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 13 

Introduction 14 

The discovery of norovirus in 1972
1
, changed the understanding of the aetiology of gastroenteritis, 15 

making it the virus to be identified as an agent of gastroenteritis in humans. 16 

Today, norovirus is recognised as one of the commonest human infections and estimated to be 17 

associated with 125 million cases and 35,000 deaths worldwide in 2010
2
. Better epidemiological 18 

surveillance and outbreak investigations
3
, coupled with wider implementation of molecular-based 19 

laboratory diagnostics
4
 are leading to better estimates of the burden of norovirus infections as well as 20 

improved outbreak control. 21 

Data from challenge studies of prototype norovirus vaccines
5, 6

 demonstrated that protection against 22 

infection and disease can be achieved, however there remain significant challenges to development 23 

of a norovirus vaccine. Recent advances in cell culture systems for norovirus
7, 8

 and current research 24 

investigating the distribution of norovirus-associated disease in the population, for whom the disease 25 

burden is greatest, understanding host susceptibility factors, how to deploy novel technologies 26 

detecting norovirus in food and environmental matrices, and methodologies for ascertaining cases, 27 

are important in increasing our understanding of norovirus. Answers to these will help design 28 

strategies for vaccine and antiviral development, and how these might be best deployed to control 29 

norovirus infection. 30 

 31 

Norovirus virology 32 

At the time of discovery, the virus was referred to as the Norwalk agent, but as other related viruses 33 

were described in association with gastroenteritis, they became known as Norwalk-like viruses 34 

(NLVs), or – based on their morphology by electron microscopy – small, round, structured viruses 35 

(SLSVs). Following the cloning and sequencing of the Norwalk agent genome in 1993
9
, and 36 

subsequently other NLVs
10

, defining the genetic relatedness of these viruses led to their 37 

reclassification in the Caliciviridae family of viruses under the genus Norovirus in 2002
11

. 38 



Classification of this genetically diverse group of viruses
12, 13

 has described six established
14

 39 

genogroups (GI-GVI), and a proposed seventh
15, 16

. Two genogroups (GI and GII) are important 40 

pathogens of humans (GII also contains pathogens of animals, but there is no evidence of zoonotic 41 

transmission
17

) and genogroups are further subdivided into genotypes: nine GI and twenty-two GII 42 

genotypes have been described
12-14

. Norovirus names are presented as genotypes, e.g. genogroup II-43 

genotype 4 (GII.4) and strains are named for the place and year of their first description: e.g. 44 

GII.4/New Orleans 2009
18

 or GII.4/Sydney 2012
19

. 45 

The norovirus genome is a single strand of positive-sense ribonucleic acid (+ssRNA) that is ~7700 46 

nucleotides in length, organised as three open reading frames (ORF1-3)
20

. The 5′-proximal ORF1 47 

encodes a polyprotein that is post-translationally processed by the virus-encoded protease into six 48 

non-structural proteins, including a genome-linked protein (VPg/NS5), protease (Pro/NS6) and an 49 

RNA-dependent RNA polymerase (RdRp/NS7). Both ORF2 and ORF3 encode a single protein each, 50 

VP1 and VP2 respectively, that are structural proteins involved in formation and stabilisation of the 51 

virus particle
21

. 52 

Norovirus particles are 27-35nm in diameter and comprised of 180 copies of the VP1 protein, which 53 

itself is organised into three main domains: N-terminal (N), shell (S) and protruding (P), which is 54 

further arranged as P1 (subdivided as P1.1 and P1.2) and P2
21

. In the mature infectious virus particle, 55 

the N domain is internal, and the P2 domain is the most external part of the virus, making it highly 56 

surface-exposed and placed to coordinate many of the interactions between norovirus and its host 57 

environment. 58 

The primary host cell receptor for human norovirus is unknown, but can interact with histo-blood 59 

group antigens (HBGAs)
22

; these are glycans expressed on epithelial cells and in mucosal secretions, 60 

which determine ABO blood type groups. Norovirus strains may use HBGAs as attachment factors or 61 

co-receptors
23

, and sites in the VP1 P2 domain have been identified as HBGA binding sites
24-29

. 62 

Synthesis of HBGAs occurs by sequential modification of a precursor, and the process is controlled 63 

by glycosyl-transferase enzymes from several genetic loci that exhibit polymorphism throughout the 64 

human population. The ABH and Lewis antigens are relevant to norovirus binding, and as such the 65 

phenotype of an individual for secretory ABH and Lewis antigens is a host susceptibility factor for 66 

norovirus infection. Specifically, individuals with a non-functional FUT2 gene, which encodes an α1,2-67 

fucosyltrasnferase, have a ‘non-secretor’ phenotype, and are more resistant to norovirus infection that 68 

‘secretor’ individuals
30, 31

. Polymorphism at this locus may modulate susceptibility to other causes of 69 

diarrhoeal disease
32

.  70 

Public health laboratory surveillance worldwide has demonstrated dominance of GII.4 viruses
33-36

, 71 

however other norovirus genotypes circulate consistently, if at a lower level, in the population. The 72 

GII.4 cluster of norovirus strains have been the most commonly detected noroviruses circulating 73 

worldwide since the mid-1990s, over time, distinct variants of the GII.4 virus evolve, emerge, and then 74 

recede to be replaced by a new variant
33

. Emergence of a new GII.4 variant is associated with higher 75 

levels of infection and illness in the population and increased numbers of outbreaks
37

, although 76 



severity of disease does not necessarily increase. These emergence events may be geographically 77 

contained (e.g. a 2003 variant emerged in Asia, and a 2006 variant spread in Europe)
38

, or may be 78 

global, with new variants emerging and spreading worldwide over the course of a single year (as seen 79 

in 2002
39

, 2006
40

, 2009
18

 and 2012
19

). 80 

Noroviruses have been shown to have high evolutionary rates, up to 10
-2

 substitutions/site/year in the 81 

VP1 protein
41

, due to the error-prone nature of the virus-encoded RdRp
42

. The rate of evolution is 82 

fastest in the P2 domain, which interacts with the host immune system. Immune response to 83 

norovirus infection appears to target this region of the virus capsid, and epitopes in this domain have 84 

been identified as important in defining the antigenic profile of GII.4 norovirus strains
43-47

, leading to 85 

the emergence of antigenically distinct viruses in the population, associated with epidemic/pandemic 86 

waves of gastroenteritis
33, 37, 48, 49

. 87 

The emergence of variant GII.4 strains is associated with mutations occurring in the virus at epitope A 88 

(VP1 amino acid positions 296-298, 368 & 372) and D (VP1 amino acid positions 393-395)
44, 50

. 89 

Mutations, particularly in epitopes A and D, will be selected for in the virus population if the mutations 90 

are such that existing immunity in the host population is evaded by the mutated virus, but the virus is 91 

otherwise not disadvantaged. Because much of the human population is exposed to antigenically 92 

similar noroviruses at a similar time, virus-specific immunity is likely similar between many people. As 93 

a result, the variant norovirus is advantaged, being more likely to successfully evade existing 94 

immunity, and subsequently establish more infections and be transmitted. In this way, the virus can 95 

spread quickly through the population. Eventually infections generate new immunological responses, 96 

which ultimately limit the success of this variant in the population, but in turn creates an ecological 97 

niche favourable for a new variant, and the process cycles again. This process has been observed for 98 

GII.4 noroviruses throughout the 1990s, 2000s and 2010s
19, 33, 37, 45, 47

. 99 

 100 

Norovirus surveillance 101 

Surveillance of norovirus is complicated because most people do not contact medical services when 102 

they are ill. In the UK, it is suggested that for each laboratory report of norovirus around 300 cases go 103 

unreported
51

. This is largely related to the nature of the illness itself. The virus is highly infectious with 104 

an estimated infectious dose of around 10-100 virus particles (virions) needed to cause infection
52

, 105 

with a high probability of infection from ingesting a single particle
53

. It has a short incubation period, 106 

anywhere between 12 and 72 hours, and symptoms typically last for around 24- 48 hours
54

. Despite 107 

these difficulties it is still recognised as the commonest cause of gastrointestinal disease, not just in 108 

the UK, but worldwide
55

. In the UK it is estimated between 3 and 4 million cases occur annually
51, 56

, 109 

at a cost of £106 million to patients and the health care services. In the USA this estimate is around 110 

21 million domestically acquired cases
57

. Infections with norovirus occur in all age groups, however, 111 

the highest incidence is in children aged less than five years
56, 58

. 112 

 113 



The illness is often described as generally mild and self-limiting. The description of a mild infection 114 

can trivialise the effect of the illness; in England it has been estimated that 3000 admissions occur 115 

annually as a result of norovirus infection in adults
59

 or 0.3% of emergency admissions in those aged 116 

over 65, and 0.1% in adults aged 16-64 years. The consequences of infection are also greater in 117 

vulnerable populations. In a study in the county of Avon, UK, hospital patients were ill for longer than 118 

care home residents and staff working in the hospitals or care home, with around 10% of inpatients 119 

affected still showing symptoms 7 days after becoming ill
60

. There is also evidence that norovirus can 120 

contribute to mortality in the elderly. Modelling of deaths suggests that norovirus is associated with 121 

20% in those aged over 65 years who died of infectious intestinal disease, and that 13% of deaths 122 

caused by non-infectious intestinal disease
61

. 123 

Public Health England have conducted surveillance of gastrointestinal disease outbreaks since 124 

1992
62

. Analysis of the first nine years of data highlighted the importance of norovirus outbreaks in 125 

hospitals; over 80% of all reported outbreaks in hospitals were suspected or confirmed as norovirus, 126 

and 25% of all general outbreaks occurred in hospitals
63

. 127 

 128 

Recent developments 129 

 130 

Surveillance 131 

Since the recognition of the importance of norovirus as a cause of GI disease a more detailed online 132 

surveillance system was set up in 2009
63

. The online system increased ascertainment of outbreaks in 133 

hospitals, with more outbreaks reported in the first year than the whole of the preceding system
63

. 134 

Both systems highlighted the increased activity during the winter months, and the considerable 135 

burden it places on NHS hospitals in England. The online system suggests around 13000 patients 136 

and 3000 staff are affected each year, moreover, almost 9000 bed days are lost because of 137 

restrictions to admissions during outbreaks
63

. 138 

The key to surveillance of norovirus is allying the epidemiology with surveillance of virology. It is often 139 

difficult to achieve this. Recording the number of outbreaks, and laboratory reports indicates levels of 140 

infection, but they cannot directly ally this knowledge of circulating strains of the virus. The activity 141 

recorded in both Public Health England’s hospital outbreak reporting scheme and laboratory reports 142 

suggests that seasonal activity varies considerably. The reasons for changes in seasonal activity 143 

need unpicking and modelling of changes in the circulating strains of norovirus against laboratory 144 

reporting provided evidence that modifications within the virus itself leads to changes in the 145 

epidemiology. In the autumn/winter of 2012 PHE recorded increased levels of norovirus activity; later 146 

attributed to the emergence of the Sydney 2012 strain
37

. However, other reasons have been 147 

proposed, such as changes in winter conditions such as falling temperature
64

. 148 

Given the difficulty in surveillance of norovirus infections from direct sources, other developments 149 

need to be explored. For example, social media could provide early indications of increasing activity. 150 



There are a number of publications looking at the use of internet search and social media postings to 151 

provide information on increased disease activity
65-67

. Other forms of syndromic surveillance have 152 

been used such as the use of telephone helpline data to map diarrhoea and vomiting
68

, difficulties 153 

with this approach fall mainly on disentangling the causes of the illness from syndromes (diarrhoea 154 

and vomiting). Norovirus is not the only cause of D&V and has a seasonality similar to that of 155 

rotavirus, similarly sapovirus has similar illness characteristics to norovirus. 156 

 157 

Virus culture systems 158 

Understanding the interactions of norovirus with host cells has been limited by the lack of an in vitro 159 

laboratory cell culture system. Attempts to establish conventional cell culture approaches were 160 

unsuccessful
69

, after which alternative approaches were developed
70, 71

, however, these were limited 161 

in their usefulness. 162 

More recently, progress has been made towards development of laboratory culture systems for 163 

human norovirus. Two systems have been described: one describes human norovirus replication in B 164 

cells
8
, and a second which describes human norovirus replication supported by stem cell-derived 165 

human enteroids
7
. These systems present exciting new opportunities to understand how norovirus 166 

interacts both with the host cell and with the host environment. 167 

The system using human enteroids
7
 provides a model for processes of norovirus replication such as 168 

attachment/entry, genome replication, and virus assembly/release can be interrogated in a biologically 169 

relevant cell type. Advances in these areas will be crucial for identifying targets for virus-specific 170 

interventions, and evaluating how effective different antiviral therapies can limit norovirus replication. 171 

Further insights into virus entry and egress will enhance understanding of the interactions between 172 

virus and host receptors and identify novel interactions between virus and host that serve as 173 

intervention targets, for example antibodies which interfere with attachment or release processes, 174 

thus neutralising free virus. 175 

The second system, in which norovirus replication is supported in B cells, uses commensal bacteria 176 

that express HBGAs to facilitate virus replication in this model
8, 72

. Analysis of norovirus replication in 177 

this system could enhance understanding of the interaction between norovirus and HBGAs – and 178 

identify how these interactions might be disrupted– but also what interactions might occur with, and 179 

what role might be played by, the microbiome during norovirus infection
73

. 180 

 181 

Norovirus vaccines 182 

Modelling studies have shown that norovirus vaccination would offer healthcare and economic 183 

benefit
74

. These could help control and prevent the large-scale and often protracted outbreaks often 184 

seen in healthcare settings
75

 and other settings such as in the military
76, 77

. 185 



Until very recently, development of candidate vaccines focussed on recombinant protein systems; 186 

expression of the norovirus capsid protein VP1 in vitro leads to self-assembly of the protein into virus-187 

like particles (VLPs) that are antigenically and morphologically identical to infectious virus, but lacking 188 

a genome, VLPs are entirely non-infectious
78

. 189 

Early clinical studies of responses in humans to immunisation with VLPs demonstrated they were 190 

immunogenic when delivered orally
79, 80

 or intranasally
81

. A randomised, double-blind placebo-191 

controlled trial conducted in healthy, susceptible adult volunteers investigated the safety and efficacy 192 

of vaccination using norovirus VLPs, followed by challenge with a homologous norovirus strain
6
. This 193 

trial demonstrated 70% of vaccine recipients had a virus-specific IgA response, and vaccination 194 

reduced the frequency of both infection and disease between placebo control group and vaccine 195 

recipients
6
. 196 

However, the prototype vaccine (and challenge strain) used in this trial was based on a single 197 

norovirus strain – the prototype GI.1 Norwalk virus/1968 – which is uncommon, detected in <1% of 198 

norovirus strains characterised per year in surveillance programmes in developed countries. As the 199 

most significant disease burden is associated with the GII.4 genocluster, any candidate vaccine would 200 

need to elicit immunity to GII.4 norovirus strains, and cross-react to antigenically distinct GII.4 201 

variants. A chimeric VLP was developed incorporating epitopes from antigenically distinct GII.4 202 

viruses
82

, and induced broadly-reactive antibody responses
83

. 203 

A subsequent trial incorporated the chimeric VLP into a GI.1/GII.4 bivalent vaccine formulation and 204 

demonstrated vaccine induced seroconversion in 90% of vaccine recipients, and reduced 205 

gastroenteritis following challenge
5
. However, the predefined primary endpoints were not achieved in 206 

this study, and further studies are necessary to assess how effective this candidate vaccine would be 207 

in the general population, and specifically in paediatric and elderly populations. Furthermore, studies 208 

must address both the duration of and the inter-/intra-genotype breadth of protection. 209 

 210 

Perspectives 211 

Clearly, significant progress has been made in understanding the virology and epidemiology of 212 

norovirus in humans: but there remain significant gaps in our knowledge, important for development 213 

of therapeutic and preventative interventions, and ascertaining norovirus disease burden to 214 

understand how these should be utilised, and to measure their effectiveness. This is true in all 215 

economic settings, but especially in low economic settings. 216 

One key question is to understand the emergence of norovirus strains. With no animal reservoir
17

, the 217 

virus must be sustained – and continuously evolve – in the human population. Using genomics 218 

approaches to measure and monitor virus diversity among circulating strains, and to characterise and 219 

measure whether observed genetic changes induce phenotypic changes will be crucial in developing 220 

the systems needed to understand and monitor emergence events, particularly those that lead to 221 

rapid pandemic spread of norovirus strains. There is increasing evidence that children may act as 222 



important reservoirs of norovirus, and the virus may exploit the more naïve immunological background 223 

in children to explore antigenic diversity, ultimately leading to virus diversification and subsequent 224 

emergence of novel strains
84

. 225 

Second, more detailed understanding of the burden of the disease, transmission dynamics and 226 

pathogenesis in risk groups, both those at risk of more severe disease (immunocompromised
85

, 227 

elderly
61

), and those more likely to come into contact with or are at higher risk of transmitting the virus 228 

(food-handlers
86

, healthcare workers
87

, military personnel
76

) is needed. There are complex 229 

epidemiological and virological questions relating to the distribution of norovirus-associated disease in 230 

the population, for whom the disease burden is greatest, as well as understanding host susceptibility 231 

factors. Integrated laboratory and epidemiological studies are crucial to investigate how norovirus is 232 

transmitted, disease attribution via different transmission pathways, how infections can be tracked in 233 

the population and during outbreaks, and what role susceptibility factors such as HBGA phenotype or 234 

the individual microbiome composition may play in norovirus infection, development of disease and 235 

outcomes. 236 

Third, alongside data on the direct burden of disease, enhanced data are needed to understand 237 

where interventions may alleviate transmission and disease overall, as many settings are interlinked. 238 

For example, administering a norovirus vaccine to patients in long term care homes might help 239 

prevent outbreaks in this environment, but might have limited effects on the population as a whole. 240 

However, it may be a worthwhile strategy if vaccination in care homes subsequently prevents 241 

outbreaks in hospitals and reduces bed blocking. 242 

With the recent advances in laboratory culture systems for norovirus
7, 88

, next generation sequencing 243 

technologies
89

, improved diagnostics
4
 and measuring phenotypic characteristics of noroviruses

90
, 244 

there are new opportunities to advance understanding of this common and important human 245 

pathogen. 246 
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