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Abstract
Within this article, current coupling collision probability method with expansion of flux byorthogonal polynomials is verified and validated via comparison with analytical and Monte-Carlosolutions for the single cell with reflective boundary conditions. The results of the calculations for asingle unit cell demonstrate good agreement with the results of Monte Carlo calculations. Thecomparison of the newmethodwith the state-of-the-art flat flux approximation demonstrates eitheran improved quality of the result for identical cell discretisation or significantly increasedcomputational efficiency to achieve an identical solution. Application of the numerical methods forevaluation of the coefficients of orthogonal polynomials increase the flexibility of the methodsignificantly since higher orders of the polynomials for the neutron source/flux expansion can beapplied now formuchwider range of the 2D problems. Application of the orthogonal polynomials forthe flux expansion allows a significant reduction of the number of calculation regions, whilemaintaining or improving the accuracy of the results. It also improves efficiency (in terms of theaccuracy/run time ratio) of the calculations. Finally, it has a potential to relieve the user fromdetermining the correct discretisation of the calculation regions, which is required in the case of thetraditional flat flux approximation and can be quite challenging for the complex geometries.Keywords: nuclear reactor simulation, neutron transport calculations, CCCP, orthogonalpolynomials
1 Introduction
The operation of nuclear reactors requires detailed knowledge of important safetyparameters, such as the spatial power distribution, the control rod worth, margin to departure fromnucleate boiling (DNB), pin burnup etc. The widely used standard approach in design and safetycalculations are coupled neutronics and thermal-hydraulics codes for the steady state and transientsimulation. The neutronics calculations are typically performed at a nodal level using the diffusionapproximation and assembly-homogenized sets of cross-sections while the thermal hydraulics relieson a channel model with fuel assembly sized channels. However, for the determination of the safetylimits, which are based on local pin-based parameters, the knowledge of the power and temperaturedistribution on a nodal level is not sufficient. Local thermal hydraulic and neutronics safety
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parameters need to be predicted for the hottest fuel assembly in detail, down to the individualchannels (hot channel analysis) and pins. To achieve this level of detail, local pin power distribution isnecessary.For practical reactor core applications, low-order transport approximations such as diffusionor SP3 methods have been implemented on the nodal level for static and transient calculations withconsiderably less computational expense than full transport methods. However, using theseapproximations to produce a finer grid on pin level fails to provide accurate resolution of theheterogeneous fuel pin arrangements [1].In nuclear reactors, there are several locations where the effect of neighbouring assembliesplays an important role and cannot be ignored such as the interface between fuel assemblies andreflector, the fuel assembly with control rods, and the interface between MOX and uranium fuelassemblies [2, 3].Therefore, in recent years a number of projects were started focused on advancedmultiphysical simulation of the nuclear reactors such as CASL [4] in the USA or DRD [5] in the UK.Interest has also increased in the development of the neutron transport codes which can solve theneutron transport equation for the full reactor core [6, 7, 8, 9], as they currently are mainly used toprovide the two-dimensional cross section preparation. The straight forward extension of themethods used for cross-section preparation to full core analysis is problematic since the full-coretransport solvers are very computationally expensive and additional cross section requirementssignificantly increase these costs. Full core computations using transport solvers require, as a rule, asignificantly powerful computer cluster. Transient calculations are even more expensive and canrequire several weeks of cluster time for calculation of few seconds of transient behaviour [2].To overcome the above limitations, other methodologies for pin-wise neutron fluxcalculations can be chosen. These methodologies can be combined in the frame of a multi-scale andmulti-methodological approach. Pin-wise calculations, in this case, are performed by applying atransport solver using the heterogeneous fuel assembly geometry on an unstructured mesh withboundary conditions extracted from the 3D full core nodal diffusion solution. This combined nodal-transport approach was proposed in the 1970s by different researchers - Wagner, Koebke, Grill,Jonsson [8, 9, 10]. Further investigations in this field have been performed by Nissen [11]. The overallconclusion is that the combined nodal-transport approach is capable of providing high accuracyresults with good computational performance.To follow this strategy, one needs a transport solver, which can be used for the fluxreconstruction on the pin level. The current coupling collision probability (CCCP) method [12, 13]seems to be a good choice for the development of such a solver. CCCP has several advantages whichare important in the case of the pin power reconstruction: it is proven to be fast (HELIOS code [12])and it allows a very detailed description of the boundary currents entering and leaving the assemblyunder considerationwhich is important for the task of the pin power reconstruction.One of the drawbacks of the traditional CCCP method is its poor representation of the spatialdistribution of the within group neutron flux/source. Traditionally, the CCCP method uses so-calledflat flux approximation for the representation of the neutron sources within computational regions.Therefore, for the optically thick regions such as water reflectors, the detailed discretisation shouldbe used to accurately represent the shape of the neutron source. Similar situation is observed for thethermal groups of the fuel. Thus, both fuel and reflector regions should be additionally discretised tocapture the spatial effects of the neutron source. Unfortunately, the computational time of any typeof the collision probability based methods is proportional to the second order of the number of
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calculation regions. It means that doubling of the computational regions leads to the four time highercomputational times. Therefore, the traditional collision probability methods become lesscomputationally efficient as the number of the flat source regions increase. In addition, the spatialsubdivision of the calculation regions can be complicated for the geometrically complex regions andthe spatial convergence of the sources/fluxes cannot be guaranteed.In order to overcome these issues, another approach can be used for better representation ofthe spatial distribution of the sources within calculation regions. For example, a linear sourceapproximation was developed and tested for the method of characteristics [14] [15]. In thisapproach, the source is assumed to vary linearly over a given track’s segment. It was demonstratedthat the “linear source approximation improves the accuracy and the efficiency of the MOCcalculation relative to the flat source scheme for a comparable level of accuracy” [15].Similar approach can be used for the CCCP method. The flux/source within calculationregions can be expanded by orthogonal polynomials of two variables. This allows us to reduce thenumber of the calculation regions while maintaining the accuracy on the good level. This techniquewas previously tested for the case of the regular hexagonal lattice [1, 16]. In the presented work, thismethodology was extended for the case of the unstructured mesh. In the case of the regularhexagonal lattice, the coefficients for the orthogonal polynomials can be calculated analytically,while in the case of the unstructured mesh, the corresponding coefficients should be evaluatednumerically. To achieve this, the Gramm-Schmidt procedure combined with a triangulationalgorithm is applied. The comparison of this new method to the flat flux approximationdemonstrates either an improved quality of the results for identical cell discretisation or significantlyincreased computational efficiency to achieve a comparable accuracy.In present study, verification of the developed solver is performed for the case of the singlereactor cell. The results are compared with the reference Monte-Carlo simulations. Additionalverification of the solver is performed using visualisation technique.The paper is organised as follows. In section 2 the methodology is described. In section 3implementation of the methodology is discussed. In section 4 results of the numerical experimentsand visualisation of the flux’s shape in the computational regions are presented, the performance ofthe proposedmethodology is discussed. Finally, conclusions and remarks are given in section 5.
2 Methodology description
In traditional CCCP methods, neutron flux inside each calculation region is represented byonly one value [12]. This approximation is called the flat-flux approximation. Therefore, thesubdivision of each zone is essential [17] to achieve a non-flat neutron flux distribution which isrequired for an accurate result. The subdivision of each region leads to an increase in the number ofelementary volumes (calculation regions). Consequently, this causes an increase in the requiredcalculation time as well as in the memory demand. The calculation time for the collision probabilitymethod is proportional to𝑁2 where𝑁 is the number of regions [18].
An advanced approach for a more accurate representation of the flux inside the calculationregions has recently been proposed [16, 1]. According to this approach, the non-uniformity of theneutron flux distribution inside the calculation regions can be described with the help of theorthogonal polynomials of two variables. The general idea of the approach is very much comparableto the nodal methods applied to full core simulations, where a mathematical approximationrepresents the neutron flux distribution inside each of the calculation regions and nodes are coupled
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via interface currents. As previouslymentioned, this approach allows a significant increase of the sizeof the calculation regionswithout penalty in the calculation accuracy.Mathematically, the expansion of the flux by orthogonal polynomials can be written in thefollowingway:
Φ 𝑥,𝑦 =  

∞

𝑘=0
Φ𝑘𝑃𝑘(𝑥,𝑦) , (1)

where Φ(𝑥,𝑦) is the neutron flux at the point with the coordinates 𝑥 and 𝑦, Φ𝑘 are the
expansion coefficients, 𝑃𝑘(𝑥,𝑦) are orthogonal polynomials. In the real case, the number of
polynomials is limited by 𝑁members (in contrast to the exact representationwhere 𝑁 → ∞).

After that, the above flux expansion is introduced into the equations for the current couplingcollision probability method instead of conventional flat flux approximation. The final set ofequations for the current coupling collision probability method with orthogonal flux expansioninvolves now (in contrast to the flat flux approximation) additional terms related to the spatialmoments of the flux. The detailed description of the methodology can be found in the works [1, 19,20]. In the mentioned works, the expansion of the flux was applied for the case of the regularhexagonal cells. In the current study, the methodology was extended and tested for the case of thecell with arbitrary polygonswith inscribed circles.
In order to expand the neutron flux by orthogonal polynomials, the polynomials should beorthogonalized within given calculation region. Let 𝑎 be the set of the base monomials functions. In

this case, the set of themonomials up to the 𝑛-th order will bewritten in the followingway:
𝑎 = 1,𝑥,𝑦,𝑥2,𝑥𝑦,𝑦2,…,𝑥𝑛−𝑞𝑦𝑞,…,𝑦𝑛     𝑞 = 0,…,𝑛 (2)

The 𝑖-th orthogonal polynomial can bewritten as follows:

𝑃𝑖 =
𝑖

𝑘=0
𝑏𝑖𝑘𝑎𝑘 , (3)

where 𝑏𝑘 is the coefficient, 𝑎𝑘 is 𝑘-thmonomial from the set ofmonomials.
Equation (3) can bewritten in thematrix form for the 𝑛 first base polynomials:

𝐏 = 𝐁𝐀, (4)
where 𝐏 = (𝑃1,𝑃2,𝑃3,…,𝑃𝑛) is 𝑛 × 1 column vector containing resulting orthogonal

polynomials; 𝐀 = (𝑎0,𝑎1,𝑎2,…,𝑎𝑛) is 𝑛 × 1 column vector containing base functions (monomials) and
𝐁 is matrix containing orthogonal coefficients:
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𝐁 =
𝑏1,0 ⋯ 0

⋮ ⋱ ⋮
𝑏𝑛,0 ⋯ 𝑏𝑛,𝑛

(5)

𝐁 is lower triangularmatrix.
Therefore, the task of the polynomial orthogonalisation can be formulated as finding theelements of the 𝐁 matrix. The orthogonalisation process can be performed either analytically or

numerically. Analytical orthogonalisation provides exact expression for the calculation of the 𝐁

matrix. However, practically, it is complicated to evaluate analytically orthogonal coefficients forarbitrary geometries. Therefore, in the current study, numerical evaluation of the orthogonalcoefficients was used.
3 Implementation of the methodology
The incorporation of the orthogonal polynomials into the conventional current couplingcollision probability method [12] leads to equations that are more complicated for integration. Theequations for the evaluation of the region-to-surface, surface-to-region, region-to-region andsurface-to-surface collision and transmission probabilities become more complicated. Theprobabilities depend now (in contrast to traditional CCCP probabilities) not only on the discretizedregions and angles but also on the spatial modes of fluxes. However, since neutron flux isrepresented now as expansion by the orthogonal polynomials (in contrast to the conventional CCCPmethod where it is represented by one number), it allows to describe the shape of the flux withincalculation region more accurate. Consequently, expansions of the flux using orthogonalpolynomials have the potential either to decrease the number of calculation regions significantly,while maintaining the same accuracy, or to improve the calculation accuracy significantly for anidentical number of calculation regions.
3.1 Current Coupling Collision Probability Method
As in any kind of the collision probability method, the solution of the neutron transportequation starts from the evaluation of the collision probabilities. In the case of the CCCPmethod, thecollision probabilities are unique for each type of the cell in the assembly (for example fuel cell orabsorber cell). There are four types of the collision probabilities which should be evaluated: region-to-region (RR) collision probability, region-to-surface (RS) escape probability, surface-to-region (SR)collision probability and surface-to-surface (SS) transmission probability. In order to account for theangular and spatial dependency of the neutron currents, the directional hemisphere is subdividedinto the number of the azimuthal and polar sectors while the cell’s sides are subdivided on two ormore segments. The example of the angle and spatial discretisation is shown in Figure 1.
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Figure 1. Example of the angular and spatial discretisation
The neutron transport equation in the classical current coupling collision probability methodis reduced to a set of linear algebraic equations. Collision probabilities are evaluated by accountingfor the angular and spatial discretization of the model [21]. Using notation for the angle, side andregion discretization, the equations describing the relations between neutron currents and fluxes forthe current CCCPwith the standard flat-flux approximation can bewritten in the followingway:

𝑣𝑖𝛴𝑖𝛷𝑖 =
𝑖′

𝑣𝑖′𝑄𝑖′𝑅𝑅𝑖′→𝑖 +
𝑗 𝑚 𝑙

𝐽𝑖𝑛
𝑗,𝑚,𝑙𝑆𝑅𝑗,𝑚,𝑙→𝑖 (6)

𝐽𝑜𝑢𝑡
𝑗,𝑚,𝑙 =

𝑖′
𝑣𝑖′𝑄𝑖′𝑅𝑆𝑖′→𝑗,𝑚,𝑙 +

𝑗′ 𝑚′ 𝑙
𝐽𝑖𝑛
𝑗′,𝑚′,𝑙𝑆𝑆𝑗′,𝑚′,𝑙→𝑗,𝑚,𝑙 , (7)

where 𝑆𝑆𝑗′,𝑚′,𝑙→𝑗,𝑚,𝑙 is the probability for a neutron entering the 𝑗′-th segment, 𝑚′-th
azimuthal sector and 𝑙-th polar sector leaving without collision through the 𝑗-th segment, 𝑚-th
azimuthal sector and the 𝑙-th polar sector; 𝑆𝑅𝑗,𝑚,𝑙→𝑖 is the probability for a neutron entering into the
𝑗′-th segment via the 𝑚′-th azimuthal sector and the 𝑙-th polar sector to have its first collision in the 𝑖-
th region; 𝑅𝑆𝑖′→𝑗,𝑚,𝑙 is the probability for neutron born in the 𝑖′-th region to leave without collision
through the 𝑗-th segment, 𝑚-th azimuthal sector and the 𝑙-th polar sector; 𝑅𝑅𝑖′→𝑖 is the probability
for neutron born in the region 𝑖′ to have its first collision in region 𝑖; 𝛷𝑖 is the neutron flux in the
region 𝑖; 𝑄𝑖 is the neutron source in the region 𝑖; 𝑣𝑖 – volume of the region 𝑖; 𝛴𝑖 is the total cross
section in the region 𝑖; 𝐽𝑖𝑛

𝑗,𝑚,𝑙 is the incoming current on the segment 𝑗′, azimuthal sector 𝑚′ and polar
sector 𝑙; 𝐽𝑜𝑢𝑡

𝑗,𝑚,𝑙 is the outgoing current on the segment 𝑗, azimuthal sector𝑚 and polar sector 𝑙.
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3.2 Equations for the CCCP with Orthogonal Flux Expansion
The expansion of the neutron flux using orthogonal polynomials slightly changes the form ofEquations (6) and (7). These can nowbewritten in the following form:

𝑣𝑖𝛴𝑖𝛷𝑖,𝑘 =
𝑖′ 𝑘′

𝑣𝑖′𝑄𝑖′,𝑘′𝑅𝑅𝑖′,𝑘′→𝑖,𝑘 +
𝑗 𝑚 𝑙

𝐽𝑖𝑛
𝑗,𝑚,𝑙𝑆𝑅𝑗,𝑚,𝑙→𝑖,𝑘 (8)

𝐽𝑜𝑢𝑡
𝑗,𝑚,𝑙 =

𝑖′ 𝑘′
𝑣𝑖′𝑄𝑖′,𝑘′𝑅𝑆𝑖′,𝑘′→𝑗,𝑚,𝑙 +

𝑗′ 𝑚′ 𝑙
𝐽𝑖𝑛
𝑗′,𝑚′,𝑙𝑆𝑆𝑗′,𝑚′,𝑙→𝑗,𝑚,𝑙 , (9)

where 𝑄𝑖′,𝑘′ is the neutron source in the region 𝑖′, spatial mode 𝑘′; 𝛷𝑖,𝑘 is the neutron flux in
the region 𝑖, spatial mode 𝑘.

The equations for the collision probabilities are now given in the followingway:

𝑆𝑆𝑗′,𝑚′,𝑙→𝑗,𝑚,𝑙 =
1

𝜀𝑗𝜒𝑚𝜇𝑙

𝜑𝑚

𝜑𝑚−1
𝑐𝑜𝑠𝜑𝑑𝜑

𝐿𝑗

𝐿𝑗−1
𝐾𝑖3,𝑙 𝜏 𝑑𝐿 (10)

𝑅𝑆𝑖,𝑘→𝑗,𝑚,𝑙 =
2

𝜋𝑣𝑖

𝜑𝑚

𝜑𝑚−1
𝑐𝑜𝑠𝜑𝑑𝜑

𝐿𝑗

𝐿𝑗−1
𝑑𝐿

𝛥𝑡𝑖

𝐾𝑖2,𝑙 𝜏 𝑃𝑘 𝑥,𝑦 𝑑𝑡 (11)

𝑅𝑅𝑖′,𝑘′→𝑖,𝑘 =
Σ𝑖′
𝜋𝑣𝑖′

𝜋
2

0
𝑐𝑜𝑠𝜑𝑑𝜑

𝐿𝑗

𝐿𝑗−1
𝑑𝐿

𝛥𝑡𝑖′

0
𝑃𝑘′ 𝑥′,𝑦′ 𝑑𝑡′

𝛥𝑡𝑖

0
𝐾𝑖1 𝜏 𝑃𝑘 𝑥,𝑦 𝑑𝑡 (12)

𝑆𝑅𝑗,𝑚,𝑙→𝑖,𝑘 =
1

𝜒𝑚𝜇𝑙

4𝑣𝑖

𝛴𝑖𝐿𝑗
𝑅𝑆𝑖,𝑘→𝑗,𝑚,𝑙, (13)

where 𝑅𝑅𝑖′,𝑘′→𝑖,𝑘 is the probability for a neutron born in region 𝑖′, harmonic 𝑘′ to have its
first collision in region 𝑖, spatial mode 𝑘; 𝑆𝑅𝑗,𝑚,𝑙→𝑖,𝑘 is the probability for a neutron entering into the
segment 𝑗′ via the azimuthal sector 𝑚′ and polar sector 𝑙 to have its first collision in region 𝑖, spatial
mode 𝑘; 𝑅𝑆𝑖′,𝑘′→𝑗,𝑚,𝑙 is the probability for a neutron born in the region 𝑖′ and spatial mode 𝑘′ to leave
without collision through the segment 𝑗, azimuthal sector 𝑚 and polar sector 𝑙; 𝐿𝑗 is the length of 𝑗-th
segment; 𝜀𝑗,𝜒𝑚,𝜇𝑙 are normalization indexes for the segment, azimuthal angle and polar angle
correspondingly; 𝜏 is the optical path; 𝜑,𝑡,𝑡′,𝐿 are integration variables; 𝑃𝑘 𝑥,𝑦 is the orthogonal
polynomial of the 𝑘-th order;𝐾𝑖𝑛,𝑙 is the partial Bickley function (for definition see, for example, [12])
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The collision probabilities (10) - (13) are integrated using standard ray-tracing methodology.More detailed information about the procedure of the integration using ray-tracing technique can befound in [12, 22]. The surface to region collision probability is not integrated but calculated usingEquation (13).As in each kind of the collision probability method, reciprocity relations exist betweendifferent collision probabilities. These relations help the evaluation of different types ofprobabilities. Several relations for collision probabilities can be written in addition to the Equation(13). As a particle, entering the cell through one on space element must either collide in one of theregions or escape through one of its segment and sector, the following relation between 𝑆𝑆 and 𝑆𝑅

probabilities can be formulated for the zeroth spatial moment.

𝑗′ 𝑚′
𝑆𝑆𝑗′,𝑚′,𝑙→𝑗,𝑚,𝑙 = 1 −

𝑖
𝑆𝑅𝑗,𝑚,𝑙→𝑖,0 (14)

As a particle born in region 𝑖 must either collide in another (or the same) region or escape
through one of cell’s side, segment and sector, the following relation between 𝑅𝑆 and 𝑅𝑅 can be
written for zerothmoment of flux.

𝑗′ 𝑚′ 𝑙
𝑅𝑆𝑖,0→𝑗,𝑚,𝑙 = 1 −

𝑖′
𝑅𝑅𝑖,0→𝑖′,0 (15)

Finally, relation between different elements of the 𝑅𝑅matrix can be formulated.
𝑣𝑖′𝛴𝑖′𝑅𝑅𝑖′,𝑘′→𝑖,𝑘 = 𝑣𝑖𝛴𝑖𝑅𝑅𝑖,𝑘→𝑖′,𝑘′, (16)

In addition to the reduction in the calculation efforts, Equations (13) – (16) are used for thenormalization of the collision probabilities, which in turn increase the stability of the iterationprocess. The equations (8) and (9) contain the additional summation index 𝑘, which reflects the
expansion of the flux through the orthogonal polynomials. In contrast to the flat-flux approximation,the flux in each region is now represented by a set of spatial moments of the flux 𝛷𝑖,𝑘. Themeaning of
the flux in each location inside the region of the interest can be evaluated with the help of the set 𝛷𝑖,𝑘

obtained and Equation (1).3.3 Gram-Schmidt Orthogonalization Procedure
In order to evaluate the coefficients for the orthogonal polynomials, (𝑏𝑖,𝑘 in the Equation

(1)Error! Reference source not found.) for arbitrary calculation regions, the so-called Gram-Schmidtprocess [23] can be applied. The Gram-Schmidt process is a procedure, which takes a non-orthogonalset of linearly independent functions and constructs an orthogonal (or orthonormal if required) basisover an arbitrary interval (or domain in the case of multidimensional functions). The implementation
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of the process for orthogonalization of the base function set will be shown using a set of non-orthogonal functions depending on two variables, 𝑥 and 𝑦:
𝑎1 = 𝑎1 𝑥,𝑦 ,𝑎2 = 𝑎2 𝑥,𝑦 ,𝑎3 = 𝑎3 𝑥,𝑦 …𝑎𝑛 = 𝑎𝑛 𝑥,𝑦 (17)

A set of orthogonal functions ℎ𝑛 𝑥,𝑦 should be constructed over domain 𝐷 using functions 𝑎

as a basis. To solve the problem, the inner product of the functions 𝑓 = 𝑓 𝑥,𝑦 and 𝑔 = 𝑔 𝑥,𝑦 over
the domain𝐷 can be defined in the followingway:

𝑓,𝑔 =
𝐷

𝑓 𝑥,𝑦 𝑔 𝑥,𝑦 𝑑𝑥𝑑𝑦 (18)
When the inner product of the functions is defined, the projection operator can beintroduced in the followingway:

𝑝𝑟𝑜𝑗ℎ𝑎 =
𝑎,ℎ

ℎ,ℎ
ℎ =

∬
𝐷

𝑎 𝑥,𝑦 ℎ 𝑥,𝑦 𝑑𝑥𝑑𝑦

∬
𝐷

ℎ 𝑥,𝑦 ℎ 𝑥,𝑦 𝑑𝑥𝑑𝑦
ℎ 𝑥,𝑦 (19)

Following this operation, the Gram-Schmidt orthogonalization procedure is given by:
ℎ1 = 𝑎1

ℎ2 = 𝑎2 − 𝑝𝑟𝑜𝑗ℎ1𝑎2

ℎ3 = 𝑎3 − 𝑝𝑟𝑜𝑗ℎ1𝑎3 − 𝑝𝑟𝑜𝑗ℎ2𝑎3
…

ℎ𝑛 = 𝑎𝑛 −
𝑛−1

𝑗=1
 𝑝𝑟𝑜𝑗ℎ𝑗𝑎𝑛

(20)

where ℎ𝑛 𝑥,𝑦 are orthogonal functions.
The orthogonal function ℎ𝑛 𝑥,𝑦 can be represented as sum of the non-orthogonal functions

𝑎 𝑥,𝑦 , multiplied be certain coefficients 𝑐𝑛𝑗, that is:

ℎ𝑛 =
𝑛

𝑗=1
𝑐𝑛𝑗𝑎𝑗 (21)

Thus, for the representation of the orthogonal function using Equation (21), the matrix withthe coefficients 𝑐𝑖𝑗 must be defined.
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𝑐𝑖𝑗 can be evaluated with the help of the Gram-Schmidt procedure. At the beginning of the
orthogonalization procedure the following equation can be written for the first function (seeEquation (20)):

ℎ1 = 𝑐11𝑎1 (22)

With coefficient 𝑐11 chosen to be equal to unity.
For the second orthogonal function ℎ2 the following equation can bewritten as:

ℎ2 = 𝑎2 −
𝑎2,ℎ1

ℎ1,ℎ1
𝑏1 = 𝑎2𝑐22 −

𝑎2,ℎ1

ℎ1,ℎ1
𝑐11𝑎1 = 𝑐22𝑎2 + 𝑐21𝑎1 (23)

With coefficients 𝑐21 and 𝑐22 equal to:
𝑐22 = 1

𝑐21 =− 𝑐11
𝑎2,ℎ1

ℎ1,ℎ1

(24)

The continuation of the procedure leads to the general equation for the coefficients 𝑐𝑛𝑚:

𝑐𝑛𝑚 =
−

𝑚−1

𝑗=𝑛
𝑐𝑛𝑗

𝑎𝑚,ℎ𝑗

ℎ𝑗,ℎ𝑗
, 𝑖𝑓 𝑛 < 𝑚

1, 𝑖𝑓 𝑛 = 𝑚
0, 𝑖𝑓 𝑛 > 𝑚

(25)

It can be seen from Equation (25) that the matrix containing the coefficients 𝑐𝑛𝑚 is lower
triangular. Finally, it should be noted that the coefficients 𝑐𝑛𝑚 can be normalized to develop an
orthonormal set of functions, using the following expression:

𝑐𝑛𝑜𝑟𝑚
𝑖𝑗 =

𝑐𝑖𝑗

ℎ𝑗,ℎ𝑗
(26)

3.3 Evaluation of the Coefficients for Orthogonal Polynomials
The integrals in Equations (25) and (26) can be evaluated analytically. This is trivial in the caseof regular hexagonal cells or square cells. However, the analytical evaluation of the coefficients of the
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orthogonal polynomials is not a perfect choice from a practical point of view since it causes problemsfor more complex geometries. Therefore, a more general methodology should be implemented forthe evaluation of the orthogonal coefficients. The idea of the methodology which was used in thepresent study will be demonstrated on an arbitrary convex polygon with inscribed annular regions(see Figure 2).

Figure 2. Example of a single cell (an arbitrary outer convex polygon with annular regions inside)
In the current study the order of the polynomials for the flux expansion was limited by thesecond order of the polynomials. In this case, the set of the monomials (basis functions) functionsdefined by Equation (2) can bewritten in the followingway:

𝑃0 = 1,𝑃1 = 𝑥,𝑃2 = 𝑦,𝑃3 = 𝑥2,𝑃4 = 𝑥𝑦, 𝑃5 = 𝑦2 (27)
The set of polynomials presented in the (27) should be orthogonalized over each calculationregion inside the cell. To achieve this, the following integrals are used (see Equation (25)):

𝐷
𝑃𝑖 𝑥,𝑦 𝑃𝑘 𝑥,𝑦 𝑑𝑥𝑑𝑦 (28)

The polynomials 𝑃𝑖 𝑥,𝑦 and 𝑃𝑘 𝑥,𝑦 in Equation (28) can be both monomials and
orthogonal polynomials. Integral over domain 𝐷 in Equation (28) can be evaluated numerically. In
the case of cells with an arbitrary outer polygon and inscribed annular zones (as presented in Figure2), the evaluation of the integrals for each zone can be separated into two steps. In the first step, theintegrals inside the annular zones are evaluated. This can be easily performed after a transformationof the coordinates from a Cartesian to a polar coordinate system. In this case

𝑥 = 𝑟𝑐𝑜𝑠𝛼  𝑦 = 𝑟𝑠𝑖𝑛𝛼. (29)
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The Jacobian of the transformation from a Cartesian to a polar coordinate system is equal to
𝑟. Thus integral (28) for the ring zonewill take the form:

𝐷𝑟𝑖𝑛𝑔

𝑃𝑖 𝑥,𝑦 𝑃𝑘 𝑥,𝑦 𝑑𝑥𝑑𝑦 =
2𝜋

0
𝑑𝛼

𝑅2

𝑅1
𝑟𝑃𝑖 𝑟𝑐𝑜𝑠𝛼,𝑟𝑠𝑖𝑛𝛼 𝑃𝑘 𝑟𝑐𝑜𝑠𝛼,𝑟𝑠𝑖𝑛𝛼 𝑑𝑟 , (30)

where 𝑟 and 𝛼 are the variables of integration, 𝑅1 is the inner radius of the ring and 𝑅2 is the
outer radius. For the innermost zone the condition 𝑅1 = 0 is applied. The right side of Equation (30)
can be evaluated numerically using the Gauss quadrature:

2𝜋

0
𝑑𝛼

𝑅2

𝑅1
𝑟𝑃𝑖 𝑟𝑐𝑜𝑠𝛼,𝑟𝑠𝑖𝑛𝛼 𝑃𝑘 𝑟𝑐𝑜𝑠𝛼,𝑟𝑠𝑖𝑛𝛼 𝑑𝑟 =

𝜋 𝑅2 − 𝑅1

2

𝑁𝐺

𝑘=1

𝑁𝐺

𝑙=1
𝜔𝑘𝜔𝑙𝑟𝑙𝑃𝑖 𝑟𝑙𝑐𝑜𝑠𝛼𝑘,𝑟𝑙𝑠𝑖𝑛𝛼𝑘 𝑃𝑗 𝑟𝑙𝑐𝑜𝑠𝛼𝑘,𝑟𝑙𝑠𝑖𝑛𝛼𝑘 ,

(31)

where𝑁𝐺 is the number of Gauss points and𝛼𝑘 and 𝑟𝑙 are defined by the following equation:

𝛼𝑘 = 𝜋𝜉𝑘 + 𝜋𝑟𝑙 =
𝑅2 − 𝑅1

2
𝜉𝑙 +

𝑅2 + 𝑅1

2
. (32)

In Equation (32) 𝜉𝑘 and 𝜉𝑙 are the nodes of the Gauss quadrature evaluated for the interval −

1,1 . After the evaluation of the integrals over the rings, the integral over the last (outermost)
calculation region consisting of the arbitrary polygon (outer border) and a circle (inner border) isevaluated. The following technique can be used to evaluate the necessary integrals numerically. Theresulting integral over the polygon-circle region can be represented as the difference between theintegral over the polygon and the integral over the outermost circle:

𝐷𝑜𝑢𝑡

𝑃𝑖 𝑥,𝑦 𝑃𝑘 𝑥,𝑦 𝑑𝑥𝑑𝑦

=
𝐷𝑝𝑜𝑙

𝑃𝑖 𝑥,𝑦 𝑃𝑘 𝑥,𝑦 𝑑𝑥𝑑𝑦 −
𝐷𝑐𝑖𝑟

𝑃𝑖 𝑥,𝑦 𝑃𝑘 𝑥,𝑦 𝑑𝑥𝑑𝑦 .
(33)

The second integral (over the circle) on the right side of Equation (33) can be evaluated usingEquation (31). The evaluation of the integral over the polygon requires a different approach. First,the outer polygon can be subdivided into several triangles as shown in Figure 3.
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Figure 3. Example of the outer polygon triangulation
The integral over the polygon can be represented as sum of the integrals over the triangles

𝐷1,𝐷2 and𝐷3:
 

𝐷𝑝𝑜𝑙

𝑃𝑖 𝑥,𝑦 𝑃𝑘 𝑥,𝑦 𝑑𝑥𝑑𝑦

𝐷1

𝑃𝑖 𝑥,𝑦 𝑃𝑘 𝑥,𝑦 𝑑𝑥𝑑𝑦 +
𝐷2

𝑃𝑖 𝑥,𝑦 𝑃𝑘 𝑥,𝑦 𝑑𝑥𝑑𝑦

+
𝐷3

𝑃𝑖 𝑥,𝑦 𝑃𝑘 𝑥,𝑦 𝑑𝑥𝑑𝑦 .  

(34)

Since the functions 𝑃𝑖 𝑥,𝑦 and 𝑃𝑘 𝑥,𝑦 are polynomials of different orders, the integrals
over the triangles can be evaluated numerically using, for example, the method described in [24].The final integral over the polygon is calculated as a sum of the integrals over each triangle. It shouldbe noted that since triangulation procedure is well understood, and standard algorithms areavailable, the methodology presented here can be considered as universal for arbitrary convexpolygons with inscribed annular regions. In the current version of the program, the Fortran 90implementation of the Delaunay triangulation available in the GEOMPACK package [25] was used fortriangulation of the outer polygon.

4 Verification of the orthogonal coefficients
As it was noted in the previous section, in the current version of the program, orthogonalcoefficients 𝑏𝑖,𝑗 are evaluated numerically for each calculation region. At the same time, the

opportunity of the analytical evaluation of the orthogonal coefficients for regular polygons withinscribed circles exists. Therefore, numerically and analytically calculated coefficients can be
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compared to evaluate the quality of the numerical algorithms used in the current study.In order to do that, the orthogonal coefficients were evaluated analytically for the regularsquare and hexagon with inscribed circles. The geometry of the cells as well as numbering of theregions are presented in Figure 4.

Figure 4. Geometries of the regular cells used for the verification of the orthogonal coefficients
Both square and hexagonal cells consist of three regions. The orthogonal coefficients wereevaluated analytically using Gramm-Schmidt process and possibilities of the Sympy library [26] forPython. The evaluationwas performed for the sixmonomials given below:

1,𝑥,𝑦,𝑥2,𝑥𝑦,𝑦2 (2)
Resultingmatrix 𝐁 of the orthogonal coefficient for any region both for square and hexagonal

cells have the following form:

𝐁 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

𝑏3,0 0 0 1 0 0
0 0 0 0 1 0

𝑏5,0 0 0 𝑏5,3 0 1

. (3)

As can be seen from Equation (3), the matrix is lower triangular with the coefficients equal to0 everywhere except main diagonal and coefficients 𝑏3,0, 𝑏5,0 and 𝑏5,3. The expressions for the
analytical evaluations of the non-zero coefficients are identical for the circle regions for square andhexagonal cells and defined only by the radii of the internal and external circles 𝑅1 and𝑅2



15

correspondingly.

𝑏3,0 =−
𝑅2

1 + 𝑅2
2

4
(4)

𝑏5,0 =−
1

3 𝑅4
1 + 𝑅4

2

(𝑅6
1 + 2𝑅4

1𝑅2
2 + 2𝑅2

1𝑅4
2 + 𝑅6

2) (5)

𝑏5,3 =
𝑅4

1 + 4𝑅2
1𝑅2

2 + 𝑅4
2

3𝑅4
1 + 3𝑅4

2

. (6)

In the case of the innermost region (marked in Figure 4 by number 1) 𝑅1 = 0.
For the outermost region (number 3 in Figure 4), analytical expressions for the coefficientswill be different for square and hexagonal cells.For the square cell, coefficients are given by Equations (6 – 8):

𝑏3,0 =−
3π𝑅4

2 − 𝑎4

12(𝜋𝑅2
2 − 𝑎2)

(7)
𝑏5,0 =−

45𝜋2𝑅10
2 − 15𝜋𝑅6

2𝑎4 − 3𝜋𝑅4
2𝑎6 + 𝑎10

3(45𝜋2𝑅8
2 − 90𝜋𝑅6

2𝑎2 + 30𝜋𝑅4
2𝑎4 − 9𝜋𝑅2

2𝑎6 + 4𝑎8
(8)

𝑏5,3 =
5𝜋𝑅2

2(3𝜋𝑅6
2 + 6𝑅4

2𝑎2 − 6𝑅2
2𝑎4 + 𝑎6)

45𝜋2𝑅8 − 90𝜋𝑅6
2𝑎2 + 30𝜋𝑅4

2𝑎4 − 9𝜋𝑅2
2𝑎6 + 4𝑎8

. (9)
For the outermost region of the regular hexagonal cell, coefficients are given by Equations (9– 11):

𝑏3,0 =−
3π𝑅4

2 − 𝑎4

12(𝜋𝑅2
2 − 𝑎2)

(10)

𝑏5,0 =−
𝐴1

𝐷1
(11)

𝑏5,3 =
𝐴2

𝐷2
, (12)

where𝐴1,𝐵1,𝐴2 and𝐵2 are given by the following expressions:
𝐴1

= (− 36𝜋𝑅4
2 + 5 3ℎ4)(− 2880𝜋5𝑅14

2 + 5760 3𝜋4𝑅12
2 ℎ2 − 12960𝜋3𝑅10

2 ℎ4

+ 112 3𝜋4𝑅8
2ℎ6 + 4320 3𝜋2𝑅8

2ℎ6 − 672𝜋3𝑅6
2ℎ8 − 1620𝜋𝑅6

2ℎ8

(13)
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+ 504 3𝜋2𝑅4
2ℎ10 − 504𝜋𝑅2

2ℎ12 + 63 3ℎ14)

𝐷1

= 9 − 2𝜋𝑅2
2 + 3ℎ2

2
(8640𝜋4𝑅12

2 − 17280 3𝜋3𝑅10
2 ℎ2 + 2400 3𝜋3𝑅8

2ℎ4

+ 32400𝜋2𝑅8
2ℎ4 − 7200𝜋2𝑅6

2ℎ6 − 672 3𝜋3𝑅6
2ℎ6 − 6480 3𝜋𝑅6

2ℎ6

+ 1800 3𝜋𝑅4
2ℎ8 + 2524𝜋2𝑅4

2ℎ8 − 1012 3𝜋𝑅2
2ℎ10 + 381ℎ12)

(14)

𝐴2

= − 8𝜋3𝑅6
2 + 12 3𝜋2𝑅4

2ℎ2 − 18𝜋𝑅2
2ℎ4 + 3 3ℎ6 720𝜋2𝑅8

2 + 720 3𝜋𝑅6
2ℎ2

− 600 3𝜋𝑅4
2ℎ4 + 56 3𝜋𝑅2

2ℎ6 + 41ℎ8

(15)

𝐷2

=− 2𝜋𝑅2
2 + 3ℎ2)(8640𝜋4𝑅12

2 − 17280 3𝜋3𝑅10
2 ℎ2 + 2400 3𝜋3𝑅8

2ℎ4

+ 32400𝜋2𝑅8
2ℎ4 − 7200𝜋2𝑅6

2ℎ6 − 672 3𝜋3𝑅6
2ℎ6 − 6480 3𝜋𝑅6

2ℎ6

+ 1800 3𝜋𝑅4
2ℎ8 + 2524𝜋2𝑅4

2ℎ8 − 1012 3𝜋𝑅2
2ℎ10 + 381ℎ12.

(16)

Another way to evaluate nonzero coefficients of thematrix is to use numerical techniques forintegration as well as for Gramm-Schmidt algorithm as it was shown, for example, in the work [19].The methodology and algorithms described in mentioned work were applied for numericalevaluation of the coefficients. The results of the comparison are presented in Table 1.
Coefficient Square cell Hexagonal cellNumerical Analytical Difference Numerical Analytical DifferenceRegion 1

𝑏3,0 -0.37249E-01 -0.37249E-01 -0.18373E-16 -0.37249E-01 -0.37249E-01 -0.18373E-16
𝑏5,0 -0.49665E-01 -0.49665E-01 0.93463E-16 -0.49665E-01 -0.49665E-01 0.93463E-16
𝑏5,3 0.33333E+00 0.33333E+00 -0.70314E-15 0.33333E+00 0.33333E+00 -0.70314E-15

Region 2
𝑏3,0 -0.89005E-01 -0.89005E-01 -0.13623E-15 -0.89005E-01 -0.89005E-01 -0.13623E-15
𝑏5,0 -0.17494E+00 -0.17494E+00 -0.91625E-15 -0.17494E+00 -0.17494E+00 -0.91625E-15
𝑏5,3 0.96549E+00 0.96549E+00 0.43061E-15 0.96549E+00 0.96549E+00 0.43061E-15

Region 3
𝑏3,0 -0.18819E+00 -0.18819E+00 -0.57229E-11 -0.29510E+00 -0.29510E+00 0.11556E-07
𝑏5,0 -0.28082E+00 -0.28082E+00 -0.88486E-10 -0.46932E+00 -0.46932E+00 0.46559E-07
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𝑏5,3 0.49220E+00 0.49220E+00 0.20831E-09 0.59038E+00 0.59038E+00 -0.11070E-06
Table 1. Numerically and analytically evaluated coefficients of the orthogonal polynomials

It should be noted that analytical evaluation of the coefficients can be continued for themonomials higher than 2-nd order. However, due to the complexity of the resulting expressions (see,for example, equations for evaluation of the 𝑏5,0 coefficient for the hexagonal cell), the number of
the base functionswas limited by 6 firstmonomials in this study.

As can be seen from Table 1, numerically and analytically evaluated coefficients agrees verywell for regions 1 and 2 (circle regions) both for hexagonal and square cells. Maximal absolutedifference between them does not exceed ~0.7∙10−15. The situation changes for the outermost
region bounded externally by polygon. In this region maximal difference between numerically andanalytically evaluated coefficients rises up to the ~0.2∙10−9 and ~0.1∙10−6 for the square and
hexagonal cells correspondingly.

The difference observed for the outermost region can be significant due to the erroraccumulation in the numerical simulations. Therefore, additional check was performed to evaluatethe orthogonality of the polynomials calculated numerically. In order to do that, matrix 𝐵 was
orthonormalised. After that, the scalar product of the numerically orthonormalised polynomials wascalculated. The results of the calculations for the outermost region both for square and hexagonalcells are presented in Table 2.

Order of the orthonormalisedpolynomials Absolute difference from 0 or 1
Square Hexagon1 1 0.15543122E-14 0.00000000E+002 1 -0.10927739E-14 -0.19405831E-162 2 -0.66613381E-15 0.00000000E+003 1 -0.10794897E-15 -0.60378707E-163 2 -0.95930851E-17 0.86207651E-173 3 0.88817842E-15 0.22204460E-154 1 -0.33306691E-15 -0.99920072E-154 2 0.51012992E-15 0.13349606E-154 3 0.48787184E-16 0.11736111E-154 4 0.00000000E+00 -0.77715612E-155 1 -0.73972069E-17 0.10776896E-165 2 -0.80508376E-16 0.23570253E-165 3 -0.14147377E-15 0.95045266E-165 4 -0.96305105E-17 0.11185046E-165 5 0.22204460E-15 -0.22204460E-156 1 -0.13322676E-14 -0.21094237E-146 2 0.20861162E-14 0.51982296E-156 3 -0.16270945E-15 0.19128116E-156 4 -0.77715612E-14 0.13322676E-146 5 -0.43775304E-16 -0.83811575E-16
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6 6 -0.22204460E-14 0.00000000E+00
Table 2. Difference from 0 or 1 for the numerically evaluated orthogonal polynomials (outermostregion)

As it can be expected, the error rises with the rise of the polynomial orders. Highest errors areobserved for the 6th order of the polynomials both for square and hexagonal cells. Nevertheless, theabsolute values of the errors are small (~10−14 both for hexagonal and square cells). Therefore, on
our view, this level of the accuracy is acceptable for the practical evaluation of the orthogonalcoefficients numerically. Despite the fact, that the error of the normalisation stays low for the basefunctions considered in present work (monomials up to the 2nd order), additional investigations ofthe methodology should be performed for the monomials of the higher orders. Some initial testswere performed in the current study. Monomials up to the 4th order were checked. Thenormalisation error stayed on the acceptable level (~10−13) for the polynomials up to the 3rd order,
but for the 4th order it increased rapidly and reached unacceptable level ~10−1. This result was
predictable due to the well-known unstable nature of the Gramm-Schmidt orthogonalisationprocess. Therefore, in the further studies, more stable algorithms should be implemented for theorthogonalisation of the polynomials higher than 2nd order. Possible candidates can be: modifiedGramm-Schmidt algorithm [23], Householder orthogonalisation algorithm [27], Givens reflections.

5 Results of Test Calculations
The methodology described above was coded and tested. In the current stage of work, themethod has been implemented for calculations of the regular and irregular single cells with reflectiveboundary conditions on the outer borders (infinite lattices). This set of the test calculations waschosen to cover different types of the geometries arising in the real reactor calculations. The resultsof the calculations were compared with the reference Monte Carlo calculations using OpenMC code[28]. OpenMC is a relatively young Monte Carlo particle transport code developed in theComputational Reactor Physics Group (CRPG) at Massachusetts Institute of Technology (MIT). Itpossesses several features that were used in current study, such as the possibility to simulate thesystems with given cross sections sets and external neutron sources. In the current study, the resultsof the OpenMC simulations were used as reference for the comparison with the developed transportsolver.
4.1 Calculations of the Regular CellsIn the current study, the developed solver was applied for calculation of the neutron fluxes inthe regular hexagonal, pentagonal and square cells. Hexagonal and square geometries very oftenarise within nuclear reactors analysis. Pentagon cell was chosen for the demonstration. Thegeometries of the cells are presented in Figure 5. Hexagonal and square geometries simulate realreactor unit cells: central zone - fuel, middle zone - cladding, outer zone - moderator. The same isapplicable to the pentagonal geometry, except the fact that this geometry is quite unusual for themodern reactor design.
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Figure 5. Geometries of hexagonal and square cells used in the calculations
The calculations were carried out using one energy group with the source of the neutronslocated in the outermost region of the cells. This is typical for the thermal group where majority ofthemoderated neutrons are coming from themoderator region.
Two different cross sections sets were chosen to simulate the cells containing fuel andabsorbers; two different cross section sets were chosen to simulate normal and low densities of themoderator; three different pitches were chosen to check the cells with different pitches of the outerregular hexagon, pentagon or square. The combinations of thementioned parameters are presentedin Table 3.

Casenumber
Moderator Fuel 𝑟ℎ, cm 𝑟𝑠, cm 𝑟𝑝, cmΣ𝑡, cm-1 Σ𝑠, cm-1 Σ𝑡, cm-1 Σ𝑠, cm-1

1 1.5 1.425 0.63 0.33 0.508 0.504 0.508
2 1.5 1.425 10.0 0.30 0.508 0.504 0.508
3 1.5 1.425 0.63 0.33 0.635 0.630 0.635
4 1.5 1.425 10.0 0.30 0.635 0.630 0.635
5 1.5 1.425 0.63 0.33 0.79375 0.7875 0.79375
6 1.5 1.425 10.0 0.30 0.79375 0.7875 0.79375
7 0.1 0.095 0.63 0.33 0.508 0.504 0.508
8 0.1 0.095 10.0 0.30 0.508 0.504 0.508
9 0.1 0.095 0.63 0.33 0.635 0.630 0.635
10 0.1 0.095 10.0 0.30 0.635 0.630 0.635
11 0.1 0.095 0.63 0.33 0.79375 0.7875 0.79375
12 0.1 0.095 10.0 0.30 0.79375 0.7875 0.79375

Table 3: Input parameters for the square and hexagonal cells
The radii 𝑅1 (radius of the fuel zone) and 𝑅2 (outer radius of the cladding) were 0.386 cm and

0.455 cm respectively for all cases. The total and scattering cross sections for the cladding regionwere Σ𝑡=0.276 cm-1 and Σ𝑠 = 0.272 cm-1 correspondingly for all cases. The source of the neutrons
was located in themoderator regionwith the density equal 1.0 cm-3 for all cases.
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The discrepancies in the neutron fluxes for fuel, cladding and moderator regions betweenOpenMC and developed solver are presented in Table 4.
Case

Difference (hexagonal cell) Difference (square cell) Difference (pentagonal cell)Fuel Cladding Mod. Fuel Cladding Mod. Fuel Cladding Mod.
𝑃0 𝑃2 𝑃0 𝑃2 𝑃0 𝑃2 𝑃0 𝑃2 𝑃0 𝑃2 𝑃0 𝑃2 𝑃0 𝑃2 𝑃0 𝑃2 𝑃0 𝑃2

1 0.0 0.0 -0.1 0.0 -0.3 -0.2 -0.1 -0.1 -0.5 -0.6 0.3 0.4 0.0 0.0 -0.2 -0.2 -0.2 -0.12 0.1 0.1 -3.1 -2.8 -3.6 -3.1 0.0 0.0 -3.7 -3.7 -0.3 0.9 0.0 0.0 -3.0 -2.9 -3.0 -2.33 0.1 0.0 -0.1 -0.1 -0.1 0.0 -0.1 -0.2 -0.2 -0.4 0.1 0.2 0.0 0.0 -0.1 -0.1 -0.2 -0.14 0.4 0.3 -1.4 -1.3 -2.1 -1.3 0.5 0.0 -1.6 -1.8 -1.0 0.3 0.3 0.0 -1.0 -1.0 -2.1 -1.35 0.2 0.0 0.2 0.0 -0.3 -0.1 0.3 0.1 0.4 0.1 -0.4 -0.1 0.1 0.0 0.2 0.0 -0.3 -0.16 0.6 0.3 0.2 -0.3 -2.6 -1.2 0.7 0.3 0.7 0.0 -3.1 -1.3 0.2 0.0 0.2 -0.3 -2.2 -0.97 0.0 0.0 -0.7 -0.6 -0.7 -0.6 0.0 0.0 -0.7 -0.6 -0.4 -0.3 -0.1 -0.1 -0.5 -0.4 -0.5 -0.48 0.0 0.0 -8.5 -8.2 -6.8 -6.6 0.0 0.0 -8.3 -7.9 -4.2 -3.8 0.0 0.0 -8.8 -8.3 -7.1 -6.89 0.0 0.0 -0.6 -0.5 -0.9 -0.8 -0.1 -0.1 -0.6 -0.5 -0.5 -0.4 0.0 0.0 -0.5 -0.3 -0.6 -0.510 0.0 0.0 -7.5 -7.2 -7.2 -6.8 0.5 0.5 -7.0 -6.6 -5.0 -4.6 0.0 0.0 -7.6 -7.2 -7.5 -7.211 0.0 0.0 -0.3 -0.2 -0.6 -0.5 0.0 0.0 -0.3 -0.2 -0.5 -0.4 0.0 0.0 -0.4 -0.3 -0.5 -0.412 0.0 0.0 -6.5 -6.1 -7.1 -6.7 0.3 0.3 -5.8 -5.4 -6.2 -5.8 0.2 0.2 -6.5 -6.1 -6.5 -6.1
Table 4: Discrepancies in the fluxes between transport solver and OpenMC, %

Zeroth order as well as second order sets of polynomials for the flux expansion have beenused in the calculations. The results obtained with the first degree of the polynomials are identical tothe flat source approximation for the cells with the reflective boundary conditions. To minimizecomputational errors, the level of the angle discretisation was high. Each outer boundary of thepolygons was subdivided into segments with the size equal to 0.05 cm, the azimuthal angle wasdiscretized into 128 equidistant sectors. The maximal track spacing was 0.005 cm. The extendedtrapezoidal rule was used for integration of the collision probabilities within the sectors and segmentboundaries. The Gaussian quadrature was used for integration of the collision probabilities along thetrack. Due to the limitations of the current version of the program, there was not any discretisationon the polar angle. The standard rather than partial Bickley functions were used for the evaluation ofthe collision probabilities.Table 4 indicates that the results of the calculations obtained with the proposedmethodology agree well with results obtained by the Monte-Carlo method. The errors in the fluxesformajor part of the cases are below 1%. In the fuel zone, the errors are less than 1% for all the cases.Even for the most critical cases with high absorption cross sections, the difference in the fluxes doesnot exceed 0.3% in the fuel/absorber regions. However, there are some cases where discrepanciesbetween OpenMC and the developed solver are quite high. The major discrepancies in the fluxes inthe cladding/moderator regions are observed for the cases 8, 10 and 12. The cases 8, 10 and 12 arecharacterized by the low total cross sections of the moderator region and consequently, its lowoptical thickness. As mentioned above, the current version of the solver uses only one sector for thediscretisation on the polar angle. However, for the optically thin mediums it is essential to accountfor the distribution of the neutrons in the polar direction due to the strong streaming effect.Therefore, it can be expected that the higher discretisation of the polar angle will lead to betterperformance of the code for the regions with small optical thickness. The same behavior of thediscrepancies can be observed for case 2 where optically thin outermost region arise due to the verysmall distance between cladding and outer edges of the cells.
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The results of the calculations presented in Table 4 were obtained using a set of zero order ofpolynomials (i.e. flat flux approximation) and a set of second order of polynomials (i.e. six spatialmodes, up to the second order of polynomials). Where the 𝑃0-approximation was used for the same
geometries of the cells, the results are generally worse than those calculated with the 𝑃2-
approximation; however, the difference between the results was not as large as it was expected. Themain reason can be found in the symmetry of the test problem. In such cases, the flat-fluxapproximation can provide acceptable results, since no tilted fluxes appear like in a real unit cell.The main advantages of the proposed methodology are expected to be seen on the level offull assembly calculations (as it has already been shown for regular hexagonal assemblies [1]).

4.2 Calculations of the Arbitrary Cells
For further testing of the developed solver, two sets of the arbitrary cells with the outerpolygons with four and six sides were calculated using the proposed methodology. The resultswere compared with the results of the Monte Carlo simulations. The reference Monte Carlosimulations were performed using OpenMC code. The vertices of the polygon were randomlyplaced on the circle with the radius 𝑅𝑜𝑢𝑡 = 0.890955 cm for the arbitrary quadrangles and 𝑅𝑜𝑢𝑡 =

0.733235 cm for the arbitrary hexagons. In total, 5 different outer polygons were obtained and
considered both for hexagonal and quadrangle cells. The geometries of the arbitrary cells arepresented in Figure 6 and Figure 7.

Figure 6. Geometries of the cells with the arbitrary outer quadrangles
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Figure 7. Geometries of the cells with the arbitrary outer hexagons
The coordinates of the vertices of the outer polygons are given in Table 8.

Polygons with 4 sides
Outerpolygon

Vertex 1 Vertex 2 Vertex 3 Vertex 4
𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦

a 0.88869 0.06347 -0.45811 0.76410 -0.79246 -0.40720 0.51453 -0.72736b 0.72395 0.51933 -0.65999 0.59851 -0.74700 -0.48558 0.22029 -0.86329c 0.81009 0.37088 -0.68460 0.57020 -0.85532 -0.24947 0.50258 -0.73567d 0.17341 0.87381 -0.88432 0.10856 -0.09422 -0.88596 0.88920 -0.05586e 0.79371 0.40475 -0.20345 0.86742 -0.86699 -0.20525 0.37076 -0.81015Polygons with 6 sides
Outerpolygon

Vertex 1 Vertex 2 Vertex 3 Vertex 4 Vertex 5 Vertex 6
𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦

a 0.57779 0.45143 0.04727 0.73171 -0.60780 0.41014 -0.64082 -0.35634 0.21999 -0.69946 0.64098 -0.35605b 0.72704 0.09512 0.31728 0.66103 -0.59122 0.43370 -0.58937 -0.43620 -0.19919 -0.70566 0.62976 -0.37554c 0.71474 0.16363 0.36582 0.63546 -0.70223 0.21098 -0.72677 -0.09717 0.16921 -0.71344 0.66375 -0.31157d 0.60560 0.41338 -0.27098 0.68132 -0.58377 0.44367 -0.73069 -0.06100 -0.26119 -0.68514 0.71188 -0.17567e 0.54316 0.49256 -0.09985 0.72640 -0.68663 0.25724 -0.70357 -0.20645 0.04715 -0.73171 0.73054 -0.06276
Table 5: Coordinates of the vertices of the arbitrary polygons

Different cross sections for the region containing the fuel, different total and scatteringcross sections for the outermost zone have been chosen for the analyses. Two different crosssections sets were chosen to simulate the cells with fuel and absorbers and two different crosssection sets were chosen to simulate normal and low densities of the moderator. The finalcombination of the cells parameters are given in Table 6.
Case number Outer polygontype Fuel Moderator

Σ𝑡 Σ𝑠 Σ𝑡 Σ𝑠

1 a 0.63 0.33 1.5 1.4252 a 10.0 0.30 1.5 1.4253 a 0.63 0.33 0.1 0.095
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4 a 10.0 0.30 0.1 0.0955 b 0.63 0.33 1.5 1.4256 b 10.0 0.30 1.5 1.4257 b 0.63 0.33 0.1 0.0958 b 10.0 0.30 0.1 0.0959 c 0.63 0.33 1.5 1.42510 c 10.0 0.30 1.5 1.42511 c 0.63 0.33 0.1 0.09512 c 10.0 0.30 0.1 0.09513 d 0.63 0.33 1.5 1.42514 d 10.0 0.30 1.5 1.42515 d 0.63 0.33 0.1 0.09516 d 10.0 0.30 0.1 0.09517 e 0.63 0.33 1.5 1.42518 e 10.0 0.30 1.5 1.42519 e 0.63 0.33 0.1 0.09520 e 10.0 0.30 0.1 0.095
Table 6: Input parameters of the arbitrary cells

All 20 cases presented in Table 6 were simulated using both OpenMC code and thedeveloped transport solver both for quadrangle and hexagonal cells. The results of the OpenMCsimulations were used as reference. The discrepancies between the transport solver (with andwithout flux expansion) and Monte Carlo reference results are presented in Table 7.

Casenumber
Quadrangle cell Hexagonal cellFuel Cladding Moderator Fuel Cladding Moderator

𝑃0 𝑃2 𝑃0 𝑃2 𝑃0 𝑃2 𝑃0 𝑃2 𝑃0 𝑃2 𝑃0 𝑃2

1 0.2 0.0 0.2 -0.1 -0.5 -0.2 0.0 0.0 0.0 0.0 -0.3 -0.12 0.0 0.0 -0.1 -0.8 -3.9 -1.7 0.1 0.0 -1.1 -1.1 -2.7 -1.73 0.0 0.0 -0.4 -0.3 -0.8 -0.7 0.0 0.0 -0.4 -0.3 -0.7 -0.74 0.0 0.0 -7.5 -6.9 -8.1 -7.5 0.0 0.0 -7.5 -7.1 -7.6 -7.35 0.0 -0.2 -0.1 -0.3 -0.2 0.1 0.0 0.0 -0.1 -0.1 -0.1 0.16 0.0 0.0 -0.8 -1.5 -3.0 -0.2 0.1 0.0 -1.7 -1.7 -1.6 -0.57 0.0 0.0 -0.4 -0.4 -0.6 -0.5 0.0 0.0 -0.4 -0.4 -0.5 -0.48 0.5 0.5 -7.9 -7.5 -7.5 -7.0 0.2 0.1 -7.9 -7.5 -7.2 -6.89 0.2 0.0 0.3 0.0 -0.6 -0.1 0.2 0.1 0.2 0.1 -0.5 -0.310 0.0 0.0 -0.2 -0.9 -3.7 -1.3 0.6 0.4 -0.8 -1.0 -4.3 -2.011 -0.1 -0.1 -0.4 -0.3 -0.6 -0.4 0.0 0.0 -0.4 -0.3 -0.7 -0.612 0.0 0.0 -7.3 -6.8 -6.5 -5.4 0.2 0.2 -7.7 -7.3 -8.0 -7.413 0.1 0.0 0.1 0.0 0.4 -0.1 0.1 0.0 0.1 0.0 -0.4 -0.214 0.5 0.0 -0.4 -0.6 -3.0 -1.8 0.0 0.0 -1.0 -1.1 -3.6 -1.915 0.0 0.0 -0.4 -0.3 -0.8 -0.7 0.0 0.0 -0.4 -0.3 -0.7 -0.616 0.0 0.0 -7.0 -6.5 -7.3 -6.8 0.1 0.1 -7.7 -7.2 -8.0 -7.617 0.2 0.0 0.2 0.0 -0.3 -0.1 0.1 0.0 0.0 0.0 -0.3 -0.2
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18 0.5 0.5 -0.4 -0.8 -3.3 -1.6 0.5 0.4 -1.0 -1.0 -3.0 -1.819 -0.1 -0.1 -0.4 -0.3 -0.6 -0.5 -0.1 0.0 -0.4 -0.3 -0.6 -0.520 0.0 0.0 -7.3 -6.9 -7.5 -7.1 0.0 0.0 -7.7 -7.3 -8.1 -7.7
Table 7: Discrepancies in the fluxes between transport solver and OpenMC (%) for irregular cells(the rows with the normal density of water are shaded with grey colour)

As can be seen from the table above, the difference in the fluxes do not exceed 0.5% on in thefuel region for all the cases under consideration. For the cases with normal density of water, thediscrepancies in the fluxes are slightly higher or less than 2% when the polynomials of the secondorder are used for the flux expansion. For the case of the low moderator density, the discrepancy inthemoderator and cladding regions rises and reaches 8.1% for the case number 4. The reason for thisdifference is the absence of the discretisation on the polar angle in the current version of thetransport solver. Application of the second order of the flux expansion improves the accuracy almostfor all the considered cases. In some cases, the accuracy stays on the same level. The highestimprovements are observed for the cells with the absorber and normal density of the water. Ingeneral, the accuracy of the calculations is acceptable for the practical calculations even withoutdiscretisation of the polar angle, when the normal density of the moderator is considered. However,discretisation of the problem on polar angle is required to take into account streaming effects forlower densities of moderator. The effect of the flux expansion for the single cell is not as high as itwas expected (in absolute numbers). Flat flux approximation provides reasonable results for themajor part of the considered cells. It happens, on our view, due to the reflective boundary conditionsapplied on the sides of the cells. The effect of the flux expansion becomes more visible when theproposed methodology is applied for the full assembly simulations as it has been demonstrated forthe regular hexagonal assemblies [1, 19].
4.3 Influence of the polar angle discretisationIn order to clarify the influence of the polar angle discretisation on the accuracy of the results,the set of the calculations was performed. Current version of the solver for the arbitrary cells is ableto simulate the problems using only one polar sector. However, older version of the code developedfor the regular hexagonal cells [1] have got the possibility to run simulations with the higher numberof the polar sectors. Therefore, the numerical experiments were performed for the regularhexagonal cells only. The cell number 8 from Table 3 was chosen for the tests as it had highestdiscrepancies in flux. Calculations were performed both for zero and second orders of thepolynomials. The number of the polar sectors varied from 1 to 15. The results of the calculations arepresented in Figure 8.
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Figure 8. Results of the calculations with different number of polar sectors
It is observed that the error both in moderator and cladding regions rapidly decreases as thenumber of the polar sectors increases. The errors in the moderator region falls below 1.0% both forthe zero and second orders of the polynomials. The errors in the cladding regions decrease from ~8%for the one polar sector to 1.5-2% for 11 polar sectors. The converged behaviour of the error for thenumber of polar sectors higher than 11 indicates that further improvements of the results should notbe expected. It should be noted that the considered case was quite artificial (very dense lattice withthe strong absorbers and low density of the moderator) and better results can be achieved for themore realistic cases. The results presented in the current section creates the evidence that quite highdiscrepancies observed for the cases with the low moderator density can be decreased with thehigher discretisation of the polar angle.
4.4 Performance of the CCCP Method with Orthogonal Flux Expansion
To evaluate the efficiency of the proposed methodology, a set of the calculations has beenperformed. The case number 4 (hexagonal cell) from Table 3 has been chosen for the tests. Themoderator region of the cell was subdivided into several concentric subregions (see Figure 9). Thecalculations of the fluxes were performed using flat flux approximation. The time of the calculationswas measured and compared with the calculation time of the same cell using second order of thepolynomials for the flux expansion. In the case of the second order of the flux, there were no anysubdivisions of the outermost region. The results of the calculations are presented in Table 8.
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Figure 9. Subdivision of the outermost region with reflective boundary conditions

Number of subregions
𝑡𝑃0

𝑡𝑃2

Error in average flux, %
𝑃0 𝑃2

1 0.80 -1.8

-1.1
2 0.85 -1.53 0.97 -1.54 1.10 -1.45 1.31 -1.47 1.70 -1.410 2.72 -1.4

Table 8: Results of the performance tests

The relationship between calculation time in 𝑃0 and 𝑃2 approximations (𝑡𝑃0

𝑡𝑃2

) is given in the
second column of the table, while the error for 𝑃0 approximation is presented in the third column. It
can be observed, that the computational time for the 𝑃0-approximation without subdivision of the
moderator zone is approximately on 20% less than the computational time for the 𝑃2-approximation
but at the cost of reduced accuracy as it is to be expected. However, increasing the number of sub-zones leads to an increased calculation time and, as already seen for the case with four sub-zones,
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the 𝑃2-approximation becomes computationally more efficient (the quotient 𝑡𝑃0

𝑡𝑃2

becomes higher
than 1) while the accuracy of the 𝑃0 approximation is still worse than the 𝑃2 approximation. The
error of the calculations (in comparison with Monte-Carlo calculations), remains higher for the 𝑃0-
approximation than for the 𝑃2-approximation (-1.1%) at least until 10 subregions are inserted. The
difference between the flat flux approximation and the second order polynomial expansion is not ashigh as it was expected for the case of the single cell with reflective boundary conditions. Due to thesymmetry of the problem, flat flux approximation can provide comparably accurate solution.However, the results for the flat flux approximation are expected to become worse in the case of atilted flux. Such a fluxwill appear in the unit cells of a real fuel assembly due to inhomogeneity causedby zone enrichment and the influence of guide tubes for the control rods in western type fuelassemblies, or the different size of thewater gaps between assemblies.

4.5 Visualisation
Additional verification of the methodology was performed by producing two-dimensionalvisualisation of the neutron fluxes within hexagonal cell. Appropriate sets of the pictures wereproduced for hexagonal cell containing absorber or fuel in the central region. The results of thevisualisation are presented in Figure 10 - Figure 15.

Figure 10. Plane (left), axial (middle) and 3D (right) views of the neutron flux distribution withinhexagonal fuel cell calculated using OpenMC

Figure 11. Plane (left), axial (middle) and 3D (right) views of the neutron flux distribution withinhexagonal fuel cell calculatedwith transport solver (𝑃0 approximation)
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Figure 12. Plane (left), axial (middle) and 3D (right) views of the neutron flux distribution withinhexagonal fuel cell calculatedwith transport solver (𝑃2 approximation)

Figure 13. Plane (left), axial (middle) and 3D (right) views of the neutron flux distribution withinhexagonal absorber cell calculatedwith OpenMC

Figure 14. Plane (left), axial (middle) and 3D (right) views of the neutron flux distribution withinhexagonal absorber cell calculatedwith transport solver (𝑃0 approximation)

Figure 15. Plane (left), axial (middle) and 3D (right) views of the neutron flux distribution withinhexagonal fuel cell calculatedwith transport solver (𝑃2 approximation)
The above figures represent the flux distributions inside the regions of a typical eastern type
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light water reactor unit cell for 𝑃0 and 𝑃2 approximations. The calculations have been performed for
fuel and absorber cells and the flux was visualized using the possibilities of the ParaView software[29]. The neutron flux within calculation regions was reconstructed on the basis of Equation andvalues (such as 𝛷𝑘, 𝑏𝑘′,𝑘) obtained during the transport solver run. It is obvious from Figure 11, Figure
14 that the shape of flux for 𝑃0 approximation is flat for each zone of the cells (classical for the flat
flux approximation). In the identical cases for the 𝑃2 approximation, the shape of the flux in the
different regions is represented by a second order surface. Thus, the flux distribution is much closerto the reference shape of the flux calculated by OpenMC and presented in Figure 12 and Figure 15(see also [17]). As can be seen from the figures above, the gradient of the flux for the fuel cell is muchless than for the absorber cell. It is one of the reasons, why flat-flux approximation provides goodresults for the fuel cells. For the absorber cell, the gradient of the flux is much higher and the effect ofthe higher order polynomials is more visible. The visualisation demonstrates significantly betterperformance of the calculations using the 𝑃2 approximations in comparison with those assuming a
flat flux approximation. Visible jumps at the boundary between moderator and cladding andbetween cladding and fuel/absorber demonstrate that the second order approximation is notpowerful enough to reconstruct the complexity of the problem completely. However, fromengineering perspective, the second order approximation seems to be a good and reliable choice.

6 Conclusions
Themethodology of current coupling collision probability method combined with orthogonalflux expansion has been applied for the numerical solution of the transport equation. In contrast tothe previously developed techniques, where orthogonal coefficients evaluated analytically for thelimited number of geometries, the process of the orthogonalisation in the current solver is based ona numerical implementation of the Gram-Schmidt procedure. This has extended the proposedmethodology to broad range of heterogeneous geometries. Application of the orthogonalpolynomials for the flux expansion allows a significant reduction of the number of calculationregions, while maintaining or improving the accuracy of the results. This technique allows toovercome one of the drawbacks of the traditional collision probability method – poor representationof the spatial distribution of the neutron source/flux. It was shown that the application of the higherorder of the polynomials for the flux expansion improves the accuracy and the efficiency (in terms ofthe accuracy/run time ratio) of the calculations. Another benefit of the presented technique is thepossibility to relieve the user from determining the correct discretisation of the calculation regionswith all the following challenges such as the adoption of ray tracing to the changed geometry toachieve a reliable result. It can be even more important since, for example, in the well-known codeHELIOS [12] utilising the CCCP method with the flat flux approximation, the spatial discretisation ofthe calculation regions is performed manually by user. Therefore, the refinement of the calculationregions requires additional effort and makes the input files more complicated. Application of theproposed methodology would significantly simplify this process for the user. In this case change ofthe only one input parameter (order of the polynomials for the flux expansion) would improve theaccuracy of the computations. Application of the numerical methods for evaluation of thecoefficients of orthogonal polynomials increase the flexibility of the method significantly. Previously,
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current coupling collision probability method with expansion of the neutron flux by orthogonalpolynomials was applicable in practice only for the regular lattices [16, 1]. Now, this technique can beapplied formuchwider range of the 2D problems including unstructured geometries.The verification of the developed code has been performed both for regular and irregularcells. The results of the comparison with Monte-Carlo code demonstrate sufficient accuracy forpractical calculations. Even though the results obtained in presented study agree well with theresults of reference Monte Carlo calculations, further investigations are necessary for a betterunderstanding of the stability and limitations of the proposed methodology. The Gram-Schmidtprocedure is known to be unstable. Even though we did not encounter any problems with thestability of the solver during the above tests, we are aware about possible stability problems whichcan arise for some complicated geometries or for the higher orders of the polynomials. Therefore,some other methods for construction of the orthogonal set of the polynomials need to beinvestigated (for example, applying the modified Gram-Schmidt algorithm [23]). The numericalscheme for integration over triangle used in present study enables the evaluation of integrals up to amaximum of the 7th order. For higher orders of the polynomials, this scheme of the integration canbe unstable. Therefore, other quadrature sets should be investigated.After an appropriate completion and extensions, the developed transport solver will beincorporated into a nodal code to enable a multi-scale and multimethodological approach for pin-wise 2D calculations. This approach combines a transport solver using the real fuel assemblygeometry reproduced on an unstructuredmesh with the boundary conditions extracted from the 3Dfull core nodal solution. The previous investigations performed in this field clearly demonstrate thatthis kind of coupling can obtain reliable results with a good accuracy on the pin level [2]. The mainefforts should be made in the coupling of the available transport code into an available nodal codeand the optimisation in the given software environment respecting the requests of a licensing gradesoftware tool.
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