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Abstract—Fast synchronized measurements of phasor, fre-
quency and rate of change of frequency are expected to be
very important for the automated control actions in the smart
grid context. In this regard, measurement latency must be kept
as short as possible for an effective control implementation
when networks characterized by extremely fast dynamics are
concerned. Kalman filter based estimation algorithms appear to
be attractive in this context, however the conventional implemen-
tations suffer from significant limitations in their ability to deal
with different types of dynamic conditions, due to approximations
in the model and in the associated uncertainty. This paper
proposes an innovative solution, based on an extended Kalman
filter algorithm using a Taylor model, which is shown to provide
improved tracking ability in a vast range of dynamic conditions.
A novel element in the proposed technique is the representation
of model uncertainty, which takes into account the intrinsic cor-
relation among errors that appear in the state-space description
under dynamic conditions. A compatibility check between the
forecast and measurement result is also introduced as an effective
and metrologically-sound approach to detect large unexpected
changes in the tracked parameters, in order to achieve a fast
response of the algorithm also in those conditions. The algorithm
performance is thoroughly investigated by means of simulation,
to demonstrate the significant improvement compared to other
Kalman-filter solutions in some conditions of practical relevance.

Index Terms—Phasor measurement units, Frequency estima-
tion, Kalman filters, Correlation, Power system harmonics, Power
system measurements, Voltage measurement, Measurement un-
certainty

I. INTRODUCTION

Synchronized measurements of electrical signals represent
the emerging technology that plays the leading role in the
modernization of power network monitoring. Thanks to a
universal time coordinated (UTC) reference, e.g. from Global
Positioning System receivers, each measurement is associ-
ated with a time instant and thus timestamped with sub-
microsecond accuracy before being sent to concentrators and
control centers [1].

The concept of synchronized measurements has been ap-
plied to ac transmission networks for at least ten years. The
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most noticeable practical application is represented by phasor
measurement units (PMUs) [2] providing estimates of the pha-
sor, frequency and rate of change of frequency (ROCOF) of the
monitored electrical signals at high reporting rates (reporting
intervals in the order of tens of milliseconds are achievable).
This feature enables a much more accurate supervision of the
power system as well as the employment of advanced grid
protection control and automation techniques based on wide
area monitoring which were completely unfeasible otherwise;
work is ongoing for their implementation.

The increasing interest of the transmission system operators
(TSOs), of the manufacturers and of the scientific community
towards such powerful instruments triggered a standardiza-
tion process. PMU functionalities and cabalilities are ruled
by standard IEC-IEEE 60255-118-1 [3] and its forerunners
IEEE C37.118.1-2011 [4] and IEEE C37.118.1a-2014 [5].
The concept of “dynamic synchrophasor” is introduced: PMU
measurements should comply with accuracy requirements with
either steady state or dyanmic input signals (for example
containing amplitude or phase modulation, frequency ramp,
etc...) defined by the standards. The underlying idea is that
these test signals are designed to stress the measurement
capability of the PMUs while, at the same time, resembling
the possible operating scenarios that are faced during typical
operation.

In the smart grid (SG) context, automated control actions
based on accurate and timely measurements are expected to
become disruptive tools also in distribution networks. However
it should be noticed that the challenges to be faced are
completely different. One of them is measurement latency,
which is key for an effective control of grids characterized
by extremely fast dynamics, because of the huge penetration
of devices based on power electronics.

From a broader perspective, measurement algorithms play a
fundamental role in synchronized measurements [1], particu-
larly under dynamic conditions. For these reasons, different
proposals have been presented in the literature concerning
dynamic synchrophasors, frequency and ROCOF measure-
ments. Each one is characterized by its own advantages and
drawbacks that make it particularly suited to fulfil a specific
application.

In [6], Taylor-Fourier (TF) filters are introduced and em-
ployed for synchrophasor, frequency and ROCOF estimations.
Filter coefficients are obtained starting from a Taylor expan-
sion of the synchrophasor around the reporting instant while
inverting the problem in a least squares sense. The same model
is used in [7], [8] to correct discrete fourier transform (DFT)
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measurements of the fundamental phasor. In [9], the model
is exploited to develop a two-channel algorithm that allows
simultaneous compliance with both P and M performance
classes defined in [3], by selecting the best estimate according
to input conditions. In [10], TF model is extended in order to
include harmonics, while in [11] the same model is adaptively
expanded with a frequency support which is refreshed by
means of compressive sensing techniques.

From another perspective, [12] computes the Space Vector
(SV) signal starting from the three phase samples while using
low pass filtering and truncated Taylor expansions of its
magnitude and phase in order to measure positive sequence
synchrophasor and frequency. The idea of exploiting the
peculiar characteristics of three-phase systems together with
a TF model of the SV signal is proposed in [13].

When considering some control applications, fast response
and low latency are mandatory requirements. In this case,
one viable solution is using a Taylor expansion of the phasor
in order to define a suitable Kalman filter (KF). With this
approach, the classical DFT-like model [14] commonly used
for the KF can be extended to track phasor variations thus
resulting in the so-called Taylor-Kalman filter (TKF) [15].
In [16] TKF is enhanced in terms of phasor derivatives and
phase angle dynamics. In [17] a smoothed TKF allowing
remarkable accuracy under off-nominal frequency conditions
is presented. The aforementioned KF formulations consider the
fundamental frequency component only, but harmonics can be
present in the input signal, thus jeopardizing synchrophasor
and frequency measurements. In order to overcome this issue
the model can be modified to include also harmonics as
proposed in [18] and in [19]; this enhanced version of TKF
also allows extracting harmonic synchrophasors.

Regardless of the selected KF implementation, all the above
mentioned proposals are based on a Taylor expansion of the
phasor, namely a complex quantity, around the measurement
instant. This permits a linearization of the model, but it reqires
considering complex derivatives, which do not allow separate
modeling of amplitude and phase angle dynamics. In [20]
a new approach, namely the Taylor Extended Kalman filter
(TEKF) is introduced: amplitude and phase angle derivatives
appears as state variables in this case. It should be noticed
that frequency is also a state variable being proportional
to the phase angle derivative. Harmonics are included and
constrained to have frequencies that are integer multiples of
the fundamental phasor frequency.

In this paper, the TEKF approach is extended and revisited
from a measurement viewpoint. The performance of the TEKF
is strongly related to how well the statistic behavior of mea-
surement and model errors is represented by the covariance
matrices employed in the implementation. Estimating the
values of those matrices is certainly not an easy task, but the
problem is even more complex. The optimal Kalman gain is
computed supposing that the model error in each time instant is
an independent realization of a zero-mean random vector from
a multivariate gaussian distribution. Of course, this assumption
is not met if this error is due to an underparametrization of
the dynamic model, as it occurs in practice: this unavoidably
results in time correlation of the model error.

In this paper an innovative technique is proposed to solve
this limitation of conventional Kalman filters. The more re-
alistic representation of the model error immediately turns in
improved estimates. The new model is particularly effective
in representing higher order dynamics, and for this reason
benefits are clearly visible in ROCOF measurements.

II. SYNCHROPHASOR MEASUREMENT AND KALMAN
FILTER MODEL

In general, implementing a KF-based algorithm allowing
synchrophasor, frequency and ROCOF estimations from the
time domain signal samples requires defining:

1) a set of state variables which are somehow related to
the quantities to be measured (synchrophasor, frequency
and ROCOF);

2) a dynamic model that describes the time evolution of
the state variables;

3) an algebraic equation mapping the states to the acquired
samples of the waveform;

4) an algebraic equation linking state variables to the
quantities to be measured.

We start by assuming an expression of the measured signal:

s(t) = a1(t) cos [ω0t+ ϕ1(t)]

+

M∑
h=2

ah(t) cos [hω0t+ ϕh(t)] (1)

where ω0 is the rated angular speed (corresponding to the rated
frequency f0 = ω0/2π), ah(t) and ϕh(t), with h = 1, . . . ,M
are the amplitude and phase angle of the hth order harmonic
component (h = 1 corresponds to the fundamental term).
Magnitude and phase angle are time-varying functions (which
allows considering also off-nominal frequency) assumed to be
slowly changing over a fundamental period.

Synchrophasors are defined as the phasors referred to spe-
cific and universally defined time instants (belonging to an
UTC timescale for instance) considering a reference frame
that rotates at the rated angular speed ω0. From (1), the
expression of the fundamental synchrophasor is obtained
straightforwardly:

p (t) = a1 (t) e
jϕ1(t) (2)

Frequency and ROCOF results from the first and second
order derivatives of the fundamental phase angle as follows:

f1 (t) =
ω1(t)

2π
= f0 +

1

2π

dϕ1 (t)

dt
(3)

ROCOF (t) =
df1(t)

dt
=

1

2π

d2ϕ1(t)

dt2
(4)

(1) can be rewritten in a more convenient way for KF
implementation:

s (t) = <

[
M∑
h=1

ah (t) e
jψh(t)

]
=

M∑
h=1

ah (t) cos [ψh (t)] (5)

Here the phase-angle function ψ1(t) has been introduced,
which is the cosine argument of the fundamental term thus
adding up the contribution of the time varying phase angle
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ϕ1 and that of the roatating reference frame. Therefore it
represents the fundamental phase angle when measured in a
stationary reference frame. In general, ψh(t) = hω0t+ϕh(t).

Now, according to point 1 and 2 of the above list, a set of
state variables and a model representing the time evolution of
the harmonic synchrophasors appearing in the output equation
(5) are required. For this purpose, let us consider the following
set of state variables (time dependency is dropped hereafter for
the sake of brevity):

1) fundamental angular frequency ω1 along with its deriva-
tives ω(k)

1 up to order Nω1 , grouped in the state subvec-
tor xω1 (symbol ′>′ denotes the transpose operator):

xω1
=
[
ω1 ω

(1)
1 · · · ω

(Nω)
1

]>
(6)

2) fundamental synchrophasor amplitude along with its
derivatives a(k)1 up to order N1.

3) fundamental phase angle ψ1 with respect to the station-
ary reference frame. This variable together with those
related to the fundamental amplitude are included in
subvector x1:

x1 =
[
a1 a

(1)
1 · · · a

(N1)
1 ψ1

]>
(7)

4) hth order harmonic synchrophasor amplitude ah
5) hth order harmonic phase angle ψh in the stationary

reference frame. Subvector xh is thus defined as follows:

xh =
[
ah ψh

]>
(8)

The state vector can be thus defined by concatenating the
previously introduced subvectors:

x =
[
x>ω1

x>1 x>2 · · · x>M
]>

(9)

the state-space size is therefore N = Nω1 +N1 + 2M + 3.
The dynamic model employed in the KF should describe the

time evolution of the state vector (9); in this work such time
evolution is assumed to be expressed by a truncated Taylor
expansion around each instant. If the derivatives of ω1 having
orders greater than Nω1

, the derivatives of the fundamental
amplitude above order N1 and all the harmonics’ amplitudes
derivatives were zero, the following state-space expression
would exactly describe the dynamics:

dx

dt
= Acx (10)

where:

Ac =


Ac,ω1

0 0 · · · 0
Ac,1,ω1 Ac,1 0 · · · 0
Ac,2,ω1 0 0 · · · 0

...
...

...
. . . 0

Ac,M,ω1
0 0 · · · 0

 (11)

submatrix Ac,ω1 is a (Nω1 + 1)× (Nω1 + 1) upper shift ma-
trix while Ac,1 is a (N1 + 2)× (N1 + 2) upper shift matrix
whose element in position (N1+1, N1+2) is set to zero. Ma-
trix Ac,1,ω1

∈ R(N1+2)×(Nω1
+1) has the following structure:

Ac,1,ω1
=

[
0(N1+1)×1 0(N1+1)×Nω

1 01×Nω

]
(12)

since the phase angle derivative is the angular speed. Similarly,
focusing on harmonics:

Ac,h,ω1
=

[
0 0
h 0

]
(13)

because the phase of the harmonics rotates at an angular
speed that is h times the fundamental one. The adopted model
assumes that the evolutions of the harmonic phases are driven
by the system frequency. Since harmonics have much smaller
magnitudes with respect to the fundamental, there is no need
for a more detailed description of their dynamics as far as
fundamental synchrophasor measurement is concerned.

Measurement equations can be easily derived from the
signal representation in (5) and the state variables defined in
(6)-(9). The following nonlinear, time-varying equation holds
true:

s(t) = c(x, t) = xNω+2 cos (xNω+N1+3)

+

M∑
h=2

xNω+N1+2h cos (xNω+N1+2h+1) (14)

where xi stands for the ith element of the state vector.
For practical implementations we have to move to the

discrete time domain in order to deal with sampled signals,
being Ts the sampling interval. While the discrete-time rep-
resentation of (14) can be directly obtained by sampling, the
state-space equation has to be discretized as (only the time
index n is reported):

x(n+ 1) = Ax(n) = eAcTsx(n) (15)

As an example, submatrix Aω1
of A (describing frequency

dynamics) becomes:

Aω1 =


1 Ts · · · T

Nω1
s

Nω1 !

0 1
. . .

...

0 0
. . . Ts

0 0 . . . 1

 (16)

and similarly for the other blocks of Ah which define the am-
plitude updates. The phase angle evolutions of the fundamental
and harmonics are instead described by the simple equation
ψh(n+ 1) = ψh(n) + hω1(n)Ts.

The continous-time equations in (10) and, as a consequence,
their discrete-time counterparts in (15), are the results of an ap-
proximation since the dynamic Taylor series for each quantity
has been truncated to a predetermined order. Thus a process
model wc must be considered in (10), in order to take into
account the model error introduced by such approximation. In
the discrete time equation, the zero-mean process noise w(n)
is analogously considered and parametrized by the associated
covariance matrix Q. In Section III, a detailed discussion about
process uncertainty modeling is reported.

Once all the equations have been defined, it is possible to
use them in the extended Kalman filter estimation steps (TEKF
algorithm):

1) Forecast step. The state forecast at time (n + 1)Ts is
obtained from the previously estimated state x(n) (along
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with its covariance matrix P(n)) by using the following
equations:

xF (n+ 1) = Ax(n) (17)

PF (n+ 1) = AP(n)A> +Q (18)

=
[
A I

] [P(n) 0
0> Q

] [
A I

]>
where superscript F denotes forecast quantities while
Q is the aforementioned covariance matrix defining
process noise. The second line in (18) explicitly shows
how the covariance matrix of the forecast is computed
by considering previous estimates and process noise
as uncorrelated. This assumption will be discussed and
removed in Section IV.

2) Assimilation step. The previously obtained state forecast
xF (n + 1) is then refined by using the new sample
s(n + 1) , s(t)|t=(n+1)Ts . Assuming that samples are
corrupted by zero mean noise characterized by known
variance R, the unbiased state estimate having minimum
covariance matrix results:

x(n+ 1) = xF (n+ 1) (19)

+K(n+ 1)[s(n+ 1)− c(xF (n+ 1), (n+ 1)Ts)]

where the Kalman matrix gain K(n+1) is obtained by
computing:

K(n+ 1) = PF (n+ 1)C>(n+ 1) (20)

· [C(n+ 1)PF (n+ 1)C>(n+ 1) +R]−1

with

C(n+ 1) =
dc(x, t)

dx>

∣∣∣∣x=xF (n+1)
t=(n+1)Ts

(21)

Equation (19) is a weighted average between the state
estimates coming from forecast and measurement, where
their weights are represented by the inverses of the cor-
responding covariance matrices. The covariance matrix
of the optimal state estimation is easily obtained as:

P(n+ 1) = (I−K(n+ 1)C(n+ 1))PF (n+ 1) (22)

The TEKF directly uses the information about frequency
dynamics since it links all the harmonic phase-angle evolutions
to the fundamental frequency while it describes frequency
changes by using a truncated Taylor expansion around the
measurement time. Different Taylor expansion orders can be
adopted for fundamental amplitude and phase angle, thus
allowing a tailored model for both amplitude and phase
variations.

Since frequency and ROCOF have to be estimated, Nω1

must be at least equal to one, otherwise ROCOF cannot
be measured. However, a better choice is Nω1 ≥ 2, which
allows including ROCOF dynamics in the model, as it will be
discussed in more detail during the next section.

III. UNCERTAINTIES AND ISSUES OF THE KALMAN FILTER
APPROACH

A. Model and Measurement Uncertainties

KF-based estimation procedure requires defining the covari-
ance matrix (uncertainties) summarizing the statistical proper-
ties of the model errors due to the approximation introduced
in (15) and the variance of the error affecting acquired
samples. Once the uncertainty framework is defined, achieved
performances depend on how much the assumptions employed
in formulating the KF reflect actual working conditions.

In order to define the covariance matrix Q, a possible
approach starts from assumptions about the possible dynamics
that the electric signals may undergo. For this purpose, the
signals suggested in the synchrophasor standards [3], [4] to test
compliance under dynamic conditions are considered. Signals
and test conditions reported in [3] refer to PMUs having
currents or voltages as inputs: for this reason, the analysis
in the following is general. Typically, in practical implemen-
tations, frequency measurements are computed from voltages,
but the algorithms proposed in this paper apply to any single-
phase signal. In this respect, it is interesting to notice that the
state definition in (9) and the corresponding models including
harmonics well suit also current synchrophasor measurements,
where harmonic content might be higher.

When phasor amplitude dynamics is taken into account,
the most significant test signals are those containing am-
plitude modulation (AM). In these tests, the amplitude of
the synchrophasor can be decomposed into a constant term
superimposed to a sinusoidal one as follows:

a(t) = Xm(1 + kx cos(2πfmt)) (23)

where fm is the modulation frequency while kx represents
modulation depth; Xm is the peak amplitude without mod-
ulation. When a N1th order expansion of the amplitude is
considered in the dynamic model, the N1 +1 order derivative
is implicitly assumed to be zero; thus, the model error arising
from this constraint must be considered. The maximum value
of the derivative N1 + 1 under AM is thus used to define
the standard deviation of the corresponding model error. In
particular, from (23), when a second order expansion is
adopted, a model error arises since the third derivative a(3)

has been neglected. Its maximum value can be easily obtained
by differentiation as follows (Xm = 1 is supposed):

max
t
{a(3)(t)} = kxω

3
m (24)

where ωm = 2πfm. Supposing that the sampling rate is very
high with respect to the modulation frequency, the neglected
derivative can be considered as constant during each sampling
interval. Under this assumption we obtain a maximum model
amplitude error equal to kxω

3
mTs, which can be divided by

a proper factor c (depending on the assumed probability
distribution and confidence level) and then squared in order
to get the variance of the error to be included in Q. It is
important to notice that error is due an incomplete dynamic
model, thus in general it cannot be considered as a white
process. Once the error on the highest-order derivative is
defined, those corresponding to the other derivatives can be
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obtained by means of integration and thus Q is filled with
the variances of all the magnitude derivatives. Off-diagonal
elements (covariances) are obtained by supposing unitary
correlation.

When we focus on phase angle dynamics, similar consid-
erations apply. In this case, the fastest variations that can
be expected are those related to the cosinusoidal phase-angle
modulation (PM) as suggested by [3], [4]. For a phase angle
expansion order Nψ1

= Nω1
+ 1 we obtain:

δNψ1
,1 = kaω

Nψ1
m Ts

...

δ0,1 = kaω
Nψ1
m

T
Nψ1
s

Nψ1
!

(25)

where ka is the modulation parameter, ωm has the same
meaning as before, and δk,1 is the maximum error in the
state-space equation relating to the kth phase derivative of
the fundamental component. Variances and covariances can
be obtained from maximum errors as previously described.

It is interesting to notice that other dynamic conditions, such
frequency ramp, would be perfectly matched by a second order
model, without the need for higher degree derivatives. As for
the harmonics, we have two state variables for each order h
in the model: its magnitude and phase angle. Magnitude is
considered as constant in the model, thus it is possible to use
the maximum expected variation of the harmonic magnitude
during Ts (divided by a proper factor) to fill the corresponding
term in Q. The phase-angle of each harmonic is instead
strictly tied to the dynamics of the fundamental phase angle.
The derivative of the hth order harmonic phase angle is thus
assumed to be equal to the derivative of the fundamental phase
multiplied by h. This results in perfect correlation between the
derivatives at harmonic and fundamental frequencies, therefore
the model error for the phase angle of each harmonic can be
derived by scaling the corresponding error of the fundamental.
For the same reason, perfect correlation is also assumed among
all model errors related to harmonic phase angles.

The variance of the measured samples can be chosen by
considering two different sources of uncertainty: the foreseen
level of error in the measurement process and the level of
unmodeled disturbances that can affect the samples. The latter
contribution reflects the components that are not included in
the model and thus in the state space.

In the next section, the limits of the presented error model
are discussed with examples and the ground for the general-
ization proposed in Section IV is prepared.

B. Issues Under Dynamic Conditions

The previously introduced TEKF has been implemented and
tested under the following assumptions:
• f0 = 50Hz rated frequency.
• Modulation frequencies fm up to 5Hz have been con-

sidered; the maximum value has been used to obtain
covariance matrix Q.

• Modulation parameters up to kx and ka up to 0.1 have
been taken into account; covariance matrix Q has been
obtained from the maximum values.

0.5 1 1.5

Time [s]

-40

-20

0

20

40

[H
z
/s

]

ROCOF

Theoretical

TEKF

Fig. 1. TEKF ROCOF measurements in case of phase modulation test.

• Maximum variation of the harmonic magnitudes within
a sampling interval is supposed to be 10−4 p.u. in order
to compute the remaining elements of Q.

• Signal amplitude is assumed to be equal to 1 p.u. for
steady-state amplitude tests; Xm = 1 p.u. is considered
for AM tests.

• The standard deviation of the measurements is considered
to be 0.01 p.u. (thus corresponding to R = 10−4) hence
40 dB signal to noise ratio.

Test results under dynamic condition reveal some issues. For
example, Fig. 1 reports the obtained ROCOF estimates under
5Hz PM with ka = 0.1 . The graphs reveals that measured
ROCOF is clearly delayed, and this is mainly due to errors in
the dynamic model employed for KF implementation.

As described above, the process noise is intrisically consid-
ered as white (thus no correlation between two consecutive
sampling intervals) and this description corresponds to a
random walk model for the derivative Nψ1

+ 1 of the phase
angle. Under PM conditions, the phase angle (without the
rotating contribution) of the fundamental component is instead
sinusoidal and its derivatives thus follow the same trend in
phase or quadrature. Every correction of ROCOF estimation
is slowed down by the wrong assumption about the random
behavior of the model error and thus measured samples take
longer in driving the estimates towards the correct trend.
Section IV discusses a proposal to deal with this issue.

IV. PROPOSED GENERALIZATION OF THE KALMAN FILTER

The conventional implementation of the TEKF algorithm
was summarized in Sec. II. In particular, (18) describes the
state uncertainty of the forecast step, due to the uncertainty
propagation through the dynamic model and the addition of
the model uncertainty. The validity of (18) relies on the
assumption that those two contributions are independent of
each other, which is justified in the conventional formulation
of the Kalman Filter because the model uncertainty is decribed
in terms of white noise added to the dynamic model equations.
As discussed in Sec. III, however, this assumption is not true
in the considered application, because the model uncertainty
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mainly takes into account the un-modeled dynamics of the
state, i.e., the higher-order derivatives of the state variables,
which do not behave like white noise. In fact, since during
regular operation the dynamics of power system signals are
typically rather slow with respect to the sampling rate (see,
e.g., real signals in [18] and [21]), there might be a strong
correlation between model errors affecting two consecutive
samples. For this reason, in the considered application a
correlation coefficient equal to 1 has been assumed for errors
due the un-modeled higher-order derivatives of amplitude and
phase of the fundamental component. Zero correlation has
been considered for the other variables associated with the
harmonics, to avoid model constraints that cannot be justified
from a priori assumptions on their dynamics.

The correlation between two consecutive samples of the
equivalent noise modeled by Q produces a correlation be-
tween the two contributions to the forecast state uncertainty
PF (n + 1) in (18), because P(n) depends on Q from the
previous iteration. This can be considered by introducing
nonzero off-diagonal blocks in the block diagonal matrix
appearing in (18), which therefore becomes:

PF (n+ 1) =
[
A I

] [ P(n) S(n)
S(n)> Q

] [
A I

]>
(26)

where I is the identity matrix and S is a matrix that allows
considering correlation between errors affecting the state evo-
lution predicted by the model and the previously estimated
state. Neglecting such a correlation may produce a significant
under-estimation of the uncertainty PF (n+1) of the forecast
state, which in turn is reflected into a wrong assimilation step,
due to excessively relying on the model forecast with respect
to the measurement result. This explains the issues reported
in Sec. III and shown in Fig. 1.

It should be noted that neither S nor the correlation coeffi-
cients in it are constant over time, as the correlation depends
on the relative weight between the forecast uncertainty and
the measurement uncertainty, where the former changes over
time. Initially, the forecast uncertainty will be very high and
the assimilation step will mainly rely on the measurement;
therefore, the correlation will be negligible. As the TEKF
algorithm converges, the forecast uncertainty will decrease and
the correlation will increase, up to a maximum value reached
when the algorithm is in steady-state conditions.

The correlation coefficients in S can be calculated through
Monte Carlo simulations. Strictly speaking, they should be
calculated for each iteration of the algorithm, but this would
imply a huge computational burden and would be absolutely
unfeasible in real-time applications. The solution proposed in
this paper is to use constant correlation coefficients, calculated
offline based on the expected uncertainties of the state and
the measurement when the TEKF algorithm reaches a steady
state. With this approach, the real-time computational burden
is only slightly increased compared to the original TEKF, and
it remains acceptable for the considered application.

The main drawback of this approach is that the constant
correlation coefficients would represent a large overestimate of
the actual correlation during large transients, e.g. step changes
in the measured signals, before the algorithm goes back to

a steady state. To avoid affecting the algorithm performance
during those transients, the correlation is proposed to be
introduced into the algorithm only when the iterations get close
to convergence, and removed during the transients.

The presence of large transients can be effectively detected
by checking the compatibility between the forecast and the
measurement at each iteration. Indeed, from a measurement
point of view, the assimilation step in the Kalman Filter
consists in merging two independent estimates of the same
quantities (one obtained from the model and one from the
measurement). This operation is meaningful only if the two
estimates are compatible (at a rather conservative confidence
level: here a coverage factor equal to 5 have been used). With
an appropriate modelling of the uncertainty sources, the two
estimates are expected to be compatible most of the time; if
they become incompatible at any iteration, it means that an
unexpected large change in the signal has occurred. This also
means that the forecast uncertainty has been under-estimated,
and using it in the assimilation step would lead to wrong
results.

The proposed solution is to re-initialize the state forecast
uncertainty to large values and set all correlation coefficients
to zero, when a large transient is detected, and re-introduce
the correlation when the forecast uncertainty falls below a
pre-defined threshold again, meaning that the algorithm is
converging again.

V. TESTS AND RESULTS

The method proposed in Section IV has been implementend
and tested with the same assumptions and test signals as in
Section III-B. Correlation matrix S have been pre-computed
with preliminary Monte-Carlo iterations by considering a PM
input signal. For each test condition, results are reported
in terms of Total Vector Error (TVE), frequency error (FE
or its absolute value |FE|) and ROCOF error (RFE or its
absolute value |RFE|). Performance achieved by the proposed
approach (TEKF-corr) have been compared to those obtained
with conventional TEKF.

A. Modulation Tests
AM and PM tests are devoted at stressing the dynamic

tracking capability of the presented method. First of all the
results of PM tests (5Hz modulation frequency, ka = 0.1) are
shown in order to check how the proposed method is able to
deal with the issues discussed in Section III-B. In particular,
Fig. 2 reports the estimated ROCOF when correlation is
included in the model, as discussed in Section IV, on the same
time window of the PM test as before1. The filter is able to
follow second-order phase derivative dynamics in a better way
and the delay highlighted by Fig. 1 is dramatically reduced;
zero crossing points of the estimated ROCOF are now delayed
by about 4ms instead of 25ms. Maximum |RFE| is lowered
by more than 62%, since it drops from 23.2 to 8.7Hz/s. These
residual errors are due to the employment of an intrinsically
approximated model in order to filter the estimations obtained
from uncertain and noisy measurement data.

1From here on a 1-s subinterval is used in the graphs to better show the
signals, while the maximum errors are computed on a duration of 20 s.
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Fig. 2. ROCOF results for PM test.
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Fig. 3. TVE results for PM test.

The advantages brought by the new representation of model
uncertainty are also evident in the estimates of synchrophasor
and frequency. Figures 3 and 4 show the TVE and FE for
the PM test, respectively, and highlight the error reduction
achievable thanks to the improved tracking performance of
the TEKF-corr algorithm. TVE is below 0.36%, while FE is
within ±100mHz, hence far smaller than the corresponding
errors achieved by the conventional TEKF.

Considering AM tests, similar conclusions can be drawn,
even though amplitude dynamics are now involved and a
different expansion order has been chosen. Fig. 5 shows the
TVE for both the conventional and enhanched algorithms with
5Hz modulation frequency and kx = 0.1. The advantages in
terms of error reduction are clear also in this case, since TVE
reduces by 80% thanks to the proposed approach. Table I
shows the maximum values of |FE| and |RFE| in the same
scenario. The errors are smaller than in the PM test case, as
expected, since modulation involves only the synchrophasor
amplitude, but the advantages of TEKF-corr algorithm are
once again confirmed.

Finally, test waveforms containing AM and PM simulta-
neously (AM+PM) have been considered. Results with 5Hz
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Fig. 4. FE results for PM test.
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Fig. 5. TVE results for AM test.

modulation frequency and kx = ka = 0.1 have been summa-
rized in Table II. Even in this case, the accuracy improvement
that can be achieved with the proposed method is evident.

TABLE I
FREQUENCY AND ROCOF ESTIMATION ERRORS FOR AM TEST.

Error Index Without corr. With corr. Reduction

Max |FE| [mHz] 51.6 22.2 56.9%

Max |RFE| [Hz/s] 1.88 1.28 31.9%

TABLE II
SYNCHROPHASOR, FREQUENCY AND ROCOF ESTIMATION ERRORS FOR

AM+PM TEST.

Error Index Without corr. With corr. Reduction

Max TVE [%] 3.23 0.56 82.7%

Max |FE| [mHz] 401 100 75.1%

Max |RFE| [Hz/s] 23.7 8.8 62.9%
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B. Off-Nominal Frequency and Harmonic Tests

Once the improvements under dynamic test conditions have
been assessed, it is important to verify that the proposed
modification at the TEKF do not degrade performance under
steady-state conditions. For this reason, different input signals
with constant, off-nominal frequencies have been applied.
Frequencies f1 = 45 and 55Hz are here used to stress the
filter capability to reach states which are far from the nominal
ones. It can be noticed that, after the initial transient is settled,
TVE, |FE| and |RFE| reach negligible values (about 10−10 %,
10−11 Hz/s, and 10−9 Hz/s, respectively). Therefore, the new
uncertainty model does not significantly affect the steady-state
behaviour of the estimator.

Steady-state tests have also been performed in the presence
of harmonics, with different combinations of harmonic phase
angles. As expected, since harmonics have been included
as state variables, the synchrophasor, frequency and ROCOF
estimation errors are negligible, thus establishing that TEKF-
corr maintains the same harmonic rejection properties of the
conventional implementation.

C. Step Change Tests

Finally, it is important to check the behaviour of the algo-
rithm in the presence of abrupt variations such as step changes.
As discussed in Section IV, the application of the proposed
uncertainty description relies on the continuous check (exploit-
ing the estimated covariances) of the compatibility between
forecasted values and actual measurements.

Fig. 6 shows the TVE results for a −10◦ phase step, which
is the most challenging step prescribed by [3]. The variation
occurs at t = 10 s, and the algorithms need some time to
recover from the transient towards steady-state conditions.
With the rules defined in Section IV, the TEKF-corr promptly
detects the variation and model uncertainty is reinitialized.
Thus, even if the peak TVE is high (the y-axis in the figure
is limited to 10% for a better visualization, but the maximum
is about 17%), it settles in a few tens of milliseconds (e.g.
in 16ms the TVE returns below 1%). Its faster response with
respect to the conventional TEKF is immediately clear.

A similar behaviour can be found also for FE and RFE.
Fig. 7 compares the ROCOF estimation obtained with the
conventional TEKF algortithm and with the enhanced version
TEKF-corr. The graph proves the importance of the proposed
technique, which allows managing the model uncertainty when
it is no longer adequate, thus avoiding a slower transition
towards the new steady-state conditions.

VI. CONCLUSIONS

A Taylor-based Extended Kalman filter, which considers
model error correlations due to signal dynamics appearing on
the sampling-time scale, has been proposed as a low-latency
technique for estimating synchrophasor, frequency and RO-
COF. The advantages of properly modeling this phenomenon
have been shown, along with a solution to deal with abrupt
variations of the input signal. The comparison of measurement
and forecast uncertainties is the key to detect changes and
choose the most appropriate description of model uncertainty
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Fig. 6. TVE results for phase angle −10◦ step test.
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Fig. 7. RFE results for phase angle −10◦ step test.

according to the actual conditions. The presented technique
allows a trade-off between different situations, so that pha-
sor, frequency and ROCOF dynamics can be tracked, while
maintaining high accuracy under stedy-state conditions and
properly reacting to unexpected events. Conversely to other
Kalman-based solutions, model error description does not
require a fine-tuning, while the proposed filter equations can
be implemented without a significant computational overhead.

REFERENCES

[1] AA. VV., Phasor Measurement Units and Wide Area Monitoring Sys-
tems, 1st ed., A. Monti, C. Muscas, and F. Ponci, Eds. Academic Press,
2016.

[2] A. G. Phadke and J. S. Thorp, Synchronized Phasor Measurements and
Their Applications. Springer Science, 2008.

[3] IEEE/IEC International Standard - Measuring relays and protection
equipment - Part 118-1: Synchrophasor for power systems - Measure-
ments, IEEE/IEC IEC/IEEE 60255-118-1:2018, Dec 2018.

[4] IEEE Standard for Synchrophasor Measurements for Power Systems,
IEEE IEEE Std C37.118.1-2011 (Revision of IEEE Std C37.118-2005),
Dec. 2011.

[5] IEEE Standard for Synchrophasor Measurements for Power Systems
– Amendment 1: Modification of Selected Performance Requirements,
IEEE IEEE Std C37.118.1a-2014 (Amendment to IEEE Std C37.118.1-
2011), Apr. 2014.



9

[6] J. A. de la O Serna, “Dynamic phasor estimates for power system
oscillations,” IEEE Trans. Instrum. Meas., vol. 56, no. 5, pp. 1648–1657,
Oct. 2007.

[7] W. Premerlani, B. Kasztenny, and M. Adamiak, “Development and
implementation of a synchrophasor estimator capable of measurements
under dynamic conditions,” IEEE Trans. Power Del., vol. 23, no. 1, pp.
109–123, Jan. 2008.

[8] R. K. Mai, Z. Y. He, L. Fu, B. Kirby, and Z. Q. Bo, “A dynamic
synchrophasor estimation algorithm for online application,” IEEE Trans.
Power Del., vol. 25, no. 2, pp. 570–578, Apr. 2010.

[9] P. Castello, J. Liu, C. Muscas, P. A. Pegoraro, F. Ponci, and A. Monti,
“A fast and accurate PMU algorithm for P+M class measurement of
synchrophasor and frequency,” IEEE Trans. Instrum. Meas., vol. 63,
no. 12, pp. 2837–2845, Dec. 2014.

[10] M. A. Platas-Garza and J. A. de la O Serna, “Dynamic harmonic analysis
through taylor-fourier transform,” IEEE Trans. Instrum. Meas., vol. 60,
no. 3, pp. 804–813, Mar. 2011.

[11] M. Bertocco, G. Frigo, C. Narduzzi, C. Muscas, and P. A. Pegoraro,
“Compressive sensing of a taylor-fourier multifrequency model for
synchrophasor estimation,” IEEE Transactions on Instrumentation and
Measurement, vol. 64, no. 12, pp. 3274–3283, Dec 2015.

[12] S. Toscani and C. Muscas, “A space vector based approach for
synchrophasor measurement,” in Instrum. and Meas. Technol. Conf.
(I2MTC) Proc., 2014 IEEE Int., May 2014, pp. 257–261.

[13] P. Castello, R. Ferrero, P. A. Pegoraro, and S. Toscani, “Space vector
taylor-fourier models for synchrophasor, frequency, and rocof measure-
ments in three-phase systems,” IEEE Transactions on Instrumentation
and Measurement, vol. 68, no. 5, pp. 1313–1321, May 2019.

[14] I. Kamwa, S. R. Samantaray, and G. Joos, “Wide frequency range
adaptive phasor and frequency pmu algorithms,” IEEE Trans. Smart
Grid, vol. 5, no. 2, pp. 569–579, Mar. 2014.

[15] J. A. de la O Serna and J. Rodriguez-Maldonado, “Instantaneous
oscillating phasor estimates with taylor-kalman filters,” IEEE Trans.
Power Syst., vol. 26, no. 4, pp. 2336–2344, Nov. 2011.

[16] J. Liu, F. Ni, J. Tang, F. Ponci, and A. Monti, “A modified Taylor-
Kalman filter for instantaneous dynamic phasor estimation,” in IEEE
PES Innovative Smart Grid Technologies (ISGT) Eur. Conf., 2012.

[17] D. Fontanelli, D. Macii, and D. Petri, “Dynamic synchrophasor estima-
tion using smoothed kalman filtering,” in Instrum. and Meas. Technol.
Conf. (I2MTC) Proc., 2016 IEEE Int., Taipei, Taiwan, May 2016.

[18] J. de la O Serna and J. Rodriandguez-Maldonado, “Taylor-Kalman-
Fourier filters for instantaneous oscillating phasor and harmonic esti-
mates,” IEEE Trans. Instrum. Meas., vol. 61, no. 4, pp. 941–951, Apr.
2012.

[19] J. Liu, F. Ni, P. A. Pegoraro, F. Ponci, A. Monti, and C. Muscas, “Funda-
mental and harmonic synchrophasors estimation using modified taylor-
kaiman filter,” in Applied Measurements for Power Systems (AMPS),
2012 IEEE Int. Workshop on, Sep. 2012, pp. 1–6.

[20] R. Ferrero, P. A. Pegoraro, and S. Toscani, “Dynamic fundamental
and harmonic synchrophasor estimation by extended kalman filter,” in
2016 IEEE International Workshop on Applied Measurements for Power
Systems (AMPS), Sep. 2016, pp. 1–6.
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