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Abstract

Within this article, current coupling collision probability method with expansion of flux by
orthogonal polynomials is verified and validated via comparison with analytical and Monte-Carlo
solutions for the single cell with reflective boundary conditions. The results of the calculations for a
single unit cell demonstrate good agreement with the results of Monte Carlo calculations. The
comparison of the new method with the state-of-the-art flat flux approximation demonstrates either
an improved quality of the result for identical cell discretisation or significantly increased
computational efficiency to achieve an identical solution. Application of the numerical methods for
evaluation of the coefficients of orthogonal polynomials increase the flexibility of the method
significantly since higher orders of the polynomials for the neutron source/flux expansion can be
applied now for much wider range of the 2D problems. Application of the orthogonal polynomials for
the flux expansion allows a significant reduction of the number of calculation regions, while
maintaining or improving the accuracy of the results. It also improves efficiency (in terms of the
accuracy/run time ratio) of the calculations. Finally, it has a potential to relieve the user from
determining the correct discretisation of the calculation regions, which is required in the case of the
traditional flat flux approximation and can be quite challenging for the complex geometries.

Keywords: nuclear reactor simulation, neutron transport calculations, CCCP, orthogonal
polynomials

1 Introduction

The operation of nuclear reactors requires detailed knowledge of important safety
parameters, such as the spatial power distribution, the control rod worth, margin to departure from
nucleate boiling (DNB), pin burnup etc. The widely used standard approach in design and safety
calculations are coupled neutronics and thermal-hydraulics codes for the steady state and transient
simulation. The neutronics calculations are typically performed at a nodal level using the diffusion
approximation and assembly-homogenized sets of cross-sections while the thermal hydraulics relies
on a channel model with fuel assembly sized channels. However, for the determination of the safety
limits, which are based on local pin-based parameters, the knowledge of the power and temperature
distribution on a nodal level is not sufficient. Local thermal hydraulic and neutronics safety
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parameters need to be predicted for the hottest fuel assembly in detail, down to the individual
channels (hot channel analysis) and pins. To achieve this level of detail, local pin power distribution is
necessary.

For practical reactor core applications, low-order transport approximations such as diffusion
or SP; methods have been implemented on the nodal level for static and transient calculations with
considerably less computational expense than full transport methods. However, using these
approximations to produce a finer grid on pin level fails to provide accurate resolution of the
heterogeneous fuel pin arrangements [1].

In nuclear reactors, there are several locations where the effect of neighbouring assemblies
plays an important role and cannot be ignored such as the interface between fuel assemblies and
reflector, the fuel assembly with control rods, and the interface between MOX and uranium fuel
assemblies [2, 3].

Therefore, in recent years a number of projects were started focused on advanced
multiphysical simulation of the nuclear reactors such as CASL [4] in the USA or DRD [5] in the UK.
Interest has also increased in the development of the neutron transport codes which can solve the
neutron transport equation for the full reactor core [6, 7, 8, 9], as they currently are mainly used to
provide the two-dimensional cross section preparation. The straight forward extension of the
methods used for cross-section preparation to full core analysis is problematic since the full-core
transport solvers are very computationally expensive and additional cross section requirements
significantly increase these costs. Full core computations using transport solvers require, as arule, a
significantly powerful computer cluster. Transient calculations are even more expensive and can
require several weeks of cluster time for calculation of few seconds of transient behaviour [2].

To overcome the above limitations, other methodologies for pin-wise neutron flux
calculations can be chosen. These methodologies can be combined in the frame of a multi-scale and
multi-mmethodological approach. Pin-wise calculations, in this case, are performed by applying a
transport solver using the heterogeneous fuel assembly geometry on an unstructured mesh with
boundary conditions extracted from the 3D full core nodal diffusion solution. This combined nodal-
transport approach was proposed in the 1970s by different researchers - Wagner, Koebke, Grill,
Jonsson [8, 9, 10]. Further investigations in this field have been performed by Nissen [11]. The overall
conclusion is that the combined nodal-transport approach is capable of providing high accuracy
results with good computational performance.

To follow this strategy, one needs a transport solver, which can be used for the flux
reconstruction on the pin level. The current coupling collision probability (CCCP) method [12, 13]
seems to be a good choice for the development of such a solver. CCCP has several advantages which
are important in the case of the pin power reconstruction: it is proven to be fast (HELIOS code [12])
and it allows a very detailed description of the boundary currents entering and leaving the assembly
under consideration which is important for the task of the pin power reconstruction.

One of the drawbacks of the traditional CCCP method is its poor representation of the spatial
distribution of the within group neutron flux/source. Traditionally, the CCCP method uses so-called
flat flux approximation for the representation of the neutron sources within computational regions.
Therefore, for the optically thick regions such as water reflectors, the detailed discretisation should
be used to accurately represent the shape of the neutron source. Similar situation is observed for the
thermal groups of the fuel. Thus, both fuel and reflector regions should be additionally discretised to
capture the spatial effects of the neutron source. Unfortunately, the computational time of any type
of the collision probability based methods is proportional to the second order of the number of
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calculation regions. It means that doubling of the computational regions leads to the four time higher
computational times. Therefore, the traditional collision probability methods become less
computationally efficient as the number of the flat source regions increase. In addition, the spatial
subdivision of the calculation regions can be complicated for the geometrically complex regions and
the spatial convergence of the sources/fluxes cannot be guaranteed.

In order to overcome these issues, another approach can be used for better representation of
the spatial distribution of the sources within calculation regions. For example, a linear source
approximation was developed and tested for the method of characteristics [14] [15]. In this
approach, the source is assumed to vary linearly over a given track’s segment. It was demonstrated
that the “linear source approximation improves the accuracy and the efficiency of the MOC
calculation relative to the flat source scheme for a comparable level of accuracy” [15].

Similar approach can be used for the CCCP method. The flux/source within calculation
regions can be expanded by orthogonal polynomials of two variables. This allows us to reduce the
number of the calculation regions while maintaining the accuracy on the good level. This technique
was previously tested for the case of the regular hexagonal lattice [1, 16]. In the presented work, this
methodology was extended for the case of the unstructured mesh. In the case of the regular
hexagonal lattice, the coefficients for the orthogonal polynomials can be calculated analytically,
while in the case of the unstructured mesh, the corresponding coefficients should be evaluated
numerically. To achieve this, the Gramm-Schmidt procedure combined with a triangulation
algorithm is applied. The comparison of this new method to the flat flux approximation
demonstrates either an improved quality of the results for identical cell discretisation or significantly
increased computational efficiency to achieve a comparable accuracy.

In present study, verification of the developed solver is performed for the case of the single
reactor cell. The results are compared with the reference Monte-Carlo simulations. Additional
verification of the solver is performed using visualisation technique.

The paper is organised as follows. In section 2 the methodology is described. In section 3
implementation of the methodology is discussed. In section 4 results of the numerical experiments
and visualisation of the flux’s shape in the computational regions are presented, the performance of
the proposed methodology is discussed. Finally, conclusions and remarks are given in section 5.

2 Methodology description

In traditional CCCP methods, neutron flux inside each calculation region is represented by
only one value [12]. This approximation is called the flat-flux approximation. Therefore, the
subdivision of each zone is essential [17] to achieve a non-flat neutron flux distribution which is
required for an accurate result. The subdivision of each region leads to an increase in the number of
elementary volumes (calculation regions). Consequently, this causes an increase in the required
calculation time as well as in the memory demand. The calculation time for the collision probability
method is proportional to N?where N is the number of regions [18].

An advanced approach for a more accurate representation of the flux inside the calculation
regions has recently been proposed [16, 1]. According to this approach, the non-uniformity of the
neutron flux distribution inside the calculation regions can be described with the help of the
orthogonal polynomials of two variables. The general idea of the approach is very much comparable
to the nodal methods applied to full core simulations, where a mathematical approximation
represents the neutron flux distribution inside each of the calculation regions and nodes are coupled
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via interface currents. As previously mentioned, this approach allows a significant increase of the size
of the calculation regions without penalty in the calculation accuracy.

Mathematically, the expansion of the flux by orthogonal polynomials can be written in the
following way:

(I)(x/y) = Z chPk(x/y)/ (1)
k=0

where @(x,y) is the neutron flux at the point with the coordinates x and y, ®; are the
expansion coefficients, Pj(x,y) are orthogonal polynomials. In the real case, the number of

polynomialsis limited by N members (in contrast to the exact representation where N — o0).

After that, the above flux expansion is introduced into the equations for the current coupling
collision probability method instead of conventional flat flux approximation. The final set of
equations for the current coupling collision probability method with orthogonal flux expansion
involves now (in contrast to the flat flux approximation) additional terms related to the spatial
moments of the flux. The detailed description of the methodology can be found in the works [1, 19,
20]. In the mentioned works, the expansion of the flux was applied for the case of the regular
hexagonal cells. In the current study, the methodology was extended and tested for the case of the
cell with arbitrary polygons with inscribed circles.

In order to expand the neutron flux by orthogonal polynomials, the polynomials should be
orthogonalized within given calculation region. Let a be the set of the base monomials functions. In

this case, the set of the monomials up to the n-th order will be written in the following way:
a= 1,x,y,x2,xy,y2,...,x”_qu,...,y” q=0,..n

The i-th orthogonal polynomial can be written as follows:

i
Pi = Z bikakl (3)
k=0

where by is the coefficient, a; is k-th monomial from the set of monomials.

Equation (3) can be written in the matrix form for the # first base polynomials:

P =BA, (4)

where P =(Pq,P,,P5,..,P,) is nX1 column vector containing resulting orthogonal

polynomials; A = (ag,a4,45,...,4,) is n X 1 column vector containing base functions (monomials) and

B is matrix containing orthogonal coefficients:



B is lower triangular matrix.

Therefore, the task of the polynomial orthogonalisation can be formulated as finding the
elements of the B matrix. The orthogonalisation process can be performed either analytically or

numerically. Analytical orthogonalisation provides exact expression for the calculation of the B

matrix. However, practically, it is complicated to evaluate analytically orthogonal coefficients for
arbitrary geometries. Therefore, in the current study, numerical evaluation of the orthogonal
coefficients was used.

3 Implementation of the methodology

The incorporation of the orthogonal polynomials into the conventional current coupling
collision probability method [12] leads to equations that are more complicated for integration. The
equations for the evaluation of the region-to-surface, surface-to-region, region-to-region and
surface-to-surface collision and transmission probabilities become more complicated. The
probabilities depend now (in contrast to traditional CCCP probabilities) not only on the discretized
regions and angles but also on the spatial modes of fluxes. However, since neutron flux is
represented now as expansion by the orthogonal polynomials (in contrast to the conventional CCCP
method where it is represented by one number), it allows to describe the shape of the flux within
calculation region more accurate. Consequently, expansions of the flux using orthogonal
polynomials have the potential either to decrease the number of calculation regions significantly,
while maintaining the same accuracy, or to improve the calculation accuracy significantly for an
identical number of calculation regions.

3.1 Current Coupling Collision Probability Method

As in any kind of the collision probability method, the solution of the neutron transport
equation starts from the evaluation of the collision probabilities. In the case of the CCCP method, the
collision probabilities are unique for each type of the cell in the assembly (for example fuel cell or
absorber cell). There are four types of the collision probabilities which should be evaluated: region-
to-region (RR) collision probability, region-to-surface (RS) escape probability, surface-to-region (SR)
collision probability and surface-to-surface (SS) transmission probability. In order to account for the
angular and spatial dependency of the neutron currents, the directional hemisphere is subdivided
into the number of the azimuthal and polar sectors while the cell’s sides are subdivided on two or
more segments. The example of the angle and spatial discretisation is shown in Figure 1.
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Figure 1. Example of the angular and spatial discretisation

The neutron transport equation in the classical current coupling collision probability method
is reduced to a set of linear algebraic equations. Collision probabilities are evaluated by accounting
for the angular and spatial discretization of the model [21]. Using notation for the angle, side and
region discretization, the equations describing the relations between neutron currents and fluxes for
the current CCCP with the standard flat-flux approximation can be written in the following way:

0,LP; = Z 0y QirRRiy i + Z Z Z ]’]l::ln,lSRj,m,lei (6)
i/ jomo 1

, .
Tl = Z VirQirRSirsjm1 + Z Z Z T3t un 1SSt mt j=jm s (7)
i i omr 1
where SS]-/ ! —jm] is the probability for a neutron entering the js-th segment, mr-th

azimuthal sector and I-th polar sector leaving without collision through the j-th segment, m-th
azimuthal sector and the I-th polar sector; SR; ;1 is the probability for a neutron entering into the
jr-th segment via the m/-th azimuthal sector and the I-th polar sector to have its first collision in the i-
th region; Rsi’—>j,m,l is the probability for neutron born in the i7-th region to leave without collision
through the j-th segment, m-th azimuthal sector and the [-th polar sector; RR./_,; is the probability
for neutron born in the region ir to have its first collision in region i; @; is the neutron flux in the
region i; Q; is the neutron source in the region i; v; - volume of the region i; X; is the total cross
section in the region i; ];”ml is the incoming current on the segment j, azimuthal sector m and polar

sector [; ];ﬁ ; is the outgoing current on the segment j, azimuthal sector m and polar sector [.
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3.2 Equations for the CCCP with Orthogonal Flux Expansion

The expansion of the neutron flux using orthogonal polynomials slightly changes the form of
Equations (6) and (7). These can now be written in the following form:

0;iZiDik —ZZ i Qir k/RRllk/—nk"'ZZZ SR i—ik (8)
i’
Jits = 2 20 QusrRSusroimi* 20 D WonsSSpatsomsr (0
i’

]/ m/

where Q. « Is the neutron source in the region i7, spatial mode k7; @; ;. is the neutron fluxin
the region i, spatial mode k.

The equations for the collision probabilities are now given in the following way:

1 P Lj
S5i1 ! 1jm] = cospde f Kiz () dL (10)
EjXmbh” Pm-1 Ljm
2 (Pm Lj
RSijsjm)=— j cospdg f dL f Kip; (7) Py (x,y) dt (11)
;" Pm-1 Lia At
TC
S, (s L At At;
RRispr—ix = j cospde J dL J Py (xryr)dtr | Kip(0) Pp(xy)dt  (12)
0,,” 0 Lisy 0 0
4Ui
SRj,m,l—>i,k = - RSi,k—)]',m,l/ (13)
Xl ZiL;

where RR;, x/_; is the probability for a neutron born in region i, harmonic ks to have its
first collision in region 7, spatial mode k; SR; ;, 1, x is the probability for a neutron entering into the
segment j/ via the azimuthal sector m/ and polar sector I to have its first collision in region i, spatial
mode k; RSy kr—jm,1 s the probability for a neutron born in the region iz and spatial mode ks to leave
without collision through the segment j, azimuthal sector m and polar sector [; L; is the length of j-th
segment; €, X sty are normalization indexes for the segment, azimuthal angle and polar angle
correspondingly; 7 is the optical path; (p,t,t’,L are integration variables; P (x,y) is the orthogonal

polynomial of the k-th order; Ki,, ; is the partial Bickley function (for definition see, for example, [12])



The collision probabilities (10) - (13) are integrated using standard ray-tracing methodology.
More detailed information about the procedure of the integration using ray-tracing technique can be
found in [12, 22]. The surface to region collision probability is not integrated but calculated using
Equation (13).

As in each kind of the collision probability method, reciprocity relations exist between
different collision probabilities. These relations help the evaluation of different types of
probabilities. Several relations for collision probabilities can be written in addition to the Equation
(13).

As a particle, entering the cell through one on space element must either collide in one of the
regions or escape through one of its segment and sector, the following relation between SS and SR

probabilities can be formulated for the zeroth spatial moment.

Z 2 SSj/,m/,l—)j,m,l =1- Z SRj,m,l—)i,O (14)

jr m/ i
As a particle born in region i must either collide in another (or the same) region or escape
through one of cell’s side, segment and sector, the following relation between RS and RR can be
written for zeroth moment of flux.

E E E RSi0—sjm1=1- E :RRwez”,o (15)
7
1

7 mr 1

Finally, relation between different elements of the RR matrix can be formulated.
VipZirRRis k1 ik = 0;ZiRR kir ks, (16)

In addition to the reduction in the calculation efforts, Equations (13) - (16) are used for the
normalization of the collision probabilities, which in turn increase the stability of the iteration
process. The equations (8) and (9) contain the additional summation index k, which reflects the

expansion of the flux through the orthogonal polynomials. In contrast to the flat-flux approximation,
the flux in each region is now represented by a set of spatial moments of the flux @; ;. The meaning of

the flux in each location inside the region of the interest can be evaluated with the help of the set @; ;

obtained and Equation (1).
3.3 Gram-Schmidt Orthogonalization Procedure

In order to evaluate the coefficients for the orthogonal polynomials, (bi,k in the Equation

(1)Error! Reference source not found.) for arbitrary calculation regions, the so-called Gram-Schmidt
process [23] can be applied. The Gram-Schmidt process is a procedure, which takes a non-orthogonal
set of linearly independent functions and constructs an orthogonal (or orthonormal if required) basis
over an arbitrary interval (or domain in the case of multidimensional functions). The implementation
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of the process for orthogonalization of the base function set will be shown using a set of non-
orthogonal functions depending on two variables, x and y:

ay =ay(xy) ap = a, (xy) A = az(xy) -a, =a,(xy) (17)

A set of orthogonal functions /,, (x,y) should be constructed over domain D using functionsa
as a basis. To solve the problem, the inner product of the functions f = f(x,y) and g = g (x,y) over

the domain D can be defined in the following way:

(f8) = f f fCey)g (ey)dxdy (18)

When the inner product of the functions is defined, the projection operator can be
introduced in the following way:

a(xy) h(xy) dxdy
proj,a = (@) h= HD h(xy) (1

(k) [ h(xy)h(xy)dudy ’ 9)

Following this operation, the Gram-Schmidt orthogonalization procedure is given by:

]’11 =aq
hy = ay —projy a;
hy =a3 - projp, as — projy,as

n-1
h,=a,- z projh],an
j=1

where h,, (x,y) are orthogonal functions.

The orthogonal function h,, (x,y) can be represented as sum of the non-orthogonal functions

a(x,y), multiplied be certain coefficients Cyjr that is:
n
h, = 2 Cpjflj (21)
=1

Thus, for the representation of the orthogonal function using Equation (21), the matrix with
the coefficients c;; must be defined.



¢jj can be evaluated with the help of the Gram-Schmidt procedure. At the beginning of the

orthogonalization procedure the following equation can be written for the first function (see
Equation (20)):

hy =cpay (22)

With coefficient c;; chosen to be equal to unity.

For the second orthogonal function &, the following equation can be written as:

(ap,hy) (ag,hy)
hy =a, - by = a0y —————0C1187 = Coplp + C10q (23)
(hq,h1) (hq,h7)
With coefficients ¢, and c,, equal to:
C22 =1
(az,hy) (24)
€1 == C11
(hq,h7)

The continuation of the procedure leads to the general equation for the coefficients c,,,,;:

m-1
chj(am’hj)), ifn<m

Com = j=n (h]’h] (25)
1, ifn=m
0, ifn>m

It can be seen from Equation (25) that the matrix containing the coefficients c,,, is lower
triangular. Finally, it should be noted that the coefficients c,,,, can be normalized to develop an

orthonormal set of functions, using the following expression:

norm Cl]
M = —— (26)
T ()

3.3 Evaluation of the Coefficients for Orthogonal Polynomials

The integrals in Equations (25) and (26) can be evaluated analytically. This is trivial in the case
of regular hexagonal cells or square cells. However, the analytical evaluation of the coefficients of the
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orthogonal polynomials is not a perfect choice from a practical point of view since it causes problems
for more complex geometries. Therefore, a more general methodology should be implemented for
the evaluation of the orthogonal coefficients. The idea of the methodology which was used in the
present study will be demonstrated on an arbitrary convex polygon with inscribed annular regions
(see Figure 2).

Figure 2. Example of a single cell (an arbitrary outer convex polygon with annular regions inside)

In the current study the order of the polynomials for the flux expansion was limited by the
second order of the polynomials. In this case, the set of the monomials (basis functions) functions
defined by Equation (2) can be written in the following way:

PO = 1/P1 = leZ :y,P3 :x2’P4 = Xy, P5 :yz (27)

The set of polynomials presented in the (27) should be orthogonalized over each calculation
region inside the cell. To achieve this, the following integrals are used (see Equation (25)):

f j  Pi(oy) Pi(oy) dedy (28)

The polynomials P;(x,y) and Pi(x,y) in Equation (28) can be both monomials and
orthogonal polynomials. Integral over domain D in Equation (28) can be evaluated numerically. In

the case of cells with an arbitrary outer polygon and inscribed annular zones (as presented in Figure
2), the evaluation of the integrals for each zone can be separated into two steps. In the first step, the
integrals inside the annular zones are evaluated. This can be easily performed after a transformation
of the coordinates from a Cartesian to a polar coordinate system. In this case

X =rcosa Y = rsina. (29)
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The Jacobian of the transformation from a Cartesian to a polar coordinate system is equal to

r. Thus integral (28) for the ring zone will take the form:

I,

where r and a are the variables of integration, R; is the inner radius of the ring and R, is the

21 R2
P;(x,y) Py (xy) dxdy = f do f rP; (rcosa,rsina) Py (rcosa,rsina)dr, — (30)
0 R,

ring

outer radius. For the innermost zone the condition Ry = 0 is applied. The right side of Equation (30)

can be evaluated numerically using the Gauss quadrature:

27 RZ
j da f rP; (rcosa,rsina) Py (rcosa,rsina) dr =
0 Ry

(R,~R) NG Ng (31)
Tt Ry — Ry . .
fz 2 wyaw;r P (rcosay risinay) Pi(ricosay,rjsinay,) ,

k=1 =1

where N is the number of Gauss points and «; and r; are defined by the following equation:

R, - R4 Ry, + Ry
ap =mép+mr; = &+ .
2 2

(32)

In Equation (32) & and &; are the nodes of the Gauss quadrature evaluated for the interval (—
1,1). After the evaluation of the integrals over the rings, the integral over the last (outermost)

calculation region consisting of the arbitrary polygon (outer border) and a circle (inner border) is
evaluated. The following technique can be used to evaluate the necessary integrals numerically. The
resulting integral over the polygon-circle region can be represented as the difference between the
integral over the polygon and the integral over the outermost circle:

f f L Pily) Pe(oy) dedy
out

(33)
I neay - || i) ) asay.
pol cir

The second integral (over the circle) on the right side of Equation (33) can be evaluated using
Equation (31). The evaluation of the integral over the polygon requires a different approach. First,
the outer polygon can be subdivided into several triangles as shown in Figure 3.
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Figure 3. Example of the outer polygon triangulation
The integral over the polygon can be represented as sum of the integrals over the triangles

Dl’ Dz and Dgi

j f P;(xy) P (xy) dxdy
Dpol
Pi(xy) P (xy) dxd P;(x,y) Py (x,y) dxd
ﬂDl (xy) Pe(xy) xy+ﬂD2 () Pe (xy) dxdy (34)

" J.f D, P;i(xy) P (xy) dxdy.

Since the functions P;(x,y) and Py (x,y) are polynomials of different orders, the integrals

over the triangles can be evaluated numerically using, for example, the method described in [24].
The final integral over the polygon is calculated as a sum of the integrals over each triangle. It should
be noted that since triangulation procedure is well understood, and standard algorithms are
available, the methodology presented here can be considered as universal for arbitrary convex
polygons with inscribed annular regions. In the current version of the program, the Fortran 90
implementation of the Delaunay triangulation available in the GEOMPACK package [25] was used for
triangulation of the outer polygon.

4 Verification of the orthogonal coefficients

As it was noted in the previous section, in the current version of the program, orthogonal
coefficients b;; are evaluated numerically for each calculation region. At the same time, the

opportunity of the analytical evaluation of the orthogonal coefficients for regular polygons with
inscribed circles exists. Therefore, numerically and analytically calculated coefficients can be
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compared to evaluate the quality of the numerical algorithms used in the current study.

In order to do that, the orthogonal coefficients were evaluated analytically for the regular
square and hexagon with inscribed circles. The geometry of the cells as well as numbering of the
regions are presented in Figure 4.

¥ Y

(0,0} X {0,0) X
R,

RN

Figure 4. Geometries of the regular cells used for the verification of the orthogonal coefficients

Both square and hexagonal cells consist of three regions. The orthogonal coefficients were
evaluated analytically using Gramm-Schmidt process and possibilities of the Sympy library [26] for
Python. The evaluation was performed for the six monomials given below:

1,x,y,x2 xy,y> (2)

Resulting matrix B of the orthogonal coefficient for any region both for square and hexagonal

cells have the following form:

1 00 0 00
0 10 0 00
0 01 0 00
B=1po 00 1 00 (3)
0 00 0 10
bso 0 0 bsy 0 1

As can be seen from Equation (3), the matrix is lower triangular with the coefficients equal to
0 everywhere except main diagonal and coefficients b, b5, and b5 3. The expressions for the

analytical evaluations of the non-zero coefficients are identical for the circle regions for square and
hexagonal cells and defined only by the radii of the internal and external circles R; and R,
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correspondingly.

RZ + R?
byg=-——— @
be o = _ R® + 2R*R2 + 2R?R* + R®
5'0__3(R4+R4)( 11 2RIR; +2R{R; + Ry) (5)
1 2
4 2p2 4
) _R1+4R1R2+R2
53 = 1 T (6)
3R} +3R;

In the case of the innermost region (marked in Figure 4 by number 1) R; = 0.

For the outermost region (number 3 in Figure 4), analytical expressions for the coefficients
will be different for square and hexagonal cells.
For the square cell, coefficients are given by Equations (6 - 8):

371R‘2L —a*
b3o=- TN
12(nR3 - a?) 7)
) 4572 R}? - 15mRSa* - 3nR3a® + a'”
50 =~
3(45m* RS — 90mRSa? + 30mRa* — 9nR3a® + 4a® 8)
. 51R3(3nRS + 6R7a% — 6R3a* + a)
53~ .
4572 R® - 90mR%a? + 30mRa* — 9R2a® + 4a® 9)

For the outermost region of the regular hexagonal cell, coefficients are given by Equations (9
-11):

b 3nR; —a*
30 =T T (10)
12(nR? - a?)
Aq
bsog=—— (12)
D,
Ay
b5’3 = - (12)
D,

where A4, B1, A, and B, are given by the following expressions:
Aq
= (— 367RY + 5,/31%)(~ 28807 R + 57604374 R1212 — 129607 R1OK* (13)
+112/37* R3K® + 4320/ 31> RSK® — 6727° RSK® — 1620mRSH®
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+ 504,/37 2 REA10 — 5047R2K12 + 633K %)
D,
2
=9 (— 2mR2 + \ﬁhz) (86407* R12 — 172804/373 R1%2 + 2400./373 R8*
+ 3240072 R84 — 720072 RSKE — 6724373 RSK® — 64804/37REKE
+ 18004/3rRAS + 252472 R4KS - 1012,/3rR2110 + 381112)
Ay
= (_ 80 RS + 12/3n2RK — 187R2* + 3\/5}16) (720n2R§ +720,/3mREH2 (15)
— 600:/3rR* + 56,[3rR2 + 41h8)
D,
— - 27R2 + \[3h%)(86407* R1Z — 17280/37° RIOK2 + 2400, /3% R3K*
+ 3240072 R84 — 720072 RKE — 6724373 REK® — 64804/37RSHE

+ 1800y/37RAK8 + 252472 R4S - 1012/3rR2K10 + 381112,

Another way to evaluate nonzero coefficients of the matrix is to use numerical techniques for
integration as well as for Gramm-Schmidt algorithm as it was shown, for example, in the work [19].
The methodology and algorithms described in mentioned work were applied for numerical
evaluation of the coefficients. The results of the comparison are presented in Table 1.

- Square cell Hexagonal cell
Coefficient - - - - - -
Numerical | Analytical | Difference Numerical | Analytical | Difference

Region 1

b3,0 -0.37249E-01 | -0.37249E-01 | -0.18373E-16 | -0.37249E-01 | -0.37249E-01 | -0.18373E-16

b5,0 -0.49665E-01 | -0.49665E-01 0.93463E-16 -0.49665E-01 | -0.49665E-01 0.93463E-16

b5,3 0.33333E+00 | 0.33333E+00 | -0.70314E-15 | 0.33333E+00 | 0.33333E+00 | -0.70314E-15
Region 2

b3,0 -0.89005E-01 | -0.89005E-01 | -0.13623E-15 | -0.89005E-01 | -0.89005E-01 | -0.13623E-15

b5,0 -0.17494E+00 | -0.17494E+00 | -0.91625E-15 | -0.17494E+00 | -0.17494E+00 | -0.91625E-15

b5,3 0.96549E+00 | 0.96549E+00 0.43061E-15 0.96549E+00 | 0.96549E+00 0.43061E-15
Region 3

b3,0 -0.18819E+00 | -0.18819E+00 | -0.57229E-11 | -0.29510E+00 | -0.29510E+00 | 0.11556E-07

b5,0 -0.28082E+00 | -0.28082E+00 | -0.88486E-10 | -0.46932E+00 | -0.46932E+00 | 0.46559E-07
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b5,3 0.49220E+00 | 0.49220E+00 | 0.20831E-09 | 0.59038E+00 | 0.59038E+00 | -0.11070E-06

Table 1. Numerically and analytically evaluated coefficients of the orthogonal polynomials

It should be noted that analytical evaluation of the coefficients can be continued for the
monomials higher than 2-nd order. However, due to the complexity of the resulting expressions (see,
for example, equations for evaluation of the b5,0 coefficient for the hexagonal cell), the number of

the base functions was limited by 6 first monomials in this study.

As can be seen from Table 1, numerically and analytically evaluated coefficients agrees very
well for regions 1 and 2 (circle regions) both for hexagonal and square cells. Maximal absolute
difference between them does not exceed ~0.7-107'°. The situation changes for the outermost

region bounded externally by polygon. In this region maximal difference between numerically and
analytically evaluated coefficients rises up to the ~0.2:10™ and ~0.1-107° for the square and

hexagonal cells correspondingly.

The difference observed for the outermost region can be significant due to the error
accumulation in the numerical simulations. Therefore, additional check was performed to evaluate
the orthogonality of the polynomials calculated numerically. In order to do that, matrix B was

orthonormalised. After that, the scalar product of the numerically orthonormalised polynomials was
calculated. The results of the calculations for the outermost region both for square and hexagonal
cells are presented in Table 2.

Order of the orthonormalised Absolute difference from O or 1
polynomials Square Hexagon
1 1 0.15543122E-14 0.00000000E+00
2 1 -0.10927739E-14 -0.19405831E-16
2 2 -0.66613381E-15 0.00000000E+00
3 1 -0.10794897E-15 -0.60378707E-16
3 2 -0.95930851E-17 0.86207651E-17
3 3 0.88817842E-15 0.22204460E-15
4 1 -0.33306691E-15 -0.99920072E-15
4 2 0.51012992E-15 0.13349606E-15
4 3 0.48787184E-16 0.11736111E-15
4 4 0.00000000E+00 -0.77715612E-15
5 1 -0.73972069E-17 0.10776896E-16
5 2 -0.80508376E-16 0.23570253E-16
5 3 -0.14147377E-15 0.95045266E-16
5 4 -0.96305105E-17 0.11185046E-16
5 5 0.22204460E-15 -0.22204460E-15
6 1 -0.13322676E-14 -0.21094237E-14
6 2 0.20861162E-14 0.51982296E-15
6 3 -0.16270945E-15 0.19128116E-15
6 4 -0.77715612E-14 0.13322676E-14
6 5 -0.43775304E-16 -0.83811575E-16
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| 6 | 6 | -0.22204460E-14 | 0.00000000E+00 |

Table 2. Difference from 0 or 1 for the numerically evaluated orthogonal polynomials (outermost
region)

As it can be expected, the error rises with the rise of the polynomial orders. Highest errors are
observed for the 6 order of the polynomials both for square and hexagonal cells. Nevertheless, the
absolute values of the errors are small (~1O'14 both for hexagonal and square cells). Therefore, on

our view, this level of the accuracy is acceptable for the practical evaluation of the orthogonal
coefficients numerically. Despite the fact, that the error of the normalisation stays low for the base
functions considered in present work (monomials up to the 2™ order), additional investigations of
the methodology should be performed for the monomials of the higher orders. Some initial tests
were performed in the current study. Monomials up to the 4™ order were checked. The
normalisation error stayed on the acceptable level (~10713) for the polynomials up to the 3™ order,

but for the 4™ order it increased rapidly and reached unacceptable level ~107L. This result was

predictable due to the well-known unstable nature of the Gramm-Schmidt orthogonalisation
process. Therefore, in the further studies, more stable algorithms should be implemented for the
orthogonalisation of the polynomials higher than 2" order. Possible candidates can be: modified
Gramm-Schmidt algorithm [23], Householder orthogonalisation algorithm [27], Givens reflections.

5 Results of Test Calculations

The methodology described above was coded and tested. In the current stage of work, the
method has been implemented for calculations of the regular and irregular single cells with reflective
boundary conditions on the outer borders (infinite lattices). This set of the test calculations was
chosen to cover different types of the geometries arising in the real reactor calculations. The results
of the calculations were compared with the reference Monte Carlo calculations using OpenMC code
[28]. OpenMC is a relatively young Monte Carlo particle transport code developed in the
Computational Reactor Physics Group (CRPG) at Massachusetts Institute of Technology (MIT). It
possesses several features that were used in current study, such as the possibility to simulate the
systems with given cross sections sets and external neutron sources. In the current study, the results
of the OpenMC simulations were used as reference for the comparison with the developed transport
solver.

4.1 Calculations of the Regular Cells

In the current study, the developed solver was applied for calculation of the neutron fluxes in
the regular hexagonal, pentagonal and square cells. Hexagonal and square geometries very often
arise within nuclear reactors analysis. Pentagon cell was chosen for the demonstration. The
geometries of the cells are presented in Figure 5. Hexagonal and square geometries simulate real
reactor unit cells: central zone - fuel, middle zone - cladding, outer zone - moderator. The same is
applicable to the pentagonal geometry, except the fact that this geometry is quite unusual for the
modern reactor design.
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Figure 5. Geometries of hexagonal and square cells used in the calculations

The calculations were carried out using one energy group with the source of the neutrons
located in the outermost region of the cells. This is typical for the thermal group where majority of
the moderated neutrons are coming from the moderator region.

Two different cross sections sets were chosen to simulate the cells containing fuel and
absorbers; two different cross section sets were chosen to simulate normal and low densities of the
moderator; three different pitches were chosen to check the cells with different pitches of the outer
regular hexagon, pentagon or square. The combinations of the mentioned parameters are presented
in Table 3.

Case Moderator Fuel

number | Zpcm?t | X,cm? | Z,cm? | I, cm? T €M o €M Tpr€m
1 1.5 1.425 0.63 0.33 0.508 0.504 0.508
2 1.5 1.425 10.0 0.30 0.508 0.504 0.508
3 1.5 1.425 0.63 0.33 0.635 0.630 0.635
4 1.5 1.425 10.0 0.30 0.635 0.630 0.635
5 1.5 1.425 0.63 0.33 0.79375 0.7875 0.79375
6 1.5 1.425 10.0 0.30 0.79375 0.7875 0.79375
7 0.1 0.095 0.63 0.33 0.508 0.504 0.508
8 0.1 0.095 10.0 0.30 0.508 0.504 0.508
9 0.1 0.095 0.63 0.33 0.635 0.630 0.635
10 0.1 0.095 10.0 0.30 0.635 0.630 0.635
11 0.1 0.095 0.63 0.33 0.79375 0.7875 0.79375
12 0.1 0.095 10.0 0.30 0.79375 0.7875 0.79375

Table 3: Input parameters for the square and hexagonal cells

The radii Ry (radius of the fuel zone) and R, (outer radius of the cladding) were 0.386 cm and

0.455 cm respectively for all cases. The total and scattering cross sections for the cladding region
were X,=0.276 cm™ and L, = 0.272 cm™ correspondingly for all cases. The source of the neutrons

was located in the moderator region with the density equal 1.0 cm™ for all cases.
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The discrepancies in the neutron fluxes for fuel, cladding and moderator regions between
OpenMC and developed solver are presented in Table 4.

Difference (hexagonal cell) Difference (square cell) Difference (pentagonal cell)

Case Fuel Cladding Mod. Fuel Cladding Mod. Fuel Cladding Mod.
Py | Py | Py | Py | Po| Py |Po|Py|Po|Py|Po|Po|Py|Po|Pyg|Pr|Py|Ps
1 0.0|00|-0.1|/0.0(|-0.3(-0.2(-0.1|/-0.1|-0.5|-0.6|0.3|0.4|0.0|0.0(-0.2|/-0.2|-0.2|-0.1
2 01(01|-31|-2.8|-3.6|-3.1|/0.0|0.0(-3.7|-3.7|/-0.3|/0.9|0.0|0.0|-3.0(-2.9|-3.0(-2.3
3 0.1(00|-0.1|-0.1{-0.1/00|-0.1|-0.2|-0.2|-0.4|0.1|0.2|0.0|0.0|-0.1]{-0.1|-0.2|-0.1
4 04(/03|-14(-1.3|-2.1|-1.3/05|00|-1.6|-18|-1.0|/03|0.3|0.0|-1.0(-1.0|-2.1|-1.3
5 0.2(00|02|00(-03/-0.1/03/0.1{04|0.1|-04|-0.1/{0.1|/0.0|0.2]0.0(-0.3]|-0.1
6 0.603|02|-0.3|-26(-1.2{0.7/03|0.7|00|-3.1|-1.3/0.2|0.0|0.2|-0.3|-2.2|-0.9
7 0.0|0.0]|-0.7|-0.6|-0.7|-0.6| 0.0 | 0.0|-0.7|-0.6|-0.4|-0.3|-0.1(-0.1|-0.5|-0.4|-0.5|-0.4
8 0.0|00|-85|-82|-68|-6.6| 00|00 |-83|-7.9|-42|-3.8/0.0|0.0(-8.8|-8.3|-7.1|-6.8
9 0.0|0.0|-0.6|-0.5(/-0.9(-08|/-0.1|-0.1|-0.6|-0.5|-0.5|-0.4| 0.0 | 0.0 |-0.5|-0.3|-0.6|-0.5
10 00|00|-75|-7.2|-7.2|-6.8| 05|05 |-70|-6.6|-5.0|-4.6| 0.0 | 0.0 |-7.6|-7.2|-75|-7.2
11 0.0|0.0|-03|-0.2|-0.6|-0.5{00|0.0|-0.3|-0.2|-0.5|-0.4|0.0|0.0|-0.4|-0.3|-0.5|-0.4
12 00|00|-65|-6.1|-7.1|-6.7/ 03|03 |-58|-54|-6.2|-5.8/0.2|0.2|-6.5|-6.1|-6.5|-6.1

Table 4: Discrepancies in the fluxes between transport solver and OpenMC, %

Zeroth order as well as second order sets of polynomials for the flux expansion have been
used in the calculations. The results obtained with the first degree of the polynomials are identical to
the flat source approximation for the cells with the reflective boundary conditions. To minimize
computational errors, the level of the angle discretisation was high. Each outer boundary of the
polygons was subdivided into segments with the size equal to 0.05 cm, the azimuthal angle was
discretized into 128 equidistant sectors. The maximal track spacing was 0.005 cm. The extended
trapezoidal rule was used for integration of the collision probabilities within the sectors and segment
boundaries. The Gaussian quadrature was used for integration of the collision probabilities along the
track. Due to the limitations of the current version of the program, there was not any discretisation
on the polar angle. The standard rather than partial Bickley functions were used for the evaluation of
the collision probabilities.

Table 4 indicates that the results of the calculations obtained with the proposed
methodology agree well with results obtained by the Monte-Carlo method. The errors in the fluxes
for major part of the cases are below 1%. In the fuel zone, the errors are less than 1% for all the cases.
Even for the most critical cases with high absorption cross sections, the difference in the fluxes does
not exceed 0.3% in the fuel/absorber regions. However, there are some cases where discrepancies
between OpenMC and the developed solver are quite high. The major discrepancies in the fluxes in
the cladding/moderator regions are observed for the cases 8, 10 and 12. The cases 8, 10 and 12 are
characterized by the low total cross sections of the moderator region and consequently, its low
optical thickness. As mentioned above, the current version of the solver uses only one sector for the
discretisation on the polar angle. However, for the optically thin mediums it is essential to account
for the distribution of the neutrons in the polar direction due to the strong streaming effect.
Therefore, it can be expected that the higher discretisation of the polar angle will lead to better
performance of the code for the regions with small optical thickness. The same behavior of the
discrepancies can be observed for case 2 where optically thin outermost region arise due to the very
small distance between cladding and outer edges of the cells.

20



The results of the calculations presented in Table 4 were obtained using a set of zero order of
polynomials (i.e. flat flux approximation) and a set of second order of polynomials (i.e. six spatial
modes, up to the second order of polynomials). Where the Py-approximation was used for the same

geometries of the cells, the results are generally worse than those calculated with the P,-

approximation; however, the difference between the results was not as large as it was expected. The
main reason can be found in the symmetry of the test problem. In such cases, the flat-flux
approximation can provide acceptable results, since no tilted fluxes appear like in a real unit cell.

The main advantages of the proposed methodology are expected to be seen on the level of
full assembly calculations (as it has already been shown for regular hexagonal assemblies [1]).

4.2 Calculations of the Arbitrary Cells

For further testing of the developed solver, two sets of the arbitrary cells with the outer
polygons with four and six sides were calculated using the proposed methodology. The results
were compared with the results of the Monte Carlo simulations. The reference Monte Carlo
simulations were performed using OpenMC code. The vertices of the polygon were randomly
placed on the circle with the radius R,,,; = 0.890955 cm for the arbitrary quadrangles and R,,;; =

0.733235 cm for the arbitrary hexagons. In total, 5 different outer polygons were obtained and

considered both for hexagonal and quadrangle cells. The geometries of the arbitrary cells are
presented in Figure 6 and Figure 7.

(o)llelrey
QG

Figure 6. Geometries of the cells with the arbitrary outer quadrangles
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The coordinates of the vertices of the outer polygons are given in Table 8.

0QQ
00

Figure 7. Geometries of the cells with the arbitrary outer hexagons

Polygons with 4 sides
Outer Vertex 1 Vertex 2 Vertex 3 Vertex 4
polygon X y x y x y x y
a 0.88869 0.06347 -0.45811 0.76410 -0.79246 -0.40720 0.51453 -0.72736
b 0.72395 0.51933 -0.65999 0.59851 -0.74700 -0.48558 0.22029 -0.86329
C 0.81009 0.37088 -0.68460 0.57020 -0.85532 -0.24947 0.50258 -0.73567
d 0.17341 0.87381 -0.88432 0.10856 -0.09422 -0.88596 0.88920 -0.05586
e 0.79371 0.40475 -0.20345 0.86742 -0.86699 -0.20525 0.37076 -0.81015
Polygons with 6 sides
Outer Vertex 1 Vertex 2 Vertex 3 Vertex 4 Vertex 5 Vertex 6
polygon X Y X y X Y X Y x y X Y
a 0.57779 | 0.45143 | 0.04727 | 0.73171 |-0.60780| 0.41014 |-0.64082|-0.35634 | 0.21999 |-0.69946| 0.64098 |-0.35605
b 0.72704 | 0.09512 | 0.31728 | 0.66103 [-0.59122| 0.43370 |-0.58937|-0.43620|-0.19919|-0.70566| 0.62976 |-0.37554
C 0.71474 | 0.16363 | 0.36582 | 0.63546 |-0.70223| 0.21098 |-0.72677|-0.09717 | 0.16921 |-0.71344| 0.66375 |-0.31157
d 0.60560 | 0.41338 |-0.27098| 0.68132 |-0.58377 | 0.44367 |-0.73069|-0.06100 |-0.26119|-0.68514| 0.71188 |-0.17567
e 0.54316 | 0.49256 |-0.09985| 0.72640 |-0.68663 | 0.25724 |-0.70357|-0.20645| 0.04715 |-0.73171| 0.73054 |-0.06276

Table 5: Coordinates of the vertices of the arbitrary polygons

Different cross sections for the region containing the fuel, different total and scattering
cross sections for the outermost zone have been chosen for the analyses. Two different cross
sections sets were chosen to simulate the cells with fuel and absorbers and two different cross
section sets were chosen to simulate normal and low densities of the moderator. The final
combination of the cells parameters are given in Table 6.

Case number | Outer polygon Fuel Moderator
type 2 X X X
1 a 0.63 0.33 1.5 1.425
2 a 10.0 0.30 1.5 1.425
3 a 0.63 0.33 0.1 0.095




4 a 10.0 0.30 0.1 0.095
5 b 0.63 0.33 1.5 1.425
6 b 10.0 0.30 1.5 1.425
7 b 0.63 0.33 0.1 0.095
8 b 10.0 0.30 0.1 0.095
9 C 0.63 0.33 1.5 1.425
10 C 10.0 0.30 1.5 1.425
11 C 0.63 0.33 0.1 0.095
12 C 10.0 0.30 0.1 0.095
13 d 0.63 0.33 1.5 1.425
14 d 10.0 0.30 1.5 1.425
15 d 0.63 0.33 0.1 0.095
16 d 10.0 0.30 0.1 0.095
17 e 0.63 0.33 1.5 1.425
18 e 10.0 0.30 1.5 1.425
19 e 0.63 0.33 0.1 0.095
20 e 10.0 0.30 0.1 0.095

Table 6: Input parameters of the arbitrary cells

All 20 cases presented in Table 6 were simulated using both OpenMC code and the
developed transport solver both for quadrangle and hexagonal cells. The results of the OpenMC
simulations were used as reference. The discrepancies between the transport solver (with and
without flux expansion) and Monte Carlo reference results are presented in Table 7.

Quadrangle cell Hexagonal cell
Case Fuel Cladding Moderator Fuel Cladding Moderator
number | py 1 py | Py | P, | Py | P | P | P, | P | P, | Py | P,
1 0.2 0.0 0.2 | -0.1 | -0.5 -0.2 0.0 0.0 0.0 0.0 -0.3 -0.1
2 0.0 0.0 | -0.1 | -0.8 | -3.9 -1.7 0.1 0.0 -1.1 -1.1 -2.7 | -1.7
3 0.0 00 | -04 | -0.3 | -0.8 -0.7 0.0 0.0 -0.4 | -0.3 -0.7 | -0.7
4 0.0 00 | -75 | -6.9 | -8.1 -7.5 0.0 0.0 -7.5 -7.1 -7.6 | -7.3
5 00 | 0.2 | -0.1 | -0.3 | -0.2 0.1 0.0 0.0 -0.1 -0.1 -0.1 0.1
6 0.0 0.0 | -0.8 | -1.5 -3.0 -0.2 0.1 0.0 -1.7 | -1.7 | -1.6 | 0.5
7 0.0 0.0 | -04 | -0.4 | -0.6 -0.5 0.0 0.0 -04 | -04 | -0.5 -0.4
8 0.5 05 | -7.9 | -7.5 -7.5 -7.0 0.2 0.1 -7.9 -7.5 -7.2 -6.8
9 0.2 | 0.0 | 0.3 0.0 -0.6 -0.1 0.2 0.1 0.2 0.1 -0.5 | -0.3
10 0.0 00 | -0.2 | -0.9 | -3.7 -1.3 0.6 04 -0.8 -1.0 | 4.3 -2.0
11 -0.1]|-0.1| -04 | -03]| -0.6 -0.4 0.0 0.0 -0.4 | -0.3 -0.7 | -0.6
12 0.0 00 | -7.3 | -6.8 | -6.5 -54 0.2 0.2 -7.7 | -7.3 -80 | -74
13 0.1 0.0 0.1 0.0 0.4 -0.1 0.1 0.0 0.1 0.0 -0.4 | -0.2
14 0.5 0.0 | -04 | -0.6 | -3.0 -1.8 0.0 0.0 -1.0 | -1.1 -3.6 | -1.9
15 0.0 0.0 | -04 | -0.3 | -0.8 -0.7 0.0 0.0 -0.4 | -0.3 -0.7 | -0.6
16 0.0 0.0 | -7.0 | -6.5 -7.3 -6.8 0.1 0.1 -7.7 | -7.2 -80 | -7.6
17 0.2 | 0.0 | 0.2 0.0 -0.3 -0.1 0.1 0.0 0.0 0.0 -0.3 | -0.2
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18 05|05 |-04]-08] -33 | -1.6 | 0.5 04 | -10 | -1.0 | -3.0 | -1.8
19 -0.1|-01|-04)|-03| -06 | -05 | -0.1 0.0 -04 | -0.3 | -0.6 | -0.5
20 00| 00 | -783]-69 | -75 | -71 0.0 0.0 -77 | -73 | -81 | -7.7

Table 7: Discrepancies in the fluxes between transport solver and OpenMC (%) for irregular cells
(the rows with the normal density of water are shaded with grey colour)

As can be seen from the table above, the difference in the fluxes do not exceed 0.5% on in the
fuel region for all the cases under consideration. For the cases with normal density of water, the
discrepancies in the fluxes are slightly higher or less than 2% when the polynomials of the second
order are used for the flux expansion. For the case of the low moderator density, the discrepancy in
the moderator and cladding regions rises and reaches 8.1% for the case number 4. The reason for this
difference is the absence of the discretisation on the polar angle in the current version of the
transport solver. Application of the second order of the flux expansion improves the accuracy almost
for all the considered cases. In some cases, the accuracy stays on the same level. The highest
improvements are observed for the cells with the absorber and normal density of the water. In
general, the accuracy of the calculations is acceptable for the practical calculations even without
discretisation of the polar angle, when the normal density of the moderator is considered. However,
discretisation of the problem on polar angle is required to take into account streaming effects for
lower densities of moderator. The effect of the flux expansion for the single cell is not as high as it
was expected (in absolute numbers). Flat flux approximation provides reasonable results for the
major part of the considered cells. It happens, on our view, due to the reflective boundary conditions
applied on the sides of the cells. The effect of the flux expansion becomes more visible when the
proposed methodology is applied for the full assembly simulations as it has been demonstrated for
the regular hexagonal assemblies [1, 19].

4.3 Influence of the polar angle discretisation

In order to clarify the influence of the polar angle discretisation on the accuracy of the results,
the set of the calculations was performed. Current version of the solver for the arbitrary cells is able
to simulate the problems using only one polar sector. However, older version of the code developed
for the regular hexagonal cells [1] have got the possibility to run simulations with the higher number
of the polar sectors. Therefore, the numerical experiments were performed for the regular
hexagonal cells only. The cell number 8 from Table 3 was chosen for the tests as it had highest
discrepancies in flux. Calculations were performed both for zero and second orders of the
polynomials. The number of the polar sectors varied from 1 to 15. The results of the calculations are
presented in Figure 8.
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Figure 8. Results of the calculations with different number of polar sectors

It is observed that the error both in moderator and cladding regions rapidly decreases as the
number of the polar sectors increases. The errors in the moderator region falls below 1.0% both for
the zero and second orders of the polynomials. The errors in the cladding regions decrease from ~8%
for the one polar sector to 1.5-2% for 11 polar sectors. The converged behaviour of the error for the
number of polar sectors higher than 11 indicates that further improvements of the results should not
be expected. It should be noted that the considered case was quite artificial (very dense lattice with
the strong absorbers and low density of the moderator) and better results can be achieved for the
more realistic cases. The results presented in the current section creates the evidence that quite high
discrepancies observed for the cases with the low moderator density can be decreased with the
higher discretisation of the polar angle.

4.4 Performance of the CCCP Method with Orthogonal Flux Expansion

To evaluate the efficiency of the proposed methodology, a set of the calculations has been
performed. The case number 4 (hexagonal cell) from Table 3 has been chosen for the tests. The
moderator region of the cell was subdivided into several concentric subregions (see Figure 9). The
calculations of the fluxes were performed using flat flux approximation. The time of the calculations
was measured and compared with the calculation time of the same cell using second order of the
polynomials for the flux expansion. In the case of the second order of the flux, there were no any
subdivisions of the outermost region. The results of the calculations are presented in Table 8.
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Figure 9. Subdivision of the outermost region with reflective boundary conditions

ﬁ Error in average flux, %

Number of subregions b, P, P,

1 0.80 -1.8

2 0.85 -1.5

3 0.97 -1.5

4 1.10 -1.4 -1.1

5 1.31 -1.4

7 1.70 -1.4

10 2.72 -1.4

Table 8: Results of the performance tests
. . . . . . . oy . . .
The relationship between calculation time in Py and P, approximations (—) is given in the
tp,

second column of the table, while the error for Py approximation is presented in the third column. It
can be observed, that the computational time for the Py-approximation without subdivision of the
moderator zone is approximately on 20% less than the computational time for the P,-approximation

but at the cost of reduced accuracy as it is to be expected. However, increasing the number of sub-
zones leads to an increased calculation time and, as already seen for the case with four sub-zones,
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tp

the P,-approximation becomes computationally more efficient (the quotient —2 becomes higher
tp,

than 1) while the accuracy of the P approximation is still worse than the P, approximation. The

error of the calculations (in comparison with Monte-Carlo calculations), remains higher for the P,-
approximation than for the P,-approximation (-1.1%) at least until 10 subregions are inserted. The

difference between the flat flux approximation and the second order polynomial expansion is not as
high as it was expected for the case of the single cell with reflective boundary conditions. Due to the
symmetry of the problem, flat flux approximation can provide comparably accurate solution.
However, the results for the flat flux approximation are expected to become worse in the case of a
tilted flux. Such a flux will appear in the unit cells of a real fuel assembly due to inhomogeneity caused
by zone enrichment and the influence of guide tubes for the control rods in western type fuel
assemblies, or the different size of the water gaps between assemblies.

4.5 Visualisation

Additional verification of the methodology was performed by producing two-dimensional
visualisation of the neutron fluxes within hexagonal cell. Appropriate sets of the pictures were
produced for hexagonal cell containing absorber or fuel in the central region. The results of the
visualisation are presented in Figure 10 - Figure 15.

Figure 10. Plane (left), axial (middle) and 3D (right) views of the neutron flux distribution within
hexagonal fuel cell calculated using OpenMC

Figure 11. Plane (left), axial (middle) and 3D (right) views of the neutron flux distribution within
hexagonal fuel cell calculated with transport solver (P, approximation)
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Figure 12. Plane (left), axial (middle) and 3D (right) views of the neutron flux distribution within
hexagonal fuel cell calculated with transport solver (P, approximation)

Figure 13. Plane (left), axial (middle) and 3D (right) views of the neutron flux distribution within
hexagonal absorber cell calculated with OpenMC

Figure 14. Plane (left), axial (middle) and 3D (right) views of the neutron flux distribution within
hexagonal absorber cell calculated with transport solver (P, approximation)

Figure 15. Plane (left), axial (middle) and 3D (right) views of the neutron flux distribution within
hexagonal fuel cell calculated with transport solver (P, approximation)

The above figures represent the flux distributions inside the regions of a typical eastern type
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light water reactor unit cell for Py and P, approximations. The calculations have been performed for

fuel and absorber cells and the flux was visualized using the possibilities of the ParaView software
[29]. The neutron flux within calculation regions was reconstructed on the basis of Equation and
values (such as @y, b, s ) obtained during the transport solver run. It is obvious from Figure 11, Figure

14 that the shape of flux for P, approximation is flat for each zone of the cells (classical for the flat
flux approximation). In the identical cases for the P, approximation, the shape of the flux in the

different regions is represented by a second order surface. Thus, the flux distribution is much closer
to the reference shape of the flux calculated by OpenMC and presented in Figure 12 and Figure 15
(see also [17]). As can be seen from the figures above, the gradient of the flux for the fuel cell is much
less than for the absorber cell. It is one of the reasons, why flat-flux approximation provides good
results for the fuel cells. For the absorber cell, the gradient of the flux is much higher and the effect of
the higher order polynomials is more visible. The visualisation demonstrates significantly better
performance of the calculations using the P, approximations in comparison with those assuming a

flat flux approximation. Visible jumps at the boundary between moderator and cladding and
between cladding and fuel/absorber demonstrate that the second order approximation is not
powerful enough to reconstruct the complexity of the problem completely. However, from
engineering perspective, the second order approximation seems to be a good and reliable choice.

6 Conclusions

The methodology of current coupling collision probability method combined with orthogonal
flux expansion has been applied for the numerical solution of the transport equation. In contrast to
the previously developed techniques, where orthogonal coefficients evaluated analytically for the
limited number of geometries, the process of the orthogonalisation in the current solver is based on
a numerical implementation of the Gram-Schmidt procedure. This has extended the proposed
methodology to broad range of heterogeneous geometries. Application of the orthogonal
polynomials for the flux expansion allows a significant reduction of the number of calculation
regions, while maintaining or improving the accuracy of the results. This technique allows to
overcome one of the drawbacks of the traditional collision probability method - poor representation
of the spatial distribution of the neutron source/flux. It was shown that the application of the higher
order of the polynomials for the flux expansion improves the accuracy and the efficiency (in terms of
the accuracy/run time ratio) of the calculations. Another benefit of the presented technique is the
possibility to relieve the user from determining the correct discretisation of the calculation regions
with all the following challenges such as the adoption of ray tracing to the changed geometry to
achieve a reliable result. It can be even more important since, for example, in the well-known code
HELIOS [12] utilising the CCCP method with the flat flux approximation, the spatial discretisation of
the calculation regions is performed manually by user. Therefore, the refinement of the calculation
regions requires additional effort and makes the input files more complicated. Application of the
proposed methodology would significantly simplify this process for the user. In this case change of
the only one input parameter (order of the polynomials for the flux expansion) would improve the
accuracy of the computations. Application of the numerical methods for evaluation of the
coefficients of orthogonal polynomials increase the flexibility of the method significantly. Previously,
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current coupling collision probability method with expansion of the neutron flux by orthogonal
polynomials was applicable in practice only for the regular lattices [16, 1]. Now, this technique can be
applied for much wider range of the 2D problems including unstructured geometries.

The verification of the developed code has been performed both for regular and irregular
cells. The results of the comparison with Monte-Carlo code demonstrate sufficient accuracy for
practical calculations. Even though the results obtained in presented study agree well with the
results of reference Monte Carlo calculations, further investigations are necessary for a better
understanding of the stability and limitations of the proposed methodology. The Gram-Schmidt
procedure is known to be unstable. Even though we did not encounter any problems with the
stability of the solver during the above tests, we are aware about possible stability problems which
can arise for some complicated geometries or for the higher orders of the polynomials. Therefore,
some other methods for construction of the orthogonal set of the polynomials need to be
investigated (for example, applying the modified Gram-Schmidt algorithm [23]). The numerical
scheme for integration over triangle used in present study enables the evaluation of integrals up to a
maximum of the 7" order. For higher orders of the polynomials, this scheme of the integration can
be unstable. Therefore, other quadrature sets should be investigated.

After an appropriate completion and extensions, the developed transport solver will be
incorporated into a nodal code to enable a multi-scale and multimethodological approach for pin-
wise 2D calculations. This approach combines a transport solver using the real fuel assembly
geometry reproduced on an unstructured mesh with the boundary conditions extracted from the 3D
full core nodal solution. The previous investigations performed in this field clearly demonstrate that
this kind of coupling can obtain reliable results with a good accuracy on the pin level [2]. The main
efforts should be made in the coupling of the available transport code into an available nodal code
and the optimisation in the given software environment respecting the requests of a licensing grade
software tool.
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