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Abstract 

The relationship between oil prices and stocks is an important issue for portfolio 

selection and risk management. Understanding the economic factors affecting the 

interaction between oil prices and stocks allows investors to improve their portfolio 

performance. This paper proposes a mixed frequency data sampling copula model with 

explanatory variables (copula-MIDAS-X) that incorporates low frequency explanatory 

variables into a high frequency dynamic copula model. The new model enables us to 

investigate the impacts of economic factors on the relationship between oil and stock 

returns, regardless of their marginal distributions. In an application to Brent oil prices 

and S&P 500 indices, we find that the dependence of oil and stock markets is influenced 

by aggregate demand and stock specific negative news. The impact of aggregate 

demand lasts for two years, while the impact of stock specific bad news lasts for one 

quarter. The implication for market regulators and investors is that changes in aggregate 

demand have influential and long-lasting effects on both oil prices and stock markets. 

Besides, investors who rebalance portfolios daily or weekly should use the information 

on both monthly economic indicators and daily returns in portfolio management. 
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1. Introduction 

Oil plays an essential role in the world’s economy and financial markets. The 

relationship between oil prices and stock markets has attracted considerable attention 

in the past years because of its implications for portfolio selection and risk management. 

One important feature of the relationship between oil prices and stocks is its 

nonlinearity; oil and stock prices are more correlated in market downturns than in 

upturns, as documented by Aloui et al. (2013), Pan (2014), and Zhu et al. (2014). 

Another well recognized feature of the relationship is that it varies with time and 

depends on macroeconomic activity. There have been several studies that explore the 

impact of macroeconomic activity on the dependence between oil and stock markets, 

such as Huang et al. (1996), Sadorsky (1999), Park and Ratti (2008), Kilian and Park 

(2009), Mollick and Assefa (2013), and Sukcharoen et al. (2014). Portfolio investors 

and risk managers can use the information on the economic factors influencing the 
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relationship between oil and stock prices, especially the tail dependence under extreme 

market conditions, to improve forecasts of the joint distribution of oil and stock returns. 

To this end, this paper investigates the economic factors that modify the relationship 

between oil and stock prices and their economic significance in portfolio management. 

The literature on the dependence between oil and stock prices has focused on three 

groups of economic factors. The first group of factors concerns global supply and 

demand. Many studies evaluate the impacts of global oil supply and demand on the 

dependence between oil and stock prices. Examples include Kilian and Park (2009), 

Filis et al. (2011), Wang et al. (2013), and Fang and You (2014). These papers conclude 

that global oil supply is less important for understanding changes in oil and stock prices 

than aggregate demand. The second group of factors concerns the country’s specific 

demand for oil. Kilian and Park (2009) interpret it as a country’s precautionary demand 

for oil arising from the uncertainty about oil shortfalls (e.g. wars). Apergis and Miller 

(2009) show that oil market idiosyncratic demand shocks contribute to explaining stock 

returns for the most developed countries, while Fayyad and Daly (2011) and Naifar and 

Dohaiman (2013) find similar results for Gulf Cooperation Council (GCC) countries. 

The third type of factors is the stock specific shocks originating from the stock market, 

such as the global financial crisis, as financial crises usually start with a crash in the 

stock market. Aloui et al. (2012), Mollick and Assefa (2013), Aloui et al. (2013), Pan 

(2014), and Zhu et al. (2014) all document that oil and stock prices were more positively 

correlated during the 2008 global financial crisis than in more normal times.  

Most economic indicators useful for understanding oil and stock prices have a 

lower sampling frequency than oil and stock prices do. Economic indicators are usually 

reported monthly, while oil and stock prices can be observed daily or even more 

frequently. The literature handles this problem in two ways. Some studies use daily 

returns to describe the relationship between oil and stocks and then just qualitatively 

explain the impacts of low frequency economic indicators, while others aggregate daily 

returns into monthly returns and build a regression model using monthly data. The 

second approach ignores the intra-month information lost by aggregation and, because 

the model is updated monthly, it may not provide enough information for investors who 

rebalance their oil and stock portfolios more frequently. 

We address these limitations by proposing a copula model with explanatory 

variables based on the idea of mixed frequency data sampling (copula-MIDAS-X). The 

mixed frequency sampling scheme utilizes both monthly economic indicators and daily 

returns information. The copula approach enables us to examine the economic 

determinants of the oil and stock relationship independent of the marginal distributions. 

This new model allows for daily forecasting of the oil and stock relationship, which is 

more attractive for investors with frequent rebalancing strategies. Using the new model, 

this paper answers the following two questions. First, what are the most influential 

economic factors affecting the dependence between oil market and the U.S. stock 
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market? Second, does understanding the economic factors influencing the dependence 

between oil and stock prices bring economic profits to investors? 

The copula-MIDAS-X model extends earlier mixed frequency data sampling 

(MIDAS) models by incorporating low frequency explanatory variables into the 

dynamic dependence structure. Since the seminal work of Ghysels et al. (2004), several 

MIDAS models have been proposed to extract the long-run and short-run components 

in returns, volatilities, correlations, and copula-based dependence structures. Examples 

can be found in Ghysels et al. (2005), Clements and Galvao (2008), Colacito et al. 

(2011), Engle et al. (2013), Conrad et al. (2014), and Gong et al. (2018). Among them, 

Gong et al. (2018) use a mixed frequency data sampling copula model without any 

explanatory variables (copula-MIDAS) to analyze the dependence between returns and 

bid-ask spreads in stock index futures. We modify their model by adding low frequency 

explanatory variables that may affect the dependence structure into the copula model. 

The new model with explanatory variables enables us to find the most influential factors 

in the dependence structure, in particular to find out the factors affecting the tail 

dependence structure in extreme cases. 

Our empirical findings about the economic determinants of the oil and stock 

dependence complement the literature on the contemporaneous dependence between 

oil and stock markets. Existing literature find that the dependence between oil and stock 

returns is linked with some macroeconomic variables. Our analysis using the copula-

MIDAS-X model goes one step further by investigating the most influential economic 

factors affecting the oil and stock dependence. It is found that aggregate demand and 

stock specific negative news are more important than other factors. The impact of 

aggregate demand lasts for two years, while the impact of stock specific negative news 

lasts for one quarter. Furthermore, most existing studies only perform in-sample 

analysis. We provide both in-sample and out-of-sample results. The out-of-sample 

portfolio performance reveals that investors who rebalance their portfolios daily or 

weekly should use information from monthly economic indicators and daily returns in 

their portfolio optimization. 

The remainder of this paper is organized as follows. Section 2 presents the copula-

MIDAS-X model and its estimation. Section 3 explains the data, provides descriptive 

statistics, and justifies the variable selection. Section 4 contains the main results on the 

economic factors affecting the dependence between oil and stock returns. Section 5 is 

some robustness analysis. Section 6 concludes the paper. 

 

2. Econometric methodology 

The copula-MIDAS-X model is a natural extension of the copula-MIDAS model 

without any explanatory variables of Gong et al. (2018). We incorporate low frequency 

explanatory variables into their copula-MIDAS model to explain the evolution of the 

dynamic dependence structure. 
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2.1 Copula-MIDAS-X model 

Suppose there are bivariate daily (high frequency) time series  1 2,t tr r , 

1, ,t T  and S  monthly (low frequency) economic variables 

 1, ,, , SX X X  
 ,   1, , T N   ( N  days in a month). We want to examine 

how X  affects the long-run dependence between  1 2,t tr r . Let 1F  and 2F  

represent the marginal cumulative distribution functions (CDF) of 1tr  and 2tr  on day 

t . By the probability integral transformation,  it itu F r  for 1,2i . 

The copula-MIDAS-X model is written as 

     1 2 1 2, ~ , ; , , ,t t t t t t tu u C u u                     (1) 

     1 1

1, 1 2, 1 1.t t t tu u    

                     (2) 

  ,

1 1

, 1, , .
S K

s k s s k

s k

c X s S     

 

 
   

 
              (3) 

Equation (1) shows that the copula-MIDAS model belongs to the time-varying 

copula family. t  is a time-varying parameter and   is a time-invariant parameter. 

t  is assumed to be driven by an unobserved dynamic process t  such that 

 t t   , where     is an increasing transformation to ensure that t  remains in 

its domain as in Patton (2006). 

Equation (2) decomposes the dynamic dependence t  into two parts: the long-run 

component (monthly)   and the short-run component (daily) 

   1 1

1, 1 2, 1 1t t tu u  

     .   takes a different value each month (every N  

days). The specification of short-run component follows Patton (2006) and the short-

lived effects are captured by an autoregressive lag 1t   and a data-driven term 

   1 1

1, 1 2, 1t tu u 

   , where  1   is the inverse of standard normal CDF . Hence, 

  and   are the coefficients measuring the short-run components of the dependence. 

Equation (3) is different from the copula-MIDAS model.   represents the 

fundamental or secular causes of time variation in the dependence, and is assumed to 

be affected by an intercept c  and S  monthly economic variables 

 1, ,, , SX X X  
 . For 1, ,s S , s  measures the impacts ,sX  has on   

and s  measures how long the impacts last.  k s   is the Beta weight function in 

Colacito et al. (2011), which gives progressively lower weights to , 1 ,, ,s s KX X   , 

and it is given as follows. 
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      
1 1

1
1 / 1 / , 1, , .s sK

k s k
k K k K s S

 
 

 


                (4) 

Hence, c  and  ,s s   are the coefficients measuring the long-run components of 

the dependence; in particular,  ,s s   measures the size and length of the impacts of 

economic indicator ,sX  on the dependence. 

The copula-MIDAS-X model differs from extant models by introducing 

explanatory variables X  into the long-run component   of dependence measured 

by copula. The model is flexible enough to describe the dynamics of linear or nonlinear 

dependence structure and its determinants, in particular the determinants of tail 

dependence. To be specific, the copula-MIDAS-X model with SJC copula 

(Symmetrized Joe-Clayton), which is to be discussed in section 2.2, can model the 

short-run and long-run components in the lower and upper tail dependence 

simultaneously. It also enables us to examine the determinants of the long-run tail 

dependence. However, most existing models focus on linear correlation rather than 

nonlinear tail dependence. For example, Colacito et al. (2011) incorporate the MIDAS 

scheme into the dynamic conditional correlation model in Engle et al. (2002), and 

Conrad et al. (2014) further introduce explanatory variables into the long-run 

component of correlation. 

2.2 Examples: Gaussian and SJC copula-MIDAS-X 

The Gaussian copula-MIDAS-X model has one time-varying correlation t  and 

has no time-invariant parameter   in equation (1).     is the Fisher transformation 

     1 exp 1 expt t t               that ensures t  is in the domain  1,1 . The 

dynamics of t  are given in equations (2) and (3). 

The SJC copula-MIDAS-X model  1 2, ;SJC

t t tC u u   has two time-varying tail 

dependence coefficients  ,L U

t t t   
  and has no time-invariant parameter   in 

equation (1).① The lower-tail dependence 
L

t  and the upper-tail dependence 
U

t  

follow the dynamics in equations (5) and (6). For ,j L U ,  j j

t t    is the 

logistic transformation    1 1 expj j

t t     
   that ensures each 

j

t  is in the 

domain  0,1 . 

   1 1

1, 1 2, 1 1,
j j j j j

t t t tu u     

                     (5) 

                                                             
① There is no time-invariant parameter   in our examples of Gaussian and SJC copula-MIDAS-

X models. But in student’s t copula-MIDAS-X model, t  is the time-varying correlation and   

is the degree of freedom. 
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  ,

1 1

, 1, , .
S K

j j j j

s k s s k

s k

c X s S     

 

 
   

 
               (6) 

2.3 Estimation 

The model is estimated by the two-step maximization likelihood method (MLE) as 

in Joe (1997) and Gong et al. (2018). The only difference is that the long-run component 

in our copula-MIDAS-X model is a linear combination of weighted lagged explanatory 

variables, while the long-run component in copula-MIDAS by Gong et al. (2018) is a 

weighted sum of past realized correlations. 

The two-step procedure is as follows. First, estimate the marginal models of daily 

oil returns and stock returns and transform the standardized residuals into marginal 

CDFs by a probability integral transformation, denoted by  1 2
ˆ ˆ,t tu u , 1, ,t T . The 

details of marginal models are to be explained in Section 4.1. Second, plug  1 2
ˆ ˆ,t tu u  

into the copula log-likelihood function and estimate the copula-MIDAS-X parameters 

by MLE. The optimal MIDAS lag K  is determined by selecting the smallest number 

of MIDAS lags after which the log-likelihood values reach the plateau. Under certain 

regularity conditions, the asymptotic properties of the two-step estimator are normally 

distributed. The variance-covariance matrix is estimated by the block bootstrapping 

procedure with block length T . 

 

3. Data and variables 

This paper investigates the dependence between daily oil returns and stock returns 

and the potential monthly economic factors that affect the dependence. The sample is 

from January 1, 1997 to February 28, 2018. We divide the sample into two sub-periods, 

such that the observations from 1997 to 2016 are used for the in-sample estimation and 

the remaining observations in 2017 and 2018 are reserved to check the accuracy of the 

out-of-sample forecast. 

3.1 Data 

The daily closing prices of Brent crude oil expressed in dollars per barrel are used 

to represent the oil market. Brent oil is chosen as it is a reference for determining the 

price of other light crudes in Europe and is closely related to other crude oil markets, 

such as those for West Texas Intermediate, Maya, and Dubai (Ciner et al., 2013; 

Reboredo and Rivera-Castro, 2014; Sukcharoen et al., 2014). Brent oil prices are 

collected from the U.S. Energy Information Administrate (EIA) website.  

The daily S&P 500 index is used to represent the U.S. stock market. The data are 

collected from Bloomberg. Let ,i tP   be the daily price of oil ( i OIL  ) or stock 

( i STK ) on day t . The daily return is calculated as  , , , -1100 ln lni t i t i tr P P   . 

For the monthly data, we follow the related literature and consider four economic 

variables: (1) global oil production in thousands of barrels per day GOP , (2) a global 
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index of dry cargo single voyage freight rates KI  constructed by Kilian (2009), (3) 

the monthly closing prices of Brent crude oil ,OILP  , and (4) the monthly S&P 500 index 

,STKP  . Among them, global oil production and the Kilian index represent global oil 

supply and demand. ,OILP   is used to extract oil specific shocks besides oil supply and 

demand for certain econometric models (to be discussed in section 3.3). The oil specific 

shocks are taken to be precautionary demand arising from the uncertainty about oil 

shortfalls. Similarly, ,STKP    is used to extract stock specific shocks besides the 

influence from the oil market. The global oil production data are collected from the U.S. 

EIA website. The global demand index is collected from Kilian’s website.②  The 

monthly oil and stock prices are collected from Bloomberg. 

3.2 Descriptive statistics 

Figure 1 plots the daily Brent oil returns and U.S. stock returns. Oil returns and 

stock returns tend to co-move in turmoil periods, such as 1999-2001, 2008-2009, and 

2015-2017. It is also obvious that oil returns fluctuate much more than stock returns. 

Figure 2 plots the monthly global oil production, Kilian index, Brent oil price, and 

S&P 500 index. Panel (a) with four sub-figures (the first row of Figure 2) shows the 

levels of the above four variables. From panel (a), global oil supply ( GOP  ) has 

increased steadily in the past twenty years outside of a few declines in 1999, 2003, and 

2008, years when the Organization of Petroleum Exporting Countries (OPEC) cut 

quotas. Aggregate demand, represented by the Kilian index ( KI ), peaked in 2000 and 

in early 2008, but dropped dramatically during the subprime crisis. From 2015 to 2017, 

aggregate demand fell and then rose due to the increasing demand from large emerging 

countries like China and India, as mentioned in Fang and You (2014). The monthly oil 

price ( ,OILP  ) and stock index ( ,STKP  ) reached a peak and then declined together due to 

the 9-11 attacks between 1999 and 2001. A similar pattern can be observed between 

2008 and 2009, when both oil and stock prices experienced an extremely bearish 

performance and recovered afterwards, as discussed in Reboredo and Rivera-Castro 

(2014). After the subprime crisis, the stock index did not always move in the same 

directions as oil prices, but from 2016 to 2017 the two markets were booming together. 

The co-movement patterns observed here coincide with the daily oil and stock returns 

in Figure 1. 

Table 1 reports the summary statistics of daily oil returns and stock returns. For the 

full sample, oil has a slightly lower return than stock, but its standard deviation is almost 

twice as much as stock’s, which is also observed in Figure 1. This implies that Brent 

oil is riskier than stocks. Both oil and stock returns exhibit non-normal features like 

negative skewness and heavy tails, and they exhibit serial correlation and volatility 

clustering. Similar features of oil and stock returns are found by Fayyad and Daly 

                                                             
② The personal website of Kilian is http://www-personal.umich.edu/~lkilian. 
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(2011), Mollick and Assefa (2013), and Sukcharoen et al. (2014). 

Overall, the preliminary analysis tells us that oil and stock tend to boom or crash 

together and that the co-movement can be linked to some macroeconomic shocks, such 

as global oil supply, aggregate demand, and the subprime crisis. This provides us some 

hints of how to use the copula-MIDAS-X model to further investigate the economic 

factors influencing the dependence between oil and stock. 

3.3 Variables 

We focus on the four monthly economic variables that may affect the oil and stock 

dependence: GOP , KI , ,OILP   and ,STKP  . They are chosen because they contain a 

lot of information from other macroeconomic indicators. For example, the aggregate 

demand index that measures real economic activity shares information with industrial 

production and employment rate. But the four variables themselves cannot be used 

directly as explanatory variables X  in the copula-MIDAS-X model in equation (3), 

as they have unit roots and are highly correlated. To avoid multi-collinearity in 

regression, we decompose them into four orthogonal shocks with economic meanings, 

as shown by Kilian and Park’s (2009) structural vector autoregressive (SVAR) model. 

If additional macroeconomic indicators were used, such as industrial production, 

interest rates, employment rate, or consumer price index, it would be difficult to 

evaluate their individual contributions to the oil and stock dependence due to multi-

collinearity. 

We follow Kilian and Park (2009) and take log differences (except KI ) of the 

four variables and decompose these differences into four orthogonal innovations using 

the SVAR model specified in equation (7). 

0

1

,
J

j j

j

Ay A B y  



                          (7) 

where  , ,ln , , ln , lnOIL STKy GOP KI P P    
      is the vector of monthly changes in 

log global oil production, the Kilian index, log Brent oil price, and log S&P 500 index. 

11

21 22

31 32 33

41 42 43 44

0 0 0

0 0

0

a

a a
A

a a a

a a a a

 
 
 
 
 
 

 is a full rank lower triangular matrix, 0A  is the intercept 

vector, and jB  is the autoregressive matrix with the maximum lag length 6J   as 

in Wang et al. (2013). Panel (b) of Figure 2 with four sub-figures (the second row) 

shows the variables in y . 

In Killian and Park (2009), the ordering of y  and the identifiying restrictions are 

based on the following assumptions. First, oil supply will not respond to oil demand 

shocks within the month, given the costs of adjusting oil production and the uncertainty 

about the state of the oil market. Second, real economic activity measured by the Killian 
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index will not respond to changes in oil price within the month, given the sluggishness 

of global real activity. Third, shocks to oil price that cannot be explained by oil supply 

and aggregate demand reflect the precautionary oil demand driven by uncertainty about 

the availability of future oil supplies. Oil price within a given month is only determined 

by the supply and demand shocks from the oil market. The three assumptions above are 

consistent with a vertical short-run supply curve of crude oil and a downward sloping 

demand curve. Fourth, whereas stock price is allowed to respond to all three oil supply 

and demand shocks, shocks to stock market will not affect global oil supply, aggregate 

demand and oil price within a given month, but only with a delay of at least one month. 

The orthogonal structural innovations    are then used as the explanatory 

variables  , , , ,, , ,GOP KI OIL STKX X X X X    
  in the copula-MIDAS-X model. ,GOPX  

represents shocks to global oil supply, ,KIX  represents shocks to aggregate demand, 

,OILX  is the shocks to U.S. precautionary oil demand (i.e. U.S. oil specific shocks), 

and ,STKX  is U.S. stock specific shocks. Panel (c) of Figure 2 with four sub-figures 

(the last row) shows the orthogonal innovations X  . To some extent, the patterns 

observed in panel (c) are consistent with those in panel (a). For example, the 

innovations are much more volatile in the periods such as 2008-2009, and 2015-2017. 

 

4. Empirical results 

This section has three parts: the in-sample estimates of the marginal models for oil 

and stock returns, the in-sample estimates of the copula models for the relationship 

between oil and stock, and the out-of-sample performance evaluation of oil and stock 

portfolios. 

4.1 In-sample estimates of marginal models 

Table 2 shows the in-sample estimates of the marginal models for daily oil and 

stock returns from 1997 to 2016. The ARMA-TGARCH model with student’s t error in 

equation (8) is used as the returns are non-normally distributed, serially correlated, and 

volatility clustered. For , ,i OIL STK  

 

 

, ,0 ,1 , 1 , , ,2 , 1 , 1 , 1

2 2

, ,0 ,1 , 1 , 1 ,2 , 1 , 1 , 1 ,3 , 1

, ~ . . . ,

I 0 .

i t i i i t i t i t i i t i t i t t i

i t i i i t i t i i t i t i t i i t

r r h h i i d v

h h h h

     

      

   

     

     

    
       (8) 

The last row of Table 2 indicates that both marginal models are correctly specified. 

We fail to reject the Kolmogorov-Smirnov tests with the null hypothesis that the model 

is correctly specified. This justifies estimating copula models using the marginal CDFs 

of the residuals  , ,
ˆ ˆ,OIL t STK t  . Oil and stock returns are heavily tailed ( iv  is around 8 

for both variables) and the stock returns are serially correlated ( ,1 0STK   ). The 

conditional mean of ,OIL tr  only has an intercept because the ARMA coefficients are 
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insignificant if added. Large (small) volatilities are likely to be followed by large (small) 

volatilities ( ,3 0i  ) and bad news tends to have a greater impact on volatilities than 

good news ( ,2 0i  ). The results of the marginal models are not only in line with the 

summary statistics in Table 1, but also with studies such as Filis et al. (2011), Aloui et 

al. (2013), Pan (2014), and Zhu et al. (2014). 

4.2 In-sample estimates of copula models 

This section investigates the asymmetric features of the oil and stock dependence 

in section 4.2.1 and the economic factors influencing the oil and stock dependence in 

section 4.2.2. 

Table 3 provides the in-sample estimates of four copulas models. We first transform 

the standardized residuals  , ,
ˆ ˆ,OIL t STK t    into marginal CDFs  , ,

ˆ ˆ,OIL t STK tu u   by 

probability integral transformations of the student’s t distribution and then plug the 

marginal CDFs into the copula models. Two types of copula-MIDAS-X models 

proposed in this paper are used. The Gaussian copula-MIDAS-X model in equations 

(1)-(3) focuses on the correlation between oil and stock without any tail dependence, 

while the SJC copula-MIDAS-X model in equations (1), (5), and (6) focuses on the tail 

dependence of oil and stock. The maximum lag is chosen to be 24.③ Remember that in 

the Gaussian copula-MIDAS-X model, s  measures the impact that the lagged ,sX  

has on the oil and stock correlation and s  measures how long the impact lasts for 

1, ,s S . Similarly, 
j

s  and 
j

s  in the SJC copula-MIDAS-X model measure the 

size and the length of the impacts from lagged ,sX  on the lower or upper tail 

dependence between oil and stock returns for 1, ,s S , ,j L U . 

To investigate the importance of the mixed frequency data sampling approach, two 

more copulas with just monthly or just daily data are included. 

SJC copula-X (monthly data): 

     , , , ,

, 1

1

, ~ , ; , , ,

, , , 1, , .

SJC L U j j

OIL STK OIL STK

S
j j j

s s

s

u u C u u

c X j L U s S

       

 

   

  



 

   
      (9) 

 , ,,OIL STKu u    are the marginal CDFs of monthly oil and stock returns, jc   is the 

intercept, and 
j

s  measures how much impact the 1-month lagged variable , 1sX    has 

on the latent tail dependence 
j

  . The number of monthly explanatory variables is 

4S  ,    1, -1 , -1 , 1 , 1 , 1 , 1, , = , , ,S GOP KI OIL STKX X X X X X        

   . This dynamic copula 

model with explanatory variables is also used in Patton (2004). 

                                                             
③ The maximum lag is chosen to be 24 as this is the minimum lag that reaches the highest value of 

the log likelihoods. The plots of log likelihoods can be provided upon request. 
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SJC copula (daily data): 

     

   

, , , ,

1 1

, 1 , 1 1

, ~ , ; , , ,

, , .

SJC L U j j

OIL t STK t OIL t STK t t t t t

j j j j j

t OIL t STK t t

u u C u u

c u u j L U

   

    

  

 

     
       (10) 

Here jc  is the intercept, and j  and j  are the same as in equation (5). Because 

all variables are daily, we do not include any monthly variables into the model. This 

dynamic copula model without explanatory variables is also used in Patton (2006). 

4.2.1 The asymmetry of oil and stock dependence 

Table 3 tells us that the dependence between oil and stock returns is asymmetric. 

They are more likely to decrease together than increase together. 

Of the four copulas, the SJC copula-MIDAS-X model has the best in-sample 

goodness-of-fit performance with the highest log likelihoods and the lowest HQIC 

values (Hannan-Quinn Information Criterion). When we switch from the SJC copula-

MIDAS-X model to the Gaussian copula-MIDAS-X model, the HQIC value rises (from 

-205.16 to -175.01), indicating that there is a nonlinear tail dependence between oil and 

stock returns captured by the SJC copula. Besides, the HQIC values are even higher for 

the SJC copula with just daily data and the SJC copula-X with just monthly data. This 

demonstrates the importance of using both monthly and daily information in explaining 

the oil and stock dependence. Reboredo and Rivera-Castro (2014), by means of wavelet 

cross-correlation, also find a strong dependence between oil and U.S. stock returns at 

both the daily and monthly levels. 

Furthermore, the estimates of the SJC copula-MIDAS-X model show that oil and 

stock are more likely to decrease together than increase together. The intercept of the 

long-run component in the lower tail is generally higher than the intercept in the upper 

tail ( L Uc c ). After a logistic transformation, the lower tail dependence coefficient is 

0.4027 on average, while the upper tail dependence coefficient is only 0.3087. 

Figure 3 also reveals the asymmetric dependence pattern between oil and stock 

returns. Panel (a) plots the lower tail dependence ranging from 0.35 to 0.65 and panel 

(b) plots the upper tail dependence ranging from 0.15 to 0.45. The solid black line is 

the daily lower or upper tail dependence coefficient  j j

t t   , while the red dotted 

line is the monthly long-run component of the lower or upper tail dependence 

 j j

    , ,j L U . The daily tail dependence always fluctuates around the long-

run monthly component of the tail dependence. More importantly, the lower tail 

dependence is generally higher than the upper tail dependence, suggesting that oil and 

stock markets are more likely to crash together than boom together. 

The implication of the positive and asymmetric tail dependence between oil and 

stock markets is that the two markets do not provide diversification benefits during 

extreme financial conditions such as the recent subprime crisis. This asymmetric 

dependence between oil and stock returns has been well documented in the literature; 
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see Aloui et al. (2013) for Central and Eastern European (CEE) transition economies, 

Pan (2014) for BRIC countries, Reboredo and Rivera-Castro (2014) for the U.S. and 

European markets, and Zhu et al. (2014) for Asia-Pacific countries. Wang et al. (2013) 

use the SVAR model of Kilian and Park (2009) but find no significant nonlinear 

Granger causality relationship between monthly oil and stock returns. The copula 

approach of this paper enables us to uncover the asymmetric tail dependence between 

daily oil and stock returns, helping to explain this contradiction. Besides, Sukcharoen 

et al. (2014) find that the oil and stock dependence in the U.S. is symmetric and quite 

low from 1982 to 2007. Our result of a much higher asymmetric tail dependence differs 

from theirs as we account for the sample after the subprime crisis. 

4.2.2 The determinants of oil and stock dependence 

In Table 3, the result of the SJC copula-MIDAS-X model indicates that the 

dependence between oil and stock returns is affected by aggregate demand and stock 

specific shocks, but not by global oil supply and precautionary oil demand shocks. 

First, oil and stock tend to decrease dramatically when aggregate demand declines 

or when the stock market crashes. In the lower tail of the SJC copula-MIDAS-X model, 

both 
L

KI   and 
L

STK   are significantly negative, while neither 
L

GOP   nor 
L

OIL   is 

significant. A negative 
L

KI   means that if aggregate demand declines, both oil and 

stock markets experience bearish performance and extreme decreases in prices, leading 

to an increase in the lower tail dependence. This is exactly what happened during the 

subprime crisis of 2008-2009. A decline in aggregate demand leads to bullish oil and 

stock markets so that the lower tail dependence goes up, which is also observed during 

2008 and 2009 in panel (a) of Figure 3. The importance of aggregate demand on the 

relationship between oil and stock markets has been discussed quite often; see Kilian 

and Park (2009), Filis et al. (2011), Wang et al. (2013), and Fang and You (2014). 

Meanwhile, a negative 
L

STK  means that if stock prices are driven down by bad news 

unrelated to global oil supply and aggregate demand, both oil and stock prices decrease 

dramatically, resulting in an increase in the lower tail dependence as well. These 

conclusions are supported by Aloui et al. (2013), Mollick and Assefa (2013), and Zhu 

et al. (2014), who point out that the dependence between oil and stock is closely related 

to the global financial crisis originating in the stock market. Furthermore, it should be 

noted that 
L

KI  is more than twice as big as 
L

STK , which implies that the impact of 

aggregate demand on the lower tail dependence of oil and stock returns is much larger 

than the impact of stock specific shocks. 

Second, oil and stock returns are more likely to increase together when aggregate 

demand increases. In the upper tail part of the SJC copula-MIDAS-X model, only
U

KI  

is significantly positive, while the other three factors are insignificant. A positive 
U

KI  

suggests that an increase in aggregate demand causes bullish performance in the oil and 

stock markets, leading to an increase in the upper tail dependence between them. This 
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situation occurred in late 2009 due to the global recovery from the subprime crisis and 

in 2016-2017 due to the rising demand from emerging markets. In both cases, rising 

aggregate demand is followed by booms in the oil and stock markets. These findings 

are rarely discussed, as the literature focuses on the dependence between oil and stock 

in recessions rather than in booms. 

Third, aggregate demand influences the dependence between oil and stock for two 

years, while the impact of stock specific negative shocks lasts for a quarter. Figure 4 

visualizes the decaying impacts of lagged monthly economic variables on the current 

oil and stock dependence by plugging the estimates of s  into the weight function 

 k   in equation (4). Panels (a) and (b), based on Gaussian copula-MIDAS-X, plot 

the impact of aggregate demand and the impact of stock specific shocks on the oil and 

stock correlation, respectively. Panels (c) and (d), based on SJC copula-MIDAS-X, plot 

the impact of aggregate demand and the impact of stock specific shocks on the lower 

and upper tail dependence between oil and stock. The horizontal axis is the number of 

months the impact lasts and the vertical axis is the weight each lagged month takes on 

the current correlation or tail dependence. In the figure, panel (a) shows that aggregate 

demand influences the oil and stock correlation for two years, and panel (c) shows that 

aggregate demand influences the dependence between oil and stock in the lower and 

upper tails for two years, as the weights decay to zero at around 20 to 24 lags. On the 

contrary, panel (d) shows that the influence of U.S. stock specific shocks on the lower 

tail dependence lasts for 3 months, which is much shorter than the impact of aggregate 

demand. This indicates that global demand, as one of the most important factors of the 

oil and stock dependence, influences the linkage between oil and stock markets for 

about two years, while stock specific bad news has a negative effect on oil and stock 

markets that is quickly absorbed by the markets within a quarter. There are a large 

number of studies on how long stock prices are affected by oil prices, oil supply, and 

aggregate demand; see Sadorsky (1999), Papapetrou (2001), Ewing and Thompson 

(2007), Park and Ratti (2008), and Wang et al. (2013). However, few studies examine 

the impacts on the cross-market dependence between oil and stock. 

Last, the effects of global oil supply and precautionary oil demand shocks on the 

oil and stock dependence are limited. Neither global oil production shocks nor oil 

specific shocks, regarded as precautionary oil demand shocks in Kilian (2009), have 

significant coefficients in the Gaussian or SJC copula-MIDAS-X models. The limited 

contributions of global oil supply contrast with Cunado and de Gracia (2014), who find 

that the response of European stock price changes to oil price changes are mostly driven 

by oil supply shocks rather than demand shocks between 1973 and 2001, much earlier 

than our sample. The limited contributions of oil specific shocks differ somewhat from 

several papers. Apergis and Miller (2009) find that U.S. oil market idiosyncratic 

demand shocks play an important role in explaining stock returns, but their sample is 

from 1981 to 2007 without the 2008 financial crisis periods. Fayyad and Daly (2011) 
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provide evidence that increased oil prices have predictive power for U.S. stock returns, 

but they do not account for global oil supply and aggregate demand shocks. 

Our findings on the economic factors behind the oil and stock dependence 

contribute to the literature on the contemporaneous dependence between oil and stock 

returns; see Filis et al. (2011), Aloui et al. (2013), Naifar and Al Dohaiman (2013), 

Sukcharoen et al. (2014), and Zhu et al. (2014). These copula-based studies usually 

investigate one economic determinant of the oil and stock dependence in a qualitative 

way. For instance, Aloui et al. (2013) qualitatively relate the contagion effect between 

the oil and stock markets to the 2008-2009 global financial crisis. Sukcharoen et al. 

(2014) qualitatively document that the relatively strong oil and stock dependence is 

possibly due to the introduction of the euro in 1999. This paper pushes their results 

further by examining four potential economic factors of the oil and stock dependence 

in a unified and quantitative framework. We examine how the oil and stock dependence 

is affected simultaneously by global oil supply, aggregate demand, precautionary oil 

demand, and stock specific shocks. Even though the four economic factors overlap with 

each other from an economic point of view, we decompose them into four uncorrelated 

shocks by means of the SVAR model of Kilian and Park (2009), avoiding the multi-

collinearity problem. More importantly, the SJC copula-MIDAS-X model allows us to 

distinguish their different impacts when both markets crash together and when both 

markets boom together. But the separation of the economic factors in the lower and 

upper tail dependence is rarely reported in existing studies. 

The investment implications of understanding the economic determinants of the oil 

and stocks dependence are twofold. First, regulators and investors should be concerned 

with changes in aggregate demand in the preceding two years. Aggregate demand is the 

most influential factor that predicts the oil and stock dependence and its impact lasts 

for about two years in both bear and bull markets. Second, investors should also pay 

attention to negative news from the stock market in the preceding three months, as it 

may result in crashes in both stock and oil prices. Stock specific bad news has 

explanatory power for the downside dependence between oil and stock returns, but the 

effects usually last no more than a quarter, which is possibly explained by the 

overreaction of market participants. 

4.3 Out-of-sample evaluation of portfolio performance 

To explore the economic value of investigating the factors affecting the oil and 

stock dependence, we consider the optimization problem of an investor allocating 

wealth between Brent oil and the S&P 500 index under short sales constraints. There 

are 281 daily observations and 14 monthly observations in the out-of-sample period 

(January 1, 2017 to February 28, 2018). A recursive window method is used. At the 

beginning of each day in the out-of-sample period 1t  , investors use the historical 

information up to day t   (starting from January 1, 1997) to forecast the joint 

distribution of oil and stock returns on day 1t    and then determine the optimal 
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weights on oil and stock by minimizing the portfolio’s risk. This can be done for 

investors who use the Gaussian copula-MIDAS-X, SJC copula-MIDAS-X, or SJC 

copula models. For investors using the SJC copula-X model, the procedure is similar 

except that they use monthly information up to month   and rebalance their portfolios 

once a month. 

We take the Conditional Value-at-Risk (CVaR) as the portfolio risk measure. CVaR, 

also known as Expected Shortfall, is used in our analysis as it is a coherent risk measure 

focusing on extreme loss, which is more likely to be captured by copula models. It is 

often used by investors and scholars in portfolio risk management, such as Agarwal and 

Naik (2004), Kakouris and Rustem (2014), Zhao et al. (2015). We solve the mean-CVaR 

optimization problem in equation (11), as suggested by Rockafellar and Uryasev (2000). 
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          (11) 

 , ,,t L OIL t L STK t L    

 are the weights on oil and stock. 5%q   is the probability 

level and ,q t LVaR   is the 5% Value-at-Risk on day t L  based on the information 

up to day t .    max 0,z z

 . ˆm

t L t Lr  
  is the predicted portfolio return on day t L  

based on the information up to day t  in the thm  simulated scenario. We consider 

10000M   simulations. t L   is the vector of expected oil and stock returns based 

on the marginal models in equation (8). 0,t L   is the target portfolio return, which 

is the 3-month Treasury bill rate on day t . 

Table 4 provides the portfolio performance measures based on the four copulas 

models. We consider three types of investors who rebalance their portfolios on a daily 

( 1L   ), weekly ( 5L   ), and monthly ( 22L   ) basis. In each case, the portfolios’ 

annualized return (Mean), annualized standard deviation (SD), Sharpe ratio and 5% 

CVaR are reported. Also, the bottom of each panel reports the results of the DM test of 

Diebold and Mariano (1995) with the SJC copula-MIDAS-X model as the benchmark.④ 

The null hypothesis is that there is no difference in CVaR between the benchmark and 

alternative copula. It is worth mentioning that the performance of the SJC copula-X 

based strategy is the same for daily, weekly, and monthly rebalancing frequency as the 

investor only uses monthly information to adjust their portfolio weights. Three points 

                                                             
④ The loss function of DM test is 

, ,t j t benchmark td CVaR CVaR  , where ,j tCVaR  is the CVaR 

predicted by the alternative copula j ( =j Gaussian copula-MIDAS-X, SJC copula-X, SJC copula), 

and ,benchmark tCVaR  is the CVaR predicted by the benchmark copula (SJC copula-MIDAS-X). A 

significant positive DM test statistic indicates that SJC copula-MIDAS-X has lower CVaR than the 

alternative copula. 
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can be summarized from Table 4. 

First, the strategy using the SJC copula-MIDAS-X model outperforms the other 

three strategies in the out-of-sample period. Of the four copula-based strategies, the 

SJC copula-MIDAS-X strategy has the lowest CVaR for any rebalancing frequency. 

The rejections of pairwise DM tests also indicate that the CVaR values of the SJC 

copula-MIDAS-X based strategy are statistically lower than other strategies. 

Second, using mixed frequency information is generally more important than 

describing the tail dependence. If an investor switches from the SJC copula-MIDAS-X 

model to the Gaussian copula-MIDAS-X model, meaning he ignores the nonlinear tail 

dependence between oil and stock, the CVaR only increases from 18.45% to 19.05% 

on a daily basis, from 17.92% to 19.41% on a weekly basis, and from 16.92% to 18.41% 

on a monthly basis. If the investor switches from the SJC copula-MIDAS-X model to 

the SJC copula-X or SJC copula models, meaning he uses only monthly or daily 

information, the CVaR increases even more in most cases. This implies that using mixed 

frequency data contributes more than capturing the oil and stock tail dependence to 

forecasting the joint distribution of oil and stock returns and to improving portfolio 

performance. The advantage of using mixed frequency information over using single 

frequency information is also illustrated in Gong et al. (2018), who find that mixed 

frequency information helps investors better predict the liquidity risk in the stock index 

futures market. 

Third, investors with daily or weekly rebalancing frequencies should follow the 

mixed frequency copula-based strategies. The advantage of the copula-MIDAS-X 

models over the SJC copula-X and SJC copula models decreases as the investor 

switches from rebalancing his portfolio every day to every week to every month. For 

example, for daily investors, the Gaussian and SJC copula-MIDAS-X based strategies 

have lower CVaR than the other two strategies using just monthly or daily information. 

For weekly and monthly investors, the gaps between mixed frequency copulas and the 

other two copulas in terms of CVaR are narrowed gradually, in particular, the Gaussian 

copula-MIDAS-X model even has slightly higher CVaR than the SJC copula-X model. 

Therefore, mixed daily and monthly information is more useful for investors with 

relatively higher rebalancing frequencies (daily or weekly in our case), while it is less 

valuable for investors with a lower rebalancing frequency (monthly). 

 

In summary, this section uses the copula-MIDAS-X model to investigate the 

economic factors affecting the dependence between oil and stock markets. It is found 

that aggregate demand and stock specific negative shocks are the key economic 

determinants of the oil and stock dependence, while global oil supply and precautionary 

oil demand have limited contributions. Declines in aggregate demand and bad news 

from the U.S. stock market tend to result in bearish performance in both oil and stock 

markets, while aggregate demand growth tends to lead to bullish performance in both 
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oil and stock markets. The impact of aggregate demand lasts for two years, and the 

impact of stock specific negative shocks lasts for a quarter. Furthermore, the out-of-

sample portfolio performance highlights the economic value of capturing the economic 

determinants of the oil and stock dependence. Investors who rebalance their portfolio 

daily or weekly should adopt the strategy using both monthly and daily information. 

 

5. Robustness check 

5.1 In-sample estimates before the financial crisis 

To check whether the in-sample results are driven by the 2008 financial crisis, in 

Table 5 we exclude the 2008 financial crisis period and re-estimate the four copulas 

models in section 4.2. 

Table 5 shows the in-sample results with the sample from January 1, 1997 to June 

30, 2008. Most of the results are generally consistent with Table 3. The SJC copula-

MIDAS-X model still has the best in-sample goodness-of-fit performance. The 

dependence between oil and stock is asymmetric. Aggregate demand and stock specific 

shocks are still the important factors closely related with the oil and stock correlation 

and their tail dependence. However, when the financial crisis period is excluded, the 

lower tail dependence between oil and stock is reduced. In Table 5, it can be calculated 

from SJC copula-MIDAS-X that the lower tail dependence on average is 0.3174. 

Remember in Table 3, the lower tail dependence is 0.4027. It implies that accounting 

for the financial crisis period drives up the lower tail dependence between oil and stock 

markets. 

5.2 Out-of-sample evaluation of portfolio performance with transaction costs 

To analyze the effects of transaction costs on portfolio performance, in Table 6 we 

perform the out-of-sample analysis with transaction costs. The procedure is similar to 

that in section 4.3, except that three levels of transaction costs are considered. Panel (a) 

is =0.02%OILtc  and 0.02%STKtc  , which means the transaction fees of both oil and 

stock are 2 basis points per dollar. Panel (b) is =0.02%OILtc  and 0.04%STKtc   with 

2 basis points higher in stock transaction fees. Panel (c) is =0.04%OILtc  and 

0.02%STKtc   with 2 basis points higher in oil transaction fees. We use the transaction 

fees of Brent oil futures traded in Intercontinental Exchange and S&P 500 ETF as the 

reference values of OILtc  and STKtc . 

Most of the results in Table 6 are consistent with those in Table 4. The strategy 

using the SJC copula-MIDAS-X model outperforms the other three strategies in most 

cases with lower CVaR values. 

However, two conclusions with transaction costs should be pointed out. First, daily 

rebalancing strategies become less attractive to investors due to the higher transaction 

costs associated with higher rebalancing frequency. In Table 4 without transaction costs, 

the CVaR values of the SJC copula-MIDAS-X model are consistently the lowest among 
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the four models. However, in Table 6 with transaction costs, there are a few exceptions. 

An example can be found in panel (b) with daily rebalancing frequency, in which the 

SJC copula-MIDAS-X model has higher CVaR than the SJC copula-X model. Second, 

the portfolio performance is more sensitive to the transaction fees of stock than to the 

transaction fees of oil. Consider the scenario from panel (a) to (b), when the stock 

transaction costs double. All the portfolios are shown to perform much worse, 

associated with decreased Sharpe ratios and increased CVaR values. Then, consider 

another scenario from panel (a) to (c), when the oil transaction costs double. The 

performance of the portfolios in this case does not worse off as much as in the previous 

scenario. It tells us that the portfolio performance is more likely to be affected by stock 

transactions costs than oil transaction costs. It can be partly explained by the larger and 

more fluctuated weights on stock than on oil during the out-of-sample period. 

 

6. Conclusion 

The dependence between oil and stock markets is an important issue for global 

portfolio investors and risk managers, as they tend to add crude oil into a stock portfolio 

for diversification. In this paper, a copula-MIDAS model with explanatory variables 

(copula-MIDAS-X) is proposed to investigate the economic factors influencing the oil 

and stock dependence. The new model, which is built upon the models of Colacito et 

al. (2011) and Gong et al. (2018), extends the mixed frequency data sampling scheme 

from correlation to the more general dependence measure copula and incorporates low 

frequency economic explanatory variables into the copula model. This allows us to 

describe the oil and stock dependence regardless of their marginal distributions and to 

measure the impacts of economic factors on the oil and stock dependence. 

An empirical analysis of Brent oil prices and the U.S. stock market demonstrates 

that the copula-MIDAS-X model has better in-sample goodness-of-fit and out-of-

sample performance than other copulas. The dependence between oil and stock returns 

is asymmetric, which implies that the diversification benefit of adding oil into a stock 

portfolio is limited during financial crises. More importantly, the oil and stock 

dependence is influenced by aggregate demand and negative news from the stock 

market. The impact of aggregate demand lasts for two years, while the impact of bad 

news in the stock market lasts for one quarter. This suggests that market regulators and 

investors should pay more attention to changes in aggregate demand as they are 

influential and have long-lasting effects on the oil and stock markets. Also, investors 

who rebalance their portfolios daily or weekly should account for both daily returns and 

monthly economic information in their portfolio management.
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Tables 

 

Table 1 Descriptive statistics of daily Brent oil and S&P 500 returns 

 

 Full sample In-sample Out-of-sample 

 1997/1/1-2018/2/28 1997/1/1-2016/12/31 2017/1/1-2018/2/28 

 OIL STOCK OIL STOCK OIL STOCK 

Mean 0.0213 0.0248 0.0198 0.0224 0.0474 0.0671 

Std. Dev. 2.3074 1.2156 2.3414 1.2412 1.6055 0.6154 

Skewness -0.0232 -0.2207 -0.0179 -0.1998 -0.2497 -2.1490 

Ex.Kurtosis 4.8092 7.8654 4.7437 7.5116 0.5271 13.5702 

J-B  310  4.98*** 13.38*** 4.59*** 11.53*** 0.0058* 2.32*** 

Ljung-Box 44.26*** 141.15*** 42.78*** 133.12*** 36.20** 84.64*** 

ARCH 110.59*** 71.49*** 106.91*** 68.93*** 24.95 71.12*** 

ADF -70.44*** -76.90*** -68.48*** -74.86*** -16.57*** -16.64*** 

The table reports the summary statistics of daily Brent oil and S&P 500 returns. Std. Dev. is standard 

deviation. Ex. Kurtosis is excess kurtosis. J-B is the Jarque-Bera test statistic for normality. Ljung-

Box and ARCH are the Ljung-Box tests for serial correlation and for GARCH effect with 12 lags. 

ADF is the augmented Dicky-Fuller unit root test. ***, ** and * denote significance at the 1%, 5% 

and 10% levels. 
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Table 2 In-sample estimates of marginal models:  

Brent oil returns and S&P 500 returns 

 

OIL STOCK 

 Estimates Std. Err.  Estimates Std. Err. 

,0i  0.0198 (0.0189) ,0i  0.0096* (0.0050) 

   ,1i  0.5709*** (0.1653) 

   ,2i  -0.6434*** (0.1617) 

,0i  0.0072 (0.0059) ,0i  0.0182*** (0.0040) 

,1i  0.0129*** (0.0041)  5

,1 10i   0.0131*** (0.0047) 

,2i  0.0383*** (0.0085) ,2i  0.1591*** (0.0193) 

,3i  0.9673*** (0.0057) ,3i  0.9063*** (0.0109) 

i  7.9192*** (0.8575) i  8.4157*** (1.0076) 

logL -4.2944  logL -2.9498  

K-S 0.0036  K-S 0.0048  

The table reports the in-sample estimates of marginal models for daily Brent oil returns and S&P 

500 returns from January 1st, 1997 to December 31st, 2016. ***, ** and * denote significance at the 

1%, 5% and 10% levels. logL is the log likelihoods of each marginal model. K-S is the Kolmogorov-

Smirnov test statistic with the null hypothesis that the model is correctly specified. 
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Table 3 In-sample estimates of U.S. oil-stock dependence by copula models 

 

Gaussian copula-MIDAS-X SJC copula-MIDAS-X SJC copula-X SJC copula 

 Estimates Std. Err.  Estimates Std. Err.  Estimates Std. Err.  Estimates Std. Err. 

  0.0154* (0.0079) L  0.1104*** (0.0245) Lc  -3.9634*** (1.3291) L  -4.1601*** (0.0011) 

  0.9898*** (0.0064) 
L  0.9877*** (0.0041) 

L

GOP  -1.8479 (1.7780) 
L  0.7894*** (0.0003) 

c  0.0010 (0.0008) Lc  -0.3941*** (0.1279) 
L

KI  -0.1246*** (0.0153) Lc  -0.1824*** (0.0045) 

GOP  0.0023 (0.0026) 
L

GOP  0.0209 (0.0181) 
L

OIL  0.2494 (0.3090) U  -2.7463*** (0.0023) 

KI  -0.0009** (0.0004) 
L

KI  -0.0052*** (0.0016) 
L

STK  0.0209 (0.0707) 
U  0.7498*** (0.0012) 

OIL  -0.0002 (0.0002) 
L

OIL  -0.0039 (0.0027) Uc  -4.9114*** (1.2875) Uc  -0.8816*** (0.0176) 

STK  -0.0007 (0.0009) 
L

STK  -0.0022* (0.0011) 
U

GOP  -1.6662 (2.2945)    

GOP  8.9286 (7.1104) 
L

GOP  143.1754 (137.7120) 
U

KI  0.0790 (0.0932)    

KI  3.5742 (3.9236) 
L

KI  2.5623*** (0.7160) 
U

OIL  -0.2251 (0.2276)    

OIL  229.0317 (430.7674) 
L

OIL  142.5450** (56.3763) 
U

STK  -0.1338 (0.1391)    

STK  2.0013 (3.1969) 
L

STK  88.7827** (35.4266)       

   U  0.1324 (0.1567)       

   
U  0.9885*** (0.0088)       

   Uc  
-0.8064* 

 
(0.4353)       
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U

GOP  -0.0506 (0.0973)       

   
U

KI  0.0059*** (0.0019)       

   
U

OIL  0.0047 (0.0053)       

   
U

STK  0.0110 (0.0072)       

   
U

GOP  264.1391 (482.6373)       

   
U

KI  5.5951** (2.6876)       

   
U

OIL  249.6003 (590.9999)       

   
U

STK  2.0030 (2.2869)       

logL 99.2923  logL 126.1545  logL 8.9739  logL 28.4704  

HQIC -175.0100  HQIC -205.1600  HQIC 3.4837  HQIC -44.0820  

The table reports the in-sample estimates of four copulas models for oil and U.S. stock dependence: Gaussian copula-MIDAS-X, SJC copula-MIDAS-X, SJC copula-

X and SJC copula. The in-sample period is from January 1st, 1997 to December 31st, 2016. logL is the log likelihoods of both copula density and marginal models. 

HQIC is the Hannan-Quinn information criteria. ***, ** and * denote significance at the 1%, 5% and 10% levels.
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Table 4 Out-of-sample oil and stock portfolio performance 

 

Daily 

( 1L  ) 

Gaussian copula 

-MIDAS-X 

SJC copula 

-MIDAS-X 

SJC copula-

X 
SJC copula 

Mean 15.9081 18.0557 13.3798 13.2185 

SD 7.3163 7.1811 8.9841 8.9660 

SR 2.1743 2.5143 1.4893 1.4743 

CVaR(5%) 19.0481 18.4508 20.3525 20.3863 

DM test 2.4622**  12.6975*** 14.4550*** 

Weekly 

( 5L  ) 

Gaussian copula 

-MIDAS-X 

SJC copula 

-MIDAS-X 

SJC copula-

X 
SJC copula 

Mean 15.8893 16.8909 13.3798 14.1212 

SD 8.8968 9.3792 8.9841 10.6177 

SR 1.7860 1.8009 1.4893 1.3300 

CVaR(5%) 19.4137 17.9212 19.3525 19.5510 

DM test 7.5688***  6.1269*** 8.3586*** 

Monthly 

( 22L  ) 

Gaussian copula 

-MIDAS-X 

SJC copula 

-MIDAS-X 

SJC copula-

X 
SJC copula 

Mean 13.3893 14.7974 13.3798 14.2868 

SD 8.4148 8.5264 8.9841 9.9337 

SR 1.5912 1.7355 1.4893 1.4382 

CVaR(5%) 18.4137 16.9212 18.3525 19.4258 

DM test 6.1269***  5.6911*** 26.8943*** 

The table reports the out-of-sample performance of oil and stock portfolios from January 1st, 2017 

to February 28th, 2018 based on the four copulas models: Gaussian copula-MIDAS-X, SJC copula-

MIDAS-X, SJC copula-X and SJC copula. We consider three types of investors with mean-CVaR 

optimization who rebalance their portfolios on a daily ( 1L   ), weekly ( 5L   ) and monthly 

( 22L   ) basis. The table reports the portfolios’ annualized return (Mean), annualized standard 

deviation (SD), Sharpe ratio (SR), 5% CVaR, and the pairwise Diebold and Mariano (1995) test 

statistic (DM test) with SJC copula-MIDAS-X as the benchmark model. The target portfolio return 

for CVaR minimization is the 3-month Treasury bill rate. The null hypothesis of DM test is that 

there is no difference in CVaR between the benchmark and alternative copula, and the rejection of 

the null indicates lower CVaR for the benchmark model. ***, ** and * denote significance at the 

1%, 5% and 10% levels. 
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Table 5 In-sample estimates of U.S. oil-stock dependence by copula models: excluding the 2008 financial crisis 

 

Gaussian copula-MIDAS-X SJC copula-MIDAS-X SJC copula-X SJC copula 

 Estimates Std. Err.  Estimates Std. Err.  Estimates Std. Err.  Estimates Std. Err. 

  0.1030** (0.0460) 
L  

0.1913* (0.1003) Lc  -4.7966** (1.9495) 
L  -4.9989*** (0.0610) 

  0.8134*** (0.0471) 
L  

0.9860*** (0.1195) L

GOP  2.4725 (2.1496) 
L  0.8259*** (0.0015) 

c  0.0026* (0.0014) 
Lc  

-0.5091* (0.2861) L

KI  -0.6301*** (0.0332) 
Lc  -0.7072*** (0.0808) 

GOP  0.0068 (0.0094) 
L

GOP
 

0.1071 (0.1175) L

OIL  0.1365 (0.1833) 
U  -1.9336*** (0.0177) 

KI  -0.0039** (0.0020) 
L

KI
 

-0.0064** (0.0030) L

STK  -0.1949 (0.7428) 
U  0.3172*** (0.0021) 

OIL  -0.0006 (0.0022) 
L

OIL
 

-0.0456 (0.0585) Uc  -4.9390*** (0.5502) 
Uc  -0.8408*** (0.0930) 

STK  -0.0019 (0.0077) 
L

STK
 

-0.0018* (0.0009) U

GOP  -0.4344 (2.0638)    

GOP  21.4925 (18.5263) 
L

GOP
 

143.1764 (319.4299) U

KI  0.2924 (0.6238)     

KI  2.2679* (1.3615) 
L

KI
 

4.3980** (2.1853) U

OIL  -0.3829 (1.2170)    

OIL  228.8089 (268.3012) 
L

OIL
 

142.546 (94.1792) U

STK  0.3461 (0.7111)    

STK  10.5220 (22.4488) 
L

STK
 

88.7926** (36.2233)       

   U  
0.1180 (0.1588)       

   U  
0.9898*** (0.0021)       

   Uc  
-0.8159** (0.3479)       

   U

GOP
 

-0.0502 (0.0481)       

   U

KI
 

0.0024*** (0.0008)       
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   U

OIL
 

0.0038 (0.0076)       

   U

STK
 

0.0152 (0.0532)       

   U

GOP
 

264.1034 (496.0135)       

   U

KI
 

6.0550** (2.4498)       

   U

OIL
 

249.5776 (372.7494)       

   U

STK
 

2.7339 (1.9856)       

logL 54.4056  logL 68.6231  logL 6.3353  logL 14.8671  

HQIC -96.4181  HQIC -124.8530  HQIC -0.2775  HQIC -17.3409  

The table reports the in-sample estimates of four copulas models for oil and U.S. stock dependence: Gaussian copula-MIDAS-X, SJC copula-MIDAS-X, SJC copula-

X and SJC copula. The in-sample period is from January 1st, 1997 to June 30th, 2008. logL is the log likelihoods of both copula density and marginal models. HQIC is 

the Hannan-Quinn information criteria. ***, ** and * denote significance at the 1%, 5% and 10% levels. 
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Table 6 Out-of-sample oil and stock portfolio performance with transaction costs 

 

(a) =0.02%, 0.02%OIL STKtc tc   

Daily 

( 1L  ) 

Gaussian copula 

-MIDAS-X 

SJC copula 

-MIDAS-X 
SJC copula-X SJC copula 

Mean 10.9081 13.0557 13.1398 8.2185 

SD 7.3163 7.1811 8.9841 8.966 

SR 1.4909 1.8181 1.4626 0.9166 

CVaR(5%) 19.4318 17.0193 20.4690 25.3549 

DM test 2.4811***  12.7064*** 14.5896*** 

Weekly 

( 5L  ) 

Gaussian copula 

-MIDAS-X 

SJC copula 

-MIDAS-X 
SJC copula-X SJC copula 

Mean 14.8493 15.8509 13.1398 13.0812 

SD 8.8968 9.3792 8.9841 10.6177 

SR 1.6691 1.6900 1.4626 1.2320 

CVaR(5%) 18.5884 18.5323 20.4690 23.7295 

DM test 2.5860***  6.1469*** 8.3629*** 

Monthly 

( 22L  ) 

Gaussian copula 

-MIDAS-X 

SJC copula 

-MIDAS-X 
SJC copula-X SJC copula 

Mean 13.1493 14.5574 13.1398 14.0468 

SD 8.4148 8.5264 8.9841 9.9337 

SR 1.5626 1.7073 1.4626 1.4141 

CVaR(5%) 19.3437 18.1543 20.4690 21.4233 

DM test 4.1337***  5.6990*** 26.9930*** 
     

(b) =0.02%, 0.04%OIL STKtc tc   

Daily 

( 1L  ) 

Gaussian copula 

-MIDAS-X 

SJC copula 

-MIDAS-X 
SJC copula-X SJC copula 

Mean 6.7351 8.7761 12.9182 3.8878 

SD 7.3181 7.1847 8.9842 8.9685 

SR 0.9203 1.2215 1.4379 0.4335 

CVaR(5%) 23.6085 21.3060 20.6908 29.6906 

DM test 2.4630***  -2.7892 14.4993*** 

Weekly 

( 5L  ) 

Gaussian copula 

-MIDAS-X 

SJC copula 

-MIDAS-X 
SJC copula-X SJC copula 

Mean 13.9855 14.9642 12.9182 12.1815 

SD 8.8986 9.3814 8.9842 10.6196 

SR 1.5717 1.5951 1.4379 1.1471 

CVaR(5%) 19.4557 19.4233 20.6908 24.6328 

DM test 2.6189***  6.1472*** 8.3647*** 

Monthly 
Gaussian copula 

-MIDAS-X 

SJC copula 

-MIDAS-X 
SJC copula-X SJC copula 
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( 22L  ) 

Mean 12.9465 14.3508 12.9182 13.8391 

SD 8.4134 8.5249 8.9842 9.9327 

SR 1.5388 1.6834 1.4379 1.3933 

CVaR(5%) 19.5438 18.3581 20.6908 21.6290 

DM test 4.1345***  5.6933*** 27.1280*** 
     

 

(c) =0.04%, 0.02%OIL STKtc tc   

Daily 

( 1L  ) 

Gaussian copula 

-MIDAS-X 

SJC copula 

-MIDAS-X 
SJC copula-X SJC copula 

Mean 10.0811 12.3353 13.1214 7.5492 

SD 7.3147 7.1777 8.9840 8.9636 

SR 1.3782 1.7186 1.4605 0.8422 

CVaR(5%) 20.2556 17.7329 20.4872 26.0195 

DM test 2.4822***  3.7373*** 14.4616*** 

Weekly 

( 5L  ) 

Gaussian copula 

-MIDAS-X 

SJC copula 

-MIDAS-X 
SJC copula-X SJC copula 

Mean 14.6731 15.6976 13.1214 12.9409 

SD 8.8951 9.3770 8.9840 10.6159 

SR 1.6496 1.6740 1.4605 1.2190 

CVaR(5%) 18.7613 18.6814 20.4872 23.8662 

DM test 2.5994***  6.1410*** 8.4174*** 

Monthly 

( 22L  ) 

Gaussian copula 

-MIDAS-X 

SJC copula 

-MIDAS-X 
SJC copula-X SJC copula 

Mean 13.1121 14.524 13.1214 14.0145 

SD 8.4162 8.5279 8.9840 9.9347 

SR 1.5580 1.7031 1.4605 1.4107 

CVaR(5%) 19.3837 18.1907 20.4872 21.4575 

DM test 4.1384***  5.7045*** 27.1298*** 

The table reports the out-of-sample performance of oil and stock portfolios from January 1st, 2017 

to February 28th, 2018 based on the four copulas models: Gaussian copula-MIDAS-X, SJC copula-

MIDAS-X, SJC copula-X and SJC copula. We consider three types of investors with mean-CVaR 

optimization who rebalance their portfolios on a daily ( 1L   ), weekly ( 5L   ) and monthly 

( 22L  ) basis, and panels (a), (b) and (c) represent different transaction costs. The table reports the 

portfolios’ annualized return (Mean), annualized standard deviation (SD), Sharpe ratio (SR), 5% 

CVaR, and the pairwise Diebold and Mariano (1995) test statistic (DM test) with SJC copula-

MIDAS-X as the benchmark model. The target portfolio return for CVaR minimization is the 3-

month Treasury bill rate. The null hypothesis of DM test is that there is no difference in CVaR 

between the benchmark and alternative copula, and the rejection of the null indicates lower CVaR 

for the benchmark model. ***, ** and * denote significance at the 1%, 5% and 10% levels. 
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Figures 

 

 

 

Notes: The figure plots daily Brent oil and S&P 500 index returns from January 1st, 1997 to February 

28th, 2018. The returns are calculated as the log difference of daily price multiplied by 100. 

 

Figure 1. Daily returns of Brent oil and S&P 500 index 
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(b) Daily S&P 500 returns: 1997/1/1-2018/2/28
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Panel (a): Levels 

 

Panel (b): Changes 

 

Panel (c): Innovations 
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Notes: Panel (a) shows the monthly global oil production in thousands barrel per day (GOP ), Kilian index ( KI ), monthly Brent oil price ( ,OILP  ) and monthly S&P 

500 index ( ,STKP   ). Panel (b) shows the changes of the four variables  , ,ln , , ln , lnOIL STKGOP KI P P        . Panel (c) shows the orthogonal innovations 

 , , , ,, , ,GOP KI OIL STKX X X X    . The sample is from January 1997 to February 2018. 

Figure 2. Monthly oil production, Kilian index, Brent oil price and S&P 500 index 
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Notes: The figure plots the lower tail dependence of oil and stock returns in panel (a) and the upper 

tail dependence of oil and stock returns in panel (b). The solid black line is the logistic 

transformation of daily tail dependence  j j

t t    , and the red dotted line is the logistic 

transformation of monthly long-run dependence  j j

     , ,j L U  . The sample is from 

January 1st, 1997 to December 31st, 2016. 

 

Figure 3. Tail dependence of oil and stock returns 
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(a) Lower tail dependence of oil and stock returns
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(b) Upper tail dependence of oil and stock returns
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Notes: Panels (a) and (b) plot the impact of aggregate demand and the impact of stock specific 

shocks on the oil and stock correlation based on Gaussian copula-MIDAS-X, respectively. Panels 

(c) and (d) plot the impact of aggregate demand and the impact of stock specific shocks on the tail 

dependence between oil and stock based on SJC copula-MIDAS-X, respectively. The horizon axis 

is the number of months the impact lasts, and the vertical axis is the weight proportion each lagged 

month takes on the current correlation or tail dependence. The sample is from January 1st, 1997 to 

December 31st, 2016. 

 

Figure 4. Impacts of lagged monthly economic factors on current oil and stock 

dependence 
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(a) Aggregate demand shocks on correlation
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(b) Stock specific shocks on correlation
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(c) Aggregate demand shocks on tail dependence
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(d) Stock specific shocks on tail dependence
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