms of 

valuation processes. In the time-frequency domain, increased slow-wave oscillations 

originating from the right prefrontal cortex were indicative of an increased inclination 

for risk (Gianotti et al., 2009). From a neuromarketing perspective, Ohme et al. 

(2010) posited that frontal asymmetry might be an important tool for evaluating the 

effectiveness of adverts. Further evidence for this comes from the increase of theta 

and alpha activity in the left and right hemisphere whilst observing pleasant and 

unpleasant adverts respectively (Vecchiato et al., 2014; Vecchiato et al., 2011).  

The present finding of left frontal activations, represented by IC2, is in line 

with the valence hypothesis and suggest that goods with high economic value may 

share the same neural representation as positive affect and could possibly be 

indicative of motivation related processes, specifically approach behaviours. It could 

be argued that in a similar fashion to the bias towards low value items (Tyson-Carr et 

al., 2018), low value stimuli could induce withdrawal behaviours due to being 

potential sources of financial loss. For example, Shenhav, Dean Wolf, and 



96 

 

Karmarkar (2018) reported that choosing between low value items could induce 

anxiety since these items can be interpreted as aversive in certain situations. 

From a functional brain imaging perspective, brain regions encoding value 

either positively or negatively have been reported (Bartra et al., 2013). In their meta-

analysis, Bartra et al.  pointed out that several brain regions demonstrated either 

positive or negative encoding of value, or even both positive and negative encoding 

together. Anatomically, the OFC specifically has been subject to a volume of 

research regarding the functions of its sub-regions. The discrimination of the lateral 

and medial aspects of the OFC is well documented (Kringelbach & Rolls, 2004; Zald 

et al., 2014), and even finer organisations have been suggested (Kahnt et al., 2012; 

Mackey & Petrides, 2010; Ongur et al., 2003). The distinct functional connectivity of 

multiple sub-regions demonstrates the ability of the OFC to encode a wide variety of 

values, such as both reward and punishment (Elliott, Dolan, & Frith, 2000; 

O'Doherty, Kringelbach, Rolls, Hornak, & Andrews, 2001), making it a candidate for 

the encoding of distinct value categories. Our data suggests that the valuation 

process occurring during free viewing of goods is based on sets of activation 

patterns which are employed in response to either low, medium or high value but 

none of these patterns encodes the value throughout the whole range of values.  

  A benefit of analysing cortical responses to individual successive eye fixations 

is the ability to highlight value encoding across the time course of a decision. A 

single interaction between value and time bin within IC2 is characterised by 

differences within TB2, TB3 and TB4, with the most linear encoding of value present 

in TB2. As is emphasised by the fixation location data, it was as early as 800-1600 

ms post stimulus onset when individuals have most likely already decided the 

amount they are ultimately willing to bid. IC strength was also highest in this time bin 

for high value items, reiterating the link between this cluster and the valuation of high 

value products. However, an important finding was the activation cluster observed 

over subsequent time bins, specifically for the ICs that decode different value 

categories. The brain component encoding high value showed no significant 

variation throughout the time course, although confidence intervals did overlap with 

zero in the third time bin, suggesting the increased amount of cognitive processing 

that takes place when valuating high value options.  
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The reported fixation heat maps showed an increased number of fixations for 

high value items. This greater number of fixations is an indicator of an increased 

amount of time spent valuating the product and provides evidence for an increased 

amount of cognitive resources utilised during the valuation of high value products, 

something that has been observed in previous studies (Audrin, Brosch, Sander, & 

Chanal, 2018; McGinty et al., 2016; Simola et al., 2015). A wealth of research has 

highlighted how the emotional content of a scene can modulate the nature of eye-

fixations. A previous study demonstrated increased attention towards both positive 

and negative stimuli, reflected in longer fixation durations and more rapid fixation 

onsets (Nummenmaa, Hyona, & Calvo, 2006). Similarly, eye-movements are more 

likely to be directed towards scenes that are affectively salient in comparison to 

scenes that are simply visually salient (Niu, Todd, & Anderson, 2012). Various eye-

movement characteristics have also been shown to predict scene valence (Tavakoli 

et al., 2015) and eye-tracking can be used to infer cognitive processes such as 

attention (Hayhoe & Ballard, 2005). From an economic decision-making perspective, 

we are more likely to choose items that we fixate for longer (Cisek et al., 2014; 

McGinty et al., 2016), which is especially true for luxury products (Audrin et al., 

2018). A study by Simola et al. (2015) reported enhanced fixation rates and longer 

gaze durations for unpleasant stimuli when they also had high arousal. However, 

gaze duration and fixation rates were increased for pleasant stimuli when they had 

low arousal. The increased number of fixations for high value products in the current 

study, as demonstrated in the fixation heat maps, may reflect the same processes as 

reported in this previous study by Simola et al., whereby the high value products are 

pleasant but not arousing, thus eliciting a larger number of fixations. Conversely, the 

fixation heat maps also demonstrate an increased number of fixations on the value 

scale for low value products, indicating that the value of low value products was 

decided rapidly and fixating on the product was no longer necessary given this quick 

categorisation.  

Our data are relevant for evaluation of the drift-diffusion models of the 

valuation processing resting on accumulation of evidence during decision making 

tasks. Drift-diffusion models have been utilised to explain choices during binary 

decisions (Krajbich et al., 2010), trinary decisions (Krajbich & Rangel, 2011) and 

simple purchase decisions (Krajbich et al., 2012). Milosavljevic, Malmaud, Huth, 
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Koch, and Rangel (2010) employed the drift-diffusion model to demonstrate a fast, 

under 1000 ms, elaboration of decision value by accumulation of noisy information 

until a decision threshold is reached. Using single neuron recordings, much of this 

research revealed the role of the OFC, the lateral prefrontal cortex and the anterior 

cingulate cortex in value encoding in animals (Padoa-Schioppa, 2009; Padoa-

Schioppa & Assad, 2006; Tremblay & Schultz, 1999; Wallis & Miller, 2003), with 

value differentiation observed at approximately 450 ms post stimulus (Kennerley, 

Dahmubed, Lara, & Wallis, 2009). Single neuron recordings in humans have also 

revealed the role of the amygdala in value encoding, and importantly, how the 

neuronal spike count differentiated value as early as 250 ms (Jenison, Rangel, Oya, 

Kawasaki, & Howard, 2011). ERP methods have also reiterated this and revealed 

rapid value encoding in the brain (Larsen & O'Doherty, 2014), even as early as 150 

ms (Harris et al., 2011). Our results point to a rapid categorisation of stimuli 

according to their economic values occurring within an epoch comprising two 800-ms 

time bins and this finding is consistent with both the drift-diffusion model data 

(Milosavljevic et al., 2010) and single-neuron studies in animals. 

The automaticity of the valuation process is captured in the differences 

between forced and free bids. Forced bidding trials allow for the disentanglement of 

valuation specific processes from generic, non-specific neural processes 

(Plassmann et al., 2007, 2010). IC1, IC2 and IC5 each demonstrated increased 

strength for free bids. It would, therefore, seem that brain component expressed in 

IC1 is responsible for the encoding of low value products, most prominently in free 

bidding procedures. IC5, though showing no segregation of value, is specific to 

deliberate valuation. IC4, a component that was reported to be unique to 

medium/high value items in the forced bidding condition, demonstrated increased 

strength during forced bidding along with IC6. The presence of an automatic 

valuation system in the brain has previously been demonstrated in which value 

appeared to be computed in value-irrelevant tasks (Grueschow et al., 2015; Lebreton 

et al., 2009). There is also a wealth of research investigating value-driven attentional 

capture, the process whereby value is used as a cue to capture attention, which 

highlights the automatic nature of valuation processes. For example, the presence of 

a distractor in a binary decision task will increase reaction times and reduce decision 

optimality as the learned value of the distractor increases (Itthipuripat, Cha, 
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Rangsipat, & Serences, 2015). Additionally, attention and eyes were captured during 

unconstrained viewing by task-irrelevant but previously rewarded stimuli (Anderson 

& Yantis, 2012), thus emphasising the ability to automatically evaluate stimuli within 

our visual field despite their lack of relevance to the current task.  

An important consideration when using simultaneous EEG and eye-tracking 

recordings is the potential influence of eye-movement characteristics on EEG 

components. The SP, a potential observed at saccade onset, is modulated by 

saccade sizes and direction (Keren et al., 2010), and the visual lambda response 

can be modulated by fixation duration and saccade sizes (Nikolaev et al., 2016). In 

the present study, the varying temporal overlap between fixation events suggests 

that some effects could be explained by eye-movement related events alone. 

However, this is an inherent condition of free-viewing situations and several methods 

can be used to control for these factors. For example, we utilise here the method of 

linear deconvolution, using Unfold (Ehinger & Dimigen, 2019), to confirm our 

independent component clusters. Using this method, we revealed that saccade 

initiation was not likely to have had an influence on the cluster waveforms.  

 Traditional ERP experimental designs limit understanding to the initial 

cognitive processing that takes place within the first second following stimulus onset. 

However, although evidence suggests that value encoding occurs rapidly (Harris et 

al., 2011; Roberts et al., 2018; Tyson-Carr et al., 2018), further deliberation over time 

may influence the final evaluation. Past research indeed highlights how value-based 

decisions are guided by evidence accumulation until a decision point is ultimately 

reached (Krajbich et al., 2010; Krajbich et al., 2012; Krajbich & Rangel, 2011; 

Polania et al., 2014). Importantly, Melcher and Colby (2008) highlight in their 

framework how information between subsequent saccades is integrated to produce a 

more complex view of the world and it is this sequential remapping of sensory 

information that we speculate could underpin value-guided choice. It is these trans-

saccadic processes that are of great relevance to the growing field of real-world 

neuroimaging. In real life, our conscious experience comprises a series of fixations 

to gather information and initiate motor behaviours. Not only can we disentangle the 

trans-saccadic gathering of information, the method also benefits from the 

outstanding temporal resolution of EEG, something which fMRI methods severely 

lack. The method described in this study is also easily applicable to real life settings 
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to help further our understanding of value-guided choice in a naturalistic setting 

(Roberts et al., 2018; Soto et al., 2018). A well-known drawback of this method is the 

contamination of EEG data with saccades. Any systematic difference in eye-

movements between conditions can easily produce false-positives. However, recent 

advanced methods of analysis of eye fixation related potentials, such as the Unfold 

toolbox (Ehinger & Dimigen, 2019), can account for a large proportion of the 

confounds that eye-movements can introduce. 

The present study aimed to reveal the brain components responsible for 

valuating specific value categories in the context of EEG. However, the treatment of 

WTP as a continuous factor may reveal, more generally, the dynamics of economic 

valuation in the brain. Future research would benefit from revealing correlations of 

brain components with WTP to emphasise the temporal characteristics of a more 

general subjective valuation system. A final consideration is the minimum effect 

duration in the current study. The current study implemented a minimum duration of 

5 ms for effects to be interpreted. Although this avoids interpreting effects resulting 

from momentary differences spanning a few samples, it is uncertain to what extent 

differences being observed for 5 ms may reflect higher-order cognitive processes. 

 To conclude, we demonstrate for the first time that valuation processes can 

be tracked over the time course of a decision using combined eye-tracking and EEG 

recordings. Our study advances the knowledge of temporal dynamics of the 

valuation process which has been acquired using event-related potentials locked to 

the onset of fixations. A set of brain components were revealed that encoded distinct 

value categories, each with a unique presentation across the scalp that reiterated the 

encoding of positive and negative affect in the left and right hemispheres 

respectively. Value categorisation for products is achieved automatically as it also 

occurred during forced bid choices and economic valuation appears to be largely 

completed within 1600 ms after presenting a visual stimulus.  

5.1.6. Supplementary materials 

Results indicate the presence of ICs that encode high, medium and low value 

items with prevalence over the left, middle and right scalp regions respectively. 

Given that the value scale is present during item evaluation, it may be that these 

scalp patterns are the result of saccadic movements over the value scale rather than 
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value-related cerebral processing. Since epochs can expand beyond the fixation 

duration, it is likely that several saccades are initiated within a single epoch. 

Therefore, the initiation of saccades with systematic directions could explain the 

prevalence of, for example, an increased activation over the left frontocentral scalp 

region for high value items. 

Supplementary Figure 5.8 illustrates data from the three clusters that 

demonstrated effects of value category; IC1, IC2 and IC3. For each cluster, global 

field power and individual electrode activity for both the original back projection and 

the deconvolved back projection is shown. Because we were interested in the 

latencies whereby effects of value-category were observed, the corresponding scalp 

maps averaged across the latencies of observed effects are shown. For each 

observed effect, the mean activity at each electrode site for the original back 

projection was compared to the corresponding de-convoluted scalp map using 

paired t-tests. P-values were corrected using the Bonferroni-Holm (Holm, 1979) 

correction for multiple comparisons and electrodes showing significant differences 

are highlighted.  

 Scalp maps at the latencies of the observed effects are highly similar after 

being analysed using linear deconvolution, with significant differences being 

observed sporadically (see Figure 5.8). To test this similarity, correlation coefficients 

were calculated to test the similarity between the original back projection and the de-

convolved data for each cluster and latency interval of interest. Correlation 

coefficients were then transformed using the Fisher transform procedure to allow 

statistical testing (Fisher, 1921). This involved putting the coefficients into the inverse 

hyperbolic tangent function. The resulting Fisher Z values were submitted to one-

sample t-tests which revealed significant differences from zero (P < 0.05), thus 

indicating similarity between the back-projected and de-convolved data (see Table 

5.1). 

 

 

Table 5.1 



102 

 

Mean Fisher Z values (±SD) indicating similarity between back-projected data and 
the de-convolved data. One-sample t-test results are also shown with the 
corresponding degrees of freedom (df), t-values and p-values. 

 

 

 

 

 

Figure 5.8. De-convolved EFRP data. De-convolved data is illustrated for IC1 (A), IC2 (B) 
and IC3 (C). For each cluster, a butterfly plot is shown that demonstrates activity for each 
electrode both before and after deconvolution using the unfold toolbox. The corresponding 
global field power is shown, as well as the scalp maps at the latencies of observed effects 
for value category. Significant differences at each electrode site between the original back 
projection and the de-convolved data are also shown in the centre head schematic, though 
only one electrode showed any differences between 158 and 165 ms. 

 
Fisher Z 

(Mean ± SD) 
df t P 

IC1 
158 – 165 ms 

1.34 ± 0.42 17 14.2 < .001 

IC2 
50 – 70 ms 

1.81 ± 0.81 17 9.49 < .001 

IC3 
148 – 160 ms 

1.55 ± 0.72 16 8.87 < .001 
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Chapter 6 

 

Brain components of economic decision making: an event-related 

potentials study 
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This experiment investigated the brain components in response to stimulus onset, 
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6.1. Brain components of economic decision making: an event-

related potentials study 

6.1.1. Abstract 

The automaticity of brain valuation suggests that subjective value is likely 

already encoded in the first instance following stimulus presentation. Elaborating on 

our previous study (Tyson-Carr et al., in press), the present study aimed to 

determine value relevant brain processes in an electroencephalographic event-

related potentials design, investigating economic decisions at the point of stimulus 

presentation. 

 Participants completed a Becker-DeGroot-Marschak auction comprising both 

free and forced bidding trials whilst electroencephalographic recordings were taken. 

Stimuli were split into low and high value products based on willingness-to-pay 

ratings. Brain responses time-locked to stimulus onset were extracted and analysed 

using ICA. The resulting independent components were clustered across subjects to 

identify common neural processes between subjects. 

 Increased cluster amplitude was observed in three clusters for high value 

products in the latency of the P3 and LPP event-related potential components.  

Moreover, one of these clusters demonstrated increased amplitude for high value 

products in the free bidding context only. A single cluster also demonstrated 

increased activation for low value products in the latency of the N2 event-related 

potential component. 

 Results suggest the employment of value encoding cortical activations 

immediately following stimulus onset. Distinct brain responses to low and high value 

products emphasised the rapid and coarse encoding of value within the brain, and 

the presence of value-relevant signals within early brain responses served to 

reiterate the automaticity of brain valuation. However, a single component cluster 

demonstrated value-specificity in a free bidding context only, suggesting a neural 

response to specific to conscious valuation. 
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6.1.2. Introduction 

 Neuroeconomic literature proposes the existence of a neural system that is 

responsible for choice behaviour, deciding the most subjectively useful alternative 

when having to decide between multiple alternatives (Glimcher & Fehr, 2014). The 

incorporation of tools used in economic research allows for the investigation of 

economic decision making in neuroscientific paradigms (Bossaerts & Murawski, 

2015). For example, auction tasks such as the Becker-DeGroot-Marschak (BDM) 

auction mechanism (Becker et al., 1964) are a method utilised to reveal willingness-

to-pay (WTP) for goods and prospects (Wilkinson & Klaes, 2012), allowing 

researchers to examine the neural underpinnings of subjective utility (Grabenhorst & 

Rolls, 2009; Grueschow et al., 2015; Kable & Glimcher, 2007; Levy & Glimcher, 

2012; Peters & Büchel, 2010).  

 A primary aim within the neuroeconomics literature is to determine a neural 

system that encodes subjective value across several categories, i.e. a domain-

general valuation system (Bartra et al., 2013). In their meta-analysis, Bartra et al. 

revealed the ventromedial prefrontal cortex and the ventral striatum to be 

responsible for the computation of subjective value across multiple reward 

categories. With the addition of the posterior cingulate cortex (PCC), this neural 

system was reiterated in a second meta-analysis (Clithero & Rangel, 2014).  

 In addition to the spatial dynamics of the brain valuation system, the temporal 

characteristics of subjective valuation is also critical to understand the nature of brain 

valuation processes on a fine temporal scale. The nature of haemodynamic 

responses results in poor temporal resolution of imaging techniques such as fMRI 

which measure blood oxygen level dependent responses (Shmuel & Maier, 2015). In 

contrast, the direct nature of electrophysiological methods that measure the electrical 

brain potentials that are propagated across the scalp, originating from the summation 

of neuronal potentials, permitted the investigation of cognitive processes on a fine 

temporal scale (Luck, 2005). Event-related potential (ERP) studies have 

demonstrated the rapid encoding of value in the brain, as early as 150 ms (Goto et 

al., 2019; Goto et al., 2017; Harris et al., 2011; Larsen & O'Doherty, 2014; Tzovara et 

al., 2015). In a previous study, we demonstrated a negativity-bias in the brain toward 

low value products, whereby increased source activation was observed within the 
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right anterior insula when subjects observed a low value item (Tyson-Carr et al., 

2018). The specific encoding of low value products was reiterated by Roberts et al. 

(2018) who reported an increased P200 eye-movement related component for low 

value products. 

 The role of the context in which valuation takes places has also been 

frequently investigated. Value related signals have been observed in tasks whereby 

the value was not required to be calculated, for example, in perceptual decision 

tasks (Grueschow et al., 2015; Polania et al., 2014; Tyson-Carr et al., 2018). To 

investigate economic decisions during auction tasks, Plassmann et al. (2007, 2010) 

utilised a free/forced bid paradigm whereby individuals were either free to bid what 

they desired for a product, or where forced to bid a predefined amount. This revealed 

the role of the orbitofrontal cortex in the encoding of WTP, and importantly, provides 

us with a useful avenue for investigating economic decision making within an auction 

task.  

The utilisation of a free/forced bidding paradigm by Plassmann et al. (2007, 

2010) revealed the brain correlates of explicit value computation. However, the 

automaticity of subjective valuation has previously been described. One study 

revealed the activation of brain relevant regions of the brain during preference and 

perceptual rating tasks alike (Lebreton et al., 2009). Similarly, the PCC has been 

speculated to be responsible for automatic value encoding resulting from value-

driven attentional capture (Grueschow et al., 2015).  

We have previously observed a set of brain components tuned specifically to 

low, medium and high value products during free viewing (Tyson-Carr et al., in 

press). The present study aimed to further analyse this data to investigate the brain 

response at the point of stimulus onset during a free/forced bidding paradigm 

modified based on Plassmann et al. (2007, 2010). Firstly, we aimed to determine 

whether comparable neural responses were observed at the point of stimulus onset 

in comparison to across an extended viewing period. Secondly, extending on our 

previous methodology, we utilise source dipole analysis techniques to describe 

possible neural generators of value relevant brain responses. Lastly, the utilisation of 

an ERP design allows for the investigation of the importance of different ERP 

components relevant to valuation processes. 
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6.1.3. Methods 

6.1.3.1. Participants 

 Participant information is identical to that described in Chapter 5. The 

experimental procedures were approved by the Research Ethics Committee of the 

University of Liverpool. All participants gave written informed consent in accordance 

with the declaration of Helsinki. Participants were reimbursed for their time and travel 

expenses. Since eye-tracking data is not utilised in the current study, the exclusion 

of participants due to technical difficulties with eye-tracking data is ignored here. 

Therefore, the present study submitted 20 participants for analysis in comparison to 

the 18 participants analysed in our previous study. 

6.1.3.2. Procedure 

Experimental procedures were identical to those outlined in Chapter 5. Stimuli 

were comprised of 180 everyday household items and presented within a series of 

auctions to obtain WTP for each item. 

6.1.3.3. EEG recordings 

 EEG was recorded continuously using the 128-channel Geodesics EGI 

system (Electrical Geodesics, Inc., Eugene, Oregon, USA) with the sponge-based 

HydroCel Sensor Net. The sensor net was aligned with respect to three anatomical 

landmarks (two pre-auricular points and the nasion). Electrode-to-skin impedances 

were kept below 50kΩ and at equal levels across all electrodes as recommended for 

the system (Picton et al. 2000; Ferree et al. 2001; Luu et al. 2003). The sampling 

rate was 1000 Hz and electrode Cz was used as the initial reference. The recording 

bandpass filter was 0.1-200 Hz. 

6.1.3.4. Auction task  

The protocol for the auction task was adapted from previous studies 

(Plassmann et al., 2007, 2010) and employed the BDM mechanism (Becker et al., 

1964; Wilkinson & Klaes, 2012). Each stimulus was presented once in either a free 
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bid or forced bid protocol. After a 1 s fixation cross, a stimulus was presented on 

screen for 4 s, followed by the opportunity to bid on the item. In free bid trials, 

participants were able to bid their own WTP. In forced bid trials, participants were 

required to bid the amount shown on screen. After bid selection, feedback was 

presented indicating whether the auction was won or not. Further details of the 

auction procedure are described in Chapter 5. 

6.1.3.5. Split of WTP values 

The stimulus set was divided into two groups of high and low subjective value 

products for both the free bid and forced bid stimuli, in comparison to the three value 

categories utilised in Chapter 5. The reduced number of value categories is due to 

the smaller number of data epochs when synchronising data to stimulus onset 

compared to fixation onset. To avoid overlapping values between these conditions, 

stimuli were removed randomly so that there were four groups of equal size (low 

value free bids; low value forced bids; high value free bids; high value forced bids), 

with each value category containing unique WTP values that did not overlap with any 

other value category. An average of 155 ± 16.1 trials were submitted for analysis for 

each subject, giving 38.8 ± 4.02 trials per condition. 

6.1.3.6. ERP analysis 

For full details of pre-processing and artefact correction, see Chapter 5. ERPs 

were computed in response to stimulus onset for each level within conditions (low 

value free bids; low value forced bids; high value free bids; high value forced bids) by 

averaging respective epochs in the intervals ranging from 300 ms before image 

onset to 1000 ms after image onset. Data was baseline corrected using an interval of 

-300 to 0 ms relative to stimulus onset. Following artefact correction, an average of 

31.6 ± 4.57 trials per condition were analysed. 

6.1.3.7. Component clustering  

 ICA was carried out on the EEG data before fitting dipoles to the independent 

components using EEGLab (Delorme & Makeig, 2004). In order to identify similar 
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independent components across subjects, independent components were clustered 

using the EEGLab STUDY protocol. Firstly, independent components were excluded 

if they were not located within the brain, or if they had more than 30% residual 

variance. Secondly, independent components were clustered into 10 clusters using 

k-means clustering based on scalp map, ERP, spectra and dipole measures. Next, 

the most significant clusters were identified by computing 99% confidence intervals 

for the cluster ERP waveforms. If confidence intervals overlapped with zero, or the 

cluster contained independent components from less than half of the subjects, the 

cluster was excluded. 

6.1.4. Results 

6.1.4.1. Behavioural data 

 Mean WTP was calculated for each condition (see Figure 6.1). In the free bid 

condition, low value stimuli had an average WTP of £1 ± 0.76 and high value stimuli 

an average of £4.11 ± 1.37. In the forced bid condition, low value stimuli had an 

average WTP of £0.99 ± 0.94 and high value an average of £3.67 ± 1.7. As 

expected, high value stimuli elicited significantly increased WTP in comparison to 

low value stimuli, F(1,19) = 241, P < .001, ƞ𝑝
2 = 0.93. Free bid trials also elicited 

greater mean WTP than forced bid trials, F(1,19) = 4.62, P = .042, ƞ𝑝
2 = 0.2. 

Additionally, a significant interaction between value category and trial type was 

revealed, F(1,19) = 12.8, P = .001, ƞ𝑝
2 = 0.4. Post-hoc tests revealed a significant 

increase in WTP of high value stimuli in free bids in comparison to forced bids, t(19) 

= 2.85, P = .009, d = 0.28. 

Figure 6.1. Mean WTP for low and high 

value items in both free and forced bid 

conditions. Significant differences between 

conditions are also shown. P < .05 = *; P < 

.01 = **; P < .001 = ***. 
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6.1.4.2. Event-related potentials 

 After clustering independent components into 10 clusters, one cluster was 

excluded since it contained components from only 9 of the 20 subjects. The 

remaining nine clusters all had confidence intervals that did not overlap with zero at 

the peak of the cluster ERP. Cluster 3 showed activation over a left frontal region, 

likely originating from the parahippocampal gyrus (approximate Talairach 

coordinates: x = -28 mm, y = -44 mm, z = 4 mm). Cluster 4 had a prevalence over 

the vertex and the occipital lobe, with a dipole centroid in the cingulate gyrus 

(Brodmann area 24; approximate Talairach coordinates: x = 5 mm, y = 5 mm, z = 32 

mm). Cluster 5 was also located within the cingulate gyrus (Brodmann area 31; 

approximate Talairach coordinates: x = 16 mm, y = -42 mm, z = 33 mm), but with a 

prevalence extending more over the right hemisphere. Cluster 6 produced activation 

over a posterior region and bilaterally over a frontal area originating in the posterior 

cingulate cortex (Brodmann area 30; approximate Talairach coordinates: x = 17 mm, 

y = -59 mm, z = 4 mm). Cluster 8 produced a similar topography, originating in the 

perirhinal cortex (Brodmann area 35; approximate Talairach coordinates: x = 0.4 

mm, y = -53 mm, z = -29 mm). Cluster 9 produced activation over the vertex and 

central parietal region, and the dipole centroid was located in the cuneus (Brodmann 

area 18; approximate Talairach coordinates: x = -8 mm, y = -70 mm, z = 17 mm). 

Similar to cluster 3, cluster 10 was also located within the parahippocampal gyrus 

(approximate Talairach coordinates: x = 29 mm, y = -22 mm, z = -16 mm), but with 

activation being spread over the right scalp region. Cluster 11 was dominant over the 

vertex and the left occipital region, originating in the thalamus (approximate 

Talairach coordinates: x = 0 mm, y = -25 mm, z = 11 mm). Finally, cluster 12 was the 

third cluster to be located within the cingulate gyrus (Brodmann area 31; 

approximate Talairach coordinates: x = -13 mm, y = -29 mm, z = 45 mm), but with a 

different dipole orientation producing activity over the left occipital region. Figure 6.2 

summarises the scalp map for each cluster and the corresponding ERP.  

 In order to test for the influence of value category and trial type on cluster 

activation, the ERP for each cluster was submitted to a permutation-based repeated-

measures ANOVA utilising 5000 permutations, limited to the latency intervals 

ranging from 80 to 600 ms to capture only the relevant ERP components. Subjects 
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can contribute more than one independent component to a cluster, and subjects do 

not necessarily contribute an equal number of components within any cluster. 

Hence, independent components belonging to the same subject within a cluster were 

summated to allow appropriate hypothesis testing. To restrict analysis to the most 

significant effects, latencies containing significant effects must have an absolute 

component activation that exceeds 3 standard deviations of the mean baseline 

amplitude. Significant effects also had to be observed for a minimum of 10 ms. 

 

Figure 6.2. Scalp map, ERP waveform and component dipoles for each cluster that passed 
the confidence interval test. The number of subjects contributing components to the cluster, 
as well as the total number of components present in the cluster, are reported. 
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 Figure 6.3A illustrates three main effects of trial type. Firstly, significantly 

increased cluster activation was observed for forced bids (-0.09 ± 0.13) in 

comparison to free bids (0.01 ± 0.09) between 563 and 570 ms in cluster 3, F(1,12) = 

4.87, P = .047, a cluster with prevalence over a left frontal region. Secondly, cluster 

4, which had a spatial maximum over the vertex and an occipital region, 

demonstrated significantly increased activation between 262 and 272 ms for free 

bids (0.27 ± 0.24) in comparison to forced bids (0.19 ± 0.22), F(1,11) = 8.58, P = .01. 

Lastly, the vertex and occipital activation of cluster 5 demonstrated increased 

activation between 486 and 502 ms for free bids (-0.15 ± 0.21) compared to forced 

bids (-0.02 ± 0.18), F(1,16) = 7.07, P = .016. 

 

Figure 6.3. Latencies demonstrating main effects of trial type (A) and value category (B). An 
interaction between trial type and value is also shown (C). For each effect, the grand 
average ERP waveform is shown, along with a bar graph illustrating results from post-hoc 
testing. 

 A total of eight main effects of value category are summarised in Figure 6.3B. 

Two significant latencies were observed for cluster 3, which was characterised by 

activation over a left frontal area of the scalp. Firstly, significantly increased 

activation was elicited for high value items (-0.19 ± 0.27) between 235 and 250 ms 
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compared to low value items (-0.13 ± 0.21), F(1,12) = 5.84, P = .031. Secondly, 

increased activation was observed between 451 and 461 ms for high value items (-

0.1 ± 0.12) compared to low value (-0.03 ± 0.1), F(1,12) = 6.16, P = .024. For cluster 

4, a cluster which produced activation over the posterior and vertex region of the 

scalp, increased activation between 233 and 243 ms was observed for high value 

items (0.23 ± 0.23) compared to low value (0.14 ± 0.14), F(1,11) = 5.1, P = .037. 

Cluster 5, a cluster which had a spatial maximum over a vertex and posterior region, 

demonstrated increased power between 504 and 566 ms for high value items (-0.1 ± 

0.14) in comparison to low value (0.02 ± 0.15), F(1,16) = 11, P = .003. A single main 

effect was revealed within the posterior activation of cluster 8 between 205 and 236 

ms, with larger activation for low value items (0.25 ± 0.26) than for high value (0.12 ± 

0.14), F(1,11) = 9.31, P = .01. Three main effects were observed for cluster 12 which 

was prevalent across the vertex. Firstly, between 275 and 285 ms there was 

increased activity for high value products (-0.43 ± 0.33) compared to low value (-0.37 

± 0.31), F(1,11) = 4.98, P = .04. Secondly, increased activation was found for high 

value items (-0.28 ± 0.22) compared to low value (-0.16 ± 0.16), F(1,11) = 9.67, P < 

.007. Lastly, larger amplitude was observed for high value items (-0.18 ± 0.17) in 

comparison to low value (-0.04 ± 0.09), F(1,11) = 7.22, P = 0.023. 

 Figure 6.3C shows a single interaction between trial type and value category 

observed in cluster 12 between 243 and 355 ms, F(1,11) = 12.2, P = .006. Post-hoc 

testing revealed that in the free bid trials, significantly increased activation was 

observed for high value items (-0.46 ± 0.46) in comparison to low value items (-0.28 

± 0.36), t(11) = 3.79, P = .001. No other significant differences were revealed. 

6.1.5. Discussion 

 The present study aimed to reveal whether comparable brain activations were 

observed at the point of stimulus onset in comparison to those previously detected 

during free viewing. Similar to our previous study (Tyson-Carr et al., in press), we 

observed unique brain activations for low and high value products. High value 

products were encoded in similar scalp patterns across both studies with electrical 

potentials observed across a posterior region of the left scalp area, as well as over 

the vertex. Low value products elicited activation that extended over a right scalp 
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region in both studies. Second to these scalp patterns, we also highlighted the 

importance of the cingulate gyrus in the valuation of high value products, extending 

on our previous study. Additionally, high value items produced significantly increased 

activation in two approximate latency intervals between 230 and 290 ms, and also 

between 450 and 600 ms, whereas low value items produced significantly increased 

activation between 200 and 240 ms. Lastly, the observed differentiation of value as 

early as 230 ms provided further evidence for the automaticity of brain valuation. 

 Previous studies have frequently illustrated the encoding of value in specific 

ERP components. For example, the P3 component is a positive wave occurring 

approximately 300 ms following stimulus onset (Nieuwenhuis et al., 2005) and has 

been shown to be an index of motivational significance (Duncan-Johnson & Donchin, 

1977). Although many studies have demonstrated either the bias of the P3 towards 

negative outcomes (Ito & Cacioppo, 2000; Ito et al., 1998) or an insensitivity of the 

P3 to valence (Keil et al., 2002; Yeung & Sanfey, 2004), alternative findings have 

been reported. For example, Yeung and Sanfey (2004) also reported the encoding of 

reward magnitude within the P3. Additionally, a previous study revealed an 

enhanced P3 in response to positive feedback in comparison to negative feedback 

(Hajcak et al., 2005; Johnson & Donchin, 1985). The present study observed 

increased cluster activation in various latencies between 230 and 290 ms for high 

value products, implicating an early P3 component in the valuation of high value 

products. High value products also elicited increased cluster activation in a delayed 

latency window, occurring between 450 and 600 ms. This latency corresponds to the 

late positive potential (LPP) which is a slow-wave deflection occurring after 300 ms 

(Chen et al., 2010), with a similar scalp distribution to the P3 (Cacioppo et al., 1994). 

The LPP is another ERP component frequently implicated in economic decision-

making research (Hakim & Levy, 2019), albeit indirectly due to its role in emotional 

processing.  A study by Hajcak and Olvet (2008) revealed enhanced LPP power for 

emotional stimuli, irrespective of valence, demonstrating the role of the LPP in 

emotional processing. The LPP has also related to consumer herding whereby 

increased LPP power indexed a consumers’ purchase intent when provided only with 

other consumers’ perceptions of a product (Chen et al., 2010). The current study 

extends on these findings, providing evidence for the role of the LPP in the encoding 

of high value products. Finally, differences relating to the P3 and LPP were seen 
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primarily for clusters localised to the cingulate gyrus, encompassing both the 

posterior and anterior cingulate cortices. This corresponds to a meta-analysis 

highlighting the crucial role of the posterior cingulate cortex in a domain-general 

valuation system (Clithero & Rangel, 2014).  

 An interaction was revealed in one cluster between trial type and value 

category. In their two studies, Plassmann et al. (2007, 2010) reasoned that 

correlations between subjective value and the haemodynamic response within free 

bids alone would constitute a neural signal of subjective valuation specifically. 

Similar to their findings, we report here an increased activation for high value 

products in the free bid trials alone. This provides strong evidence for a brain 

component representing subjective valuation specifically in the latency of a late N2 

or early onset P3 component between approximately 240 and 360 ms.  

 A single cluster encoded the value of low value products between 

approximately 200 and 240 ms. This latency corresponds to the N2 ERP component, 

a deflection occurring after 200 ms (Folstein & Van Petten, 2008) and this 

component has various functions associated with it in subjective valuation research. 

For example, increased N2 has been observed for high reward or preferred targets 

(Kiss et al., 2009; Telpaz et al., 2015) and automatic preference encoding (Goto et 

al., 2017). However, our recent paper revealed increased N2 over a right frontal 

region for low value products at a similar latency (Tyson-Carr et al., 2018), with a 

very similar scalp distribution but different source localisation results. The current 

study localised the nearest Brodmann area as being the perirhinal cortex, a region 

associated with memory and object recognition (Murray & Bussey, 1999; Murray & 

Richmond, 2001). The perirhinal cortex also has connections with the orbitofrontal 

cortex and regions of the insula (Kondo, Saleem, & Price, 2005), regions that are 

frequently reported to be involved in subjective valuation (Kuhnen & Knutson, 2005; 

McGinty et al., 2016). However, these findings are heavily speculative given the 

limited spatial resolution of EEG techniques, especially in these cortices that are 

located a large distance from the scalp.  

 Significantly increased cluster activation was revealed within one cluster for 

forced bids in comparison to free bids at approximately 570 ms following stimulus 

onset. It could be reasoned that the one task demand that forced bids require is the 
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utilisation of memory processes to remember the value in which they are required to 

bid. It has been shown that memory related processes are related to P3 and late 

positive components occurring after 300 ms (Klimesch, Schimke, & Schwaiger, 

1994), which is similar to the effect observed in the current study. Additionally, the 

nearest Brodmann area associated with this cluster centroid is the retrosplenial 

cortex, a region implicated in memory processes (Vann, Aggleton, & Maguire, 2009). 

Again, however, this is heavily speculative given the limited spatial resolution of 

EEG. 

 To conclude, the current study provided evidence for the rapid, but coarse, 

encoding of subjective value in brain responses in the time interval immediately 

following stimulus onset. Findings reported in Chapter 5 suggested the neural 

representation of value that was built and maintained over an extended period of free 

viewing. However, the current results suggest that these representations are already 

present immediately following stimulus presentation without need for further, 

conscious deliberation. Moreover, the current findings reiterate the lateralisation of 

neural responses to low and high value items in the right and left hemispheres 

respectively, providing further support for the lateralisation of brain responses to 

subjective value observed in Chapter 5. The immediate representation of subjective 

value emphasises the automaticity of brain valuation. 
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7.1. Evaluation of product bundles: an eye-fixation related potentials 

study 

7.1.1. Abstract 

The subjective value of product bundles often falls short of the sum of the 

constituent product valuations, an effect referred to as sub-additivity. Using 

electroencephalographic eye-fixation related potentials, the present study aimed to 

investigate the neural representation of bundle valuation and the resulting sub-

additivity observed when pairing disparately priced products of varying 

complementarity. 

 Participants completed a Becker-DeGroot-Marschak auction task, producing 

willingness-to-pay for a set of individual products and complementary/non-

complementary product bundles. All stimuli were split into low and high value based 

on subjective willingness-to-pay. Neural activity in response to fixation onset was 

extracted and submitted to an ICA to identify unique cortical activation patterns 

representing economic valuation. Independent components were clustered across 

subjects to identify common brain components across subjects. 

 Participant WTP was increased for complementary bundles in comparison to 

non-complementary bundles. Further to this, sub-additivity increased as the price 

disparity between bundle constituents increased. A single cluster of brain 

components demonstrated increased activation for low value products and non-

complementary bundles, originating from the right insula. Increased activation within 

a second cluster of brain components was observed for high-value products and 

product bundles, originating in the precuneus. Furthermore, activity in the high value 

encoding cluster was significantly modulated by mean bundle additivity. 

 Results provide further evidence of sub-additive effects for product bundles 

characterised by reduced product complementarity and increased price disparity. 

Results also indicate the presence of a neural representation of this additivity, 

possibly within the precuneus, which also responded primarily to high value 

products. Similar to previous studies, low value products elicited activity over the 

right scalp region, potentially originating from the right insula, a region commonly 

implicated in negative motivation.  
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7.1.2. Introduction 

 Product bundling is a potent method employed by companies to maximise 

profits. Although product bundling takes many forms (Simon & Fassnacht, 1993), it 

generally entails the grouping of at least two products into a singly priced package 

(Fang et al., 2017). Although benefiting retailers (Naylor & Frank, 2001), it does not 

preclude benefits for the consumer and bundling often provides monetary savings for 

the consumer (Yan & Bandyopadhyay, 2011).  

Price framing, the shifting of preferences from the presentation of identical 

information in different ways, is also highly relevant for bundle pricing (Khan & Dhar, 

2010). Zero-pricing is the practice of offering add-on products for free and can 

significantly enhance perceived values, possibly due to the inflation of benefits and 

deflation of costs associated with the service (Hüttel et al., 2018; Shampanier et al., 

2007), and induce reciprocity social-norms to encourage acceptance of non-

monetary costs such as advertising (Hüttel et al., 2018). A further line of research 

has also investigated the possible benefit of, instead of offering a component within a 

bundle as being free, but offering it a very small token price if purchased within the 

bundle (Palmeira, 2011). It has been shown that this small fee can increase 

purchase intention and the perceived attractiveness of the purchase in comparison 

to offering an upgrade at a zero-price (Mao, 2016). 

Multiple factors can influence bundle valuations by an individual. Super-

additivity, which is the subjective value of a bundle extending beyond the sum of its 

components, is frequently observed. For example, when several components only 

offer benefit as a composite, especially if an individual is not familiar enough with the 

product to buy the components individually (Simonson, Carmon, & O'Curry, 1994). 

Individuals may also prefer consolidated costs (Naylor & Frank, 2001), possibly due 

to the integration of losses (Thaler, 1985). Component complementarity is also 

crucial (Economides, 1996), since it increases functionality between the products 

(Estelami, 1999), reduces the need for product advertising (Yan, Myers, Wang, & 

Ghose, 2014) and increases purchase intent (Harlam et al., 1995). It has been 

summarised by Guiltinan (1987) that super-additivity may be due to saving time and 

effort from obtaining products in a single package, the enhanced experience from 
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obtaining a secondary product, or the enhancement to overall image of the seller for 

the variety provided.  

Conversely, there is evidence for scenarios whereby the additions of extra 

features can reduce overall purchase intentions (Hsee, 1998; List, 2002). Sub-

additivity is observed when bundle valuations fall short of the sum of their 

components. This has been demonstrated when individuals infer the price of a 

bundle based on the known value of low-value component when the value of the 

high-value component is uncertain (Popkowski Leszczyc et al., 2008). Similarly, 

extra features can reduce purchase intent if value of the main component is 

uncertain, possible due to an additional component leading individuals to make 

inferences of reduced quality, the dilution of high value aspects from an unneeded 

feature, the averaging of value across all components, or attention drawn from the 

high value to the low value component (Simonson et al., 1994). 

Measuring purchase intentions and subjective valuations is critical to 

understand preferences (Schultz, 2017), and these valuations need to be measured 

reliably. One such method is through auction tasks such as the Becker-DeGroot-

Marschak (BDM) auction paradigm (Becker et al., 1964) which reveals willingness-

to-pay (WTP) for goods and prospects. This method is utilised in decision making 

research frequently (Chib et al., 2009; Grueschow et al., 2015; Hare et al., 2008; 

Harris et al., 2011; Peters & Büchel, 2010; Plassmann et al., 2007, 2010; Roberts et 

al., 2018; Tyson-Carr et al., 2018; Weber et al., 2007). 

Neuroscience research has aimed to uncover the neural underpinnings 

governing valuation behaviour in a variety of contexts. Typically, these experiments 

utilise the exceptional spatial resolution of functional magnetic resonance imaging 

(fMRI) to detect the brain structures responsible for valuation. Meta-analytic methods 

suggest the importance of the ventromedial prefrontal cortex, the orbitofrontal cortex 

and the ventral striatum in carrying out subjective valuations (Bartra et al., 2013; 

Chib et al., 2009; Clithero & Rangel, 2014; Lebreton et al., 2009; Levy & Glimcher, 

2012), and it is likely to be an automatic process (Grueschow et al., 2015; 

Plassmann et al., 2007, 2010; Polania et al., 2014; Tyson-Carr et al., 2018).  

 Whilst the spatial aspects of valuation are critical, these methods do not 

permit investigation of the temporal aspects of valuation behaviours given their 
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relatively poor temporal resolution (Shmuel & Maier, 2015). Valence encoding has 

been associated with EEG components such as the N1, N2, P2 and P3 (Lithari et al., 

2010), and also the LPP (Huang & Luo, 2006; Schupp et al., 2004b). Importantly, 

signals relating directly to value have been observed in latencies as early as 150 ms 

(Harris et al., 2011; Larsen & O'Doherty, 2014; Tzovara et al., 2015) and the N2 

component is frequently implicated. Various forms of the N2 have been shown to be 

related to encoding product preference (Telpaz et al., 2015), the encoding of low 

value products (Tyson-Carr et al., 2018), play a role in counter-conformity decisions 

(Gajewski et al., 2016), and the encoding of high reward targets (Kiss et al., 2009). 

Another critical EEG component in economic decision making is the late positive 

potential (LPP). Pozharliev, Verbeke, Van Strien, and Bagozzi (2015) observed an 

increased LPP for luxury products in comparison to basic branded products. 

Furthermore, Goto et al. (2017) implicated both the N2 and LPP in their research, 

positing that the N2 may be responsible for automatic preference calculation, 

whereas the LPP may reflect preferences as a result of deliberate cognitive 

processing.  

 The strong influence of framing on purchase intentions has resulted in 

investigation into the neural underpinnings of such framing effects in relation to 

purchase decisions. An fMRI study by Votinov et al. (2016) revealed the importance 

of the choice network, comprised of the inferior parietal lobe, the posterior cingulate 

cortex (PCC) and the medial prefrontal cortex, in preference changes as a result of 

zero-pricing. Additionally, activation within the medial prefrontal cortex correlated 

with happiness ratings of getting the free products. In relation to bundle presentation, 

Ma, Mo, Zhang, Wang, and Fu (2018) revealed that presenting bundles of two 

products wherein one of the components was indicated as being free resulted in 

higher purchase rates. Using an ERP design, the authors also revealed how the 

power of the LPP in response to bundle presentation was increased for zero-pricing 

relative to normal pricing. 

 The present study had three primary aims. Firstly, the study aimed to reveal 

the processes underpinning brain valuation, specifically for product bundles. The 

explicit representation of subjective value within neural responses measured by 

means of EEG has been shown in our previous studies (Tyson-Carr et al., 2018; 

Tyson-Carr et al., in press). To extend on these previous findings, the neural 
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representation of bundle valuation was examined here. Secondly, brain responses to 

additivity were investigated to reveal patterns of activation explained by observed 

additivity from product bundling. Lastly, the impact of product complementarity on 

bundle valuation is to be examined, as well its impact on resulting brain responses. 

These aims were achieved by examining the neural responses to the valuation of 

products and product bundles in the context of a BDM auction, whereby product 

bundles were comprised of two disparately priced products with varying levels of 

complementarity. 

7.1.3. Methods 

7.1.3.1. Participants 

 A total of 25 healthy participants took part in the experiment (9 female) having 

a mean age of 23.1 ± 3.41 years (mean ± SD). Due to technical issues with EEG 

recordings, data from 5 participants were excluded, as well as a further 5 participants 

being excluded due to excessively noisy EEG data, resulting in a total of 15 

participants being submitted for analysis. The experimental procedures were 

approved by the Research Ethics Committee of the University of Liverpool. All 

participants gave written informed consent in accordance with the declaration of 

Helsinki. Participants were reimbursed for their time and travel expenses.  

7.1.3.2. Procedure 

All experimental procedures were carried out in a dimly lit, sound attenuated 

room. Participants sat in front of a 29-inch LCD monitor. The experimental procedure 

was carried out in a single experimental session involving two computerised tasks. 

Firstly, participants completed a standard BDM auction task including 140 stimuli, 70 

of which were priced between £0 and £4 (low value), and 70 priced between £8 and 

£12 (high value) in a shopping catalogue. These stimuli were also grouped to 

produce a product bundle condition consisting of one low value and one high value 

product, producing 70 unique product bundles. In addition, each bundle belonged to 

one of two conditions. In 35 of the bundles, the products within the bundle were 

complementary, whilst 35 bundles contain non-complementary products. This 

resulted in 140 trials involving the individual presentation of stimuli and 70 trials 
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involving product bundles for a total of 210 trials. Secondly, participants completed a 

computer task wherein they rated product bundles on the similarity of the products 

within the bundle. This was done using a visual analogue scale ranging from “No 

Similarity” to “Very Similar” and followed the main task. This data was used to 

confirm bundle complementarity. Presentation of stimuli was controlled using Cogent 

2000 (UCL, London, UK) in MATLAB 7.8 (MathWorks, Inc., USA). 

7.1.3.3. EEG recordings 

EEG was recorded continuously using the 128-channel Geodesics EGI 

system (Electrical Geodesics, Inc., Eugene, Oregon, USA) with the sponge-based 

HydroCel Sensor Net. The sensor net was aligned with respect to three anatomical 

landmarks (two pre-auricular points and the nasion). Electrode-to-skin impedances 

were kept below 50kΩ and at equal levels across all electrodes as recommended for 

the system (Ferree et al., 2001; Luu et al., 2003; Picton et al., 2000). The sampling 

rate was 1000 Hz and electrode Cz was used as the initial reference. Data was 

filtered online using a 0.1-200 Hz bandpass filter. 

7.1.3.4. Eye-tracking recordings 

Gaze positions were taken using the Pupil head-mountable eye-tracker 

(Kassner et al., 2014). Pupils were tracked using monocular tracking with a 200 Hz 

camera, whilst the world view camera was recorded at 60 Hz. Gaze tracking was 

calibrated using a 9-point marker calibration procedure on the stimulus presentation 

monitor. Gaze tracking accuracy was confirmed using a simple marker tracking 

protocol to confirm accuracy was within 1° of visual angle. Pupil Capture software 

was used for data collection. Pupil Player software was used for data visualisation 

and raw data exporting. 

During the auction task, a series of digital surface markers were placed in 

each corner of the screen in order to define the surface of the monitor display. These 

markers were displayed continuously throughout the trials. Offline surface detection 

was carried out post data-collection but prior to fixation detection to allow fixations to 

be localised relative to the surface.  
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7.1.3.5. Auction task 

 The protocol for the auction task (see Figure 7.1) employed the standard BDM 

auction mechanism (Becker et al., 1964; Wilkinson & Klaes, 2012). Each of the 140 

stimuli were presented either individually, or as part of a complementary or non-

complementary product bundle giving a total of 210 auctions. 

 Each trial consisted of a fixation cross followed by stimulus presentation. If a 

single product was presented, it was presented centrally on the screen. If a product 

bundle was presented, the products were placed side-by-side and placed centrally 

on the screen. After 4 s of image presentation, the image disappeared, and 

participants were free to bid on the product(s). During the bidding stage, a series of 

boxes were displayed, each indicating a single monetary amount that could be put 

forward as a bid. These prices varied uniformly between £0 and £16 in increments of 

£1, giving a total of 17 options. The trial was concluded when the participant did not 

move the mouse cursor for 3 s, upon which feedback was presented indicating 

whether the auction was won or not. Auction outcome was dependent on a randomly 

generated integer ranging between 0 and 16 wherein an auction was won when 𝑏 ≥

𝑟, where b represents the bid and r represents the randomly generated number for 

that auction. Following the experiment, a single auction was selected at random and 

the outcome was implemented. Here, the participant’s endowment of £16 was 

reduced by an amount equal to r for the implemented auction. The item(s) purchased 

could be picked up within a few days of completion of the experiment.  

 

Figure 7.1. Experimental protocol. A fixation presented for 1 s is followed by an image of 
either a product or product bundle for 4 s. Following image offset, subjects are free to bid 
their own WTP for the product(s). Following bid offset, feedback is presented for 1 s 
indicating the outcome of the auction. 
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7.1.3.6. Split of WTP values 

 Following completion of the auction task, the subjective WTP ratings for all 

stimuli were split into low and high value with no overlap in value between value 

categories. Overlap in value between categories was accounted for by removing 

stimuli with identical WTP randomly from either side of the split, which had the added 

benefit of equalising the number of stimuli in each category. This was done for 

products presented individually and as bundles separately, producing two conditions 

corresponding to low and high value for individually presented products as well as 

bundles (Low Value Products; High Value Products; Low Value Bundles; High Value 

Bundles). Following this procedure, there was a mean of 64.4 ± 4.16 trials remaining 

in both the low and high value category for individually presented bundles, and 32.7 

± 2.03 trials for both the low and high value category in the bundle condition. 

 To ensure that each bundle comprised a single low and high value item, the 

difference in WTP between products within each bundle was calculated. If the 

absolute difference exceeded £1, then the bundle was excluded from further 

analysis. 

7.1.3.7. EEG pre-processing 

 EEG data were pre-processed using BESA v. 6.0 program (MEGIS GmbH, 

Munich, Germany). Oculographic artefacts and electrocardiographic artefacts were 

removed using principle component analysis based on averaged eye-blinks and 

artefact topographies (Berg & Scherg, 1994). Data were also visually inspected for 

the presence of artefacts. Data were filtered from 0.5-45 Hz and exported to EEGLab 

(Delorme & Makeig, 2004) for further processing. 

7.1.3.8. Eye-fixation detection 

 Raw eye-tracking data during image presentation was exported using the 

Pupil Player software for fixation detection. The event detection algorithm selected 

was the identification by two-means clustering (I2MC) algorithm (Hessels et al., 

2017), chosen for its ability to detect fixation events in a wide range of noise levels. 

Events were detected using the X and Y coordinates of gaze positions (in pixels) on 



126 

 

the computer monitor and a viewing distance of 80 cm. This produced a set of 

fixation events synchronised to fixation onset.  

 A mean of 2340 ± 165 fixations were extracted for each subject across all 

trials, with a mean of 11.1 ± 0.79 fixations per trial. Since stimuli were removed due 

to the splitting of WTP categories, and also due to bundles containing products of 

equal value, this reduced the mean number of fixations per subject to 1976 ± 231 

and 10.6 ± 0.79 fixations per trial. Eye-movement characteristics were calculated 

and fixations with a fixation duration of < 150 ms, saccade amplitude of > 10°, or 

saccade duration of > 100 ms were excluded. A fixation duration of 150 ms is 

frequently used in eye-tracking literature as the minimum threshold for a relevant 

fixation (Nyström & Holmqvist, 2010). Saccade amplitudes of > 10° would indicate 

that a fixation was made following a saccade extending beyond the computer 

monitor, and a saccade duration of > 100 ms is beyond what is expected of typical 

fixations (Rayner, 1998), or could indicate fixation offset or onset could not be 

accurately located. These criteria resulted in a mean of 1426 ± 159 fixations per 

subject and 8.07 ± 0.74 fixations per trial. Finally, fixations were removed if they 

overlapped with an artefact in the EEG data, producing a mean of 1182 ± 169 

fixations per subject and 7.06 ± 0.8 fixations per trial. Ultimately, this produced 376 ± 

71.6 fixations per subject for the low value condition and 443 ± 68.1 for high value. 

Low and high value bundles were also split into complementary and non-

complementary products, resulting in 80.9 ± 25.5 fixations per subject in the low 

value complementary bundles, 98.5 ± 22.7 in the high value complementary 

condition, 94.1 ± 20.4 in the low value non-complementary bundle and 89.5 ± 16.7 in 

the high value non-complementary bundles. 

7.1.3.9. Eye-fixation related potentials 

 A TTL pulse input into the EEG data was used to indicate stimulus onset for 

each trial. This, along with stimulus onset as shown in the world-view camera of the 

eye-tracker, allowed for the synchronisation of the EEG and eye-tracker. 

 EFRPs were computed in response to fixation onset and separately for each 

condition (low value products, high value products, low value complementary 

bundles, high value complementary bundles, low value non-complementary bundles, 
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high value non-complementary bundles) by averaging epochs ranging in the latency 

from -200 to 600 ms respective to fixation onset and using an individual baseline 

correction in the time window -200 to -100 ms. The baseline period was used due to 

its avoidance of the saccadic spike potential (SP) originating from the initiation of a 

saccade that occurs immediately before fixations (Nikolaev et al., 2016).  

7.1.3.10. Component clustering  

 EFRPs were analysed using the STUDY protocol implemented in the EEGLab 

toolbox (Delorme & Makeig, 2004) which allows for the clustering of independent 

components (ICs) across subjects. Firstly, an ICA was carried out for the data from 

each subject to produce a set of ICs for each subject and dipole fitting was carried 

out. To restrict analysis to the most relevant components, dipoles with more than 

40% residual variance were excluded. Scalp, ERP, spectra and dipole component 

measures were computed for the remaining ICs, before being clustered using k-

means clustering into 15 component clusters. To identify the most significant 

clusters, confidence intervals were computed on the ERP for each cluster and were 

analysed further if 99% confidence intervals exceeded zero at the peak of the cluster 

power. If the confidence interval overlapped with zero, the cluster was excluded. 

Additionally, clusters were excluded if less than half of the subjects contributed at 

least a single IC to the cluster. 

7.1.4. Results 

7.1.4.1. Behavioural data 

 Mean bundle WTP was calculated to determine any significant differences 

between complementary and non-complementary bundles. In order to highlight the 

effects of pairing disparately priced products on bundle valuations, based on 

individual subject WTP, product bundles comprised of equally priced products were 

required to be removed. However, in order to investigate the impact of 

complementarity directly, bundle WTP was calculated prior to any exclusion of 

stimuli as to avoid biasing the data. Any t-tests or analysis of variance (ANOVA) 

carried out are permutation-based utilising 5000 permutations. Complementary 

bundles were found to have a mean WTP of £6.65 ± 2.14 whilst non-complementary 
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bundles had a mean of £6.29 ± 2.3, which a paired-samples t-test revealed to be 

significantly different, t(14) = 3.76, P = .001. To ensure this difference can be 

attributed to the modulation of complementariness, and rather just due to inherently 

more expensive products forming the bundles, a further analysis was carried out. 

Here, the supermarket value of the products and bundles were calculated and 

subtracted from the corresponding WTP. This analysis revealed that complementary 

bundles produced a WTP £5.23 ± 2.14 below the supermarket value of the stimuli, 

whereas non-complementary bundles were £6.11 ± 2.3 below the objective value, 

indicating a mean difference of £0.88. These two values were significantly different, 

t(14) = 9.17, P < .001, indicating that WTP was influenced by the manipulation of 

complementariness and the presence of complementary products increases WTP.  

Similarity ratings indicated that the pairing of products within bundles was 

appropriate, with complementary bundles producing a mean similarity rating of 0.76 

± 0.1 and non-complementary bundles a mean of 0.07 ± 0.08. 

Next, bundles were removed that were comprised of two products of equal 

value, i.e. bundles were required to have a disparity of at least £1 between the 

products within it, allowing us to investigate bundles that were made up of a single 

high and low value product. The bundle additivity was then calculated by subtracting 

the sum of the WTP of the products within the bundle from the bundle WTP. A mean 

bid additivity of -£0.89 ± 0.79 was observed for complementary bundles and -£1.04 ± 

0.8 for non-complementary bundles, which were not significantly different from each 

other, t(14) = 0.94, P = .355.  

To further investigate additivity, it was hypothesised that the additive effect 

would be dependent on the disparity between the WTP of the products within the 

bundles. To investigate this, a regression model was built for each subject with the 

bundle product WTP disparity as a predictor and bundle additivity as the response. A 

mean R2 of 0.1 ± 0.08 was revealed, which was significantly different from zero, t(14) 

= 4.74, P < .001, and a mean β of -0.28 ± 0.21. In order to test whether this disparity 

dependent sub-additive effect was different between complementary and non-

complementary bundles, the same models were computed separately for 

complementary bundles, R2 = 0.09 ± 0.08; β = -0.29 ± 0.25, and non-complementary 

bundles, R2 = 0.13 ± 0.18; β = -0.26 ± 0.25. No significant differences were found 
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between these two groups, although the R2 values were both significantly different 

from zero (P < .05). Thus, although price disparity significantly modulated the sub-

additive effect, the price disparity between products did not differentially influence 

sub-additivity between complementary and non-complementary bundles. 

 Mean WTP was calculated for each condition following the split of stimuli into 

the appropriate conditions (see Figure 7.2). Here, stimuli were further pruned to 

equalise the number of stimuli comprising the individual product conditions and 

product bundle conditions separately. A mean of £1.44 ± 0.65 was found for low 

value products, £6.06 ± 1.87 for high value products, £3.82 ± 1.91 for low value 

complements, £9.51 ± 2.5 for high value complements, £4.02 ± 1.87 for low value 

non-complements and £8.83 ± 2.71 for high value non-complements. WTP values 

were compared between conditions, but within trial types. As expected, high value 

products produced significantly higher WTP ratings than low value products, t(14) = 

12.7, P < .001. A 2×2 ANOVA for repeated measures revealed that complementary 

bundles produced similar WTP values to non-complementary bundles, F(1,14) = 

5.08, P = .051, and high value bundles had significantly higher WTP than low value 

bundles, F(1,14) = 339, P < .001. An interaction was also found between 

complementariness and value, F(1,14) = 8.33, P = .007. Post-hoc testing revealed 

that whilst low value complementary bundles had similar WTP to low value non-

complementary bundles, t(14) = 1.82, P = .088, high value complementary bundles 

produced significantly higher WTP than high value non-complementary bundles, 

t(14) = 2.86, P = .013. This effect can likely be attributed to the fact that, as 

previously mentioned, complementary bundles produced inherently larger WTP than 

non-complementary bundles.  

 

Figure 7.2. Mean stimulus WTP for each condition (LVP = Low Value Product; HVP = High 
Value Product; LVCB = Low Value Complementary Bundle; HVCB = High Value 
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Complementary Bundle; LVNCB = Low Value Non-Complementary Bundle; HVNCB = High 
Value Non-Complementary Bundle). 

7.1.4.2. Interim summary 

Complementary bundles elicited significantly increased WTP in comparison to 

non-complementary bundles and this effect was not explained by variations in the 

supermarket prices of the constituent products. When investigating only the bundles 

that were comprised of disparately priced products, a sub-additive effect was 

observed across both complementary and non-complementary bundles, though no 

significant differences in sub-additivity between bundle types were observed. 

However, regression analysis revealed that price disparity between constituent 

products predicted the resulting sub-additive valuations. 

7.1.4.3. Eye-movement parameters  

In order to illustrate fixation locations across the stimulus presentation screen, 

fixation locations and their corresponding latency were extracted and averaged for 

each subject. The fixation locations and durations were converted into a 40×40 

bivariate histogram to represent the distribution of fixations, and their corresponding 

duration, for each condition. Figure 7.3A illustrates the mean duration of fixations 

across the stimulus presentation screen during individual product trials. Next, a 

paired-samples t-test was carried out on each histogram bin to determine any 

differences in fixation duration between low and high value products. As expected, 

fixations are distributed across the region containing the stimulus, and no significant 

differences between conditions were observed, other than a small cluster of 

differences above the stimulus area. Hence, fixation durations were equally 

distributed between low and high value products. 

The same 40×40 bivariate histogram was computed for each condition within 

the product bundle trials. Figure 7.3B shows the distribution of fixation durations 

across the stimulus presentation monitor for each condition. Fixations were 

distributed between two regions of the screen, corresponding to the location of the 

two products comprising the bundle, however, there was a slight bias towards the 

product on the right side for all conditions. A 2×2 ANOVA was carried out for each 
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histogram bin with value (low value, high value) and complementarity 

(complementary, non-complementary) as independent variables. No significant main 

effects or interactions were observed, except for an interaction in a single bin on the 

bottom left region of the screen. Hence, fixation durations across the screen were 

equal between conditions within the product bundle trials. 

 

Figure 7.3. Distribution of fixation durations across the stimulus presentation monitor 

displayed in a 40×40 bivariate histogram. Fixation duration is measured in milliseconds per 
histogram bin. Differences between conditions within individual product trials (A) or within 
product bundle trials (B) are also shown (LVP = Low Value Product; HVP = High Value 
Product; LVCB = Low Value Complementary Bundle; HVCB = High Value Complementary 
Bundle; LVNCB = Low Value Non-Complementary Bundle; HVNCB = High Value Non-
Complementary Bundle). 
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 Eye-movement parameters were calculated to highlight any condition-wise 

differences that may influence further analyses (see Table 7.1). Two separate 

analyses were computed to compare eye-movements characteristics within each trial 

type separately. From here on out, all t-tests and ANOVAs are permutation-based 

utilising 5000 permutations. Firstly, a paired samples t-test was ran to compare low 

and high value products, revealing no significant differences between conditions in 

terms of fixation duration (P > .05). Significant differences were observed regarding 

saccade amplitude, t(14) = 2.86, P = .013, wherein fixations for low value products 

had smaller saccade amplitudes (3.15 ± 0.32) than those for high value products 

(3.26 ± 0.39). Secondly, a 2×2 ANOVA testing for differences within product bundles 

was carried out, with the two factors being bundle value (low value products, high 

value products) and bundle type (complementary bundles, non-complementary 

bundles). No main effects or interactions were found regarding fixation duration (P > 

.05). A significant interaction between value and bundle type was revealed for 

saccade amplitude, F(1,14) = 10.1, P = .007. Post-hoc t-tests revealed that high 

value complements resulted in fixations that had increased saccade amplitude (3.56 

±0.41) in comparison to both low value complements (3.33 ±0.42), t(14) = 4.34, P < 

.001, and high value non-complements (3.22 ± 0.39), t(14) = 4.19, P < .001. 

Table 7.1 
Mean ± SD fixation duration and saccade amplitude for individually presented products and 
product bundles. The circular mean and SD is also displayed for saccade direction (LVP = 
Low Value Product; HVP = High Value Product; LVCB = Low Value Complementary Bundle; 
HVCB = High Value Complementary Bundle; LVNCB = Low Value Non-Complementary 
Bundle; HVNCB = High Value Non-Complementary Bundle). 

 

 Saccade direction is classified as a circular data type. Thus, the appropriate 

descriptive and inferential analyses must be employed to investigate saccade 

 LVP HVP LVCB HVCB LVNCB HVNCB 

Fixation 
Duration  

(ms) 

356  
± 29.6 

349  
± 27.3 

322  
± 36.1 

305  
± 17.9 

313  
± 23.6 

315  
± 40.9 

Saccade 
Amplitude  

(°) 

3.15  
± 0.32 

3.26  
± 0.39 

3.33  
± 0.42 

3.56  
± 0.41 

3.41  
± 0.37 

3.22  
± 0.39 

Saccade 
Direction  

(°) 

262 
± 63 

351 
± 71.9 

315 
± 43.9 

77.3 
± 83.7 

22.6 
± 46.1 

80.1 
± 51.5 
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direction given its circularity. Here, we employed the bpnreg package (Cremers & 

Klugkist, 2018) implemented in R (R Core Team, 2018). A mixed effects model was 

produced to identify any condition-wise differences within the individual product 

trials. The model included only a single factor of value category with two levels (low 

value, high value). The 95% highest posterior density (HPD) intervals were extracted 

for each condition, an interval allowing probability statements about the parameters. 

The HPD intervals between low and high value products overlapped, indicating no 

differences in saccade direction between low and high value product conditions (see 

Figure 7.4). A second mixed-effects model was produced to determine any 

condition-wise differences within the product bundles conditions, comprised of two 

factors (trial type, value), each with two levels (individual product, product bundle; 

low value, high value). All HPD intervals overlapped with each other, indicating no 

significant differences within the product bundle conditions. Lastly, comparison of all 

HPD intervals between trial types indicated no differences in saccade direction 

between any conditions. Therefore, saccade direction was similar across all 

conditions. 

 

Figure 7.4. 95% HPD intervals for saccade direction. Mean circular direction is indicated by 
the black line (LVP = Low Value Product; HVP = High Value Product; LVCB = Low Value 
Complementary Bundle; HVCB = High Value Complementary Bundle; LVNCB = Low Value 
Non-Complementary Bundle; HVNCB = High Value Non-Complementary Bundle). 

 To test the plausibility of comparing product with bundle presentation trials, 

three more ANOVAs were carried out to compare eye-movement characteristics 

across all conditions. Here, each analysis consisted of a one-way ANOVA with 6 

conditions (low value products, high value products, low value complementary 

bundles, high value complementary bundles, low value non-complementary bundles, 
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high value non-complementary bundles) testing for differences between conditions 

regarding fixation duration and saccade amplitude. A main effect was revealed for 

fixation duration, F(5,70) = 14.5, P < .001, as well as saccade amplitude, F(5,70) = 

5.79, P < .001. P-values from post-hoc testing are summarised in Table 7.2 and 7.3 

for fixation duration and saccade amplitude respectively. Regarding saccade 

amplitude, differences are observed sporadically, and the largest absolute mean 

difference detected was 0.41°. In terms of fixation duration, differences were 

observed entirely between trial types with the greatest absolute mean difference 

being 50.8 ms. Due to the presence of slight differences in eye-movement 

characteristics between some conditions, any observed effects discussed from here 

on out will be subject to the appropriate covariate analyses to rule out the modulatory 

effect of saccade amplitude and fixation duration. 

 

Table 7.2 
P-values indicating any significant differences between conditions for saccade amplitude 
(LVP = Low Value Product; HVP = High Value Product; LVCB = Low Value Complementary 
Bundle; HVCB = High Value Complementary Bundle; LVNCB = Low Value Non-
Complementary Bundle; HVNCB = High Value Non-Complementary Bundle; * = P < .05; ** = 
P < .01; *** = P < .001). 

 

 

 

 

 

 HVP LVCB HVCB LVNCB HVNCB 

LVP .01 * .027 * < .001 *** .006 ** .427 

HVP - .408 .005 ** .053 .722 

LVCB - - < .001 *** .461 .142 

HVCB - - - .195 < .001 *** 

LVNCB - - - - .133 
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Table 7.3 
P-values indicating any significant differences between conditions for fixation duration (LVP 
= Low Value Product; HVP = High Value Product; LVCB = Low Value Complementary 
Bundle; HVCB = High Value Complementary Bundle; LVNCB = Low Value Non-
Complementary Bundle; HVNCB = High Value Non-Complementary Bundle; * = P < .05; ** = 
P < .01; *** = P < .001). 

 

7.1.4.4. Interim summary 

No significant differences were observed between conditions regarding the 

distribution of fixation durations across the stimulus presentation screen. To 

determine the potential impact of eye-movement characteristics on the observed 

differences in measured EEG, condition-wise differences in fixation duration, 

saccade amplitude and saccade direction were calculated. No differences in fixation 

duration or saccade direction where observed between low and high value products, 

and also between any low/high value or complementary/non-complementary 

bundles. High value products elicited significantly larger saccade sizes than low 

value products. Additionally, high value complementary bundles produced 

significantly larger saccade sizes in comparison to low value complementary bundles 

and high-value non-complementary bundles. However, the observed differences in 

saccade amplitudes were minimal.  

Eye-movement characteristics were also compared between trial types 

(individual products, product bundles) and their corresponding conditions. Significant 

differences in saccade amplitude were observed sporadically, however, the largest 

mean difference was 0.41º. Fixation duration was systematically different between 

 HVP LVCB HVCB LVNCB HVNCB 

LVP .125 .005 ** < .001 *** < .001 *** < .001 *** 

HVP - .01 ** < .001 *** < .001 *** < .001 *** 

LVCB - - .151 .291 .492 

HVCB - - - .21 .304 

LVNCB - - - - .835 
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trial types, whereby fixation duration for all product bundle conditions were 

significantly larger than the fixation duration for all individual product conditions. No 

significant differences in saccade direction were observed. 

7.1.4.5. Eye-fixation related potentials 

Clustered ICs obtained from EFRPs were compared between conditions to 

determine brain responses reflecting the observed behavioural differences in WTP 

and sub-additivity. Of the 15 clusters extracted, 10 clusters were excluded due to 

being represented across less than half the participants or having had confidence 

intervals that overlapped with zero at the peak of the cluster power. The scalp maps 

and waveforms for the remaining clusters are shown in Figure 7.5. Cluster 6 was 

represented over a right frontal region and source the cluster centroid was located 

within the insula of the right cerebrum (Brodmann area 13; approximate Talairach 

coordinates: x = 39 mm, y = -9 mm, z = -5 mm). Cluster 10 showed prevalence over 

the vertex and source analysis revealed that the cingulate gyrus was responsible for 

this pattern (Brodmann area 24; approximate Talairach coordinates: x = 5 mm, y = -

15 mm, z = 36 mm). Cluster 13 displayed a similar pattern to cluster 10, but the 

source of this cluster was the posterior cingulate (Brodmann area 29; approximate 

Talairach coordinates: x = 9 mm, y = -36 mm, z = 13 mm). Cluster 14 produced a 

pattern with a prevalence over a posterior region, originating in the precuneus 

(Brodmann area 31; approximate Talairach coordinates: x = 4 mm, y = -67 mm, z = 

18 mm). Cluster 15 showed strongest activation over a left parietal region, originating 

within the precuneus (Brodmann area 7; approximate Talairach coordinates: x = -6 

mm, y = -50 mm, z = 39 mm).  

 To reveal brain components representing the valuation of individual products, 

paired sample t-tests were computed to compare cluster amplitude between low and 

high value products, for each cluster that was submitted for analysis. For cluster 6, 

activation between 125 and 200 ms was significantly larger for low value products 

(0.02 ± 0.02), than for high value products (-0.003 ± 0.02), t(8) = 2.94, P = .01. 

Cluster 14 showed increased activation between 289 and 294 ms for high value 

products (-0.22 ± 0.17) than for low value products (-0.15 ± 0.18), t(9) = 2.54, P = 

.033. Cluster 15 demonstrated two significant latencies. Firstly, activation was 
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greater for high value products (-0.14 ± 0.32) than for low value products (-0.1 ± 

0.32) between 107 and 131 ms, t(12) = 4.06, P < .001. A repeated measures 

analysis of covariance (ANCOVA) revealed that saccade amplitude had a significant 

influence on this effect, F(1,11) = 6.38, P = .028, however, the main effect remained 

after controlling for this relationship, F(1,11) = 29, P < .001. Secondly, activation was 

greater for high value products (0.06 ± 0.13) than for low value products (-0.005 ± 

0.11) between 276 and 298 ms, t(12) = -3.01, P = .004. 

 

Figure 7.5. Clusters and their corresponding ERP waveforms, scalp maps and component 
dipoles. The ERP waveform is shown for both products and product bundles separately. The 
number of components included in the cluster and the number of subjects contributing to the 
cluster is also indicated.  

 Repeated measures ANOVAs were carried out for each cluster to investigate 

any interactions between value category (low, high value) and complementariness 

(complementary, non-complementary). For cluster 6, activation was significantly 

greater for non-complementary bundles (0.04 ± 0.05) than for complementary 

bundles (0.003 ± 0.02) between 124 and 149 ms, F(1,8) = 4, P = .048. Similarly, 

cluster 14 showed increased activation for non-complementary bundles (-0.25 ± 

0.28) than for complementary bundles (-0.1 ± 0.2) between 240 and 247 ms, F(1,9) = 

6.303, P = .032. Finally, cluster 15 demonstrated increased activation for high value 
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bundles (0.16 ± 0.27) than for low value bundles (0.09 ± 0.21) between 193 and 198 

ms, F(1,12) = 4.395, P = .048. 

 A series of repeated measures ANOVAs were also carried out to investigate 

differences across all stimuli (low value products, high value products, 

complementary bundles, non-complementary bundles) for each cluster. Figure 7.4 

summarises all main effects and interactions revealed. A significant main effect was 

revealed for cluster 6 between 120 and 133 ms, F(3,24) = 3.899, P = .017. Post-hoc 

t-tests revealed that activation elicited by low value products (0.04 ± 0.05) was 

significantly higher than that by high value products (0.01 ± 0.04), t(8) = 2.451, P = 

.033. Additionally, non-complementary bundles elicited significantly greater activation 

(0.05 ± 0.06) than both high value products (0.01 ± 0.04), t(8) = -3.745, P = .012, and 

complementary bundles (0.007 ± 0.04), t(8) = -2.073, P = .022. A significant effect 

was also revealed for cluster 10 between 399 and 447 ms, F(3,33) = 3.644, P = .004. 

Post-hoc tests revealed significantly increased cluster amplitude for complementary 

bundles (0.16 ± 0.34) compared to both low value products (-0.03 ± 0.078), t(11) = 

1.91, P = .044, and high value products (-0.042 ± 0.056), t(11) = 2.04, P = .037. 

Lastly, a significant was revealed for cluster 15 between 160 and 187 ms, F(3,36) = 

3.455, P = .004. Post-hoc tests revealed that complementary bundles (0.14 ± 0.3) 

produced significantly increased cluster amplitudes than both low value (0.023 ± 

0.13), t(12) = -1.835, P = .025, and high value products (0.055 ± 0.16), t(12) = -2.15, 

P = .024. Similarly, non-complementary bundles (0.14 ± 0.29) produced increased 

cluster amplitude in comparison to both low value, t(12) = -2.016, P = .023, and high 

value products, t(12) = -2.081, P = .037. However, using an ANCOVA for repeated 

measures, this effect was found to be accounted for by differences in fixation 

duration between conditions, F(1,35) = 5.14, P = .03, which reduced the main effect 

to non-significant, F(3,35) = 2.29, P = .096.  
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Figure 7.6. Latencies demonstrating main effects of value category (A) and trial type (B) are 
shown. Interactions between value category and trial are also illustrated (C). For each effect, 
the ERP waveform between conditions is shown, as well as the corresponding bar graph 
indicating results from post-hoc testing.  

7.1.4.6. Regression analysis of clustered components 

 In order to investigate neural processes relating to additivity, cluster 

amplitudes were submitted to a regression analysis. For each subject, the mean 

additivity from bundle presentation was calculated and input as a predictor with 

cluster amplitude as the dependent variable. This was done for each time point in the 

epoch between 150 and 400 ms in order to capture relationships in the latencies of 
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value relevant EEG components, e.g. N2, P2 and P3. P-values corrected for the 

false discovery rate were obtained using the protocol described by Storey (2002). 

The only latencies revealed to significantly predict additivity were between 243 and 

296 ms in cluster 15. Cluster power between these latencies was extracted, 

averaged and submitted as the dependent variable in a further regression analysis 

with mean bundle additivity as the predictor. It was revealed that additivity 

significantly predicted cluster activation between 243 and 296 ms in cluster 15 (see 

Figure 7.5), beta = 0.21, t(12) = 3.377, P = .006, and also explained a significant 

proportion of variance in cluster activation, R2 = 0.51, F(1,12) = 11.4041, P = .006. 

 

Figure 7.7. Relationship between mean bundle additivity and mean cluster amplitude 
between 243 and 296 ms for cluster 15. The latency of interest is highlighted in the 
corresponding IC waveform. 

7.1.5. Discussion 

Results indicate the role of price disparity in driving sub-additivity within 

product bundles, which is enhanced as the price disparity increases. The sub-

additive effect did not differ between complementary and non-complementary 

bundles, however, complementarity enhanced bundle WTP. A spatiotemporal 

pattern of activation observed over the right hemisphere was amplified during the 
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viewing of low value products and non-complementary bundles. In contrast, a pattern 

of activation over the left hemisphere was amplified when viewing high value 

products and product bundles. Furthermore, the amplitude of the high value 

encoding cluster was modulated by mean bundle additivity. Findings suggest the 

presence of a neural representation signifying the perceived advantage, or 

disadvantage, of purchasing a product bundle. 

Product bundling is a method frequently used by companies to enhance the 

perceived value of a set of products (Naylor & Frank, 2001). However, there are 

multiple factors that can alter the perceived value when product bundling is used. 

The present study found that the pairing of two unequally priced products can result 

in a sub-additive effect whereby the bundle valuation falls short of the sum of the 

product valuations when presented individually. With the additional manipulation of 

product complementarity, it was revealed that although the sub-additive effect did not 

differ between complementary and non-complementary bundles, price disparity 

between products within a bundle significantly predicted the resulting sub-additive 

effect. This provides evidence that product bundles comprised of unequally priced 

products can actually decrease the ultimate valuation, with the sub-additive effect 

scaling with price disparity within the bundle. Potential mechanisms for the negative 

impact of additional features on product valuations have been speculated on 

previously. Simonson et al. (1994) highlighted how extra features may result in the 

dilution of the most attractive features, how unneeded features may be used to justify 

the rejection of the product, and the averaging of value across all constituent 

products. Although Simonson et al. (1994) did not find evidence for the averaging 

effect in their research, the averaging effect has found evidence in more recent 

studies. Weaver, Garcia, and Schwarz (2012) revealed that the addition of mildly 

favourable information to highly favourable information reduced overall evaluations 

via an averaging process, and this can extend to persuasive arguments (Weaver, 

Hock, & Garcia, 2014). Similarly, Gaeth, Levin, Chakraborti, and Levin (1990) indeed 

show that the tie in product, regardless of value, has an almost equal weighting 

compared to the primary product when evaluating a product bundle. Another 

plausible explanation for the observed sub-additive effect is the role of uncertainty. 

Popkowski Leszczyc et al. (2008) demonstrated that when uncertain about the value 
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of a high value product within a bundle, we may use the value of the low value 

product within the bundle to infer its value. 

The pairing of complementary products within product bundles has been 

previously shown to increase purchase intent (Harlam et al., 1995), and Yan and 

Bandyopadhyay (2011) describe a profit-maximisation model indicating how 

complementarity plays an important role in bundling strategies. These effects are 

likely to come about due to the purchasing of products that have enhanced 

functionality when being paired (Estelami, 1999). Although the current study did not 

demonstrate different levels of additivity between complementary and non-

complementary bundles, complementary bundles did produce significantly increased 

WTP than non-complementary bundles. Essentially, complementarity increased 

WTP without producing a super-additive effect. One possible explanation for this 

may be due to the unequally priced products present within the product bundles. The 

super-additivity often observed when pairing complementary products may be 

attenuated when the secondary product is of low value. Previous studies found that 

complementarity can attenuate the negative effect of price discounting when selling 

product bundles (Sheng et al., 2014), and complementarity can reduce the need for 

advertising (Yan et al., 2014). Hence, it is possible that the various influences on 

bundle valuations may have interactive effects, in that unequally priced products 

within a bundle can moderate the super-additive effect that complementarity can 

produce. However, the current study can only postulate on this without further 

research. 

 A component cluster showing activation in the right frontal electrodes and 

originating in the right insula appeared to be responsible for the encoding of low 

value products, similar to what we found in previous work (Tyson-Carr et al., 2018). 

In our previous study, an equivalent current dipole placed in the right anterior insula 

displayed increased activity during the valuation of low value products, possibly 

pertaining to the aversion that low value products may induce in economic situations. 

Activation in the insula has previously been implicated with disgust, whether that be 

a response to disgust or recognising disgust in others (Toronchuk & Ellis, 2007). 

More specifically, the right insula has been observed to response to disgusting 

odours (Heining et al., 2003) as well as disgusting non-food items (Calder et al., 

2007). A vast amount of other studies investigating decision making have alluded to 
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the role of the insula in decisions producing some aspect of negative affect. Sanfey 

et al. (2003) implicated the insula during the presentation of unfair offers during the 

ultimatum game and highlighted the importance of emotions in decision making. This 

gains further support in a study by Kuhnen and Knutson (2005) who found that insula 

activity was indicative of loss prediction. Critically, activity within the insula has been 

reported to be negatively correlated with expected value in a decision-making task 

(Rolls et al., 2008). A similar role of the insula has also been reported in rats 

whereby activation was increased during risk-taking behaviours (Mizoguchi et al., 

2015) and following negative outcomes (Jo & Jung, 2016). The role of the insula in 

risky decisions and various forms of negative emotions validate the findings of the 

current study. The link between decision making and emotion make it possible that 

low value stimuli, especially in a realistic economic decision, may be aversive as 

they provide little benefit. Importantly, Shenhav et al. (2018) argue that low value 

items can be interpreted as aversive, rather than simply unrewarding.  

A cluster showing activation across left frontal electrodes originating in the 

precuneus was activated primarily during the valuation of high value products. A 

recent study highlighted the role of the precuneus in preferences during economic 

decision making (Voigt, Murawski, Speer, & Bode, 2019), reporting that activity 

within the precuneus was predictive of upcoming preference changes. However, the 

localisation of this component in the present study bordered very closely with the 

PCC and this must be considered in the context of the spatial resolution of EEG 

methods. Although the precuneus and PCC are functionally different, they do indeed 

share functions, especially in terms of their involvement in the default mode network 

(Fransson & Marrelec, 2008; Leech et al., 2012; Leech, Kamourieh, Beckmann, & 

Sharp, 2011; Margulies et al., 2009). Previous studies have showed how the PCC is 

involved in the evaluation of reward magnitude (Knutson, Adams, Fong, & Hommer, 

2001; Knutson et al., 2003) and also of expected value during lotteries (Knutson et 

al., 2005). A meta-analysis by Bartra et al. (2013) comprising fMRI data on value-

based decision making reveals the importance of the PCC, especially for positive 

effects during the decision stage. This was further iterated in a second meta-analysis 

(Clithero & Rangel, 2014), and may explain the implication of the PCC in the current 

study during the valuation of high value products. 
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To date, there has been no research investigating neural processes during 

valuation of product bundles. The bundling of products introduces a challenge to a 

prospective buyer in that there are multiple products that need to be valuated to 

reach a decision. The limited capacity for the human brain to process information 

makes these purchase decisions especially hard (Cheng et al., 2014). However, 

previous work investigating the zero-price effect has went some way to help 

understand neural mechanisms during the valuation of products presented in 

parallel. A study by Ma et al. (2018) found an increased LPP amplitude when tie-in 

products within a product bundle were presented as being “free”, in comparison to 

when being offered at its normal price. This is similar to the brain component 

encoding additivity reported in the current study. Here we reported a brain 

component that produced a wave over the vertex, spanning over the left portion of 

the scalp, in the latency of the P3 component. Although slightly later, Ma et al. (2018) 

report an LPP measured over the vertex that was indicative of this zero-price effect. 

An fMRI study by Votinov et al. (2016) demonstrated how preferences can switch 

from a more expensive and preferred product, to a cheaper and less preferred 

alternative when the alternative product is presented as being free. Importantly, the 

authors implicated the PCC in this zero-price effect. This could lend evidence to the 

observed effect in the current study regarding the encoding of additivity, likely 

originating in the PCC. It is possible that the PCC in the current study was 

responsible for encoding the perceived benefit of purchasing the products in 

conjunction, similar to how Votinov et al. (2016) suggest that the PCC is involved in 

zero-related changes of preference in bundling contexts.  

To conclude, the present study demonstrated the sub-additive effect induced 

by the bundling of disparately priced products, as well as the enhancement of WTP 

from the bundling of complementary products. Furthermore, a set of spatiotemporal 

cortical activation patterns that reflected the valuation of products and product 

bundles were revealed. Similar to previous studies, the observed patterns showed 

specificity to either low or high value alternatives (Roberts et al., 2018; Tyson-Carr et 

al., 2018). Findings indicated the presence of a neural representation of the 

perceived benefit of purchasing a product bundle, reflected in the modulation of 

cortical activation by bundle additivity. The modulatory effect was observed within an 

activation pattern that showed specificity to high value alternatives, implicating a 
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single brain network in the estimation of overall utility. In contrast, an activation 

pattern which responded uniquely to low value products and non-complementary 

bundles highlighted a network responding to perceived disadvantage. 
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Chapter 8 

8.1. General Discussion 

 Research in the field of neuroeconomics has been aimed toward investigating 

the neural substrate of decision variables described in economic models. Although 

these efforts have been fruitful for accurately describing the spatial aspects of the 

brain valuation system, the temporal dynamics of subjective valuation are much less 

clear. The implementation of EEG methods described in the previous chapters 

aimed to describe the temporal characteristics of subjective valuation, whilst also 

using source analysis techniques to complement the descriptions.  

8.2. Summary of Findings 

 

• In Chapter 4, low value items provoked increased source activity in the right 

AIC and the left OFC in comparison to high value items at approximately 200 

ms, during both value-relevant and value-irrelevant choices. 

• Source activity in the right PHG was amplified during value-relevant choices in 

Chapter 4. 

• Distinct patterns of cortical activity over the left and right hemispheres, 

observed in Chapter 5, were intensified during the viewing of high and low 

value items respectively. A cortical activation over the fontal midline 

electrodes was strongest during the viewing of medium-priced items. 

• An EFRP component unique to high value items in Chapter 5 was active early 

on during free-viewing and maintained throughout the viewing period. 

• The differential encoding of low and high value items was present within 

cortical responses immediately following stimulus presentation in a BDM 

auction task within Chapter 6. 

• Product bundles presented in Chapter 7 comprised of disparately priced 

products elicited a sub-additive valuation. 

• Bundle WTP in Chapter 7 was enhanced when bundles contained 

complementary products. 
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• A spatiotemporal pattern of cortical activation over the left hemisphere, 

originating in the precuneus, was intensified during the viewing of high value 

products and product bundles and modulated by bundle additivity (Chapter 7). 

A second cortical activation component present over the right scalp region 

and fitted to the right insula was strongest during the viewing of low value 

products and non-complementary bundles. 

 

8.3. Themes 

 Several common themes were observed across the experimental chapters of 

this thesis. Primarily, distinct ERP and EFRP components were observed for low and 

high value products individually. Further to this, hemispheric asymmetry was 

observed whereby low and high value related activity was elicited predominantly 

over the right and left hemispheres respectively. Regarding the temporal dynamics, 

the importance of the latencies post 150 ms are emphasised, encompassing the P2, 

N2, P3 and LPP component latencies. However, these components seem to have 

some specificity regarding low and high value encoding.  

8.3.1. Negativity bias towards low value 

 Across the experimental chapters in this thesis, we have observed separate 

and unique responses to low value stimuli. Significantly larger responses to low 

value products were observed in Chapter 4 within the latency of the N2 ERP 

component, represented by brain potentials over the right hemisphere, and 

originating from the right insula. Similarly, an EFRP component in Chapter 5 

extending over the right scalp region was strongest during the viewing of low value 

products. A component cluster within the right insula was also strongest when 

viewing low value products and non-complementary bundles in Chapter 7. Findings 

suggest the ability of the brain to be able to rapidly categorize incoming stimuli as 

being of low value, and possibly suggesting an aversive response towards these low 

value stimuli.  

 The role of emotion in decision-making has been investigated greatly (for a 

review, see Seymour & Dolan, 2008). For example, using data from anxious and 
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depressed individuals, Paulus and Yu (2012) demonstrated the altered value 

computation that can result from emotional dysfunction. It is possible that low value 

stimuli, in the context of an incentive compatible auction, may produce negative 

affect. The aversion to low value products in the present study largely replicated that 

reported by Shenhav et al. (2018) who reported across several studies subjects’ 

perception of low value products being aversive rather than simply unrewarding. The 

authors of this study also reported that the aversion is due to the anxiety from 

choosing between low value and relatively benign products. One possible reason for 

the development of this mechanism in humans may be the evolutionary benefit that it 

provides. It is obviously beneficial to be able to detect high value stimuli in our 

environment, which will likely produce the relevant approach behaviour. Conversely 

for low value products, it is beneficial to be able to rapidly detect options with the 

lowest subjective value so as to avoid expenditure of resources for little reward. A 

motivational significance of both low and high value stimuli is also reflected in the 

study by Shenhav et al. (2018) who not only reported the elicitation of anxiety by low 

value choices, but also from a set of high value alternatives. 

 In Chapter 4 of the current thesis, we did not observe any increased source 

activity for high value stimuli. Therefore, we speculated that the brain displayed a 

negativity bias towards the low value products. Additionally, we hypothesised that 

given the relatively small range of values, it may be that none of the items were 

perceived as particularly rewarding. The small range of possible values utilised could 

have meant that the stimuli in the “high value” category did not have a high enough 

WTP to be perceived by the individual as truly high value. Consequently, it is 

necessary to discuss the neural encoding of absolute relative to normalised value 

encoding. Research has shown that responses to rewards are highly influenced by 

the range of options presented to an individual in a given setting, in that our 

reference point for making an evaluative judgement is shifted based on the 

alternatives we are presented with (Rangel & Clithero, 2012). The ability to shift the 

reference point is indicative of a neural system that undergoes a process of value 

normalisation, but research indicating the absolute encoding of value in the brain is 

also present (Kennerley, Behrens, & Wallis, 2011; Kobayashi, Pinto de Carvalho, & 

Schultz, 2010). If we had observed a shift in the reference point, then subjects 

should have perceived the greater value products as rewarding. Conversely, if the 
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absolute value of the stimuli was being encoded, both low and high value stimuli may 

be perceived as unrewarding. To answer this dichotomy, we can draw evidence from 

our other experimental chapters with extended ranges of value. When investigating 

brain potentials in response to stimuli with a much broader range of subjective 

values, such as in Chapter 5, 6 and 7, we observed increased neural responses to 

both low and high value products, in separate brain components. The observation of 

value encoding extending to high value products indicates that the high value stimuli 

in Chapter 4 were indeed unrewarding, given that the extension of values produces 

activity unique to high value stimuli. Regardless, the increased response to low value 

items in distinct brain components, often source localised to the right insula, 

indicates the ability to determine low value stimuli in the environment, and the role of 

the insula in loss aversion reiterates this. Additionally, the aversive response to low 

value products observed by Shenhav et al. (2018) was localised to the insula which 

emphasises the distinct encoding of low value in the brain. 

8.3.2. Lateralisation of economic value in the brain 

 Across all experimental studies in the current thesis (Chapters 4-7), there 

were systematic patterns present regarding the lateralisation of brain components for 

different value categories. All results indicating increased activity for low value 

products were accompanied by activity across the right hemisphere. Results indicate 

a slight bias towards the left hemisphere regarding the valuation of high value 

products, though this finding is much less evident. However, brain potentials 

demonstrating increased power for high value products consistently produce an 

almost identical topography, described by activation over the vertex and a posterior 

region. Although the posterior component varies in its location, it is frequently 

observed over a left posterior region. 

Hemispheric asymmetry is observed across many domains. Most prominently, 

the left and right hemispheres have been described as being responsible for 

approach and withdrawal behaviours respectively (Davidson, 1990), as well as for 

positive and negative affect (Davidson, 1998a). Since high quality products provide 

security and value (Hankuk & Aggarwal, 2003), the presentation of these stimuli may 

therefore induce approach behaviour (Ravaja, Somervuori, & Salminen, 2013). In 
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contrast, the compromise on quality that low value products often provide may have 

the opposite effect and, in turn, induce avoidance behaviour. Furthermore, a study 

by Windmann et al. (2006) revealed increased activity within the right OFC during 

punishments, in contrast to the representation of rewards in the left OFC. Additional 

examples of the lateralisation of function come from neuromarketing research. 

During the viewing of TV commercials, previous studies reported that positive TV 

commercials produced amplified alpha and theta activity over the left hemisphere, 

whereas alpha and theta activity was stronger over the right hemisphere for negative 

TV commercials (Vecchiato et al., 2014; Vecchiato et al., 2011). Similarly, Ravaja et 

al. (2013) observed enhanced left-frontal alpha activity in the pre-decision period of 

decisions that ultimately lead to a purchase. The enhanced left-frontal alpha activity 

also extended to predicting the perceived need for the product as well as the 

perception of quality of the product. Therefore, the findings of the present thesis 

across Chapters 4 to 7 corroborate the potential role of hemispheric asymmetry as 

an index of valuation processes, as well as the general role of the left and right 

hemispheres in the valuation of high and low value products respectively. 

8.3.3. Unique brain components for value categories 

 Neuroeconomic research has benefitted greatly from functional imaging 

methods such as fMRI, allowing researchers to accurately localise neural regions 

involved in subjective valuation (Bartra et al., 2013; Clithero & Rangel, 2014), 

revealing a domain-general valuation system that linearly encodes subjective value. 

In contrast, the electrophysiological methods utilised in the current thesis reveal 

distinct processes that responded to unique value categories, for example, low and 

high value items. Results from Chapter 4 to 7 indicated that a coarse neural 

response is initially made to broadly categorise the incoming stimuli as being of low 

value, or as being highly rewarding. 

 The rapid categorisation of stimuli is evolutionarily beneficial to organisms, 

allowing them to rapidly identify the most useful options in the current situation. 

Cacioppo, Gardner, and Berntson (1999) developed a model of affective processing 

that describes the multiple levels of stimuli evaluation. The model suggests an initial, 

primitive and low-level response occurs rapidly, before a higher-level response takes 



151 

 

place within integrative regions. It is unlikely that the low temporal resolution of fMRI 

would capture the initial categorisation during subjective valuation, and hence, the 

rapid responses (< 500 ms) observed in the current thesis may reflect the initial, 

coarse response of the brain to economically salient stimuli. The primitive responses 

in low-level regions are also more responsive to negative stimuli (Cacioppo et al., 

1999; Smith et al., 2003), possibly explaining the readiness of the brain in response 

to low value stimuli in the results across the previous experimental chapters, 

reflected in earlier responses to low value items in the N2 ERP component, or in the 

possible absence of high value encoding at all in Chapter 4. 

 Based on this information, it appears that fMRI methods may lack the ability to 

reveal the initial response of the brain to crudely define the general value category of 

the stimuli, measuring only the summation of evaluative responses over an extended 

period of time including late integrative processes. Consequently, subjective value 

measured by WTP appears to largely mimic affective valuation, with economic 

valuation utilising the brains ability to rapidly evaluate the affective valence of a 

stimuli. The utilisation of emotion related processes could explain the employment of 

unique brain processes during subjective valuation, most prominently the aversive 

response to low value products as indicated by the frequent observation of insula 

activation. Our observations are further supported by the findings from Shenhav et 

al. (2018) who reported that low value items are aversive rather than merely 

unrewarding, thus suggesting the direct link between low subjective value and 

avoidance processes, which may extend to high subjective value and approach 

responses. 

8.3.4. Roles of N2, P3 and LPP 

 The limited previous electrophysiological research has already established the 

role of the various ERP components in subjective valuation processes (see Hakim & 

Levy, 2019). Results from the current thesis have demonstrated the importance of 

distinct latency intervals for economic valuation.  

The N2 component and its corresponding latency between approximately 200 

and 350 ms was highlighted to be of importance in Chapter 4 and 6, wherein low 

value items were primarily encoded within this latency. The N2 component has been 
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implicated in conflict-processing (Larson et al., 2012; Ma et al., 2015; Ma et al., 

2007; Wang et al., 2016), suggesting a potential conflict induced by the low value 

products. The N2 is also frequently implicated in attentional processes (Folstein & 

Van Petten, 2008), and the increased N2 amplitude described here for low value 

products may simply reflect the facilitated attention towards low value stimuli, 

possibly due to the negative response they produce (Shenhav et al., 2018). The 

latency interval encompassing that of the N2 is the earliest latency we reveal to 

consistently represent value relevant signals. Given the negative nature of low value 

items, it follows that the earliest value encoding ERP component would also be 

specific to low value stimuli for rapid categorisation of the most relevant stimuli.  

Further to the encoding of value in the N2 latency, other important and distinct 

latency intervals are also highlighted across the current results. High value products 

produced increased activation predominantly in the latency interval of the P3 

component within Chapter 6, albeit an early form of it, possibly overlapping with the 

N2 component. The P3 component has been implicated in motivational significance 

in previous studies (Duncan-Johnson & Donchin, 1977; Johnston et al., 1986; Keil et 

al., 2002), which could explain the current finding that highly valuable stimuli may be 

perceived as more motivationally significant since they represent the most valuable 

alternative. The latency interval of the P3 overlap somewhat with the N2, making it 

difficult to discern value specific ERPs. However, another distinct latency period 

encompassing the LPP was found to represent value related signals in Chapter 6. 

The LPP is similar to the P3, often referred to as a maintained P3 wave (Hajcak & 

Olvet, 2008), and is the main candidate reported in previous studies as being an 

index of product preference (see Hakim & Levy, 2019). Findings from Chapter 6 

therefore suggested the importance of these delayed components in representing 

high value encoding, occurring much later than the early low-level evaluative 

judgements. The latencies of value encoding for high value items across the results 

are temporally distant from the effects observed for the N2 and P3 effects discussed, 

and it is therefore easy to differentiate a period of high value encoding within the LPP 

interval.  
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8.3.5. Automaticity of valuation 

Results from Chapter 4 and 6 illustrated the rapid differentiation of low and 

high value, approximately 200 ms following stimulus onset. The categorisation of 

stimuli in an early ERP component reflected the automaticity of valuation, occurring 

before any conscious processing. Similarly, source activity differentiating low and 

high value products did not differ between the value-relevant and value-irrelevant 

contexts in Chapter 4, nor did the value-encoding cortical responses observed in 

Chapter 5 differ between free and forced bids. Similar to previous research (Lebreton 

et al., 2009), the presence of value differentiation within cortical responses across 

multiple contexts, regardless of the need for the computation of subjective value, 

highlighted the automaticity of brain valuation.  

Previous studies have highlighted the potential automatic nature of brain 

valuation. In an fMRI study investigating choice behaviour, Levy et al. (2011) 

observed how BOLD activity during the passive viewing of consumer goods 

predicted the subsequent purchase decision made following the scan. The BOLD 

signal within the striatum and the PFC showed the strongest prediction, highlighting 

these regions in the representation of value in the absence of choice. Similarly, 

Grueschow et al. (2015) revealed the role of the PCC in representing subjective 

value, regardless of whether the value was choice relevant. An EEG study by 

Polania et al. (2014) highlighted a commonality between both value-based and 

perceptual-based decisions in parietal gamma oscillations, suggesting a potential 

neural generator projecting to parietal regions of the scalp may represent a common 

decision variable across tasks. The automaticity of brain valuation suggested in 

previous studies highlights the general processes underpinning valuation, whereby 

subjective value is computed regardless of its current relevance and drawn upon 

only if necessary. Similar to Grueschow et al. (2015), findings from Chapter 6 which 

highlighted the importance of the cingulate gyrus, and findings from Chapter 7 which 

implicated the closely neighbouring precuneus, served to corroborate the possible 

role of the PCC in choice-independent value representation. 

 

 



154 

 

8.3.6. Sub-additive effect in bundles 

 Results from Chapter 7 indicated that the addition of an extra product to form 

a bundle may actually harm the subsequent valuation that individuals make. 

Although product bundling is frequently used by organisations to increase sales 

(Fang et al., 2017), the “more-is-less” and the “less-is-better” effect are highly 

prevalent in economic literature (Hsee, 1998; List, 2002; Popkowski Leszczyc et al., 

2008), indicating that the addition of extra features can actually decrease valuations. 

This was evidenced in Chapter 7 which reported that as the disparity in price 

between two products in a bundle increases, the sub-additive effect increases, i.e. 

the added value from bundling two products decreases as disparity in individual 

WTP increases.  

 Multiple mechanisms have been put forward for the sub-additive effect 

(Simonson et al., 1994), such as averaging the values of the counterparts of a 

bundle. Sub-additivity may also be due to the inference of values of uncertain items 

based on the values we are certain of (Popkowski Leszczyc et al., 2008). Based on 

the overarching findings from the current thesis, we could speculate that it may be 

the aversion that low value products induce that drives the sub-additive effect. Since 

bundles were comprised of a single low and high value item, and findings from the 

experimental chapters have demonstrated consistently the aversive nature of low 

value items, it is possible that sub-additive effect is driven predominantly by the 

negative motivation induced by the low value product. Furthermore, it was also 

observed in Chapter 7 that increasing sub-additivity scaled with increasing disparity. 

Given that options may be evaluated in the context of a given scenario to normalise 

value (Rangel & Clithero, 2012), the increasing disparity would reduce the relative 

value of the low value counterpart. Thus, the increasing disparity could increase the 

perceived negativity of the low value option through value normalisation.  

8.4. Limitations 

 The primary limitation of the research conducted, and EEG research 

generally, is the ability to locate the neural generators of the brain processes 

discussed. During the experimental tasks of the current thesis, the brain potentials 
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measured were conducted across organic matter with varying levels of conductivity, 

producing spatially mixed signals measured across multiple neighbouring electrodes. 

However, complex head models and methods such as ICA have given EEG 

researchers the ability to solve the inverse problem much more efficiently, often 

allowing a spatial resolution of approximately 1 cm (Onton, Westerfield, Townsend, & 

Makeig, 2006). Limitations in spatial resolution should therefore be considered when 

interpreting the findings relating to spatial approximation within Chapters 4, 6 and 7. 

Further to the limitation on spatial resolution, the method for source localisation in 

Chapter 6 and 7 was implemented in EEGLab (Delorme & Makeig, 2004), a protocol 

implementing a single dipole solution to explain the distribution of brain potentials. 

This is in contrast to procedures implementing multiple dipole solutions to explain 

observed patterns, such as the sequential fitting of dipoles to produce a dipole model 

(Scherg & Berg, 1996), which may more accurately represent the actual neural 

generators producing the observed cortical activation patterns. 

 The simultaneous use of EEG and eye-tracking in research brings with it 

many issues. As outlined by Nikolaev et al. (2016), eye-movements can have a 

sporadic effect on resulting brain potentials. Eye-movements can contaminate the 

baseline periods of epochs synchronised with fixation onset, as well as the post-

saccadic interval encompassing the brain components that correspond to higher-

order processes. Not only do the eye-movements contaminate the brain potentials, 

but systematic differences between conditions in the characteristics of the eye-

movement can induce differences not attributable to experimental manipulations. 

Nevertheless, the experimental chapters utilised several methods to account for the 

potential influence on the findings reported. Linear deconvolution methods such as 

Unfold (Ehinger & Dimigen, 2019) make it easier to account for linear and non-linear 

influences on measured responses and the variable temporal overlap between 

events. The utilisation of appropriate covariate analyses also allowed for the 

assessment of potential influences on our findings. However, it is likely that some 

remnant of activity attributable to eye-movements will remain despite efforts to 

reduce it.  

 The present thesis focussed mainly on categorically defining value categories 

by splitting stimuli into equally sized conditions. However, it may have been more 

fruitful to investigate brain potentials encoding value linearly by treating value as a 
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continuous variable. Previous fMRI research largely involves the investigation of 

continuous encoding of value in the brain (e.g., Plassmann et al., 2007; 2010). A 

limitation in EEG research is the restricted signal-to-noise ratio (Luck, 2005), making 

it difficult to investigate data on a single-trial level. The reduced signal-to-noise ratio 

in EEG research makes it much more viable to investigate decision making 

processes in a categorical manner.  

 An issue in the current set of studies which is prevalent across the literature is 

the use of principally undergraduate and postgraduate students, and the extent to 

which the findings can be extrapolated to other populations is an important 

consideration (Henrich, Heine, & Norenzayan, 2010). Furthermore, the perception of 

monetary outcomes may change drastically between populations. In line with 

prospect theory (Kahneman & Tversky, 1979), individual variability in wealth may 

greatly influence the subsequent reference points for gains and losses. Therefore, 

the utilisation of a student population with low income may result in very different 

responses in economic situations than that we would observe in a more 

representative population. 

8.5. Suggestions for Future Research 

 The present thesis goes some way to understanding the temporal 

characteristics of subjective valuation, primarily within the context of a BDM auction 

task. The use of categorical predictors of value allowed for the identification of the 

general signals related to subjective valuation. In theory, value could be treated as a 

continuous predictor, and future research should determine whether similar effects 

arise when extending to continuous predictors of value. It is possible that the splitting 

of value into separate conditions does not capture the entirety of the relationship 

between subjective valuation and the underlying cortical processes. An overarching 

theme of the present thesis is the coarse encoding of value in brain potentials. For 

example, we reported brain components responding to low/medium value products. 

However, further investigation treating WTP as a continuous predictor with 

regression methods may reveal the full extent of the relationship within value 

encoding brain components. 
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 Although EEG methods benefit from excellent temporal resolution, the 

simplicity of EEG makes it remarkably useful in the field of mobile brain/body 

imaging (MoBI). In the past decade, there has been a vast amount of research 

utilising EEG to investigate brain processes in naturalistic settings (Gramann, Gwin, 

Bigdely-Shamlo, Ferris, & Makeig, 2010; Makeig, Gramann, Jung, Sejnowski, & 

Poizner, 2009). Implementing simultaneous EEG and eye-tracking recordings in 

mobile settings is a simple but effective method for investigating naturalistic brain 

processes, with eye-fixations offering an important synchronisation point for 

synchronising brain data. A previous study has already investigated value-related 

brain components in mobile settings (Roberts et al., 2018), and future research 

would benefit from utilising the methods described in the current thesis for the 

investigation of subjective value computation in naturalistic settings. 

8.6. Concluding Remarks 

The spatial characteristics of brain processes related to subjective valuation 

have been described in great detail. The current thesis described the temporal 

dynamics of subjective valuation during economic decision making within the context 

of the BDM auction. Previous studies have observed value related signals across the 

scalp as early as 150 ms (Harris et al., 2011; Larsen & O'Doherty, 2014; Tzovara et 

al., 2015), something that has been replicated in the current thesis. Additionally, the 

importance of the N2 ERP component in the encoding of low value products is 

emphasised. Conversely, the P3 and the LPP ERP components were implicated in 

the encoding of high value products. These findings contribute to literature 

concerning subjective valuation processes, informing the role of distinct ERP 

components in evaluative processes. Although fMRI research has described a 

domain-general valuation system responsible for the linear encoding of value across 

multiple reward types, the current thesis described a coarse encoding of value 

across the brain in response to low and high value products, something which may 

only be observable using methods achieving a high temporal resolution such as 

EEG. Similar to the fMRI literature, the present thesis also utilised source analysis 

methods to reveal the importance of the cingulate gyrus and insula in the valuation of 

products. The consistent observation of insula activation in response to low value 

products and product bundles highlights the aversion that low value products elicit. 
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Additionally, the utilisation of neural systems responsible for emotion is emphasised 

with this aversion.  

In closing, the current thesis has provided a detailed description of the 

temporal dynamics of economic decisions in the brain. The utilisation of 

simultaneous EEG and eye-tracking has been revealed to be a useful tool in the 

investigation of brain processes relating to decision making over a prolonged period 

of time, in contrast to simple stimulus response paradigms, something we hope can 

be exploited in future research within neuroeconomics. 
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