
Structural Test Coverage Criteria
for Deep Neural Networks

YOUCHENG SUN, Queen’s University Belfast
XIAOWEI HUANG, University of Liverpool
DANIEL KROENING, University of Oxford
JAMES SHARP, Defence Science and Technology Laboratory (Dstl)
MATTHEW HILL, Defence Science and Technology Laboratory (Dstl)
ROB ASHMORE, Defence Science and Technology Laboratory (Dstl)

Deep neural networks (DNNs) have a wide range of applications, and software employing them must be
thoroughly tested, especially in safety-critical domains. However, traditional software test coverage metrics
cannot be applied directly to DNNs. In this paper, inspired by the MC/DC coverage criterion, we propose a
family of four novel test coverage criteria that are tailored to structural features of DNNs and their semantics.
We validate the criteria by demonstrating that the generated test inputs guided via our proposed coverage
criteria are able to capture undesired behaviours in a DNN. Test cases are generated using a symbolic approach
and a gradient-based heuristic search. By comparing them with existing methods, we show that our criteria
achieve a balance between their ability to find bugs (proxied using adversarial examples and correlation with
functional coverage) and the computational cost of test case generation. Our experiments are conducted on
state-of-the-art DNNs obtained using popular open source datasets, including MNIST, CIFAR-10 and ImageNet.

Additional Key Words and Phrases: neural networks, test criteria, test case generation

1 INTRODUCTION
Artificial intelligence (AI), and specifically deep neural networks (DNNs), can deliver human-level
results in some specialist tasks. There is now a prospect of a wide-scale deployment of DNNs in
safety-critical applications such as self-driving cars. This naturally raises the question how software
implementing this technology should be tested, validated and ultimately certified to meet the
requirements of the relevant safety standards.
Research and industrial communities worldwide are making significant efforts towards the

best practice for safety assurance for learning-enabled autonomous systems. Among all efforts,
we mention a proposal under consideration by IEEE to form an official technical committee for
verification of autonomous systems [1]. Moreover, as stated in [29], the learnt algorithm should be
verified with an appropriate level of coverage. This paper develops a technical solution to support
these efforts.
The software industry relies on testing as a primary means to provide stakeholders with in-

formation about the quality of a software product or service [17]. Research in software testing
has resulted in a broad range of approaches to assess software at different criticality levels. In
white-box testing, the structure of a program is exploited to (perhaps automatically) create test
cases. Code coverage criteria (or metrics) have been designed to quantify the completeness of a test
suite. For example, a test suite with 100% statement coverage exercises all statements at least once.
While it is arguable to which extent coverage ensures correct functionality, high coverage is able

This article appears as part of the ESWEEK-TECS special issue and was presented at the International Conference on
Embedded Software (EMSOFT) 2019.
Authors’ addresses: Youcheng Sun, Queen’s University Belfast, 18 Malone Road, Belfast, BT9 6RT, youcheng.sun@qub.ac.uk;
Xiaowei Huang, University of Liverpool, Ashton Street, Liverpool, L69 3BX, xiaowei.huang@liverpool.ac.uk; Daniel Kroening,
University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, kroening@cs.ox.ac.uk; James Sharp, Defence Science
and Technology Laboratory (Dstl), jsharp1@dstl.gov.uk; Matthew Hill, Defence Science and Technology Laboratory (Dstl),
mhill2@dstl.gov.uk; Rob Ashmore, Defence Science and Technology Laboratory (Dstl), rdashmore@dstl.gov.uk.

1



to increase users’ confidence (or trust) in the program. Structural coverage metrics are used as a
means of assessment in several high-tier safety standards; for instance, DO-178C requires MC/DC
coverage for function bodies [28]. MC/DC was developed by NASA and is used in avionics software
development guidance to ensure adequate testing of applications with the highest criticality.

AI systems that use DNNs are typically implemented in software. However, (white-box) testing
for traditional software cannot be directly applied to DNNs. In particular, the flow of control
in DNNs is typically simplistic and is unable to capture the knowledge that is learned during
the training phase. The definition of useful structural coverage criteria for DNNs is therefore
nontrivial [4]. Meanwhile, DNNs exhibit “bugs” that differ to those in traditional software. Notably,
adversarial examples [34], in which two apparently indistinguishable inputs yield contradicting
decisions, are a prominent safety concerns in DNNs.

We believe that the testing of DNNs, guided by proper coverage criteria, must help developers to
find those bugs; it has to be able to quantify the robustness of the network and it needs to support
the analysis the internal structures of the DNN. The tests should enable developers to understand
and compare different networks and should be able to support any safety-related argument.

Technically, DNNs feature not only an architecture, which bears some similarity with traditional
software programs, but also a large set of parameters, which are tuned by the training procedure.
Any approach to testing DNNs needs to consider the unique properties of DNNs, such as the
syntactic connections between neurons in adjacent layers (neurons in a given layer interact with
each other and then pass information to higher layers), the activation functions used and the
semantic relationship between layers.

In this paper, we propose a novel, white-box testing methodology for feedforward DNNs. In par-
ticular, we propose a family of four test coverage criteria, inspired by the MC/DC test coverage
criterion [14] from traditional software testing, that fit the distinct properties of DNNs mentioned
above. It is known that an overly weak criterion may lead to insufficient testing; e.g., 100% neuron
coverage [27] can be achieved by a simple test suite comprised of few input vectors from the
training dataset. Conversely, an overly strong criterion may lead to computational intractability;
e.g., 100% safety coverage is shown to be difficult to achieve in [39]. Our criteria, when applied to
guide test case generation, deliver both appropriate testing (i.e., it is non-trivial to achieve 100%
coverage) and are computationally feasible. As a matter of fact, except for the safety coverage
criterion in [39], all existing structural test coverage criteria for DNNs [21, 27] are special cases of
our proposed criteria. Our criteria are the first that capture and quantify the causal relationships in
a DNN that are critical for understanding the behaviour of the neural network [25, 41].

Subsequently, we validate the utility of our MC/DC variant by applying it to different approaches
to DNN testing. First, we implement state-of-the-art concolic testing for DNNs [33]. Concolic
testing combines concrete testing with a symbolic encoding. Specifically, a linear programming
(LP) based algorithm produces a new test case (i.e., an input vector) by encoding a fragment of the
DNN and then minimises the difference between the new and the current input vector. LP can be
solved efficiently in PTIME, so the concolic test-case generation algorithms can generate a test suite
with low computational cost for small to medium-sized DNNs. The LP test generation algorithm
does not apply to DNNs with tanh or sigmoid activation functions or to DNNs that are very large.
We have therefore developped a gradient descent (GD) based algorithm that takes the test condition
as the optimisation objective and searches for test cases in an adaptive manner under the guidance
of the first-order derivative of the DNNs; this method is able to scale to large DNNs and is a good
fit for tanh or sigmoid activation functions.
Finally, we experiment with our test coverage criteria on state-of-the-art neural networks that

have a broad range of sizes (from a few hundred up to millions of neurons) to demonstrate the
utility of our criteria with respect to four aspects: bug finding (proxied by adversarial examples),

2



v1,1

v1,2

u4,1

u4,2

Hidden
layer

Hidden
layer

Input
layer

Output
layer

n2,1

n2,2

n2,3

n3,1

n3,2

n3,3

Fig. 1. A simple neural network

their ability to quantify the safety of a DNN, the efficiency of testing and whether they can support
the analysis of the structure of a DNN.

2 PRELIMINARIES: DEEP NEURAL NETWORKS
A (feedforward and deep) neural network [12], or DNN, is a tuple N = (L,T ,Φ), where L =
{Lk | k ∈ {1, . . . ,K}} is a set of layers, T ⊆ L × L is a set of connections between the layers and
Φ = {ϕk | k ∈ {2, . . . ,K}} is a set of functions, one for each non-input layer. In a DNN, L1 is the
input layer and LK is the output layer; the other layers are called hidden layers. Each layer Lk
consists of sk neurons (or nodes). The l-th node of layer k is denoted by nk,l . Each node nk,l for
1 < k < K and 1 ≤ l ≤ sk is associated with two variables uk,l and vk,l , to record the values before
and after an activation function, respectively. The ReLU [23] is by far the most popular activation
function for DNNs, according to which the activation value of each node of hidden layers is

vk,l = ReLU (uk,l ) =

{
uk,l if uk,l ≥ 0
0 otherwise.

(1)

Each input node n1,l for 1 ≤ l ≤ s1 is associated only with a variable v1,l and each output node
nK,l for 1 ≤ l ≤ sK is associated only with a variable uK,l , because no activation function is applied
on them. We let DLk = R

sk be the vector space associated with layer Lk , one dimension for each
variable vk,l . Every point x ∈ DL1 is a possible input.

Except for the input nodes, every node is connected to nodes in the preceding layer by trained
parameters such that for all k and l with 2 ≤ k ≤ K and 1 ≤ l ≤ sk , we have:

uk,l = bk,l +
∑

1≤h≤sk−1

wk−1,h,l · vk−1,h (2)

wherewk−1,h,l is the weight for the connection between nk−1,h (i.e., the h-th node of layer k − 1)
and nk,l (i.e., the l-th node of layer k), and bk,l is the so-called bias for node nk,l . We note that this
definition can express both fully-connected functions and convolutional functions. The function ϕk
is the combination of Equations (1) and (2). Owing to the use of the ReLU given in (1), the behavior
of the neural network is highly non-linear.

Finally, for any input, the DNN assigns a label, which is the index of the node of the output layer
with the largest value: label = argmax1≤l ≤sKuK,l . Let L be the set of labels.

Example 1. Figure 1 is a simple DNN with four layers. Its input space is DL1 = R
2 where R is the

set of real numbers.

Given one particular input x , the DNNN is instantiated and we useN[x] to denote this instance
of the network. In N[x], for each node nk,l , the values of the variables uk,l and vk,l are fixed and

3



denoted by uk,l [x] and vk,l [x], respectively. Therefore, the activation or deactivation of each ReLU
operation in the network is also determined. We define

signN(nk,l ,x) =

{
+1 if uk,l [x] = vk,l [x]
−1 otherwise.

(3)

The subscriptN will be omitted when clear from the context. The classification label of x is denoted
by N[x].label.

Example 2. Let N be a DNN whose architecture is in Figure 1. Assume that the weights for the

first two layers areW1 =
[
4 0 −1
1 −2 1

]
andW2 =


2 3 −1
−7 6 4
1 −5 9

 and that all biases are 0. When given an

input x = [0, 1], we get siдn(n2,1,x) = +1, since u2,1[x] = v2,1[x] = 1, and siдn(n2,2,x) = −1, since
u2,2[x] = −2 , 0 = v2,2[x].

To keep the discussion simple, the presentation focuses on DNNs with fully connected layers.
However, as shown in our experiments, our method can also be applied to other popular DNN
structures, such as convolutional and maxpooling layers, and sigmoid activation functions used in
state-of-the-art DNNs.

3 ADEQUACY CRITERIA FOR TESTING DNNS
3.1 Test Coverage and MC/DC
A test adequacy criterion, or a test coverage metric, is used to quantify the degree of adequacy to
which the software is tested by a test suite using a set of test coverage conditions. Throughout this
paper, we use “criterion” and “metric” interchangeably.

Our coverage criteria for DNNs are inspired by established practices in software testing, and in
particular the MC/DC test coverage criterion [14], but are designed for the specific attributes of
DNNs. MC/DC is a method for measuring the extent to which safety-critical software has been
tested. At its core is the idea that if a choice can be made, all the possible factors (conditions) that
contribute to that choice (decision) must be tested. For traditional software, both conditions and
the decision are usually Boolean variables or Boolean expressions.

Example 3. The decision
((a > 3) ∨ (b = 0)) ∧ (c , 4) (4)

contains the conditions (a > 3), (b = 0) and (c , 4). The following four test cases provide full MC/DC
coverage:
(1) (a > 3)=false, (b = 0)=true, (c , 4)=false
(2) (a > 3)=true, (b = 0)=false, (c , 4)=true
(3) (a > 3)=false, (b = 0)=false, (c , 4)=true
(4) (a > 3)=false, (b = 0)=true, (c , 4)=true

The first two test cases already provide both condition coverage (i.e., all possibilities for the conditions
are exercised) and decision coverage (i.e., both outcomes for the decision are exercised). The last two
test cases are needed for MC/DC because each condition should evaluate to true and false at least once,
and should independently affect the decision outcome (e.g., the effect of the first condition can be seen
by comparing cases 2 and 3).

3.2 Decisions and Conditions in DNNs
Our instantiation of the concepts “decision” and “condition” for DNNs is inspired by the similarity
between Equation (2) and Equation (4) and the semantics of DNNs. The information represented by
nodes in the next layer can be seen as a “summary” (implemented by the layer function, the weights

4



and the bias) of the information in the current layer. It has been claimed that nodes in a deeper
layer (having the larger layer index) represent “more complex” attributes of the input [25, 41].

We let Ψk ⊆ P(Lk ) be a set of subsets of nodes at layer k . Without loss of generality, each element
of Ψk , i.e., a subset of nodes in Lk , represents a feature learned at layer k . That is, Ψk is the set
of features and any ψk,l ∈ Ψk is a feature. Therefore, the core idea of our criteria is to ensure that
not only the presence of a feature needs to be tested but also the effects of less complex features on a
more complex feature must be tested. We use tk = |Ψk | to denote the number of features in Ψk and
ψk,l for 1 ≤ l ≤ tk the l-th feature. Features can be overlapping, i.e.,ψk,l1 ∩ψk,l2 , ∅. We consider
every feature ψk,l for 2 ≤ k ≤ K and 1 ≤ l ≤ tk a decision and say that its conditions are those
features connected to it in the layer k − 1, i.e., {ψk−1,l ′ | 1 ≤ l ′ ≤ tk−1}. For simplicity, the DNN
model described in Section 2 only considers a fully connected structure. In the more general case,
two features in adjacent layers of a DNN need not be connected, and thus there is no causal effect
between such feature pairs.
Th concept of a “feature” generalises the basic building block in the DNN from a single node

to a set of nodes. A single node can be represented as a singleton set. In practice, this definition
of “feature” is a good fit for the tensor implementation in popular machine learning libraries [2]
and there is a variety of feature extraction methods such as SIFT [20], SURF [5], etc. To work with
features, we extend the notations uk,l [x] and vk,l [x] for a node nk,l to a feature ψk,l and write
ψk,l [x] and ϕk,l [x] for the vectors before and after the activation function, respectively.

Definition 1. A feature pair (ψk,i ,ψk+1, j ) are two features in adjacent layers k and k + 1 such
that 1 ≤ k < K , 1 ≤ i ≤ tk and 1 ≤ j ≤ tk+1. Given a DNN N , we write O(N) (or, simply O) for
the set of its feature pairs. We may also call (ψk,i ,ψk+1, j ) a neuron pair if both ψk,i and ψk+1, j are
singleton sets.

Our new criteria are defined by instantiating the definitions of what it means to “change” the
result of a condition and of a decision in different ways. Unlike Boolean variables or expressions,
where it is obvious what a “change” is, i.e., true becomes false or false becomes true, in DNNs there
are many different ways of defining that a decision is affected by the changes of the conditions.
Before giving definitions for “affected” in Section 3.3, we start by clarifying when a feature “changes”.

First, the change observed on a feature can be either a sign change or a value change.
Definition 2 (Sign Change). Given a featureψk,l and two test cases x1 and x2, the sign change

of ψk,l is triggered by x1 and x2, denoted by sc(ψk,l ,x1,x2), iff sign(nk, j ,x1) , sign(nk, j ,x2) for all
nk, j ∈ ψk,l . Moreover, we write nsc(ψk,l ,x1,x2) if sign(nk, j ,x1) = sign(nk, j ,x2) for all nk, j ∈ ψk,l .

Note that nsc(ψk,l ,x1,x2) , ¬sc(ψk,l ,x1,x2). That is, nsc is one special case when sc does not
hold.

Before proceeding to another kind of change called value change, we need notation for the value
function. A value function is denoted by д : Ψk × DL1 × DL1 → {true, false}. Simply speaking,
it expresses the intuition (or knowledge) of the developer of the DNN about what constitutes a
“significant change” on the featureψk,l , by specifying the difference between two vectorsψk,l [x1]
andψk,l [x2]. We do not impose restrictions on the form of a value function, except that for practical
reasons, it needs to be evaluated efficiently. Here, we give a few examples.
Example 4. For a singleton set ψk,l = {nk, j }, the function д(ψk,l ,x1,x2) can express |uk, j [x1] −

uk, j [x2]| ≥ d (absolute change) or uk, j [x1]
uk, j [x2]

> d ∨
uk, j [x1]
uk, j [x2]

< 1/d (relative change). It can also be a
constraint on one of the values uk, j [x2], say an upper bound uk, j [x2] > d .

Example 5. For the general case, the function д(ψk,l ,x1,x2) can express the distance between two
vectorsψk,l [x1] andψk,l [x2] by norm-based distances | |ψk,l [x1] −ψk,l [x2]| |p ≤ d for a real number d

5



and a distance measure Lp , or structural similarity distances such as SSIM [38]. It can also express
constraints between nodes of the same layer, such as

∧
j,i vk,i [x1] ≥ vk, j [x1].

The distance measure Lp could be L1 (Manhattan distance), L2 (Euclidean distance), L∞ (Cheby-
shev distance) and so on. We remark that there is no consensus on which norm is the best to use
and, furthermore, the appropriate choice is likely domain specific. Finally, we define “value change”
as follows.

Definition 3 (Value Change). Given a feature ψk,l , two inputs x1 and x2, and a value func-
tion д, the value change of ψk,l w.r.t. д is triggered by x1 and x2, denoted by vc(д,ψk,l ,x1,x2), if
д(ψk,l ,x1,x2)=true. We write ¬vc(д,ψk,l ,x1,x2) when this condition is not satisfied.

3.3 Coverage Criteria
In this section, we present a family of four criteria that capture the state changes in a DNN that
were just defined.

Definition 4 (Sign-Sign Coverage, or SS Coverage). A feature pair α = (ψk,i ,ψk+1, j ) is SS-
covered by two test cases x1,x2, denoted by SS(α , x1, x2), if the following conditions are satisfied by the
DNN instances N[x1] and N[x2]:
• sc(ψk,i ,x1,x2) and nsc(Pk \ψk,i ,x1,x2);
• sc(ψk+1, j ,x1,x2)

where Pk is the set of nodes in layer k .

SS coverage provides evidence that the sign change of a condition featureψk,i independently
affects the sign of the decision featureψk+1, j of the next layer. Intuitively, the first condition says
that the sign change of featureψk,i is triggered by x1 and x2, without changing the signs of other
non-overlapping features. The second says that the sign change of featureψk+1, j is triggered by x1
and x2.

Example 6. (Continuation of Example 2) Given inputs x1 = (0.1, 0) and x2 = (0,−1), we compute the
activation values for each node as given in Table 1. Therefore, we have sc({n2,1},x1,x2), nsc({n2,2},x1,
x2), nsc({n2,3},x1,x2) and sc({n3,1},x1,x2). By Definition 4, the feature pair ({n2,1}, {n3,1}) is SS-
covered by x1 and x2.

SS coverage is close to MC/DC: instead of observing the change of a Boolean variable (i.e., true
→ false or false→ true), we observe a sign change of a feature. However, the behavior of a DNN
has additional complexity that is not necessarily captured by a direct adoption of the MC/DC-style
coverage to a DNN. We now give three additional coverage criteria to complement SS coverage.
First, the sign of ψk+1, j may change when transitioning from one test input to another, even

when none of the nodes nk,i in layer k changes its sign. Note that Pk , the set of all nodes in layer k ,
is also a feature and thus we write nsc(Pk ,x1,x2) to express that no sign change occurs for any of
the nodes in layer k .

Definition 5 (Value-Sign Coverage, or VS Coverage). Given a value function д, a feature
pair α = (ψk,i ,ψk+1, j ) is VS-covered by two test cases x1,x2, denoted by VSg(α , x1, x2), if the following
conditions are satisfied by the DNN instances N[x1] and N[x2]:
• vc(д,ψk,i ,x1,x2) and nsc(Pk ,x1,x2);
• sc(ψk+1, j ,x1,x2).

Intuitively, the first condition describes the value change of nodes in layer k and the second
requires the sign change of the featureψk+1, j . Note that, in addition to vc(д,ψk,i ,x1,x2), we need

6



nsc(Lk ,x1,x2), which prevents sign changes for any node at layer k . This is to ensure that the
overall change to the activation pattern in layer k is small.

Example 7. (Continuing Example 2) Given two inputs x1 = (0, 1) and x2 = (0.1, 0.1), by the
computed activation values in Table 1, we have sc({n3,3},x1,x2) and all nodes in layer 2 do not change
their activation signs, i.e., nsc({n2,1,n2,2,n2,3},x1,x2). Thus, by Definition 5, x1 and x2 (given a value
function д) can be used to VS-cover the feature pair, e.g., ({n2,1,n2,2}, {n3,3}).

Until now, we have seen the sign change of a decision feature ψk+1, j as the equivalent of the
change of a decision in MC/DC. This view may still be limited. For DNNs, a key safety problem [34]
related to their high non-linearity is that an insignificant (or imperceptible) change to the input
(e.g., an image) may lead to a significant change to the output (e.g., its label). We expect that our
criteria can guide test case generation algorithms towards unsafe cases, by working with two
adjacent layers that are finer than the input-output relation. We notice that the label change in the
output layer is the direct result of the changes to the activation values in the penultimate layer.
Therefore, in addition to the sign change, the change of the value of the decision featureψk+1, j is
also important.

Definition 6 (Sign-Value Coverage, or SV Coverage). Given a value function д, a feature
pair α = (ψk,i ,ψk+1, j ) is SV-covered by two test cases x1,x2, denoted by SV g(α , x1, x2), if the following
conditions are satisfied by the DNN instances N[x1] and N[x2]:
• sc(ψk,i ,x1,x2) and nsc(Pk \ψk,i ,x1,x2);
• vc(д,ψk+1, j ,x1,x2) and nsc(ψk+1, j ,x1,x2).

The first condition is the same as that in Definition 4. The difference is in the second condition,
which now considers the feature value changevc(д,ψk+1, j ,x1,x2)with respect to a value function д,
by independently modifying the sign of one of its condition features. Intuitively, SV Coverage
captures the significant change of a decision feature’s value and complements the sign change case.

Example 8. (Continuing Example 2) Consider the feature pair ({n2,1}, {n3,2}). Given two inputs x1 =
(0,−1) and x2 = (0.1,−0.1), by the computed activation values in Table 1, we have sc({n2,1},x1,x2)
and nsc({n2,2,n2,3},x1,x2). If, according to the function д,

u3,2[x1]
u3,2[x2]

≈ 5.71 is a significant change, i.e.,
д(u3,2[x1],u3,2 [x2]) = true, then the pair ({n2,1}, {n3,2}) is SV-covered by x1 and x2.

Finally, we obtain the following definition by replacing the sign change of the decision in
Definition 5 with value change.

Definition 7 (Value-Value Coverage, or VV Coverage). Given two value functions д1 and д2,
a feature pair α = (ψk,i ,ψk+1, j ) is VV-covered by two test cases x1,x2, denoted by VV g1,g2 (α , x1, x2), if
the following conditions are satisfied by the DNN instances N[x1] and N[x2]:
• vc(д1,ψk,i ,x1,x2) and nsc(Pk ,x1,x2);
• vc(д2,ψk+1, j ,x1,x2) and nsc(ψk+1, j ,x1,x2).

Intuitively, VV coverage targets scenarios in which there is no sign change for a condition feature,
but in which the value of a decision feature changes significantly.

Example 9. (Continuation of Example 2) For any i ∈ {1, . . . , 3}, the feature pair ({ψ2,i }, {ψ3,3})
is VV-covered by the inputs x1 = (0, 1) and x2 = (0.1, 0.5), subject to the value functions д1 and д2.
As shown in Table 1, u3,3[x1]u3,3[x2]

≈ 2.96, for all i ∈ {1, . . . , 3} : nsc({n2,i },x1,x2) and nsc({n3,3},x1,x2).

We present four representative variants that best express our idea in terms of the features and
the relationship between the features in neighbouring layers. While we agree that this choice is

7



empirical and that there exist other ways to indentify causal changes in a neural network, our
particular choice is based on the principle that a) the operations between two adjacent DNN layers
drive the choice of features and b) that there is a straightforward relationship between the features
in two adjacent layers.

3.4 Coverage Metrics
Using the definitions in Section 3.3, we now are able to define the set of properties that a suite of
test cases needs to satisfy for each of our coverage criteria. Let F = {SS ,VSg, SV g,VV g1,g2 } be our
set of criteria, and let f ∈ F be one of them. A test suite comprises of a sequence of test inputs and
expected test outputs; our coverage criteria do not consider the expected outputs, and thus, for the
purpose of defining the metric for the case of a stateless network we can view a test suite T as a
finite set of test inputs, i.e., T ⊆ DL1 . Let O denote the set of pairs of neurons in a DNN. A test
suite T for that DNN satisfies criterion f completely if

∀α ∈ O ∃ x1,x2 ∈ T : f (α ,x1,x2) (5)

In practice, coverage for all feature pairs is rarely achieved; we compute the degree to which the
test condition f is satisfied by the test suite T .

Definition 8 (Coverage Metric). Given a DNN N , a test condition fixed by (f ,O) and a test
suite T , the value of the coverage metricMf (N ,T) is

Mf (N ,T) =
|{α ∈ O|∃x1,x2 ∈ T : f (α ,x1,x2)}|

|O|
(6)

That is, we compute the percentage of the feature pairs that are covered by test cases in T with
respect to the coverage criterion f .

Finally, instantiating f with one of the criteria in F , we obtain four coverage metricsMSS (N ,T),
MVSg (N ,T),MSV g (N ,T) andMVV g1,g2 (N ,T).

4 COMPARISONWITH EXISTING STRUCTURAL TEST COVERAGE CRITERIA
There have already been proposals for structural test coverage criteria for DNNs. In this part, we
compare our new criteria with safety coverage (MS ) [39], neuron coverage (MN ) [27] and several
of its extensions given in [21], including neuron boundary coverage (MNB ), multisection neuron
coverage (MMN ) and top neuron coverage (MTN ). While [27] and [39] have been published slightly
ahead of our work, our criteria have been developed in parallel with [21].
A metric M1 is said to be “weaker than” (or is “subsumed by”) another metric M2, denoted by

M1 ⪯ M2, iff for any given test suite T on N , we have M1(N ,T) < 1 implies M2(N ,T) < 1. For
instance, as shown in Example 3, decision coverage and condition coverage are strictly weaker than
MC/DC, since MC/DC coverage cannot be achieved before all decisions and conditions are covered.
The introduction of the feature relation in this work is very powerful, for two reasons: 1) the

criteria in this paper are stronger than those in [27] and [21], which only consider the activation
status of individual neurons, and 2) it is non-trivial for safety coverage [39], which is comparable
to traditional path coverage that requires covering every program execution path, to satisfy all test
conditions of our criteria.
In the following, we give a uniform formalization of the criteria from [21, 27, 39] using the

notation introduced in this paper and we defineMf (N ,T) for f ∈ {N , S ,NB,MN , TN }.

Definition 9 (Neuron Coverage). A node nk,i is neuron covered by a test input x , denoted by
N (nk,i ,x), if sign(nk,i ,x) = +1.

8



Informally, neuron coverage requires that each neuron nk,i must be activated at least once by
some test input. Neuron coverage was later generalised in [21] using more fine-grained neuron
activation conditions, including the boundary value for a neuron’s activation. For simplicity, we
only consider upper bounds when working with neuron boundary coverage. Given a node nk,i and
a training dataset X , we let vuk,i = maxx ∈X vk,i [x] be its maximum value over the inputs in X .

Definition 10 (Neuron Boundary Coverage). A node nk,i is neuron boundary covered by a
test input x , denoted by NB(nk,i ,x), if vk,i [x] > vuk,i .

Let rank(nk,i ,x) be the rank of vk,i [x] among those values of the nodes at the same layer, i.e.,
it refers to the relative activation magnitude of the neuron under input x among all values in
{vk, j [x] | 1 ≤ j ≤ sk }.

Definition 11 (Top Neuron Coverage). For 1 ≤ m ≤ sk , a node nk,i is top-m neuron covered
by x , denoted by TNm(nk,i ,x), if rank(nk,i ,x) ≤ m.

Let vlk,i = minx ∈X vk,i [x]. We can split the interval Ik,i = [vlk,i ,v
u
k,i ] intom equal sections and

let I jk,i be the j-th section.

Definition 12 (Multisection Neuron Coverage). Givenm ≥ 1, a node nk,i ism-multisection
neuron covered by a test suite T , denoted by MNm(nk,i ,T), if ∀1 ≤ j ≤ m∃x ∈ T : vk,i [x] ∈ I jk,i , i.e.,
all sections are covered by some test cases.

Given f ∈ {N ,NB,TNm} and the set H(N) of hidden nodes in N (the nodes of hidden layers
of N ), their associated coverage metric can be then defined as follows:

Mf (N ,T) =
|{n ∈ H(N) | ∃x ∈ T : f (n,x)}|

|H(N)|
(7)

MMNm (N ,T) can be obtained by a simple adaptation.
We can show that the criteria in [27, 39] are special cases of our criteria (with a suitable value

function д). As exemplar, the “weaker than” relationship between neuron coverage and SS coverage
is proved in the lemma below.

Lemma 1. MN ⪯ MSS .

Proof. For every hidden node nk, j ∈ H(N), there exists a feature pair ({nk−1,i }, {nk, j }) ∈ O(N)
for any 1 ≤ i ≤ sk−1. Then, by Definition 4, we have sc({nk, j },x1,x2), which by Definition 2 means
that sign(nk, j ,x1) , sign(nk, j ,x2). That is, either sign(nk, j ,x1) = +1 or sign(nk, j ,x2) = +1. Therefore,
if nk, j is not covered in a test suite T1 for neuron coverage, none of the pairs ({nk−1,i }, {nk, j }) for
1 ≤ i ≤ sk−1 is covered by a test suite T2 that provides SS coverage. □

In [39], the input space is discretised with a set of hyper-rectangles, and then one test case is
generated for each hyper-rectangle. This is referred to as “safety coverage”.

Definition 13 (Safety Coverage). Let each hyper-rectangle rec contain those inputs with the
same pattern of ReLU, i.e., for all x1,x2 ∈ rec we have sign(nk,l ,x1) = sign(nk,l ,x2) for all nk,l ∈
H(N). A hyper-rectangle rec is covered by a test case x , denoted by S(rec,x), if x ∈ rec.

Let Rec(N) be the set of hyper-rectangles. Then

MS (N ,T) =
|{rec ∈ Rec(N) | ∃x ∈ T : S(rec,x)}|

|Rec(N)|
(8)

Such a scheme is computationally intractable because of the high dimensionality of DNNs. The
approach to testing in this paper aims to be more practical.

9



input n2,1 n2,2 n2,3 n3,1 n3,2 n3,3
(0.1, 0) 0.4 0 −0.1 (0) 0.8 1.2 −0.4 (0)
(0,−1) −1(0) 2 −1 (0) −14 (0) 12 8
sign ch. sc ¬sc ¬sc sc ¬sc sc
(0, 1) 1 −2 (0) 1 3 −2 (0) 8
(0.1, 0.1) 0.5 −0.2 (0) 0 1 1.5 −0.5 (0)
sign ch. ¬sc ¬sc ¬sc ¬sc sc sc
(0,−1) −1 (0) 2 −1 (0) −14 (0) 12 8
(0.1,−0.1) 0.3 0.2 −0.2 (0) −0.8 (0) 2.1 0.5
sign ch. sc ¬sc ¬sc ¬sc ¬sc sc
(0, 1) 1 −2 (0) 1 3 −2 (0) 8
(0.1, 0.5) 0.9 −1 (0) 0.4 2.2 0.7 2.7
sign ch. ¬sc ¬sc ¬sc ¬sc sc ¬sc

Table 1. Activation values and sign changes for the inputs in Examples 6, 7, 8, 9. An entry has the form v , in
which v ≥ 0, or u(v), in which u < 0, v = 0, or sc , denoting that the sign has been changed, or ¬sc , denoting
that there is no sign change.

MSS MVSд MSVд MVVд1,д2

MS

MMNm

MN MNB MTNm

Fig. 2. Subsumption relationship between several structural test coverage criteria for DNNs

10



Figure 2 gives a diagrammatic summary of the relations between all existing structural test
coverage criteria for DNNs. The arrows represent the “weaker than” relation. The complete proofs
are in a longer version of this paper [32]. As indicated in Figure 2, our criteria require more test
cases to be generated than those in [21, 27], and therefore can make testing more exhaustive. On the
other hand, SS coverage is weaker than safety coverage [39].

5 AUTOMATED COVERAGE-DRIVEN TEST CASE GENERATION
We conjecture that the criteria proposed above achieve a good balance between their ability to
guide test case generation towards relevant cases and computational cost. To show this hypothesis,
we now apply our criteria to drive two different test case generation approaches for DNNs.

The test conditions required by our criteria exhibit particular combinations of the condition
feature and the decision feature, and it is not trivial to generate test cases for them. Owing to the
lack of awareness of the feature relation, the test input generation methods in [21, 27, 39] cannot be
directly used to generate tests that satisfy our criteria. Also, as pointed out in [24], random test case
generation is prohibitively inefficient for DNNs. Conversely, the symbolic encoding that is used in
the concolic testing method in [33] is expressive enough to encode the test conditions defined by
our criteria and is suitable for small- to medium-sized DNNs. Furthermore, in this section, we also
present a new test case generation algorithm based on gradient descent (GD) search, which scales
to large DNNs.

5.1 Test Oracle
An oracle in software testing is a mechanism to detemine whether a test has passed or failed. The
DNN N represents a function F̂ (x), which approximates F (x) : DL1 → L, which models perfect
perception. Therefore, the ultimate safety requirement is that for all test cases x ∈ DL1 , we have
F̂ (x) = F (x). However, it is not practical to use this requirement to define the oracle because of
the large number of inputs in DL1 and the high cost of asking humans to label images. A pragmatic
compromise, as done in many other works including [15, 34], is to use the following oracle as an
inexpensive proxy.

Definition 14 (Oracle). Given a finite set X of correctly labeled inputs, a test with input x ′ passes
if there exists some x ∈ X such that x and x ′ are “close enough” and F̂ (x ′) = F̂ (x).

Ideally, the question of whether two inputs x and x ′ are close enough is to be answered according
to human perception. In practice, this is approximated by various approaches, including norm-based
distance measures. Specifically, given the norm Lp and an upper bound b for the distance, we say
that two inputs x and x ′ are close iff | |x − x ′ | |p ≤ b. We write close(x ,x ′) for this relation. A pair
of inputs that satisfies this definition is called an adversarial example if the two labels assigned to
them by the DNN differ and if either x or x ′ is in the training or validation dataset.

The choice ofb is problem-specific. In our experiments, we evaluate the distribution of adversarial
examples with respect to the distance (as illustrated in Figure 5 for one of the criteria). We remark
that there may exist other ways to define a test oracle for DNNs, and that our coverage criteria are
independent from its particular definition.

5.2 Test Case Generation with LP
We first apply the concolic testing approach in [33] to generate test inputs that satisfy the test
conditions defined by our criteria. In [33], the test conditions are symbolically encoded using a
linear programming (LP) model, which is solved to obtain new test cases. Specifically, the LP-based
approach fixes a particular pattern of node activations according to a given input x .

11



While the overall behaviour of a DNN is highly non-linear, owing to the use of the ReLU activation
function, once the DNN is instantiated with a particular input, the activation pattern is fixed, and
we obtain an LP model.

LP model of a DNN instance. The variables used in the LP model are typeset in bold. All variables
range over the rational numbers. Given an input x , the input variable x, whose value is to be
synthesized with LP, is required to exhibit the same activation pattern as x , i.e., ∀nk,i : siдn(nk,i , x) =
siдn(nk,i ,x).

We use variables uk, i and vk, i to denote the values of a node nk,i before and after the application
of ReLU, respectively. Then, we have the set C1[x] of constraints to encode ReLU operations for a
network instance, where C1[x] is given as:

{uk, i ≥ 0 ∧ vk, i = uk, i | siдn(nk,i ,x) ≥ 0,k ∈ [2,K), i ∈ [1 . . . sk ]}
∪{uk, i < 0 ∧ vk, i = 0 | siдn(nk,i ,x) < 0,k ∈ [2,K), i ∈ [1 . . . sk ]}

(9)

Note that the activation values uk,i of the nodes are determined by the activation values vk−1, j
of the nodes in the previous layer, following Equation (2). Therefore, we add the following set of
constraints, C2[x], as a symbolic encoding of the activation values of the nodes.

{uk,i =
∑

1≤j≤sk−1
{wk−1, j,i · vk−1, j } + bk,i | k ∈ [2,K), i ∈ [1 . . . sk ]} (10)

The resulting LP model C[x] = C1[x] ∪ C2[x] represents a symbolic set of inputs that have the
same activation pattern as x . Further, we can specify some optimisation objective obj and call an
LP solver to find the optimal x (if one exists). In concolic testing, each time the DNN is instantiated
with a concrete input x1, the corresponding partial activation pattern serves as the base for the
LP modeling, upon which a new test input x2 may be found that satisfies the specified test condition.

5.3 Heuristic Test Input Generation using Gradient Search
The LP optimisation method in Section 5.2 provides a guarantee that an input pair is returned as
long as one exists. However, its scalability depends on the efficiency of LP solvers, and it is not
trivial to apply this method to DNNs with millions of neurons. In this part, we offer a heuristic
algorithm based on gradient search as an alternative with better scalability. It has been shown that
gradient search is an efficient method for finding adversarial examples in DNNs. This approach has
been utilised in a number of existing DNN testing methods (e.g., [21, 27, 40]).

Algorithm 1 get_input_pair(f,ψk,i ,ψk+1, j )
1: for each x1 ∈ data_set do
2: sample an input x2 and a positive number ϵ
3: for a bounded number of steps do
4: if f ((ψk,i ,ψk+1, j ),x1,x2) then return x1,x2

5: update ϵ
6: if ¬f widen((ψk,i ,ψk+1, j ),x1,x2) then x2 ← x2 − ϵ · ∇F̂ (x2)

7: else x2 ← x2 + ϵ · ∇F̂ (x2)

8: return None, None

The procedure, given as Algorithm 1, is finds an input pair x1,x2 such that the test condition of
the covering method, f , over the feature pair, α = (ψk,i ,ψk+1, j ), is satisfied; that is, f (α ,x1,x2) is
true. In principle, there are two objectives in the search algorithm: requirements on the feature pair
(ψk,i ,ψk+1, j ), and requirements on other feature pairs. For example, in the case of SSC, this means

12



sc forψk,i andψk,2 and nsc for all other features. To simplify the search, we use f widen(α ,x1,x2) as a
relaxed version of the testing condition f , such that all its predicates on the featuresψk,i andψk+1, j
are eliminated. Given some original input x1, and starting from an input x2, if feature changes other
than ψk,i and ψk+1, j are too prevalent and do not meet the requirements of f widen (Line 6), then
x2 is moved closer to x1, by following the gradient descent x2 ← x2 − ϵ · ∇F̂ (x2), in an attempt
to counteract such feature changes. This applies to the case when the activation sign changes on
other condition features. Otherwise, the change between x1 and x2 can only trigger a subset of
the predicates (in the testing condition) from the given feature pair, and we thus need to update
x2 following the gradient ascent (Line 7). The algorithm’s gradient change follows an adaptive
manner that comprises of a local search to update x2 at each step, and a simple strategy for the
overall search direction to move closer or further, with respect to x1. In our implementation, we
apply the FGSM (Fast Gradient Sign Method) [13] to initialise x2 and ϵ , and use a binary search
scheme to update ϵ at each step.
As a heuristic, the algorithm works well when there exist two inputs x1 and x2 s.t. x1 is from

the given “data_set”, x2 is an input along the gradient search direction, and (x1,x2) satisfies the
specified test condition.

6 EXPERIMENTS
We conduct experiments using the well-known MNIST Handwritten Image Dataset, the CIFAR-10
dataset with low-resolution color images and the ImageNet benchmark from the large-scale vi-
sual recognition challenge. Our experiments are classified into four categories: ➀ bug finding,
➁ quantification of the safety of a DNN, ➂ efficiency of testing and ➃ the analysis of the internal
structure of DNNs. We also explain the relationship between our criteria and the existing ones. All
implementations and the data discussed in this section are available online1.
In our implementation, the objective min | |x2−x1 | |∞ is used in all LPs to find good adversarial

examples with respect to the test coverage conditions. Moreover, we use д = uk+1, j [x2]
uk+1, j [x1]

≥ σ with
σ = 2 for д in SV д and σ = 5 for VV д1,д2 (with respect to д2). We admit that such choices are
empirical. For generality and to speed up the experiments, we leave the value functionд1 unspecified.
Providing a specific д1 may require more effort to find an x2 (because д1 is an additional constraint),
but the resulting x2 can be better.

6.1 MNIST
We randomly generate, and then train, a set of ten fully connected DNNs, such that each network
has an accuracy of at least 97.0% on the MNIST validation data. The detailed network structure,
and the number of neurons per layer, are given in Table 3. Every DNN input has been normalised
into [0, 1]28×28. Experiments were conducted on a MacBook Pro (2.5 GHz Intel Core i5 and 8GB of
memory).

We apply the coverage criteria defined in Section 3. Besides the coverageMf , we also compute
the percentage of adversarial examples among all test pairs in the test suite, denoted by AEf . The
use of LP optimisation enables us to use single neurons as features. That is, each feature pair is in fact
a neuron pair. The choice of pairs of neurons is the most difficult scenario for test input generation.

DNN Bug finding ➀. The results, reported in Table 3, are promising: (1) the test case generation
algorithm achieves high coverage effectively for all coverage criteria, and (2) the coverage criteria
are useful, indicated by the fact that a significant number of adversarial examples are identified
among the generated test cases. Figure 4 exhibits several adversarial examples found by the tool

1https://github.com/TrustAI/DeepConcolic

13



with different distances. We note that, for neuron coverage [27], high coverage can be achieved
trivially by selecting a few non-adversarial test cases that we generated.

Quantifying the safety of a DNN ➁. The coverageMf and adversarial example percentage AEf
together provide quantitative means to evaluate the safety of a DNN. Generally speaking, given a
test suite, a DNN with a high coverage levelMf and a low adversarial percentageAEf is considered
robust. In addition, we can study the adversarial quality by plotting a distance curve to see how
close the adversarial examples are to the corresponding original input. The quality of an adversarial
example is measured by its distance to the original input. An adversarial example is of higher quality
than others if its distance to the original input is smaller. Consider the results for SS coverage for
the last three DNNs in Table 3. In the graph given as Figure 5, the horizontal axis measures the L∞
distance and the vertical axis gives the accumulated percentage of the adversarial examples within
this distance. A more robust DNN will exhibit a curve where most adversarial examples have a
small distance. Intuitively, this means that more effort needs to be made to fool such a DNN.

Understanding the behavior of individual layers ➃. Our experiments suggest that different layers
of a DNN exhibit different behaviors during testing. Figure 6 reports the SS coverage results,
collected in adjacent layers. In particular, Figure 6a gives the percentage of covered neuron pairs
within individual adjacent layers. We observe that, when going deeper into the DNN, it can become
harder to cover neuron pairs. Under such circumstances, to improve coverage, a larger data set is
needed when generating pairs of test inputs. Figure 6b gives the percentage of adversarial examples
found at different layers (among all adversarial examples detected). Interestingly, it seems that most
adversarial examples are found when testing the middle layers.

SS coverage with top weights ➂. For SS coverage criteria with neuron pairs, there are |O | test
conditions for O ⊆ O(N) in total. We note that |O(N)| =

∑K
k=2 sk · sk−1. To reduce the test suite

size, we define O as follows: (ψk,i ,ψk+1, j ) ∈ O only when the weight is one of the κ largest among
{|wk,i′, j | | i

′ ∈ [1 . . . sk ]}. The rationale is that condition neurons do not equally affect their decision,
and those with higher (absolute) weights are likely to have a larger influence.
Figure 7 shows the difference of the coverage and adversarial example percentages when com-

paring SS coverage and its simplification with κ = 10, denoted by SSw10. In general, the two are
comparable. This is very useful in practice, as the “top weights” simplification reduces the size of
the resulting test suite; thus, the simplification can be used as a fast pre-processing phase and can
even deliver performance that is comparable to that of SS coverage.

Cost of LP calls ➂. Since the LP encoding of the (partial) activation pattern plays a key role in
the test generation, we give details of the cost of the LP calls. For every DNN, we select a set of
neuron pairs, where each decision neuron is in a different layer. Then, we measure the number
of variables and constraints, and the time t in seconds (averaged over 100 runs) spent on solving
each LP. We use CPLEX as the LP solver. The results in Table 2 confirm that the LP model of a
partial activation pattern is indeed lightweight, and that its complexity increases in a linear manner
when traversing into deeper layers of a DNN.

6.2 CIFAR-10
The CIFAR-10 dataset is a collection of 32x32 color images with ten kinds of objects. In constrast to
the MNIST case, we need to train a DNN with convolutional layers in order to handle the CIFAR-10
image classification problem. We apply the test case generation in Algorithm 1 for the SS coverage
and measure the coverage results individually for the decision features at each different layer.
Overall, an SS coverage higher than 90% is achieved with a substantial average 84.36% of the test
cases generated being adversarial examples. An interesting observation can be made in Figure 8

14



hidden layers MSS AESS MVSg AEVSg MSV g AESV g MVV g1,g2 AEVV g1,g2

N1 67x22x63 99.7% 18.9% 100% 15.8% 100% 6.7% 100% 21.1%
N2 59x94x56x45 98.5% 9.5% 100% 6.8% 99.9% 3.7% 100% 11.2%
N3 72x61x70x77 99.4% 7.1% 100% 5.0% 99.9% 3.7% 98.6% 11.0%
N4 65x99x87x23x31 98.4% 7.1% 100% 7.2% 99.8% 3.7% 98.4% 11.2%
N5 49x61x90x21x48 89.1% 11.4% 99.1% 9.6% 99.4% 4.9% 98.7% 9.1%
N6 97x83x32 100.0% 9.4% 100% 5.6% 100% 3.7% 100% 8.0%
N7 33x95x67x43x76 86.9% 8.8% 100% 7.2% 99.2% 3.8% 96% 12.0%
N8 78x62x73x47 99.8% 8.4% 100% 9.4% 100% 4.0% 100% 7.3%
N9 87x33x62 100.0% 12.0% 100% 10.5% 100% 5.0% 100% 6.7%
N10 76x55x74x98x75 86.7% 5.8% 100% 6.1% 98.3% 2.4% 93.9% 4.5%

Fig. 3. Coverage results on ten DNNs

(a) 9→ 8 (b) 8→ 2 (c) 1→ 7 (d) 0→ 9

Fig. 4. Selected adversarial examples for MNIST

0.0 0.1 0.2 0.3
adversarial distance (L )

0%

20%

40%

60%

80%

100%

ac
cu

m
ul

at
ed

 a
dv

er
sa

ria
l e

xa
m

pl
es

10

8

9

Fig. 5. Accumulated percentage of adversarial examples (y-axis) that do not exceed a particular distance
(given on the x-axis): the adversarial distance measures the distance between an adversarial example and the
original input

15



2/3 3/4 4/5 5/6 6/7
adjacent layers

0%

25%

50%

75%

100%

la
ye

rw
ise

 S
S 

co
ve

ra
ge 8

9

10

(a)

2/3 3/4 4/5 5/6 6/7
adjacent layers

0%

20%

40%

60%

ad
ve

rs
ar

ia
l e

xa
m

pl
es

 b
y 

la
ye

rs

8

9

10

(b)

Fig. 6. SS coverage by layer: (a) the coverage level per DNN layer; (b) the detected adversarial examples at
each layer with respect to the total amount of adversarial examples

1 2 3 4 5 6 7 8 9 10
DNN index

-4%

-2%

0%

2%

4%

di
ffe

re
nc

e 
in

 re
su

lts

MSS MSSw10

AESS AESSw10

Fig. 7. SS vs. SSw10 . Results demonstrate that the SS coverage and its top-weight simplification have similar
coverage levels (MSS −MSSw10 ) and percentages of adversarial examples (AESS −AESSw10 )

N8 N9 N10
#vars |C| t #vars |C| t #vars |C| t

L2-3 864 3294 0.58 873 3312 0.57 862 3290 0.49
L3-4 926 3418 0.84 906 3378 0.61 917 3400 0.71
L4-5 999 3564 0.87 968 3502 0.86 991 3548 0.75
L5-6 1046 3658 0.91 – – – 1089 3744 0.82
L6-7 – – – – – – 1164 3894 0.94

Table 2. Number of variables and constraints, and time cost of each LP call (in seconds)

16



(➃), which shows that in this case the causal changes of features at deeper layers are able to detect
smaller perturbations of inputs that cause adversarial behaviours. This could be helpful feedback
for developers for debugging or tuning the parameters of the neural network. Selected adversarial
examples are given in Figure 9.

6.3 ImageNet
We applied our methods to VGG16 [30], a large-scale DNN trained on the ImageNet dataset. The
heuristic search Algorithm 1 is called to generate test cases. We consider every neuron a decision
feature. While feature extraction methods such as SIFT [20] can obtain condition features, in our
experiments we use arbitrary sets of neurons as conditions. We define a size parameter ω and
require featureψk,i to have size ≤ ω · sk . Recall that sk is the number of neurons in layer k .

Effect of feature size ➀ ➁ ➃. We apply SS coverage on 2,000 randomly sampled feature pairs
with ω ∈ {0.1%, 0.5%, 1.0%}. The test case generation method shows its effectiveness by returning
a test suite in which 10.5%, 13.6% and 14.6% of the tests are adversarial examples. We report the
average distance of the adversarial examples and the standard deviation in Figure 10. The results
confirm that there is a relationship between the feature pairs and the input perturbation. Among the
generated adversarial examples, a more fine-grained feature is able to capture smaller perturbations
than a coarse one.
The results in Figure 10 are obtained using the L∞-norm, which corresponds to the maximum

change to a pixel. We observe that, although the change of each pixel is very small, for every
adversarial example a large portion (around 50%) of the pixels are changed. A typical adversarial
example image is given in Figure 11. Overall, the detected adversarial examples are high quality.

SV with neuron boundary coverage ➀ ➁. As shown in Section 4, our coverage criteria are strictly
stronger than neuron boundary coverage. In fact, neuron boundary is a special case of SV coverage,
when the value function of the decision feature is designed to make the activation value exceed the
specified boundary value. We confirm this claim empirically, similarly to the experiments above,
by generating a test suite using SV with neuron boundary coverage. We noticed that reaching
boundary activation values requires substantial changes to the inputs. We set the feature size using
ω = 10% and obtain a test suite with 22.7% adversarial examples. However, the distance of these
adversarial examples, with average L∞-norm distance 3.49 and standard deviation 3.88, is much
greater than those for the SS coverage, as illustrated in Figure 10.

6.4 Comparing DNNs using Testing
We discuss whether testing can inform a choice between alternative DNNmodels. In our experiment,
we choose two DNNs such that one is apparently better than the other, and then apply coverage-
guided testing and compare the results.

Complex vs. simple features. The recognition of features is a fundamental building block in deep
learning, and the convolutional kernel operation in a neural network is the most basic approach to
define a feature. Without loss of generality, a convolutional DNN can be treated as a neural network
such that the activation of a node in layer k is computed by the activations of a subset of precedent
nodes, and each node belongs to a feature map in its layer. Hence, each node nk,i is a feature that
abstracts the preceding features such that each preceding feature at layer (k − 1) is a subset of
nodes from the same feature map that are connected to nk,i . Nodes in the same feature map share
the same weights and bias that is given by a convolutional filter of some shape d1 × d2 [12].
We have trained two convolutional DNNs Nc

1 and Nc
2 . Both have two convolutional layers

followed by one fully connected layer of 128 neurons. Nc
1 (resp. Nc

2 ) has 20 (resp. 2) filters for

17



layer-2 layer-5 layer-70.00

0.02

0.04

0.06

0.08

0.10

ad
ve

rs
ar

ia
l d

ist
an

ce
 (L

)

Fig. 8. Average adversarial distance for decision features at different layers

(a) bird→ airplane (b) airplane→ cat

Fig. 9. Two selected adversarial examples for CIFAR-10

= 0.1% = 0.5% = 1.0%
feature size

0.00

0.05

0.10

0.15

0.20

0.25

ad
ve

rs
ar

ia
l d

ist
an

ce
 (L

)

Fig. 10. Adversarial distance with different feature sizes: a smaller distance corresponds to more subtle
adversarial examples

18



+   =
traffic light b=0.26 lipstick

Fig. 11. An adversarial example (“lipstick”) for the original traffic light input

the first convolutional layer and 40 (resp. 4) filters for the second convolutional layer. The filters
have size 5 × 5 and every convolutional layer is augmented with a so-called max-pooling layer of
size 2 × 2. Overall, Nc

1 has 14,208 hidden neurons and Nc
2 is much smaller with only 1,536 hidden

neurons. We say that Nc
1 is “complex” and that Nc

2 is “simple”.

M (1,1),(2,1)SS AE(1,1),(2,1)SS M (1,1),(2,2)SS AE(1,1),(2,2)SS
Nc

1 99.7% 1.6% 99.7% 1.5%
Nc

2 100.0% 7.6% 100.0% 6.8%
Table 3. SS coverage results per feature map

= 0.01 = 0.05 = 0.1 = 0.20%

20%

40%

60%

80%

ad
ve

rs
ar

ia
l e

xa
m

pl
es 1

2

Fig. 12. Adversarial examples found by FGSM

In the experiment, we use SS coverage to guide the testing of neuron pairs from feature maps
at adjacent layers. We use fk,i to denote the i-th feature map in the k-th convolutional layer, and
M

SS
fk,i
fk+1, j

represents the SS coverage among neuron pairs such that the condition neuron and decision

neuron are from fk,i and fk+1, j , respectively. Correspondingly, AESS fk,ifi+1, j

denotes the percentage of

adversarial examples for each feature map. The results are in Table 3. We obtain high SS coverage
for both architectures. The generated test suite confirms that the use of the complex convolutional
structures is justified, as the simple architecture is much more susceptible to adversarial examples.
To cross-validate this result, we conduct an experiment using the adversarial attack algorithm

FGSM (Fast Gradient Sign Method) [13]. We apply FGSM to distort the default MNIST validation
data set. Figure 12 gives the number of adversarial examples in the new data set for both neural

19



networks Nc
1 and Nc

2 , based on the distorted data; ϵ is the parameter that controls the degree of
change of the original inputs. The results in Figure 12 are consistent with ours.

A large number of methods based on gradient search have been proposed; these methods motivate
our test generation algorithm in Section 5.3 and other work on test input generation for DNNs,
including [21, 27]. Their ability to find adversarial examples is the usual metric for their utility.
However, we emphasise that the ultimate aim of coverage criteria is to quantify the coverage of
functional features.

6.5 Test Data Variety as a Proxy for Functional Coverage
We have shown that our proposed test coverage criteria are a good indicator for the existence of
adversarial examples. It is well-known, however, that test suites that focus on adversarial examples
are not effective for assessing functional properties of DNNs. We propose a different experiment to
determine how well functional coverage is approximated by our structural coverage metrics. The
experiment is based on the assumption that the validation data set is a good proxy for the intent of
the person who is training the DNN. We also assume that a data label corresponds to a “functional
feature” of the DNN, and that the data labels have roughly similar complexity.

To quantify functional coverage, we first select a subset L′ of the data labels L. We then hypothe-
size that the subset of the validation data set that contains of the inputs that are labeled with one
of the labels from L′ yields an expected functional coverage of |L′ |/|L|. A coverage metric that is
highly correlated with this number is a good proxy for functional coverage.
In the case of MNIST, there are ten labels, i.e., L = {0, . . . , 9}. The validation data set consists

of 10,000 images. We start with L′ = {0}, and thus, we compute the structural coverage obtained
using all images that are labeled with 0; we then proceed to L′ = {0, 1}, i.e., all images labeled with
either 0 or 1, and so on. We compare our proposed metric SSC with neuron coverage (NC) and
2-multisection neuron coverage (BNC), as discussed in Section 4. While NC is similar to traditional
statement coverage, BNC resembles branch coverage.
Figure 13 gives the experimental results for the MNIST DNNs in Table 3. There are several key

observations.

• For all neural networks, both NC and BNC immediately report more than 90% coverage,
even when given solely images that are labeled with 0. They are thus a very bad proxy for
functional coverage.
• Conversely, although the slope varies for different DNNs, the level of SS coverage measured
increases linearly as the variety in the test data set increases. This suggests that our structural
test coverage criteria are indeed able to quantify how many test inputs are meaningfully
different.
• The results in Figure 13c confirm that it is not trivial to achieve high SS coverage. This
suggests that the test generation algorithms proposed in this paper create valuable test
inputs.

7 RELATEDWORK
In the following, we briefly discuss existing techniques for validating safety properties of DNNs.

Generation of Adversarial Examples for DNNs. Most existing work, e.g., [6, 13, 26, 34] applies
various heuristics, generally using search based on gradient descent or evolutionary techniques.
These approaches may be able to find adversarial examples efficiently, but are not able to provide
any guarantee (akin to verification) or means to quantify the level of confidence (akin to testing) in
the robustness of the neural network.

20



1 2 3 4 5 6 7 8 9 10
|L ′|

0%

20%

40%

60%

80%

100%

NC
 c

ov
er

ag
e

1

2

3

4

5

6

7

8

9

10

(a) NC

1 2 3 4 5 6 7 8 9 10
|L ′|

0%

20%

40%

60%

80%

100%

BN
C 

co
ve

ra
ge

1

2

3

4

5

6

7

8

9

10

(b) BNC

1 2 3 4 5 6 7 8 9 10
|L ′|

0%

10%

20%

30%

SS
C 

co
ve

ra
ge

1

2

3

4

5

6

7

8

9

10

(c) SSC

Fig. 13. Coverage results for input data with increasing variety (from “one label only” to “ten labels”) for ten
MNIST DNNs

21



Testing of DNNs. There are only few proposals for structural test coverage criteria for DNNs. The
idea of neuron coverage is to cover both activation states of all neurons [27]. Extensions of neuron
coverage are given in [21], and include criteria that check the corner values of a neuron’s activation
level and the activation levels of a subset of neurons in the same layer. However, the criteria
in [21, 27] simply ignore the causal relationship in the DNN. In [39], the input space is discretised
with hyper-rectangles, and then one test case is generated for each hyper-rectangle. The resulting
safety coverage is a strong criterion, but the generation of a test suite can be very expensive.
While in [7], coverage is enforced for finite partitions of the input space, relying on predefined
sets of application-specific scenario attributes. The “boxing clever” technique in [3] focuses on the
distribution of training data and divides the input domain into a series of representative boxes.
The adversarial test generation in [36, 40] is applied to evaluate DNN-based control systems in
autonomous vehicles. As shown in [19, 35], quantitative DNN coverage criteria can be applied to
support the design and certification of automotive systems with deep learning components.

Automated Verification of DNNs. The safety problem of a DNN can be reduced into a constraint
solving problem [9]. SAT/SMT and MILP solutions [8, 11, 15, 18, 37] have already been considered.
In [16], the DNN is transformed into an equivalent hybrid system. These approaches typically
only work with small networks with a few hundred hidden neurons, and overapproximation
techniques [10, 22, 31] can be applied to improve the efficiency.

8 CONCLUSIONS
We have proposed a set of novel structural test coverage criteria for DNNs. Our experiments on
various datasets and using two test case generation methods show promising results, indicating
the applicability and effectiveness of the proposed coverage criteria. The test coverage metrics
developed within this paper provide a method to obtain evidence for adversarial robustness, which
is envisaged to contribute to safety cases. The criteria are also expected to provide additional
insights for domain experts for evaluating the adequacy of a particular dataset as a means to
describe the behavior of a DNN. In particular, our experiments suggest that they are a good proxy
for functional coverage.

Acknowledgements. This document is an overview of UK MOD (part) sponsored research and is released
for informational purposes only. The contents of this document should not be interpreted as representing
the views of the UK MOD, nor should it be assumed that they reflect any current or future UK MOD policy.
The information contained in this document cannot supersede any statutory or contractual requirements or
liabilities and is offered without prejudice or commitment.

Content includes material subject to © Crown copyright (2018), Dstl. This material is licensed under
the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http:
//www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy
Team, The National Archives, Kew, London TW9 4DU, or email psi@nationalarchives.gsi.gov.uk.

REFERENCES
[1] [n. d.]. Verification of Autonomous Systems. ([n. d.]). https://www.robotistry.org/vaswg/index.html
[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Geoffrey Irving, Michael Isard, et al. 2016. TensorFlow: A System for Large-Scale Machine Learning. In OSDI, Vol. 16.
USENIX Association, 265–283.

[3] Rob Ashmore and Matthew Hill. 2018. “Boxing Clever”: Practical Techniques for Gaining Insights into Training Data
and Monitoring Distribution Shift. In Computer Safety, Reliability, and Security (LNCS), Vol. 11094. Springer, 393–405.

[4] Rob Ashmore and Elizabeth Lennon. 2017. Progress Towards the Assurance of Non-Traditional Software. In Safety-
critical Systems Symposium.

[5] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. 2008. Speeded-Up Robust Features (SURF). Comput.
Vis. Image Underst. 110, 3 (June 2008), 346–359.

22

http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3
http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3
https://www.robotistry.org/vaswg/index.html


[6] Nicholas Carlini and David Wagner. 2017. Towards Evaluating the Robustness of Neural Networks. In Security and
Privacy (S&P), IEEE Symposium on. 39–57.

[7] Chih-Hong Cheng, Chung-Hao Huang, and Hirotoshi Yasuoka. 2018. Quantitative Projection Coverage for Testing
ML-enabled Autonomous Systems. In International Symposium on Automated Technology for Verification and Analysis,
ATVA (LNCS), Vol. 11138. Springer, 126–142.

[8] Tommaso Dreossi, Alexandre Donzé, and Sanjit A Seshia. 2018. Compositional Falsification of Cyber-Physical Systems
with Machine Learning Components. Journal of Automated Reasoning (2018).

[9] Tommaso Dreossi, Shromona Ghosh, Alberto Sangiovanni-Vincentelli, and Sanjit A Seshia. 2019. A Formalization of
Robustness for Deep Neural Networks. arXiv preprint arXiv:1903.10033 (2019).

[10] Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan. 2019. Reachability Analysis for Neural Feedback Systems
Using Regressive Polynomial Rule Inference. In International Conference on Hybrid Systems: Computation and Control.
ACM, 157–168.

[11] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018. Output Range Analysis for Deep
Feedforward Neural Networks. In NASA Formal Methods Symposium (LNCS), Vol. 10811. Springer, 121–138.

[12] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep learning. Vol. 1. MIT Press.
[13] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and Harnessing Adversarial Examples. In

3rd International Conference on Learning Representations, ICLR.
[14] Kelly Hayhurst, Dan Veerhusen, John Chilenski, and Leanna Rierson. 2001. A Practical Tutorial on Modified Condi-

tion/Decision Coverage. Technical Report. NASA.
[15] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety Verification of Deep Neural Networks. In

International Conference on Computer Aided Verification, CAV (LNCS), Vol. 10426. Springer, 3–29. https://doi.org/10.
1007/978-3-319-63387-9_1

[16] Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, and Insup Lee. 2019. Verisig: Verifying Safety Properties
of Hybrid Systems with Neural Network Controllers. In International Conference on Hybrid Systems: Computation and
Control. ACM, 169–178.

[17] Cem Kaner. 2006. Exploratory Testing. In Quality Assurance Institute Worldwide Annual Software Testing Conference.
[18] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. 2017. Reluplex: An Efficient SMT Solver

for Verifying Deep Neural Networks. In International Conference on Computer Aided Verification, CAV (LNCS). Springer,
97–117.

[19] Shuyue Lan, Chao Huang, Zhilu Wang, Hengyi Liang, Wenhao Su, and Qi Zhu. 2018. Design Automation for Intelligent
Automotive Systems. In International Test Conference (ITC). IEEE, 1–10.

[20] David G. Lowe. 2004. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vision 60, 2 (Nov.
2004), 91–110.

[21] Lei Ma, Felix Juefei-Xu, Jiyuan Sun, Chunyang Chen, Ting Su, Fuyuan Zhang, Minhui Xue, Bo Li, Li Li, Yang Liu,
Jianjun Zhao, and Yadong Wang. 2018. DeepGauge: Multi-granularity Testing Criteria for Deep Learning Systems. In
Automated Software Engineering (ASE). ACM, 120–131.

[22] Matthew Mirman, Timon Gehr, and Martin Vechev. 2018. Differentiable Abstract Interpretation for Provably Robust
Neural Networks. In International Conference on Machine Learning, ICML. 3575–3583.

[23] Vinod Nair and Geoffrey E Hinton. 2010. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings
of the 27th International Conference on Machine Learning, ICML. 807–814.

[24] Augustus Odena, Catherine Olsson, David Andersen, and Ian J. Goodfellow. 2019. TensorFuzz: Debugging Neural
Networks with Coverage-Guided Fuzzing. In Proceedings of the 36th International Conference on Machine Learning,
ICML. PMLR, 4901–4911.

[25] Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Katherine Ye, and AlexanderMordvintsev.
2018. The Building Blocks of Interpretability. Distill (2018). https://doi.org/10.23915/distill.00010

[26] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram Swami. 2016. The
Limitations of Deep Learning in Adversarial Settings. In European Symposium on Security and Privacy (EuroS&P). IEEE,
372–387.

[27] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Automated Whitebox Testing of Deep
Learning Systems. In Proceedings of the 26th Symposium on Operating Systems Principles. ACM, 1–18.

[28] RTCA. 2011. DO-178C, Software Considerations in Airborne Systems and Equipment Certification. (2011).
[29] SASWG. 2019. Safety Assurance Objectives for Autonomous Systems. (2019).
[30] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition.

In 3rd International Conference on Learning Representations, ICLR.
[31] Xiaowu Sun, Haitham Khedr, and Yasser Shoukry. 2019. Formal Verification of Neural Network Controlled Autonomous

Systems. In International Conference on Hybrid Systems: Computation and Control. ACM, 147–156.

23

https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.23915/distill.00010


[32] Youcheng Sun, Xiaowei Huang, and Daniel Kroening. 2018. Testing Deep Neural Networks. CoRR abs/1803.04792
(2018). arXiv:1803.04792 http://arxiv.org/abs/1803.04792

[33] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and Daniel Kroening. 2018. Concolic
Testing for Deep Neural Networks. In Automated Software Engineering (ASE), 33rd IEEE/ACM International Conference
on. 109–119.

[34] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
2014. Intriguing Properties of Neural Networks. In ICLR.

[35] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2017. DeepTest: Automated Testing of Deep-Neural-Network-
Driven Autonomous Cars. arXiv preprint arXiv:1708.08559 (2017).

[36] Cumhur Erkan Tuncali, Georgios Fainekos, Hisahiro Ito, and James Kapinski. 2018. Simulation-based adversarial test
generation for autonomous vehicles with machine learning components. In Intelligent Vehicles Symposium (IV). IEEE,
1555–1562.

[37] Cumhur Erkan Tuncali, Hisahiro Ito, James Kapinski, and Jyotirmoy V Deshmukh. 2018. Reasoning about Safety of
Learning-Enabled Components in Autonomous Cyber-Physical Systems. In 55th Design Automation Conference (DAC).
IEEE, 1–6.

[38] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. 2003. Multiscale Structural Similarity for Image Quality Assessment.
In Signals, Systems and Computers, Conference Record of the Thirty-Seventh Asilomar Conference on.

[39] Matthew Wicker, Xiaowei Huang, and Marta Kwiatkowska. 2018. Feature-Guided Black-Box Safety Testing of Deep
Neural Networks. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(LNCS), Vol. 10805. Springer, 408–426.

[40] Shakiba Yaghoubi and Georgios Fainekos. 2019. Gray-box Adversarial Testing for Control Systems with Machine
Learning Components. In International Conference on Hybrid Systems: Computation and Control. ACM, 179–184.

[41] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. 2015. Understanding Neural Networks
Through Deep Visualization. arXiv preprint arXiv:1506.06579 (2015).

24

http://arxiv.org/abs/1803.04792
http://arxiv.org/abs/1803.04792

	Abstract
	1 Introduction
	2 Preliminaries: Deep Neural Networks
	3 Adequacy Criteria for Testing DNNs
	3.1 Test Coverage and MC/DC
	3.2 Decisions and Conditions in DNNs
	3.3 Coverage Criteria
	3.4 Coverage Metrics

	4 Comparison with Existing Structural Test Coverage Criteria
	5 Automated Coverage-Driven Test Case Generation
	5.1 Test Oracle
	5.2 Test Case Generation with LP
	5.3 Heuristic Test Input Generation using Gradient Search

	6 Experiments
	6.1 MNIST
	6.2 CIFAR-10
	6.3 ImageNet
	6.4 Comparing DNNs using Testing
	6.5 Test Data Variety as a Proxy for Functional Coverage

	7 Related Work
	8 Conclusions
	References

