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Abstract—Synchronized phasor and frequency measurements
are key tools for the monitoring and management of modern
power systems. In a dynamic scenario, it is fundamental to define
algorithms that allow accurately measuring time-varying signals,
with short latencies and high reporting rates. A dynamic phasor
model can help the design of these algorithms and, in particular,
of those based on Kalman filtering approach.

In this paper, an Extended Kalman filter formulation that
considers the Taylor expansions of amplitudes and phase angles
in three-phase signals is introduced. The proposed dynamic model
takes into account the inherent relationship among the phases
and includes harmonics in a effective way. The performance
of the method permitting both synchrophasor and frequency
measurements are assessed by simulations, considering also the
combined effect of dynamics and disturbances. The algorithm
shows tracking capabilities and the flexibility which is mandatory
to deal with different conditions.

Index Terms—Phasor Measurement Unit, Synchrophasor es-
timation, Frequency, Kalman Filter, Harmonics, Three-phase
systems.

I. INTRODUCTION

Synchronized measurement of electrical signal parameters,
namely amplitude, phase angle, frequency and rate of change
of frequency (ROCOF), in power networks applications is a
very important topic since Phasor Measurement Units (PMUs)
were introduced. PMUs rely on an universal time coordinated
(UTC) reference to accurately define the measurement in-
stant and associate a timestamp with each measured quantity
[1] (hence the name synchophasor). PMUs and the typical
reporting rates were originally designed to deal with the
usual dynamics of transmission networks; however PMUs
are expected to play a significat role also in the wide area
monitoring of distribution systems.

Time-varying parameters can be measured accurately only
if specifically designed measurement algorithms are imple-
mented. The combination of rapidly evolving signals and
UTC-referenced timebase have led to the need for PMU
algorithms that consider dynamic conditions from a very initial
design stage and basically rely on dynamic estimation models.

The relevance of dynamic conditions is highlighted by the
synchrophasor standards IEEE C37.118 and its evolutions
IEEE C37.118.1-2011 [2] and IEEE C37.118.1a-2014 [3]
(superseded by the new joint IEC-IEEE standard 60255-
118-1 [4]), which introduced the definition of dynamic syn-
chrophasor, and prescribed also dynamic tests, like amplitude

and phase modulation or frequency ramp, in order to verify
compliance of commercial PMUs.

For these reasons, literature on dynamic synchrophasors,
frequency and ROCOF measurements is growing in recent
years and different techniques have been applied. In [5], a
dynamic phasor model (Taylor-Fourier, TF, model) based on
a Taylor expansion of the phasor around the measurement
instant is introduced. In [6], [7] discrete fourier transform
(DFT) corrections based on the same model are considered.
IpDFT has also been successfully applied to follow frequency
variation in the presence of disturbances [8] and extended to
keep into account the Taylor model [9]. In [10] the model in [5]
is considered to design a two-channel PMU algorithm that can
simultaneously comply with standard requirements for both
protection and measurement applications, by fast reacting to
fast changes in the input signal. In [11] the Taylor expansion of
magnitude and phase of the Space Vector (SV) signal is used to
estimate the positive sequence synchrophasor and frequency in
three-phase systems, while in [12] the SV is exploited jointly
with the TF model. In [13], the dynamic model is adaptively
updated to include other frequency components and improve
the synchrophasor estimation via compressive sensing.

The Kalman filter is often used to perform DFT-like filtering
[14], but it can be extended to include the TF paradigm
[15] and design a Taylor-Kalman filter (TKF) for dynamic
synchrophasor tracking. In [16] the TKF is modified to im-
prove the model of the phasor derivatives and of phase angle
dynamics. In [17] a smoothed TKF with enhanced frequency
estimation under off-nominal conditions is presented.

In the above formulations, the fundamental frequency com-
ponent is considered. However, harmonics can be harmful
for dynamic phasor estimation and directly affect TKF-based
measurements. For these reasons, [18] proposes to include
harmonics in the state model and in [19] the modified TKF
is extended and improved to estimate both fundamental and
harmonic synchrophasors under dynamic conditions.

All of these algorithms use a linear formulation of the TKF
based on the Taylor expansion of the phasors, thus introducing
the complex derivatives that blend together both amplitude
and phase angle dynamics. In [20], a Taylor Extended Kalman
filter (TEKF) is introduced, which separates the amplitude and
phase angle Taylor expansions. Different expansion orders can
thus be applied to amplitude and phase, while harmonics can



be tied to the fundamental component.
The characteristics of the three-phase signals have been

exploited in the literature to improve synchrophasor estimation
(see [21] for a SV-based approach). In this paper, TEKF is
extended and improved to take advantage of the peculiarities
of three-phase signals. A single model is used to include
the three-phase parameters of the fundamental and harmonic
components and the dynamic model keeps into account the
mutual phase relationships. In particular, the frequency is seen
as a common parameter of the system, reflecting the physical
properties of three-phase systems. The newly proposed TEKF
(3ph-TEKF) allows estimating both single-phase and posi-
tive sequence synchrophasors together with frequency. Perfor-
mance is assessed by simulations of complex conditions that
combine different test signals from [2], [4], [22] also including
three-phase unbalance [23] in order to stress dynamic tracking
and disturbance rejection capabilities of the algorithm.

II. THREE-PHASE TAYLOR EXTENDED KALMAN FILTER
SYNCHROPHASOR ESTIMATOR

The implementation of a Kalman filter-based algorithm
allowing synchrophasor and frequency estimation from mea-
surement data basically requires that three relationships are
available:

1) a dynamical system describing the time evolution of the
state variables

2) an algebraic equation that allows obtaining synchropha-
sor and frequency from the state variables

3) an algebraic equation mapping the states to the measur-
ment data

Let us consider a three phase system characterized by the
rated frequency f0 (corresponding to the angular frequency
ω0). We start by choosing an expression for the measure-
ment data (measured signal), which is the pth phase quantity
(p ∈ {a, b, c}):

sp(t) = ap,1(t) cos [ω0t+ ϕp,1(t)]

+

M∑
h=2

ap,h(t) cos [hω0t+ ϕp,h(t)] (1)

where ap,1(t) and ϕp,1(t) represent the amplitude and phase
angle of the phase p fundamental synchrophasor, while ap,h(t)
and ϕp,h(t) (h ∈ {2, . . . ,M}) denote the amplitude and phase
angle of the hth harmonic synchrophasor for phase p. Of
course, magnitude and phase angles are assumed as slowly
varying.

Now, an expression modeling the time evolution of the
synchrophasors appearing in the output equation (1) have to
be introduced. For this purpose, let us consider the following
quantities as state variables (time dependency is not shown
explicitly for the sake of brevity):

1) the fundamental angular frequency derivatives ω(k),
which are supposed to be also the phase-angle deriva-
tives of order k + 1 for the fundamental component of
each system phase, up to the order Nω , defining the

vector xω (symbol ′>′ indicates the transpose operator):

xω =
[
ω(0) ω(1) · · · ω(Nω)

]>
(2)

2) the phase p fundamental amplitude derivatives a(k)p,1 up
to the degree N1 and its phase angle ϕp,1, which are the
elements of xp,1:

xp,1 =
[
a
(0)
p,1 a

(1)
p,1 · · · a

(N1)
p,1 ϕp,1

]>
(3)

Vector x1 is constructed by considering all the three
phases as follows:

x1 =
[
x>a,1 x>b,1 x>c,1

]>
(4)

3) for each generic hth harmonic, the phase p amplitude
ap,h and phase angle ϕp,h, representing the components
of the vector xp,h.

xp,h =
[
ap,h ϕp,h

]>
(5)

Vector xh containing harmonic amplitudes and phase
angles of all the phases is introduced:

xh =
[
x>a,h x>b,h x>c,h

]>
(6)

It should be noticed that a unique fundamental frequency
(and its derivatives) shared by the three system phases has
been considered; then, the evolutions of the harmonic phase
angles for each phase p are assumed to be driven by the
fundamental component. Furthermore, harmonic amplitude
derivatives have not been included as state variables: since
harmonics have typically much smaller magnitudes with re-
spect to the fundamental, it is not significant to have a detailed
representation of their dynamics. A noticeable reduction of the
model complexity is achieved under these assumptions.

Having defined the state variables, the state vector x is
obtained by concatenating the previously defined vectors:

x =
[
x>ω x>1 x>2 · · · x>M

]>
(7)

It turns out that its overall length is N = Nω +1+3(N1+
2M).

Now, the dynamical system modeling the time evolution of
the state variables has to be defined. The generic state-space
expression results:

dx

dt
= Acx (8)

and the behavior depends on the matrix Ac, which can be
partitioned as follows:

d

dt


xω

x1

x2

...
xM

 =


Aω 0 0 · · · 0
A1,ω A1 0 · · · 0
A2,ω 0 A2 · · · 0

...
...

...
. . . 0

AM,ω 0 0 · · · AM




xω

x1

x2

...
xM

 (9)

Let us define the submatrices appearing in (9); it is straight-
forward to obtain that Aω is a (Nω + 1) × (Nω + 1) upper
shift matrix. Reminding that the evolutions of the fundamental



phase angles are assumed to be identical for the three system
phases (because of the common frequency), thus A1,ω is a
3(N1 + 2)× (Nω + 1) matrix defined as follows:

A1,ω =


0(N1+1)×1 0(N1+1)×Nω

1 01×Nω

0(N1+1)×1 0(N1+1)×Nω

1 01×Nω

0(N1+1)×1 0(N1+1)×Nω

1 01×Nω

 (10)

Matrices Ah,ω having size 6×(Nω+1) are characterized by
a similar structure, since the derivatives of the harmonic phase
angles are supposed to be identical to that of the fundamental,
but multiplied by the harmonic order h:

Ah,ω =


0 01×Nω

h 01×Nω

0 01×Nω

h 01×Nω

0 01×Nω

h 01×Nω

 (11)

Matrix A1 can be conveniently partitioned:

A1 =


Aa 0 0 0 0 0
0 0 0 0 0 0
0 0 Aa 0 0 0
0 0 0 0 0 0
0 0 0 0 Aa 0
0 0 0 0 0 0

 (12)

where it can be easily obtained that Aa is a (N1+1)×(N1+1)
upper shift matrix. Ah, with h > 1, is a 2x2 null matrix.

It is useful to adopt the matrix notation also to express
the three single-phase output equations (1). The vector of the
three-phase measurement input s(t) is introduced, as well as
the nonlinear time-varying vector output function c(x, t):

s(t) =

sa(t)sb(t)
sc(t)

 = c(x, t) (13)

The previous equations are defined in the continuous time
domain; therefore, they cannot be straightforwardly employed,
since measurement data is obtained by sampling and execution
is performed considering a finite time step Ts, supposed to
be equal to the sampling time. The discrete time domain
representation of (13) can be easily obtained by evaluating
it in discrete time steps t = kTs. Conversely, the continuous
time state-space system (8) can be discretized obtaining the
following representation:

x(k + 1) = Ax(k) (14)

The discretized state-space matrix A can be obtained from
Ac by using the expression:

A = eAcTs (15)

At t = kTs, (14) allows obtaining a prediction of the
state xF (k + 1) in the next time instant (k + 1)Ts. Matrix

A includes blocks related to magnitudes and phase angles
of both fundamental and harmonic components. Focusing,
for example, on the diagonal blocks associated with the
fundamental, they are upper triangular and the kth diagonal is
composed by elements equal to T k

s /k! thus linking the state
forecast to the truncated Taylor expansion; its order depends
on the numbers of derivatives which have been considered in
the continuous time representation.

Let us suppose that approximated dynamic modeling of
the state variables results in equivalent zero-mean process
noise having covariance matrix Q. Under this assumption,
the uncertainty of the state forecast is characterized by a
covariance matrix PF (k + 1) given by:

PF (k + 1) = AP(k)A> +Q (16)

with P(k) the previous estimation covariance matrix.
Assuming that the measurement vector s is corrupted by

zero mean noise characterized by a known covariance matrix
R, linearizing the output equation (13) with respect to the
state vector x allows computing the minimum mean square
error estimate of the state variables, which is provided by the
following equation:

x(k + 1) = xF (k + 1) +

+ K(k + 1)[s− c(xF (k + 1), k + 1)] (17)

Kalman matrix gain K(k + 1) is obtained by computing:

K(k + 1) = PF (k + 1)C>(k + 1) (18)
[C(k + 1)PF (k + 1)C>(k + 1) +R]−1

Where C(k + 1) is the Jacobian of the vector function
c(x, (k + 1)Ts), namely:

C(k + 1) =
dc(x, t)

dx

∣∣∣∣x=xF (k+1)
t=(k+1)Ts

(19)

The covariance matrix of the new estimated state is obtained
as follows:

P(k + 1) = (I−K(k + 1)C(k + 1))PF (k + 1) (20)

III. OBTAINING MEASUREMENT AND PROCESS NOISE
COVARIANCE MATRICES

The behavior of the Kalman filter implementation strictly
depends on the choice of the previously defined covariance
matrices Q and R that define process and measurement noise,
respectively. In particular, they appear in the expression (18)
that allows computing the Kalman gain. Obtained estimates
are as close to the optimal ones as much as these noises are
able to represent measurement and model uncertainties.

Let us start with measurements, which are assumed to be
affected by the errors intinsic in the measurement process,
other than noise and disturbances. These effects on the three
phases are supposed to be modeled by independent and
identically distributed random variables. Therefore, matrix R
can be written as:

R = σ2
R

1 0 0
0 1 0
0 0 1

 (21)



Under this assumption, only the standard deviation σR have
to be selected according to a priori knowledge.

Things becomes considerably trickier when the process
noise covariance matrix Q has to be chosen. In this case the
major uncertainty source of the state forecast is assumed to be
the finite number of magnitudes and phase angle derivatives
that have been included as state variables of the dynamical
model. As previously stated, this results in truncated Taylor
expansions of magnitudes and phase angles in the sampling
instant as far as the discrete-time representation is concerned.
Let us focus on the fundamental component; amplitude and
phase angle modulated signals defined by the synchrophasor
standard [2], [4] have been considered as representative of
the typical dynamics that may occur in power systems. Their
generic expression is:

s(t) =
√
2S[1+kx cos(ωmt)] cos[ω0t+ka cos(ωmt−π)] (22)

It should be noticed that the maximum value of the kth
order magnitude derivative results:

a
(k)
1,max =

√
2Skxω

k
m (23)

The model includes the derivatives of the fundamental
component up to the order N1. Since 2π/ωm >> Ts, the
magnitude derivatives due to modulation can be assumed as
constant during Ts. Therefore, supposing that the model starts
from error-free state variables, the maximum error due only to
the forecasting step of the kth order derivative can be obtained
by a (N1+1−k)-fold time integration of the maximum value
of the (N1 + 1)-th derivative over the sampling interval:

e
a
(k)
1

=
√
2Skxω

N1+1
m

TN1+1−k
s

(N1 + 1− k)!
(24)

Assuming a shape for the probability density function, the
standard deviation σ

a
(k)
1

can be obtained from the correspong-
ing maximum error:

σ
a
(k)
1

=
e
a
(k)
1

kc
(25)

where kc is a factor which is selected by assuming a confi-
dence level for the maximum deviation.

Covariances between amplitude derivatives are obtained
by assuming full correlation. On the contrary, covariances
between the amplitudes of the different phases are assumed
to be zero.

Identical considerations allows obtaining also the variances
and covariances of the derivatives of the fundamental compo-
nent phase angle (indipendently from system phase), which are
assumed to be linked to angular speed derivatives.. In turns,
the standard deviations of the harmonic phases can be obtained
by multiplying that of the fundamental term by the harmonic
order h.

In order to completely define Q, some assumptions about
the uncertainties due to the approximate modeling of harmonic
amplitudes dynamics have to be introduced. A possibility
is adopting a similar approach to that employed for the

fundamental amplitude, hence guessing a maximum value for
the first derivatives of the harmonic amplitudes which have
been neglected by the model. The corresponding maximum
errors during the sampling interval can be computed by inte-
gration, while the standard deviations are obtained by guessing
the shape of the probability density functions. Covariances
between harmonic amplitudes are assumed to be zero.

IV. TESTS AND RESULTS

A. Test Assumptions

The proposed three-phase TEKF estimation algorithm has
been implemented in Matlab using 1 kHz sampling rate. The
following assumptions have been introduced in order to com-
pute the covariance matrices Q and R:
• Second order expansion for the fundamental amplitude

and first order expansion of the angular frequency have
been employed.

• Measurement noise standard deviation σR = 3 ·10−3 p.u.
has been considered.

• Modulation angular frequency ωm = 2π5 rad/s and mod-
ulation depths kx = 0.1 and ka = 0.1 rad for computing
the maximum errors have been chosen as the most severe
values reported in the synchrophasor standard.

• Maximum variation of the harmonic magnitudes within
a sampling interval is assumed to be 10−4 p.u..

• Standard deviations have been obtained from the maxi-
mum errors by using kc =

√
3.

• Harmonics up to the order M = 9 have been included
into the model.

The performance of the estimation algorithm have been
assessed under different conditions, defined by combined tests
that include different excitation signals chosen among those
suggested in the standard [4] and in the guide IEEE C37.242
[22]. In all the test signals, an additive white uniform noise
(AWUN), at a signal-to-noise ratio (SNR) of 70 dB, is used to
replicate more realistic conditions.

Positive sequence synchrophasor estimations are considered
and the performance indices are the commonly adopted Total
Vector Error (TVE), which indicates the relative value of the
vector error magnitude, absolute frequency error (FE), along
with absolute amplitude error (AE) and phase angle error (PE).

All the test scenarios in the following, except for the last one
(Section IV-E) and for the AWUN contribution, are referred
to balanced conditions.

B. Off-Nominal Frequency Tests

As a first test scenario, a purely sinusoidal 50Hz signal
of 1 p.u. amplitude is considered (with the aforementioned
additive noise). Fig. 1 and 2 show percent TVE and frequency
estimation, respectively, for a 400-ms portion of the computed
quantities. The TVE is always below 0.03% and FE < 4mHz.
Since the errors are negligible without additive noise (purely
due to numerical issues), the reported results reflect the noise
bandwidth of the 3ph-TEKF for the monitored quantities and
the averaging properties of the Fortescue transformation that
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Fig. 2. FE under nominal conditions with 70 dB SNR.

has been applied to obtain the positive sequence synchropha-
sor.

Off-nominal frequency conditions have been simulated.
Different tests have been performed considering the frequency
range limits in [4]. In particular, the tests with f = 45Hz
and f = 55Hz confirm the frequency tracking capability of
the filter. Errors are almost the same as those obtained under
nominal frequency, thus confirming that the main contribution
comes from noise.

C. Harmonic Disturbance Tests

A second set of tests has been performed by adding three
harmonics to the fundamental component. In particular, har-
monic orders 3, 5, and 7 have been considered (among the
most relevant in real-world scenarios). Magnitude is 5% of the
fundamental for all the harmonic orders (random initial phase
angles are considered) and tests at nominal and off-nominal
frequencies (49 and 51Hz) have been performed. The 3ph-
TEKF shows remarkable harmonic rejection: the worst case
occurs when f = 51Hz with an average TVE = 0.0789%1.

It is important to highlight that, as in the previous tests,
errors becomes negligible once additive noise is removed, thus
confirming that harmonics can be easily ruled out when the
employed model includes them.

1the last 400 ms of a 10s simulation are considered and shown with relative
timescale.
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Fig. 3. Amplitude estimation in AM conditions.

0 100 200 300 400

Time [ms]

-1

-0.5

0

0.5

1
Amplitude error [%]

Fig. 4. Amplitude estimation in AM conditions.

D. Modulation Tests

Since the focus of the proposed method is on dynamic
conditions, modulation tests have been considered as repre-
sentative of time-varying test signals. In particular, sinusoidal
amplitude and phase-angle modulations are adopted (referred
to as AM and PM in the following), using the signal in (22).
Frequency modulation fm ∈ (0, 5]Hz with modulation indices
kx = 0.1 and ka = 0.1 rad, respectively for AM and PM, is
used. In the following, results for fm = 5Hz in the AM test
case are discussed. Fig. 3 and Fig. 4 show the synchrophasor
amplitude estimation and the corresponding AE. Since PE
values are below 0.03 crad, TVE is mainly influenced by AE
(maximum value 0.78%).

FE values are almost unaffected by the changing amplitude
and the results are similar to those obtained under steady-state
conditions.

PM modulation (fm = 5Hz) leads to negligible AEs (with
respect to additive noise contribution) while PE and FE values
become higher. Fig. 5 shows the TVE evolution, which directly
reflects the PE behaviour. FEs are reported in Fig. 6 and
are below 140mHz. The oscillatory behaviour of the error
is strictly related to the approximate modeling of phase-angle
dynamics, which is not able to consider all its derivatives.

E. Unbalance Tests

Three-phase systems and, in particular, distribution systems
may suffer from a certain level of unbalance between phases.
For this reason, [22] suggests to test instrumentation under the
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following imbalances: magnitude ±10%, and ±20% on one
phase only; phase ±60◦, ±40◦, and ±20◦ on one phase only.
Unbalance should be applied to both f = 50 and 49Hz. In
all the performed tests, the effect of amplitude unbalance is
negligible with respect to the contribution due to additive noise
because all the three-phase magnitudes are included in the
state vector (7). Phase-angle unbalance corresponds instead to
a different initial condition for the three phase angles and thus,
after a transient, the 3ph-TEKF is able to accurately perform
the measurements. A disturbance appears in the frequency
estimate, but its amplitude is almost completely masked by
the effect of noise.

V. CONCLUSIONS

Synchrophasor and frequency measurement algorithms
based on Kalman filtering have become popular in the last
years. The main advantage is achieving very low latency,
which is an important feature for time-critical applications.
In this work, a full three-phase Extended Kalman Filter
synchrophasor estimator is proposed for the first time. The
introduced simplifications allows reducing the computational
cost, while obtaining remarkable dynamic performance and
good rejection of disturbances and unbalance. In addition,
the proposed implementation also permits estimating harmonic
components, which represents an important feature when it is
employed in distribution grids.
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