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ABSTRACT 17 

The intestinal microbiota plays an essential role in the metabolism and immune competence of 18 

chickens from the first day of hatch. In modern production systems, chicks are isolated from adult 19 

chickens, instead hatching in a clean environment. As a result, chicks are colonised by environmental 20 

bacteria including potential pathogens. There is a need to investigate methods by which chicks can be 21 

exposed to the a more appropriate microbial community at hatch. Such methods must be easy to apply 22 

in a hatchery and produce consistent results. The development of the intestinal microbiota of chicks 23 

hatched from eggs sprayed with dilute adult caecal content during incubation was observed at 0, 3, 7 24 

and 14 days post hatch (d.p.h) across two experiments. High-throughput Illumina sequencing was 25 

performed for the V4 hypervariable region of the 16S rRNA gene. A topical treatment of dilute adult 26 

caecal content was sufficient to transplant spore-forming bacteria such as Lachnospiraceae and 27 

Ruminococcaceae. However, this treatment was not able to transplant other taxa that are considered to 28 

AEM Accepted Manuscript Posted Online 20 December 2019
Appl. Environ. Microbiol. doi:10.1128/AEM.02387-19
Copyright © 2019 Richards et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

 on January 7, 2020 at U
niversity of Liverpool Library

http://aem
.asm

.org/
D

ow
nloaded from

 

http://aem.asm.org/


be core elements of the chicken caecal microbiota such as Bacteroidaceae, Lactobacillaceae, 29 

Bifidobacteriaceae and Burkholderiaceae. The topical treatment significantly altered the microbiota of 30 

chicks immediately post-hatch and accelerated the normal development of the microbiota with earlier 31 

colonisation by Ruminococcaceae in the caecum and Candidatus Arthromitus in the ileum. The effect of 32 

the treatment on caecal microbiota was maximal at 3 d.p.h but diminished over time. 33 

IMPORTANCE 34 

Over the last 60 years poultry production has intensified in response to increased demand for meat. In 35 

modern systems, chicks hatch without contacting chickens and their gut bacteria. Consequently, they 36 

are colonised by environmental bacteria that may cause disease. The normal bacteria that live in the 37 

gut, or intestinal microbiota, play an important role in the development of the immune system. 38 

Therefore, it's essential to find easy ways to expose chicks to the more appropriate bacteria at hatch.  39 

This experiment investigated whether spraying eggs with adult caecal contents was sufficient to 40 

transfer an adult microbiota to chicks. Our findings show that spore-forming bacteria were 41 

transplanted but other members of the microbiota were not. In this respect, the spray application was 42 

partially successful but the timing of the spray needs to be modified to ensure that more bacteria are 43 

transferred. 44 

Introduction 45 

Between 1961 and 2001, global average annual meat consumption per capita nearly doubled from 46 

23.1kg to 42.20kg (1). Much of this increase has been provided by a growing poultry industry which 47 

has intensified and industrialised to meet demand. The broiler industry in the UK produced 48 

approximately 82 million broilers per month in 2018 (2). The industrialisation of poultry production 49 

has led to separation of mature adults, eggs and immature chickens at independent sites. Breeder 50 
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flocks, constituting the genetic elite of the national chicken population, are kept exclusively to provide 51 

fertile eggs. Eggs are transported to hatcheries, which may be on the same site, where they are 52 

incubated in batches until hatch. After hatch, chicks are sold as 'day-old chicks' to finishers where they 53 

remain until slaughter at around 42 days old. This separation of chicks from maternal contact delays 54 

colonisation of the gut by normal commensals (3). Instead, chicks are first colonised by environmental 55 

bacteria in hatcheries and during transport which may include possible pathogens such as  Clostridium 56 

perfringens or Escherichia coli (4-6). Poultry flocks are exquisitely sensitive to the presence of enteric 57 

pathogens (7,8). While many can be controlled using vaccination and biosecurity, pathogens such as 58 

Campylobacter remain rife within the UK chicken population (9). Prophylactic use of antibiotics in the 59 

poultry industry was widely adopted as a growth promoter with a secondary effect of facilitating 60 

enteric pathogen control and reducing production losses (10). However, the indiscriminate use of 61 

antibiotics has led to a rise in antimicrobial resistance. In order to combat this threat to public health, 62 

the European Union enacted a ban on the use of antibiotics as growth promoters in 2006 (11). As a 63 

result, this tool of the poultry industry must be replaced with alternatives. 64 

 65 

Manipulation of the intestinal microbiota provides one such alternative. Many efforts to alter the 66 

microbiota have focused on the introduction of probiotics via feed or water to growing and adult chick 67 

(12). However, a growing body of evidence suggests that the ability to influence microbiota 68 

composition decreases with age as a stable microbial community is established (13). Questions remain 69 

over the optimal timing and delivery mechanism for microbiota interventions. Until recently, the 70 

embryonic gut was thought to be sterile. With the advent of molecular techniques, this assumption of 71 

sterility has been challenged with some evidence showing the presence of bacteria in the embryonic 72 

gut. Molecular techniques have been used to visualise and detect bacteria in embryonic chick tissue. 73 
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For example, viable bacteria were detected in the caecal tissue from embryos at 18 and 20 d.i using 74 

fluoresence in situ hybridisation (14). Bacterial DNA from Enterobacteriaceae, Actinomycetales, 75 

Bifidobacteriales and Lachnospiraceae was detected using T-RFLP of the entire gastrointestinal tract of 76 

chicken embryos (15) raising the possibility that in ovo microbial colonisation occurs in proximal parts 77 

of the gastrointestinal tract as well as the caecum. However, scepticism of such results is not 78 

unwarranted as low microbial biomass samples are known to be prone to contamination leading to 79 

false positive results and inflated microbial diversity (16). The presence of bacteria within embryos 80 

and eggs would pose a question as to their origin. Vertical transmission is one possibility but 81 

considered unlikely (17). Germ-free chicks can be derived by sterilising the eggshell immediately after 82 

lay and rearing in an isolator indicating that vertical transmission would be an uncommon route of 83 

colonisation for normal microbiota (18, 19). This suggests that the principal entry route for bacteria 84 

would be penetration of the eggshell and subsequent egg defences. Most studies focus on the ability of 85 

Salmonella and other bacteria of public health importance to translocate from the eggshell to the 86 

embryo although one study does demonstrate that other bacterial taxa are able to penetrate the 87 

eggshell (20). While these findings demonstrated that penetration of the eggshell is possible by certain 88 

bacterial taxa, it cannot be taken as evidence that microbes on the egg surface are able to traverse the 89 

albumen and successfully colonise the embryonic gut. An aim of this study was to detect bacteria 90 

within the embryonic gut and to resolve whether a selection of commensal bacteria applied to the egg 91 

surface during incubation would be detected in the embryonic gut. 92 

This study also aimed to investigate the effect of a topical application of adult caecal content on the 93 

development of the chicken intestinal microbiota and identify which bacterial taxa can be transplanted 94 

to chicks. Altering the microbiota of chicks after hatch is not a new idea. Since the 1970s, research has 95 

been conducted into the effectiveness of competitive exclusion cultures (CEC), usually anaerobically 96 

cultured bacteria from adult caecal contents, in reducing Salmonella infection in chicks (21). With the 97 
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observation that competitive exclusion was effective only when administered before Salmonella 98 

challenge (22) the aim became to administer the probiotic as close to hatch as possible. The first report 99 

of in ovo administration of a probiotic came from Cox et al. (23) who injected an undefined CEC into the 100 

air cell of 17 d.i eggs. This treatment conferred a greater resistance to Salmonella Typhimurium (23). 101 

Despite this early success, further results from injecting CECs into eggs have been variable with 102 

reports of reduced hatchability and early mortality with increased disease resistance falling short of 103 

antibiotic controls (14, 24-26). As such, it is worth questioning whether injection is the best delivery 104 

method for CEC products. Prior to disinfection at hatcheries, which aims to reduce the abundance of 105 

pathogenic bacteria which can reduce hatchability and chick performance, the egg has a surface 106 

microbiota similar to the composition of the caecal microbiota (27). A topical application of adult 107 

caecal bacteria may more accurately replicate the environment in which chickens and their 108 

commensals co-evolved where a sitting hen would regularly replenish the surface bacteria of the egg. 109 

Additionally, a spray application would remove the issue of hatchability caused by injecting probiotics 110 

into eggs. A previous experiment has explored the ability of a topical application of diluted adult caecal 111 

content to affect microbiota development but little analysis was conducted to determine which 112 

amplicon sequence variants (ASVs) were successfully transplanted from the donor material to 113 

recipient chicks (28). This is an important question in terms of developing interventions for 114 

commercial use. Regulators are unlikely to approve a treatment of unclassified bacteria sourced 115 

directly from adult chicken caecal content. Identifying bacterial taxa that are likely to be successfully 116 

transplanted by topical application is the first step towards creating an effective topical probiotic 117 

which is acceptable to regulators.  118 

 on January 7, 2020 at U
niversity of Liverpool Library

http://aem
.asm

.org/
D

ow
nloaded from

 

http://aem.asm.org/


Results 119 

Two separate experiments, a pilot experiment and a repeat experiment, were conducted to observe the 120 

effect of the topical application of adult caecal contents to eggs. Results from both experiments are 121 

presented together. A summary of sampling time points and abbreviations can be found in Figure 1. 122 

Briefly,  sample groups are identified using abbreviations in which the first letter corresponds to the 123 

experiment (P = pilot, R = repeat), the second letter corresponds to treatment (C = control, T = treated) 124 

and the numbers correspond to the time point (0, 3, 7 or 14 d.p.h). Transplant material is identified by 125 

the abbrevition TRPL. 126 

Sequencing Effort 127 

A total of  22,103,523 reads were obtained from 182 experimental samples submitted for sequencing. 128 

After filtering, merging of paired reads and chimera removal, a total of 15,022,950 reads remained 129 

(68% of the original total) giving a mean of 82,544 reads per sample. The median number of reads per 130 

sample was 92,218. 131 

Bacterial 16S rDNA was not detected in embryonic samples 132 

Amplification of standard dilutions revealed that the PCR assay was able to clearly detect 103 bacterial 133 

cells in a sample (Supplementary Figure 1). No positive amplification of bacterial 16S rRNA genes was 134 

detected in any embryonic or egg sample at either 0 or 18 d.i. Amplicons were detected in positive 135 

control samples and all spiked samples indicating that the absence of amplicons in other samples was 136 

not due to PCR failure. This result indicates that no significant population of bacteria was present in 137 

the embryonic gut at 18 d.i. 138 
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Treatment had no consistent effect on body weight 139 

The mean body weight of treated and control chicks in the repeat experiment was compared using 140 

Student’s t-test. No significant differences between groups were found at 0 (treated: M = 46g, SD = 141 

5.83; control: M = 48.4g, SD = 6.65; conditions: t = -0.5, p = 0.6), 7 (treated: M = 135g, SD = 19.0; 142 

control: M = 132g, SD = 17.1; conditions: t = 0.35, p = 0.7) and 14 (treated: M = 358.5g, SD = 44.8; 143 

control: M = 322.5g, SD = 39.8; conditions: t = 1.8, p = 0.13) d.p.h. However, there was a significant 144 

difference in body weight between groups at 3 d.p.h (treated: M = 77g, SD = 7.48; control: M = 65g, SD 145 

= 5.0; conditions: t = 4.0, p = 0.002). 146 

Treated chicks had higher alpha diversity at early time points 147 

The alpha diversity of each sample group is displayed in Figure 2 with the significance of pairwise 148 

Kruskal-Wallis tests comparing alpha diversity between sample groups displayed in Figure S2. Across 149 

all experimental groups alpha diversity increased significantly with age with two exceptions. There 150 

was no significant increase in alpha diversity in treated or control chicks between 0 and 3 d.p.h 151 

(treated: H = 1.91, p = 0.19; control: H = 2.38, p = 0.15)  or in treated chicks between 3 and 7 d.p.h 152 

during the repeat experiment (H = 2.16, p = 0.17). 153 

In general, treatment with an adult-derived microbiota resulted in a significantly higher alpha 154 

diversity when compared to control chicks at 0 d.p.h (repeat: H = 6.82, p = 0.017) and 3 d.p.h (pilot: H = 155 

9.02, p = 0.009; repeat: H = 9.8, p = 0.006) but not 7 and 14 d.p.h. There were significant differences in 156 

alpha diversity between transplant material (TRPL) samples and samples taken at 0 and 3 d.p.h as well 157 

as PT07 samples.  158 
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Control chicks at 3 d.p.h had significantly higher alpha diversity in the repeat experiment compared to 159 

the pilot experiment (H = 8.27, p = 0.01). There were no further significant differences in alpha 160 

diversity between equivalent groups from the pilot and repeat experiments. 161 

Treatment significantly affected beta diversity 162 

When measured with an unweighted UniFrac metric, the factor ’Age’ had the largest effect on beta 163 

diversity (ANOSIM test statistic = 0.78, p = 0.001), followed by ’Treatment’ (ANOSIM test statistic = 164 

0.13, p = 0.001) and ’Experiment’ (ANOSIM test statistic = 0.10, p = 0.012). The average unweighted 165 

UniFrac distance between groups is displayed in Figure S3. A PCoA analysis showed clustering of 166 

samples by group (Figure 3A). When measured with a weighted UniFrac metric, the factor ’Age’ had 167 

the largest effect on beta diversity (ANOSIM test statistic = 0.40, p = 0.001), followed by ’Experiment’ 168 

(ANOSIM test statistic = 0.16, p = 0.002) and ’Treatment’ (ANOSIM test statistic = 0.13, p = 0.001). A 169 

PCoA analysis showed clustering of samples by group (Figure 3B). 170 

In plots of unweighted UniFrac distance RC0 and RT0 tend to cluster together in the PCoA plot with the 171 

exception of one RT0 sample. PC3 and RC3 samples clustered together along with three PT3 samples. 172 

The remaining PT3 samples and all RT3 samples clustered togther and were closer to samples from 173 

later time points that PC3 and RC3 samples. At 7 d.p.h, PC7, PT7, RC7 and RT7 samples cluster together 174 

although there is a tendency for treated samples from both experiments to cluster closer to samples 175 

from 14 d.p.h. RC14 and RT14 samples formed separate clusters to each other. A similar pattern of 176 

clustering was present in plots of weighted UniFrac distance although there was no separate clustering 177 

of RC14 and RT14 samples. Instead, all samples from 7 and 14 d.p.h tended to cluster together along 178 

with RT3 samples and one PT3 sample. Additionally, PC3 and RC3 samples formed distinct clusters 179 

compared to the unweighted UniFrac distance plot. 180 
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Distance between sample groups and TRPL samples gives some indication of transplant success as the 181 

unweighted UniFrac distance between similar samples is lower reflecting closer clustering of samples.. 182 

At 3, 7 and 14 d.p.h treated samples were significantly closer to TRPL samples than controls (3 d.p.h: t 183 

= 16.6, p < 0.001 ; 7 d.p.h: t = 7.2, p < 0.001 and 14 d.p.h: t = 4.8 , p < 0.001). This pattern of increased 184 

similarity of treated samples to TRPL samples in both experiments suggests that bacteria from adult 185 

caecal content successfully colonised chicks by those time points. However, the success of the 186 

treatment was not uniform between experiments. PT3 samples are further from TRPL samples than 187 

RT3 samples (0.76 c.f. 0.66). 188 

ASVs were differentially abundant between treated and control chicks 189 

For ease of interpretation, results from the pilot and repeat experiments were interpreted separately. 190 

Gneiss analysis was used to identify differentially abundant ASVs between treated and control chicks 191 

since it accounts for the compositional nature of microbiome data. Firstly, a dendrogram of ASVs is 192 

prepared. Each node is termed a ’balance’ with taxa on one side of the balance designated as 193 

numerators and on the other, denominators. The log ratio of abundances between numerator and 194 

denominator taxa for each balance is calculated. This value can be compared between sample groups 195 

to determine differences in microbiome composition. A significant difference between samples 196 

indicates that one of five hypotheses is true: i) The numerator taxa are increased in the group with a 197 

higher log ratio; ii) The denominator taxa are decreased; iii) A combination of hypotheses i) and ii); iv) 198 

Both numerator and denominator taxa are increased but numerator taxa have increased more; v) Both 199 

numerator and denominator taxa are decreased but denominator taxa have decreased more. 200 

Quantitative PCR is required to discern which hypothesis is correct as changes in relative abundance 201 

are not always reflective of absolute abundance (29). 202 
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Pilot Experiment 203 

Gneiss analysis revealed differential ASV abundance between treated and control chicks at 3 and 7 204 

d.p.h. The ASV table was filtered to exclude ASVs with a total frequency of less than 39 (a justification 205 

for filtering thresholds is provided in the Materials and Methods section) reducing the number of ASVs 206 

in the analysis from 408 to 306. The overall linear regression model fit was R2 = 0.34 with covariate 207 

“Treatment” accounting for 17.1% of variance. Log ratio balances y0 (β = -19.8, p < 0.001), y2 (β = 9.62, 208 

p < 0.001), y5 (β = -3.97, p = 0.003), y12 (β = -5.42, p < 0.001), y14 (β = 6.56, p < 0.001) and y27 (β = 209 

7.20, p = 0.006) were significant predictors for the covariate of “Treatment”. On review of the heatmap, 210 

balance y6 was considered to describe ASVs differentially present in treated chicks at 3 d.p.h.  Figure 4 211 

show the log abundance of ASVs at 3 and 7 d.p.h between treated and control chicks along with a 212 

summary of balances created by Gneiss analysis. Individual log ratios by group for significant balances 213 

and balance taxonomy are available in Figure S4. The taxonomy of ASVs identified as differentially 214 

abundant between treated and control samples is presented in Table 1A with relative abundance of 215 

bacterial families in each sample displayed in Figure S5. A higher number of ASVs assigned to 216 

Lachnospiraceae, Bacillaceae, Ruminococcaceae, and Lactobacillaceae were found to have a higher 217 

relative abundance in treated samples compared to control samples. Some ASVs were found to have a 218 

higher abundance in control compared to treated samples and were assigned to Enterobacteriaceae, 219 

Erysipelotrichaceae and Peptostreptococcaceae.  220 

Repeat Experiment 221 

Gneiss analysis revealed differential ASV abundance between treated and control chicks at 0, 3, 7 and 222 

14 d.p.h. The ASV table was filtered to exclude ASVs with a total frequency of less than 30 reducing the 223 

number of ASVs in the analysis from 633 to 475. The overall linear regression model fit was R2 = 0.31 224 

with covariated “Treatment” accounting for 9.65% of variance. Log ratio balances y0 (β = 14.2, p < 225 
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0.001), y5 (β = -6.0, p = 0.001), y10 (β = -5.7, p = 0.009), y14 (β = -7.8, p < 0.001), y27 (β = 4.1, p = 0.01) 226 

and y28 (β = 2.9, p < 0.001) were significant predictors for the covariate of “Treatment”. On review of 227 

the heatmap, balance y4 was considered to describe ASVs differentially present in control chicks at 3 228 

d.p.h and balance y1denominator ASVs were considered to be equally abundant between treated and 229 

control samples. Balances y5, y14, y27 and y28 contained ASVs already identified as differentially 230 

abundant in treated or control samples by other balances. Figure 5 shows the log abundance of ASVs at 231 

0, 3, 7 and 14 d.p.h between treated and control chicks along with a summary of balances created by 232 

Gneiss analysis. Individual log ratios for significant balances and balance taxonomy are available in 233 

Figure S6. The taxonomy of ASVs identified as differentially abundant between treated and control 234 

samples is presented in Table 1B with relative abundance of bacterial families in each sample 235 

displayed in Figure S5. A higher number of ASVs assigned to Lachnospiraceae, Ruminococcaceae, 236 

Clostridiales vadin BB60 group, Bacillaceae, Peptostreptococcaceae and Mollicutes RF39 were found to 237 

have a higher relative abundance in treated samples compared to control samples. Some ASVs were 238 

found to have a higher abundance in control compared to treated samples and were assigned to 239 

Clostridiaceae 1, Enterobacteriaceae and Enterococcaceae. 240 

12% of ASVs present in the transplant material were identified as successfully transplanted in the Pilot 241 

Experiment and 20% in the Repeat 242 

445 ASVs were defined as present in the transplant. ASVs present in the transplant material that were not 243 

subsequently identified in any samples from the pilot and repeat experiments were removed from the analysis (n = 244 

274). Most of these ASVs were assigned to Ruminococcaceae (n = 125), Clostridiales vadin BB60 group 245 

(n = 38), Lachnospiraceae (n = 33), Christensenellaceae (n = 12) and Peptococcaceae (n = 9). ASVs 246 

assigned to Bacteroidaceae, Lactobacillaceae, Coriobacteriaceae, Bifidobacteriaceae, Burkholderiaceae 247 
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and Eggerthellaceae had a high relative abundance in the transplant material (Figure S5). However, 248 

none of these ASVs were successfully transplanted in either the pilot or repeat experiments. 249 

Pilot Experiment 250 

A total of 56 ASVs were categorised as successfully transplanted  (Table 2 and Figure S7). The 251 

taxonomy assignment of ASVs is shown in Table 3A. Only ASVs assigned to Lachnospiraceae, 252 

Ruminococcaceae, Erysipelotrichaceae and Mollicutes RF39 (uncultured rumen bacteria) were defined 253 

as successfully transplanted. A further 49 ASVs were categorised as possibly transplanted  of which the 254 

majority were assigned to the families Ruminococcaceae and Lachnospiraceae. Other ASVs categorised 255 

as possibly transplanted were assigned to Clostridiaceae 1, Erysipelotrichaceae, Bacillaceae, 256 

Peptostreptococcaceae, Enterobacteriaceae, Enterococcaceae  and Christensenellaceae. At the genus 257 

level, the two ASVs assigned to Clostridiaceae 1 were identified as Candidatus Arthromitus. The 258 

remaining 201 ASVs were categorised as environmental. Some taxa were almost exclusively 259 

categorised as environmental including Clostridiaceae 1, Enterobacteriaceae, Peptostreptococcaceae, 260 

Bacillaceae, Clostridiales vadin BB60 group, Enterococcaceae, Paenibacillaceae and Lactobacillaceae. A 261 

Hybrid Sankey diagram showed how the taxonomy of transplanted and environmental ASVs relates to 262 

that of ASVs identified as differentially abundant between treated and control samples (Figure S8A). 263 

Repeat Experiment 264 

A total of 89 ASVs were categorised as successfully transplanted (Table 2 and Figure S7B). The 265 

taxonomy assignment of ASVs is shown in Table 3B. The majority were assigned to the families 266 

Lachnospiraceae and Ruminococcaceae. One ASV that was categorised as successfully transplanted and 267 

assigned to Clostridiaceae 1 was identified at the genus level as Candidatus Arthromitus. A further 37 268 

ASVs were categorised as possibly transplanted of which the majority were assigned to the family 269 

Ruminococcaceae. The remaining 349 ASVs were categorised as environmental. As for the pilot 270 
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experiment, some taxa were mainly categorised as environmental including Clostridiaceae 1, 271 

Clostridiales vadin BB60 group, Erysipelotrichaceae, Peptostreptococcaceae, Enterobacteriaceae, 272 

Bacillaceae, Enterococcaceae, Paenibacillaceae and Lactobacillaceae. A Hybrid Sankey diagram showed 273 

how the taxonomy of transplanted and environmental ASVs relates to that of ASVs identified as 274 

differentially abundant between treated and control samples. A Hybrid Sankey diagram showed how 275 

the taxonomy of transplanted and environmental ASVs relates to that of ASVs identified as 276 

differentially abundant between treated and control samples (Figure S7B). 277 

A contingency table (Table 2) shows the overlap between ASVs identified as differentially abundant 278 

and their classification in terms of transplant success in Experiments One and Two. The relationship 279 

between group assignment was significant in the pilot, χ2 (4) = 29.2, p < 0.001, and repeat, χ2 (4) = 72.8, 280 

p < 0.001, experiments. ASVs identified as differentially abundant in treated chicks were more likely to 281 

be defined as successfully transplanted or possibly transplanted.  282 

Quantitative PCR confirmed differentially abundant taxa between treated and control samples 283 

Caecum 284 

Genera within Lachnospiraceae have generally been placed in Clostridium Cluster XIVa while genera 285 

within Ruminococcaceae have generally been placed in Clostridium Cluster IV (30, 31). As such, primers 286 

for Clostridium Cluster XIV were used to estimate the abundance of Lachnospiraceae and primers for 287 

Clostridium Cluster IV were used to estimate the abundance of Ruminococcaceae. Results are presented 288 

in Figure 6. 289 

The abundance of Clostridium Cluster XIV was significantly different in RT0 samples (t = 22.14, p < 290 

0.001) as no DNA was amplified using this primer in RC0 samples. In both experiments, treated chicks 291 

had significantly more Clostridium Cluster XIV at 3 d.p.h (pilot: t = 7.24, p < 0.001; repeat: t = 11.3, p < 292 
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0.001). The difference between treated and control chicks continued to be significant in the repeat 293 

experiment at 7 d.p.h (t = 4.0, p < 0.001) but not in the pilot experiment. There was no significant 294 

difference in Clostridium Cluster XIV abundance between groups at 14 d.p.h.  295 

There was no significant difference in Clostridium Cluster IV abundance between RC0 and RT0 296 

samples, as DNA from this taxa was amplified in only one RT0 sample. The abundance of Clostridium 297 

Cluster IV was significantly higher in RT3 samples compared to RC3 samples (t = 4.9, p < 0.001) but the 298 

result was not quite significant when comparing PT3 and PC3 samples (t = 1.95, p = 0.07). By 7 and 14 299 

d.p.h there was no significant difference in Clostridium Cluster IV abundance between treated and 300 

control chicks.  301 

There were differences in abundance of Clostridium Cluster IV between treated chicks from the pilot 302 

and repeat experiments. RT3 samples had a higher abundance of Clostridium Cluster IV compared to 303 

PT3 samples (t = 3.63, p = 0.002). 304 

No Enterobacteriaceae were detected in either RT0 or RC0 samples. There was a significantly lower 305 

abundance of Enterobacteriaceae RT3 samples compared to RC3 samples (t = -5.42, p < 0.001). 306 

However, in the pilot experiment, the opposite result was obtained with a significantly higher 307 

abundance of Enterobacteriaceae in PT3 samples compared to PC3 samples (t = 3.54, p = 0.005). At 7 308 

d.p.h, there was a significantly lower abundance of Enterobacteriaceae in treated chicks in both 309 

experiments (pilot: t = -5.24, p < 0.001 ; repeat: t = -2.85, p = 0.01). On average, the abundance of 310 

Enterobacteriaceae was lower in RT14 samples compared to RC14 samples but the difference was not 311 

significant (t = -1.95, p = 0.07). There was a large inter-experiment variation in Enterobacteriaceae 312 

abundance with higher abundance detected at 3 d.p.h in the repeat experiment. 313 

High levels of Clostridium were detected in RT0 and RC0 samples were no significant difference 314 

between the groups. The abundance of Clostridium was significantly lower in RT3 samples compared 315 
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to RC3 samples (t = -7.78, p < 0.001) but was significantly higher in RT7 samples compared to RC7 316 

samples (t = 3.5, p = 0.002). There were no significant differences in Clostridium abundance between 317 

treated and control chicks in the pilot experiment or in the repeat experiment at 14 d.p.h. 318 

Ileum 319 

No Enterobacteriaceae were detected in treated or control chicks in the repeat experiment at 0 d.p.h 320 

(Figure 7). There was a significantly lower abundance of Enterobacteriaceae in treated chicks 321 

compared to control chicks at 3 d.p.h in the repeat experiment (t = -4.78, p < 0.001 ) and 7 d.p.h in the 322 

pilot experiment (t = -9.27, p < 0.001 ). There were no significant differences between treated and 323 

control chicks at other time points. 324 

There was no significant difference in Clostridium abundance between treated and control chicks at 325 

any time point except at 3 d.p.h in the repeat experiment where the abundance was lower in treated 326 

chicks (t = -4.33, p < 0.001). 327 

In both experiments, no Candidatus Arthromitus was present in the ileum until 7 d.p.h. At 7 d.p.h, the 328 

abundance of Candidatus Arthromitus was significantly higher in treated chicks in the pilot and repeat 329 

experiments (t = 4.35, p < 0.001 and t = 2.97, p = 0.008 respectively). Although the average abundance 330 

of Candidatus Arthromitus was higher in treated chicks from the repeat experiment at 14 d.p.h the 331 

difference was not significant (t = 1.88, p = 0.08). 332 

Treatment did not alter intestinal morphology 333 

Histological examination of ileal and caecal tonsil tissues from the repeat experiment at 0, 3, 7 and 14 334 

d.p.h was conducted to observe morphological parameters associated with intestinal development 335 

such as villus height and width, epithelial cell height and crypt mitotic figure counts. 336 
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Significantly more mitotic figures (Figures S9A and S9B) were recorded in the crypts of control chicks 337 

than treated chicks at 3 d.p.h in the ileum (t = 3.53, p = 0.008) and caecal tonsil (t = 2.81, p = 0.03). 338 

There was no statistically significant difference in mitotic figure counts between age groups in the 339 

ileum (F = 3.1, p = 0.09) and caecal tonsil (F = 0.18, p = 0.94). 340 

There were no significant differences in epithelial cell height, villus height or villus width between 341 

treated and control chicks at 0, 3, 7 or 14 d.p.h (Figures S9C, S9D and S9E). There was a statistically 342 

significant difference in villus height (F = 41.6, p < 0.001), villus width (F = 18.1, p < 0.001) and 343 

epithelial cell height (F = 58.9, p < 0.001) between age groups. Post hoc comparisons revealed that 344 

villus height was significantly different between 0 and 3 d.p.h (p = 0.001), 3 and 7 d.p.h (p = 0.001) and 345 

7 and 14 d.p.h (p = 0.001). Villus width was significantly different between 0 and 3 d.p.h (p = 0.01) and 346 

7 and 14 d.p.h (p = 0.001) but not between 3 and 7 d.p.h (p = 0.75). Epithelial cell height was 347 

significantly different between 0 and 3 d.p.h (p = 0.001) and 3 and 7 d.p.h (p = 0.001) but not between 348 

7 and 14 d.p.h (p = 0.66). 349 

Segmented filamentous bacteria, were observed in the ileum from 7 d.p.h with presence on ileal 350 

histology correlating with presence of Canidadatus Arthromitus detected by qPCR. In the repeat 351 

experiment, segmented filamentous bacteria were also seen in the caecal tonsil in close approximation 352 

to epithelial cells and in the lumen (Figure S10A). 353 

No bacteria were found in the caecal crypts of any chicks at 0 d.p.h or control chicks at 3 d.p.h, 354 

however, bacteria were identified in the caecal crypts of four treated chicks (Figure S10B). At 7 d.p.h, 355 

four treated chicks and six control chicks were positive. At 14 d.p.h, no treated or control chicks were 356 

positive, although occasional bacteria were noted in caecal crypts. 357 
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Treatment did not affect immune cell populations in the caecal tonsil 358 

Tissue from chicks at 3 d.p.h was examined as this was the time point when most differences were 359 

found between the microbiota of treated and control chicks. No significant differences in counts of  360 

CD4, CD8α, CD8β, γδ TCR and Bu1 cells were found between treated and control caecal tonsils at 3 d.p.h. 361 

Discussion 362 

This study demonstrated that there were no detectable bacteria present in the embryonic gut at 18 d.i. 363 

It could be argued that detection of PCR amplicons using gel electrophoresis was not sensitive enough 364 

to detect small numbers of bacteria within the embryonic gut. It could be expected that a bacterial 365 

population too small to be detected using PCR would also be too small to have an impact in the face of 366 

overwhelming colonisation by other bacterial taxa at hatch. It is likely that the chicken gut remains 367 

sterile until hatch when bacteria present on the egg surface are the first to colonise. 368 

Inoculation of the egg surface with an adult-derived microbiota was sufficient to transfer elements of 369 

the microbiota to chicks with the result of accelerating caecal microbiota development. In treatment 370 

and control groups across both experiments, microbial succession followed the same pattern. The 371 

microbiota of day-old chicks was poorly diverse and composed of environmental bacteria, a pattern 372 

well described in current literature (13, 28, 32). The order of succession whereby environmental 373 

bacteria were replaced first by Lachnospiraceae and then Ruminococcaceae and other Clostridiales was 374 

common across treated and control chicks. However, the speed of succession was faster in treated 375 

chicks in both experiments with an initial strong colonisation by Lachnospiraceae followed by an 376 

increase in Ruminococcaceae. Many Ruminococcaceae ASVs were classified as successfully or possibly 377 

transplanted suggesting that these ASVs were present at 0 and 3 d.p.h but were unable to colonise the 378 

caecum initially. This suggests that alterations to caecal conditions by Lachnospiraceae or some other 379 
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unknown host factor are a prerequisite for colonisation by Ruminococcaceae. These results are in 380 

contrast to those of Donaldson et al. (28) who did not observe significant differences in alpha diversity 381 

or the pattern of bacterial colonisation between treated and control birds. These differing results can 382 

be explained by different techniques used to apply the transplant material. Donaldson et al. (28) 383 

swabbed the egg surface with diluted adult caecal content once during incubation which may have 384 

resulted in the application of lower numbers of spores and vegetative cells to the eggshell than a spray. 385 

Additionally, multiple treatments may have allowed for an accumulation of viable bacterial spores 386 

more akin to the effect of close contact with the hen during incubation. 387 

The presence of ASVs  common to the transplant material from as early as a few hours post hatch 388 

shows that the caecal microbiota can be successfully transplanted to chicks by topical application to 389 

the egg surface. Most of the successfully transplanted ASVs were assigned to Lachnospiraceae and 390 

Ruminococcaceae which differs from previously published results. Pedroso et al. (14) found only one 391 

operational taxonomic unit assigned to Lachnospiraceae was transferred to treated chicks after 392 

inoculating eggs with an in ovo injection of a commercial probiotic competitive exclusion (CPCE) 393 

product. In contrast, we found that the majority of transferred features were assigned to 394 

Lachnospiraceae, Ruminococcaceae and other Clostridiales. CPCE products are collections of culturable 395 

bacteria but the results of our study show that the ASVs most likely to successfully colonise and persist 396 

within the chicken caecum belonged to taxa that are challenging to culture in the laboratory such as 397 

Lachnsopiraceae, Ruminococcaceae and, to a lesser degree, Clostridiales vadin BB60 and Mollicutes 398 

RF39. It’s unlikely that current CPCE products have an optimal bacterial composition for long term 399 

colonisation of chicks. Development of CPCE products should focus on including the aforementioned 400 

bacterial taxa as these have been shown to readily colonise newly hatched chicks and persist within 401 

the caecum. However, topical application of caecal contents was unable to transplant several 402 

important taxa such as Bacteroidaceae, Lactobacillaceae and Bifidobacteriaceae.  A recent study of 403 
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whole genome sequences from caecal bacteria revealed that genes enabling sporulation were found 404 

within most Gram-positive Firmicutes, such as Lachnospiraceae and Ruminococcaceae, with the 405 

exception of Lactobacillaceae (33). No Bacteroidetes isolates were spore-forming, however, 73% of 406 

Bacteroidetes isolates were microaerotolerant and able to survive air exposures of 24 hours (33). 407 

Similarly, the Bifidobacteria isolated from the chicken gut are non-spore forming (34). This difference 408 

in environmental survival strategy explains the pattern of transplanted features observed in this study. 409 

Spores would be able to survive on the egg surface and colonise the chick at hatch whereas non-spore 410 

forming members of the caecal microbiota would not survive the 72 hours from the last treatment to 411 

hatch. Alternatively, since bacterial viability was not assessed in the transplant material, the storage 412 

and handling of the caecal content may have negatively impacted the survival of taxa that were not 413 

transplanted. The inability of a topical treatment of diluted adult caecal content at 18 days of 414 

incubation to transfer Bacteroidaceae, Lactobacillaceae and Bifidobacteriaceae exposes a major 415 

weakness of the technique whether that is due to oxygen exposure during treatment or reduced 416 

viability due to storage. Bacteroidaceae is considered a core member of the chicken caecal microbiota 417 

(12, 35, 36) while members of Bifidobacteriaceae have been positively correlated with increased bird 418 

weight (35). Any future experiments aiming to transplant an adult caecal microbiota would need to 419 

take these taxa into account by delivering treatments immediately after hatch, either directly to the 420 

chick or into the environment. Exploring different methods of bacterial preservation by using more 421 

appropriate storage media to improve bacterial viability provides another avenue for future 422 

investigation. 423 

The abundance of Candidatus Arthromitus, also known as Candidatus Savagella or segmented 424 

filamentous bacteria was studied in the ileum due to its importance as an immunostimulatory 425 

bacterium (37-39). Consistent with previous experiments, Candidatus Arthromitus was absent from 426 

the ileum until 7 d.p.h (40) after which a higher abundance was present in treated chicks. The 427 
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environmental factors influencing Candidatus Arthromitus colonisation have not been explored 428 

although increased abundance was noted in the ilea of chicks housed on reused litter (41). The 429 

transplant material may have contained Candidatus Arthromitus spores that transferred to treated 430 

chicks resulting in a higher abundance once ileal conditions were suitable for colonisation. 431 

Alternatively, the presence of transplanted bacteria in treated chicks may have created favourable 432 

metabolic or immunological conditions allowing earlier and greater colonisation by Candidatus 433 

Arthromitus. Treatments which result in early colonisation by Candidatus Arthromitus should be of 434 

interest to poultry producers as earlier colonisation by Candidatus Arthromitus has been positively 435 

correlated with body weight (35). Segmented filamentous bacteria were found in the caecal tonsil on 436 

histology. The presence of segmented filamentous bacteria in close approximation to the caecal tonsil 437 

epithelium was previously reported in 1978 (42). While previous studies have been conducted to 438 

investigate the role of segmented filamentous bacteria on immune development in the ileum of mice 439 

(38,43), no studies focus on similar effects in either the ileum or caecal tonsil of chicken. 440 

The transplant was more successful in the repeat experiment as evidenced by improved early 441 

transplant uptake and presistence of significant differences in alpha diversity until 7 d.p.h. The reason 442 

for this variability is hard to assess. Since the storage and application of transplant material was 443 

uniform across both experiments, uncontrolled variables such as the initial microbiota or other 444 

environmental bacteria may have affected transplant success. 445 

A potential use for caecal microbiota transplants in chicks is the competitive exclusion of potential 446 

pathogens such as Enterobacteriaceae and Clostridium during the first week post-hatch. In the repeat 447 

experiment there was a significant difference in the colonisation of Enterobacteriaceae with a 448 

consistently lower abundance in treated chicks. The role of some Enterobacteriaceae in the chicken 449 

caecal microbiota is unclear. While Escherichia coli has the potential for pathogenicity, it is often found 450 
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in the caeca of healthy chickens. As such, the higher abundance of Enterobacteriaceae in control chicks 451 

may not be a cause for concern. However, large blooms of Enterobacteriaceae unopposed by other taxa, 452 

such as that in control chicks from the repeat experiment, are unlikely to be beneficial to the host. In 453 

this regard, the transplant was successful as a similar overgrowth of Enterobacteriaceae was avoided 454 

in treated chicks. The lower abundance of Enterobacteriaceae in treated chicks is likely due to the 455 

presence of short chain fatty acid (SCFA) producing bacteria such as Lachnospiraceae and 456 

Ruminococcaceae. Previous studies have found an inhibitory effect of SCFAs on Enterobacteriaceae 457 

growth both in vitro and in vivo (44). The treatment had less of an impact on the abundance of 458 

Clostridium.  The most significant species of Clostridium in terms of chicken health is Clostridium 459 

perfringens which has been linked to necrotic enteritis in chicks. Direct challenges using this species 460 

and other more significant pathogens such as Campylobacter and Salmonella are required to further 461 

explore how caecal microbiota transplants can affect pathogen abundance in the caecum. 462 

This study did not find statistically significant differences in intestinal morphology between treated 463 

and control chicks, except that the mitotic figure count was higher in both the ileum and the caecum of 464 

control chicks at 3 d.p.h. The caecal microbiota of treated and control chicks at this time point was 465 

markedly different with control chicks mainly colonised by Enterobacteriaceae. If mitotic figure count 466 

is reflective of epithelial cell replacement rates, this could imply that the presence of 467 

Enterobacteriaceae increased epithelial cell replacement. Equally, it could be argued that the lack of 468 

Lachnospiraceae and Ruminococcaceae may have induced higher epithelial cell turnover in control 469 

chicks since the bacterial metabolite butyrate decreases apoptosis of normal enterocytes (45). Body 470 

weight was also significantly different between treated and control chicks at 3 d.p.h. As with ileal 471 

epithelial turnover, if this difference were attributable to the microbiota it is not possible to distinguish 472 

if the cause was a negative effect of Enterobacteriaceae  or positive effect of Lachnospiraceae and 473 

Ruminococcaceae.  474 
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No significant differences in immune cell populations were found between treated and control chicks 475 

at 3 d.p.h despite large differences in caecal microbiota. While these differences did not have an impact 476 

on the number of immune cells in the caecal tonsil, it remains possible that the presence of different 477 

bacterial species stimulates differential gene expression in immune cells since a role of SCFA 478 

producing bacteria in immune development has been studied in other species (46,47).  479 

The presence of bacteria in caecal tonsil crypts has not previously been reported in chickens. This 480 

observation was age dependent with sparse bacteria observed at 14 d.p.h compared to 3 and 7 d.p.h. 481 

This raises the prospect that the presence of bacteria in the caecal tonsil crypts has some role in 482 

immune development which subsequently excludes them from this niche. It was not possible to 483 

determine the taxonomy of these bacteria, however, it’s likely that they were Lachnospiraceae or 484 

Ruminococcaceae due to the absence of bacteria in the caecal tonsil crypts of all chicks at 0 d.p.h and 485 

control chicks at 3 d.p.h. Additionally, a previous study found that these taxa have a higher relative 486 

abundance in caecal mucus compared to lumen contents (48). 487 

In summary, three topical applications of dilute adult caecal content to the eggshell was sufficient to 488 

transplant elements of the caecal microbiota to newly hatched chicks resulting in accelerated 489 

development of the caecal microbiota. However, while important members of the caecal microbiota 490 

such as Lachnospiraceae and Ruminococcaceae were successfully transplanted, topical application 491 

failed to transplant Bacteroidaceae or Lactobacillaceae. Topical application of characterised bacterial 492 

communities to the eggshell during incubation provides a mechanism to transfer a desirable 493 

intetestinal microbiota to chicks and reduce colonisation by possible pathogens. However, treatment 494 

ending at 18 d.i only successfully transferred spore-forming bacteria with further experiments 495 

required to determine whether non spore-forming microbiota can be transplanted by topical 496 

treatments in the hours before or after hatch. 497 
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Materials and Methods 498 

Animals and Housing 499 

Pilot Experiment 500 

61 Ross 308 eggs were purchased from a local hatchery (Annyalla Chicks, Wrexham).  Hatchery eggs 501 

were disinfected daily during storage using a fog application of Virocid® (Cid Lines), a disinfectant 502 

based on quaternary ammonium, glutaraldehyde and isopropanol. Eggs at the hatchery are disinfected 503 

further using formaldehyde fumigation before being set. On arrival at the experimental housing, 5 eggs 504 

were selected for sampling at 0 d.i. The remaining 56 eggs were divided into a treatment group and a 505 

control group of 28 eggs each. Each group was housed in different incubators in different rooms. A 506 

biosecurity protocol was implemented whereby the control group was handled first to avoid transfer 507 

of environmental bacteria from the treatment to the control group. Eggs were incubated at 37.5°C for 508 

21 days. The eggs were candled at 7 d.i to assess viability. In both groups, 8 eggs were removed as no 509 

embryonic development had occurred. 5 eggs from each group were removed for sampling at 18 d.i. 510 

The remaining 15 eggs in each group were left to hatch. 15 and 14 chicks hatched from the treatment 511 

and control groups respectively. Chicks were left in the incubators until dry before being transferred to 512 

brooder pens with a wood shaving substrate. Water and feed were provided ad libitum by a drinker 513 

and feeder present in each brooder. Chicks were fed a vegetable protein based starter diet for the 514 

duration of the experiment (Table 4). Seven chicks from each group were sampled at 3 days post hatch 515 

(d.p.h) with the remaining 8 treated and 7 control chicks sampled at 7 d.p.h. No unexpected deaths 516 

occurred in either group over the course of the experiment. 517 
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Repeat Experiment 518 

56 Ross 308 eggs were purchased from a local hatchery (Annyalla Chicks, Wrexham). Eggs underwent 519 

the same disinfection procedure at the hatchery as described for the Pilot Experiment. On arrival at the 520 

experimental housing, the 56 eggs were divided between two incubators of 28 eggs each. The day that 521 

incubation started was defined as 0 d.i. Both incubators were housed in the same room. Eggs were 522 

incubated at 37.5°C for 22 days. The eggs were candled at 7 d.i to assess viability. Eggs began to hatch 523 

at 20 d.i with 6 chicks hatching on 20 d.i, 21 on 21 d.i and 17 on 22 d.i giving a total of 44 chicks. After 524 

hatch, chicks were left in the incubators until dry before being transferred to brooder pens with a 525 

wood shaving substrate. On the 22 d.i, 40 day old chicks were purchased from the same hatchery. 526 

These chicks were the control group and were housed separately from treated chicks. Water and feed 527 

were provided ad libitum by a drinker and feeder present in each brooder. Chicks were fed a vegetable 528 

protein based starter diet for the duration of the experiment. Five chicks from each group were 529 

sampled on the same day the control chicks were brought to the housing (defined as 0 d.p.h). Ten 530 

chicks from each group were sampled at 3, 7 and 14 d.p.h. Two chicks from the treatment group died 531 

unexpectedly during the experiment, one at 1 d.p.h and another at 6 d.p.h. The cause of death was not 532 

determined although a preliminary gross post mortem examination revealed peritonitis and 533 

perihepatitis consistent with early opportunistic bacterial infection. 534 

Treatment 535 

Entire caecal contents were collected from healthy 42 day old chickens from three different breeds 536 

(Ross 308, Hubbard JA87 and Cobb 500) as part of an experiment to observe the normal development 537 

of the caecal microbiota (48). 200mg of caecal contents from five individuals of each breed were 538 

pooled and DNA extracted for sequencing. The remaining caecal contents were stored at -20°C for 14 539 

months. Before experimental work began, caecal contents from Ross, Cobb and Hubbard birds were 540 
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defrosted, mixed and diluted 1:20 in sterile phosphate buffered saline. Aliquots of 5ml of diluted caecal 541 

content were prepared and frozen at -20°C for use as treatments. Treatment group eggs were sprayed 542 

at 2, 7, 14 and 18 d.i in both trials. The diluted caecal contents was defrosted at room temperature and 543 

loaded into a 10ml spray bottle. Eggs were sprayed evenly at a distance of 10cm ensuring all eggs 544 

received at least two sprays until the 5ml of diluted caecal content had been used. 545 

Sample Collection 546 

Pilot Experiment 547 

Samples were taken from eggs at 0 d.i. To minimise the risk of contamination, eggs were sprayed with 548 

70% ethanol and left for 10 minutes before being wiped clean. Samples were taken in as sterile an 549 

environment as possible. All samples were taken inside an exclusion cabinet and sterile gloves were 550 

worn and changed between eggs. An electric rotary tool (Dremel 3000) was used to cut through the 551 

egg shell without penetrating the shell membranes. A sterile scalpel was used to cut the shell 552 

membrane to remove the top of the egg shell and reveal the yolk. Sterile needles and syringes were 553 

used to sample from the albumen and the yolk. 554 

At 18 d.i, samples were taken from five embryos from each group. Embryos were killed by 555 

refrigerating the egg at 3°C for four hours. The egg shell was opened as previously described. A sample 556 

of amniotic fluid was taken using a sterile needle and syringe. The embryo was removed from the egg, 557 

placed in a sterile petri dish and placed under a stereomicroscope for dissection. Using a sterile scalpel 558 

and forceps, the coelom was opened to reveal the gastrointestinal tract which was removed. The 559 

duodenum, jejunum and ileum were stored together with both caeca stored in a separate container. 560 

Finally, the brain was removed using a new sterile scalpel to be used as a control for contamination 561 

should bacterial DNA be recovered from the gastrointestinal tract. 562 
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Further samples were taken at 3 and 7 d.p.h. Chicks were euthanased by cervical dislocation. To 563 

sample chicks, the abdomen was sprayed with 70% ethanol. Skin incisions were made to expose the 564 

sternum which was then reflected to give good access to the coelom. The gastrointestinal tract was 565 

removed carefully to avoid external contamination. The ileum, defined as the intestinal segment from 566 

Meckel’s diverticulum to the ileocaecocolic junction; and both caeca were removed and stored in 567 

separate containers. Samples for DNA extraction were snap frozen in liquid nitrogen and stored at -568 

20°C. 569 

Repeat Experiment 570 

The same sampling protocol was used as for the pilot experiment with  chicks sampled at 0, 3, 7 and 14 571 

d.p.h. After euthanasia chicks were weighed and their body weight recorded in grams. Additionally, 572 

tissue samples from the caecal tonsils, identified as the proximal section of the caecum, and the ileum 573 

were taken. One caecal tonsil and a section of ileum were fixed in 4% paraformaldehyde solution for 574 

histological examination. The other caecal tonsil was fixed in OCT (CellPath, UK) on a cork plate and 575 

snap frozen in liquid nitrogen. Samples fixed in paraformaldehyde were stored at 4°C, samples for 576 

DNA extraction were stored at -20°C and samples fixed in OCT were stored at -80°C. 577 

DNA Extraction 578 

DNA was extracted from each sample using Zymobiomics DNA MiniKits (Cambridge Bioscience, UK) 579 

according to the manufacturer’s instructions. DNA was extracted from 250µl of liquid samples 580 

(albumen and yolk). For tissue samples (ileum and caecum), a 200mg section of intestinal tissue along 581 

with content was used for DNA extraction. This section was cut longitudinally and transversely using a 582 

sterile scalpel blade to expose the mucosa and luminal contents to beat-beating. Both liquid and tissue 583 

samples underwent a bead-beating step using a Qiagen TissueLyser at 30Hz for 10 minutes. At each 584 

extraction, two controls were included: a blank extraction kit to control for contamination and 75µl of 585 
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Zymobiomics Standard Bacterial Community (Cambridge Bioscience, UK) to control for variations in 586 

DNA extraction efficacy. Extracted DNA was quantified using a NanoDrop 2000 spectrophotometer 587 

(NanoDrop Technologies). 588 

PCR to Detect Bacterial DNA 589 

The detection of bacterial DNA in egg and embryonic samples was performed by PCR detection of 590 

bacterial 16S rRNA gene. Purified DNA from egg and embryonic samples from the pilot experiment 591 

was used as the template in a PCR mixture composed of 5µl of 5x FIREPol Master Mix Ready to Load 592 

(Solis BioDyne, Estonia), 1µl of each primer, 17µl of purified water and 1µl of DNA template. A primer 593 

pair spanning the V4 region of the 16S rRNA gene (515F: TGCCAGCMGCCGCGGTAA, R806: 594 

GGACTACHVGGGTWTCTAAT) was used (49). DNA extracted from the Zymobiomics Standard Bacterial 595 

Community (ZSBC), which contains approximately 1.4x1010 cells/ml, was used as a positive control. 596 

Thermal cycling consisted of an initial cycle of 95°C for 5 min, 30 cycles of 95°C for 30 s, 55°C for 45 s 597 

and 72°C for 40 s followed by a final cycle of 72°C for 40 s. The presence of PCR products was 598 

confirmed by electrophoresis using a 1.0% agarose gel containing ethidium bromide. To exclude the 599 

possibility that negative results were due to PCR inhibitors present within samples, 9µl of each sample 600 

was spiked with 1µl of DNA extracted from the ZSBC and submitted for PCR amplification. To 601 

determine the sensitivity of the PCR assay, DNA extracted from the ZSBC was diluted to include the 602 

equivalent of DNA extracted from 106, 105, 104, 103, 102 and 101 bacterial cells. 603 

Illumina MiSeq Sequencing 604 

Extracted DNA from between five and eight caecal samples in each treatment group at each time point 605 

was sent for paired-end sequencing of the 16S rRNA gene at the Centre for Genomic Research 606 

(University of Liverpool) using an Illumina MiSeq run. The V4 hypervariable region (515F/R806) was 607 

amplified for 25 cycles to yield an amplicon of 254 base pairs (50). Library preparation was performed 608 
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using a universal tailed tag design with subsequent amplification performed using a two-step PCR with 609 

a HiFi Hot Start polymerase (Kapa) (51). The first round of PCR was performed using the primers 5’- 610 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNGTGCCAGCMGCCGCGGTAA-3’ (forward) 611 

and 5’ GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGACTACHVGGGTWTCTAAT-3’ (47). The raw 612 

Fastq files were trimmed for the presence of Illumina adapter sequences using Cutadapt version 1.2.1. 613 

The reads were further trimmed using Sickle version 1.200 with a minimum window quality score of 614 

20. Reads shorter than 10 base pairs after trimming were removed. Raw sequence reads are available 615 

in the NCBI Sequence Repository Archive under BioProject PRJNA517619. 616 

Data Analysis 617 

QIIME2 version 2019.1.0 was used for analysis of the Illumina data (52). Amplicon sequence variant 618 

(ASV) assignment was completed using the dada2 plugin (53) and an ASV table produced using the 619 

ASV-table plugin (https://github.com/qiime2/q2-ASV-table) to produce a BIOM format table (54). The 620 

resulting ASV table was divided into three individual tables: one containing all samples including 621 

transplant samples for use in diversity analyses and one each for samples from the pilot and repeat 622 

experiments to identify differentially abundant ASVs between control and treatment groups. 623 

Taxonomy was assigned using the q2-feature-classifier plugin (55) with a pre-trained NaiveBayes 624 

classifier based on the SILVA 132 database of the 515F/R806 region of the 16S rRNA gene (56) 625 

available for download at https://docs.qiime2.org/2018.11/data-resources/. 626 

Alpha and beta diversity analyses were performed at a sampling depth of 5,000 using the alignment 627 

(57), phylogeny (58) and diversity (https://github.com/qiime2/q2-diversity) plugins. Alpha diversity, 628 

a metric used to assess species richness and evenness, was measured using a Shannon diversity index. 629 

Taxa plots were produced using the q2-taxa plugin (https://github.com/qiime2/q2-taxa). Beta 630 
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diversity, a metric used to compare species diversity and abundance between samples, was calculated 631 

with an unweighted and weighted UniFrac metric 632 

 633 

Statistics 634 

For statistical analysis, samples were grouped according to age, treatment group and experiment 635 

creating 13 different groups for comparison: samples from the pilot experiment from control (C) and 636 

treated (T) chicks at 3 and 7 d.p.h (PC3, n=7; PT3, n=7; PC7, n=7; PT7, n=8), samples from the repeat 637 

experiment from control (C) and treated (T) chicks at 0, 3, 7 and 14 d.p.h (RC0, n=5; RT0, n=5; RC3, 638 

n=7; RT3, n=7; RC7, n=7; RT7, n=7; RC14, n=7; RT14, n=7) and transplant material (TRPL, n=3). Alpha 639 

diversity was compared between groups using a pairwise Kruskal-Wallis test with a False Discovery 640 

Rate correction. An ANOSIM test was used to identify metadata categories which significantly affected 641 

beta diversity. The average distance from samples in each group to TRPL samples was compared using 642 

an independent Student’s t-test to find which group was closest to TRPL samples. Gneiss analysis (29) 643 

was used to identify taxa which were differentially abundant between treatment and control groups in 644 

the pilot and repeat experiments separately. First, the ASV table was filtered to exclude transplant 645 

samples and low abundance ASVs. The count threshold for exclusion of ASVs was set at the first 646 

quartile to exclude the lowest 25% of ASVs by total frequency across all samples. Principal balances for 647 

use in Gneiss were obtained via Ward’s hierarchical clustering using the correlation-clustering 648 

command. Log ratios for each balance were calculated using the ilr-transform command. A 649 

multivariate response linear regression model of log ratios balances was constructed with treatment 650 

and days post hatch as covariates using the ols-regression command. Results were visualised through a 651 

regression summary, dendrogram heatmaps and balance taxonomies to identify ASVs which were 652 

differentially abundant in treated and control groups. Based on this analysis ASVs were divided into 653 
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three groups: ASVs with a higher relative abundance in treated samples, ASVs with a higher relative 654 

abundance in control samples and ASVs with no differential abundance between groups. The results of 655 

this analysis were used to select taxa for further analysis using quantitative PCR. 656 

Identifying ASVs Transplanted from the Treatment 657 

ASVs present in an unfiltered ASV table of TRPL samples were defined as being present in the 658 

transplant material. The same ASV table used for Gneiss analysis was used to compile a list of ASVs 659 

present in each sample group. Once lists of ASVs were compiled for the transplant and sample groups, 660 

intersections between sets of ASVs were visualised using UpSet (59). ASVs which were present only in 661 

the transplant were removed to facilitate visualisation of other intersections. Based on their presence 662 

in intersections ASVs were classified as ’successfully transplanted’ , ’possibly transplanted’  or 663 

environmental . ASVs were classified as successfully transplanted if they were present in the 664 

transplant and in treated chicks at least one time point before control chicks. ASVs were classified as 665 

possibly transplanted if they were present in the transplant and in both treated and control chicks at 666 

the same time point. ASVs were classified as environmental if they were present in the transplant and 667 

present in only control chicks or present in control chicks before treated chicks. Any ASV not present 668 

in the transplant was classified as environmental. 669 

A chi-square test of independence was performed to examine the relationship between ASVs identified 670 

as differentially abundant between treatment groups and those defined as successfully transplanted, 671 

possibly transplanted or environmental using Python’s scipy module. The taxonomy of ASVs classified 672 

as succcessfully transplanted, possibly transplanted and environmental was compared to that of ASVs 673 

identified  as more abundant in treated chicks, more abundant in control chicks and not differentially 674 

abundant with a Hybrid Sankey diagram created using sankeyview (version 1.7.7) (60). 675 
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Quantitative PCR 676 

Taxa were selected for further testing using quantitative PCR based on results from Gneiss analysis. A 677 

literature search was conducted to find suitable primers. Where suitable primers were not available, 678 

the sequences retrieved from Illumina sequencing were used to produce taxa specific primers. The 679 

sequence was input into Primer-BLAST and a suitable primer pair was chosen. To test specificity of 680 

primers, each primer pair was input into TestPrime for comparison against the SILVA database SSU-681 

r132. Further testing of primers was conducted using PCR. The primers were tested against known 682 

positive and negative samples to check for the correct amplicon size and non-specific amplification. A 683 

gradient PCR was conducted to establish the correct annealing temperature for quantitative PCR. 684 

Primers used are displayed in Table 5. 685 

The real-time quantitative PCR assay was conducted on a 1:10 solution of extracted DNA using a Rotor-686 

Gene Q PCR machine (Qiagen) and PrecisionPLUS qPCR master mix (Primer Design, UK). The V4 region 687 

of the 16S rRNA gene was used as a reference gene. Rotor-Gene Q software (version 2.3.1.49) was used 688 

to produce melting curves and identify the cycle threshold (Ct), the point at which fluorescence above 689 

the background level is detectable. Each sample was run in triplicate with an averaged Ct used in 690 

further analysis. The ΔCt, defined as the difference between the Ct value for taxa specific primers and 691 

the Ct value for the reference gene, was calculated for each sample. Results were expressed as 40 – 692 

ΔCt. Amplification of DNA in one PC3 sample failed in all reactions. As a result, this sample was 693 

excluded from quantitative PCR analysis. 694 

Haematoxylin and eosin staining 695 

Tissue fixed in 4% paraformaldehyde solution was examined histologically to identify differences in 696 

morphological development of the ileum and caecal tonsil between treated and control chicks. Four 697 

sections of ileum and four sections of caecal tonsil from each chick each chick underwent tissue 698 
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processing using a Tissue-Tek VIP (vacuum infiltration processor) overnight before being 699 

embedded in paraffin (Ultraplast premium embedding medium, Solmedia). 4µm paraffin 700 

sections were cut on a Leica RM2125 RT microtome, floated on a waterbath and placed on 701 

colour slides (Solmedia, MSS54511YW). For H&E staining slides were dewaxed in xylene 702 

and rehydrated through descending grades of ethanol (100%, 96%, 85%, 70%) to distilled 703 

water before being stained in haematoxylin (5mins), “blued” in tap water for 5 mins and 704 

stained in eosin (2mins). Slides were then dehydrated through 96% and 100% ethanol to 705 

xylene and cover slipped using DPX (Thermo Scientific, Lamb/DPX). Haematoxylin (Atom 706 

Scientific, RRBD61-X) and Eosin (TCS, HS250) solutions made up in house. 707 

Haematoxylin and eosin stained tissue sections were examined by light microscopy (Nikon Eclipse 80i) 708 

with a Leica DMC 4500 digital camera attachment (Leica Microsystems, Switzerland). Images were 709 

viewed and measurements taken using Leica Application Suite X software. 710 

Sections were assessed for suitability based on orientation of tissue samples. Villus height, villus width 711 

and epithelial cell height were recorded in transverse ileal sections where entire villi could be 712 

visualised to the lamina propria. In such sections, the height and width of five villi with an intact 713 

lamina propria was measured. Villus height was defined as the distance from the villus tip to the villus-714 

crypt junction. Villus width was measured at the widest section of the villus. Epithelial cell height was 715 

measured at the villus tip and was defined as the distance from the distal point of the microvilli to the 716 

basement membrane. Measurements were expressed as a mean for each bird. 717 

Mitotic figure counts in the ileum and caecal tonsil were used as an indication of intestinal villus 718 

development (65, 66). All orientations of tissue were included for mitotic counts where crypts were 719 

visible adjacent to the lamina propria and muscular layers. Mitotic figures in crypts within one high 720 
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power field (400x) of the lamina propria were counted. Cells were identified as mitotic if their nuclei 721 

were strongly basophilic and homogenous with care taken to count cells in the late stages of division as 722 

a single mitotic figure. The length of lamina propria over which mitotic figures were counted was 723 

measured and results expressed as number of mitotic figures per 100µm. Results were expressed as a 724 

mean for each bird. 725 

Results were compared between treatment groups using Student’s t-test implemented in the scipy 726 

(version 1.1.0) Python module (67). A Benjamini-Hochberg false discovery rate correction 727 

implemented in the statsmodels (version 0.9.0) Python module (68) was applied to account for 728 

multiple tests. Results were compared between age groups using a one-way analysis of variance 729 

(ANOVA) test with a post-hoc Tukey HSD test when significant differences were identified. 730 

During the analysis, it was noted that some samples had large aggregates of bacterial cells within the 731 

crypts of the caecal tonsil. In order to ascertain whether the presence of bacteria in the caecal tonsil 732 

crypts was associated with age or treatment group, slides were re-examined. Samples were classified 733 

as positive if bacteria were observed in more than one crypt and in at least two sections. 734 

Immunostaining 735 

Serial 7.5µm thick sections of caecal tonsil tissue frozen in OCT were cut using a cryostatic microtome. 736 

Four sections of caecal tonsil from each bird were mounted on poly-l-lysine coated slides (VWR 737 

International, UK) and fixed in acetone for 10 min. Immunostaining was performed on a Dako 738 

Autostainer Link 48 using EnvisionTM FLEX reagents. Following a buffer rinse tissue sections 739 

underwent a peroxidase block for 5mins (Agilent, SM801) before being incubated for 20mins with 740 

mouse monoclonal antibodies against chicken CD4, CD8α, CD8β, γδ TCR and Bu1 (B cells and subsets 741 

of monocytes and macrophages), antigens (Cambridge Bioscience Ltd, 8210-01, 8220-01, 8280-01, 742 

8230-01 and 8395-01 respectively). The antibodies CD4 (1:200), CD8α (1:200), CD8β (1:1000), γδ TCR 743 
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(1:100) and Bu1 (1:400) were diluted in EnvisionTM FLEX Antibody Diluent (Agilent, K8006). Antibody 744 

binding was detected using the labelled polymer EnvisionTM FLEX/HRP (Agilent, SM802) for 20mins 745 

and the reaction visualised using the substrate-chromogen FLEX DAB+Sub Chromo (Agilent, DM827 & 746 

SM802). Tissue sections were counterstained for 5mins in EnvisionTM FLEX Haematoxylin (Agilent, 747 

K8008), washed in deionized water and dehydrated through increasing grades of ethanol (85%, 96%, 748 

3x 100%) before clearing in xylene and mounted as per H&E staining above. All intermediate buffer 749 

washes between reagents used EnvisionTM FLEX Wash Buffer (K8007). 750 

Stained tissue sections were examined using the same apparatus as described for haematoxylin and 751 

eosin stained tissue. Quantification of cell abundance between treated and control chicks was 752 

performed by counting cells in photographs taken at a magnification of ×200 with each field of view 753 

representing an area of 142,000µm2. Five photographs for each bird taken randomly from serial 754 

sections were used. Results were expressed as a mean for each bird. Student's t test was used to 755 

identify significant differences in cell abundance between treatment groups. 756 
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Figures 961 

Figure 1 962 
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 963 

Sampling regimes for the Pilot (A) and Repeat (B) Experiments including abbreviations for sample 964 

groups used when discussing the results. 965 

Figure 2 966 

 967 

 968 

 969 

 970 

 971 

 972 
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Alpha diversity measured by a Shannon index at a sequencing depth of 5000.Sample groups divided by 974 

experiment (P = pilot, R = repeat), treatment (C = control, T = treated) and age. Shannon diversity of 975 

transplant material (TRPL) is also shown. The alpha diversity of treated chicks was significantly higher 976 

than that of control chicks at 3 d.p.h (both experiments) and 0 d.p.h (repeat experiment). * p < 0.05. 977 
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Figure 3 979 
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treatment groups in pilot (triangle), repeat experiments (circle) and transplant samples (square). Each 1002 

point represents an individual  sample with distance between points representative of differences in 1003 

microbiota composition. 1004 
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 1006 

Figure 4 1007 

 1008 

A dendrogram heatmap of ASV log abundance in the caecal microbiota of control and treated chicks at 1009 

3 and 7 d.p.h in the pilot experiment. The dendrogram represents the organisation of ASVs within the 1010 

system of balances created by hierarchical clustering. Each node on the dendrogram is a balance with 1011 

the first node designated balance y0. Each terminal branch represents a ASV present within the 1012 

analysis. The bar charts visualise which ASVs are denominator (dark red) and which are numerator 1013 

(light red) ASVs for each balance. The heatmap shows log abundance of each ASV in samples organised 1014 
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by group. Low abundance ASVs are represented by blue while higher abundance ASVs are represented 1015 

by red.  1016 
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Figure 5 1017 

 1018 

A dendrogram heatmap showing log abundance of ASVs in the caecal microbiota of control and treated 1019 

chicks at 0, 3, 7 and 14 d.p.h in the repeat experiment. The dendrogram represents the organisation of 1020 

ASVs within the system of balances created by hierarchical clustering. Each node on the dendrogram is 1021 

a balance with the first node designated balance y0. Each terminal branch represents a ASV present 1022 

within the analysis. The bar charts visualise which ASVs are denominator (dark red) and which are 1023 

numerator (light red) ASVs for each balance. The heatmap shows log abundance of each ASV in 1024 

samples organised by group. Low abundance ASVs are represented by blue while higher abundance 1025 

ASVs are represented by red. 1026 

  1027 

 on January 7, 2020 at U
niversity of Liverpool Library

http://aem
.asm

.org/
D

ow
nloaded from

 

http://aem.asm.org/


Figure 6 1028 

Relative abundance of Enterobacteriaceae (A), Clostridium (B), Clostridium Cluster IV (C) and 1029 

Clostridium Cluster XIVa&b (D) in the caeca of treated and control chicks between 0 and 14 d.p.h. 1030 

Significant differences between treated and control chicks in the pilot (+) and repeat (*) experiments 1031 

are indicated.  1032 
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Figure 7 1033 

 1034 

Relative abundance of Candidatus Arthromitus (A), Enterobacteriaceae (B) and Clostridium (C) in the 1035 

ilea of treated and control chicks between 0 and 14 d.p.h. Significant differences between treated and 1036 

control chicks in the pilot (+) and repeat (*) experiments are indicated. 1037 
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