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Abstract

Thesis title: Discriminant analysis of multivariate longitudinal data: Statis-
tical methods and clinical applications
Author: Riham El Seaiti

There is an increasing interest in longitudinal discriminant analysis (LoDA) ap-
proaches that use patients’ longitudinal data to predict their future clinical status.
LoDA utilises (multivariate) generalised linear mixed models (GLMM) where changes
over time of markers with predictive ability can be jointly modelled. This thesis aimed
to address the following questions: (i) What is the benefit of using LoDA rather than
classical quadratic discriminant analysis (QDA) for clinical classifications? (ii) What
is the best way to utilise longitudinal data for clinical classification? (iii) How does the
misspecification of the random-effects distribution impact on classification accuracy?
Additionally, I investigated whether the number of patients and repeated measurements
affect the ability of the predictive tool to classify patients correctly.

Three approaches of LoDA, using different types of markers (continuous, binary,
and discrete) were compared, first using data from the Mayo Primary Biliary Cirrhosis
study, and then using a simulation study to investigate different uses of a patient’s
longitudinal data. The impact of random-effects misspecification on classification ac-
curacy was assessed by examining several scenarios where data was generated using
four different ‘true’ random-effects distributions.

I found that methods that take the relationship between repeated measurements
from the same subject into account provided more accurate classification than methods
that treated each time point as a single variable and also used the data more efficiently.
Using the marginal distribution of a patient’s longitudinal data often provided the
best results if the average profiles in each clinical group were not the same. However,
when differences in variability between groups were apparent, then the distribution of
a patient’s random effects gave the best classification. Consequently, I recommend that
researchers should consider the marginal and random effects approaches as first options
when performing LoDA.

Misspecification of the random-effects distribution has a minimal impact on clas-
sification accuracy when the departure from normality is small. However, when the
departure from normality is large, assuming a more flexible random effects distribution
can provide greater classification accuracy.
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Chapter 1

Introduction

This thesis describes a number of multivariate longitudinal approaches and explores

the advantages and disadvantages of applying these methods for clinical discrimination.

Discriminant analysis (DA) is a technique for classification of data (particularly new

observational units) into categories or groups to which they most probably belong. DA

has been applied in different areas, for example, finance (Joy and Tollefson (1975)),

psychology (Alexakos (1966)) and in medical research (Jain and Jain (1994)). DA can

be applied to multivariate longitudinal problems in which data are collected for the

same subjects repeatedly over a period of time. An introduction to the discriminant

analysis and classification in multivariate longitudinal data is given in Section 1.1.

Section 1.2 states the objectives of this thesis. The datasets used in this thesis are

described in Section 1.3. Finally, the structure of this thesis is explained.

1.1 Discriminant analysis and classification in multivari-

ate longitudinal data

Discrimination and classification are an important part of medical research. The num-

ber of clinical studies that involve the collection of multiple variables repeatedly for

the same patient through time (i.e., longitudinal data) is currently increasing. Conse-
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quently, research in the area of discrimination and classification has also expanded to

analyse this type of data, in order to assist clinical care by providing decision support

and predictions of future status.

1.1.1 Longitudinal data

Longitudinal data, where observations are measured repeatedly from patients at several

occasions are often collected for clinical research. Longitudinal data is in contrast to

cross-sectional data, in which observations are collected from patients at a particular

time point (Hand (2017), Tang and Tu (2012), Diggle et al. (2002)). A key advantage

of measurements repeatedly over time is that they can be used to explore the variations

in both between- and within-individual which, is not the case with cross-sectional data

(Tang and Tu (2012)).

Longitudinal data can be structured where all subjects have repeated measurements

for each marker at the same n time points (known as balanced design). Alternatively,

datasets could involve subjects that are observed, for each marker, at different time

points and the number of measurements may also vary across patients (unbalanced

design). Longitudinal data may show missing values such that markers’ measurements

for some subjects are incomplete, leading to so-called incomplete cases (Shah et al.

(1997), Marshall and Barón (2000)).

Usually, longitudinal data includes more than one marker, all measured over time

and which may be similar or of different types (e.g., continuous, binary and counts).

Longitudinal data can be utilised for analysis in two ways that depend on data available

and research question. The first case involves only analysing a single marker and

is referred to as univariate longitudinal analysis. The second case considers multiple

longitudinal markers in one study and is referred to as multivariate longitudinal analysis

(Verbeke et al. (2014)).

In longitudinal data, there are different data structures (see Figure 1.1). Longitu-

dinal data involves repeated observations of the same patients over a period of time;
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these repeated observations over time could be balanced or unbalanced.

In this thesis, I define a balanced dataset as a dataset in which all patients are

observed at the same time points, Figure 1.1 (a) and (b). An unbalanced dataset is

one in which the time points of observation differ across patients, Figure 1.1 (c).

A complete dataset is defined as one in which all patients have been measured

at all of the scheduled markers (all patients must have observations at each marker

at different/same time points, Figure 1.1 (a)), whereas an incomplete dataset occurs

when some patients have some incomplete profiles (i.e., missing measurements, Figure

1.1 (b)).

(a) Balanced and complete data (b) Balanced and incomplete data

(c) Unbalanced and complete data

Figure 1.1: Types of longitudinal data where (-) indicates missing values.

1.1.2 Discrimination and classification

In statistics, there is a strong association between discrimination and classification.

DA aims to search for an optimal way to distinguish between two or more groups by

maximising their differences. Meanwhile, classification seeks to allocate a new patient
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into one of the predefined groups by minimising the misclassification rate (Krzanowski

(2000)). In this thesis, I used the area under the curve (AUC) and sensitivity, specificity,

probability of correct classification (PCC), positive predictive value (PPV) and negative

predictive value (NPV) to assess classification accuracy.

DA has been applied to longitudinal data where each visit is treated as a separate

variable. Several examples in which longitudinal data can be used within a classical

discriminant analysis framework are discussed in Chapter 3. DA approaches are not

restricted to complete and balanced longitudinal datasets. Recently, methods for DA

have been further developed to analyse unbalanced datasets (Tomasko et al. (1999),

Marshall and Barón (2000)). Longitudinal discriminant analyses (LoDA) have been

recently developed to use a patient’s multivariate longitudinal history to predict their

group membership (Morrell et al. (2007), Komárek et al. (2010), Hughes et al. (2018b)).

Several possible rules can be used to allocate a new patient into one of G (prognos-

tic) groups. A considerable amount of literature has been published on classification

rules (Huberty and Olejnik (2006), Rizopoulos (2012), Hansen et al. (2010), Hughes

et al. (2017)). For example, Huberty and Olejnik (2006) discussed in their book four

possible rules (namely: maximum likelihood, typicality probability, posterior probabil-

ity and prior probability) to calculate probabilities that can be used to assign subjects

to a suitable group. They used a general scheme which is to allocate the individual to

which group membership probability is highest. Hughes et al. (2017) addressed pos-

sible allocation rules to allocate patients based on their estimated group probabilities.

Additionally, they introduced a new classification scheme based on credible intervals

for group membership probabilities for improving classification in a dynamic LoDA.

1.2 Aims, Objectives and Motivation

The aims of this thesis are:

1. To investigate the benefits of using longitudinal discriminant analysis (LoDA)
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rather than classical linear and quadratic discriminant analysis for clinical classi-

fications. While LoDA takes into account correlation between repeated measure-

ments on the same patients, classical linear/quadratic discriminant analysis deals

with each time point as a separate variable, and so does not allow for correlation

between repeated measures on the same individual.

2. To explore the classification accuracy of three approaches of LoDA (namely:

marginal, conditional and random-effects). Each of these approaches uses a dif-

ferent aspect of the patients’ longitudinal history to predict the patient prognostic

group.

3. To assess the impact that misspecification of the random-effects distribution has

on classification accuracy. Additionally, I investigate whether the sample size (i.e.,

number of individuals) and the number of repeated measurements per individual

may affect the ability of the predictive tool to classify patients correctly.

Motivation

The motivation for my statistical work comes from two areas: ophthalmology and

cirrhosis disease. Ophthalmology is an area of medicine devoted to the diagnosis and

treatment of eye diseases. Cirrhosis is a disease in which the liver does not work properly

as a result of long-term damage. The motivation behind the ophthalmic data is that

clinicians want to predict treatment success or treatment failure early in patients who

have age-related macular degeneration (AMD). Current practice is that the effectivity

of the treatment is evaluated one year after the treatment initiation. The clinical

question that I will address with the cirrhosis dataset is to identify those patients who

will not survive or need a transplant during the five years after transplantation. These

patients met the eligibility criteria for the randomised placebo-controlled trial of the

drug D-penicillamine (DPCA).
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1.3 Introduction to the datasets

This thesis included analyses of two longitudinal datasets. The first dataset came from a

clinical ophthalmic study. The ophthalmic dataset was called LOUISE and consisted of

information on 1008 patients who were treated with verteporfin photodynamic therapy

at St. Paul’s eye unit royal Liverpool University between 1999-2006. This dataset will

be described in detail in next section.

The second dataset was a subset of the data from a Mayo Clinic trial with primary

biliary cirrhosis (PBC) conducted in 1974-1984 Dickson et al. (1989) and included

information on 312 patients who required liver transplantation. This dataset will be

described in detail in Section 1.3.2.

1.3.1 Data description: Ophthalmic data

The ophthalmic dataset included clinical information from 1008 patients who had non-

vascular age-related macular degeneration (nAMD) during the seven-years interval.

AMD is a progressive, irreversible painless eye condition that generally leads to the

gradual loss of central vision, which occurs in the central area of the retina (macula) in

people aged 55 years and over, (Ferris III et al. (2013)), and affects more than 600,000

people in the UK to some degree every year. In 2011, the British Journal of Oph-

thalmology presented that by 2020 the number of people who will have AMD could

increase to approximately 756,000 (Minassian et al. (2011)). The ophthalmic dataset

can be made available upon request.

In this thesis, the measurements of visual acuity and contrast sensitivity were used,

which were repeatedly measured over time. These measurements are essential in mon-

itoring the function of the eye, and the idea is that they should help ophthalmologists

to identify the deterioration in visual function. The first measure of sight deterioration

was a loss of visual acuity (VA), which is the loss of ability to read small letters and to

detect fine details in central vision, for example when driving or reading. The second
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Figure 1.2: Profile of visual acuity and contrast sensitivity of success (left panel) and
failure (right panel) groups over a year. Thick lines show the overall mean over time
and across patients.

measurement was contrast sensitivity (CS), which is the ability to see less well-defined

objects, such as faces against a background (Bellmann et al. (2003)). Visual acuity was

measured as letters read at a distance of one metre using the ETDRS (Early Treatment

Diabetic Retinopathy Study test) with logMAR charts, while contrast sensitivity was

assessed using a Pelli–Robson chart (Garćıa-Finana et al. (2010)).

My observational ophthalmic dataset contains information on patients who were

treated with verteporfin photodynamic therapy for neovascular AMD over 12 months.

One of the clinical purposes was to be able to identify patients who will benefit from
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the treatment. The clinical dataset was described by Garćıa-Finana et al. (2010) and

included covariates, such as CS, VA, lesion type, age and gender. In cases of bilateral

treatment, the first treated eye was accounted for as the study eye.

In order to be able to address the research question described above, I included

patients who were followed for at least 12 months. Therefore, my sample consisted of

447 patients. I used measurements of CS and VA which were repeatedly measured over

time (more detail is presented in the Chapter 3).

Data was intended to be collected at specific time points: at baseline, 3, 6, 9 and

12 months as per protocol. Treatment failure was determined as a fall in VA to below

20 letters at 12 months and/or a loss of VA > 15 letters from baseline (Garćıa-Finana

et al. (2010)). Profiles of VA and CS of treatment success and treatment failure for

patients from baseline to 12 months are shown in Figure 1.2. In the treatment success

group, the profiles of VA remain stable over a year. However, the profiles of treatment

failure show an overall decreasing trend in VA over 12 months. Profiles of CS of success

and failure groups stay constant over time (Figure 1.2).
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1.3.2 Data description: PBC data

The Dutch Multicenter Primary Biliary Cirrhosis (PBC) study was used in an applica-

tion of longitudinal discriminant analysis by Komárek et al. (2010). They presented a

discriminant method that relaxes the normality assumption on random effects by using

a normal mixture in the random effects distribution. In this thesis, the motivation

came from a similar PBC dataset, known as the Mayo Clinic trial, which collected data

on patients with primary biliary cirrhosis (PBC) between 1974–1984 (Dickson et al.

(1989)). Komárek et al. (2013) applied cluster analysis to the PBC dataset where three

markers were used to classify patients who survived without liver transplantation the

first 2.5 years (910 days). This dataset is available within the R package mixAK Komárek

and Komárková (2014), in Appendix D of Fleming and Harrington (1991) and electron-

ically at http : //lib.stat.cmu.edu/datasets/pbcseq. This dataset included information

on 312 patients with a large number of clinical variables for each patient and with a

median follow-up time equal to 6.3 years.

For the purpose of this research, I focussed on patients who survived without liver

transplantation after five years and who died or had a liver transplant at some point

between two and a half and five years. I classified the patients into two groups, 202

patients were classified as patients known to be alive at five years (Group 0) and 51

patients who died or had a liver transplant between 2.5 and 5 years (Group 1). Four

markers (albumin, platelet count, bilirubin and blood vessel malformation) were used

for the comparison of three prediction approaches (marginal, conditional and random-

effects) of longitudinal discriminant analysis (more detail is given in the Chapter 4). In

the second application with this dataset, three of these markers (platelet count, bilirubin

and blood vessel malformation) were used to investigate whether the misspecification of

random effects may affect the model ability to classify patients into prognostic groups

accurately (Chapter 5 discusses in more detail).
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1.4 The structure of this thesis

The overall structure of the thesis takes the form of six chapters, including this intro-

ductory chapter. In Chapter 2, I present a range of discriminant analysis approaches

(classical discriminant analysis approaches and longitudinal discriminant analysis ap-

proaches) that can be used to analyse longitudinal data. Also, I review assessments of

classification that have been used to evaluate the results.

In Chapter 3, I use the AMD dataset to compare classical quadratic discrimi-

nant analysis which deals with each time point as a single variable with the modified

quadratic discriminant analysis. In the latter, the multivariate linear mixed model is

used to estimate the parameter means and covariance matrices.

In Chapter 4, I describe the three approaches for LoDA (marginal, conditional and

random effects) which take different strategies when using the patients’ longitudinal

data to predict the future status for a new patient. I use the PBC dataset and several

simulation studies to investigate in which situation each of the three approaches is

superior.

The three approaches of LoDA (which are compared in Chapter 4) are based on

a mixed model that uses random effects to model the correlation between repeated

measurements on the same subject. The random effects are typically assumed to follow

a (possibly multivariate) normal distribution. In Chapter 5, I use the PBC dataset

to investigate whether the misspecification of the random effects distribution affects

the classification performance. Finally, the conclusions drawn from these investigations

and further work are described in Chapter 6.
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Chapter 2

Review of current methodologies

The previous chapter introduced the clinical motivations for this thesis. In the oph-

thalmic application, the aim was to predict age-related macular degeneration (AMD)

treatment failure as early as possible using the patient’s longitudinal history. The sec-

ond aim was to predict patients’ mortality or their need for a liver transplant within

the next five years in patients with Primary Biliary Cirrhosis.

In this chapter, I describe the methodology related to discriminant analysis using

longitudinal data which will be used in this thesis.

2.1 Introduction

Many recent statistical methodological studies have focused on the further development

of longitudinal discriminant analysis (LoDA) to be used for classification purposes. In

particular, since a large amount of longitudinal information can be collected for multiple

markers over time for each patient clinicians may want to use this extra data to predict

the future status of a patient. This type of data has multiple correlations. For each

patient, the repeated measurements of a marker are correlated and multiple markers

observed at a particular time point, or even different time points, may be correlated.

Further, different types of longitudinal markers can be collected including continuous,
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binary or count variables.

The structure of this chapter is as follows. First, I describe the classical linear and

quadratic discriminant analyses (Section 2.2). In the same section, a variety of test

statistics for homogeneity of variance-covariance matrices are presented. In Section

2.3, I review four approaches of longitudinal discriminant analysis: modified, marginal,

conditional and random-effects approaches. These four approaches follow different ways

to estimate the parameters which will be used to generate the classification model. The

modified approach is based on the multivariate linear mixed effect model where maxi-

mum likelihood (ML) is used for estimating the parameters. The marginal, conditional

and the random effects approaches are based on multivariate generalised linear mixed

models with a mixture of normal distributions assumed for the random effects. A

Bayesian approach is used to estimate the parameters. In Section 2.4, I describe the

tools used to assess the accuracy of predictions made using the discriminant analysis

approaches described in this chapter. I summarise Chapter 2 in Section 2.5.

2.2 Classical discriminant analysis

Huberty and Olejnik (2006) described two forms of discriminant analysis (DA) based

on the research question: Descriptive discriminant analysis and predictive discriminant

analysis. Descriptive discriminant analysis (DDA) is used to describe how the groups

differ. Applications of DDA have been viewed as a follow-up to a multivariate analy-

sis of variance (MANOVA) (Huberty and Wisenbaker, 1992). Predictive discriminant

analysis (PDA) is usually used for classification purposes. In classical discriminant

analysis, cross-sectional data is often used with data collected at a single time point

per patient.

In diagnostic medical studies, discriminant analysis can be used to assess the ability

of biomarkers to classify patients into different groups. When markers are measured at

a single time for each patient, classical discriminant analysis offers an approach to pre-

dict patient’s group membership. In this thesis, classical discriminant analysis will be
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applied using longitudinal data by considering each time point as a separate variable.

However, note that this does not take into account correlation between repeated mea-

surements and also requires that patients have a complete record of clinic visits that

are all arranged at the same time points, which I will refer to as a balanced dataset.

Classical discriminant analysis has been applied to some longitudinal data applica-

tions. A comprehensive review of discriminant analysis using repeated measures data

can be found in Lix and Sajobi (2010). One of the recent examples of using classical

discriminant analysis is presented by Coster et al. (2005) who developed a classifica-

tion rule for first-stroke patients. They developed a linear discriminant model which

involved information from 206 patients of 17-items of the Hamilton Depression Rating

Scale (HAM-D) at 1, 3, 6, 9, 12 months. One drawback of the study is that they did a

complete data analysis (i.e., they removed patients for whom at least one measurement

was missing) which led to the removal of 10% of patients.

Another example is presented by Rietveld et al. (2000) who were interested in

classifying zygosis diagnosis in twins. Data from 691 twins zygosity were collected at

ages 6, 8, 10 years by both parents. However, nearly 53% (367) and 60% (412) of twin

pairs information from mother and father, respectively were missing. Again, data from

the children with missing data were not used in the analysis.

Levesque et al. (2008) were interested in classifying husband caregivers caring for

their wives, into three groups of psychological distress based on variation in psycholog-

ical distress. They used two measurements at baseline and changes over time to build

classical linear discriminant analysis. In total 91 of 323 individuals were excluded from

the study.

In summary, the applications of classical discriminant analysis on longitudinal data

often leads to the removal of patients with incomplete observations. This procedure is

not optimal, as not all data are used for the analyses and it is not clear how to perform

the predictions for the patients with missing data.

Discriminant analysis has been extended by Cochran et al. (1948) to include covari-

13



ates. Then, Tomasko et al. (1999) developed an approach for classical linear discrimi-

nant analysis that can be used with incomplete datasets. The idea of their approach is

that a linear mixed model is first used to estimate the group means and the covariance

matrices which are then used in classical LDA equations. At the same time, Marshall

and Barón (2000) combined the traditional discriminant analysis and linear/non-linear

mixed models to allow for unbalanced data (i.e., patients can have a different number

of observations at different time points).

Linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) are

commonly used for clinical classification. LDA is designed for cases where the variance-

covariance matrices are the same across groups. However, such an assumption is difficult

to assess in practice. Meanwhile, QDA is considered as a generalisation of LDA, since

it allows each class to have a class-specific covariance matrix (Marks and Dunn (1974),

Flury and Schmid (1992)). Like LDA, QDA assumes that the observations for each

group are sampled from the multivariate normal distribution.

2.2.1 Linear discriminant analysis (LDA)

Linear discriminant analysis (LDA) was first introduced in 1936 by Fisher (1936). His

idea was to obtain a linear combination of the predictor variables X that best separate

the groups of observations. This combination is called the discriminant function and is

represented by:

dig(x) = a1gx1i + a2gx2i + · · ·+ apgxpi + cg = a′gXi + cg (2.1)

where the vector of weights is

a′g = µ′gΣ
−1

and constant

cg = −1

2
µ′gΣ

−1µg + log πg
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where dig(x) is a discriminant score for group g, (g = 1, . . . , G), µg is a mean vector of

group g, Σ is common covariance matrix, and Xi is the observation vector of the i-th

individual.

Linear discriminant analysis assumes that the data are normally distributed. LDA

is designed for cases where the variance-covariance matrices are the same across groups.

Assume that there are G different groups, and for each X is supposed to follow a mul-

tivariate normal distribution with group-specific mean vector µg (where g = 1, . . . , G)

and common covariance matrix Σ. Also, suppose that the aim is to classify an obser-

vation into one of G groups or classes (G > 2). πg is defined as prior probability of the

gth group. Prior probabilities (denoted by πg) are often estimated using the proportion

of observations in each group to the total (such that, πg =
ng
N where N =

∑G
g=1 ng and∑G

g=1 πg = 1). Usually the population means and covariance matrices are unknown

and the maximum likelihood is used to estimate them.

The linear discriminant function (LDF) also known as linear classification function

can be expressed by:

dg(x) = x′Σ−1µg −
1

2
µ′gΣ

−1µg + log πg. (2.2)

The covariance matrix and mean for each group can be estimated from the data sample

using the sample mean x̄ and covariance matrix Sg. A new subject with X = x is

allocated to class g, if the following decision rule applies:

dg > dl (2.3)

otherwise x is assigned to group l. The decision rule in Equation 2.3 is known as the

linear classification rule. In the binary case (G = 2), two linear discriminant functions

are built as follows:

d1(x) = x′Σ−1µ1 −
1

2
µ′1Σ

−1µ1 + log π1

d2(x) = x′Σ−1µ2 −
1

2
µ′2Σ

−1µ2 + log π2

(2.4)
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These two discriminant functions can be combined by subtracting d2(x) from d1(x) as:

d(x) = x′Σ−1(µ1 − µ2)−
1

2
(µ1 + µ2)

′Σ−1(µ1 − µ2) + log
π1
π2
. (2.5)

such that if d(x) > 0, the observation x will be allocated to group 1, otherwise to group

2. The last two parts in the Equation (2.5) (−1
2 (µ1 + µ2)

′Σ−1(µ1 − µ2) , log π1
π2

) are

constant given a dataset.

In this thesis, a patient is classified into prognostic group 1 if the group membership

probability is larger than c, where c is a chosen cutoff value that selected by analysis

of the receiver operating characteristic (ROC) curve.

2.2.2 Quadratic discriminant analysis (QDA)

Similar to LDA, QDA assumes the observations for each group are sampled from a

multivariate normal distribution. However, in QDA the covariance matrices can be dif-

ferent across groups (Marks and Dunn (1974), Flury and Schmid (1992)). As indicated

above, the covariance matrix in each class can be estimated from the data sample using

the sample covariance matrix Sg, g = 1, . . . , G.

In particular, the quadratic discriminant function is expressed as:

dg(x) = −1

2
(x− µg)′Σ−1g (x− µg)−

1

2
log |Σg|+ log πg

= −1

2
x′Σ−1g x+ x′Σ−1g µg −

1

2
µ′g Σ−1g µg −

1

2
log |Σg|+ log |πg|

(2.6)

where Σg is covariance matrix for class g and πg is the prior probability for group g.

For classification purposes, the same approach that is used in LDA to allocate

patients can be used in QDA (i.e., a patient is allocated into a prognostic group 1 if the

group membership probability of the group one is larger than the chosen cutoff value

c). James et al. (2013) recommended that if the dataset is large, the QDA is a better

choice than LDA.

In both LDA and QDA, the decision boundaries are functions of the parameters of
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the densities. If the number of variables p increases then the number of parameters can

be increased considerably. The number of parameters required by LDA is less than that

required by QDA. While for LDA there are (G−1)× (p+1) parameters (where p is the

number of parameters), QDA requires (G− 1)× {p (p+ 3)/2 + 1} parameters ( Hastie

et al. (2009)). Regarding the covariance matrices, LDA assumes a common covariance

matrix that requires p (p+1)
2 parameters. However, the QDA assumes that each group

has a specific covariance matrix such that this requires G × p (p+1)
2 parameters to be

estimated.

If the assumption of a common covariance matrix is not met, a different covari-

ance matrix for each group is estimated. This leads to QDA where the discriminating

boundaries are not straight lines, but quadratic curves. Box’s M test (described in

the next section) is used to test the homogeneity of variance-covariance matrices (Box

(1949), Geisser and Greenhouse (1958)). However, Bouveyron et al. (2007) pointed

out that QDA does not guarantee an improved classification rate even when the test is

significant.

2.2.3 Test for homogeneity of variance-covariance matrices

In this section, a range of methods that are used to test for homogeneity of covariance

matrices in order to decide whether QDA is superior to LDA are presented.

Box’s M test

Box’s M statistic is usually used in discriminant analysis to decide whether LDA or

QDA should be used. Box (1949) suggested a test based on the likelihood-ratio test

(LRT) statistic for testing the hypothesis of equal covariance matrices. In particular,

it assumes both χ2- and F -approximations for the distribution of the LRT statistic

M under the assumption of multivariate normality (see Rencher (1998)). The null

hypothesis of the test for homogeneity of covariance matrices is H0 : Σ1 = Σ2 = · · · =
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ΣG. The test statistic can be given as follows:

M = γ

G∑
g=1

(ng − 1) log|Σ−1g Σ|, (2.7)

where γ = 1− 2p2 + 3p− 1

6(p+ 1)(G− 1)
(
∑ 1

ng−1−
1

N−G), N =
∑
ng is the total sample size and

Σ is the pooled covariance matrix that is estimated as Σ =

∑G
g=1(ng − 1) Σg

(N −G)
. Box’s M

statistic has an asymptotic χ2 distribution with degrees of freedom df = p (p+1) (G−1)
2 .

Mardia et al. (1979) pointed out that the Box’s approximation (χ2) is expected to

work well when N > 20, and if G and p < 5. Otherwise, the F -approximation is more

accurate.

If Box’s M test is statistically significant at a significant level α, the covariance matrices

can be regarded as not homogeneous.

Bartlett’s test

Bartlett’s test Bartlett (1937) is designed to assess the assumption that the equality

of variances across groups holds H0 : σ21 = σ22 = . . . = σ2G against the alternative that

variances are unequal for at least two groups. Bartlett’s test is based on a chi-square

statistic with (G − 1) degrees of freedom, where G is the number of groups. The test

statistic can be expressed as follows:

T =
(N −G) ln(σ2)−

∑G
g=1(ng − 1) ln(σ2g)

1 +
1

3(G− 1)

(∑G
g=1

1

ng − 1
− 1

N −G

) (2.8)

where σ2g indicates the variance of group g, σ2 =

∑G
g=1(ng − 1)σ2g

(N −G)
is pooled variance

and n is defined as in Box’s M test. The T statistic is distributed as a χ2 distribution

with (G− 1) degrees of freedom under the null hypothesis of equality of variances.

Bartlett’s test is unbiased for any sample sizes Pitman (1939). However, it is sen-

sitive to departures from normality. If the null hypothesis H0 is rejected, this could be

due to the variances of the two groups being unequal, or the samples of two groups not
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following a normal distribution or both.

Levene’s test

Levene’s test is another approach that is used to test for homogeneity of variance across

groups (Levene (1960)). The Levene’s test is based on F distribution with (G− 1) and

(N −G) degrees of freedom. The test statistic is given as:

F =
(N −G)

∑G
g=1 ng(Zg − Z..)2

(G− 1)
∑G

g=1

∑ng
i=1(Zgi − Zg)2

(2.9)

where Zgi are the absolute deviations (|Xgi − X̄g.|) where X̄g. is the mean of group

g, Z.. =
1

N

∑G
g=1

∑ng
i=1 Zgi is the mean of all the absolute deviations (Zgi), Zg =

1

ng

∑ng
i=1 Zgi is the mean of the absolute deviations (Zgi) for group g. The test statistic

F is approximately F -distributed with (G− 1) and (N −G) degrees of freedom.

Brown and Forsythe’s test

Brown and Forsythe (1974) extended the Levene’s test by using the median or a

trimmed mean instead of the mean when calculating the deviations within each group.

The trimmed mean is a method that calculates the average by excluding a small per-

centage (e.g., trim 10%) of the largest and smallest values of the data. A trimmed

mean aims to reduce the impact of statistical outliers. In the above Equation 2.9, the

Zgi = |Xgi−X̃g.| where X̃g. is the location of the median or trimmed mean of a variable

in a group g. This extension makes the test more robust to deviation from normality.

A general discussion can be found in Gastwirth et al. (2009).

The tests mentioned above were used in Chapter 3 to decide whether QDA is

preferable to LDA. Since the test of homogeneity of variances-covariances matrices is

not the focus of this thesis, this aspect will not be discussed further.
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2.2.4 Classification rule

Classification methods of discriminant analysis are used to predict the future diagnosis

of new patients by assigning them into one of G prognostic groups. Let fg(x) represent

the density function of X for observations that belong to the g-th group, fg(x) = p(X =

x|G = g).

The posterior probabilities based on Bayes’ rule are defined as:

p(G = g|X = x) =
πgfg(x)∑G
g=1 πgfg(x)

(2.10)

where the multivariate normal density function can be written as:

fg(x) =
1

(2π)p/2|Σ|1/2
exp
(
− 1

2
(x− µg)′Σ−1(x− µg)

)
. (2.11)

The group membership probabilities (pg(x)) of LDA and QDA for an individual can

be calculated using Equation 2.10. Then, the patient is assigned to the group if the

probability is the maximal across all groups and if it is larger than a defined cutoff c

(optimal cutoff).

2.3 Longitudinal discriminant analysis (LoDA) approaches

In recent years, longitudinal discriminant analysis has been used for classification

by researchers (e.g., Marshall et al. (2009), Kohlmann et al. (2009), Komárek et al.

(2010), Hughes et al. (2018b)). Methods that can be used to develop a discriminant

tool using longitudinal data are the covariance pattern and mixed-effects models (Lix

and Sajobi, 2010). However, in this thesis, only mixed models will be considered, as

mixed models are most frequently used in longitudinal discriminant analysis.

The longitudinal study generally yields multiple measurements (or variables) on

each subject. These variables are also referred to as markers. Those markers may be

of different types, such as continuous, binary or counts.
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Brant et al. (2003) used a single continuous longitudinal marker of the prostate-

specific antigen (PSA) of 342 males who were diagnosed as prostate cancer-free at the

first scan and were followed up at least ten years to classify them into four prognostic

groups. Further application with a single continuous response had been presented

by Wernecke et al. (2004). Marshall and Barón (2000) used classical discriminant

approaches based on a linear/non-linear mixed model to classify pregnant women into

normal or abnormal pregnancy.

In 2015, Arribas-Gil et al. (2015) introduced a classification method to predict

normal and abnormal pregnancy using a semi-parametric linear mixed-effects model

(SLMM) for the longitudinal data of each group ( hormone levels measured at early

stages of pregnancy). The authors proposed a unified procedure of estimation based

on a penalised algorithm, involving a LASSO approach (least absolute shrinkage and

selection operator) for the estimation of the model parameters. Another method used

to analyse this pregnancy dataset was proposed by De la Cruz et al. (2017). They

suggest using penalised splines within a semiparametric non-linear mixed-effects model

(SNMM) for the longitudinal data. Rubin et al. (2017) introduced a joint logistic re-

gression and Markov chain model based on continuous-time Markov chains (CTMCs)

to model a cross-sectional binary outcome as a function of a longitudinal covariate

process. They applied their approach to a dataset of patients with traumatic brain

injury to predict a 6-month outcome (as favorable (good recovery and moderate dis-

ability) or unfavorable (severe disability, vegetative, or dead)) based on baseline data

and physiological information collected every hour after injury.

Li and Gatsonis (2019) developed methods that combine multiple biomarker trajec-

tories to achieve a composite diagnostic marker using functional data analysis (FDA).

Their approach was applied to data from the Religious Orders Study and a non-small

cell lung cancer trial to distinguish diseased from non-diseased patients. Lukasiewicz

et al. (2011) introduced an approach based on longitudinal discriminant analysis using

multiple biomarkers and partial area under the receiver operating characteristic (ROC)

curve (pAUC) to predict non-response to treatment for hepatitis C virus. They also
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used the partial area under the ROC curve index to evaluate the performance of their

approach. Kim and Kong (2016b) propose a linear combination of longitudinal mea-

surements to improve classification accuracy. These three approaches all contributed to

the classification of longitudinal data literature by proposing methods where data from

multiple biomarkers are incorporated into a single score to be used in a classification

algorithm.

Multivariate longitudinal data using pseudo-likelihood methods for estimation was

presented in Bruckers et al. (2016) in the context of cluster analysis. They fitted

joint mixed-effects models and used ideas from k-means clustering to reveal homoge-

nous subgroups. Their algorithm was applied to electro-encephalogram (EEG) data.

Reddy et al. (2016) proposed an approach that involves a linear mixed model to fit

the longitudinal measurements as the first step. In the second step, they estimated the

time to attainment of two consecutive measurements less than a meaningful threshold,

which takes into account the patient-specific trajectory and measurement error. De la

Cruz et al. (2018) applied longitudinal discriminant analysis based on a non-linear

mixed model to predict normal versus abnormal pregnancy outcomes. They compared

the misclassification error rates by using several methods such as cross-validation and

bootstrap algorithms.

In some clinical studies, multiple longitudinal variables are recorded, and this ex-

tra information can be used in the discriminant analysis to improve the predictive

accuracy of the discriminant model. A comprehensive review of multivariate longi-

tudinal data analysis based on mixed models can be found in Verbeke et al. (2014)

and Bandyopadhyay et al. (2011). Marshall et al. (2009) used multiple continuous

responses for classification based on multivariate non-linear mixed models. Moreover,

multiple continuous markers had also been used by Komárek et al. (2010) to predict

patients with primary biliary cirrhosis by fitting a multivariate linear mixed model to

the Dutch Multicenter Primary Biliary Cirrhosis data. Morrell et al. (2005, 2012) also

used discriminant analysis with three continuous markers to predict the development

of cancer.
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The applications described above involve multivariate linear/non-linear mixed-effects

models with continuous multiple markers. However, fewer developments have been pro-

duced for different types of markers. An extension of the multivariate longitudinal data

analysis to allow continuous and binary longitudinal markers were proposed by Fieuws

et al. (2008). In their paper, they used a combination of linear, nonlinear and gener-

alised linear mixed-effects models to predict renal graft failure in renal transplantation

patients. Univariate mixed models were combined in a multivariate mixed model by

specifying a joint distribution for the random effects. They used a pairwise approach

presented by Fieuws and Verbeke (2006) to fit the mixed models. Moreover, Hughes

et al. (2018b) developed a multivariate longitudinal discriminant analysis approach to

allow longitudinal markers of three different type (continuous, binary and counts) and

this was applied to identify patients with epilepsy who do not benefit from antiepileptic

drugs. Their work provided additional flexibility by using a mixture distribution for

the random effects.

As mentioned in the previous section, classical discriminant analysis can be applied

to longitudinal data with a balanced dataset (where time points are identical for all

patients). Tomasko et al. (1999) applied classical discriminant analysis using a mixed

model to analyse unbalanced longitudinal data. The basic idea of their modified ap-

proach (the name they used in their paper) is first to generate the mixed model for

each group to describe the change of a single marker over time, and then construct

the quadratic discriminant function to predict the outcome. Details of the modified

discriminant analysis are given in next section.

LoDA methods attempt to use a patient’s clinical history to predict the future

status of a patient. Three different approaches were proposed by Morrell et al. (2007)

to classify patients using their longitudinal clinical records namely: marginal prediction,

conditional prediction and random-effects prediction using the posterior probabilities.

Similar to the modified approach, the LoDA marginal, conditional and random-

effects approaches are based on the mixed model. However, the modified approach

uses the mixed model to directly estimate the means and covariance matrices that
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are subsequently used in the classical discriminant analysis to predict a patient sta-

tus. Meanwhile, the marginal, conditional and random-effects used the distribution

of the marginal, conditional or random effects (respectively) of the mixed models for

prediction.

These three approaches estimate a patient’s posterior group membership proba-

bilities differently. The marginal prediction focuses on the mean development of the

markers over time. This prediction uses the marginal distribution of the new patient’s

observed longitudinal data for prediction. The conditional prediction is based on the

patient-specific development of markers over time but does not take error in the variabil-

ity of the patient’s estimated random effects into account. In this case, the conditional

density of the new patient’s longitudinal data is used to predict their prognostic group.

The conditional approach estimates conditional profiles of a new patient, given an es-

timate of their patient-specific deviations from the average longitudinal profile, then

compares it with the overall mean longitudinal profiles of patient’s with similar esti-

mated random effects in each group. Finally, the random-effects prediction approach

focuses on the patient-specific development of the markers, where the density of the pa-

tient’s estimated random effects is utilised to predict patients status. These approaches

have been compared by researchers such as Morrell et al. (2007, 2011), Komárek et al.

(2010), Hughes et al. (2018b).

Comparisons of the marginal, conditional and random-effects approaches have been

explored using particular datasets. For example, Morrell et al. (2011) used data from

the Baltimore Longitudinal Study of Aging to predict prostate cancer of future pa-

tients by using the three approaches. Their comparison was based on a number of

PSA measurements which concluded that the random-effects prediction approach pro-

vided the best prediction in terms of specificity and efficiency when the optimal cutoff

value was used, while when the cutoff was 0.5 the marginal prediction gave the high-

est sensitivity and lead-time (time before patients were identified to the cancer group

correctly). Komárek et al. (2010) compared the three approaches to predict the future

prognosis of patients with Primary Biliary Cirrhosis and concluded that the random-
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effects approach outperformed the other two approaches. Hughes et al. (2018b) applied

the three approaches to classify 1752 patients with epilepsy who do not benefit from

antiepileptic drugs using data from the Standard and New Antiepileptic Drugs study.

In their comparison, the random-effects approach was inferior when compared to the

marginal and conditional approaches in terms of the probability of correct classification

(PCC).

2.3.1 Modified discriminant analysis

Discriminant analysis based on mixed models was introduced by Tomasko et al. (1999)

who provided a discriminant analysis approach that was able to deal with missing

data. Data from a large number of patients could potentially be excluded from the

analysis if some of their values are missing. The other benefit of applying this modified

approach is that the random subject effect can be embedded in the covariance matrix

model. In other words, the mixed models allow modelling of the relationship between

measurements collected for the same patient at different time points of the same marker

and also among markers.

The modified discriminant analysis proceeds in two steps. In the first step, the linear

mixed model is used to estimate the parameters (means and covariance matrices) using

maximum likelihood (ML). In the second step, these parameters are used to build the

discriminant function that will be used to classify individuals. In other words, the

means and covariance matrices are generated from the mixed model, and then used to

build the linear discriminant tool (Equation 2.2 or 2.5) or the quadratic discriminant

tool (Equation 2.6).

In the modified prediction, the Expectation-Maximization (EM) algorithm (Laird

et al. (1982)) is used to get the maximum likelihood parameters of the multivariate

mixed model (see Tomasko et al. (1999); Marshall and Barón (2000) for more detail).

Also, I consider a single normal distribution (i.e., K = 1, where K is number of mixture

components of the random effects distribution, since the number of mixture components
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K is assumed to be known and to be the same across groups) of the random effects.

The next section, consider a situation where there is multiple markers by using a

multivariate generalised linear mixed-effects model.

2.3.2 Mixture multivariate generalised linear mixed model (MMGLMM)

A linear mixed-effects model to analyse longitudinal data that takes the correlation

between the repeated measurements obtained from the same patient into account was

considered by Laird et al. (1982) who used a random-effects approach. A combination

of empirical Bayes and maximum likelihood were used to estimate the model using the

EM algorithm.

Tomasko et al. (1999) applied their approach to incomplete data by using a uni-

variate mixed model. Then, Roy (2006) modified the discriminant analysis approach

to allow for the multivariate linear mixed models (MLMMs) and assumed a Kronecker

product structure for the residual errors covariance matrix. Reinsel (1984) fitted the

multivariate random-effects model for continuous outcomes to complete and balanced

multivariate longitudinal designs in which all subjects have observations at the same

time points. However, Shah et al. (1997) extended the work of Laird et al. (1982)

from univariate longitudinal data to multivariate longitudinal data, and discussed the

problem of unbalanced design by applying an extension of the EM algorithm method.

Their approach dealt with unbalanced multivariate longitudinal designs and assumes

that the relationship between different responses from the same subject is correlated.

The LoDA procedure as described in Hughes et al. (2018b) is based on a multi-

variate generalised linear mixed model with a normal mixture in the random effects

distribution. This is the approach I describe in this thesis, although the other models

I have described follow a similar framework.

Suppose that for each patient there are r markers (where r = 1, . . . , R) mea-

sured at times tr = (tr,1, . . . , tr,nr) in each prognostic group g = 1, . . . , G. Let Yi =
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[yi1,yi2, . . . ,yir] be the response matrix for individual i where yir is an ni×1 response

vector for marker r. Additional covariate vectors vr,1, . . . , vr,nr ∈ Rpr which are de-

noted as C could available for longitudinal evolution of each marker. Let yi = V ec(Yi)

be a rni × 1 vector of all response variables for individual i. In the same way, suppose

the error term matrix is Ei = [ei1, ei2, . . . , eir] and ei = V ec(Ei) be a rni × 1 vector

of error terms. Also, ei ∼ N(0,Σi) where Σi is a rni × rni block-diagonal covariance

matrix of the error term, where in each diagonal block equal to σ2rIrni , σ
2
r is a r-th

marker residual error. Moreover, it is assumed that observations across patients are

independent and errors are independent for given patient (cov(ei,bi) = 0, where i 6= i′).

MGLMMs are fitted to the longitudinal data for each group separately where the dis-

tribution of marker r-th belongs to an exponential family (e.g. normal, exponential,

Poisson) for j’th longitudinal observation (j = 1, · · · , nr) is given by:

h−1r

{
E
(
Yr,j

∣∣b, g)} = xg>r,jα
g
r + zg>r,jbr, r = 1, . . . , R, j = 1, . . . , nr, (2.12)

where h−1r is a chosen link function (with possible dispersion parameters φgr), covariate

vectors xgr,j = xgr,j(C) and zgr,j = zgr,j(C) are used in a model for the group g and

αgr , r = 1, . . . , R, g = 1, . . . , G indicates unknown regression coefficients. Correlation

between repeated observations of the same marker and between values of different

markers on the same patients are accounted for by the formation of the random effects

vector b =
(
b1, . . . , bR

)
. Normally, it is supposed that the random effects vector

follows a normal distribution. However, Verbeke and Lesaffre (1996) suggested relaxing

the normality assumption of the random effects distribution by introducing a univariate

linear mixed-effects model with a normal mixture in the random effects distribution.

Also, Komárek et al. (2010) and Hughes et al. (2018b) provided extra flexibility to

the joint distribution of the random effects vector in each prognostic group by defining

a normal mixture for the random effects distributions. Assuming that a multivariate

normal mixture in the distribution of random effects is:

b | g ∼
K∑
k=1

wgkMVN
(
µgk, D

g
k

)
, (2.13)
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with the mean vector µgk and a covariance matrix Dgk. Where wk, (k = 1, . . . , K, 0 <

wgk < 1,
∑Kg

k=1w
g
k = 1) is a vector of weights for the mixture distributions. The number

of mixture components K is assumed to be known and to be the same across groups.

A density function of the multivariate normal distribution is indicated as ϕ(·; µgk, D
g
k).

Let ψg :=
(
αg1, . . . , α

g
R, φ

g
1, . . . , φ

g
R

)
indicate a vector of unknown parameters of the

GLMM model (2.12) and additionally θg :=
(
wg, µg1, . . . , µ

g
Kg , Dg1, . . . , D

g
Kg

)
is a

vector of mixture parameters (from 2.13) in the distribution of random effects in group

g.

2.3.3 Bayesian method and Markov chain Monte Carlo (MCMC)

method

Bayesian methods is a term which refers to any mathematical tools that are associated

in some way to Bayesian inference. Bayesian inference considers model parameters as

random variables, in contrast to the classical inference which deals with parameters as

constants (Puza (2015)).

The Bayesian approach has been used in the analysis of longitudinal data to estimate

parameters. Brown et al. (2001) proposed a Bayesian approach to classifying multi-

variate longitudinal data, that were only measured at fixed time points, and used an

expectation-conditional maximization algorithm within a Bayesian Gaussian discrimi-

nation model. De La Cruz-Mesia and Quintana (2006) introduced a general Bayesian

framework for the classification of unbalanced longitudinal data (where the number or

timing of the observations differs) and used Markov chain Monte Carlo methods to

estimate the parameters.

The Bayesian approach with MCMC estimation was used in a multivariate linear

mixed model with mixture models in random-effects distribution by Komárek et al.

(2010). The MCMC approach is a beneficial method which can deal with problems

involving hierarchically specified models (for example linear mixed models).
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2.3.4 Estimation

Markov Chain Monte Carlo is used to estimate the model parameters. I assume that

the mixture associated parameters θ and the GLMM associated parameters ψ are in-

dependent. The prior distribution p(ψ, θ) is based on the factorisation p(ψ) and p(θ).

This factorization is standard in generalized linear mixed models.

Prior distributions

In order to perform an MCMC procedure to estimate the parameters of a model, I

must first specify prior distributions for the parameters in my model. In Bayesian

statistical inference, a prior probability is a distribution specified in advance reflecting

the users beliefs about the possible values of a particular parameter. This is then com-

bined with collected data to derive a posterior distribution, which reflects the possible

values of a parameter once both, prior beliefs, and knowledge from data have been

combined. To obtain the weakly informative prior distribution, I follow the suggestions

of Richardson and Green (1997) and Komárek and Komárková (2013) for the choices

of the fixed hyperparameters. I have to set some initial values of the random effects in

GLMM by using maximum-likelihood estimates in each of markers of GLMM models

separately assuming that the distribution of random effects is normal. Moreover, let for

each marker, b0i,r, i = 1, . . . , N, r = 1, . . . , R be empirical Bayes estimates of individual

values of random effects in the rth ML estimated GLMM assuming that the random

effects follow the normal distribution. The prior distributions for the model parameter

(ψ, θ,B, k) are specified so as to be weakly informative as follows. The random effects

prior distribution p(bi|θ, k) is a (multivariate) normal distribution N(µk,Dk), which is

p(bi|θ, k) ∝ |Dk|−
1
2 exp{−1

2
(bi − µk)′D−1k (bi − µk)}.

The prior distribution for the component allocations for each mixture component in the

assumed random effects distribution, p(ki|w), i = 1, . . . , N , is assumed to be a discrete

distribution with parameter wk

P (ki = k|w) = wk, k = 1, . . . ,K,
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with a Dirichlet distribution D(δ, · · · , δ), as the prior for the mixture weights, where δ

is a fixed hyperparameter. That is,

p(w) =
Γ(Kδ)

Γk(δ)

K∏
k=1

wδ−1k ,

where δ set to be a small positive number to obtain weakly informative prior, e.g.,

δ = 1. The prior for the means of the mixture components, p(µk), k = 1, . . . ,K, is a

(multivariate) normal distribution

p(µk) ∝ |Cb|−
1
2 exp{−1

2
(µk − ξb)′C−1b (µk − ξb)},

where Cb and ξb are fixed prior mean and covariance matrix, respectively.

The prior distribution for the random effects mixture covariance matrices, p(D−1k |γb)

follow the Wishart distribution, which can be expressed as

p(D−1k |γb) ∝ |Ξb|
−ζb
2 |D−1k |

ζb−d−1

2 exp{−1

2
tr(Ξ−1b D−1k )},

where ζb are fixed prior degrees of freedom and set to be a small positive number, e.g.,

ζb = d+ 1 to get a weakly informative prior. Ξb = diag(γb) is a diagonal scale matrix

with random diagonal components, and γ follows a gamma distribution as

p(γ−1b ) =

d∏
l=1

p(γ−1b,l ) =

d∏
l=1

{
hgb,lb,l

Γ(gb,l)
(γ−1b,l )gb,l−1exp(−hb,lγ−1b,l )},

where hb,l and gb,l, l = 1, . . . , d are fixed hyperparameters. To obtain weakly informa-

tive prior distribution as recommended by Richardson and Green (1997), gb,l set to

be a small positive number and hb,l = 1
R2 where R is a range of residuals from ini-

tial maximum-likelihood fits for each marker. Prior for GLMM dispersion parameters

p(φ−1r |γφ,r), r = 1, . . . , R which φr in my case is residual variance σ2r follows gamma

distribution as

p(φ−1r |γφ,r) =
2
−ζφ,r

2

Γ(
ζφ,r
2 )

γ
−ζφ,r

2
φ,r (φ−1r )

ζφ,r−2

2 exp{−1

2
γ−1φ,rφ

−1
r }.
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To get weakly informative prior, ζφ,r set to be a small positive number, e.g., ζφ,r = 2.

Fixed effects prior distribution p(α) is a (multivariate) normal distribution which is

p(α) ∝ |Cα|−
1
2 exp{−1

2
(α− ξα)′C−1α (α− ξα)},

where ξα and Cα are mean and variance fixed prior hyperparameters. To obtain weakly

informative for fixed effects α, the mean ξα set to be zero, and the variance Cα set to

be a large positive number (e.g., 10,000 ).

The joint prior distribution for the MLMM model is

p(ψ, θ,B, k, γb, γφ) = p(B|θ, k)× p(k|θ)× p(θ|γb)× p(γ−1b )× p(ψ|γφ)× p(γ−1θ )

=
N∏
i=1

{p(bi|θ, k)× p(ki|w)} × p(w)×
K∏
k=1

{p(µk)× p(D−1k |γb)}×

d∏
l=1

p(γ−1b,l )×
R∏
r=1

{p(θ−1r |γθ,r)× p(γ−1φ,r)} × p(α).

The likelihood function of the multivariate mixture GLMM (Equation 2.12) is

Lg(ψ
g,θg) =

∏
i:g

p(ygi |ψ
g,θg) =

∏
i:g

R∏
r=1

p(ygi |ψ
g,θg) (2.14)

The likelihood function can be written as:

Lg(ψ
g,θg) =

∏
i:g

fmargg

(
yi,1, . . . , yi,R; ψg, θg, Ci

)
,

=
∏
i:g

∫
f condg

(
yi,1, . . . , yi,R

∣∣bi; ψg, Ci) f ranefg

(
bi; θ

g
)

dbi,

=
∏
i:g

∫ R∏
r=1

ni,r∏
j=1

pr
(
yi,r,j

∣∣bi; ψg, Ci){ Kg∑
k=1

wgk ϕ(b; µgk, D
g
k)

}
dbi,

=
∏
i:g

{ Kg∑
k=1

wgk

∫ R∏
r=1

ni,r∏
j=1

pr
(
yi,r,j

∣∣bi; ψg, Ci)ϕ(b; µgk, D
g
k) dbi

}
(2.15)

where fmargg

(
yi,1, . . . , yi,R; ψg, θg, Ci

)
is the marginal density of the observed mark-

ers, where the term marginal indicates that the random effects are integrated out,

f condg

(
yi,1, . . . , yi,R

∣∣bi; ψg, Ci) is the conditional density of the observed markers given
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the random effects vectors which presents as:

f condg

(
y1, . . . , yR

∣∣b; ψg, C
)

=

R∏
r=1

nr∏
j=1

pr
(
yr,j

∣∣b; ψg, C
)
. (2.16)

Here, pr
(
yr,j

∣∣b; ψg, C
)

denotes a density function of the exponential family distribu-

tion of the random marker Yr,j whose expectation relies on the random effects vector

b, the fixed effects αgr and covariate information C by the GLMM model 2.12. The

random effects density f ranefg in 2.15 in the prognostic group g is presented as:

f ranefg

(
b; θg

)
=

Kg∑
k=1

wgk ϕ(b; µgk, D
g
k) (2.17)

where ϕ(b; µgk, D
g
k) is a multivariate normal distribution density function.

Komárek et al. (2013) suggested using Markov Chain Monte Carlo (MCMC) method-

ology within a Bayesian framework for models with high dimension on random effects

instead of using maximum-likelihood through the EM algorithm.

Basically, in a situation when the rth GLMM distribution is normal distribution

(continuous markers) a block Gibbs algorithm is used to obtain a sample from the

posterior distribution of model parameters. However, Komárek et al. (2013) suggested

using the Metropolis–Hastings steps proposed by Gamerman (1997) in the case where

there are different nature (i.e., continuous, discrete or dichotomous) of markers involved

in the model.

A sample SM = {(ψg,(m),θg,(m)) : m = 1 . . . M} is generated from the posterior

distribution p(ψg,θg|yg) ∝ Lg(ψ
g,θg) × p(ψg, θg) (where Lg(ψ

g,θg) is the likelihood

of the Bayesian model and p(ψg, θg) is the prior distribution of the model parameters)

by using the MCMC methods, where

ψg,(m) = (α
g,(m)
1 , . . . α

g,(m)
R , φ

g,(m)
1 , . . . , φ

g,(m)
R ),

and

θg,(m) = (w
g,(m)
1 , . . . , w

g,(m)
Kg , µ

g,(m)
1 , . . . ,µ

g,(m)
Kg , Dg,(m)

1 , . . . ,Dg,(m)
Kg ).
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The model parameters, ψg and θg estimated from the multivariate mixture GLMM in

each group are used in the discriminant analysis. In Equation 2.12, h−1r is a canonical

like function which assumes that

p(yi,r|φgr ,αgr ,bi,r) = p(yi,r|φgr , η
g
i,r)

= exp{
ygi,rη

g
i,r − qr(η

g
i,r)

φgr
+ kr(y

g
i,rφ

g
r)},

where kr and qr are functions for appropriate distribution. The three common distribu-

tions are Gaussian with a linear mixed model for the rth marker where the dispersion

parameter φgr is the unknown residual variance, Bernoulli with the logit link where

φgr = 1 and Poisson with the log link where φgr = 1 (see Komárek and Komárková

(2013) for more detail).

There are many ways to evaluate convergence of the performed MCMC simulation.

One possible way is that autocorrelations can be estimated in Markov chain of the model

deviances D(ψ, θ) = −2log{L(ψ, θ)} by using autocorr function from the R package

(version 3.4.3) coda (Plummer et al. (2006)). Another way that can be followed to

evaluate the performance of MCMC samples is to consider the trace plots of model

parameters such as w, µ, D and model deviance D(θ). That can be accomplished by

using tracePlots function from R package mixAK. See Figure 4.1 of Chapter 4, for an

example of using trace plots to assess MCMC convergence.

To classify a new subject using their longitudinal history. In a Bayesian method,

estimating the predictive density f̂g,new is the average across all posterior samples as

f̂g,new =
1

M

M∑
m=1

f(ynew; ψg,(m),θg,(m)). (2.18)

2.3.5 Marginal approach

In the literature on LoDA, the marginal approach is the most commonly used approach

(for example, Brant et al. (2003, 2005) and Morrell et al. (2005)).
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The marginal approach aims to use the longitudinal profiles of a new patient to

classify them by comparing them with the group-specific average profiles.

The marginal density fmargg,new

(
.; ψg, θg, C

)
using the observed values ynew,1 =(

y1,1, . . . , y1,n1

)
, . . . ynew,R =

(
yR,1, . . . , yR,nR

)
of longitudinal markers Ynew =(

ynew,1, . . . , ynew,R
)

for a participant from group g is

fmargg,new

(
y1, . . . , yR; ψg, θg, C

)
=

∫
f condg

(
y1, . . . , yR

∣∣b; ψg, C
)
f ranefg

(
b; θg

)
db,

(2.19)

where f ranefg

(
b; θg

)
denotes a density of the random effects and conditional density of

the observed markers given the random effects vectors represents as f condg

(
.;
∣∣b; ψg, C

)
.

Equation 2.16 presents the density function of conditional of the observed markers and

f ranefg

(
bi; θ

g
)

denotes a density of the random effects (Equation 2.17 shows the random

effects density function).

The predictive density fg,new of a new patient is equal to the marginal density of

Ynew =
(
ynew,1, . . . , ynew,R

)
.

Pmargnew,g

(
ψ, θ

)
=

πg f
marg
g,new

(
ynew,1, . . . , ynew,R; ψg, θg, C

)∑G
g̃=1 πg̃ f

marg
g̃,new

(
ynew,1, . . . , ynew,R; ψg̃, θg̃, C

) g = 1, . . . , G,

(2.20)

where fmargg,new is the marginal density 2.19. Marginal group probabilities are measured

as the average across all M samples in MCMC procedure.

P̂margnew,g =
1

M

M∑
m=1

Pmargnew,g

(
ψ(m), θ(m)

)
, g = 1, . . . , G,

In the case of continuous markers and a single normal distribution of random effects

(K = 1), the marginal prediction is equivalent to the modified discriminant analysis

except that different approaches are used to estimate the parameters (with a maximum

likelihood (ML) approach used for the modified discriminant analysis and a Bayesian

MCMC approach for the marginal approach). However, this equivalence does not hold

in the case of violations of the normality assumption (such as binary markers).
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2.3.6 Conditional approach

In the conditional prediction approach, the group membership probabilities are calcu-

lated from the average of M samples from the MCMC routine as follows:

P̂condnew,g =
1

M

M∑
m=1

Pcondnew,g

(
b1,(m)
new , . . . , bG,(m)

new , ψ(m), θ(m)
)
, g = 1, . . . , G.

where

Pcondnew,g(b
1
new, . . . , bGnew, ψ, θ) :=

πg f
cond
g

(
ynew,1, . . . , ynew,R

∣∣bgnew; ψg
)∑G

g̃=1 πg̃ f
cond
g̃

(
ynew,1, . . . , ynew,R

∣∣bg̃new; ψg̃
)

where bnew is the values of the unobserved random effects vector for the new individual.

The advantage of conditional prediction is that it is based on the patient-specific

development of the markers over time. However, the error variance in the estimation

of individual random effects is not taken into account (Komárek et al. (2010)).

2.3.7 Random-effects approach

For the random effects approach, prediction is based on the patient-specific growth of

the longitudinal markers. The posterior probability is computed by using the distri-

bution of the individual random effects. The group membership probabilities for the

random effects prediction are calculated by averaging over the MCMC samples.

P̂ranefnew,g =
1

M

M∑
m=1

Pranefnew,g

(
b1,(m)
new , . . . , bG,(m)

new , ψ(m), θ(m)
)
, g = 1, . . . , G.

where

Pranefnew,g (b1
new, . . . , bGnew, ψ, θ) :=

πg f
ranef
g

(
bgnew; θg

)∑G
g̃=1 πg̃ f

ranef
g̃

(
bg̃new; θg̃

) .
The random effects approach uses the parameters of the random effects distribution.
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2.3.8 Classification rules

As described earlier in the modified discriminant analysis, linear mixed models are

used to estimate the parameters (means and covariance matrices), and these parameter

estimates are then used in LDA and QDA to classify a patient.

For classification, the group membership probabilities of the modified discriminant

analysis are calculated (see Section 2.2.4 for detail). Then, by using an optimal cutoff,

the patient is allocated to the group if the probability of belonging to that group is

larger than the optimal cutoff c.

Similarly, the group membership probabilities from the marginal, conditional and

random-effects approaches are estimated first. The classification of a new subject to

group g is based on a combination of the prior probabilities π1, . . . , πG (0 < πg <

1,
∑G

g=1 πg = 1), and then the use of Bayes’ rule to estimate the group membership

probabilities by:

Pg,new =
πg f̂g,new∑G
g̃=1 πg̃ f̂g̃,new

g = 1, . . . , G. (2.21)

Where f̂g,new is defined in Equations 2.15 and 2.18. Then, the patient is allocated to

the group if the probability of belonging to that group is larger than a determined cutoff

c (optimal cutoff). Typically, this optimal cutoff is selected by analysis of a receiver

operating characteristic (ROC) curve.

2.4 Assessment of classification accuracy

2.4.1 Validation Method

In order to assess the performance of a predictive model, an investigation of the model

accuracy is needed. There are two approaches used in this thesis: splitting the sample

and leave-one-out cross-validation.
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One option is that the sample is divided into two sample sets (e.g., 70:30 or 90:10).

One sample is used to develop the discriminant model (known as training sample) and

the second sample is used for assessing the accuracy of the discriminant model (known

as validation sample). Generally, the two datasets are generated by randomly splitting

the original data. In the case of discriminant analysis, I split the sample dataset into the

training set (and also in the validation set) based on the group prevalence. This means

that I randomly split each group into a training set and testing set, then I combine the

training sets from each group together to have one training set and the same procedure

is followed for the testing sets.

The idea of using a testing sample for validation is to examine how well the discrim-

inant model works on the sample of observations not used to generate the discriminant

model which helps to reduce potential over-fitting. Splitting the sample is repeated a

number of times (e.g., 100) to produce sets of training and validation samples. The

several accuracy measures are then averaged to obtain a representative accuracy mea-

sure, and ensure that accuracy measures are not overly influenced by the selection of

training/test sets. Hair et al. (1994) pointed out that the motivation for dividing the

total sample into two sets is to avoid an upward bias in the prediction accuracy of the

discriminant model. This upward bias occurs when the subjects used in building the

classification model are the same as those used in assessing is accuracy.

A second internal validation approach used to evaluate predictions methods inter-

nally is the leave-one-out cross-validation (LOOCV) method. In LOOCV, each ob-

servation is omitted as a testing sample, and the remaining n − 1 observations are a

training sample. In other words, n−1 observations are used to develop the discriminant

model, and the remaining observation is used to assess the model.

Sensitivity and specificity

Sensitivity and specificity are common indicators of the diagnostic ability of the test

which was introduced early by Yerushalmy (1947). Table 2.1 represents a 2× 2 contin-
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gency table for a dichotomous outcome that summarised the results in terms of true

and false positives and true and false negatives. There are four possible results. If

the true status is positive and a subject is classified as positive, this is called a true

positive (TP), whilst if they are classified as a negative, they are referred to as a false

negative (FN). If the true status is negative and a patient is classified as negative, they

are called a true negative (TN), while if they are classified as positive they are referred

to as false positives (FP) (Fawcett (2006)).

Table 2.1: Classification table: Predicted versus true outcome.

Predicted disease status
Positive (1) Negative (0) Total

True disease status
Positive (1) True positive (TP) False negative (FN) all true positive
Negative (0) False positive (FP) True Negative (TN) all true negative

Total all positive predicted all negative predicted Total sample size

Source: Kumar and Indrayan, Receiver operating characteristic (ROC) curve for med-
ical researchers, 2011; Fawcett, An introduction to ROC analysis, 2006.

In clinical applications where the aim is to predict disease, the true positive rate

(TPR) or sensitivity is the probability that someone who has a disease is classified as

having the disease, and the true negative rate (TNR) or specificity is the probability

that someone who does not have have the disease is classified as not having the dis-

ease. Therefore, sensitivity can be calculated as TP
TP+FN and specificity as TN

TN+FP .

Furthermore, positive predictive value (PPV) and negative predictive value (NPV) are

two additional measurements used to evaluate the discriminant ability of the model.

PPV is defined as the probability that the disease is present when classified as having

the disease, and NPV is the probability that the disease is not present when classified

as not having the disease. The estimation of these probabilities can be presented as

PPV = TP
TP+FP , and NPV = TN

FN+TN (Kumar and Indrayan (2011), Fawcett (2006)).

2.4.2 Receiver operating characteristic curve (ROC)

There is a large volume of published studies describing the role of the ROC curve and

AUC in medical decision making (Goodenough et al. (1974), Metz (1978); Zou (2002),
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Hajian-Tilaki (2013)). The receiver operating characteristic (ROC) curve (Lusted

(1971)), is a two-dimensional plot that presents the full picture of all possible points

of sensitivity (true positive rate) on the y-axis and (1 - specificity; false positive rate)

on the x-axis across a series of cut-off points. Sensitivity has an inverse relationship

with specificity, which means that sensitivity increases as specificity decreases across

different thresholds.

The ROC curve can be valuable in three instances: (i) obtaining the optimal cut-

off point for minimally misclassifying either diseased or healthy while also permitting

all possible cut-off points to be presented on the ROC subjects, (ii) evaluating the

discriminatory capability of a test to separate diseased from healthy subjects, and

(iii) comparing the ability of two or more tests in evaluating the same disease (Kumar

and Indrayan (2011)).

Figure 2.1: Finding best cut-off from the ROC curve

Source: Kumar and Indrayan, Receiver operating characteristic (ROC) curve for med-
ical researchers, 2011.

Figure 2.1 below depicts a ROC curve and demonstrates how to choose an optimal

cut-off point. The area under the ROC curve (AUC) is an effective measure of perfor-
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mance for classification and diagnostic rules. The classification is excellent when the

AUC is near to 1. In Figure 2.1, the line between points (0,0) and (1,1) divides the

square into two equal areas, and each one is equal to 0.5. ROC closer to the left-hand

side of the graph (i.e., close to the point (0,1)) indicates the excellent performance of

the model.

Optimal threshold point

The optimal threshold is the point that gives the best balance between sensitivity and

specificity values. I followed a criterion that uses the distance between the points (0,1)

and any other point on the ROC curve to select the optimal cut-off point (Kumar and

Indrayan (2011)). The distance can be calculated as:

d2 = [(1− Sen)2 + (1− Spe)2].

This distance can be calculated for each observed cut-off point, and the point that

provides minimum distance can be determined. This is shown in Figure 2.1.

There are other procedures available for choosing a threshold, for example, Freeman

and Moisen (2008) and Hughes et al. (2017) presented comparisons of different choices

for determining a threshold.

2.4.3 Area under curve AUC

The area under the receiver operating characteristic curve (AUC) is one of the common

quantities used to evaluate the performance of classification rules (Hanley and McNeil

(1982)). The AUC uses a range of thresholds points to summarise the ROC into a

single value. Hanley and McNeil (1982) pointed out that Wilcoxon test of the ranks

is equivalent to AUC. Also, the Gini coefficient is related to the AUC which is twice

the area between the ROC curve and the diagonal line, and it is therefore determined

as Gini = 2.AUC − 1 (Hand (2012), Hand and Till (2001)). Suppose that F0 and F1
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are the cumulative score distributions of the two classes, respectively. The AUC can

be measured by:

AUC =

∫
F0(t)dF1(t) =

∫
F1(t)dF0(t)

Figure 2.2: Comparison of three ROC curves with different areas.

Source: Kumar and Indrayan, Receiver operating characteristic (ROC) curve for med-
ical researchers, 2011.

The AUC value ranges from 0 to 1.0. A perfect classification is obtained when the

value of the AUC is equal to 1.0. Figure 2.2 shows three ROC curves and their different

AUC. The AUC of ROC curve A shows a better classification accuracy when compared

to ROC curves B and C. In general, the discrimination of a test is better when the

ROC curve is closer to the left-hand side (Kumar and Indrayan (2011)). Hand (2009)

pointed out that the AUC has a well-known weakness. When the ROC curves cross,

the AUC might provide misleading results.
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2.5 Summary

In this section, I have presented the approaches that are used in this thesis. Two

well-known approaches of discriminant analysis are linear discriminant analysis (LDA)

and quadratic discriminant analysis (QDA). LDA works well under the assumption

of multivariate normality of the explanatory variables with equal covariance matrices

across groups. QDA is recommended when the assumption of equal covariance is not

met and it tends to require larger sample sizes to cope with the larger number of

parameters that need to be estimates compared to LDA. Box’s M, Bartlett’s, Brown

and Forsythe’s tests are typically used in a discriminant analysis to test of equality of

variance-covariance matrices.

A limitation of classical discriminant analysis when longitudinal data is involved

is that they cannot handle an unbalanced design (i.e., where the longitudinal marker

is not measured from all patients at the same time points). In other words, applying

classical LDA or QDA to longitudinal data usually leads to the exclusion of patients.

Further, classical discriminant analysis is ignoring the correlation between repeated

measurements on the same patient.

To overcome the problems associated with the missing values, a modified discrimi-

nant analysis based on the mixed model is proposed by Tomasko et al. (1999). Addition-

ally, in the modified discriminant analysis the correlation between repeated measure-

ments on the same patient is taken into account. The maximum likelihood approach

(ML) is used to estimate the parameters of the mixed model.

A more flexible approach for longitudinal discriminant analysis (LoDA) has been

recently developed by Hughes et al. (2018b). This approach uses a multivariate gener-

alised linear mixed model with a normal mixture for the random-effects distribution,

and a Bayesian approach is used to estimate the model parameters.

In this chapter, two internal validation approaches: splitting the sample and leave-

one-out cross-validation to assess the model accuracy are described. Some statistical
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measurements, such as sensitivity, specificity, a probability of correct classification,

AUC, positive predictive value and negative predictive value are explained.

In the next chapter, the classical and modified discriminant analysis methodologies

will be applied to a clinical dataset. LoDA approaches will be applied to the clinical

dataset (PBC dataset) and simulation study in Chapters 4 and 5.
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Chapter 3

Analysis of clinical data:

Ophthalmic application

3.1 Introduction

In this chapter, I apply a range of discriminant analysis methods to the longitudinal

ophthalmology data described in Chapter 1 in order to predict treatment success or

treatment failure in patients with age-related macular degeneration (AMD). The chap-

ter starts with a description of the structure of the data that was used. This is followed

by an investigation of two groups of patients, those whose vision improved and those

whose vision did not improve. I will study how these groups can be identified early by

looking at their values of visual acuity (VA) and contrast sensitivity (CS), individu-

ally or together by using the univariate and multivariate classical linear and quadratic

discriminant analysis, respectively. A comparison of two different approaches to dis-

criminant analysis will be considered. The first, which I call a classical discriminant

analysis assumes a complete and balanced dataset and each visit is treated as a separate

variable. The second approach, which is called a modified discriminant analysis in this

thesis is based on the linear mixed model (Tomasko et al. (1999)).

The structure of this chapter is as follows. Section 3.2 describes the data used in
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this chapter. The classical discriminant analysis approach is addressed in Section 3.3,

whilst the modified approach is shown in Section 3.4. Finally, the chapter concludes

with a discussion of discriminant analysis approaches.

3.2 Description of data types

The Ophthalmic data is briefly described in Chapter 1. In this chapter, two discriminant

analysis approaches were applied to predict treatment success or treatment failure in

patients who had neovascular age-related macular degeneration (nAMD) at Paul’s Eye

Unit, Royal Liverpool University Hospital. Patients who had nAMD were treated with

verteporfin photodynamic therapy at baseline and were then followed for a year. The

clinical protocol was to examine the patient every three months, specifically at 3, 6,

9 and 12 months, and measurements were taken of CS and VA. These markers have

been described in Section 1.3.1 and are important to assess vision function. The data

consists of 1008 patients (with an average of 5.77 visits per patient) with a large number

of clinical measurements and a median age of 78 years at baseline.

The purpose of this chapter is to use only data gathered before 12 months to identify

patients whose vision will improve and those whose vision will not improve. For this

reason, only patients who were followed for at least 12 months were included in this

analysis. All patients must have had a baseline visit and had at least one follow-up

visit to be included in this analysis. Although patients were expected to be examined

every three months, roughly at 3, 6, 9 and 12 months, this routine was hard to achieve

in practice. For example, some patients had at least one appointment missing. These

are patients who missed some of their appointments, and they may be seen only twice

or three times.

Therefore, the ophthalmic sample consisted of 447 patients (complete cases, i.e., all

patients had complete markers profiles) who were followed up to a year. Before the

analysis was achieved, several issues had to be considered: (i) the effect of approx-

imating the actual time of the patient’s visit to the clinic, to the nearest scheduled
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visit, (ii) the benefit of using a modified discriminant method that uses mixed models

and the exact visit times, (iii) the effects of imputing missing data. To achieve this, I

considered four datasets for analysis.

• In the first dataset, an allocation process was followed so only the patients who

were seen at least five times were used, and I used the actual visiting time. This

dataset included 176 patients who had at least five visits during a year (all pa-

tients must have had a baseline visit and had at least four additional visits which

may or may not be at these indented time points at 3, 6, 9 and 12 months). That

means that the data is not balanced as each patient has a different number of

visits (at least five observations), hence it is described as an unbalanced dataset

(referred to as D1 in Figure 3.1). There were 176 such patients, and among them,

there were a total of 72 patients whose treatment was classified as a failure at 12

months and 104 patients whose treatment was classified as success at 12 months.

This unbalanced dataset (D1) is appropriate for the modified discriminant anal-

ysis based on the mixed model.

• As the time points of the visits of the 176 patients (D1) differ from each other,

the data cannot be analysed with the classical discriminant analysis, which re-

quires a balanced design (all patients must have five observations and identical

visit times). Therefore, in the second dataset, the time point was approximated,

all patients must have had a baseline visit and had four observations at a pre-

defined time point or near to 3, 6, 9 and 12 months (referred to as D2 in the

Figure 3.1). For example, if a patient was late to his/her second visit and had it

4-months instead of 3-months after baseline, his/her 4-months visit was treated

as a 3-months visit in this dataset. It is important to note that, the unbalanced

subset data (D1) and balanced subset data (D2) involved the same patients. The

classical discriminant analysis can be applied to this balanced dataset (D2).

• A total of 447 patients (who may have missed one or more of their appointment)
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was considered as the third dataset. This data might include a patient who visited

once over a year or who attended the clinic more than five times. The times at

which the visits occurred vary across patients. This dataset is referred to as D3 in

Figure 3.2 which shows that D3 includes all patients from D1 and also those who

missed one or more visits. There were a total of 264 patients whose treatment was

classified as success at 12 months and 183 patients whose treatment was classified

as the failure at 12 months. The modified discriminant analysis can be used for

the full dataset (D3).

• In the last dataset, the missing values in D3 were imputed using the last observa-

tion carried forward. For example, assume a patient who received the treatment

at month 0 and then came to his visits at time points 2, 5 and 12 months when

his CS and VA were measured and recorded. He should have had his visits at

3, 6, 9 and 12 months, so he came to his 3-month and 6-month visits too early,

at 2-month, and 5-month, and he missed his 9-month visit completely. To deal

with such a situation, I used the values at 2 and 5 months to populate the values

at 3 and 6, and I imputed the 9-months visit by carrying the last observation

from the last time point from month 5. This dataset was created in order to

facilitate the use of classical discriminant analysis and hence to see the effect of

time approximation and data imputation. The Figure 3.2 has referred to this

dataset as D4 dataset. The aim of applying this imputation method is that the

classical method will be able to predict a patient who was not seen as required

by the doctors (at 0, 3, 6, 9, 12 months). This dataset includes the same patients

as in the unbalanced dataset (D3) (i.e., 447 patients). This imputed dataset will

be analysed using the classical discriminant analysis approach.
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Figure 3.1: Flow chart illustrating the comparisons between an unbalanced dataset
(D1) and a balanced dataset (D2) and the time approximation.

3.3 Classical linear and quadratic discriminant analysis

The methodology of the classical linear and quadratic discriminant analysis is described

in Chapter 2, Section 2.2. Linear discriminant analysis assumes the equality of the

variance-covariance matrices between the two groups, while quadratic discriminant

analysis assumes that the variance-covariance matrices are unequal. These traditional

discriminant methods can be used for longitudinal data only if the data is complete and

balanced. In other words, they cannot handle missing values, and they cannot handle

if patients measurements were arranged at different time points. Each visit date is

considered as an independent variable and the correlation between repeated measure-

ments on the same patient is not taken into account in the traditional discriminant

methods. Tomasko et al. (1999) mentioned that linear/quadratic discriminant analysis

can be called classical linear/quadratic discriminant analysis when there is not a tool

to join the random subject effect into a covariance matrix model.
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Figure 3.2: Flow chart illustrating an unbalanced dataset (D3) and a balanced and
imputed dataset (D4).

This section will show a comparison of of classical LDA and classical QDA using

the Ophthalmology data. In particular, I explore if QDA brings a benefit in terms of

the area under the receiver operating characteristic (ROC) curve (AUC).

For this study, a balanced dataset on all markers of interest at specific visits was

used. This dataset (D2) is described above (Figure 3.1). There were a total of 72

patients whose treatment was classified as a failure at 12 months and 104 patients

whose treatment was classified as treatments success at 12 months. The two markers

chosen for this study were: CS and VA, and four time points (0, 3, 6 and 9 months) for

each patient were considered. These four time points for each of the two markers were

entered as variables in LDA/QDA. The last visit (at 12 months) was used to determine

who succeeds or fails the treatment (group membership). .

The aim of this application was to investigate the effect of CS and VA individually

and together on treatment success by using the univariate and multivariate discriminant

methods, respectively.

The longitudinal data were used in the linear and quadratic discriminant analysis

by treating each visit as a separate variable. In other words, LDA/QDA was performed

on each of the datasets where the visits to the particular time points were aligned.
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The procedures that were applied for the univariate and multivariate longitudinal

data are as follows:

(i) For each of the univariate discriminant models, there were four models involving CS.

The first discriminant model included CS at baseline and age. Then, the second model

used CS at baseline, CS at 3 months and age at baseline. The third model used CS

measurements at baseline, 3 and 6 months and age. In the final model, CS at 9 months

was added to the previous model (i.e., the final model contained age at baseline, CS at

0, 3, 6 and 9 months). The univariate discriminant equations are described in Chapter

2, Equation 2.2.

(ii) For each of the univariate discriminant models, there were four models involving

VA. The VA models were built similarly as the models involving CS, above. The first

model used the information at baseline of VA and age. Information of VA at 3 months

was added to the first model to build the second VA model. Next, VA at baseline, 3

and 6 months and age was used to build the third model. VA at 9 months was added

to the previous model to build the final VA model (i.e., this model included 5 variables,

VA at baseline, 3, 6 and 9 months and age at baseline).

(iii) For the multivariate discriminant model involving both VA and CS, I followed

the same process as in the univariate approach above. Four multivariate discriminant

models were applied to the balanced dataset (D2). The first model included CS, VA

and age at baseline. Then the second model was developed using the information at

baseline and 3 months of the two markers (CS and VA). The third model involved

information on CS and VA at baseline, 3 and 6 months. The final model contained the

data on CS and VA for up to 9 months. Equation 3.1 illustrates all the models for the

multivariate discriminant analysis.
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Model 1 = a1CS0i + a2V A0i + a3Agei

Model 2 = a1CS0i + a2V A0i + a3CS3i + a4V A3i + a5Agei

Model 3 = a1CS0i + a2V A0i + a3CS3i + a4V A3i + a5CS6i + a6V A6i + a7Agei

Model 4 = a1CS0i + a2V A0i + a3CS3i + a4V A3i + a5CS6i + a6V A6i + a7CS9i+

a8V A9i + a9Agei

(3.1)

Other covariates such as lesion type and gender were also included in the model.

However, including these covariates did not show improvement in classification accuracy

of the model (i.e., the overall levels of PCC, sensitivity, specificity and AUC do not

improve when these covariates are incorporated). Linear and quadratic discriminant

analyses are common discriminant methods which have been used to classify patients

into two or more groups. To decide whether the linear (LDA) or quadratic discriminant

analysis (QDA) should be applied in the ophthalmic dataset, a preliminary test called

Box’s M test is often used in the discriminant analysis to test for equality of covariance

matrices.

The standard test statistics of the M test is based on the assumption that the

within-group covariance matrices for two groups (denoted by Σ0 and Σ1) are equal,

where the null hypothesis is presented as:

H0 : Σ0 = Σ1 versus H1 : Σ0 6= Σ1.

The Box’s M tests were performed to each model using boxM function from the R

package heplots (Fox et al. (2018)). For each model, I calculated the proportion of

p-values of chi-square test and compared with a predefined significance level α = 0.05.

If the p-value is less than α, then the null hypothesis is rejected. When the p-value

of Box’s M test is less than 0.05 the two covariance matrices are considered to be

significantly different at the 0.05 level.
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Table 3.1 provides information of χ2 approximation, degrees of freedom and p-values.

Table 3.1: Statistics results of the Box’s test that uses the univariate markers separately
(CS, VA) and the multivariate markers (CS and VA together). Each model included
age at baseline.

Marker Time χ2 value d.f. p.value

CS

0 10.56 3.00 0.01
0, 3 19.74 6.00 < 0.01
0,3,6 54.07 10.00 < 0.01
0,3,6,9 90.43 15.00 < 0.01

VA

0 8.21 3.00 0.04
0,3 13.32 6.00 0.04
0,3,6 19.91 10.00 0.03
0,3,6,9 23.70 15.00 0.07

CS + VA

0 13.69 6.00 0.03
0,3 28.46 15.00 0.02
0,3,6 70.28 28.00 < 0.01
0,3,6,9 136.78 45.00 < 0.01

It can be seen for the CS models, the p-values obtained by the Box’s M test give strong

evidence to reject the null hypothesis at level 0.05. This means that the covariance

matrix of the patients who failed treatment are not be equal to the covariance matrix

of patients who succeed the treatment. A similar conclusion can be reached when

testing the equality of covariance matrices for the multivariate models the p-values

give evidence the covariance matrices are unequal. For the VA univariate model that

included four time points (at 0, 3, 6, 9 months on the Table 3.1), the p-value (0.07)

is not small enough to give evidence that the covariances are significantly different.

Similarly, the p-values of remaining models (p-values = 0.04, 0.04, 0.03) are close to

the significant level, although they are statistically significant.

As explained in Mardia et al. (1979), Box’s M test seems to work less well if the

number of variables is more than 5 (i.e., the Box’s M test is not sufficiently robust to

imbalances in group sizes, or departure from multivariate normality.) There are other

tests that can be used to check the homogeneity of variance including: Bartlett’s Test

and Levene’s Test (Brown and Forsythe (1974)). These tests have been described in

Chapter 2. The results obtained from the Levene’s tests (based on mean and median
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Table 3.2: Results of the Levene’s test that uses the univariate markers separately (CS,
VA) and the multivariate markers (CS and VA together). Each model included age at
baseline.

Marker Time d.f. Levene’s test (mean) Levene’s test (median)
(v1, v2) F value p.value F value p.value

CS

0 (1, 174) 6.34 0.01 6.17 0.01
0, 3 (1, 174) 1.07 0.30 1.05 0.31
0,3,6 (1, 174) 0.87 0.35 0.61 0.43
0,3,6,9 (1, 174) 0.001 0.99 0.001 0.99

VA

0 (1, 174) 0.03 0.95 0.001 0.97
0,3 (1, 174) 0.02 0.87 0.02 0.89
0,3,6 (1, 174) 1.49 0.22 1.47 0.23
0,3,6,9 (1, 174) 5.45 0.02 5.59 0.02

CS + VA

0 (1, 174) 0.30 0.58 0.31 0.58
0,3 (1, 174) 0.05 0.82 0.20 0.89
0,3,6 (1, 174) 1.74 0.20 1.69 0.19
0,3,6,9 (1, 174) 1.73 0.19 1.73 0.19

locations) can be seen in Table 3.2. The p-value of CS at baseline is 0.01, and of VA at

0,3,6,9 months is 0.02 in both tests. Based on these results, there is a significant differ-

ence between the two variance matrices at a significance level of 0.05. The remaining

results, as shown in Table 3.2, indicate that there is no evidence that the two variance

matrices differ between the groups.

In contrast to the results of Levene’s test, the results of Bartlett’s test (as sum-

marised in Table 3.3) show that there is evidence that the two variances matrices

differ. The Bartlett’s test assumes that the data comes from a normal distribution,

while Levene’s test allows for non-normal distributions. The Bartlett’s test assess the

variances only. If the variances are unequal while correlations are the same, this would

be a scenario where applying QDA may be more beneficial than using LDA.

According to these results, it is possible that applying QDA will give better results

than LDA, although there is some evidence for QDA in models with lower number

of discriminatory variables. A considerable amount of literature has been published

for deciding whether LDA will outperform QDA (see e.g., Huberty and Curry (1978),

McLachlan (2004), Meshbane and Morris (1995)). They have reported that if the
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Table 3.3: The test of equality of variances results of the Bartlett’s test that uses
the univariate markers separately (CS, VA) and the multivariate markers (CS and VA
together). Each model included the age at baseline.

Marker Time K-squared d.f. p.value

CS

0 10.44 1.00 <0.01
0,3 10.46 2.00 <0.01
0,3,6 10.97 3.00 <0.01
0,3,6,9 11.57 4.00 <0.01

VA

0 26.34 1.00 <0.01
0,3 72.71 2.00 <0.01
0,3,6 105.36 3.00 <0.01
0,3,6,9 132.22 4.00 <0.01

CS + VA

0 73.38 2.00 <0.01
0,3 208.19 4.00 <0.01
0,3,6 346.55 6.00 <0.01
0,3,6,9 493.92 8.00 <0.01

sample sizes of groups ng is smaller than p (number of predictors), then LDA is preferred

with ignoring heterogeneity of covariance matrices. While if the sample sizes of groups

are large compared to p and the covariance matrices are heterogeneous, then QDA is

suggested. There is very little guidance on how large sample sizes need to be (Huberty

and Olejnik (2006)).

Therefore, in this thesis both the LDA and QDA were used to build the univariate

and multivariate models. Each model (as described in Table 3.1) was analysed using

LDA and QDA to predict the patient’s status at 12 months, i.e., success of failure of

the treatment. In total, there are 12 models to predict patient’s status (i.e., whether

they benefit of using the treatment and improve their vision or do not improve their

vision). The classical discriminant function is basically determined based on the mean

and covariance estimates obtained from each dataset. The classical LDA and QDA

approaches were fitted using the lda and qda functions from the R package (version

3.4.3) MASS, and the prediction into the two treatment response groups was performed

using predict function from the R package (version 3.4.3) MASS (Venables and Ripley

(2002)).
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Table 3.4: Results of the linear and quadratic discriminant analyses that uses a univariate marker (CS and VA, separately) and multivariate
markers CS and VA together.

LDA QDA

Marker Prediction Time Cutoff Sensitivity Specificity PCC AUC PPV NPV Cutoff Sensitivity Specificity PCC AUC PPV NPV

CS

0 0.40 0.63 0.59 0.61 0.58 0.53 0.70 0.42 0.60 0.65 0.63 0.61 0.56 0.69
0, 3 0.39 0.69 0.64 0.66 0.62 0.58 0.75 0.38 0.69 0.67 0.68 0.66 0.61 0.76
0, 3, 6 0.42 0.65 0.77 0.72 0.69 0.68 0.75 0.34 0.76 0.74 0.75 0.76 0.68 0.82
0, 3 ,6, 9 0.39 0.69 0.74 0.72 0.73 0.66 0.77 0.32 0.75 0.76 0.76 0.77 0.70 0.82

VA

0 0.42 0.60 0.67 0.64 0.62 0.57 0.71 0.39 0.70 0.61 0.64 0.63 0.57 0.74
0, 3 0.40 0.67 0.69 0.68 0.68 0.62 0.75 0.38 0.68 0.66 0.67 0.69 0.60 0.75
0, 3, 6 0.42 0.78 0.80 0.79 0.83 0.74 0.84 0.39 0.78 0.78 0.78 0.82 0.72 0.84
0, 3, 6, 9 0.35 0.87 0.89 0.88 0.93 0.85 0.91 0.38 0.85 0.86 0.86 0.91 0.82 0.89

CS + VA

0 0.39 0.70 0.62 0.66 0.66 0.58 0.75 0.39 0.71 0.66 0.68 0.68 0.61 0.77
0, 3 0.37 0.74 0.67 0.70 0.71 0.63 0.79 0.33 0.74 0.68 0.71 0.71 0.63 0.79
0, 3, 6 0.42 0.77 0.82 0.79 0.82 0.75 0.83 0.29 0.83 0.75 0.78 0.82 0.71 0.86
0, 3, 6, 9 0.34 0.89 0.88 0.88 0.93 0.85 0.92 0.33 0.86 0.85 0.85 0.89 0.81 0.89
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The classification accuracy of the univariate and multivariate discriminant analysis

applied to the balanced dataset (D2) is provided in Table 3.4. The results were eval-

uated by splitting the data into 90% for training (i.e., used to derive the discriminant

function) and 10% for testing the model. Then this was repeated 100 times to get stable

results. The column labelled Model indicates the model type that has been used, and

the column called Prediction Time shows the prediction times used (response to the

treatment is known at time 12 months). Table 3.4 provides the following performance

metrics of the prediction: the sensitivity, specificity, probability of correct classification

(PCC), AUC, positive predictive value (PPV) and negative predictive value (NPV) of

the linear and quadratic approaches applied to the balanced data. The optimal cut-off

point, defined as the point that gives the best balance between sensitivity and speci-

ficity values, is used to get the best predictions. These performance metrics are the

averages of the 100 repeats.

Table 3.4 shows that using more longitudinal information (time prediction 0, 3, 6,

9 months) in the 12 models (the univariate models and multivariate model) gives the

best values of PCC and AUC. Secondly, the univariate models that involved VA give

better discriminant results compare with the univariate models that included CS. This

result is not surprising, according to the definition of the patient’s outcome (failure or

success the treatment) which is based on the values of visual acuity (VA) at 12 months,

which makes VA more informative at time points 6 and 9 months, since they are closer

to 12 months.

Moreover, using the multivariate discriminant analysis does not show improvement

in terms of the PCC and AUC after prediction time 6 months, at which point, the

results are similar to the univariate model that used VA. However, the multivariate

model improves the prediction at the early time points. In other words, the benefit of

using the multivariate discriminant analysis, in this application, is in helping to identify

early (using data from baseline and three months) the patients who will improve their

eye vision (i.e., those who will have improved vision at 12 months). Figure 3.5 shows the

ROC curves for the multivariate models using LDA and QDA and shows the improved
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Figure 3.3: ROC curves for the linear discriminant analysis (left panel), and for the
quadratic discriminant analysis(right panel) using contrast sensitivity.

performance of the classification tool with increased longitudinal information.

The quadratic discriminant model using CS data at 0, 3, 6 and 9 months shows

improvement in AUC (77%) compared to the CS linear discriminant model (73%)

(Table 3.4 and Figure 3.3). This result is consistent with the results of the box’s M test

and Bartlett’s test presented in the Table 3.1 and Table 3.3. On the other hand, the

discriminant results involving VA (Table 3.4) show that linear and quadratic functions

provided very similar results in AUC, despite the test for equality of covariances was

rejected for VA which suggest evidence of inequality of covariances and the suitability

of QDA over LDA (Figure 3.4).

Since the definition of treatment success is based on VA, including VA provides

better performance than if VA is not included. There are other examples in the liter-

ature where the longitudinal predictor is used (in combination with other biomarkers)

to predict a clinical outcome that is defined based on the predictor itself. For example,
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Figure 3.4: ROC curves for the linear discriminant analysis (left panel), and for the
quadratic discriminant analysis(right panel) using visual acuity.

Garćıa-Fiñana et al. (2019) used the level of diabetic retinopathy (categorical variable)

measured over time, within a discriminant model together with other risk factors (type

of diabetes, ethnicity, HbA1c, etc.) to predict patients who will develop sight threat-

ening diabetic retinopathy (STDR) within a year. STDR is defined when a certain

level of diabetic retinopathy is achieved. The idea is that changes in the variable, that

are less than the changes needed to define a group membership may be informative

about progression. Nevertheless, when comparing the models described in Table 3.4,

it is expected that models that make use of more recent data (e.g., data collected at

0, 3, 6 and 9 months to predict treatment success/failure at 12 months) show higher

predictive accuracy levels.

Hastie et al. (2009) mentioned that increasing the number of parameters can affect

the decision boundaries. The decision boundaries are functions of the parameters of

the estimated densities. The QDA requires more parameters to be estimated than

the LDA, which could be a reason why the LDA approach gives better or similar
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Figure 3.5: ROC curves for the multivariate models. ROC curves for the linear discrim-
inant analysis (left panel) and for the quadratic discriminant analysis (right panel).

classification for some of the models when compared to QDA. There is another reason

for LDA to have better performance in small sample sizes in that it might be expected

to have greater across-sample stability of results (Huberty and Curry (1978); Michaelis

(1973)). Huberty and Curry (1978) showed that both LDA and QDA performed with

similar classification results, with LDA most often being the best in nearly all of seven

situations from three sets of real data (equal and unequal covariance matrices and two

and three criterion groups). Interestingly, the LDA was recorded between the best

three classification approaches for 7 of the 22 datasets and QDA between three for four

datasets in the STATLOG project (Michie et al. (1994), Hastie et al. (2009)).

On the other hand, in our first model of the univariate case with two variables (CS

and age at baseline) used for prediction, the results show that LDA performs less well

than the QDA (i.e., the levels of sensitivity, specificity, PCC, PPV and AUC for the

LDA model are lower compared with the QDA model). In this case, three parameters

need to be estimated in the LDA model, and there are six parameters that need to be
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Figure 3.6: Comparison of AUC for linear and quadratic functions that used CS and
VA (separately and together), measured using different follow-ups, to predict treatment
success or treatment failure.

estimated in the QDA model. This is not a large difference in the number of parameters;

hence it is not surprising that QDA performs better than LDA.

To further visualise our comparisons of LDA and QDA, Figure 3.6 was constructed.

It shows the AUCs over time for the LDA and QDA models (univariate and multivari-

ate) using the balanced dataset D2. It can be seen that using both CS and VA in one

model (green lines in the Figure 3.6) improves the prediction at early time points.

The classical discriminant analysis (linear and quadratic) has limitations since the

data must be complete (i.e., cannot handle missing data) and balanced (patients must

all be examined at the same time points or their visits approximated to some fixed time

points). Also, they do not deal with the correlation between repeated measurements

on the same subject (Roy (2006)). One way to overcome the limitation is to model the

longitudinal responses in a suitable longitudinal model that accounts for the correlation

between repeated measurements on the same patient. This can be achieved through
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the use of linear mixed models (see Tomasko et al. (1999)). I name such an approach

to modified discriminant analysis and explore it in the next section.

3.4 Comparison of classical and modified discriminant anal-

ysis

In the previous section, both LDA and QDA performed with similar classification results

(as shown in Table 3.4), and the combined evidence of Tables 3.2 and 3.3 gave an unclear

picture about the appropriateness of assuming equal covariances. This section, focuses

on a comparison of the classical discriminant methods and a modified discriminant

approach. QDA is chosen in order to allow greater flexibility and to satisfy concerns

about the equality of covariances assumption. The ophthalmology dataset is used to

predict patients whose vision improve or do not improve (i.e., success or failure of

treatment).

The classical method requires a complete and balanced dataset to predict treatment

failure. The particular aim of this section is to examine whether using the exact visit

times, and modelling correlation between repeated measurements gives more accurate

predictions than simply using the classical approach with approximated times and

imputed data.

Hence the sample data consisted of 447 patients (see Section 3.2 for a detailed

description of the dataset). The comparison of this section can be summarised into two

main points:

• Comparison between classical discriminant analysis using the balanced dataset

(D2 in the the Figure 3.1), which approximated the time points to 0, 3, 6, 9

and 12 months, and a modified approach applied to the unbalanced dataset (D1)

which used the exact time points. In other words, I evaluated the effect of ap-

proximating the visit times of patients followed in the clinic.
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• The second comparison is shown in Figure 3.2, which compares the classical

discriminant analysis applied to the balanced and imputed data (D4) with the

modified discriminant analysis approach applied to the unbalanced data (D3)

(which used the exact time points). In other words, I evaluated whether imputing

missing data improves classification ability compared to simply using the observed

data.

This comparison between two approaches was evaluated using several measures: sensi-

tivity, specificity, PCC, AUC, PPV and NPV with each of these measures calculated

at the optimal cut off value (described in Chapter 2). Additionally, I divided the sam-

ple into 80% for training, and 20% for testing the predictions for new patients. Both

approaches (modified and classical QDA) were repeated 100 times to remove possible

biases form selected training or testing sets, and the overall average of the 100 repeats

was recorded.

3.4.1 Modified discriminant analysis

The modified discriminant analysis is a type of longitudinal discriminant analysis

(LoDA) that uses a patient’s longitudinal history to predict which group a patient

belongs to. The modified discriminant analysis was applied to the unbalanced datasets

(D3 and D1) to classify patients. The modified discriminant analysis approach consists

of two steps.

First step: multivariate linear mixed effects model (MLMM)

The first step is the multivariate linear mixed-effects model which was used to account

for the correlation between repeated observations of the same marker, and between

markers, on the same patient. Here I displayed the models and parameters estimations

for each diagnostic group (success or failure of the treatment). The MLMMs were ap-

plied to the unbalanced datasets (D1 in Figure 3.1 and D3 in Figure 3.2). The MLMMs

were fitted to the training dataset (80%) using the lme function from the R package
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nlme Pinheiro et al. (2014). Prediction of the testing dataset (20%) was performed

using the dMVN function from the mixAK Komárek and Komárková (2014). The Equa-

tion 3.2 shows the multivariate linear mixed model (MLMM) based on longitudinal

measurements of contrast sensitivity (CS) and visual acuity (VA).

 CSgij

V Agij

 =

 β0
g
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(3.2)

where g refers to the groups (g = 0, 1), i = 1, · · · , n, j = 1, · · · , ni. In Equation 3.2 tij

is the time in months in which marker was recorded (from baseline), and Age is the age

in years of the patient at baseline. The MLMM consisted of a four dimensional vector

of random effects (Equation 3.2), with a random intercept for each marker (b0ics, b0iva)

and also a random slope for each marker (b1ics, b1iva). Also, the MLMM included six

fixed effects (β0cs, β0va, β1cs, β1va, β2cs, β2va) which denote the fixed intercept, time

and age effects for each marker. The residual errors (εijcs, εijva) were assumed to be

independent and identically distributed following a Gaussian distribution.

The results of the longitudinal multivariate linear mixed model (MLMM) for the

unbalanced dataset D3 to predict treatment success or treatment failure are provided in

Table 3.5. For patients who had successful treatment there was no significant change in

CS and VA over time (P-value = 0.28 and 0.86 respectively). Older patients at baseline

generally had lower CS and VA scores (β0cs = 34.15, β0va = 71.52, β2cs = −0.14,

β2va = −0.31). The profiles of both CS and VA remained relatively constant during

the year of follow up in patients for whom the treatment was successful (see Figure 1.2

in Chapter 1). In addition, Table 3.5 shows that for patients whose treatment failed,

there was a significant decrease in both CS and VA over time (β1 = -0.38 and -2.859,

P-values < 0.001, respectively) suggesting a worsening condition. Age at entry did not

have a significant effect on VA measurements but in general older patients at baseline

had worse CS scores (β1 = -0.16 and P-value = 0.01).
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Table 3.5: Fixed effects parameters of the MLMM based on contrast sensitivity (CS)
and visual acuity (VA) for the prognostic groups (i.e., success and failure of treatment).

Fixed effect parameter for success of treatment n0 = 264

Markers Covariates Coefficient Standard error t-value 95%CI P-value

CS
intercept β0 34.15 3.13 10.90 28.01 40.29 < 0.001
slope (time) β1 0.04 0.04 1.08 -0.03 0.12 0.28
age (year) β2 -0.14 0.04 -3.48 -0.22 -0.06 < 0.001

VA
intercept β0 71.52 6.68 10.69 58.40 84.64 < 0.001
slope (time) β1 -0.01 0.08 -0.17 -0.18 0.15 0.86
age (year) β2 -0.31 0.08 -3.58 -0.48 -0.14 <0.001

Fixed effect parameter for failure of treatment n1 = 183

CS
intercept β0 33.04 5.17 6.38 22.89 43.19 <0.001
slope (time) β1 -0.38 0.071 -5.37 -0.52 -0.24 <0.001
age (year) β2 -0.16 0.06 -2.44 -0.29 -0.03 0.01

VA
intercept β0 54.60 8.99 6.07 36.95 72.25 <0.001
slope (time) β1 -2.86 0.12 -23.09 -3.10 -2.61 < 0.001
age (year) β2 -0.05 0.11 -0.48 -0.28 0.17 0.63

Second step: quadratic discriminant analysis

In the previous section, the MLMM was developed for each group from the training

dataset to describe the change of longitudinal markers (as the first step of the modified

discriminant analysis approach). The second part of the modified discriminant analysis

is to construct the quadratic discriminant analysis to predict the patient’s eye status at

12 months. Appendix A shows how to set the second step of the modified discriminant

analysis in R. In Section 2.2.2 the methodology of the quadratic discriminant analysis

(QDA) was described. The discriminant function was developed based on the mean

and covariance matrices estimates obtained from the MLMM.

For each comparison, sensitivity, specificity, PCC, PPV and NPV were computed

using the optimal cut-off value. The AUC was also calculated for each comparison.

Table 3.6 provides the results for classical discriminant analysis that used the bal-

anced data (D2) and the modified discriminant analysis that used the unbalanced data

(D1), while Table 3.7 displays the results for the unbalanced data (D3) using a mod-

ified discriminant analysis and the balanced and imputed data (D4) using a classical

discriminant analysis.

In describing the comparison results, I first addressed whether approximating the
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Table 3.6: Accuracy measures for the modified QDA that used the unbalanced dataset
(D1) and for the classical QDA that used the balanced data (D2). Note that both
dataset use the same patients and same measurements.

Modified quadratic discriminant analysis (D1, n = 176)

prediction time Cutoff Sensitivity Specificity PCC AUC PPV NPV

0 0.40 0.63 0.66 0.65 0.64 0.58 0.72
0, 3 0.34 0.75 0.73 0.74 0.74 0.67 0.81
0, 3, 6 0.37 0.82 0.77 0.79 0.83 0.73 0.86
0, 3, 6, 9 0.34 0.89 0.84 0.86 0.91 0.80 0.92

Classical quadratic discriminant analysis (D2, n = 176)

prediction time Cutoff Sensitivity Specificity PCC AUC PPV NPV

0 0.40 0.69 0.67 0.68 0.68 0.61 0.76
0, 3 0.34 0.73 0.70 0.71 0.72 0.64 0.79
0, 3, 6 0.33 0.79 0.77 0.78 0.81 0.72 0.84
0, 3, 6, 9 0.31 0.86 0.85 0.85 0.88 0.81 0.89

time point and applying the classical discriminant analysis improves in sensitivity, speci-

ficity and PCC of prediction (Table 3.6, Figure 3.7). The results show that the classi-

cal discriminant analysis has slightly better performance values: sensitivity, specificity,

PCC, and AUC at baseline compared with the modified discriminant analysis that

used unbalanced data (D1). Recall, in the unbalanced data (D1, n = 176) all patients

must have had a visit at baseline and at least four follow-up visit near to 3, 6, 9 and

12 months and in the balanced data (D2, n = 176) I approximated the four visits

measurements of the 176 patients (from D1) to 3, 6, 9 and 12 months. The classical

quadratic discriminant model at baseline involved CS, VA and age at baseline and re-

quired fewer parameters than the modified quadratic discriminant analysis based on

the MLMM (Equation 3.2), which can explain why classical QDA performed slightly

better here than the modified QDA. However, the results slightly change when models

involve more longitudinal information (more visit points 3, 6 and 9 months added);

the modified discriminant analysis has better classification accuracy than the classical

QDA in terms of AUC (91% and 88%, respectively).

When there is a small number of visits available (e.g., 1 or 2), then there is little

65



1 − Specificity

S
en

si
tiv

ity

0.0 0.5 1.0

0

0.5

1

1 − Specificity

0.0 0.5 1.0

0

0.5

1

Baseline
3 months
6 months
9 months

Figure 3.7: Receiver operating characteristic (ROC) curves of the classical discriminant
model using the balanced data (D2, left plot) and of the modified discriminant model
using the unbalanced data (D1, right plot) at four time points.

difference between approximating the visit times to the nearest 3 months scheduled

visit and using a more accurate mixed model (see Table 3.6). With a small amount of

data, more simple models are just as accurate. However, when more data is available

for each patient, the more accurate mixed models outperform the classical techniques.

Figure 3.7 shows the four ROC curves for the classical QDA (left plot) applied

to the balanced dataset (D2) and for the modified QDA (right plot) applied to the

unbalanced dataset (D1) at different time points.

Figure 3.8 shows the AUCs for the two models and suggests that approximating

the time points to have a balanced dataset does not seem to have much effect on the

prediction accuracy.

Next, I compared the results of the modified approach applied to the unbalanced

data (D3) and the classical approach applied to the balanced, imputed data (D4).

In this case, the classical approach offers similar classification results to the modified

approach at baseline prediction, with 64% of patients correctly classified (Table 3.7,
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Figure 3.8: Area under ROC curve (AUC) for the modified and the classical discrimi-
nant analysis approaches to predict failure of treatment over time.

Figure 3.9). The prediction accuracy shows slight improvements when adding more

longitudinal measurements (time points 3, 6 and 9 months) to the classical model,

with 20% of patients classified incorrectly (using data up to 9 months) compared with

prediction at baseline (36% of patients are misclassified).

The modified approach gives better predictions than the classical approach when the

model involved all follow-up measurements (up to 9 months), with 89% sensitivity (89%

of patients who did not improve their eye vision at 12 months were correctly classified),

and 89% specificity (89% of patients who improved their eye vision at 12 months were

correctly classified). The overall correct classification is 89% (PCC). The comparison

in AUC between the modified approach and the classical approach at prediction time

(0, 3, 6 and 9 months) shows that the modified approach performs better.

Figure 3.10 presents the AUC for the modified QDA and the classical QDA on

longitudinal data with unbalanced design and imputed design. The classification using

the modified discriminant analysis increases the AUC to approximately 93% compared
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Table 3.7: Accuracy values of the modified QDA model that used the unbalanced
dataset (D3) and of the classical QDA that used the balanced and imputed data (D4).

Modified quadratic discriminant analysis (D3, N = 447)

prediction time Cutoff Sensitivity Specificity PCC AUC PPV NPV

0 0.40 0.64 0.64 0.64 0.65 0.56 0.72
0, 3 0.33 0.73 0.72 0.73 0.75 0.65 0.80
0, 3, 6 0.39 0.79 0.81 0.80 0.85 0.75 0.84
0, 3, 6, 9 0.34 0.89 0.89 0.89 0.93 0.85 0.92

Classical quadratic discriminant analysis (D4, N = 447)

prediction time Cutoff Sensitivity Specificity PCC AUC PPV NPV

0 0.40 0.67 0.62 0.64 0.66 0.56 0.73
0, 3 0.32 0.70 0.68 0.69 0.74 0.61 0.77
0, 3, 6 0.37 0.74 0.80 0.77 0.82 0.73 0.81
0, 3, 6, 9 0.30 0.77 0.83 0.80 0.84 0.76 0.84

to AUC of the classical QDA of 84% when using the time points at 0, 3, 6 and 9 months.

Also, there is no substantial advantage to imputing missing CA and VA value as the

modified approach can handle missing values.
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Figure 3.9: Receiver operating characteristic (ROC) curves of the modified discriminant
analysis for the unbalanced dataset (D3, left plot) and of the classical discriminant
analysis for the balanced, imputed dataset (D4, right plot) at four time points.
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Figure 3.10: Area under ROC curve (AUC) for the modified and the classical ap-
proaches that applied to the unbalanced dataset (D3) and balanced, imputed dataset
(D4), respectively to predict failure of treatment over time.
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3.5 Simulation Study

In Section 3.4, I showed a linear mixed model to model the AMD longitudinal data

allowed more accurate classification than imputing missing observations and using a

classical discriminant analysis. I now use a simulation study to investigate whether

the amount of missing observations influences the performances of the classical and

modified discriminant analysis approaches.

This simulation study focuses on a comparison of the classical discriminant method

and a modified discriminant approach. The classical method requires a complete and

balanced dataset. In this simulation, I imputed the missing values using the last ob-

servation carried forward to predict treatment failure, while the modified discriminant

analysis can deal with missing values. The simulation is based on the AMD dataset

(which includes data collected over 12 months). I simulated a dataset consisting of two

continuous markers: contrast sensitivity and visual acuity. I created three simulated

scenarios. I assumed two groups for discrimination, Group 0 and Group 1. To be

consistent with the AMD data, I assume that each simulation consisted of 200 patients

(40% of patients) whose vision improved and 300 patients (60% of patients) whose

vision did not improve before a year. The original data was collected at four-time

points (ni = 4) at baseline, then after approximately three months, six months and

nine months. For each patient, the four times were generated as follows: the first time

visit was set to 0 and uniform distributions in the intervals (70, 110), (160, 200) and

(250, 290) days were used to generate the remaining visit times. The elements of mean

vectors and variance-covariance matrices considered for the two markers for each group

are presented in Table 3.8. At each time point I simulated values for each marker,

by first generating random effects from a multivariate normal distribution with mean

vector and covariance matrix given in Table 3.8. I also assumed that all patients had

the same number of visits.
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A total of 100 simulated datasets were generated using the MLMM described in

Equation 3.3. Three simulation scenarios studied the effect of missing data on clas-

sification accuracy. In the first scenario, 10% of the data are removed randomly by

using the sample function from R (version 3.4.3). For the second and third scenarios,

the percentage of missing data is increased to 20% and 40% respectively to investigate

which approaches (modified discriminant analysis or classical discriminant analysis) are

more robust to missing data. All patients must have a visit at baseline.

Table 3.8: Parameter estimates for each simulation scenario.

Group 0 Group 1

Contrast sensitivity
E(intercept:contrast sensitivity) 23.3 20.5
E(slope:contrast sensitivity) 0.0469 -0.379
SD(intercept:contrast sensitivity) 5.4 5.46
cor(intercept:contrast sensitivity), slope:contrast sensitivity) -0.327 0.159
cor(intercept:contrast sensitivity, intercept:visual acuity) 0.493 0.622
cor(intercept:contrast sensitivity, slope:visual acuity) 0.0831 0.231
SD(slope:contrast sensitivity) 0.359 0.565
cor(slope:contrast sensitivity, intercept:platelet) -0.338 0.184
cor(slope:contrast sensitivity,slope:platelet) 0.549 0.893
SD(contrast sensitivity:residual) 3.21 6.13
Visual acuity
E(intercept:visual acuity) 47.7 50.3
E(slope:visual acuity) -0.0188 -2.86
SD(intercept:visual acuity) 10.5 9.03
cor(intercept:visual acuity, slope:visual acuity) 0.345 0.241
SD(slope:visual acuity) 0.852 0.939
SD(visual acuity:residual) 4.31 7.68

The predictions were assessed using 90% of the data for training and 10% for test-

ing. The sensitivity, specificity, PCC, PPV and NPV were measured for each simulated

dataset using the optimal cutoff value. Also, the AUC was measured for each simula-

tion. These measurements were therefore used to compare the discriminant approaches,

based on the average of 100 simulated datasets. Both models (modified and classical
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QDA) were generated 100 times to minimise possible biases affecting the selected train-

ing or testing sets for each simulated dataset.

Table 3.9: Accuracy values of the modified QDA model that used the unbalanced
dataset and of the classical QDA that used the balanced and imputed data. (Simulation
study when 10% of data are missing).

Classical quadratic discriminant analysis

prediction time Cutoff Sensitivity Specificity PCC AUC PPV NPV

0 0.36 0.68 0.74 0.71 0.72 0.64 0.78
0, 3 0.36 0.76 0.80 0.78 0.81 0.72 0.83
0, 3, 6 0.37 0.80 0.84 0.83 0.86 0.78 0.87
0, 3, 6, 9 0.38 0.84 0.87 0.85 0.90 0.81 0.89

Modified quadratic discriminant analysis

prediction time Cutoff Sensitivity Specificity PCC AUC PPV NPV

0 0.36 0.63 0.71 0.68 0.72 0.59 0.74
0, 3 0.37 0.72 0.77 0.75 0.81 0.68 0.81
0, 3, 6 0.37 0.78 0.82 0.80 0.87 0.74 0.85
0, 3, 6, 9 0.37 0.82 0.85 0.84 0.91 0.79 0.88

Table 3.9 provides the results of the comparison between the classical discriminant

analysis and the modified discriminant analysis when 10% of the data are missing.

The classical QDA used the balanced and imputed data and the modified discriminant

analysis that used the unbalanced data. When 10% of the observations were missing

the performance of the two approaches was largely similar based on the AUC (see Table

3.9). As expected, the addition of more visits improved the classification performance

of each approach (Figure 3.11).

In the case where 20% of the data are missing, the results for the classical discrimi-

nant analysis are very similar to the modified discriminant analysis when models involve

more longitudinal measurements (data up to 9 months) with a slight improvement in

AUC for the modified approach (see Table 3.10). Figure 3.12 shows the four ROC

curves for the classical QDA (left plot) applied to the balanced and imputed dataset

and for the modified QDA (right plot) applied to the unbalanced dataset at different

time points where 20% of the data are missing.
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Figure 3.11: ROC curves of the modified discriminant analysis (right plot) and the
classical discriminant analysis (left plot) at four time points (10% of data missing).
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Figure 3.12: ROC curves of the modified discriminant analysis (right plot) and the
classical discriminant analysis (left plot) at four time points (20% of data are missing).

The modified approach offers better predictions than the classical approach when

40% of the data are missing (Table 3.11) and the model incorporated all follow-up

measurements (up to 9 months), with 80% of patients who did not improve their eye

vision at 12 months being correctly classified (80% sensitivity), and 84% of patients

who improved their eye vision at 12 months being correctly classified (84% specificity).

The overall correct classification is 82% (PCC) and the AUC is 0.89.

Figure 3.13 shows the four ROC curves for the classical approach and the modified
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Table 3.10: Accuracy values of the modified QDA model that used the unbalanced
dataset and of the classical QDA that used the balanced and imputed data. (Simulation
study when 20% of data are missing).

Classical quadratic discriminant analysis

prediction time Cutoff Sensitivity Specificity PCC AUC PPV NPV

0 0.36 0.67 0.74 0.71 0.72 0.65 0.78
0, 3 0.36 0.75 0.80 0.78 0.81 0.72 0.83
0, 3, 6 0.37 0.79 0.83 0.81 0.85 0.76 0.86
0, 3, 6, 9 0.38 0.82 0.85 0.84 0.88 0.79 0.88

Modified quadratic discriminant analysis

prediction time Cutoff Sensitivity Specificity PCC AUC PPV NPV

0 0.36 0.63 0.71 0.68 0.72 0.59 0.74
0, 3 0.36 0.72 0.77 0.75 0.81 0.68 0.81
0, 3, 6 0.36 0.78 0.81 0.80 0.87 0.73 0.84
0, 3, 6, 9 0.37 0.82 0.85 0.84 0.91 0.78 0.87

approach at four different time points when 40% of the data are missing.

Figure 3.14 presents the comparison of the AUC for the modified QDA and the

classical QDA on longitudinal data with 10% (left plot), 20% (middle plot) and 40%

(right plot) of the data missing. Figure 3.14 shows that the modified approach provides

better classification accuracy compared with the classical approach.
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Table 3.11: Accuracy values of the modified QDA model that used the unbalanced
dataset and of the classical QDA that used the balanced and imputed data. (Simulation
study when 40% of data are missing).

Classical quadratic discriminant analysis

prediction time Cutoff Sensitivity Specificity PCC AUC PPV NPV

0 0.36 0.67 0.74 0.71 0.72 0.64 0.78
0, 3 0.36 0.74 0.79 0.77 0.79 0.71 0.82
0, 3, 6 0.37 0.75 0.80 0.78 0.81 0.73 0.83
0, 3, 6, 9 0.40 0.77 0.81 0.80 0.82 0.74 0.84

Modified quadratic discriminant analysis

prediction time Cutoff Sensitivity Specificity PCC AUC PPV NPV

0 0.36 0.64 0.70 0.68 0.72 0.59 0.74
0, 3 0.37 0.72 0.77 0.75 0.81 0.68 0.81
0, 3, 6 0.37 0.76 0.80 0.79 0.85 0.72 0.84
0, 3, 6, 9 0.37 0.80 0.84 0.82 0.89 0.76 0.86
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Figure 3.13: ROC curves of the modified discriminant analysis (right plot) and the
classical discriminant analysis (left plot) at four time points (40% of data missing).
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Figure 3.14: Area under ROC curve (AUC) for the modified (dash lines) and the
classical (solid lines) approaches with 10%, 20% and 40% of data missing to predict
failure of treatment over time.
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3.6 Discussion

In this chapter, some of the approaches discussed in this thesis have been applied to the

ophthalmic datasets. The classical discriminant analysis has been applied to a complete

and balanced dataset, where each follow-up measurements is treated as a single variable.

The covariance matrices and means for the classical discriminant analysis are estimated

from the data.

The classical linear and quadratic discriminant analysis approaches have limita-

tions. First, classical discriminant analysis requires balanced data with the same time

points observed for all subjects, and it therefore cannot handle missing values. A sec-

ond limitation of applying the classical discriminant analysis is that the LDA assumes

the equality of the covariance matrices among two groups, while the QDA allows the

covariance matrices differ across groups, and the choice of which one to use is not always

clear. A third limitation is that estimation of the covariance matrices form a multivari-

ate longitudinal setting might be be problematic if a large number of parameters need

estimation (for example, when many time points are recorded, Tomasko et al. (1999)).

Furthermore, the modified discriminant analysis based on the mixed model has

been applied to unbalanced longitudinal datasets to predict the patient’s status at 12

months. This approach can deal with missing values and take the correlation between

repeated measurements on the same subject into account.

Comparisons between classical QDA and the modified QDA have been presented in

this chapter. If the sample size is small (in this case, 176 patients), the classical dis-

criminant analysis gives better classification results at baseline compared with modified

discriminant analysis. However, when the sample size is increased to 447 patients, the

classical and modified approaches give similar results of classification accuracy using

information just at baseline. However, when longitudinal data is used, the modified

discriminant analysis offers better classification accuracy. With a small amount of

data missing, more simple models (classical approaches) are just as accurate. However,

when more data are missing, the more accurate mixed models outperform the classical
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techniques. This suggests that the imputation of missing data is not as accurate as

modelling the longitudinal trend using a linear mixed model when substantial amounts

of observations are missing.

Using a mixed model that accounts for the longitudinal correlation within a dataset

allows more accurate classification than simply treating each appointment time as a

single variable. Moreover, the use of mixed models gives a more efficient use of the

data since patients with missing visits can be counted without the need for imputation.

The classification performance using the modified discriminant approach based on the

mixed model increases the classification accuracy compared to the classical discriminant

approach when using the ophthalmic dataset.
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Chapter 4

Comparison of prediction

approaches in longitudinal

discriminant analysis

4.1 Introduction

In Chapter 2, three ways of using a patient’s longitudinal data for the purposes of

classification were described. The first, called marginal prediction, focuses on the av-

erage change of longitudinal profiles of markers over time, the conditional prediction is

based on the growth over time of the patient-specific markers, while the random-effects

approach is based on the random-effects distribution of each patient. In this chapter, I

further explore the benefits of each approach using simulation studies. This work has

been published in (Hughes et al., 2018a). I contributed to the analysis of the data and

the simulations, interpretation of the results and helped to write of the manuscript.

This chapter is structured as follows. In Section 4.2, I compare of the three LoDA

approaches on the PBC dataset. Section 4.3 presents two different scenarios and com-

pares the three prediction approaches using simulation studies. Finally, this chapter

concludes with a discussion.
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4.2 Primary Biliary Cirrhosis Data

The work in this chapter uses data from a Mayo Primary Biliary Cirrhosis (PBC)

dataset which includes patients with PBC (Dickson et al. (1989), Murtaugh et al.

(1994)). Data on a large number of clinical, biochemical, serological and histological

parameters were recorded for each of 312 patients, who met eligibility criteria for the

randomised placebo controlled trial of the drug D-penicillamine, with a median of 6.3

years follow up. The Mayo PBC data has been used for longitudinal clustering of

subjects into a predefined number of groups by Komárek et al. (2013) in which they

used three markers (continuous logarithmic serum bilirubin, discrete platelet count and

binary blood vessel malformations). This dataset is available in Appendix D of Fleming

and Harrington (1991) and electronically at http://lib.stat.cmu.edu/datasets/pbcseq,

and it is also included within the mixAK package in R (R Core (2017)). This dataset is

used here to explore the three classification approaches for the multivariate longitudinal

discriminant analysis with mixed types of markers: continuous, binary and discrete.

In this chapter, I considered the data of 253 patients who were observed for at least

2.5 years, and whose five years status was known. This work aims to predict patients

who will not survive or required a liver transplant within five years. In total 202 of

253 patients were classified as known to survive without a transplant after five years

(referred as Group 0), while 51 patients died or required a liver transplant at some

time between 2.5 and five years (referred as Group 1). Four markers were used in this

application, namely, albumin and logarithmic serum bilirubin as continuous markers,

the platelet count as a discrete marker (Poisson variable) and a binary marker indicating

blood vessel malformations. Figure 4.6 shows the observed longitudinal profiles of the

markers.

For each approach and prognostic group, I fitted a multivariate generalised linear

mixed model (MGLMM) to the longitudinal data. The GLMM included a random

intercept and a random slope for each continuous and count marker, while a random

intercept and a fixed effect for time were fitted for a binary marker since it is difficult to
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estimate accurately random slopes for dichotomous outcomes with relatively few repeats

per individual, see Komárek and Komárková (2014). Here I used a multivariate linear

mixed model with one component for the random effects distribution (i.e., K = 1). The

general structure of the MGLMM is, therefore:

E(Yi,1,j |bi,1)g = bgi,1,1 + bgi,1,2 t
g
i,1,j , albumin

E(Yi,2,j |bi,2)g = bgi,2,1 + bgi,2,2 t
g
i,2,j , log(bilirubin)

log{E(Yi,3,j |bi,3)g} = bgi,3,1 + bgi,3,2 t
g
i,3,j , platelet count

logit{E(Yi,4,j |bi,4, α4)
g} = bgi,4 + αg4 t

g
i,4,j blood vessel malformations

(4.1)

where i = 1, . . . , Ng, Ng is number of individuals in group g, g takes the value either

0 or 1 (g = 0, 1), j = 1, · · · , ni,r, r refers to the marker r = 1, 2, 3, 4, where the

total number of markers is 4, ti,r,j is the follow-up time for each marker (which is

reported in months). The MGLMM model contains a seven-dimensional vector of

random effects (see Equation 4.1), where four of them are random effects intercepts,

one for each marker (bi,1,1, bi,2,1, bi,3,1, bi,4) and the rest of them (bi,1,2, bi,2,2, bi,3,2) are

slopes of the random effects for the first three markers. The vector of random effects

for ith patient for group g is bi = (b′i,1, . . . ,b
′
i,R)′, where b ∼ MVN

(
µg, Dg

)
follows

a multivariate normal distribution with a vector of mean µg and covariance matrix

Dg. Only blood vessel malformations (Yi,4,j) does not have a random effects slope.

All four longitudinal markers (Yi,1,j , Yi,2,j , Yi,3,j , Yi,4,j) are assumed to be independent

given the random effects. The MGLMM includes only one fixed effect, the slope α4

for binary marker (blood vessel malformations). The first two markers (albumin and

log(bilirubin)) which are assumed to follow the Gaussian distribution, have residual

errors (εi,1,j , εi,2,j). It is assumed that these errors are independent and follow normal

distributions with mean 0 and variances σ21 and σ22, respectively. Also, these errors

are assumed to be independent of the random effects bi. Section 2.3.4 in Chapter 2

describes the prior distribution of the mixture multivariate generalized linear mixed

model. Further details can be found in Komárek and Komárková (2013).

The parameters of the MGLMM model were estimated via Markov chain Monte
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Carlo (MCMC). For each MCMC, the results were based on 10,000 iterations of 1:10

thinned MCMC after a burn-in of 500 iterations.
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Figure 4.1: Trace plot of the MCMC chain of the model deviance D. Right Figure
refers to Group 1 and left Figure refers to Group 0.

Trace plots were used to assess the convergence of the MCMC procedure for each

parameter in the model. Figures 4.2, 4.3, 4.4 and 4.5 show these trace plots for models

fit to the PBC data and show good convergence of the MCMC procedure.

To evaluate the prediction results leave-one-out cross-validation was applied. The

MGLMMs were fitted using the GLMM_MCMC function whilst the LoDA was performed

using the GLMM_longitDA2 from the mixAK package (Komárek and Komárková, 2014)

in R (R Core (2017)). Accuracy measurements, mainly the sensitivity, specificity, prob-

ability of correct classification (PCC), positive predictive value (PPV) and negative

predictive value (NPV) were calculated for each prediction approach by using the op-

timal cut-off value. The the area under the ROC curve (AUC) was measured for each

the three prediction approaches for comparison purposes.

Results for the PBC data are shown in Table 4.1. The marginal approach gives the

best prediction results compared to the other two approaches with 81% overall of PCC

and the higher value of the AUC with 0.85.

Figure 4.7 shows ROCs for the three LoDA approaches. The ROC curve of the

marginal approach is superior in this case. Furthermore, the random effects approach
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Figure 4.2: Trace plot of the MCMC chain of Group 0 of the model means µ.

also works well in terms of PCC and AUC, with values of 77% and 81% respectively

while the conditional approach does not perform well, with 34% of patients classified

incorrectly.

The overall mean profiles for three of the markers (albumin, log(bilirubin) and

blood vessel malformation) show differences between the two groups (see Figure 4.6).

In addition, the markers show variability between the two groups. These two aspects

provide a clear explanation of the marginal and the random effects approach work well,

since the marginal approach focuses on the average change of the mean of the markers

over time, whilst the random effects prediction approach focuses on the patient-specific

changes of markers in each group.
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Figure 4.3: Trace plot of the MCMC chain of Group 1 of the model means µ.

A key feature of the random effects prediction approach is that it requires good

estimates of the patients’ random effects. An increasing number of visits per patient is

expected to result in better estimates of the random effects for each individual. This

point is further investigated using the full PBC dataset. In the previous application to

the PBC data, the patients were followed up to 2.5 years with an average of approxi-

mately four visits per patient, while an average of 7.03 visits per patient was observed

with the full PBC dataset.

I investigated the prediction of patients who will not survive or need a liver trans-

plant within the five years using the full PBC dataset. As previously, the 253 patients

were divided into two groups: 202 patients were known to survive without a transplant
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Figure 4.4: Trace plot of the MCMC chain of Group 0 of the model standard deviations
derived from the covariance matrices D.

after five years (referred as Group 0) and 51 patients were known not to survive or

to need the transplant at some time between 2.5 and 5 years (referred as Group 1).

The same markers that have been used in the previous analysis were investigated for

this analysis: continuous albumin and logarithmic serum bilirubin, discrete platelet

count and the dichotomous indication of blood vessel malformations. Equation 4.1 de-

scribes the MGLMM fitted for each prognostic group separately. Table 4.2 summaries

the accuracy achieved by each of the three approaches when applied to the full PBC

dataset.

The random effects approach shows the best predictions in terms of all measure-
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Figure 4.5: Trace plot of the MCMC chain of Group 1 of the model standard deviations
derived from the covariance matrices D.

ments. For example, 87% overall of patients correctly classified by the random effect

prediction approach and gives the highest values of the AUC with 0.94. While the

marginal and conditional approaches still are able to predict well in terms of the PCC

with 83% and 70% of patients correctly identified respectively. This is not surprising

since Komárek et al. (2010) shows in their paper that the random effects approach

outperformed the marginal and the conditional approaches when applied to the Dutch

Multicenter Primary Biliary Cirrhosis (PBC) data (similar variables were measured,

but the cohorts were different) where the average number of visits per patient was 13

visits.
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Figure 4.6: Longitudinal profiles of albumin (mg/dl), log(bilirubin) (log(mg/dl)),
platelet counts and blood vessel malform (spiders) for patients who were known to
be alive at 5 years (Group 0, solid lines) and who died between 2.5 and 5 years (Group
1, dashed lines). The thick lines show fitted mean of patients over time, calculated
using loess.

The ROC curves of the three approaches are plotted in Figure 4.8 which shows the

superiority of the random effects approach compared to the marginal and the condi-

tional approaches.

4.3 Simulation Study

In recent years, there has been an increasing amount of literature on the use of pa-

tients’ longitudinal data for prediction purposes. Three prediction approaches namely
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Table 4.1: Prediction accuracy using leave-one-out cross validation for the random-
effects, marginal and conditional approaches. PBC data collected during the first 2.5
years were used for the modelling and prediction. The average number of visits per
patient was cohort 3.53, in this 2.5 years period.

Random Marginal Conditional

Cutoff 0.98 0.21 0.12
Sensitivity 0.75 0.78 0.61
Specificity 0.78 0.81 0.67

PCC 0.77 0.81 0.66
AUC 0.81 0.85 0.63
PPV 0.46 0.51 0.32
NPV 0.92 0.94 0.94

Table 4.2: Prediction accuracy using leave-one-out cross validation based on the
random-effects, marginal and conditional approaches. The average number of visits
per patient was 7.03 visits in the full PBC dataset.

Random Marginal Conditional

Cutoff 0.24 0.32 0.19
Sensitivity 0.88 0.78 0.75
Specificity 0.86 0.84 0.69

PCC 0.87 0.83 0.70
AUC 0.94 0.86 0.72
PPV 0.62 0.55 0.38
NPV 0.97 0.94 0.92

marginal, conditional and random-effects were first provided by Morrell et al. (2007)

who compared these approaches based on some statistical measures. They focused on

lead-time (time before patients were identified to the cancer group correctly) and the

sensitivity (proportion of patients correctly identified to the cancer group) to select the

best approach. With respect to these measures, the marginal approach gave the best

results, while in the case of the overall correct classification (proportion of total patients

that were correctly identified regardless of whether they were cancer or control cases)

and the specificity (proportion of patients correctly identified to the healthy group),

the random-effects approach showed the highest accuracy. A similar conclusion can be

found in Morrell et al. (2011).
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Figure 4.7: Receiver Operating Characteristic curves of the dynamic LoDA using the
random effects (solid), marginal (dotted) and conditional (dot-dashed) prediction ap-
proaches. PBC data are collected during the first 2.5 years data are used for the
modelling and prediction.

Komárek et al. (2010) also compared these three approaches using the PBC data

and they showed the random-effects prediction was superior to other approaches. In

addition, Komarek et al. (2009) pointed out that the random-effects prediction ap-

proach is the most promising approach to predict whether the patient will benefit

from the treatment as early as possible when compared with the marginal and con-

ditional approaches. A further investigation was conducted by Hughes et al. (2018b)

who compared the three approaches to identify patients with epilepsy who will not

achieve remission of seizures within five years, and they showed that the marginal and

conditional approaches gave similar results, while the random-effects worked less well.

Since the PBC data analysis in Section 4.2 indicated that the predictions of the

marginal and random effects provided the best classification accuracy, a simulation

study was conducted to investigate further which prediction approaches give the best

prediction accuracy based on different types of data. I created two simulated scenarios.

For each scenario, data were simulated based on the PBC dataset (i.e., it includes
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Figure 4.8: Receiver Operating Characteristic curves of the dynamic LoDA using the
random effects (solid), marginal (dotted) and conditional (dot-dashed) prediction meth-
ods for the whole PBC data with average of 7.03 visits per patient.

data collected during the first 2.5 years). Each simulation consisted of 200 patients

who survived after five years without requiring a liver transplant and 50 patients who

did not survive or who needed the transplant at some time between 2.5 and 5 years.

Following the simulation set up of Komárek et al. (2013), the observed process was

sampled at four-time points: at baseline, then after approximately six months, one

year and two years to mimic the patient’s visits in the PBC dataset (ni = 4). For each

patient, the four visit times were generated as follows: the first visit time was set to

0 and uniform distributions in the intervals (170, 200), (350, 390) and (710, 770) days

were used to generate the remaining visit times.

For the purposes of this simulation study, data were supposed to be balanced (i.e.,

no missing values, as I supposed all patients had the same number of longitudinal

data). A total of 100 simulated datasets were generated using the MGLMMs described

in Equations 4.1 where the number of mixture components was one (K = 1). The data

were generated for each the four markers namely albumin, bilirubin, platelet count

and blood vessel malform at each the four-time points. For each group, the MGLMM
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Table 4.3: Parameter estimates for the PBC data and the modifications used for each
simulation scenario. Blank entries occur when the parameter was not used in Scenario 2.

Group 0 Group 1
PBC Data Scenario 1 Scenario 2 PBC Data Scenario 1 Scenario 2

Albumin
E[Albumin:Intercept] 3.69 3.69 3.00 3.39 3.39 3.00
E[Albumin:slope] -6.83×10−3 -6.83×10−3 0.00 -1.44×10−2 -1.44×10−2 0.00
SD[Albumin:Intercept] 2.73×10−1 2.64×10−1 6.50×10−2 2.64×10−1 2.64×10−1 6.50×10−2

Corr[Albumin:Intercept,Albumin:slope] -8.60×10−2 -6.46×10−2 -6.46×10−2 -6.46×10−2 -6.46×10−2 -6.46×10−2

Corr[Albumin:Intercept,log(Bilirubin):Intercept] -2.48×10−1 -1.97×10−1 -1.97×10−1 -1.97×10−1 -1.97×10−1 -1.97×10−1

Corr[Albumin:Intercept,log(Bilirubin):slope] -1.10×10−1 2.11×10−1 2.11×10−1 2.11×10−1 2.11×10−1 2.11×10−1

Corr[Albumin:Intercept,Platelet:Intercept] 1.82×10−1 1.91×10−1 1.91×10−1 1.91×10−1

Corr[Albumin:Intercept,Platelet:slope] 5.72×10−2 1.09×10−1 1.09×10−1 1.09×10−1

Corr[Albumin:Intercept,Blood vessel malformation:Intercept] -2.27×10−1 -3.48×10−1 -3.48×10−1 -3.48×10−1

SD[Albumin:slope] 4.30×10−3 7.76×10−3 7.76×10−3 7.76×10−3 7.76×10−3 7.76×10−3

Corr[Albumin:slope,log(Bilirubin):Intercept] -2.91×10−1 1.57×10−3 1.57×10−3 1.57×10−3 1.57×10−3 1.57×10−3

Corr[Albumin:slope,log(Bilirubin):slope] -6.50×10−1 -2.33×10−1 -2.33×10−1 -2.33×10−1 -2.33×10−1 -2.33×10−1

Corr[Albumin:slope,Platelet:Intercept] 8.89×10−2 -2.57×10−1 -2.57×10−1 -2.57×10−1

Corr[Albumin:slope,log(Bilirubin):slope] 2.96×10−1 -2.60×10−1 -2.60×10−1 -2.60×10−1

Corr[Albumin:slope,Blood vessel malformation:Intercept] -2.93×10−1 2.27×10−1 2.27×10−1 2.27×10−1

SD[Albumin:residual] 3.18×10−1 3.18×10−1 3.18×10−1 3.14×10−1 3.14×10−1 1.59×10−1

log(Bilirubin)
E[log(Bilirubin):Intercept] 2.13×10−2 2.13×10−2 1.00 1.23 1.23 1.00
E[log(Bilirubin):slope] 9.94×10−3 9.94×10−3 0.00 2.38×10−2 2.38×10−2 0.00
SD[log(Bilirubin):Intercept] 6.88×10−1 8.45×10−1 1.12×10−2 8.45×10−1 8.45×10−1 1.12×10−2

Corr[log(Bilirubin):Intercept,log(Bilirubin):slope] 2.32×10−1 -1.75×10−1 -1.75×10−1 -1.75×10−1 -1.75×10−1 -1.75×10−1

Corr[log(Bilirubin):Intercept,Platelet:Intercept] -1.66×10−1 2.47×10−1 2.47×10−1 2.47×10−1

Corr[log(Bilirubin):Intercept,Platelet:slope] -2.04×10−1 -1.87×10−1 -1.87×10−1 -1.87×10−1

Corr[log(Bilirubin):Intercept,Blood vessel malformation:Intercept] 3.42×10−1 2.70×10−1 2.70×10−1 2.70×10−1

SD[log(Bilirubin):slope] 1.12×10−2 1.49×10−2 1.49×10−2 1.49×10−2 1.49×10−2 1.49×10−2

Corr[log(Bilirubin):slope,Platelet:Intercept] 1.44×10−2 -1.69×10−1 -1.69×10−1 -1.69×10−1

Corr[log(Bilirubin):slope,Platelet:slope] -2.40×10−1 1.25×10−1 1.25×10−1 1.25×10−1

Corr[log(Bilirubin):slope,Blood vessel malformation:Intercept] 3.05×10−1 8.13×10−3 8.13×10−3 8.13×10−3

SD[log(Bilirubin):residual] 3.38×10−1 3.38×10−1 3.38×10−1 3.96×10−1 3.96×10−1 1.69×10−1

Platelet Count
E[Platelet:Intercept] 5.54 5.54 5.46 5.46
E[Platelet:slope] -4.29×10−3 -4.29×10−3 -1.14×10−2 -1.14×10−2

SD[Platelet:Intercept] 3.73×10−1 3.45×10−1 3.45×10−1 3.45×10−1

Corr[Platelet:Intercept,Platelet:slope] -4.64×10−2 6.14×10−2 6.14×10−2 6.14×10−2

Corr[Platelet:Intercept,Blood vessel malformation:Intercept] -7.41×10−2 -2.48×10−1 -2.48×10−1 -2.48×10−1

SD[Platelet:slope] 5.66×10−3 1.51×10−2 1.51×10−2 1.51×10−2

Corr[Platelet:slope,Blood vessel malformation:Intercept] -1.68×10−1 -8.03×10−2 -8.03×10−2 -8.03×10−2

Blood Vessel Malformations
E[Blood vessel malformation:Intercept] -2.54 -2.54 -6.81×10−1 -6.81×10−1

Blood vessel malformation:slope 1.46×10−2 1.46×10−2 4.81×10−2 4.81×10−2

SD[Blood vessel malformation:Intercept] 3.00 1.88 1.88 1.88

was based on 10,000 iterations of 1:10 thinned MCMC and burn-in of 500 iterations

were considered. The predictions were assessed using the leave-one-out cross-validation

approach. The sensitivity, specificity, PCC, PPV and NPV were measured for each

simulated dataset using the optimal cutoff value. Also, the AUC was also measured for

each simulation. These measurements were therefore used to compare the prediction

approaches, based on the average of 100 simulated datasets. Table 4.3 presents the

values of four markers that were used to simulate the two scenarios. My aim is to

compare the three discriminant prediction approaches in these two different simulated

scenarios.
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4.3.1 Scenario 1

For this scenario, the random effects parameters and fixed effects parameters remained

as the values of the PBC data, while the variance-covariance matrix of the random

effects (D) was considered to be the same in each group. In this situation, where the

main differences between the two groups were in the mean profiles, I would expect

that the marginal approach would give the best results. Figure 4.9 shows the observed

longitudinal profiles of the markers for the scenario 1. The structure of the MGLMM

for the scenario 1 is presented in Equation 4.1.

I simulated a dataset for scenario 1 consisting of four markers: albumin and bilirubin

as continuous markers, platelet count as a discrete marker (Poisson) and blood vessel

malformation as a binary marker. I assumed two groups for discrimination, 0 and 1.

For Group 0, I considered 200 patients who survived after five years without requiring

a liver transplant and 50 patients who did not survive or who needed the transplant at

some time between 2.5 and 5 years. For each patient, the four visit times were generated

as follows: the first visit time was set to 0 and uniform distributions in the intervals

(170, 200), (350, 390) and (710, 770) days were used to generate the remaining visit

times. The elements of mean vectors and variance-covariance matrices of the random

effects considered for the four markers for each group are presented in the Table 4.3. At

each time point I simulated values for each marker, by first generating random effects

from a multivariate normal distribution with mean vector and covariance matrix given

in Table 4.3 and then assuming a generalised linear mixed model with fixed effects

parameters shown in Table 4.3. The R-code used for these simulations is given in

Appendix B.

As can be seen in Table 4.4, the estimates for Scenario 1 (which was inspired by

PBC data) are generally well-behaved based on the corresponding form bias and mean

square error (MSE). The column labelled ‘Posterior Mean’ gives the average values

for the parameters estimates over the 100 simulations with the 95% highest posterior

density credible intervals (HPD). Table 4.4 reports poor coverage values of the random

slope variances for the albumin and log(bilirubin) markers in both groups. These poor
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Figure 4.9: Simulation study Scenario 1: Longitudinal profiles of albumin, bilirubin,
platelet count and blood vessel malform (spiders) for patients who were known to be
alive at 5 years (Group 0, solid lines) and who died between 2.5 and 5 years (Group 1,
dashed lines). The thick lines show fitted mean of patients over time, estimated using
loess.

estimates for the two continuous markers might be due to the fact that the residual

errors were larger than the true random slope variances (see Table 4.3) causing the

incorrect estimate.
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Table 4.4: Simulation study Scenario 1: Posterior Means, highly probable density (HPD) intervals, bias, standard deviation (SD), mean
square error (MSE) and coverage for the fixed and random effects. These measurements were the average of 100 simulations.

Group 0 Group 1
Posterior Mean 95% HPD Interval SD Bias MSE Coverage Posterior Mean 95% HPD Interval SD Bias MSE Coverage

Albumin
E[Albumin:Intercept] 3.69 (3.64,3.74) 4.03×10−3 4.22×10−3 6.35×10−4 0.93 3.39 (3.29,3.49) 4.02×10−3 -3.19×10−3 2.08×10−3 0.98
E[Albumin:slope] -7.03×10−3 (-9.35,-4.68)×10−3 3.47×10−4 -2.02×10−4 2.15×10−6 0.88 -1.42×10−2 (-1.91,-0.93)×10−2 2.76×10−4 2.65×10−4 6.85×10−6 0.94
SD[Albumin:Intercept] 2.63×10−1 (2.22,3.06)×10−1 1.81×10−3 -6.12×10−4 4.10×10−4 0.98 2.58×10−1 (1.71,3.46)×10−1 3.80×10−3 -5.75×10−3 2.77×10−3 0.89
Corr[Albumin:Intercept,Albumin:slope] 2.09×10−2 (-5.25,5.89)×10−1 2.45×10−2 8.55×10−2 2.28×10−2 1.00 3.96×10−2 (-6.24,7.09)×10−1 1.43×10−2 1.04×10−1 3.08×10−2 0.99
Corr[Albumin:Intercept,log(Bilirubin):Intercept] -1.75×10−1 (-3.49,0.02)×10−1 6.79×10−3 2.21×10−2 6.34×10−3 0.99 -1.61×10−1 (-4.97,1.81)×10−1 1.14×10−2 3.56×10−2 2.87×10−2 0.97
Corr[Albumin:Intercept,log(Bilirubin):slope] 1.73×10−1 (-1.67,5.06)×10−1 1.35×10−2 -3.87×10−2 2.44×10−2 0.96 5.84×10−2 (-5.94,6.94)×10−1 1.38×10−2 -1.53×10−1 5.29×10−2 0.98
Corr[Albumin:Intercept,Platelet:Intercept] 1.52×10−1 (-0.24,3.27)×10−1 8.84×10−3 -3.88×10−2 9.83×10−3 0.93 1.12×10−1 (-2.25,4.44)×10−1 1.12×10−2 -7.95×10−2 3.13×10−2 0.94
Corr[Albumin:Intercept,Platelet:slope] 6.59×10−2 (-1.14,2.46)×10−1 8.38×10−3 -4.35×10−2 9.15×10−3 0.93 4.21×10−2 (-3.00,3.86)×10−1 1.17×10−2 -6.73×10−2 3.86×10−2 0.91
Corr[Albumin:Intercept,Blood Vessel Malformations:Intercept] -3.01×10−1 (-5.22,-0.76)×10−1 9.16×10−3 4.69×10−2 1.36×10−2 0.95 -2.58×10−1 (-6.39,1.37)×10−1 1.31×10−2 9.01×10−2 4.24×10−2 0.96
SD[Albumin:slope] 3.47×10−3 (0.65,7.13)×10−3 6.27×10−4 -4.30×10−3 2.53×10−5 0.45 3.98×10−3 (0.36,9.15)×10−3 3.65×10−4 -3.79×10−3 2.46×10−5 0.57
Corr[Albumin:slope,log(Bilirubin):Intercept] -2.06×10−2 (-5.58,5.18)×10−1 2.22×10−2 -2.22×10−2 1.29×10−2 0.99 -1.31×10−2 (-6.54,6.34)×10−1 1.23×10−2 -1.47×10−2 1.74×10−2 0.99
Corr[Albumin:slope,log(Bilirubin):slope] -2.65×10−2 (-6.18,5.74)×10−1 2.55×10−2 2.06×10−1 6.09×10−2 0.99 -1.03×10−2 (-7.62,7.46)×10−1 1.14×10−2 2.23×10−1 5.82×10−2 1.00
Corr[Albumin:slope,Platelet:Intercept] -1.69×10−1 (-6.92,3.87)×10−1 3.54×10−2 8.78×10−2 2.56×10−2 1.00 -5.97×10−2 (-6.86,5.84)×10−1 1.30×10−2 1.97×10−1 5.69×10−2 0.99
Corr[Albumin:slope,Platelet:slope] -1.54×10−1 (-6.54,3.73)×10−1 3.06×10−2 1.07×10−1 3.29×10−2 0.99 -8.70×10−2 (-6.94,5.46)×10−1 1.39×10−2 1.73×10−1 5.08×10−2 0.98
Corr[Albumin:slope,Blood Vessel Malformations:Intercept] 1.01×10−1 (-4.86,6.62)×10−1 3.09×10−2 -1.26×10−1 3.14×10−2 0.98 2.11×10−2 (-6.62,6.96)×10−1 1.49×10−2 -2.06×10−1 6.47×10−2 0.99
log(Bilirubin)
E[log(Bilirubin):Intercept] 1.67×10−2 (-1.06,1.39)×10−1 4.04×10−3 -4.57×10−3 3.71×10−3 0.96 1.24 (0.99,1.49) 8.51×10−3 9.60×10−3 1.62×10−2 0.96
E[log(Bilirubin):slope] 1.00×10−2 (0.69,1.32)×10−2 1.27×10−4 8.22×10−5 3.41×10−6 0.91 2.31×10−2 (1.65,2.99)×10−2 3.44×10−4 -6.91×10−4 1.33×10−5 0.94
SD[log(Bilirubin):Intercept] 8.42×10−1 (7.52,9.35)×10−1 3.03×10−3 -3.32×10−3 2.37×10−3 0.97 8.38×10−1 (0.66,1.03) 6.08×10−3 -7.28×10−3 7.98×10−3 0.96
Corr[log(Bilirubin):Intercept,log(Bilirubin):slope] -1.33×10−1 (-4.25,1.78)×10−1 1.11×10−2 4.12×10−2 2.26×10−2 0.93 -4.34×10−2 (-6.45,5.95)×10−1 1.31×10−2 1.31×10−1 4.00×10−2 0.99
Corr[log(Bilirubin):Intercept,Platelet:Intercept] 2.35×10−1 (0.97,3.70)×10−1 4.56×10−3 -1.25×10−2 4.23×10−3 0.98 2.12×10−1 (-0.60,4.78)×10−1 8.66×10−3 -3.48×10−2 1.67×10−2 0.96
Corr[log(Bilirubin):Intercept,Platelet:slope] -1.86×10−1 (-3.28,-0.42)×10−1 4.66×10−3 9.56×10−4 5.38×10−3 0.93 -1.49×10−1 (-4.27,1.34)×10−1 9.22×10−3 3.77×10−2 2.06×10−2 0.94
Corr[log(Bilirubin):Intercept,Blood Vessel Malformations:Intercept] 2.73×10−1 (0.82,4.60)×10−1 6.34×10−3 2.29×10−3 8.31×10−3 0.96 2.48×10−1 (-0.88,5.74)×10−1 1.12×10−2 -2.19×10−2 2.70×10−2 0.95
SD[log(Bilirubin):slope] 1.20×10−2 (0.64,1.72)×10−2 4.52×10−4 -2.93×10−3 2.17×10−5 0.76 7.03×10−3 (0.05,1.55)×10−2 4.76×10−4 -7.90×10−3 8.64×10−5 0.50
Corr[log(Bilirubin):slope,Platelet:Intercept] -1.75×10−1 (-4.77,1.28)×10−1 1.12×10−2 -5.37×10−3 1.87×10−2 0.94 -6.26×10−2 (-6.68,5.62)×10−1 1.30×10−2 1.07×10−1 3.67×10−2 0.99
Corr[log(Bilirubin):slope,Platelet:slope] 1.10×10−1 (-1.88,4.07)×10−1 1.01×10−2 -1.48×10−2 2.24×10−2 0.94 6.57×10−2 (-5.44,6.61)×10−1 1.26×10−2 -5.91×10−2 2.35×10−2 1.00
Corr[log(Bilirubin):slope,Blood Vessel Malformations:Intercept] 1.92×10−2 (-3.55,3.97)×10−1 1.35×10−2 1.11×10−2 3.06×10−2 0.95 1.62×10−2 (-6.44,6.77)×10−1 1.41×10−2 8.09×10−3 2.87×10−2 0.99
Platelet Count
E[Platelet:Intercept] 5.54 (5.49,5.59) 1.58×10−3 2.20×10−3 5.03×10−4 0.96 5.46 (5.36,5.55) 3.12×10−3 -4.86×10−3 1.70×10−3 0.98
E[Platelet:slope] -4.29×10−3 (-6.45,-2.14)×10−3 7.02×10−5 4.70×10−6 1.25×10−6 0.94 -1.14×10−2 (-1.59,-0.70)×10−2 1.42×10−4 -3.02×10−5 4.33×10−6 0.95
SD[Platelet:Intercept] 3.49×10−1 (3.15,3.85)×10−1 1.13×10−3 4.27×10−3 3.38×10−4 0.96 3.49×10−1 (2.81,4.23)×10−1 2.34×10−3 4.34×10−3 1.39×10−3 0.94
Corr[Platelet:Intercept,Platelet:slope] 6.66×10−2 (-0.75,2.08)×10−1 4.65×10−3 5.20×10−3 5.77×10−3 0.93 6.77×10−2 (-2.11,3.45)×10−1 9.28×10−3 6.25×10−3 1.59×10−2 0.97
Corr[Platelet:Intercept,Blood vessel malformations:Intercept] -2.57×10−1 (-4.40,-0.71)×10−1 6.11×10−3 -9.29×10−3 9.27×10−3 0.94 -2.23×10−1 (-5.42,1.05)×10−1 1.04×10−2 2.47×10−2 2.60×10−2 0.97
SD[Platelet:slope] 1.52×10−2 (1.37,1.69)×10−2 5.20×10−5 9.68×10−5 6.37×10−7 0.95 1.55×10−2 (1.23,1.90)×10−2 1.09×10−4 3.74×10−4 2.92×10−6 0.97
Corr[Platelet:slope,Blood vessel malformations:Intercept] -7.64×10−2 (-2.72,1.20)×10−1 6.45×10−3 3.96×10−3 9.90×10−3 0.96 -7.61×10−2 (-4.16,2.68)×10−1 1.13×10−2 4.24×10−3 2.39×10−2 0.97
Blood Vessel Malformations
E[Blood vessel malformations:Intercept] -2.55 (-3.12,-2.00) 1.93×10−2 -7.35×10−3 1.19×10−1 0.89 -6.74×10−1 (-1.48,0.11) 2.57×10−2 6.45×10−3 1.82×10−1 0.92
Blood vessel malformations:Slope 1.37×10−2 (-1.03,3.78)×10−2 7.98×10−4 -8.53×10−4 1.84×10−4 0.88 4.63×10−2 (0.67,8.66)×10−2 1.35×10−3 -1.77×10−3 3.96×10−4 0.95
SD[Blood vessel malformations:Intercept] 1.89 (1.39,2.40) 1.84×10−2 4.76×10−3 1.02×10−1 0.89 1.82 (1.02,2.69) 3.42×10−2 -5.73×10−2 2.71×10−1 0.91
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Among the three approaches, the marginal approach produces the highest values of

specificity, PCC, PPV and AUC, while the random effects approach provides the best

sensitivity and NPV (Table 4.5). The random-effects prediction is able to correctly

predict 93% of patients who will die or need a liver transplant (sensitivity). In addition,

98% of the patients who were predicted by the random-effects model as patients who

will survive without a liver transplant did truly survive without a liver transplant. The

positive predicted value showed that 57% of patients predicted to die or need transplant

did truly die or needed a liver transplant, and the specificity showed that 71% of patients

who will survive without a transplant were correctly classified. Regarding the overall

accuracy, predictions of the random-effects and conditional approaches identified 25%

and 27% of patients incorrectly, respectively. The marginal approach provided the best

prediction accuracy, where 85% of patients who will not survive or need transplant were

correctly classified, and 85% of patients who will survive without a liver transplant were

correctly classified. The overall correct classification of the patients was 85%. Figure

4.10 represents receiver operating characteristic curves (ROC) for the marginal, random

effects and conditional approaches, and again shows that the marginal approach gives

the best prediction accuracy.

Table 4.5: Prediction accuracy for the simulated data from Scenario 1 based on leave-
one-out cross validation for the random-effects, marginal and conditional approaches.

Random Marginal Conditional

Cutoff 0.81 0.19 0.12
Sensitivity 0.93 0.85 0.70
Specificity 0.71 0.85 0.73
PCC 0.75 0.85 0.73
AUC 0.84 0.91 0.76
PPV 0.57 0.59 0.40
NPV 0.98 0.96 0.96

Figure 4.11 presents the histograms based on 100 simulated data of the sensitiv-

ity, specificity, PCC and AUC of each the random effects, marginal and conditional

approaches. The wide variation in the accuracy measures for the random effects ap-

proach among each simulated dataset can be observed, where the values ranged from 0
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Figure 4.10: Receiver Operating Characteristic curves of the dynamic LoDA using
the random effects (solid), marginal (dotted) and conditional (dot-dashed) prediction
methods for Scenario 1.

to 1 using the optimal cut-off while the measurements of the marginal and conditional

approaches are steady.

To summarise Scenario 1, the results indicate that the marginal approach performs

well for prediction when the main differences between the groups are mainly due to

differences between the mean profiles. Interestingly, this current scenario gave similar

results to some references that also found that the best approach for prediction was

the marginal approach. For example, Morrell et al. (2011) indicated that the marginal

approach accurately identified patients who would develop prostate cancer almost ten

years before they were clinically observed. Moreover, Table 5 and Figure 1 of Hughes

et al. (2018b) showed that the marginal approach gave a good prediction for patients

who would not achieve remission of seizures compared to the conditional and random

effects approaches.
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Figure 4.11: Histograms showing the sensitivity, specificity, PCC and AUC of each of
the three approaches for each of the 100 simulated datasets under Scenario 1.

4.3.2 Scenario 2

The various circumstances where the marginal or random effects approaches work well

are recognised in the literature, but in this scenario, I tried to explore a situation where

the conditional approach would outperform the other approaches. However, finding a

situation where the conditional approach gives the best prediction was not easy. All

previous works on this comparison (included Morrell et al. (2007), Komárek et al.

(2010), Morrell et al. (2011) and Hughes et al. (2018b)) showed that the marginal and

random effects approaches provide the best prediction. To my knowledge, there is

no study showing an example where the conditional approach outperformed the other

approaches.
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The idea behind this scenario comes from Morrell et al. (2011) who pointed out that

if the variance of the residual error is large compared to the random effects variance, the

conditional approach might outperform the marginal and random effects approaches.

Furthermore, Komárek et al. (2010) mentioned that the marginal and conditional ap-

proaches take into account the residual error to estimate the posterior probabilities.

Therefore in this scenario, only the continuous markers (albumin and bilirubin) were

considered since only continuous markers have a residual error.

I simulated a dataset for Scenario 2 consisting of two continuous markers: albumin

and bilirubin. I assumed two groups for discrimination, 0 and 1. For Group 0, I

considered 200 patients who survived after five years without requiring a liver transplant

and 50 patients who did not survive or who needed the transplant at some time between

2.5 and 5 years. For each patient, the four visit times were generated as follows: the

first visit time was set to 0 and uniform distributions in the intervals (170, 200), (350,

390) and (710, 770) days were used to generate the remaining visit times. In describing

the simulation Scenario 2, the means and variances of the random effects were kept

to be the same in each group (Table 4.3). At each time point I simulated values for

each marker, by first generating random effects from a multivariate normal distribution

with mean vector and covariance matrix given in Table 4.3. While the residual errors

differed between the two groups. The residual errors measurements for the two markers:

albumin and bilirubin in Group 0 were 0.318, 0.338, while for Group 1 were 0.159, 0.169,

respectively. The following Equation 4.2 presents the structure of the MGLMM for the

Scenario 2.

Y g
i,1,j = bgi,1,1 + bgi,1,2 t

g
i,1,j + εgi,1,j , albumin

Y g
i,2,j = bgi,2,1 + bgi,2,2 t

g
i,2,j + εgi,2,j , log(bilirubin)

(4.2)

The MGLMM for this scenario included two longitudinal markers (Yi,1,j , Yi,2,j) which

were assumed to be independent given the random effects and to follow the Gaussian

distribution. The random effects followed a 4-dimensional normal distribution where

each marker had a random intercept and slope (bi,1,1, bi,1,2, bi,2,1, bi,2,2). The MGLMM

also involved two residual errors (εi,1,j , εi,2,j). For each MCMC, the results were based
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on 10,000 iterations of 1:10 thinned MCMC after a burn-in period of 500 iterations.
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Table 4.6: Simulation study Scenario 2: Posterior Means, highly probable density (HPD) intervals, bias, standard deviation (SD), mean
square error (MSE) and coverage for the fixed and random effects. These measurements were the average of 100 simulations.

Group 0 Group 1
Posterior Mean 95% HPD Interval SD Bias MSE Coverage Posterior Mean 95% HPD Interval SD Bias MSE Coverage

Albumin
E[Albumin:Intercept] 3.00 (2.97,3.03) 2.80×10−3 -2.04×10−3 3.73×10−4 0.89 3.00 (2.96,3.04) 1.89×10−3 3.45×10−3 4.00×10−4 0.92
E[Albumin:slope] -9.63×10−5 (-2.37,2.10)×10−3 2.12×10−4 -9.63×10−5 1.49×10−6 0.92 -3.08×10−4 (-3.01,2.38)×10−3 1.31×10−4 -3.08×10−4 1.88×10−6 0.92
SD[Albumin:Intercept] 4.19×10−2 (0.34,9.07)×10−2 4.21×10−3 -2.31×10−2 1.06×10−3 0.84 4.28×10−2 (0.68,8.68)×10−2 2.10×10−3 -2.22×10−2 1.19×10−3 0.76
Corr[Albumin:Intercept,Albumin:slope] -7.48×10−3 (-8.53,8.51)×10−1 2.02×10−2 5.72×10−2 1.26×10−2 1.00 2.61×10−2 (-8.02,8.50)×10−1 1.18×10−2 9.07×10−2 2.60×10−2 1.00
Corr[Albumin:Intercept,log(Bilirubin):Intercept] 1.50×10−2 (-8.38,8.64)×10−1 2.32×10−2 2.12×10−1 5.79×10−2 1.00 3.21×10−3 (-8.46,8.64)×10−1 1.10×10−2 2.00×10−1 5.28×10−2 1.00
Corr[Albumin:Intercept,log(Bilirubin):slope] 3.21×10−2 (-7.43,7.95)×10−1 2.46×10−2 -1.79×10−1 7.77×10−2 0.97 1.01×10−1 (-6.29,7.96)×10−1 1.57×10−2 -1.10×10−1 5.22×10−2 0.98
SD[Albumin:slope] 2.13×10−3 (0.07,5.38)×10−3 2.54×10−4 -5.63×10−3 3.38×10−5 0.16 2.91×10−3 (0.56,5.79)×10−3 1.32×10−4 -4.85×10−3 2.75×10−5 0.24
Corr[Albumin:slope,log(Bilirubin):Intercept] 1.18×10−2 (-8.59,8.73)×10−1 2.35×10−2 1.02×10−2 8.28×10−3 1.00 -2.69×10−2 (-8.80,8.37)×10−1 1.06×10−2 -2.84×10−2 8.65×10−3 1.00
Corr[Albumin:slope,log(Bilirubin):slope] -4.95×10−2 (-8.46,7.84)×10−1 2.98×10−2 1.83×10−1 6.26×10−2 0.99 -8.38×10−2 (-7.91,6.32)×10−1 1.50×10−2 1.49×10−1 6.69×10−2 0.98
log(Bilirubin)
E[log(Bilirubin):Intercept] 1.00 (0.96,1.04) 3.05×10−3 -3.92×10−4 3.58×10−4 0.96 1.00 (0.96,1.04) 1.74×10−3 7.55×10−4 3.71×10−4 0.92
E[log(Bilirubin):slope] 8.35×10−5 (-3.20,3.37)×10−3 1.95×10−4 8.35×10−5 2.18×10−6 0.98 3.08×10−4 (-3.69,4.28)×10−3 1.50×10−4 3.08×10−4 4.18×10−6 0.93
SD[log(Bilirubin):Intercept] 3.35×10−2 (0.03,9.02)×10−2 3.39×10−3 2.23×10−2 1.11×10−3 0.99 1.79×10−2 (0.00,5.29)×10−2 1.36×10−3 6.65×10−3 2.21×10−4 0.98
Corr[log(Bilirubin):Intercept,log(Bilirubin):slope] -1.11×10−2 (-8.24,8.29)×10−1 2.61×10−2 1.64×10−1 5.96×10−2 1.00 -1.66×10−2 (-8.36,8.30)×10−1 1.48×10−2 1.58×10−1 4.98×10−2 0.99
SD[log(Bilirubin):slope] 1.02×10−2 (0.59,1.43)×10−2 2.67×10−4 -4.74×10−3 2.95×10−5 0.38 1.10×10−2 (0.79,1.43)×10−2 1.06×10−4 -3.93×10−3 1.82×10−5 0.39
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Results for the estimation of the random effects parameters are given in Table 4.6.

In general, Scenario 2 produced good estimates with small bias and small MSE and

low standard deviation. With regard to the coverages of the true parameters, Table 4.6

shown that the random slope variance for albumin and bilirubin are poorly estimated

for both groups. This result may be explained by the fact that the residual errors are

large compared to the true values of the random slope variances (Table 4.3) which could

lead to inaccurate estimates of these slopes.

Table 4.7: Scenario 2 prediction accuracy based on leave-one-out cross validation for
the random-effects, marginal and conditional approaches.

Random Marginal Conditional

Cutoff 0.56 0.26 0.58
Sensitivity 0.78 0.92 0.92
Specificity 0.70 0.89 0.88

PCC 0.72 0.90 0.89
AUC 0.74 0.96 0.95
PPV 0.55 0.69 0.66
NPV 0.90 0.98 0.93

With respect to prediction, the conditional and marginal approaches outperform

the random effects approach (Table 4.7). Only 11% and 10% of patients are classified

wrongly using the conditional approach and marginal approach, respectively. Figure

4.12 displays ROC curves of the three approaches under scenario 2. The sensitivity and

specificity that are used to plot the ROC curves are averaged across the 100 simulated

datasets at each cut-off. The AUCs values (Table 4.7) are 0.96 and 0.95 for the marginal

and conditional predictions, respectively. The random effects approach works less well

than other approaches. I did not expect the marginal approach to be as good as the

conditional approach. I expected that the conditional approach would outperform the

other two approaches.

To explain this in more detail, Komárek et al. (2010) stated that in the case of

continuous longitudinal markers, the residual error is taken into account when calcu-

lating group membership probabilities for both conditional and marginal approaches.

For the conditional approach, the mean and the variance of the multivariate normal

distribution are influenced by the residual variance, and the marginal approach only
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Figure 4.12: Receiver Operating Characteristic curves of the dynamic LoDA using
the random effects (solid), marginal (dotted) and conditional (dot-dashed) prediction
methods for Scenario 2.

the variance is affected while the normal distribution for the random effects approach

does not handle the residual variance and relies on the individual random effects esti-

mates. The random effects approach was unable to give accurate classification in this

scenario since the estimation approach doesn’t use the residual error variance, which

both the marginal and conditional approaches use and so are able to provide more

accurate classification.

Figure 4.13 shows the histograms based on 100 simulated data of the sensitiv-

ity, specificity, PCC and AUC of each the random effects, marginal and conditional

approaches. The large disparity in the accuracy measures for the random effects ap-

proach among each simulated dataset can be observed, where the values ranged from 0

to 1 using the optimal cut-off while the measurements of the marginal and conditional

approaches are stable (the histograms look symmetric).
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Figure 4.13: Histograms showing the sensitivity, specificity, PCC and AUC of each of
the three approaches for each of the 100 simulated datasets under Scenario 2.

4.4 Discussion

In this chapter, analysis of the PBC data and simulation studies were conducted to

explore in which situation each of the prediction approaches (namely: marginal, condi-

tional and random effects) work well. Some comparisons between the three prediction

approaches were published by Morrell et al. (2007, 2011), Komárek et al. (2010) and
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Hughes et al. (2018b). These publications which used a real datasets concluded that

the marginal and random effects approaches offer the best prediction accuracy. Here, I

further investigated and compared these three approaches by using real and simulated

data.

According to the results of the study in this chapter, the marginal approach provides

the best prediction results in the case where the main differences between the prognostic

groups are due to differences of the mean longitudinal profiles. However, if the number

of observations increases per patients, the random effects approach is able to classify

patients well.

If the variability about the mean profiles across the groups is noticeable, the condi-

tional and the marginal approaches were expected to be less accurate than the random

effect approach.

To identify a simulated scenario where the conditional approach outperforms the

other approaches was not easy. I was unable to come up with a scenario where the

conditional approach worked the best. My work shows that even in situations where

the conditional approach was expected to do well, the marginal approach was just as

good. To my knowledge, there is no publication which shows the conditional approach

works better than the marginal or random effect approach.

In conclusion, this work conducted in this chapter suggests that before analysing a

dataset, the longitudinal profiles of the data for each group should be plotted first. If

the difference between the group mean profiles is clear then the marginal approach is

expected to give the best prediction. If a variation in the level of variability across the

group mean in each group is substantial, then the marginal and conditional approaches

are not expected to give the best prediction but, the random effects approach is assumed

to work well. However, the random effects prediction approach should be avoided if a

substantial measurement error dominates the variability between patients leads to the

random effects approach is unable to estimate the individual random effects correctly.
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Chapter 5

Impact of misspecified random

effects distribution

In the previous chapter, three prediction approaches for LoDA have been compared.

These three approaches are based on a mixed model using a patient’s longitudinal his-

tory to classify new patients according their future status. Mixed Models use random

effects to model the correlation between repeated measurements on the same subject

and assume a joint distribution of these random effects across all patients. The typ-

ical assumption is that the random effects follow a (potentially multivariate) normal

distribution. In this chapter, I investigate whether the misspecification of the random

effects distribution affects the classification performance. This work is currently under

review as El Saeiti et al. (2019).

5.1 Introduction

Statistical models that use random effects terms in their modelling to analyse longi-

tudinal data have become more common recently. A patient-specific random effect

can take the correlation between measurements on the same patient into account. It is

commonly assumed that random effects follow a normal distribution. However, Verbeke
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and Lesaffre (1996) reported that checking the normality assumption for the random

effects is not easy and misspecification can seriously affect their estimates.

In recent years, researchers have reported that misspecification of the distribution

of the random effects can have an impact on the estimation of the parameters. Gener-

alised linear mixed effects models are popularly adopted for the analysis of longitudinal

data, when the responses are not assumed to be Gaussian. It is not yet clear whether

the maximum likelihood estimates are robust to misspecification of the random effects

distribution. Neuhaus et al. (1992) showed that estimation of the random effects inter-

cept of mixed effects logistic model has a small bias if the random effects distribution

is misspecified. Heagerty and Kurland (2001) investigated the impact of the misspec-

ification of the random effects distribution on maximum likelihood estimates of the

generalised linear mixed model. They showed that if the distribution of the random

effects is far from the Gaussian distribution a substantial bias can occur. However,

McCulloch and Neuhaus (2011a) pointed out that maximum likelihood estimates for

the generalised linear mixed model are often robust to misspecification to the random

effects distribution.

Agresti et al. (2004) carried out several investigations into the effect of the misspec-

ification of a random effects distribution and gave possible solutions. They found that

assuming a normal distribution affected model performance when the actual distribu-

tion is a two component normal mixture with high variance. Also, Litière et al. (2008)

addressed the impact of a misspecified random effects distribution on generalised linear

mixed models. They showed that if the variances of the random effects are large, the

biases are significantly large, while the fixed effects have a small bias. They also pointed

out that the estimates of the variance components are always heavily biased, even for

small deviations of the distribution of random-effects.

Litière et al. (2007) discussed the impact of the misspecification of the random

effects distribution on type I and type II errors in generalised linear mixed models.

They found that the misspecification of the shape of the random effects distribution

can severely affect the type I error and the power of a statistical test. They simulated a
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number of scenarios where data were generated using four different ‘true’ random-effects

distributions, and in each scenario, a normal distribution is assumed. Commenting on

this paper, Neuhaus et al. (2011) argued that instead of fixing the distribution, four

different distributions should be explored to identify the most appropriate and whether

the normal distribution increases the bias. They showed that the type 2 error increases

slightly when carrying out their simulation. Litière et al. (2011) argued that both types

of simulations are useful to address the impact of misspecification of the random effects

distribution.

With regard to prediction, McCulloch and Neuhaus (2011b) showed that the accu-

racy of prediction (as measured by mean square error) could be influenced slightly by

mild to moderate violations of the model assumptions. Verbeke and Lesaffre (1997)

concluded that misspecification of the random effects distribution has no effects on

parameters that are estimated from the maximum likelihood method.

As I have summarised above, the impact of misspecification of the random effects

distribution has been widely investigated. However, most of the researchers have fo-

cused on the accuracy of the parameters of the model. In this work, I explore whether

the misspecification of the random effects distribution has an impact on the classifi-

cation accuracy of a classifier. Parameters of the GLMM may be estimated with a

small/large bias, and here I assess the effects of this bias on the ability to classify pa-

tients into their future status using LoDA approaches. In addition, I explore whether

the sample size and number of repeated measurements can affect the classification

performance. I have set four different distributions for random effects: a single nor-

mal distribution, a mixture of two Gaussian distribution, a mixture of three Gaussian

distribution and T distribution for this investigation.

The purpose of longitudinal discriminant approaches is to use patient longitudi-

nal history to predict which group a patient belongs to. There are three ways to do

this, namely: marginal, conditional and random effects approaches, and each approach

attempts to use the model information differently. This chapter focuses on marginal

and random effects approaches which have shown good levels of accuracy (see Chapter
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4 and also Hughes et al. (2018a), Komárek et al. (2010), Komarek et al. (2009) and

Morrell et al. (2011)).

All previous studies investigating the effects of misspecification of the random effects

distribution have only been carried out using a single longitudinal marker. In clinical

research, multiple longitudinal variables may be collected, and these may be used in the

discriminant analysis to provide better classification accuracy than variables collected

at one unique time point. The approach for the discriminant analysis presented here

allows for multiple markers, which has an effect on the model structure since increasing

number of markers leads to an increasing number of random effects parameters.

The chapter has been organised in the following way. Section 5.2 shows an analysis

of the PBC clinical data to investigate the effect that the selection of the random-effects

distribution has on the level of accuracy. Section 5.3 contains the results of a simulation

study investigating the effects of misspecification of random effects distributions. The

chapter concludes with a brief summary.

5.2 PBC application

Data from the Mayo Clinic Primary Biliary Cirrhosis (PBC) dataset (Dickson et al.

(1989)) have been used in the previous chapter and they are used for this study as well.

The data contains a large number of longitudinal variables collected from 312 patients

over a median of 6.3 years per patient. These data are used here to give an example of

how a variety of random effects distributions might influence the classification accuracy.

The study consisted of 253 patients who were followed for at least 30 months (2.5

years), and whose 60 months (five years) status was known. The purpose of this work

is to predict patients who will die or require a liver transplant within five years. A total

of 202 of 253 patients were classified as known to be alive without a transplant after five

years (referred as Group 0), while 51 patients died or needed a liver transplant at some

time between 2.5 and 5 years after (referred as Group 1). There are three longitudinal
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markers which had been used in this study namely, logarithmic serum bilirubin as a

continuous marker, platelet count as a discrete marker (Poisson) and a binary marker

indicating the presence of blood vessel malformations. Figure 5.1 shows the observed

longitudinal profiles of all three markers for patients who were known to be alive at

five years (Group 0) and who died after 2.5 years (Group 1).

The LoDA procedure is similar to the one described in Chapter 4. For each pa-

tient group, I fitted a multivariate generalised linear mixed model (MGLMM) to the

longitudinal data for the marginal approach. For the continuous and count markers

(log(bilirubin) and platelet counts), the GLMM included a random intercept and a

random slope. The binary marker (blood vessel malformation) was modelled using a

random intercept and a fixed effect term for time. Mixtures of multivariate normal

distributions were assumed for the random effects distribution. The general structure

of the MGLMM as follows (notation described in Section 2.3.2):

E(Yi,1,j |bi,1)g = bgi,1,1 + bgi,1,2 t
g
i,1,j , log(bilirubin)

log{E(Yi,2,j |bi,2)g} = bgi,2,1 + bgi,2,2 t
g
i,2,j , platelet count

logit{E(Yi,3,j |bi,3, α3)
g} = bgi,3 + αg3 t

g
i,3,j blood vessel malformations

(5.1)

where i = 1, . . . , Ng, Ng indicates the number of patients in group g, where g

can take the value either 0 or 1 (g = 0, 1), j = 1, · · · , ni,r, r indicates the num-

ber of markers r = 1, 2, 3, ti,r,j is the follow-up time for each marker (which is re-

ported in months). The MGLMM contains a five dimensional vector of random effects

(bi,1,1, bi,1,2, bi,2,1, bi,2,2, bi,3) (see Equation 5.1), where (bi,1,1, bi,2,1, bi,3) are random in-

tercepts for each marker and (bi,1,2, bi,2,2) are random slopes for the first two markers.

The vector of random effects is assumed to follow a joint distribution and in this chapter

I consider four possible options for that distribution (specifically a single multivariate

normal distribution, and then 2, 3 and 4 component mixtures). Blood vessel malforma-

tions (Yi,3,j) has a fixed effects slope (α3) only. The MGLMM includes one continuous

marker (log(bilirubin)) which is assumed to follow the Gaussian distribution and has a
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Figure 5.1: Profiles of three markers log(bilirubin), platelet counts and blood vessel
malformation (spiders) for patients who were known to be alive at 5 years (Group 0,
left panel) and who died after 2.5 years (Group 1, right panel). The thin lines show
the profiles of individuals in the PBC data, and the thick lines show the overall mean,
as estimated by loess. 110



residual error (εi,1,j). It is assumed that this error is independent and follows a normal

distribution with mean 0 and variance σ21. Also, it is assumed that the error terms are

independent of the random effects bi.

For each MCMC, the results are based on 10,000 iterations of 1:10 thinned samples

after a burn-in of 5000 iterations. To assess the prediction results the leave-one-out

cross-validation is applied for the PBC example. The MGLMMs are fit using the

GLMM_MCMC function whilst the LoDA is performed using the GLMM_longitDA2 from the

mixAK package (Komárek and Komárková, 2014) in R. Sensitivity, specificity, probability

of correct classification (PCC), positive predictive value (PPV) and negative predictive

value (NPV) are computed for each model by using the optimal cutoff value. The AUC

is measured for the marginal prediction approach to compare the four models (with

different random effects specifications).

Table 5.1: Penalized Expected Deviance for models with different number of mixture
components (K = 1, 2, 3, 4) in the random effects.

Group K = 1 K = 2 K = 3 K = 4

Group 0 11112.80 11021.41 11046.15 11160.76
Group 1 2987.29 3469.04 4439.53 4547.39

Table 5.1 presents penalised expected deviance values (PED values, Plummer (2008))

for four different models in the two groups. PED can be used to select the most ap-

propriate model among several considered models. Komárek and Komárková (2014)

have suggested using PED for mixture models comparison. In Group 0, K = 2 shows

the lowest values of PED which means that assuming a two-component mixture of

multivariate normal distributions for the random effects gives the best fit to the data.

However, in Group 1, K = 1 provides a better model fit with a smaller PED compared

to the other models. It is important to note that Group 1 only contained 51 patients

and so it is unlikely that all the parameters in a complex model would be well estimated

in such a small sample. This naturally favours the simpler assumptions regarding the

distribution of the random effects (e.g., K = 1).

The classification results of four possible prediction models for the PBC data are

presented in Table 5.2. In this table, the reported accuracy measures are calculated
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Table 5.2: Prediction accuracy from leave-one-out cross-validation of the marginal ap-
proach with K mixture components in the random effects distribution (K = 1, 2, 3, 4)
using the PBC data.

Model Cutoff Sensitivity Specificity PCC AUC PPV NPV

K = 1 0.20 0.78 0.82 0.81 0.86 0.53 0.94
K = 2 0.07 0.82 0.73 0.75 0.84 0.43 0.94
K = 3 0.01 0.65 0.81 0.78 0.74 0.46 0.90
K = 4 0.02 0.65 0.62 0.62 0.64 0.30 0.87

at the optimal cutoff point which is selected as the closest point to the top left corner

of the ROC plot. A single multivariate normal distribution for the random effects

distribution gives the best prediction accuracy compared to the other three models

with 81% overall of patients correctly classified (PCC). Furthermore, this model is

able to predict patients who will die or require a liver transplant with 78% accuracy

(sensitivity), and 94% of patients predicted to survive without transplant truly did

survive without a liver transplant for five years (NPV). 53% of patients predicted to

die or need transplant truly did die or require a liver transplant (PPV) and 82% of

patients who will survive without a transplant are correctly identified (specificity).

The ROC curve for the single multivariate normal mixture component model is the

closest to the upper left corner (see Figure 5.2) which gives the higher value of the

AUC with 0.86. However, the two mixture components (K = 2) model still works

well in terms of AUC 0.84. The complex models that included more than 2-mixture

components (K = 3, 4) do not perform well, with 0.74 and 0.64 AUCs, respectively.

A comparison of the four models in the PBC data reveals that models with more than

one mixture component (K = 2, 3, 4) in the random effects distribution provide worse

classification accuracy.

In contrast to this result, Komárek et al. (2010) suggested that using a normal

mixture in the random effects distribution improves the classification accuracy in their

application. Komárek et al. (2010) showed using a similar dataset that when the ran-

dom effects distribution is a two mixture component (K = 2), the AUC (area under

the curve) is better than one mixture component (K = 1). In their analyses, they used

three continuous markers, bilirubin, albumin and alkaline phosphotase. It is not yet
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Figure 5.2: Receiver Operating Characteristic (ROC) curves for models with K = 1,
2, 3, 4 mixture components in the PBC data.

clear whether classification accuracy is made worse by a misspecified random effects

distribution. As is pointed out in the introduction to this chapter, there is a degree

of uncertainty around the effect of random effects misspecification on parameter esti-

mates in GLMMs. In the next section, I explore how the misspecified random effects

distribution might affect the classification accuracy using a simulation study.

5.3 Simulation

In Section 5.2, the PBC example is used to demonstrate how the selection of random

effects distribution impacted the classification accuracy. I now use a simulation study

to investigate how robust classification accuracy is to misspecification of the random

effects distribution. I also investigate how the sample size and number of repeated
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measurements influence the classification performance in the presence of potentially

misspecified random effects.

5.3.1 Simulation Setup

The design of the simulation is based on the PBC dataset. I simulated a dataset

consisting of three different markers: bilirubin as a continuous marker, platelet count

as a discrete marker and blood vessel malformation as a binary marker. Two different

sample sizes are considered in this simulation, 250 and 2,500 patients. To be consistent

with the PBC data, for each sample size I assume that 80% of patients are alive after five

years without requiring a transplant and 20% of patients who were alive at 2.5 years

subsequently died or required transplant before five years. Following the simulation

design of Komárek et al. (2013), the observed process is sampled at four-time points

(ni = 4) at baseline, then after approximately six months, one year and two years. I

assumed two groups for discrimination, 0 and 1. For small sample size and Group 0, I

considered 200 (2,000 for the large sample size) patients who survived after five years

without requiring a liver transplant and 50 (500 for the large sample size) patients

who did not survive or who needed the transplant at some time between 2.5 and 5

years. For each patient, the four visit times were generated as follows: the first visit

time was set to 0 and uniform distributions in the intervals (170, 200), (350, 390)

and (710, 770) days were used to generate the remaining visit times. The elements

of mean vectors and variance-covariance matrices considered for the three markers

for each group are presented in specific tables in each scenario. At each time point I

simulated values for each marker, by first generating random effects from a multivariate

normal distribution with mean vector and covariance matrix given in Table 5.3 and then

assuming a generalised linear mixed model with fixed effects parameters shown in Table

5.3. Tables 5.4 and 5.5 show the values of three markers that are used to simulate two

and three components for the random effects distribution with a small departure from

normality, respectively, and to simulate two and three components for the random

effects distribution with a large departure from normality are presented in Tables 5.6,
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5.7.

The structure of the MGLMM for the simulation study is presented in Equation

5.1. For the purposes of this simulation study, data are supposed to be balanced (i.e.,

no missing values) across time points.

A number of simulation scenarios are investigated. First, the typical assumption of

a single normal distribution for the random effects is chosen as the true distribution.

Further, two different random effects distributions, two and three mixture components

are included in the simulation study. In each of them, two scenarios are utilised. For the

first scenario, the parameter estimates in this scenario are close to the PBC parameters.

For the second scenario, the parameter estimates are chosen to show a large departure

from normality. Finally, two additional scenarios consider a T-distribution with 3 and

5 degrees of freedom as the true random effects distribution. In total, for each of the

two sample sizes, there are seven different simulation scenarios.

Single normal distribution

In this scenario, the true distribution of the random effects is a single normal distri-

bution (K = 1). This scenario aims to explore how much using a wrong, but more

flexible mixture distribution worsens the prediction accuracy compared to using the

theoretically correct single normal distribution. Table 5.3 presents the values of three

markers that are used to simulated the first scenario. Probability density functions of

each random effects for each group are shown in Figure 5.3.

Two and three components of random effects distribution with a small de-

parture from normality

The purpose of this scenario is to explore the influence of minor misspecification of

the random effects distribution (i.e., a small departure from normality) has on the

classification accuracy. Published studies on misspecified random effects suggest that
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Table 5.3: Model parameters for the random effects under the assumption that the
random effects jointly follow a single component multivariate normal distribution.

Parameters Group 0 Group 1

log(bilirubin)
E(intercept:log(bilirubin)) 2.19×10−2 1.23
E(slope:log(bilirubin)) 9.82×10−3 2.42×10−2

SD(intercept:log(bilirubin)) 6.88×10−1 8.40×10−1

cor(intercept:log(bilirubin),slope:log(bilirubin)) 2.31×10−1 -1.59×10−1

cor(intercept:log(bilirubin),intercept:platelet) -1.69×10−1 2.52×10−1

cor(intercept:log(bilirubin),slope:platelet) -2.06×10−1 -1.91×10−1

cor(intercept:log(bilirubin),intercept:spiders) 3.47×10−1 2.61×101

SD(slope:log(bilirubin)) 1.13×10−2 1.46×10−2

cor(slope:log(bilirubin),intercept:platelet) 2.58×10−2 -1.94×10−1

cor(slope:log(bilirubin),slope:platelet) -2.41×10−1 9.92×10−2

cor(slope:log(bilirubin),intercept:spiders) 3.04×10−1 4.24×10−2

Platelets
E(intercept:platelet) 5.54 5.46
E(slope:platelet) -4.29×10−3 -1.14×10−2

SD(intercept:platelet) 3.72×10−1 3.44×10−1

cor(intercept:platelet,slope:platelet) -4.66×10−2 6.57×10−2

cor(intercept:platelet,intercept:spiders) -8.00×10−2 -2.45×10−1

SD(slope:platelet) 5.64×10−3 1.50×10−2

cor(slope:platelet,intercept:spiders) -1.68×10−1 -7.40×10−2

Spiders
E(intercept:spiders) -2.54 -6.80×10−1

SD(intercept:spiders) 3.00 1.91
α (spiders) 1.42×10−2 4.75×10−2

when the departure from normality is small, there is not a significant effect on parameter

estimates when choosing a single normal distribution. The next simulations are set out

to assess whether this holds for classification accuracy as well. Figures 5.4 and 5.6 show

the observed longitudinal profiles of the simulation with 2 and 3 mixture components

in the random effects distribution of all the markers.

Tables 5.4 and 5.5 provide the values of the parameters used for the simulation

scenarios when the random effects follow a multivariate normal distribution with 2-

component and 3-component, respectively. It is not clear from a visual inspection that

the distributions of the random effects came from two or three mixture components as

the amount of deviation from normality is small (see Figures 5.5 and 5.7), reflecting

the fact that this scenario is designed to show only a small departure from normality.
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Figure 5.3: Density functions of five random effects distributions for the single normal
assumption. Red and blue lines show the density functions for patients who were known
to be alive at 5 years (Group 0) and who died after 2.5 years (Group 1) respectively.
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Figure 5.4: Profiles from randomly selected simulated dataset with 2 components
normal distribution with small departure from normality. Profiles of three markers
log(bilirubin), platelet counts and blood vessel malformation(spiders) for patients who
were known to be alive at 5 years (Group 0) and who died after 2.5 years (Group 1).
The black line shows the overall mean, the pink and blue lines show the mean of two
mixture components, estimated using loess.
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Figure 5.5: Density functions of the random effects for the 2-components assumption
with small departure from normality for two groups. Red and blue lines show the
density function for patients who were known to be alive at 5 years (Group 0) and who
died after 2.5 years (Group 1) respectively.
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Figure 5.6: Profiles from randomly selected simulated data with 3 mixture components
normal distribution with small departure from normality. Profiles of three markers
log(bilirubin), platelet counts and blood vessel malformation(spiders) for patients who
were known to be alive at 5 years (Group 0) and who died after 2.5 years (Group 1).
The black line shows the overall mean, while the pink, green and blue lines show the
mean of three mixture components, estimated using loess.
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Figure 5.7: Probability density functions of five random-effects elements which follow
a 3 mixture normal distribution with small departure from normality for patients who
were known to be alive at 5 years (Group 0) and who died after 2.5 years (Group 1).
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Two and three components of random effects distribution (K = 2 and K = 3)

with a large departure from normality

The primary purpose of this scenario is to investigate whether the model that assumed

a single multivariate normal distribution can capture the ‘true distribution’ when there

is a substantial departure from normality and see whether using more flexible models

provides more accurate classifications. Basically, this simulation study assumes that

the means for the two or three components have the same values for the two groups, but

that the variances are different, such that for one group the data are narrowly spread

around each mean and for the other group the data are widely spread. Figures 5.8 and

5.11 show the observed longitudinal profiles of the simulation with 2 and 3 mixture

components in the random effects distribution of all the markers.

Figures 5.9 and 5.10 illustrate the scenarios and Tables 5.6 and 5.7 present the pa-

rameters used for the simulations when the random effects follow a multivariate normal

distribution with 2-component and 3-component, respectively, and a large departure

from normality.
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Figure 5.8: Simulated data from 2 mixture components normal distribution with a
large departure from normality. Profiles of three markers log(bilirubin), platelet counts
and blood vessel malformation(spiders) for patients who were known to be alive at 5
years (Group 0) and who died after 2.5 years (Group 1). The black line shows the
overall mean, while the pink and blue lines show the mean of two mixture components,
estimated using loess.
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Figure 5.9: Density function for the 2-components normal assumption with large de-
parture from normality. Red and blue lines show the density function for patients who
were known to be alive at 5 years (Group 0) and who died after 2.5 years (Group 1)
respectively.
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Figure 5.10: Density function for the 3-components normal assumption with a large
departure from normality. Red and blue lines show the density function for patients
who were known to be alive at 5 years (Group 0) and who died after 2.5 years (Group
1) respectively.
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Figure 5.11: Simulated data from 3 mixture components normal distribution with a
large departure from normality. Profiles of three markers log(bilirubin), platelet counts
and blood vessel malformation(spiders) for patients who were known to be alive at 5
years (Group 0) and who died after 2.5 years (Group 1). The black line shows the
overall mean, while the pink, green and blue lines show the mean of three mixture
components, estimated using loess.
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T-distribution with 3 and 5 degrees of freedom for the random effects

In this case, the true distribution of the random effect is a T-distribution with degrees

of freedom, 3 and 5, following the same design that is used for the 2 or 3 mixture

components (large and small departures from normality). The density functions of the

five random effects for degrees of freedom 3 and 5 in each group (Group 0 and Group

1) differ from each other as seen in Figure 5.12, where the dot lines refer to the T-

distribution with 5 degrees of freedom, and the plain lines refer to the T-distribution

with 3 degrees of freedom.
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Figure 5.12: T-distribution density function for two groups with 3 (solid lines) and 5
(dashed lines) degrees of freedom. Red and blue lines show the density function for
patients who were known to be alive at 5 years (Group 0) and who died after 2.5 years
(Group 1) respectively.

Number of visits

It could be hypothesised that the more visits a patient has, then the more accurately

the random effects will be estimated. To assess this hypothesis, I simulate nine clinic

visits (approximately every three months) per patient for small sample size (i.e., 250
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patients) and for the scenarios K = 1, K = 2 with large departure from normality and

T-distribution with 3 degrees of freedom. Each patient has a visit every three months

for two years, such that the first visit occurs at t = 0 and then at time points by using

uniform distributions over the intervals (70, 110), (160, 200), (250, 290), (345, 385),

(430, 470), (520, 560), (610, 650) and (710, 750) days to generate the rest of the visits.

Validation methods

Two validation methods are used to assess the classification performance of each model.

In particular, leave one out cross-validation is used with small sample size N = 250

patients to assess the results. In large sample size N = 2, 500 patients, I used 70%

of data for training and 30% for testing. For each case, 100 datasets were simulated.

These 100 simulated datasets were submitted to the cluster system at the University of

Liverpool, and it took a month for the task (which involves 17 scenarios in total) to be

completed. In each scenario, a MGLMM is used in each group with 15,000 iterations

of 1:10 thinned MCMC and the burn-in is 5000 iterations.

5.3.2 Effect of the misspecification of the random effects on classifi-

cation accuracy

This section describes and discusses the effect of the random effects misspecification

on classification accuracy. Two methods of the LoDA are used in this investigation

(the marginal and random effects approaches). First I describe how misspecification

of the random effects distribution affects the classification accuracy of the marginal

prediction approach. The second part moves on to discuss how factors such as the

number of measurements per patient influence the random effects prediction approach

in the presence of misspecified random effects.
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Effect on marginal prediction

The results obtained from the marginal prediction when the true the random effects

follow a single normal distribution (model coefficients can be seen in Table 5.3) are

shown in Table 5.8.

Table 5.8: Results of the simulation study under the assumption of a single normal
distribution for the random effects. Prediction accuracy of the marginal approach from
leave-one-out cross validation for N = 250 patients, 70% training and 30% testing for
N = 2,500.

Size K Cutoff Sensitivity Specificity PCC AUC PPV NPV

N = 250

K = 1 0.19 0.86 0.87 0.87 0.93 0.63 0.96
K = 2 0.19 0.84 0.86 0.86 0.91 0.61 0.96
K = 3 0.42 0.77 0.73 0.74 0.78 0.44 0.93
K = 4 0.63 0.79 0.78 0.79 0.83 0.49 0.94

N = 2,500

K = 1 0.19 0.87 0.88 0.88 0.94 0.64 0.96
K = 2 0.19 0.86 0.87 0.87 0.94 0.63 0.96
K = 3 0.29 0.80 0.85 0.84 0.89 0.58 0.95
K = 4 0.29 0.72 0.79 0.77 0.79 0.49 0.92

It can be seen from the data in Table 5.8 that the single normal distribution (K = 1)

gives the best classification accuracy with 87% PCC and an AUC of 0.93. Despite this,

the ROC curve (Figure 5.13, N = 250) of two mixture components (K = 2) is close

to the single multivariate normal distribution. Models with more complex mixture

components do not improve the prediction accuracy. It is clear from the boxplots that

the variability is large for the measurements of sensitivity, specificity, PPC and AUC

for the models with K = 3 and 4. It seems possible that these results are due to

these models being more complicated and the small sample size being relatively small,

particularly when one of the group sizes includes just 50 patients.

It is also shown however that increasing the sample size to 10 times (i.e., N = 2, 500

patients) has a little improvement in terms of AUC as the true distribution of the

random effects is a single normal distribution. The model with two mixture components

is also able to predict well (see the Table 5.8). Although, this finding is expected, since

the single normal distribution is the truth distribution, the two components of a normal
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Figure 5.13: Receiver Operating Characteristic curves for models with K = 1, 2, 3, 4
mixture components under the assumption that the true random effects distribution is
a single normal distribution. The left panels show ROC curves for each model whilst
the right panels show boxplots of the accuracy measures over 50 simulated datasets.

distribution (K = 2) performed as well as the single normal distribution, which shows

that considering a more flexible distribution, although it is theoretically wrong, would

not affect the classification accuracy.

The results of the second and third scenarios where the true random effects distribu-

tion follow a 2-component normal mixture distribution with a small and large departure

from normality (models coefficients can be seen in Tables 5.4 and 5.6, respectively) can

be compared in Table 5.9 and Figures 5.14 and 5.15. For small departure from normal-

ity and small sample size, using the true random effects distribution (K = 2) or a single
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Table 5.9: Prediction accuracy for the marginal approach under the assumption that
the random effects follow a 2 component normal mixture distribution.

Size K Cutoff Sensitivity Specificity PCC AUC PPV NPV

small departure form normality

250

K = 1 0.15 0.87 0.89 0.89 0.94 0.68 0.96
K = 2 0.17 0.88 0.90 0.89 0.95 0.69 0.97
K = 3 0.71 0.80 0.77 0.78 0.82 0.49 0.94
K = 4 0.76 0.80 0.82 0.81 0.85 0.53 0.94

2,500

K = 1 0.12 0.94 0.97 0.96 0.98 0.88 0.99
K = 2 0.17 0.96 0.97 0.97 0.99 0.90 0.99
K = 3 0.30 0.92 0.93 0.93 0.94 0.82 0.98
K = 4 0.46 0.88 0.90 0.90 0.92 0.73 0.97

large departure form normality

250

K = 1 0.18 0.83 0.87 0.86 0.91 0.62 0.95
K = 2 0.17 0.89 0.92 0.92 0.95 0.75 0.97
K = 3 0.40 0.82 0.81 0.82 0.85 0.55 0.95
K = 4 0.63 0.77 0.72 0.73 0.77 0.42 0.93

2,500

K = 1 0.16 0.87 0.90 0.89 0.94 0.69 0.96
K = 2 0.17 0.92 0.95 0.94 0.98 0.81 0.98
K = 3 0.67 0.86 0.82 0.83 0.88 0.58 0.96
K = 4 0.55 0.81 0.80 0.80 0.84 0.54 0.94

normal distribution (K = 1) both provide similar results in terms of PCCs and AUCs.

Again, more complicated mixture models such as K = 3 and 4 do not work well as

K = 1 and 2, probably due to the small sample size (50 patients). The large sample size

(N = 2, 500 patients) shows improvement in the accuracy measurements, and reduced

variability in estimates of these measurements (see Figure 5.14). As expected, differ-

ent values of K generate different models, and this results in different cut-off values.

These cutoffs give the optimum performance (point closest to the top left corner of a

ROC curve) for each scenario. There are differences between the cutoff values because

each model assigns probabilities based on different numbers of parameters. The cut-off

values for the different K models are the average based on 100 repeats of training and

testing sets over 100 simulated datasets.

In the case of a large departure from normality, the single normal distribution is
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Figure 5.14: Receiver Operating Characteristic curves for models with K = 1, 2, 3, 4
mixture components under the assumption that the true random effects distribution
is a 2-component mixture of normals with small departure from normality. The left
panels show ROC curves for each model whilst the right panels show boxplots of the
accuracy measures over 50 simulated datasets.

unable to capture the true random effects distribution (K = 2) (see Table 5.9 and

Figure 5.15), and so is unable to achieve as good a classification accuracy as the more

flexible K = 2 model, which achieved the best accuracy. This result may be explained

by the fact that the large departure from normality, where both groups have the same

locations of 2 components, and the only difference is the variability between the groups,

helps the model with 2 components to distinguish between the two groups.

The evidence presented in these two scenarios suggests that the single normal distri-
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Figure 5.15: Receiver Operating Characteristic curves for models with K = 1, 2, 3, 4
mixture components under the assumption that the true random effects distribution
is a 2-component mixture of normals with large departure from normality. The left
panels show ROC curves for each model whilst the right panels show boxplots of the
accuracy measures over 50 simulated datasets.

bution works well in the case where there is a difference between two groups in locations

and variability as well. However, in the case where the locations of the two groups are

equal, and the difference in variability between the groups is large, the single normal

distribution is unable to distinguish well between the two groups. The 2-component

mixture model can capture this difference and use it to generate more accurate group

membership probabilities.

The fourth and fifth scenario consider the case where the true distribution of the ran-

dom effects is a 3-component mixture of normal distributions (models coefficients can

be seen in Tables 5.5 and 5.7). Table 5.10 presents the classification accuracy for these

scenarios. For the small sample size (250 patients), using a model with 3-components

works less well in both scenarios (large and small departures from normality). A possi-
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Table 5.10: Prediction accuracy for the marginal approach under the assumption that
the random effects follow a 3 component normal mixture distribution.

Size Model Cutoff Sensitivity Specificity PCC AUC PPV NPV

small departure form normality

250

K = 1 0.21 0.91 0.94 0.93 0.97 0.79 0.98
K = 2 0.19 0.93 0.95 0.94 0.98 0.82 0.98
K = 3 0.21 0.88 0.86 0.87 0.90 0.64 0.97
K = 4 0.22 0.87 0.89 0.89 0.92 0.68 0.97

2,500

K = 1 0.20 0.91 0.94 0.93 0.97 0.78 0.98
K = 2 0.19 0.93 0.95 0.94 0.98 0.81 0.98
K = 3 0.2 0.92 0.93 0.93 0.97 0.79 0.98
K = 4 0.22 0.76 0.79 0.79 0.78 0.59 0.95

large departure form normality

250

K = 1 0.17 0.85 0.89 0.88 0.94 0.67 0.96
K = 2 0.16 0.90 0.92 0.92 0.96 0.75 0.97
K = 3 0.082 0.82 0.85 0.85 0.87 0.60 0.95
K = 4 0.19 0.76 0.75 0.75 0.80 0.45 0.93

2,500

K = 1 0.17 0.86 0.89 0.88 0.95 0.66 0.96
K = 2 0.17 0.91 0.93 0.92 0.97 0.76 0.98
K = 3 0.16 0.93 0.94 0.94 0.98 0.81 0.98
K = 4 0.14 0.77 0.83 0.82 0.85 0.58 0.93

ble explanation for this might be that the model with a small sample size of 50 patients

is unable to estimate the parameter accurately since a large number of parameters are

required for estimation. It is also worth pointing out in Table 5.10 that the model

with 2-components (K = 2) provides the best classification accuracy compared with

the single model (K = 1) and multiple components (K = 3 and 4).

In the case where the sample size is increased to 2,500 patients, using the 3-

component model can estimate their parameters more accurately, and this is reflected

by the fact that this model is comparable to K = 1 and 2 with a small departure from

normality and it is the best model for the large departure case (see Table 5.10 and

Figure 5.17). Therefore, using more flexible models can offer greater accuracy when

the departure from normality is substantial. However, complicated models can only

be beneficial when the sample size is sufficiently large, even if they capture the ‘true’
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Figure 5.16: Receiver Operating Characteristic curves for models with K = 1, 2, 3, 4
mixture components under the assumption that the true random effects distribution
is a 3-component mixture of normals with small departure from normality. The left
panels show ROC curves for each model whilst the right panels show boxplots of the
accuracy measures over 50 simulated datasets.

distribution.

The remaining scenario of the simulation study is the T-distribution. It can be seen

from the data in Table 5.11 that when the true distribution is the T-distribution with

small degrees of freedom (d.f. = 3), assuming a mixture distribution provides good

classification results compared with a single normal distribution (K = 1). As expected,

for the small sample size (250 patients), the model with a 2-component mixture of

normal distributions classifies patients correctly with AUC of 0.82. When the sample
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Figure 5.17: Receiver Operating Characteristic curves for models with K = 1, 2, 3, 4
mixture components under the assumption that the true random effects distribution
is a 3-component mixture of normals with large departure from normality. The left
panels show ROC curves for each model whilst the right panels show boxplots of the
accuracy measures over 50 simulated datasets.

size is increased to 2,500, the 3-component mixture model gave the best accuracy,

reflecting the fact that more flexible models could capture the skewed nature of the

T-distribution more accurately than a single normal distribution.

For small departure from normality (5 d.f.), the results for 250 patients show that

the simple models such as K = 1 and K = 2 gave a good prediction, with the two

components models most often being the best (see Table 5.11). Models with more

flexible distributions are more accurate for prediction in the case the sample size is
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Table 5.11: Prediction accuracy of the marginal approach under that assumption that
the random effects follow a T-distribution with 3 and 5 degrees of freedom.

Size Model Cutoff Sensitivity Specificity PCC AUC PPV NPV

3 degrees of freedom

250

K = 1 0.14 0.73 0.74 0.74 0.77 0.46 0.92
K = 2 0.16 0.76 0.77 0.77 0.81 0.46 0.93
K = 3 0.17 0.73 0.75 0.74 0.79 0.44 0.92
K = 4 0.23 0.70 0.70 0.70 0.74 0.39 0.90

2,500

K = 1 0.13 0.73 0.73 0.73 0.74 0.47 0.93
K = 2 0.18 0.76 0.75 0.75 0.79 0.48 0.94
K = 3 0.17 0.77 0.77 0.77 0.83 0.47 0.93
K = 4 0.17 0.74 0.75 0.75 0.80 0.43 0.92

5 degrees of freedom

250

K = 1 0.16 0.81 0.81 0.81 0.86 0.53 0.95
K = 2 0.15 0.81 0.82 0.82 0.87 0.53 0.95
K = 3 0.22 0.78 0.78 0.78 0.83 0.48 0.93
K = 4 0.24 0.77 0.76 0.76 0.81 0.46 0.93

2,500

K = 1 0.16 0.81 0.81 0.81 0.86 0.54 0.95
K = 2 0.19 0.81 0.82 0.81 0.88 0.54 0.95
K = 3 0.17 0.81 0.81 0.81 0.88 0.52 0.94
K = 4 0.20 0.79 0.79 0.79 0.86 0.50 0.94

large (2,500 patients).

Together, these results show that when the departure from normality is small,

assuming a single normal distribution can provide an accurate classification that is

comparable with, or better than more flexible models. While in most cases, assuming

a 2-components distribution works well, and there can be a benefit in assuming this

extra flexible model.

However, this is not the whole story about the single normal distribution. There

is a benefit of assuming a single distribution when the deviation from normality is

substantial, and the location of mixture components is different between groups (this

result is not stated here). This case allows a single distribution of the random effects

to capture differences between the two groups, and gives a chance to classify patients

correctly, despite the random effects misspecification.
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Figure 5.18: Receiver Operating Characteristic curves for models with K = 1, 2, 3, 4
mixture components under the assumption that the true random effects distribution is
a T-distribution with 3 degrees of freedom. The left panels show ROC curves for each
model whilst the right panels show boxplots of the accuracy measures over 50 simulated
datasets.

On the other hand, when the departure from normality increases, assuming a mix-

ture distribution provides an improvement in classification accuracy, while assuming a

single normal distribution performs less well, unless the difference is in the locations

and levels of variations as well, in which case a single normal distribution can classify

the patients well even though the model does not fit the data well. Some classification

measurements such as AUC increase when a model with K = 2 is used, although this

increase may not always be pronounced.
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Figure 5.19: Receiver Operating Characteristic curves for models with K = 1, 2, 3, 4
mixture components under the assumption that the true random effects distribution is
a T-distribution with 5 degrees of freedom. The left panels show ROC curves for each
model whilst the right panels show boxplots of the accuracy measures over 50 simulated
datasets.
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Effect on random effects prediction

Next, I turn to the random effects prediction approach. As indicated at the start of this

section different studies have shown that the marginal and random effects prediction

approaches to LoDA can each work well in different scenarios. For the PBC data

considered in this thesis, the marginal approach gave the most accurate predictions.

However, in this section, I explore factors that affect the accuracy of the random effects

prediction approach in the presence of random effects misspecification. A key aspect

of the random effect approach is the estimation of the patients’ random effects. More

clinic visits per patient may allow more accurate estimates of an individual patient’s

random effects which could in turn lead to more accurate predictions using the random

effects approach.

Three simulation studies, a single normal distribution (K = 1), a 2-component

mixture of normal distributions with large departure from normality (K = 2) and a

T-distribution with 3 degrees of freedom, are considered to address this question. Four

and nine visits per patients are simulated in this situation. The schedule of the 9 visits

is designed so that each patient has approximately a visit every three months. The

results obtained from the analysis of the random effects prediction approach can be

compared in Tables 5.12, 5.13 and 5.14. Figures 5.20, 5.21 and 5.22 compare ROCs

and box plots of the random effects approach when the number of visits per patients

is 4 and 9 for the three scenarios.

The results of the scenario where the true distribution of the random effects is a

single normal or 2-component mixture of normal distributions with large departure

from normality, can be seen in Tables 5.12 and 5.13. The random effects prediction

approach shows improvement in the classification accuracy when the number of visits

per patients is 9 compares to 4 visits per patients. For example, in the case where

the true distribution is a single normal, using more observations per patient helps to

estimate the parameters of the random effects distribution more accurate (as shown

in Table 5.12). From the data in Figure 5.20, there is much more variability in the

specificity and AUC for the model K = 1 than for K = 2, while for sensitivity, it is the
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Table 5.12: Prediction accuracy of the random-effect approach under the assumption
that the random effects distribution follow a single normal distribution for N = 250
and 2,500 patients.

Size visit K Cutoff Sensitivity Specificity PCC AUC PPV NPV

250

4

K = 1 0.86 0.84 0.68 0.71 0.78 0.47 0.94
K = 2 0.74 0.68 0.64 0.65 0.64 0.35 0.88
K = 3 0.30 0.49 0.58 0.56 0.50 0.25 0.81
K = 4 0.097 0.37 0.70 0.63 0.51 0.25 0.81

9

K = 1 0.73 0.85 0.75 0.77 0.83 0.55 0.95
K = 2 0.77 0.80 0.76 0.77 0.80 0.49 0.93
K = 3 0.43 0.52 0.63 0.61 0.55 0.28 0.84
K = 4 0.21 0.40 0.71 0.65 0.53 0.28 0.83

2,500 4

K = 1 0.37 0.84 0.83 0.83 0.90 0.57 0.95
K = 2 0.21 0.84 0.84 0.84 0.90 0.60 0.95
K = 3 0.36 0.65 0.65 0.65 0.67 0.36 0.88
K = 4 0.37 0.65 0.49 0.52 0.57 0.28 0.87

other way round. These factors may explain the apparent between the results in the

Table 5.12 and Figure 5.20. In the case where the true distribution is K = 2, assuming

K = 2 shows a noticeable improvement in the AUC of 0.09 between 4 and 9 visits per

patients (see Table 5.13 and Figure 5.21). However, there is no significant improvement

in using a mixture distribution rather than a single normal distribution K = 1.

In the next scenario, a T-distribution with 3 degrees of freedom for the random

effects is considered. Table 5.14 and Figure 5.22 present the results of this scenario.

Again, the more clinical visits a patient has, then the more accurately the random effects

will be estimated. Furthermore, increasing the sample size to 2500 led to increased

classification accuracy for all models, suggesting that more accurate estimates of the

random effects could be made.
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Table 5.13: Prediction accuracy of the random-effect approach under the assumption
that the random effects distribution follow a 2-component normal distribution with
large departure from normality for N = 250 and 2,500 patients.

Size visit K Cutoff Sensitivity Specificity PCC AUC PPV NPV

N = 250

4

K = 1 0.45 0.66 0.74 0.73 0.67 0.46 0.89
K = 2 0.15 0.46 0.82 0.74 0.62 0.48 0.86
K = 3 0.074 0.56 0.73 0.70 0.65 0.37 0.87
K = 4 0.065 0.50 0.70 0.66 0.60 0.33 0.85

9

K = 1 0.24 0.75 0.79 0.78 0.79 0.53 0.92
K = 2 0.29 0.61 0.82 0.77 0.71 0.50 0.89
K = 3 0.22 0.60 0.75 0.72 0.67 0.41 0.88
K = 4 0.19 0.55 0.66 0.64 0.59 0.32 0.85

N = 2,500 4

K = 1 0.011 0.71 0.87 0.84 0.83 0.61 0.92
K = 2 0.070 0.69 0.93 0.88 0.84 0.76 0.93
K = 3 0.026 0.43 0.75 0.69 0.60 0.68 0.85
K = 4 0.083 0.30 0.86 0.75 0.58 0.55 0.83

Table 5.14: Prediction accuracy of the random-effect approach under the assumption
that the random effects distribution follow a T-distribution with 3 degrees of freedom
for N = 250 and 2,500 patients.

Size visit K Cutoff Sensitivity Specificity PCC AUC PPV NPV

N = 250

4

K = 1 0.21 0.75 0.75 0.75 0.80 0.44 0.92
K = 2 0.30 0.73 0.74 0.74 0.78 0.42 0.92
K = 3 0.49 0.68 0.69 0.69 0.71 0.37 0.89
K = 4 0.48 0.63 0.60 0.61 0.59 0.31 0.86

9

K = 1 0.19 0.76 0.76 0.76 0.81 0.44 0.93
K = 2 0.23 0.75 0.75 0.76 0.81 0.45 0.92
K = 3 0.48 0.72 0.70 0.70 0.74 0.39 0.91
K = 4 0.44 0.61 0.64 0.63 0.61 0.32 0.87

N = 2,500 4

K = 1 0.14 0.77 0.76 0.76 0.83 0.45 0.93
K = 2 0.17 0.76 0.77 0.76 0.82 0.45 0.93
K = 3 0.31 0.75 0.75 0.75 0.81 0.43 0.92
K = 4 0.57 0.70 0.69 0.69 0.73 0.37 0.90
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Figure 5.20: Receiver Operating Characteristic curves of the random effects approach
for models with K = 1, 2, 3, 4 mixture components under the assumption that the true
random effects distribution is a single normal. The left panels show ROC curves for
each model whilst the right panels show boxplots of the accuracy measures over 50
simulated datasets.
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Figure 5.21: Receiver Operating Characteristic curves of the random effects approach
for models with K = 1, 2, 3, 4 mixture components under the assumption that the true
random effects distribution is a 2-components multivariate normal with a high degree
of departure from normality. The left panels show ROC curves for each model whilst
the right panels show boxplots of the accuracy measures over 50 simulated datasets.
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Figure 5.22: Receiver Operating Characteristic curves of the random effects approach
for models with K = 1, 2, 3, 4 mixture components under the assumption that the true
random effects distribution is a t-distribution with 3 degrees of freedom. The left panels
show ROC curves for each model whilst the right panels show boxplots of the accuracy
measures over 50 simulated datasets.
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5.4 Summary

Together these simulation studies provide valuable insights into the effect of random ef-

fects misspecification on classification accuracy in longitudinal discriminant data. Two

approaches of LoDA have been considered in this research, the marginal and the random

effects approaches, since they have been shown to give the most accurate predictions

in a number of settings (see Chapter 4, Hughes et al. (2018a), Komárek et al. (2010),

Komarek et al. (2009) and Morrell et al. (2011)).

This research has shown that assuming a single normal distribution when the de-

parture from normality is small, will not usually have much effect on the classification

accuracy. When the departure from normality is substantial, the single normal distri-

bution is unable to estimate the parameters accurately and the model performs less

well. If the difference is in the locations and levels of variations as well, a single normal

distribution can capture the differences between groups even though the estimates of

the random effects are not estimated accurately.

On the other hand, in the case where the departure from normality is substantial,

assuming a more flexible random effects distribution can allow more information to

estimate the parameters correctly and that models can perform more accurate classi-

fication. This conclusion is in agreement with Komárek et al. (2010) who suggested

that the classification accuracy will be improved when using a normal mixture in the

random effects distribution.

It is also shown that increasing the sample size helps to improve classification accu-

racy, by allowing a more accurate estimation of the random effects. Similarly, increasing

the number of observations per patient allows estimating the patient-specific intercepts

and slopes more accurate. However if more flexible models, with mixtures of normal

distributions, are assumed for the random effects, then researchers should take care

to ensure that they have a suitable sample size, and a reasonable number of repeated

measurements per patient to guarantee that the more complex models are accurately

estimated.
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Chapter 6

Conclusions and Further Work

6.1 Introduction

Discriminant analysis approaches are often used to classify patients into groups based

on their risk of having a disease of interest. Linear discriminant analysis (LDA) and

quadratic discriminant analysis (QDA) are the two principal traditional techniques of

discriminant analysis. These techniques are typically designed to analyse cross-sectional

data where data are collected from patients at one point in time. However, many clinical

studies follow patients over prolonged periods of time which yields longitudinal data.

In studies involving longitudinal data, discriminant analysis may be used to analyse

the longitudinal information with the purpose of classifying the patients based on a

predicted future outcome.

The increase in the amount of longitudinally collected clinical data has emphasised

the need for longitudinal discriminant analysis (LoDA) approaches for classification

purposes (Roy and Khattree (2005), Kim and Kong (2016a)). LoDA methods can be

used to classify patients into prognostic groups based on mixed models that make use of

the patient’s longitudinal data. Some clinical studies that apply LoDA have considered

only a single continuous marker (Brant et al. (2003), Kohlmann et al. (2009)). Since

in many cases more than one longitudinal marker is measured, using information from
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multiple markers for classification is often of interest. LoDA methods were extended

to use multiple continuous markers (see for example Komárek et al. (2010)). A further

extra extension of LoDA methods for multiple longitudinal markers considered different

types of marker, such as continuous, discrete and binary (Fieuws et al. (2008), Hughes

et al. (2017)). Hughes et al. (2018b) have recently developed a more flexible approach

for LoDA (i.e., marginal, conditional and random effects approaches).

In this thesis, there were three main objectives as stated in Chapter 1. The first

objective was to investigate the benefits of using LoDA rather than classical linear and

quadratic discriminant analysis for clinical classification. The second objective was

to explore the classification accuracy of three LoDA approaches (namely: marginal,

conditional, random-effects predictions). The third objective was to assess the impact

of the misspecification of the random-effects distribution on the classification accuracy.

In Chapter 2, the methodology associated with multivariate discriminant analysis

using longitudinal data are described. In Chapter 3, a range of approaches for dis-

criminant analysis was proposed and used to analyse a longitudinal ophthalmic dataset

in order to predict treatment success or treatment failure in patients treated for age-

related macular degeneration (AMD).

In Chapter 4, I further explored the accuracy of three ways of performing LoDA for

the purpose of classification (i.e., marginal, conditional and random effects approaches)

using the PBC dataset and simulation studies. Each of the three approaches has a

different way to calculate a patient’s posterior group membership probabilities. These

three approaches were based on a mixed model using the patient’s longitudinal his-

tory to predict new patients future disease status. An investigation of whether the

misspecification of the random effects distribution has a minor or major effect on the

classification performance was shown in Chapter 5.

A summary of the main findings and of the principal issues and suggestions which

have arisen in this thesis is provided in this chapter.
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6.2 Summary of the main findings

6.2.1 Classical discriminant analysis versus modified discriminant ap-

proach

LDA and QDA are two well-known approaches of discriminant analysis. LDA provides

accurate classification results under the assumption of multivariate normality of the

explanatory variables with common covariance matrix across groups. QDA is suggested

when the assumption of covariance matrices being the same across groups is not met.

It also requires larger sample sizes than LDA because QDA has to estimate an extra

covariance matrix.

The key feature of longitudinal data is that repeated measurements of a marker

within the same individual tend to be correlated. This correlation should be taken into

account in the statistical analysis (Van Montfort et al. (2010)). Longitudinal clinical

data are rarely measured at the same time point, and there may be missing data if

a patient misses a clinical appointment. If I apply LDA or QDA to such data, this

will require the exclusion of patients with missing values or imputed missing data.

In addition, classical discriminant analysis (LDA or QDA) does not meet the main

purpose of analysis of the longitudinal data in the sense that it deals with each time

point as a single separate variable and does not model the correlation between repeated

measurements.

A discriminant analysis approach based on a mixed-effects model can be used to

overcome the limitations related to missing values or when patients do not arrive at

the same time points.

In this thesis, the classical quadratic discriminant approach and a modified quadratic

discriminant approach were compared using a longitudinal clinical dataset from oph-

thalmology to predict the patient’s status at 12 months after treatment. Classical

discriminant analysis can be applied to balanced longitudinal data and assumes that

each follow-up measurement is a separate variable. The parameters (i.e., covariance
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matrices and mean vectors) of the classical discriminant analysis were calculated from

the multivariate data. While the modified discriminant analysis is based on the mixed-

effects model and can be applied to unbalanced longitudinal datasets.

The main finding from this comparison was that utilising the discrimination meth-

ods that take into account the correlation between the repeated measurements within

the same individuals does provide more accurate prediction when compared to the

approach that uses each time point as a single variable. Furthermore, the use of mixed-

effects models allows more effective use of the data since all the patients with missing

visits (or visits that occurred at different time points across patients) could be included

in the analysis, without the need to use imputation methods.

6.2.2 Longitudinal discriminant analysis (LoDA) approaches

Three approaches of longitudinal discriminant analysis (LoDA) (i.e., marginal, condi-

tional and random effects approaches) have been proposed first by Morrell et al. (2007).

More recently, approaches for longitudinal discriminant analysis (LoDA) have been fur-

ther developed by considering a normal mixture for the random-effects distribution.

In chapter 4, I explored the advantages of each approach using the Primary Biliary

Cirrhosis dataset (PBC dataset) and computer-simulated data. The marginal pre-

diction focuses on the average change over time of the markers in each group. The

conditional prediction is based on the patient-specific change of markers over time,

without taking the error in the variability in the estimation of the patient’s random

effects into account. The conditional approach estimates conditional profiles of a new

patient, given an estimate of their patient-specific deviations from the average longitu-

dinal profile, then compares it with the overall mean longitudinal profiles of patient’s

with similar estimated random effects in each group. Finally, the random-effects pre-

diction focuses on the patient-specific changes of markers in each group.

When the main differences between the prognostic groups were in the mean lon-

gitudinal profiles, the marginal approach was found to be the most accurate to clas-
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sify patients the most accurately. This was expected since as mentioned above, the

marginal approach focuses on the overall mean changes of the markers over time. How-

ever, when the number of repeated measurements increased per patient, the random

effects approach was found to provide the best classification results; possibly because

the additional measurements allowed a more accurate estimation of the random effects.

When the patient-specific variability across the groups was noticeable, the random ef-

fects approach was expected to provide better prediction results than the marginal

and conditional approaches. This result may be explained by the fact that the ran-

dom effects approach focuses on the patient-specific variations of longitudinal profiles

of markers over time, and so it can better capture this patient-specific deviation from

the mean profile in each group.

For the simulation study, I considered two simulation scenarios to investigate which

approach provides the best classification accuracy. In Scenario 1, the fixed effects

parameters and the means of the random effects remained as in the PBC dataset in

each group. However, the random-effects variance-covariance matrix was set to be the

same in each group, in contrast with what was observed with the PBC dataset. This

means that, in my simulation, the variations between the groups were due to differences

in the mean profiles. For Scenario 1, I expected that the marginal prediction method

was likely to outperform the other two classification methods. In the second scenario,

I explored a situation where the conditional approach was expected to give the most

accurate prediction. Morrell et al. (2011) stated that if the variance of residual error

was large compared to the random effects variance, the random effects will be shrunken

towards the mean for the group, making prediction into the most prevalent group more

likely. The conditional approach utilises information about both the random effects and

the residual errors, and so I hypothesised that this might lead to better predictions.

The findings of the first scenario study suggested that if the mean longitudinal pro-

files between the two groups capture the main differences, then the marginal method

is able to classify patients most accurately. The findings observed in the second simu-

lation study were not what I expected. I was unable to provide a scenario where the
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conditional approach would outperform the marginal and random-effects approaches.

The conditional approach appears to offer no improvement to these two approaches.

6.2.3 Impact of the misspecification of the random-effects distribution

on the classification accuracy

Over the past decades, there has been a dramatic increase in statistical models that

use random effects terms to analyse longitudinal data (Hansen et al. (2010), Kohlmann

et al. (2009), Morrell et al. (2011)). Random-effects models take the correlation between

measurements on the same patient into account. It is commonly assumed that the

distribution of the random effects is a normal distribution.

The influence of the misspecification of the random effects distribution has been

widely studied (e.g., Neuhaus et al. (1992), Verbeke and Lesaffre (1997)). However,

most of the studies have focused on the accuracy of the parameters of the model. In

chapter 5, I investigated whether the misspecification of the random-effects distribution

has an effect on classification accuracy using the PBC dataset and simulated data. I

used the PBC data to provide an example of how a mixture of random effects distribu-

tions influenced the classification accuracy, and used simulations to test the robustness

of LoDA to different choices of random-effects distribution. In particular, I set four

different distributions for random effects: multivariate normal distribution (K = 1), a

mixture of two multivariate Gaussian distributions (K = 2), a mixture of three multi-

variate Gaussian distributions (K = 3) and the T distribution with 3 and 5 degrees of

freedom for this investigation.

The results of this investigation showed that if the departure from normality is only

small, assuming a single normal distribution will not affect the classification accuracy

much. A possible explanation for this result may be that even though the random effects

distribution is misspecified, it still captures sufficient information about the location

and spread of the random effects to be useful for classification. On the other hand, in

the situation where there is a substantial departure from normality, employing a more
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flexible random effects distribution is recommended, because the more flexible models

incorporate more information in the classification procedure.

A second finding was that the use of more flexible models requires a suitably large

number of repeated measurements per patient and a reasonably large number of pa-

tients, in order to estimate the parameters of the random effects distribution accurately

and to be able to improve classification accuracy.

6.3 Recommendations for practice

In this thesis, a range of approaches for discriminant analysis have been applied to sev-

eral longitudinal datasets. The recommendations in relation to each study have been

discussed in detail in the related chapters. This section summarises these recommen-

dations.

My first recommendation is that LDA or QDA can be used to analyse longitudi-

nal data for classification by fitting first a linear mixed-effects model. The estimated

parameters (i.e., means and covariance matrices) can be used in LDA/QDA to clas-

sify patients into groups (a finding supported by others, e.g., Tomasko et al. (1999),

Marshall and Barón (2000)). The mixed-effects model allows modelling explicitly the

correlations between measurements from the same patients in the analysis. However,

to decide which discriminant analysis approach (LDA/QDA) should be used, some sta-

tistical tests can be used to test the homogeneity of variance-covariance matrices (Box

(1949)).

The second recommendation is that using LoDA approaches, such as marginal, con-

ditional and random-effects approaches, (Morrell et al. (2007)), may be desirable where

in some cases testing the homogeneity of variance-covariance matrices is unhelpful or

unneeded. In addition, before analysing a data set, it is advisable to first plot the lon-

gitudinal profiles of their markers for patients in each group. If the differences in the

group mean profiles are noticeable and if the variability between- and within-patients
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are similar then the marginal approach is expected to give the best prediction. If, in

addition, there is a difference in the level of variability between the group mean in each

group, then the marginal and conditional approaches are not expected to give the best

prediction. In such a case, the random effects approach is likely to provide an accurate

classification, although care must be taken to ensure there are sufficient numbers of

both patients and repeated measurements to be able to estimate the random effects ac-

curately. However, if a considerable measurement error controls the variability between

patients, then the random-effects approach should not be an option because the indi-

vidual random effects estimates are incorrect. In such a case, the marginal approach

would be a suitable option.

Finally, for small datasets, assuming a single multivariate distribution for the random-

effects is acceptable. For large datasets, considering a more complex, flexible distri-

bution for the random effects is expected to be a good option to guard against the

misspecification of random effects.

6.4 Future work

The work presented in this thesis focussed on the longitudinal discriminant analysis

(LoDA) approaches that use patients’ longitudinal data to predict their future clinical

status. In this section, I will demonstrate some future work related to the results and

the analyses of LoDA approaches.

The impact that the sample size and the number of repeated measurements have

on the classification accuracy of each of the three LoDA approaches is still an open

question.

It would also be interesting to investigate whether a combined approach that uses

both marginal and random effects predictions can improve the classification accuracy

in terms of lead-time and sensitivity/specificity (Morrell et al. (2011)). One possible

way of combining them could be by using Bayesian model averaging (Hoeting et al.
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(1999)). For example, Rizopoulos et al. (2014) combined dynamic predictions from

joint models for longitudinal and time-to-event data. Their idea is based on weighting

the predictions from a number of models. The weights are determined using individual

patient data allowing weights that are both patient specific and time-dependent.

The applications in this thesis focus on three different types of markers: contin-

uous, binary and discrete. Another methodological development of longitudinal dis-

criminant analysis would be to extend the approach to allow categorical longitudinal

markers. This could be achieved through the use of multinomial logistic models within

the mixed model framework. One of the difficulties is how to estimate the random

effects parameters that are assumed to follow a mixture of normal distributions. Using

the maximum likelihood method to estimate the parameters will not be easy. Two

possible methods to obtain these estimates include the use of pairwise fitting methods

joined with the EM algorithm (see e.g., Laffont et al. (2014)) or MCMC methods such

as the Metropolis-Hastings algorithm along with numerical integration methods such as

Gauss Quadrature could be another way to estimate the parameters. The challenge in

this development would be the inclusion of mixture components in the random effects

distribution, or even more flexible models.

Missing data are one of the most common problems in longitudinal studies. Longi-

tudinal studies may show missing values since marker measurements may be incomplete

for some subjects. It would be of interest to investigate how missing data affects the

classification accuracy, in a more complete extension of the initial simulation work de-

veloped in Chapter 3. There are three forms of missing data: missing completely at

random (MCAR), missing at random (MAR) and not missing at random (NMAR).

There are three principal approaches to handle missing data: (1) Imputation, where

missing values are replaced, (2) omission where missing values are dropped and (3)

analysis by applying methods that can deal with the missing values. The last observa-

tion carried forward is one of the imputation method I have used to impute the missing

values. However, there are other different approaches to deal with missing data such

as listwise and pairwise deletion; mean imputation; regression imputation; stochastic
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imputation; and multiple imputations (see e.g.,Engels and Diehr (2003)).

An additional area of interest is when the study involves a large number of markers

compared to the number of subjects, and which is often referred as high-dimensional

data. One of the main questions that researchers face is how to find the best marker or

set of markers that can discriminate between groups. Within the discriminant analysis

framework, variable selection methods could be considered as a first step to reduce

the dimensionality in the dataset before applying discriminant analysis. Alternatively,

variable selection algorithms could be embedded within the longitudinal discriminant

analysis (Nkiet (2012)).

6.5 Conclusions

The demand for the longitudinal multivariate methods is increasing due to a large

amount of longitudinal data currently available in healthcare databases. Especially,

there has been an increased interest in LoDA approaches that use a patient’s clinical

history for prediction.

This study has shown that using LoDA approaches to analyse longitudinal data for

classification purpose can provide accurate classification results. In addition, consid-

ering more complex, flexible distributions for the random effects can provide a robust

classification even if the random effects are misspecified.
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timation in discriminant analysis of non-linear longitudinal data: A comparison of

resampling methods’, Statistical methods in medical research 27(4), 1153–1167.

Dickson, E. R., Grambsch, P. M., Fleming, T. R., Fisher, L. D. and Langworthy, A.

(1989), ‘Prognosis in primary biliary cirrhosis: model for decision making’, Hepatol-

ogy 10(1), 1–7.

Diggle, P., Diggle, P. J., Heagerty, P., Heagerty, P. J., Liang, K.-Y., Zeger, S. et al.

(2002), Analysis of longitudinal data, Oxford University Press.
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Appendix A

Modified discriminant analysis
step two

#~~~ second step ~~~#

# getProfiles to get patient visit time, age, contrast

# sensitivity, visual acuity and age for new patient id

#DNew.

IndProf1 <- getProfiles(t="visitmse", y=c("ageb","csse","vase","gender",

"outcome"),id="pat", data=DNew)

# w.prior is prior probability for each group.

w.prior<-c(0.5835,0.4165)

n1<-length(unique(DNew$pat)) ##number of unique patients

P_hatGN <-rep(0,7)

for(i in 1:n1){ ##For each unique patient...

Pat<-IndProf1[[i]]##Select their individual profile

l<-dim(Pat)[1] ##Check how many observations it has

for(j in 1:l){##For each longitudinal observation...

#One column for each fixed effect parameter,

#one row for each observation of each marker

# the first 6 rows intercept and slopes for first marker CS

# the second 6 rows are intercepts and slopes for VA.

X_new<-matrix(data=0,nrow=(j*2),ncol=6)

X_new[1:j,1] <- rep(1,j) # intercept for CS

X_new[1:j,2] <- rep(0,j)

X_new[1:j,3] <- Pat[1:j,"ageb"]

X_new[1:j,4] <- rep(0,j)

X_new[1:j,5] <- Pat[1:j,"visitmse"]

X_new[1:j,6] <- rep(0,j)

X_new[(j+1):(j+j),1] <- rep(0,j)

X_new[(j+1):(j+j),2] <- rep(1,j) # intercept for VA
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X_new[(j+1):(j+j),3] <- rep(0,j)

X_new[(j+1):(j+j),4] <- Pat[1:j,"ageb"]

X_new[(j+1):(j+j),5] <- rep(0,j)

X_new[(j+1):(j+j),6] <- Pat[1:j,"visitmse"]

Z_new<-matrix(data=0,nrow=(2*j),ncol=4)

#intercept and slope column for each

marker (2x2),

#row for each observation time for each marker.

Z_new[1:j,1] <- rep(1,j)

Z_new[1:j,2] <- rep(0,j)

Z_new[1:j,3] <- Pat[1:j,"visitmse"]

Z_new[1:j,4] <- rep(0,j)

Z_new[(j+1):(j+j),1] <- rep(0,j)

Z_new[(j+1):(j+j),2] <- rep(1,j)

Z_new[(j+1):(j+j),3] <- rep(0,j)

Z_new[(j+1):(j+j),4] <- Pat[1:j,"visitmse"]

# new observations for CS and VA.

Y_new<-c(Pat$csse[1:j],Pat$vase[1:j])

Iden = diag(j)

#fixed effects parameters for Group 0

B0 <- c(f0$coefficient$fixed)

#fixed effects parameters for Group 1

B1 <- c(f1$coefficient$fixed)

#Muo is the mean of LMM model which is XB

# covariate matrix for fixed effects multiple

# vector of fixed effect

Mu0<-X_new%*%B0

Mu1<-X_new%*%B1

# ZDZ0 is multiple covariate matrix for random effects

# with covariance matrix for random effects

ZDZ0 = Z_new%*%D0.mat%*%t(Z_new)

ZDZ1 = Z_new%*%D1.mat%*%t(Z_new)

# sigmaI0 is residual error matrix multiple identical matrix

sigmaI0 = sigma0 %x% Iden

sigmaI1 = sigma1 %x% Iden

#Sigma0 is the variance of LMM model

Sigma0 = ZDZ0 + sigmaI0

Sigma1 = ZDZ1 + sigmaI1

# SigmaPool is pool covariance matrix

SigmaPool = (Sigma0*(n.D0*j-1)+Sigma1*(n.D1*j-1))/(n.D*j-2)

# dMVN is used to get vector with evaluated values of the (log-)density

#marg0Q to get evaluated values of the quadratic

#(log-)density for Group 0

marg0Q <- dMVN(Y_new,mean=Mu0,Sigma=Sigma0)

marg1Q <- dMVN(Y_new,mean=Mu1,Sigma=Sigma1)

#marg0L ito get evaluated values of the linear

#(log-)density for Group 0

marg0L <- dMVN(Y_new,mean=Mu0,Sigma=SigmaPool)
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marg1L <- dMVN(Y_new,mean=Mu1,Sigma=SigmaPool)

p<-c(marg0Q,marg1Q,marg0L,marg1L)

# P_hatGN is matrix include patient id, evaluated values of

#quadratic density for Group 0 * prior probability for group 0,

#evaluated values of quadratic density for Group 1

#* prior probability for group 1, evaluated values of

#linear density for Group 0 * prior probability for group 0,

# evaluated values of linear density for Group 1

# * prior probability for group 1, and patient’s

# Status

P_hatGN<-rbind(P_hatGN,c(floor(i),(Pat[j,1]),

(p[1:2]*w.prior)/sum(p[1:2]*w.prior),

(p[3:4]*w.prior)/

sum(p[3:4]*w.prior),Pat[j,6]))

}}
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Appendix B

Creating Simulated Datasets

Simulated dataset for Scenario 1, Chapter 4.

PBCSimulate <- function(s) {

set.seed(s + 1606)

## Set up simulation parameters. Random Effects Mean

# This vector means from Table 4.3.

#For scenario 2, the first four means of the random effects is used.

# This mean vector refers to Group 0

mu0 <- ParamEstPBC[c("b.Mean.1", "b.Mean.2", "b.Mean.3","b.Mean.4",

"b.Mean.5", "b.Mean.6", "b.Mean.7"), 1]

# This mean vector refers to Group 1

mu1 <- ParamEstPBC[c("b.Mean.1", "b.Mean.2", "b.Mean.3","b.Mean.4",

"b.Mean.5", "b.Mean.6", "b.Mean.7"), 4]

## Random effects Covariance Matrix which from Table 4.3

# The correlations of albumin and biliurbin markers that related to

#scenario 2 are b.Corr.2.1, b.Corr.3.1,

#b.Corr.4.1, b.Corr.3.2, b.Corr.4.2, and b.Corr.4.3.

D0Cov <- matrix(c(1, ParamEstPBC[c("b.Corr.2.1", "b.Corr.3.1",

"b.Corr.4.1", "b.Corr.5.1", "b.Corr.6.1",

"b.Corr.7.1"), 4], ParamEstPBC["b.Corr.2.1",4],

1, ParamEstPBC[c("b.Corr.3.2", "b.Corr.4.2",

"b.Corr.5.2", "b.Corr.6.2", "b.Corr.7.2"), 4],

ParamEstPBC[c("b.Corr.3.1", "b.Corr.3.2"), 4],

1, ParamEstPBC[c("b.Corr.4.3", "b.Corr.5.3",

"b.Corr.6.3", "b.Corr.7.3"), 4], ParamEstPBC[c

("b.Corr.4.1", "b.Corr.4.2", "b.Corr.4.3"), 4], 1,

ParamEstPBC[c("b.Corr.5.4", "b.Corr.6.4",

"b.Corr.7.4"), 4], ParamEstPBC[c("b.Corr.5.1",

"b.Corr.5.2", "b.Corr.5.3", "b.Corr.5.4"), 4], 1,

ParamEstPBC[c("b.Corr.6.5", "b.Corr.7.5"), 4],

ParamEstPBC[c("b.Corr.6.1", "b.Corr.6.2",

"b.Corr.6.3", "b.Corr.6.4", "b.Corr.6.5"), 4], 1,

176



ParamEstPBC[c("b.Corr.7.6"), 4], ParamEstPBC[c

("b.Corr.7.1", "b.Corr.7.2", "b.Corr.7.3",

"b.Corr.7.4", "b.Corr.7.5", "b.Corr.7.6"), 4], 1),

nrow = 7, ncol = 7, byrow = TRUE)

# standard deviation for the random effects corresponds to Table 4.3.

# Again using the first four SD for Scenario 2.

SD <- ParamEstPBC[c("b.SD.1", "b.SD.2", "b.SD.3", "b.SD.4", "b.SD.5",

"b.SD.6", "b.SD.7"), 4]

# Here the correlation matrix is Converted to covariance matrices

D0 <- cor2cov(D0Cov, sd = SD)

# alpha here relates to fixed effects parameters

# scenario 2 is not include any fixed effects.

Alpha0 <- ParamEstPBC["alpha1", 1]

Alpha1 <- ParamEstPBC["alpha1", 4]

## Error variances.

evar1 <- 0.159

evar2 <- 0.169

evar3 <- 0.157

evar4 <- 0.198

## Simulate time points for 200 patients in Group 0

# and 50 patients in Group 1, in total 250 patients.

t0 <- rep(0, 250)

t1 <- runif(250, 170, 200)

t2 <- runif(250, 350, 390)

t3 <- runif(250, 710, 770)

t <- cbind(t0,

t1, t2, t3)/30

PatientData0 <- PatientData1 <- NULL

# here start with Simulated dataset for Group 0.

for (i in 1:200) {

## Simulate random errors.

Randerror <- c(rnorm(4, mean = 0, sd = evar1), rnorm(4, mean = 0,

sd = evar2), rep(0, 4), rep(0, 4))

## Simulate Patient random effect

PatRan <- rMVN(1, mean = mu0, Sigma = D0)$x

## Simulate marker responses

X <- rep(0, 16)

X[13:16] <- t[i, ]

Z <- matrix(data = 0, nrow = 16, ncol = 7)

Z[1:4, 1] <- Z[5:8, 3] <- Z[9:12, 5] <- Z[13:16, 7] <- 1

Z[1:4, 2] <- Z[5:8, 4] <- Z[9:12, 6] <- t[i, ]

Yi <- X * Alpha0 + Z %*% PatRan + Randerror

# Scenario 2 is not include Platelet and Spider.

# that will be the same for group 1.

Platelet <- rpois(4, exp(Yi[9:12]))

Spiders <- rbinom(4, size = 1, exp(Yi[13:16])/(1 + exp(Yi[13:16])))
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#Here I combine the four markers for Scenario 1.

tmp <- cbind(rep(i, 4), t[i, ], Yi[1:4], Yi[5:8], Platelet,

Spiders, rep(0, 4))

PatientData0 <- rbind(PatientData0, tmp)

}

## Same for 50 patients in group 1.

for (i in 201:250) {

## Simulate random errors.

Randerror <- c(rnorm(4, mean = 0, sd = evar3), rnorm(4, mean = 0,

sd = evar4), rep(0, 4), rep(0, 4))

## Simulate Patient random effect

PatRan <- rMVN(1, mean = mu1, Sigma = D0)$x

## Simulate marker responses

X <- rep(0, 16)

X[13:16] <- t[i, ]

Z <- matrix(data = 0, nrow = 16, ncol = 7)

Z[1:4, 1] <- Z[5:8, 3] <- Z[9:12, 5] <- Z[13:16, 7] <- 1

Z[1:4, 2] <- Z[5:8, 4] <- Z[9:12, 6] <- t[i, ]

Yi <- X * Alpha1 + Z %*% PatRan + Randerror

Platelet <- rpois(4, exp(Yi[9:12]))

Spiders <- rbinom(4, size = 1, exp(Yi[13:16])/(1 + exp(Yi[13:16])))

tmp <- cbind(rep(i, 4), t[i, ], Yi[1:4], Yi[5:8], Platelet,

Spiders, rep(1, 4))

PatientData1 <- rbind(PatientData1, tmp)

}

## Combine the data groups together to create a simulated data set.

PatientData <- as.data.frame(rbind(PatientData0, PatientData1))

colnames(PatientData) <- c("id", "time", "Albumin", "bilirubin",

"Platelet", "Spiders", "Status")

filename <- paste0("PBCsim", s, ".RData")

save(PatientData, file = filename)

}
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Appendix C

Performing Longitudinal
Discriminant Analysis

library(mixAK)

# mod0 is the MGLMM fit to the patients in group 0.

>mod0 <- GLMM_MCMC(y = PBC_0Train[, c("Albumin", "bilirubin", "Platelet",

"Spiders")], dist = c("gaussian", "gaussian", "poisson

(log)","binomial(logit)"), id = PBC_0Train[, "id"], x =

list(Albumin = "empty", bilirubin = "empty", Platelet =

"empty", Spiders = PBC_0Train[, "time"]), z = list(

Albumin =PBC_0Train[,"time"],bilirubin = PBC_0Train[,

"time"], Platelet = PBC_0Train[, "time"], Spiders =

"empty"), random.intercept = c(Albumin = TRUE,bilirubin

= TRUE, Platelet = TRUE, Spiders = TRUE), prior.b = list

(Kmax = 1), nMCMC = c(burn = 5000, keep = 10000, thin =

10, info = 500), PED = FALSE)

# mod1 is the MGLMM fit to the patients in group 1.

>mod1 <- GLMM_MCMC(y = PBC_1Train[, c("Albumin", "bilirubin", "Platelet",

"Spiders")], dist = c("gaussian", "gaussian", "poisson

(log)", "binomial(logit)"), id = PBC_1Train[, "id"], x =

list(Albumin = "empty", bilirubin = "empty", Platelet =

"empty", Spiders = PBC_1Train[, "time"]), z = list(

Albumin = PBC_1Train[, "time"], bilirubin = PBC_1Train[,

"time"], Platelet = PBC_1Train[, "time"], Spiders =

"empty"), random.intercept = c(Albumin = TRUE, bilirubin

= TRUE, Platelet = TRUE, Spiders = TRUE), prior.b = list

(Kmax = 1), nMCMC = c(burn = 5000, keep = 10000, thin =

10, info = 500), PED = FALSE)

# cluster is predict function to predict the status of

# new patients based on the patient data contained in

# the dataframe PBCNew.

>cluster <- GLMM_longitDA2(mod = list(mod0, mod1), w.prior = c(0.8, 0.2), y
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= PBCNew[, c("Albumin", "bilirubin", "Platelet",

"Spiders")], id = PBCNew[, "id"], xz.common = TRUE,

x = list(Albumin = "empty", bilirubin = "empty",

Platelet = "empty", Spiders = PBCNew[, "time"]),

z = list(Albumin = PBCNew[, "time"], bilirubin =

PBCNew[, "time"], Platelet = PBCNew[, "time"],

Spiders = "empty"))

# Resul1 is matrix include patient id, marginal posterior probability,

# conditional posterior probability, random effects posterior probability and

#finally the patient’s status.

>Resul1 <- cbind(PBCNew$id[1], cluster$pi_marg, cluster$pi_cond,

cluste$pi_reff, PBCNew$Status[1])

>colnames(Resul1) <- c("id", "Marg0", "Marg1", "Cond0", "Cond1", "RanEf0",

"RanEf1", "Status")
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Appendix D

Calculating classification
accuracy measurements

CVRes <- as.data.frame(CVRes)

Gp0 <- sum(CVRes$Status == 0)

Gp1 <- sum(CVRes$Status == 1)

## for each potential cutoff point

for (j in 1:l_p) {

# first five measurements are used to assess the

# accuracy of the marginal predictions.

SensitivityM[NCV, j] <- sum(CVRes$Marg1 >= p[j] & CVRes$Status == 1)/Gp1

SpecificityM[NCV, j] <- sum(CVRes$Marg1 < p[j] & CVRes$Status == 0)/Gp0

PCCM[NCV, j] <- (sum(CVRes$Marg1 >= p[j] & CVRes$Status == 1) + sum(

CVRes$Marg1 < p[j] & CVRes$Status == 0))/(Gp0 + Gp1)

PPVM[NCV, j] <- sum(CVRes$Marg1 >= p[j] & CVRes$Status == 1)/sum(

CVRes$Marg1 >= p[j])

NPVM[NCV, j] <- sum(CVRes$Marg1 < p[j] & CVRes$Status == 0)/sum(

CVRes$Marg1 < p[j])

# The next five measurements are used to assess the

# accuracy of the conditional predictions.

SensitivityC[NCV, j] <- sum(CVRes$Cond1 >= p[j] & CVRes$Status == 1)/Gp1

SpecificityC[NCV, j] <- sum(CVRes$Cond1 < p[j] & CVRes$Status == 0)/Gp0

PCCC[NCV, j] <- (sum(CVRes$Cond1 >= p[j] & CVRes$Status == 1) + sum(

CVRes$Cond1 < p[j] & CVRes$Status == 0))/(Gp0 + Gp1)

PPVC[NCV, j] <- sum(CVRes$Cond1 >= p[j] & CVRes$Status == 1)/sum(

CVRes$Cond1 >= p[j])

NPVC[NCV, j] <- sum(CVRes$Cond1 < p[j] & CVRes$Status == 0)/sum(

CVRes$Cond1 < p[j])

# Here the five measurements are used to assess the

# accuracy of the Random effects predictions.

SensitivityR[NCV, j] <- sum(CVRes$RanEf1 >= p[j] & CVRes$Status == 1)/Gp1

SpecificityR[NCV, j] <- sum(CVRes$RanEf1 < p[j] & CVRes$Status == 0)/Gp0

PCCR[NCV, j] <- (sum(CVRes$RanEf1 >= p[j] & CVRes$Status == 1) + sum(

CVRes$RanEf1 < p[j] & CVRes$Status == 0))/(Gp0 + Gp1)
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PPVR[NCV, j] <- sum(CVRes$RanEf1 >= p[j] & CVRes$Status == 1)/sum(

CVRes$RanEf1 >= p[j])

NPVR[NCV, j] <- sum(CVRes$RanEf1 < p[j] & CVRes$Status == 0)/sum(

CVRes$RanEf1 < p[j])

}

# For each prediction, AUC is calculated and the values

# of the sensitivity etc at the optimal cutoffs on the ROC curves.

AUCM <- trapz(SpecificityM[NCV, ], SensitivityM[NCV, ])

# here calculate the optimal threshold which is

# balanced between sensitivity and specificity

D_M <- sqrt((1 - SensitivityM[NCV, ])^2 + (1 - SpecificityM[NCV, ])^2)

m_optM <- which.min(D_M)

Marginal[NCV, ] <- c(p[m_optM], SensitivityM[NCV, m_optM], SpecificityM

[NCV, m_optM], PCCM[NCV, m_optM], AUCM, PPVM[NCV,

m_optM], NPVM[NCV, m_optM])

AUCC <- trapz(SpecificityC[NCV, ], SensitivityC[NCV, ])

D_C <- sqrt((1 - SensitivityC[NCV, ])^2 + (1 - SpecificityC[NCV, ])^2)

m_optC <- which.min(D_C)

Conditional[NCV, ] <- c(p[m_optC], SensitivityC[NCV, m_optC], SpecificityC

[NCV, m_optC], PCCC[NCV, m_optC], AUCC, PPVC[NCV,

m_optC], NPVM[NCV, m_optC])

AUCR <- trapz(SpecificityR[NCV, ], SensitivityR[NCV, ])

D_R <- sqrt((1 - SensitivityR[NCV, ])^2 + (1 - SpecificityR[NCV, ])^2)

m_optR <- which.min(D_R)

Random[NCV, ] <- c(p[m_optR], SensitivityR[NCV, m_optR], SpecificityR

[NCV, m_optR], PCCR[NCV, m_optR], AUCR, PPVR[NCV,

m_optR], NPVR[NCV, m_optR])
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