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Abstract: Acute pancreatitis (AP) is a debilitating, sometimes fatal disease, marked by local injury
and systemic inflammation. Mitochondrial dysfunction is a central feature of pancreatic damage in
AP, however, its involvement in circulating blood cell subtypes is unknown. This study compared
mitochondrial bioenergetics in circulating leukocytes from AP patients and healthy volunteers: 15
patients with mild to severe AP were compared to 10 healthy controls. Monocytes, lymphocytes
and neutrophils were isolated using magnetic activated cell sorting and mitochondrial bioenergetics
profiles of the cell populations determined using a Seahorse XF24 flux analyser. Rates of oxygen
consumption (OCR) and extracellular acidification (ECAR) under conditions of electron transport
chain (ETC) inhibition (“stress” test) informed respiratory and glycolytic parameters, respectively.
Phorbol ester stimulation was used to trigger the oxidative burst. Basal OCR in all blood cell subtypes
was similar in AP patients and controls. However, maximal respiration and spare respiratory
capacity of AP patient lymphocytes were decreased, indicating impairment of functional capacity.
A diminished oxidative burst occurred in neutrophils from AP patients, compared to controls, whereas
this was enhanced in both monocytes and lymphocytes. The data demonstrate important early
alterations of bioenergetics in blood cell sub-populations from AP patients, which imply functional
alterations linked to clinical disease progression.

Keywords: acute pancreatitis; mitochondrial dysfunction; Seahorse bioenergetics; respiration;
glycolysis; inflammation; leukocytes

1. Introduction

Acute pancreatitis (AP) is a multifaceted disease, caused predominantly by gallstones and
alcohol excess, which involves local injury and systemic inflammation. In severe disease, this may
develop into a systemic inflammatory response syndrome, remote organ injury and death of the patient.
The incidence of AP is 13–45 per 100,000 cases per year, and imposes a significant healthcare burden [1,2].
However, there is an incomplete understanding of the underlying pathophysiology, with current
predictors of disease outcome inadequate and no specific therapy available. Damage to the pancreatic
acinar cell is considered the initiating event of AP, manifested by premature zymogen activation,
vacuolisation, mitochondrial dysfunction and necrotic cell death [3,4]. Bile acids, non-oxidative ethanol
metabolites, and cholecystokinin hyperstimulation disrupt acinar cell calcium signalling and induce
mitochondrial damage, via opening of the mitochondrial permeability transition pore (MPTP), causing

J. Clin. Med. 2019, 8, 2201; doi:10.3390/jcm8122201 www.mdpi.com/journal/jcm

http://www.mdpi.com/journal/jcm
http://www.mdpi.com
https://orcid.org/0000-0003-2952-8450
http://dx.doi.org/10.3390/jcm8122201
http://www.mdpi.com/journal/jcm
https://www.mdpi.com/2077-0383/8/12/2201?type=check_update&version=2


J. Clin. Med. 2019, 8, 2201 2 of 14

loss of membrane potential, rundown of nicotinamide adenine dinucleotide (NADH), and fall of
adenosine triphosphate (ATP) production, leading to necrosis [5–10].

However, comparatively little is known about mitochondrial dysfunction in circulating blood
cells during AP. This may partly reflect the significant challenge posed by the isolation of patient
blood cells in a reliable state for such bioenergetics measurements. In recent years, there has been
increasing focus on the roles of immune cell subsets in the systemic inflammatory response in AP [11,12].
For example, neutrophil infiltration is evident in the pancreas within minutes of the onset of AP and
exerts a significant role in disease severity [11,13]. Previously, elevated mitochondrial respiration was
reported in a total population of peripheral blood mononuclear cells obtained from patients with
mild AP, suggesting inefficient mitochondria, although no alteration of ATP production occurred [14].
However, whether specific bioenergetics alterations occur in blood cell subtypes during clinical AP
is currently unknown. Detailed investigations of mitochondrial dysfunction can be achieved by
measuring bioenergetics changes in cell populations using Seahorse flux analysis [15,16]. We have
recently demonstrated that oxidative stress, which is elevated in clinical AP [17], altered the bioenergetic
profiles of isolated pancreatic acinar cells determining cell death patterns [18].

In the present study, we have investigated the bioenergetics profiles of leukocyte sub-types
isolated from AP patient blood samples, comparing results to those obtained from healthy volunteers.
Our data show distinct alterations of mitochondrial bioenergetics in blood cell sub-types that occur
during early clinical AP, pointing to a modified functional capacity of circulating blood cells during the
inflammatory response.

2. Experimental Section

2.1. Blood Collection and Cell Isolation

Patients aged ≥18 years with a first attack of acute pancreatitis were recruited on the day of
admission to the Royal Liverpool University Hospital for donation of blood and linked clinical data
into the National Institute for Health Research Liverpool Pancreas Biomedical Research Unit Acute
Pancreatitis Biobank, as approved by the regional ethics committee (REC 10/H1308/31 and 15/YH/0193).
Patients with acute pancreatitis of any aetiology with two of three diagnostic features (serum amylase
≥3× upper limit of normal, typical pain, pancreatic inflammation on cross-sectional imaging) with
written informed consent were eligible for inclusion, but patients who were unable to consent, had a
history of recurrent acute or chronic pancreatitis or a history of pancreatic surgery or malignancy were
excluded. Samples were collected prospectively within 24 h of admission from consenting patients
who had presented within 72 h of onset of pain, together with clinical data that allowed severity
stratification according to the 2012 Revised Atlanta Classification [19] after discharge. Blood samples
were also collected from healthy volunteers (control group) aged ≥18 years; individuals with diabetes
or a history of pancreatic disease were excluded. Collection, processing, storage, monitoring and usage
of samples followed pre-defined standard operating procedures adhering to Good Clinical Practice.

Blood samples (one 8.5 mL/tube) were collected in a K2EDTA tube (Vacuette, Greiner Bio-One
GmbH, Kremsmünster, Austria) and processed within an hour of collection using an established
protocol [19]. All isolation procedures were designed and carefully executed to prevent activation of
blood cells. In brief, following collection blood samples were centrifuged at 500× g (acceleration 6 and
no brake; Thermo Fisher Scientific, Waltham, MA, USA), the buffy layer removed and diluted with
RPMI-140 (Sigma, Poole, UK) to 24 mL, then applied to a Histopaque density gradient (specific gravity
1.077/1.113, at room temperature; Alere, Waltham, MA, USA) and centrifuged at 700× g (acceleration
6, no brake and at room temperature; Thermo Fisher Scientific, Waltham, MA, USA). Three distinct
bands were present; the uppermost band contained peripheral blood mononuclear cells (PBMCs),
the middle band polymorphonuclear cells (PMNs) and the lower band contained red blood cells
(RBCs). The PBMCs and PMNs were collected separately. Red cell lysis buffer (Sigma, Poole, UK) was
added to the PMNs, improving the purity of the cell population by lysing the RBCs.
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The mononuclear cells were suspended in 80 µL of MACs buffer (PBS, 2 mM EDTA and 0.5% BSA;
pH 7.2 and sterile filtered) and 20 µL CD61 human microbeads (Miltenyi, Bergisch Gladbach, Germany)
at 4 ◦C for 15 min. The CD61 microbeads, which bind to CD61+ platelets, were then applied to a MS
column (Miltenyi, Bergisch Gladbach, Germany) in a MiniMACS magnet (Miltenyi, Bergisch Gladbach,
Germany) according to manufacturer’s instructions. The column was discarded (removing any platelets
from the PBMCs) and the flow through collected and re-suspended in 80 µL of MACs buffer and
20 µL CD14 human microbeads (Miltenyi, Bergisch Gladbach, Germany). CD14+ monocytes were
purified from the PBMC fraction using superparamagnetic iron-dextran microbead-labelled anti-CD14
antibodies. Cells retained in the column were collected by elution with MACs buffer after removal
from the magnetic field. Lymphocytes, in comparison, were present in the through flow. Isolation
yielded cell populations with >90% purity and viability as determined by fluorescence-activated cell
sorting and Trypan Blue exclusion, respectively (Table S1).

2.2. Assessment of Monocyte, Lymphocyte and Neutrophil Bioenergetics

Purified monocytes, lymphocytes and neutrophils were re-suspended in XF assay buffer
(Dulbecco’s Modified Eagle Medium (DMEM), 2 mM sodium pyruvate, 2 mM L-Glutamine and
10 mM D-glucose in ddH2O, pH 7.4 and sterile filtered), and then plated (250,000 cells/well) in 200 µL
on CellTak (BD Biosciences, Poole, UK) coated assay plates and allowed to attach for 30 min at 37 ◦C in
a non-CO2 incubator. The cellular bioenergetics of the isolated cells were determined using the XF24
analyser (Agilent, Boston, MA, USA) [18–20]. Real-time, non-invasive measurements of OCR and
ECAR were obtained which correlated to mitochondrial function and glycolysis, respectively. Using
the mitochondrial respiratory function “stress” test protocol, inhibitors of the mitochondrial electron
transport chain (ETC) (oligomycin, 0.5 µg/mL; carbonyl cyanide-4-trifluoromethoxy phenylhydrazone
(FCCP), 0.6 µM; rotenone and antimycin, 1 µM; Sigma, Poole, UK) and an activator of the oxidative
burst (phorbol 12-myristate 13-acetate (PMA), 100 ng/mL; Sigma, Poole, UK) were sequentially injected
to assess the following respiratory parameters: oxygen consumption rate (OCR) basal respiration,
maximal respiration, spare respiratory capacity ATP turnover capacity, proton leak, non-mitochondrial
respiration, and PMA-induced oxidative burst, extracellular acidification rate (ECAR) baseline,
glycolytic reserve and PMA-induced ECAR.

The mean basal respiration was determined at the 5th OCR measurement, before addition of
the inhibitors or activators. ATP turnover capacity and proton leak were determined following
injection of oligomycin, which blocks the ATP synthase, and then maximal respiration following FCCP,
an uncoupler of the electron transport chain. The difference between the basal OCR and maximal
OCR represents the Spare Respiratory Capacity OCR of the mitochondria. Antimycin A, an inhibitor
of Complex III, and rotenone, an inhibitor of Complex I, were used in conjunction to completely
inhibit mitochondrial electron transport: the remaining OCR is attributed to non-mitochondrial
OCR. Basal OCR, proton leak OCR, and the maximal OCR were calculated after correction for the
non-mitochondrial OCR for each assay. Finally, the oxidative burst OCR was determined cell following
cell stimulation with PMA, a protein kinase C (PKC) activator that increases nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase activity. The ECAR measures were recorded in parallel to
OCR measurements. Baseline ECAR was determined at the 5th ECAR reading and Glycolytic Reserve
calculated by subtraction of the baseline ECAR reading from that obtained after addition of oligomycin.
The optimal concentrations of the inhibitors and activator used for the assessment of mitochondrial
function were as previously determined [21]. All XF assays were performed in sterile DMEM (5 mM
D-glucose, 4 mM L-glutamine and 1 mM sodium pyruvate; pH 7.4).

2.3. Statistics

For each blood sample, 3–5 replicates were used for all bioenergetics determinations, and the data
are presented as mean ± standard error of the mean (SEM). Statistical significance was determined
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using a Student’s t-test or Mann Whitney U test, with p ≤ 0.05 taken as indicating significant difference
from control.

3. Results

3.1. Characteristics of Patients and Healthy Controls Included in the Analysis

For the study blood samples were collected from 15 AP patients. Of these, 12 were classified as mild
AP, 1 was moderate and 2 patients had severe AP according to the revised Atlanta Classification [22].
The mean age of the patients was 57.2, with 11 females (mean age of 54.3 years) and 4 males (mean age
of 65.3 years). The aetiology of AP in patients was: 12 biliary, 2 idiopathic, 1 alcoholic and 1 ERCP.
Amylase, platelets and WBC counts (neutrophils, lymphocytes, monocytes, eosinophils and basophils)
were recorded for each patient at admission by the hospital staff (Table 1). Further details of AP patient
co-morbidities and Body Mass Index (BMI) are included in Table S2. For comparison, blood samples
were collected from 10 healthy volunteers, of which half were male and half female. The overall mean
age was 32.9 years, with female mean age of 34.4 years and male mean age of 31.4 years.

3.2. Bioenergetics Differences in OCR Between Healthy Volunteers and AP Patients

Application of a mitochondrial respiratory function “stress” test protocol allowed measurement
of standard respiratory parameters (basal respiration, maximal respiration, spare respiratory capacity,
ATP turnover capacity, proton leak and non-mitochondrial respiration) in monocytes, lymphocytes
and neutrophils, providing a comparison between AP patient and healthy volunteers. The protocol
illustrated in Figure 1A shows OCR changes caused by sequential injection of mitochondrial inhibitors
(oligomycin, FCCP, rotenone/antimycin), followed by an activator of the oxidative burst PMA used to
derive comparative bioenergetics parameters.

The blood cell sub-types exhibited distinct bioenergetics profiles (Figure 1B–D). The basal OCR
values after 5 min equilibration were 51.92 ± 4.9 and 60.19 ± 6.9 in monocytes, 29.62 ± 2.6 and 22.54 ±
2.1 in lymphocytes, and −14.19 ± 6.7 and −4.6 ± 5.7 pmol/min in neutrophils in healthy volunteers and
AP patients, respectively. There were no significant differences in basal respiration between AP patient
and healthy volunteers for any of the blood cell types. However, when the “stress” test was applied,
differences in bioenergetics were revealed. Thus, changes of OCR induced by inhibition of the electron
transport chain showed that lymphocytes from AP patients exhibited a substantially decreased maximal
respiration (Figure 2B; p ≤ 0.001) and spare respiratory capacity (Figure 2C; p ≤ 0.001) compared to
lymphocytes from healthy controls.

There was a trend for reduced spare respiratory capacity in monocytes from AP patients compared
to healthy volunteers, although this did not attain significance (Figure 2C). Furthermore, no significant
differences in ATP turnover capacity (Figure 2D) or proton leak (Figure 2E) were detected between
AP patient and healthy control blood cells. However, a significantly reduced non-mitochondrial
respiratory component was found in AP patient neutrophils compared to controls (Figure 2F).
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Table 1. Demographics, aetiology and blood cell details of acute pancreatitis (AP) patients obtained on admission for the study.

Patient
Severity (1 =Mild,

2 =Moderate
& 3 = Severe)

Aetiology (ERCP =
Endoscopic Retrograde

Cholangiopancreatography)

Sex (M =Male,
F = Female) Age Amylase

Platelets
(×10 > 9/L,
N: 150–400)

White
Blood Cells
(×10 > 9/L,
N: 3.5–11)

Neutrophils
(×10 > 9/L,
N: 2.0–7.5)

Lymphocytes
(×10 > 9/L,
N: 1.0–3.5)

Monocytes
(×10 > 9/L,
N: 0.2–0.8)

Eosinophils
(×10 > 9/L,
N: 0.0–0.4)

Basophils
(×10 >9/L,
N: 0.0–0.2)

AP779 1 Biliary M 59 2634 228 10.8 8.3 1.5 0.8 0.1 0.1
AP784 3 Idiopathic F 77 1240 293 25.6 22.7 1.4 1.5 0 0.1
AP785 1 Biliary M 74 527 233 19.4 17.3 0.6 1.3 0.1 0
AP788 1 Biliary F 20 1692 197 12.3 8.7 2.2 1.3 0 0
AP796 1 Biliary F 64 1485 246 13.1 10.2 1.6 1.2 0 0
AP797 1 Biliary M 63 2168 245 11.3 10.2 0.4 0.6 0 0
AP799 1 Biliary F 28 1968 278 8.9 7 1.4 0.5 0 0.1
AP805 2 Biliary F 80 1577 303 10.3 9.1 0.8 0.3 0 0
AP806 1 Alcohol M 65 1265 188 10.7 8 1.3 1.2 0.1 0.1
AP812 1 Idiopathic F 21 492 194 12 6.7 4.1 1 0.2 0
AP821 1 Biliary F 33 2333 335 12.9 9.9 1.9 1 0.1 0.1
AP828 1 Biliary F 77 1792 237 23 21.4 1.3 0.2 0.1 0.1
AP837 3 Biliary F 91 1450 190 12.4 11.8 0.4 0.3 0 0
AP839 1 Biliary F 49 2293 264 9.5 6 2.5 0.9 0.1 0
AP842 1 ERCP F 57 2184 229 10.5 9.6 0.6 0.3 0 0
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Figure 1. Bioenergetics changes in blood cell subtypes from acute pancreatitis (AP) patients and 
healthy volunteers (Hv). Changes in oxygen consumption rates (OCR) with time in (B) monocytes, 
(C) lymphocytes and (D) neutrophils are shown in response to a (A) mitochondrial respiratory 
function “stress” test using sequential applications of A = oligomycin 0.5 µg/mL, B = carbonyl cyanide-
4-trifluoromethoxy phenylhydrazone (FCCP: F) 0.6 µM, C = antimycin (A) 1 µM and rotenone (R) 1 
µM, and D = phorbol 12-myristate 13-acetate (P) 100 ng/mL to measure standard respiratory 
parameters. Values are expressed as means ± standard error of the mean (SEM) with biological repeats 
of N = 10 (Hv) and 15 (AP). 

Figure 1. Bioenergetics changes in blood cell subtypes from acute pancreatitis (AP) patients and
healthy volunteers (Hv). (A) Changes in oxygen consumption rates (OCR) with time in response to
a mitochondrial respiratory function “stress” test using sequential applications of A = oligomycin
0.5 µg/mL, B = carbonyl cyanide-4-trifluoromethoxy phenylhydrazone (FCCP: F) 0.6 µM, C = antimycin
(A) 1 µM and rotenone (R) 1 µM, and D = phorbol 12-myristate 13-acetate (P) 100 ng/mL to measure
standard respiratory parameters in (B) monocytes, (C) lymphocytes and (D) neutrophils. Values are
expressed as means ± standard error of the mean (SEM) with biological repeats of N = 10 (Hv) and
15 (AP).
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Figure 2. Mean changes in bioenergetics parameters determined in blood cell subtypes from acute 
pancreatitis (P) patients and healthy volunteers (Hv). Changes in oxygen consumption rates (OCR) 
obtained in monocytes (M), lymphocytes (L) and neutrophils (L) are shown in response to a 
mitochondrial respiratory function “stress” test to measure standard respiratory parameters (A–F). 
Values are expressed as means ± SEM with biological repeats of N = 10 (Hv) and 15 (AP). Significant 
changes in blood cells from AP patients compared to healthy controls are denoted as * p ≤ 0.05, ** p ≤ 
0.01 and *** p ≤ 0.001. (MHv, LHv, NHv = monocytes, lymphocytes and neutrophils from healthy 
volunteers, respectively; MP, LP, NP = monocytes, lymphocytes and neutrophils from patients). 

3.3. Analysis of Mitochondrial Bioenergetics Differences in ECAR Between Healthy Volunteers and AP 
Patients 

The basal ECAR values after 5 min equilibration were 12.27 ± 1.4 and 5.94 ± 0.8 in monocytes, 
2.69 ± 0.4 and 3.11 ± 0.5 in lymphocytes, and 13.47 ± 1.1 and 8.92 ± 0.7 mpH/min in neutrophils in 
healthy volunteers and AP patients, respectively. Both monocyte and neutrophil basal ECARs were 
significantly decreased in AP patients compared to their respective healthy volunteer controls (Figure 
3A; p ≤ 0.001). However, no significant differences in glycolytic reserve, measured as the change in 
ECAR following application of oligomycin, were apparent in any blood cell sub-type.  

Figure 2. Mean changes in bioenergetics parameters determined in blood cell subtypes from
acute pancreatitis (P) patients and healthy volunteers (Hv). Changes in oxygen consumption rates
(OCR) obtained in monocytes (M), lymphocytes (L) and neutrophils (L) are shown in response to a
mitochondrial respiratory function “stress” test to measure standard respiratory parameters (A–F).
Values are expressed as means ± SEM with biological repeats of N = 10 (Hv) and 15 (AP). Significant
changes in blood cells from AP patients compared to healthy controls are denoted as * p ≤ 0.05,
** p ≤ 0.01 and *** p ≤ 0.001. (MHv, LHv, NHv = monocytes, lymphocytes and neutrophils from healthy
volunteers, respectively; MP, LP, NP = monocytes, lymphocytes and neutrophils from patients).

3.3. Analysis of Mitochondrial Bioenergetics Differences in ECAR Between Healthy Volunteers and AP Patients

The basal ECAR values after 5 min equilibration were 12.27 ± 1.4 and 5.94 ± 0.8 in monocytes,
2.69 ± 0.4 and 3.11 ± 0.5 in lymphocytes, and 13.47 ± 1.1 and 8.92 ± 0.7 mpH/min in neutrophils
in healthy volunteers and AP patients, respectively. Both monocyte and neutrophil basal ECARs
were significantly decreased in AP patients compared to their respective healthy volunteer controls
(Figure 3A; p ≤ 0.001). However, no significant differences in glycolytic reserve, measured as the
change in ECAR following application of oligomycin, were apparent in any blood cell sub-type.
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Figure 3. Mean changes in bioenergetics parameters determined in blood cell subtypes from acute 
pancreatitis patients and healthy volunteers. Changes in extracellular acidification rates (ECAR) 
obtained in monocytes (M), lymphocytes (L) and neutrophils (L) from patients (P) and healthy 
volunteers (Hv) are shown on basal glycolysis (A) and in response to mitochondrial inhibition to 
measure glycolytic reserve (B). Values are expressed as means ± SEM with biological repeats of N = 
10 (Hv) and 15 (AP). Significant changes in blood cells from AP patients compared to healthy controls 
are denoted as *** p ≤ 0.001. 

3.4. Analysis of the oxidative burst in healthy volunteers and AP patients  

Both monocytes and lymphocytes from AP patients exhibited significantly increased PMA-
induced oxidative respiratory bursts (Figure 4A p ≤ 0.01) and accompanying ECAR increases (Figure 
4B; p ≤ 0.001) compared to those from healthy volunteers. In contrast, neutrophils from AP patients 
had a significantly decreased PMA-induced oxidative respiratory burst compared to healthy 
volunteer neutrophils (Figure 4A; p ≤ 0.001), mirrored by a reduced PMA-induced ECAR increase 
(Figure 4B; p ≤ 0.001). 

Figure 3. Mean changes in bioenergetics parameters determined in blood cell subtypes from acute
pancreatitis patients and healthy volunteers. Changes in extracellular acidification rates (ECAR)
obtained in monocytes (M), lymphocytes (L) and neutrophils (L) from patients (P) and healthy
volunteers (Hv) are shown on basal glycolysis (A) and in response to mitochondrial inhibition to
measure glycolytic reserve (B). Values are expressed as means ± SEM with biological repeats of
N = 10 (Hv) and 15 (AP). Significant changes in blood cells from AP patients compared to healthy
controls are denoted as *** p ≤ 0.001.

3.4. Analysis of the Oxidative Burst in Healthy Volunteers and AP Patients

Both monocytes and lymphocytes from AP patients exhibited significantly increased PMA-induced
oxidative respiratory bursts (Figure 4A; p ≤ 0.01) and accompanying ECAR increases (Figure 4B;
p ≤ 0.001) compared to those from healthy volunteers. In contrast, neutrophils from AP patients had
a significantly decreased PMA-induced oxidative respiratory burst compared to healthy volunteer
neutrophils (Figure 4A; p ≤ 0.001), mirrored by a reduced PMA-induced ECAR increase (Figure 4B;
p ≤ 0.001).
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Figure 4. Mean changes in bioenergetics linked to the oxidative burst in blood cell subtypes from 
acute pancreatitis (P) patients and healthy volunteers (Hv). Changes in (A) oxygen consumption rates 
(OCR) and (B) extracellular acidification rates (ECAR) obtained in monocytes (M), lymphocytes (L) 
and neutrophils (L) in response to phorbol 12-myristate 13-acetate (PMA) to measure bioenergetics 
changes during the oxidative burst (A,B). Values are expressed as means ± SEM with biological 
repeats of N = 10 (Hv) and 15 (AP). Significant changes in blood cells from AP patients compared to 
healthy controls are denoted as ** p ≤ 0.01 and *** p ≤ 0.001. 

4. Discussion 

This study has demonstrated distinct alterations of mitochondrial bioenergetics in blood cell 
sub-types that occur during clinical AP, pointing to a modified functional capacity during the 
inflammatory response. Differences between patient and healthy volunteer blood cell respiration 
were only apparent, however, following manipulation of the ETC or stimulation with PMA, with no 
significant differences in basal OCR detected. Relatively little is known about bioenergetics changes 
in circulating blood cells that occur during clinical AP. Previously, a study showed that leukocytes 
from mild AP patients exhibited an approximate 1.5 fold elevation of endogenous respiration 
compared to controls with no associated change in ATP production [14]. This reflected a summation 
of activity in a population of peripheral blood mononuclear cells rather than changes in discrete 
subsets. Our study now indicates that bioenergetics profiles of monocytes, lymphocytes and 
neutrophils undergo complex alterations during the early course of AP, with subset-specific changes 

Figure 4. Mean changes in bioenergetics linked to the oxidative burst in blood cell subtypes from
acute pancreatitis (P) patients and healthy volunteers (Hv). Changes in (A) oxygen consumption rates
(OCR) and (B) extracellular acidification rates (ECAR) obtained in monocytes (M), lymphocytes (L)
and neutrophils (L) in response to phorbol 12-myristate 13-acetate (PMA) to measure bioenergetics
changes during the oxidative burst (A,B). Values are expressed as means ± SEM with biological repeats
of N = 10 (Hv) and 15 (AP). Significant changes in blood cells from AP patients compared to healthy
controls are denoted as ** p ≤ 0.01 and *** p ≤ 0.001.

4. Discussion

This study has demonstrated distinct alterations of mitochondrial bioenergetics in blood cell
sub-types that occur during clinical AP, pointing to a modified functional capacity during the
inflammatory response. Differences between patient and healthy volunteer blood cell respiration
were only apparent, however, following manipulation of the ETC or stimulation with PMA, with no
significant differences in basal OCR detected. Relatively little is known about bioenergetics changes in
circulating blood cells that occur during clinical AP. Previously, a study showed that leukocytes from
mild AP patients exhibited an approximate 1.5 fold elevation of endogenous respiration compared to
controls with no associated change in ATP production [14]. This reflected a summation of activity in a
population of peripheral blood mononuclear cells rather than changes in discrete subsets. Our study
now indicates that bioenergetics profiles of monocytes, lymphocytes and neutrophils undergo complex
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alterations during the early course of AP, with subset-specific changes that do not simply reflect a
generalized depression of mitochondrial activity. Thus, lymphocyte respiration was diminished in AP
patients, with substantially reduced maximal respiration and spare respiratory capacity, whereas these
parameters were unaltered in monocytes and neutrophils.

Previously, it has been suggested that prospective monitoring of lymphocyte signalling profiles
might assist predicting AP outcome: a variety of alterations in severe alcoholic AP patients with
organ dysfunction was detected, linked to increased infection risk and sustained inflammation [23].
Our findings in lymphocytes from predominantly mild AP patients show a markedly reduced spare
respiratory capacity. This bioenergetic parameter is considered an important indication of mitochondrial
capacity to meet metabolic demands under stress conditions and is decreased in pathophysiological
situations, including cardiac and neurodegenerative damage [24–26]. Common features of disease
progression may be present in inflammatory states, which are reflected by alterations of blood cell
subtype bioenergetics profiles. For example, similarities between inflammation in AP and sepsis
have been reported [27], with defects in oxidative metabolism found in leukocytes from sepsis
patients, including a substantial reduction of maximum oxygen consumption [28]. A compromise
of lymphocyte function in AP linked to altered bioenergetic capacity would likely increase as the
disease progresses and cellular stress augments. Oxidative stress is elevated in AP patients, coupled
with a decrease of antioxidant capacity [17]. Oxidative stress strongly modified pancreatic acinar cell
bioenergetics, thereby determining local cell fate [18,20], while mitochondrial bioenergetic function of
human peripheral blood leucocytes was susceptible to oxidative injury, an effect that was greater in
aged individuals [29]. Interestingly, mitochondrial dynamics have recently been shown to modulate
lymphocyte fate through metabolic programming linked to bioenergetics changes. Thus, in activated
effector T cells, which mediate protective immunity against pathogens, fission-dependent cristae
expansion was associated with reduced ETC efficiency and promotion of aerobic glycolysis [30].
Although our study found a decreased maximal respiration in AP patient lymphocytes, this was not
associated with a fall in ATP turnover capacity, suggesting maintenance of basal function. Accordingly,
there was no associated increase in basal glycolysis, implying a defect of oxidative phosphorylation that
did not trigger a switch in metabolic pathway. In agreement, no significant alteration of ATP production
was detected in peripheral blood mononuclear cells from mild AP patients [14], while peripheral blood
mononuclear cells from septic paediatric patients, which had a significantly reduced spare respiratory
capacity, exhibited no differences in basal or ATP-linked oxygen consumption [31].

Our study demonstrated a diminished oxidative burst in neutrophils from AP patients,
with significantly reduced OCR and ECAR responses to PMA stimulation compared to controls.
Neutrophils play an important role in the early phase of AP, participating in digestive enzyme
activation and progression to severe disease [13]. They utilise an oxidative burst via the activation of
NADPH oxidase, which consumes oxygen and forms superoxide radicals [32]. Accordingly, depletion
of neutrophils was protective in mild and severe experimental AP induced by caerulein [33] and by
taurocholate [34], respectively. Alterations of neutrophil bioenergetics have been reported in other
diseases. For example, changes in neutrophil oxidative bursts have been associated with autoimmune
diseases such as multiple sclerosis, arthritis and recurrent infection [19], while diminution of neutrophil
activity involving a reduced oxidative burst in response to formyl peptides, impaired phagocytosis and
associated ROS production may underlie an increased susceptibility to bacterial infection in elderly
individuals [35]. In AP patient neutrophils, both baseline ECAR and non-mitochondrial OCR were also
reduced: the sum of the bioenergetics alterations would indicate that normal activity of neutrophils
is compromised in AP patients, or alternatively, that at the time of measurement these immune cells
had already performed their inflammatory role. A future study including measurement of neutrophil
bioenergetics changes at multiple time-points would assist clarification.

In contrast, an increased oxidative burst was detected in both monocytes and lymphocytes from
AP patients compared to controls. This supports monocyte/macrophage involvement as a principal,
important feature of early events in AP [11]. For example, blockade of monocyte chemoattractant
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protein synthesis was protective against experimental AP in mice [36], while application of antibodies
against macrophage migration inhibitory factor improved AP survival in rats [37]. The increased
oxidative burst capacity detected in AP patients may reflect an upregulation of NADPH oxidases
in circulating monocytes, a feature which occurs in acute respiratory distress syndrome in response
to ethanol [38]. Marked elevations of mitochondrial superoxide have recently been reported in
peripheral blood mononuclear cells from mild AP patients [14]. Monocytes and macrophages are
part of the innate immune system and exhibit a high degree of plasticity. Activated pro-inflammatory
macrophages (M1) release copious amounts of cytokines, including interleukin 6 (IL6), IL12, IL1β
and tumour necrosis factor alpha (TNFα), early in the inflammatory response and in AP make a
significant contribution to the systemic inflammatory response syndrome linked to organ dysfunction
and death [12]. Recently extra-acinar protease activation within macrophages during endocytosis of
zymogen-containing vesicles has been shown to participate in the systemic inflammatory response and
determine AP severity [39]. In our study, the PMA-induced ECAR response of AP patient monocytes
was also greater than those of healthy volunteers, indicating an enhanced glycolytic component of
ATP production during the respiratory burst with prioritisation of cellular oxygen to generate free
radicals. A concurrent decrease of basal ECAR in monocytes was also found, implying a reduced
glycolytic component contributing to basal energy production during AP, although the basis for this is
presently unclear.

Previously separation of blood cell subtypes for evaluation of mitochondrial function has been
questioned since this may increase time before performing the assays [14] and potentially disrupt
cellular interactions necessary for cell activation [40]. Here, we have shown that successful isolation
and separation of AP patient blood cells is achievable for detailed bioenergetics investigations: basal
OCR values were not different between AP patient and control groups for all subtypes, indicating no
detrimental changes due to cell isolation procedures. Alterations of mitochondrial function have been
observed with aging [41] and a limitation of the present study is that the healthy volunteer group was
younger than the AP group. However, the subset-specific changes detected did not appear to simply
reflect a generalized depression of mitochondrial activity that might be expected as a consequence
of aging, and point to more precise changes: our results demonstrated differential alterations of
bioenergetics linked to the oxidative burst in leukocyte subtypes from AP patients, and further revealed
an important reduction of respiratory capacity in AP patient lymphocytes. These changes occurred
early in the development of clinical AP, advancing our understanding of pathophysiological events in
the inflammatory response. Detection of specific bioenergetics alterations of blood cell subtypes from
patient samples may provide a more detailed picture of on-going mitochondrial dysfunction during
AP and potentially assist prediction of outcome.

5. Conclusions

Our data show distinct alterations of mitochondrial bioenergetics in blood cell sub-types that
occur during early clinical AP, pointing to a modified functional capacity of circulating blood cells
during the inflammatory response.
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