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Abstract. Let {ft : I → I} be a family of unimodal maps with topological entropies h(ft) >
1
2

log 2,

and f̂t : Ît → Ît be their natural extensions, where Ît = lim←−(I, ft). Subject to some regularity

conditions, which are satisfied by tent maps and quadratic maps, we give a complete description of

the prime ends of the Barge-Martin embeddings of Ît into the sphere. We also construct a family

{χt : S2 → S2} of sphere homeomorphisms with the property that each χt is a factor of f̂t, by

a semi-conjugacy for which all fibers except one contain at most three points, and for which the

exceptional fiber carries no topological entropy: that is, unimodal natural extensions are virtually

sphere homeomorphisms. In the case where {ft} is the tent family, we show that χt is a generalized

pseudo-Anosov map for the dense set of parameters for which ft is post-critically finite, so that {χt}
is the completion of the unimodal generalized pseudo-Anosov family introduced in [21].

1. Introduction

1.1. Overview. The study of continua and their rich topological structures goes back to the first half of

the 20th century, and played a central rôle in the early development of topology. Embeddings of continua

in surfaces have also been an important ingredient in dynamical systems theory: early examples include

Birkhoff’s remarkable curves [11, 29] and the Cartwright-Littlewood Theorem [19]. Williams [40, 41]

was the first to notice, in the late 1960s, that continua defined by inverse limits are a useful tool in the

study of dynamical systems: specially relevant here is his discovery that a particular class of planar

continua, the inverse limits of expanding maps on graphs, describe planar, one-dimensional hyperbolic

attractors. In the early 1990s — inspired in part by the importance of the Hénon family as a paradigm

for the larger family of non-hyperbolic attractors — Barge and Martin [10, 14] gave a method to embed

a wide class of inverse limits as attractors of planar homeomorphisms. The inverse limits of unimodal

maps of the interval such as those from the quadratic and tent families are of particular importance for

the Hénon family. These inverse limits are the chief objects of study here. A simple example is shown

in Figure 1 for expository purposes: it will be used as a point of reference throughout the introduction.

The prime ends of the complementary domains form an essential part of the analysis of planar

continua: in dynamical systems, they have been used in the description of basin boundaries [2, 33]

and, in the wider context of holomorphic dynamics, prime ends of the complements of Julia sets [12,

20, 28, 38] have also been studied. In this paper we give a complete description of the prime ends of the

complementary domains of the Barge-Martin embeddings of the inverse limits of families of unimodal

maps. We believe that this constitutes the first complete analysis in the literature of the nature of

the embeddings of a continuously varying family of planar attractors. (In subsequent work using more

symbolic techniques, Anušić and Činč [5] reproduce most of the results here about the prime ends of

Barge-Martin embeddings in the specific case of tent map inverse limits, and enhance our results in

this case with additional topological information concerning folding points and endpoints.)
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Figure 1. An approximation of the inverse limit of a tent map with kneading sequence
(1001110)∞, which is of rational interior type with height 1/3 (see below).

The topology of unimodal inverse limits is exquisitely complicated. For the tent family {ft}, results

of Bruin and of Raines [18, 37] imply that, when the parameter t is such that the critical orbit of ft is

dense (a full measure, dense Gδ set of parameters), the inverse limit Ît is nowhere locally the product

of a Cantor set and an interval, and is therefore much more complicated than the example of Figure 1.

A striking statement of self-similarity is given by Barge, Brucks and Diamond [7], who show that there

is a dense Gδ set of parameters t for which every open subset of Ît contains a homeomorphic copy of

Îs for every s ∈ [
√

2, 2]. Moreover, the Ingram conjecture posits that the inverse limits Ît are pairwise

non-homeomorphic. This has been proved for non-core tent maps by Barge, Bruin, and Štimac [8],

while for core tent maps there are known to be uncountably many homeomorphism classes (see for

example [4, 25]).

In the second part of the paper, we show that all of these inverse limit spaces are virtually spheres:

there are quotients pt : Ît → S2 which respect the natural extensions f̂t : Ît → Ît, and have the

property that, with the exception of at most one x ∈ S2, the fiber p−1
t (x) contains at most three

points: moreover, the exceptional fiber carries no topological entropy. There is therefore a family {χt}
of sphere homeomorphisms — which is shown to vary continuously — such that

S2 χt−−−−→ S2

pt

x xpt
Ît

f̂t−−−−→ Ît

π0

y yπ0

I
ft−−−−→ I
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commutes (here π0 : Ît → I is projection onto the first coordinate). In view of the mildness of the semi-

conjugacies pt, this suggests that the sphere is a natural space on which to study invertible analogs of

unimodal maps.

The sphere homeomorphisms χt are best seen as generalizations of Thurston’s pseudo-Anosov

maps [39]. A pseudo-Anosov homeomorphism φ of a surface has a transverse pair of invariant sin-

gular foliations, one stable and one unstable, which fill the surface. Collapsing the stable foliation

yields a graph, the train track, which carries an expanding map. Following Williams, the inverse limit

of the train track map yields a homeomorphism Φ with a one-dimensional hyperbolic attractor. This

homeomorphism can alternatively be obtained by “DA-ing” the prongs of the pseudo-Anosov foliations,

i.e., splitting open the leaves ending at the pronged singularities. The original pseudo-Anosov map φ

can be reconstructed from Φ by “collapsing” stable sets in the complement of the attractor.

The process used to construct the sphere homeomorphisms χt formalizes and generalizes this last

collapse: we start with the Barge-Martin embedding of the inverse limit of a unimodal map ft as

an attactor, and collapse strongly stable sets (see Definition 5.1) to obtain χt. In Figure 1 the semi-

circular arcs represent identifications, and are not part of the inverse limit, which consists only of the

horizontal arcs. With this in mind, the quotient can be seen — although not quite accurately — as

being obtained by collapsing, in each vertical line, the closure of the segments in the complement of the

attractor, and then sewing up the outside in a dynamically coherent way. Because the inverse limit of

a general unimodal map can be much more complicated than that of a train track map, the dynamics

and invariant geometric structures of χt are correspondingly more complicated. In particular, the

invariant stable and unstable “foliations” are only defined in a measurable sense.

In the case where {ft} is the tent family, the corresponding family {χt} is a completion of the family

of generalized pseudo-Anosov maps which was constructed in [21] for post-critically finite tent maps. (A

generalized pseudo-Anosov is defined similarly to a pseudo-Anosov, except that its invariant foliations

can have infinitely many singularities, provided they accumulate on only finitely many points: see

Definition 5.27.) The earlier construction was explicit, and made essential use of the existence of finite

Markov partitions. The constructions of this paper show not only how generalized pseudo-Anosovs

arise directly from inverse limits and natural extensions — with the leaves of the unstable foliation

of χt coming from the path components of the inverse limit of ft — but also how they live within

the richer class of homeomorphisms which arise in the post-critically infinite case. These measurable

pseudo-Anosov homeomorphisms, whose invariant foliations are only defined on a full measure subset

of the sphere, are the subject of articles in preparation.

For the countable set of NBT parameters introduced in [26], the map χt is an actual pseudo-Anosov

homeomorphism. Thus the analysis of the family χt also contributes to the question of the completion

in the C0-topology of the set of all pseudo-Anosov homeomorphisms on a given surface.

1.2. Background. We now proceed to a brief overview of some background theory in dynamics and

topology, which will enable us to give more precise statements of our main results in Sections 1.3

and 1.4 below.

1.2.1. Unimodal maps. The study of unimodal maps of the interval, one of the simplest classes of

dynamical systems which exhibit complicated behavior, drove the development of the theory of topo-

logical dynamical systems in the 1970s and beyond. A continuous map f : [a, b] → [a, b] is said to be

(non-core) unimodal if

(a) f(a) = f(b) = a, and

(b) there is a turning point c ∈ (a, b) such that f is strictly increasing on [a, c] and strictly decreasing

on [c, b]. Moreover f(x) > x for x ∈ (a, c].
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The qualification non-core is important here: we will shortly replace condition (a) with an alternative

version which corresponds to restricting the domain to an invariant sub-interval (the core) in which all

of the non-trivial dynamics is contained.

Prototypical examples of families of unimodal maps are the quadratic (also known as logistic) and

tent families ft : [0, 1]→ [0, 1] defined respectively by

ft(x) = tx(1− x) (0 < t ≤ 4) and ft(x) = tmin{x, 1− x} (0 < t ≤ 2).

The tent family is of particular theoretical importance, because any unimodal map f : [a, b] → [a, b]

with positive topological entropy h(f) (a numerical measure of the asymptotic rate at which the

orbits of nearby points diverge from each other [1]) is semi-conjugate to the tent map with slope

t = exp(h(f)) [31, 36]. That is, there is an increasing surjection p : [a, b]→ [0, 1] such that

[a, b]
f−−−−→ [a, b]

p

y yp
[0, 1]

ft−−−−→ [0, 1]

commutes, so that the dynamics of f and of the tent map ft agree once certain intervals in the domain

of f — the nontrivial point preimages p−1(x) — have been collapsed. The semi-conjugacy p can

be described explicitly, by means either of a formula, or of a dynamical description of exactly which

intervals in the domain of f are collapsed.

Kneading theory is a key tool in the analysis of the dynamics of unimodal maps. Points x ∈ [a, b] are

described by their itineraries ι(x) ∈ {0, 1}N, sequences of 0s and 1s which encode, for each successive

point on the orbit of x, whether it is on the left (‘0’) or the right (‘1’) of the turning point c. (The

details of how to encode c itself are largely unimportant in this paper, and are left for Section 2.1.)

The itinerary of f(c), the largest point in the range of f , is of particular importance, and is called

the kneading sequence κ(f) of f . The dynamics of f is largely determined by its kneading sequence

— in particular, κ(f) determines the topological entropy h(f), and hence the particular tent map to

which f is semi-conjugate.

The unimodal order (or parity-lexicographic order) � on {0, 1}N is defined (see Definition 2.3) to

reflect the ordering of the interval: if x < y, then ι(x) � ι(y). However, it takes on more meaning

when interpreted as an order on the space of unimodal maps: if κ(f) � κ(g), then the dynamics of g

is at least as complicated as the dynamics of f . In particular, κ(ft) is an increasing function of t if ft

is either the quadratic or the tent family.

The core of a unimodal map f : [a, b]→ [a, b] is the interval J = [f2(c), f(c)]. It satisfies f(J) = J :

moreover, the orbit of every x ∈ (a, b) falls into J , so that all of the non-trivial recurrent dynamics of f

is contained in the core. For this reason, it is sensible — particularly when considering inverse limits

— to restrict the domain of a unimodal map to its core. This corresponds to replacing the condition

that f(a) = f(b) = a with the condition that f(c) = b and f(b) = a.

In this paper we will be exclusively concerned with core unimodal maps, and Definition 2.1 reflects

this. We impose some additional conditions on our unimodal maps f , which are stated in Convention 2.8

below. These conditions are of two types:

(a) Regularity conditions, expressed in a way which allows them to encompass both the quadratic

family and the tent family. These conditions appear technical, but are standard in the theory of

unimodal maps.
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(b) The additional condition that f has topological entropy h(f) > 1
2 log 2. This is an indecomposabil-

ity condition: it is equivalent to the non-existence of a pair of subintervals J1, J2, disjoint except

perhaps at their endpoints, with f(J1) ⊂ J2 and f(J2) ⊂ J1.

Readers without a background in one-dimensional dynamics can substitute “a unimodal map satis-

fying the conditions of Convention 2.8” with “a map from the quadratic or tent family with sufficiently

large parameter”, without substantial loss.

1.2.2. Inverse limits. Let X be a compact metric space with metric d, and let f : X → X be continuous

and surjective. The inverse limit of f : X → X is the space of “backwards orbits” of f :

X̂ := lim←−(X, f) = {x ∈ XN : f(xi+1) = xi for all i ∈ N}.

We endow X̂ with a standard metric, also denoted d, which induces its natural topology as a subspace

of the product XN:

d(x,y) =

∞∑
i=0

d(xi, yi)

2i
.

Elements of X̂ are denoted with angle brackets, x = 〈x0, x1, x2, . . .〉 and referred to as threads.

The natural extension of f : X → X is the homeomorphism f̂ : X̂ → X̂ defined by

f̂(〈x0, x1, x2, . . .〉) = 〈f(x0), x0, x1, x2, . . .〉 .

The projection π0 : X̂ → X is defined by π0(x) = x0. Clearly π0 ◦ f̂ = f ◦ π0, so that π0 semi-

conjugates f̂ to f . It is straightforward to show that if g : Y → Y is an invertible dynamical system

and p : Y → X semi-conjugates g to f , then p factors through π0: therefore the natural extension is

the simplest invertible system which has f as a factor.

1.2.3. The Barge-Martin construction. The Barge-Martin construction [10] provides a mechanism for

embedding the inverse limit X̂ of a dynamical system f : X → X as a global attractor of a self-

homeomorphism of a manifold, on which the homeomorphism restricts to the natural extension of f .

We now give a brief outline of the construction in the case of interest here, where f : I → I is a

unimodal map whose inverse limit is embedded as an attractor of a sphere homeomorphism. Further

details can be found in Section 2.2.
Let T be a topological sphere, D ⊂ T be a closed disk containing a copy of I in its interior, and ∂

be a point of T \ D. Construct a smash Υ: T → T , a near-homeomorphism (i.e. a uniform limit of

homeomorphisms) which

• collapses D onto I, in such a way that the preimage of each point of I is an arc in D;

• fixes ∂; and

• pushes points of T \ (D ∪ {∂}) “inwards” towards I.

Let f : T → T be an unwrapping of f : a near-homeomorphism which

• sends I into D in such a way that Υ ◦ f |I = f ; and

• doesn’t push any points of T \ {∂} too far “outwards”.

Now consider the near-homeomorphism H = Υ ◦ f : T → T . By construction we have H|I = f , so

that the inverse limit T̂ = lim←−(T,H) contains an embedded copy of Î, namely {x ∈ T̂ : xi ∈ I for all i},

on which the action of the natural extension Ĥ restricts to f̂ . Because the smash pushes points of T
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other than ∂ towards I more strongly than the unwrapping pushes them away, every point of T̂ other

than 〈∂, ∂, ∂, . . .〉 is attracted to the copy of Î under iteration of Ĥ.

The key observation is that the inverse limit T̂ is itself a topological sphere, as a consequence of the

following theorem due to Morton Brown:

Theorem (Brown [16]). Let X be a compact metric space, and f : X → X be a near-homeomorphism.

Then lim←−(X, f) is homeomorphic to X.

The constructions in this paper depend crucially on the details of the smash Υ (see Section 2.2),

and on the careful definition of a particular choice of unwrapping f , which is described in Section 3.

1.2.4. Prime ends. We will describe the Barge-Martin embedding of the inverse limit Î of a unimodal

map f in the topological sphere T̂ by means of Carathéodory’s theory of prime ends. Here we review

some basic definitions in order to allow for precise statements of our main results. We note that while

the theory of prime ends can be profitably approached from the viewpoint of conformal mappings,

the spaces which we will be dealing with have no natural complex structure, and so we take a purely

topological approach. The reader seeking a more comprehensive introduction from this point of view

could consult, for example, Mather’s paper [30].

Let T be a topological 2-sphere, and X be a non-empty, compact, connected, non-separating proper

subset of T , so that the complement U := T \X is a topological open disk. (For most of our applications,

T will be the sphere T̂ of the Barge-Martin embedding, and X will be the embedded copy of Î.) Fix

a point ∂ ∈ U .

A crosscut (in (T,X)) is an arc ξ in T which is disjoint from ∂ and intersects X exactly at the

endpoints of ξ. Such a crosscut separates the open disk U into two components, and we write U(ξ)

for the component which doesn’t contain ∂. If ξ1 and ξ2 are crosscuts, then we write ξ2 < ξ1 to mean

that U(ξ2) ⊂ U(ξ1). A chain is a sequence (ξk) of disjoint crosscuts with ξk+1 < ξk for each k and

diam(ξk) → 0 as k → ∞. Two chains (ξk) and (ξ′k) are equivalent if for each k there is some K with

ξK < ξ′k and ξ′K < ξk.

A prime end (of (T,X)) is an equivalence class of chains of crosscuts in (T,X).

Let P be a prime end of (T,X). The principal set Π(P) of P is the set of points x ∈ X for which

there is some chain (ξk) representing P with d(ξk, x) → 0 as k → ∞. The impression I(P) of P is

defined by

I(P) =
⋂
k≥0

U(ξk),

where (ξk) is a chain representing P (the definition is clearly independent of the choice of chain). We

therefore have

∅ 6= Π(P) ⊆ I(P) ⊆ X.

According to Carathéodory’s classification, a prime end P is of the

First kind: if Π(P) = I(P) is a point;

Second kind: if Π(P) is a point and is strictly contained in I(P);

Third kind: if Π(P) = I(P) is not a point; and

Fourth kind: if Π(P) is not a point and is strictly contained in I(P).

The language of rays is helpful in developing an intuitive understanding of principal sets and im-

pressions. A ray in (T,X) is a continuous injection σ : [0,∞) → U with d(σ(s), X) → 0 as s → ∞.
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The remainder Rem(σ) of σ is the set σ([0,∞)) ∩X. We say that σ lands (and that its landing point

is x ∈ X) if Rem(σ) = {x}. A point x ∈ X is accessible if it is the landing point of some ray.

Let P be a prime end defined by a chain (ξk). A ray σ converges to P if for every k there is

some t such that σ([t,∞)) ⊂ U(ξk): in particular, this means that the image of σ intersects ξk for all

sufficiently large k.

It can be shown that if σ converges to P, then Π(P) ⊆ Rem(σ) ⊆ I(P): in particular, if σ lands

at an accessible point x ∈ X, then Π(P) = {x}. Moreover, there are rays σ, σ′ converging to P with

Rem(σ) = Π(P) and Rem(σ′) = I(P). Thus the principal set and impression of P can be seen,

respectively, as the remainders of the “tightest” and “loosest” rays converging to P.

Let P denote the set of prime ends of (T,X). There is a natural topology on P, with respect to

which it is a topological circle: a basis for this topology is given by the subsets B(ξ) of P, defined for

each crosscut ξ to consist of all of the prime ends defined by chains (ξk) with ξk < ξ for some k. (In

fact, this is the subspace topology of a natural topology on P ∪ U , with respect to which this space is

a compact disk; and the definition above of a ray converging to a prime end is the normal notion of

convergence with respect to this topology.)

A homeomorphism H : (T,X) → (T,X) (such as the natural extension Ĥ : (T̂ , Î) → (T̂ , Î) of the

Barge-Martin construction) induces a self-homeomorphism of the circle P which sends the prime end

represented by a chain (ξk) to the prime end represented by (H(ξk)). The prime end rotation number

of H : (T,X)→ (T,X) is the Poincaré rotation number of this circle homeomorphism.

1.2.5. Height. Let {ft} be a family of core unimodal maps of an interval I satisfying the assumptions

of Convention 2.8, such as the quadratic or tent family with topological entropy greater than 1
2 log 2.

The Barge-Martin construction yields (abstract) sphere homeomorphisms Ĥt : T̂t → T̂t, having attrac-

tors Λt which are homeomorphic to the inverse limits Ît := lim←−(I, ft), and restricted to which the

homeomorphisms Ĥt are conjugate to the natural extensions of ft.

In the first part of the paper we study the prime ends of (T̂t,Λt). In the second part we construct

sphere homeomorphisms χt by collapsing a system of subsets of T̂t, which are permuted by Ĥt, such

that

• each subset intersects Λt in at least one point; and

• each subset except at most one intersects Λt in only finitely many points.

The former of these properties ensures that there is a semiconjugacy pt from f̂t to χt, and the latter

that all but at most one of the fibers of pt is finite.

Both the structure of the prime ends and the construction of the semiconjugacy (including the

nature of its exceptional fiber) are heavily dependent on the parameter t, or, to be more precise, on

the height q(ft) of ft [26] (Section 2.4). Dynamically, the height is the prime end rotation number

of Ĥt : (T̂t,Λt) → (T̂t,Λt). It is an element of [0, 1/2], dependent only on the kneading sequence

κ(ft) of ft, which decreases as κ(ft) increases in the unimodal order, with each irrational height being

realized by a single kneading sequence, and each rational height being realized on a closed height

interval of kneading sequences. See Figure 2, which shows how height varies in the quadratic family.

The assumption that h(ft) >
1
2 log 2 is, in fact, equivalent to q(ft) < 1/2 (Lemma 2.22).

It follows that every unimodal map f is of one of three types:

Irrational: when q(f) is irrational;
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Rational interior: when κ(f) is in the interior of the interval of kneading sequences of some

rational height m/n; or

Rational endpoint: when κ(f) is an endpoint of the interval of kneading sequences of some

rational height m/n.

3.60 3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00
t

0

3/8

3/7

1/5

1/4
2/7

1/3

2/5

1/2
he
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ht

Figure 2. Height q(ft) for the quadratic family ft(x) = tx(1− x).

1.3. Prime ends of Barge-Martin attractors. The results of Theorems 4.46, 4.64, and 4.66, to-

gether with Remarks 4.47, 4.65, and 4.71 are summarized in the following statement, where we refer

to a prime end of the first kind (whose impression is a point) as trivial. As discussed in Section 1.2.1,

the hypothesis of this theorem is satisfied by the tent and quadratic families with topological entropy

greater than 1
2 log 2.

Theorem. Let {ft} be a family of unimodal maps satisfying the assumptions of Convention 2.8. Then

the prime ends of the Barge-Martin attractor of ft in the sphere satisfy the following.

(a) If ft is of irrational type, then the set of non-trivial prime ends is a Cantor set. These non-trivial

prime ends are of the second kind, with impression the whole attractor.

(b) If ft is of rational endpoint type with height m/n, then there are exactly n non-trivial prime ends,

which are of the second kind, with impression the whole attractor.

(c) If ft is of rational interior type with height m/n, then there are exactly n non-trivial prime ends,

whose impressions are the whole attractor. These are of the third kind (the principal set is also the

whole attractor), unless ft belongs to a particular renormalization window at the start of the m/n

height interval, in which case they are of the fourth kind.

(d) If ft is of rational type with height m/n then the attractor has n components of accessible points;

while if ft is of irrational type then the attractor has infinitely many components of accessible

points (countably many intervals and uncountably many points).

For the example of Figure 1, which depicts the inverse limit of a tent map ft of rational interior type

with height 1/3, there are three infinite “tunnels”, corresponding to the three non-trivial prime ends,

which become stepwise narrower and narrower as they probe deeper and deeper into the inverse limit.

The natural extension stretches by a factor t in the horizontal direction, contracts by a factor 1/t in the

vertical direction, and bends the image around as dictated by ft (see for example Figure 8): thus the

three tunnels are permuted by the action, and so are the three non-trivial prime ends, with rotation



NATURAL EXTENSIONS OF UNIMODAL MAPS 9

number 1/3 equal to the height. By comparison, Figure 3 depicts an example of rational interior type

with height 2/7, where there are seven infinite tunnels which are permuted with rotation number 2/7;

and Figure 4 depicts an example of rational endpoint type with height 1/3: here there are infinitely

many tunnels into the inverse limit, but all of them are finite.

Figure 3. An example of rational interior type with height 2/7.

Figure 4. An example of rational endpoint type with height 1/3.

We now give an informal overview of the main steps in the proof of this theorem, dropping the

dependence on t for the sake of clarity. In Section 3.2 we construct an explicit unwrapping of f to

be used as the starting point of the Barge-Martin construction, based on the outside map B : S → S

of f (Section 3.1), a monotone circle map which describes the “thickened” action of f as seen from a

circle around I, whose rotation number is equal to the height q(f) of f . The explicit nature of the

unwrapping provides a description of the elements of T̂ \Λ which makes it possible to construct explicit

chains of cross cuts to determine the prime ends (see for example Figure 11). The key part of this
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process is the definition of a homeomorphism Ψ: Ŝ × [0,∞)/(Ŝ × {0}) → T̂ \ Λ (Section 4.1), where

Ŝ is the inverse limit of the outside map, which provides a coordinate system on T̂ \ Λ in which these

crosscuts can be described in a straightforward way. Because the space Ŝ depends on the dynamics of

the outside map, which is strongly dependent on its rotation number (Theorem 4.33), the structure of

the prime ends themselves is strongly dependent on the height.

1.4. Semi-conjugacy to a family of sphere homeomorphisms. The results of Theorems 5.19

and 5.31 are summarized in the following statement.

Theorem. Let {ft} be a family of unimodal maps satisfying the assumptions of Convention 2.8. Then

there is a continuously varying family {χt : S2 → S2} of sphere homeomorphisms such that each natural

extension f̂t : Ît → Ît is semi-conjugate to χt, by a semi-conjugacy all but one of whose fibers contains

three or fewer points, and only countably many of whose fibers contain three points.

If {ft} is the tent family, then for each parameter t for which ft is post-critically finite, the sphere

homeomorphism χt is a generalized pseudo-Anosov map.

The exceptional fiber depends on the type of the unimodal map ft. In the tent family case, where

different parameters give rise to different kneading sequences, there is a particularly clean description

of these fibers:

• if ft is of irrational type, then the exceptional fiber is a Cantor set;

• if ft is of rational interior type with height m/n, then the exceptional fiber is finite with

cardinality n; and

• if ft is of rational endpoint type with height m/n, then the exceptional fiber is countable with n

accumulation points.

In particular, the set of parameters for which the exceptional fiber is infinite is a Cantor set. In the

general case the description is more complicated in an initial subinterval of each height interval, and

the exceptional fibre may contain arcs for parameters in these subintervals (see Remark 5.17). In all

cases no fiber of the semi-conjugacy carries entropy, so no entropy is lost in the quotient.

For each parameter t, the sphere homeomorphism χt is constructed from the Barge-Martin homeo-

morphism Ĥt : T̂t → T̂t by collapsing the elements of an Ĥt-invariant decomposition Gt of T̂t. The

decompositions are dynamically defined, their elements being determined by the strongly stable com-

ponents of Ĥt. The homeomorphism Ψt : Ŝt× [0,∞)/(Ŝt×{0})→ T̂t \Λt enables these components to

be described explicitly, with their configuration determined by the type of the unimodal map ft (see

Figures 14, 15, 16, and 17). From these descriptions, it can be shown that each Gt is a non-separating,

monotone, upper semicontinuous decomposition, whose elements all intersect Λt, with at most one ele-

ment intersecting Λt in more than three points. It follows from Moore’s theorem [32] that the quotient

space T̂t/Gt is itself a sphere, and the quotient homeomorphism Ĥt/Gt has the required properties.

Since these quotient homeomorphisms are all defined on different abstract spheres, some further

work is needed to show that they can be conjugated to a continuous family of homeomorphisms of a

standard sphere. The key result here is a theorem of Dyer and Hamstrom [23], Theorem 5.22, which

requires, roughly speaking, that if we take the three-dimensional space obtained by piecing together the

spheres T̂t, then the decomposition of this space obtained from the Gt is itself upper semicontinuous.

That this is the case follows once more from the explicit descriptions of the Gt (see Section 5.4).

That the dynamics of the sphere homeomorphisms χt closely mimic those of the unimodal maps ft

is expressed by the following straightforward result (see Theorem 5.32).
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Theorem. Let f be a unimodal map satisfying the conditions of Convention 2.8, and χ : S2 → S2 be

the corresponding semi-conjugate sphere homeomorphism. Then

(a) if f is topologically transitive then so is χ;

(b) if f has dense periodic points, then so does χ;

(c) f and χ have the same number of periodic orbits of each period, with the exception that, provided

κ(f) 6= 10∞,

• χ has one more fixed point than f , and

• if f is of rational type with q(κ(f)) = m/n ∈ (0, 1/2), then χ has either one or two fewer

period n orbits than f .

(d) f and χ have the same topological entropy; and

(e) if f preserves an ergodic Oxtoby-Ulam-measure, then χ preserves an ergodic Oxtoby-Ulam-measure

with the same metric entropy.

In particular, if f is a tent map of slope t, then χ is topologically transitive, has dense periodic points,

has topological entropy log(t), and has an invariant ergodic Oxtoby-Ulam-measure with metric en-

tropy log(t).
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2. Preliminaries

2.1. Unimodal maps. In this section we expand on the introductory material presented in Sec-

tion 1.2.1, primarily to fix notation and conventions. Our definition of unimodal maps reflects the fact

that we will always consider them to be defined on their cores.

Definition 2.1 (Unimodal map, turning point). A unimodal map is a continuous self-map f : [a, b]→ [a, b]

of a compact interval [a, b], satisfying the following conditions:

(a) There is some c ∈ (a, b), which is called the turning point of f , such that f is strictly increasing

on [a, c] and strictly decreasing on [c, b].

(b) f(c) = b and f(b) = a.

Definition 2.2 (Itinerary). Let f : [a, b] → [a, b] be a unimodal map with turning point c, and let

x ∈ [a, b]. We say that an element µ of {0, 1}N is an itinerary of x if, for all r ≥ 0,

µr = 0 =⇒ fr(x) ∈ [a, c], and

µr = 1 =⇒ fr(x) ∈ [c, b].

If the orbit {fr(x) : r ≥ 0} of x contains c, then there is more than one itinerary of x. We will

nevertheless abuse notation by writing ι(x) = µ to mean that µ is an itinerary of x.

Definition 2.3 (Unimodal order). The unimodal order is a total order � defined on {0, 1}N as follows.

Let µ and ν be distinct elements of {0, 1}N, and let r ≥ 0 be least such that µr 6= νr. Then

µ ≺ ν ⇐⇒
r∑
i=0

µi is even.
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The unimodal order reflects the ordering of points on the interval [a, b]: if x, y ∈ [a, b] have itineraries

µ and ν respectively, and x < y, then µ � ν.

Definition 2.4 (Kneading sequence). Let f : [a, b]→ [a, b] be a unimodal map. The kneading sequence

κ(f) ∈ {0, 1}N of f is the itinerary of b which is smallest with respect to the unimodal order.

Therefore κ(f) is the unique itinerary of b unless the turning point c is a periodic point of f . The

choice of κ(f) in the periodic case has no particular significance: it is a convention which ensures that

the kneading sequence is well defined. It means that κ(f) = W∞ for some word W whose length is

the period of c and which contains an even number of 1s. (If V and W are words in the symbols 0

and 1, we write W∞ and VW∞ for the elements WWW . . . and VWWW . . . of {0, 1}N.)

We recall the following definition and result (see for example [22]), which characterize the elements

of {0, 1}N which are kneading sequences of unimodal maps.

Definition 2.5 (Maximal sequence). An element µ of {0, 1}N is maximal if σr(µ) � µ for all r ≥ 0,

where σ : {0, 1}N → {0, 1}N is the shift map.

Lemma 2.6. An element µ of {0, 1}N is the kneading sequence of some unimodal map f if and only

if µ is maximal and µ0µ1 = 10. �

Definition 2.7 (KS). We write KS ⊂ {0, 1}N for the set of kneading sequences of unimodal maps:

maximal sequences which start with the symbols 10.

Convention 2.8 (Standing assumptions for unimodal maps). All unimodal maps f : [a, b]→ [a, b] in

this paper will be assumed to satisfy the following conditions:

(a) 101∞ ≺ κ(f).

(b) If κ(f) is not a periodic sequence, then distinct points of [a, b] cannot share a common itinerary.

(c) For each n > 0 and each µ ∈ {0, 1}N, there are at most two fixed points of fn with itinerary µ. If

there are two such points, then κ(f) = σr(µ) for some r.

Condition (a) says that f cannot be subjected to a two-interval renormalization: it is equivalent to

requiring that the topological entropy h(f) of f be greater than 1
2 log 2. Conditions (b) and (c) are

trivially satisfied by tent maps of slope greater than 1, for which no distinct points share a common

itinerary. It follows from standard results in the theory of unimodal maps that they are also satisfied

by quadratic maps, and indeed by any C3 unimodal map with non-flat turning point, no points of

inflection, and negative Schwarzian derivative.

Note that when we consider standard families of unimodal maps such as the quadratic family and

the tent family, we can apply a parameter-dependent affine change of coordinates so that the core is

constant throughout the family.

The following notation will be useful:

Definition 2.9 (α, the point x̂ symmetric to x). Let f : [a, b]→ [a, b] be a unimodal map with turning

point c. We denote by α the unique point of (c, b] with f(α) = f(a). If x ∈ [a, α], we denote by x̂ the

unique point of [a, α] which satisfies f(x̂) = f(x), and x̂ 6= x unless x = c.

Some necessary technical lemmas about the dynamics of unimodal maps, whose proofs are routine,

are presented in Appendix B.
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2.2. Inverse limit attractors for unimodal maps: the Barge-Martin construction. We now

provide more details of the construction outlined in Section 1.2.3. The results stated are from [10]

and [14], restricted to the situation which is of interest in this paper. Throughout this section f : I → I

is a unimodal map defined on the interval I = [a, b]. Recall that the aim of the construction is to embed

the inverse limit lim←−(I, f) in the sphere, in such a way that it is a global attractor of a homeomorphism

which restricts to the natural extension f̂ on lim←−(I, f).

Definitions 2.10 (S, xu, x`, T , ∂, ηy). Let S be the circle obtained by gluing together two copies

of I at their endpoints. We denote the points of S by xu and x` for x ∈ I, depending on whether they

come from the ‘upper’ or ‘lower’ copy of I. We therefore have au = a` and bu = b`, and we will also

denote these points of S with the symbols a and b respectively.

Let T = S × [0, 1]/∼, where ∼ is the equivalence relation which identifies

• (xu, 1) with (x`, 1) for each x ∈ (a, b), and

• (y, 0) with (y′, 0) for all y, y′ ∈ S,

with the quotient topology. Then T is a two-sphere, which we endow with any metric d which induces

its topology. Suppressing the equivalence relation, we will describe points of T by their “coordinates”

(y, s) ∈ S × [0, 1]. We identify the subset {(xu, 1) : x ∈ I} = {(x`, 1) : x ∈ I} with I, so that

(xu, 1) = (x`, 1) = x for all x ∈ I, and denote by ∂ the point of T corresponding to S × {0}.
T decomposes into a continuously varying family of arcs {ηy}y∈S defined by ηy(s) = (y, s), with

initial points ηy(0) = ∂ and final points ηy(1) ∈ I, whose images are mutually disjoint except at their

initial points and perhaps at their final points. (See Figure 5. Here, for clarity, we have depicted T

with the point ∂ opened out into the circle S.)

a bx I

S

xu

xl

ηxu

Figure 5. The sphere T and the arc decomposition {ηy}y∈S .

Definitions 2.11 (The projection τ and the smash Υ). The projection τ : S → I ⊂ T is defined by

τ(y) = (y, 1). The smash Υ: T → T is the near-homeomorphism defined by

Υ(y, s) =

{
(y, 2s) if s ∈ [0, 1/2],

(y, 1) if s ∈ [1/2, 1].

Definition 2.12 (Unwrapping). An unwrapping of the unimodal map f is an orientation-preserving

near-homeomorphism f : T → T with the properties that
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(a) f is injective on I, and f(I) ⊆ {(y, s) : s ≥ 1/2},
(b) Υ ◦ f |I = f , and

(c) f(∂) = ∂, and for all y ∈ S and all s ∈ (0, 1/2], the second component of f(y, s) is s.

Given such an unwrapping, let H = Υ ◦ f : T → T . Since H is a near-homeomorphism, the inverse

limit T̂ = lim←−(T,H) is a topological sphere by Brown’s theorem. It has as a subset

Î = lim←−(I,H) = lim←−(I, f),

the two inverse limits being equal since H|I = f by Definition 2.12 (b). We reuse the notation ∂ for

the point ∂ = 〈∂, ∂, . . .〉 of T̂ .

Let Ĥ : T̂ → T̂ be the natural extension, which we refer to as the Barge-Martin homeomorphism

associated to the unwrapping f . The following theorem, from [10], is a straightforward consequence of

the facts that H|I = f , and that for all (y, s) 6= ∂, there is some r ≥ 0 with Hr(y, s) ∈ I.

Theorem 2.13.

(a) Ĥ|Î : Î → Î is topologically conjugate to the natural extension f̂ : lim←−(I, f)→ lim←−(I, f).

(b) For all x ∈ T̂ \ {∂}, the ω-limit set ω(x, Ĥ) is contained in Î. �

If we consider a parameterized family of unimodal maps, then the constructions above can be done

in a continuous way. Let {ft}t∈[0,1] be a continuously varying family of unimodal maps I → I (for each

of which I is the dynamical interval); and suppose that unwrappings f t of each ft are chosen in such

a way that {f t} is a continuously varying family of near-homeomorphisms of T . Let Ĥt : T̂t → T̂t be

the natural extension of Ht = Υ ◦ f t : T → T ; and let Ît = lim←−(I,Ht). A proof of the following result

can be found in [14], see also [6].

Theorem 2.14. There are homeomorphisms ht : T̂t → S2 for each t (where S2 is a standard model of

the sphere) such that

(a) ht ◦ Ĥt ◦ h−1
t : S2 → S2 is a continuously varying family of homeomorphisms, and

(b) The attractors ht(Ît) vary Hausdorff continuously with t. �

2.3. Independence of the unwrapping. In this paper we will carry out a careful construction of

a specific unwrapping f : T → T of each unimodal map f : I → I, which will enable us to describe

precisely the embedding of Î in T̂ , and hence the prime ends of (T̂ , Î). A natural and important

question is therefore the extent to which the results depend on the choice of unwrapping. We now

state a theorem whose consequence is that the results are, in fact, independent of the unwrapping.

If f0 and f1 are unwrappings of the same unimodal map f , with associated Barge-Martin homeo-

morphisms Ĥ0 : T̂0 → T̂0 and Ĥ1 : T̂1 → T̂1 then we can identify Î = lim←−(I, f) = lim←−(I,H0) = lim←−(I,H1)

as a subset of both T̂0 and T̂1. We say that f0 and f1 are equivalent if there is a homeomorphism

λ : T̂0 → T̂1 which restricts to the identity on Î. This means that Î is equivalently embedded in T̂0

and T̂1; and, since Ĥ0|Î = Ĥ1|Î = f̂ , that λ conjugates the actions of Ĥ0 and Ĥ1 on Î.

Theorem 2.15. Any two unwrappings of a unimodal map f are equivalent.

The proof can be found in Appendix A.
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2.4. The height of a kneading sequence. Height is a function q : KS → [0, 1/2], introduced in [26],

which will play a central role in this paper. (Recall from Definition 2.7 that KS denotes the set of

kneading sequences of unimodal maps.) We will see that, for each unimodal map f , the prime end

rotation number of the associated homeomorphism Ĥ : (T̂ , Î) → (T̂ , Î) is equal to q(κ(f)), and that

the structure of the prime ends depends strongly on whether q(κ(f)) is rational or irrational, as does

the exceptional fiber of the semi-conjugacy between f̂ and a sphere homeomorphism.

Height is defined using certain words cq associated to each rational q ∈ (0, 1/2], which we now

describe. These words, which are closely related to Sturmian sequences, were introduced by Holmes

and Williams [27] in their work on knot types in suspensions of Smale’s horseshoe map, and developed

by the third author in [26]: they also appear in a paper of Barge and Diamond [9] on periodic orbits

which are accessible from the complement of the attracting set of Hénon maps in cases where that

attracting set is homeomorphic to the inverse limit of a unimodal map.

Definitions 2.16 (The integers κi(q) and the words cq). Let q ∈ (0, 1/2], and let Lq be the straight

line in the plane which passes through the origin and has slope q. For each i ≥ 1, define κi(q) to be

two less than the number of vertical lines x = integer which Lq intersects for y ∈ [i− 1, i].

If q = m/n is rational (throughout the paper, when we write m/n for a rational number, we always

assume that m and n are coprime), define the word cq ∈ {0, 1}n+1 by

cq = 10κ1(q)110κ2(q)11 . . . 110κm(q)1.

It is straightforward (see [26]) to obtain the following formula for κi(q): if q = m/n is rational, then

κi(q) =

{
b1/qc − 1 if i = 1, and

bi/qc − b(i− 1)/qc − 2 if 2 ≤ i ≤ m,
(1)

where bxc denotes the greatest integer which does not exceed x. On the other hand, if q is irrational,

then κi(q) is given by (1) for all i ≥ 1.

Remark 2.17. The fact that the formulae (1) do not give κi(q) in the rational case q = m/n when

i > m is irrelevant, since we only make use of κi(q) for i ≤ m.

Examples 2.18 (The words cq). Figure 6 shows the line L5/17 for x ∈ [0, 17]. The numbers of

intersections with vertical coordinate lines for y ∈ [i − 1, i] are 4, 3, 4, 3, and 4 for i = 1, i = 2,

i = 3, i = 4, and i = 5. Hence κ1(5/17) = κ3(5/17) = κ5(5/17) = 2, while κ2(5/17) = κ4(5/17) = 1.

Therefore c5/17 = 100110110011011001, a word of length 18.

More generally, if q = m/n then the word cq is clearly palindromic, and contains n− 2m+ 1 zeroes

divided ‘as even-handedly as possible’ into m (possibly empty) subwords, separated by 11. For example,

for each n ≥ 2 we have c1/n = 10n−11; c2/(2n+1) = 10n−1110n−11; c3/(3n+1) = 10n−1110n−2110n−11;

and c3/(3n+2) = 10n−1110n−1110n−11.

The next lemma, from [26], is essential for the definition of height.

Lemma 2.19. (cq0)
∞ ∈ KS for each rational q ∈ (0, 1/2]. Moreover, the function (0, 1/2] ∩Q→ KS

defined by q 7→ (cq0)
∞

is strictly decreasing with respect to the unimodal order on KS. �

Definition 2.20 (Height). Let µ ∈ KS. Then the height q(µ) ∈ [0, 1/2] of µ is given by

q(µ) = inf ({q ∈ (0, 1/2] ∩Q : (cq0)
∞ ≺ µ} ∪ {1/2}) .
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3

3

4

4

4

(0,0)

(17,5)

Figure 6. c5/17 = 100110110011011001.

By Lemma 2.19, the height function q : KS → [0, 1/2] is decreasing with respect to the unimodal

order on KS and the usual order on [0, 1/2]. The next result, also from [26], describes the interval of

kneading sequences with given rational height.

Definition 2.21 (The words wq). For each q = m/n ∈ (0, 1/2), define wq ∈ {0, 1}n−1 to be the word

obtained by deleting the last two symbols of cq; and ŵq ∈ {0, 1}n−1 to be the reverse of wq.

Statements (a), (b), and (c) of the following lemma can be found in [26], while (d) is contained in

results of [21] (see also Lemma 11.5 of [5] for a self-contained proof).

Lemma 2.22 (Characterization of kneading sequences of given height).

(a) For each irrational q ∈ [0, 1/2], there is a unique µ ∈ KS with q(µ) = q, namely

µ = 10κ1(q)110κ2(q)110κ3(q)11 . . . .

(b) Let µ ∈ KS. Then q(µ) = 0 if and only if µ = 10∞; and q(µ) = 1/2 if and only if µ � 101∞.

(c) Let µ ∈ KS and q = m/n ∈ (0, 1/2) ∩Q. Then q(µ) = q if and only if

(wq1)
∞ � µ � 10 (ŵq1)

∞
.

Moreover, if q(µ) = q and µ 6= (wq1)
∞

then cq is an initial subword of µ; and if µ is periodic, then

either µ = (wq1)
∞

or µ = (wq0)
∞

, or its period is at least n+ 2.

(d) Let q = m/n ∈ (0, 1/2) ∩ Q. then 10 (ŵq1)
∞

is pre-periodic to (wq1)
∞

: that is, there is some r

with σr(10 (ŵq1)
∞

) = (wq1)
∞

. �

By Lemma 2.22 (b), Condition (a) of Convention 2.8 says exactly that q(κ(f)) ∈ [0, 1/2).

The endpoints of the intervals of kneading sequences of given rational height will play an important

role, as will the kneading sequences (cq0)
∞

used in the definition of height. The acronym NBT in the

following notation stands for ‘no bogus transitions’ and reflects the original motivation of height.

Definitions 2.23 (lhe(q), rhe(q), NBT(q), KS(q)). Let q ∈ (0, 1/2) ∩ Q. We write lhe(q) = (wq1)
∞

,

rhe(q) = 10 (ŵq1)
∞

, and NBT(q) = (cq0)
∞

. We write KS(q) for the set of kneading sequences µ with

height q (i.e. with lhe(q) � µ � rhe(q)). In the special case q = 0, we write lhe(q) = 10∞ and rhe(q) is

undefined.

Example 2.24. Let q = 2/7, with cq = 10011001, wq = 100110, and ŵq = 011001. Then we

have lhe(2/7) = (1001101)
∞

, rhe(2/7) = 10 (0110011)
∞

, and NBT(2/7) = (100110010)
∞

. A kneading

sequence µ lies in KS(2/7) if and only if (1001101)
∞ � µ � 10 (0110011)

∞
.

In addition to the characterization of Lemma 2.22, there is a straightforward algorithm which

calculates q(µ) for any kneading sequence which has rational height: see Section 3.2 of [26]1

1A script to carry out this calculation can be found at http://www.maths.liv.ac.uk/cgi-bin/tobyhall/horseshoe

http://www.maths.liv.ac.uk/cgi-bin/tobyhall/horseshoe
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As stated at the beginning of this section, the structure of the prime ends of (T̂ , Î) depends on

whether q(κ(f)) is rational or irrational. The rational case q(κ(f)) = m/n also splits into two subcases:

one in which κ(f) is either an endpoint of KS(m/n) or is equal to (wq0)
∞

(a consecutive kneading

sequence to lhe(m/n)), and one in which neither of these happens. The endpoint case further splits

into subcases which, while they yield the same results, are analyzed in quite different ways. These

observations motivate the following definitions (see Figure 7).

Definitions 2.25 (Irrational and rational types; interior and endpoint types; early, strict, and late

types; tent-like and quadratic-like types; normal type; general and NBT types). We say that a unimodal

map f is of irrational type or of rational type according as q(κ(f)) is irrational or rational.

In the rational case, with q(κ(f)) = m/n ∈ (0, 1/2), we say that f is of (rational) endpoint type if

κ(f) ∈ {lhe(m/n), (wq0)
∞
, rhe(m/n)}; and is of (rational) interior type otherwise.

In the rational endpoint case we say that f is of left endpoint type if κ(f) ∈ {lhe(m/n), (wq0)
∞},

and of right endpoint type if κ(f) = rhe(m/n).

In the rational left endpoint case, we say that f is of early endpoint type if κ(f) = lhe(m/n) but

fn(a) 6= a; of strict endpoint type if κ(f) = lhe(m/n) and fn(a) = a; and of late endpoint type if

κ(f) = (wq0)
∞

.

In the left strict endpoint case, we say that f is of tent-like type if b is the only period n point of f

with itinerary lhe(m/n); and that it is of quadratic-like type if it has a second such period n point

(there cannot be more than two period n points with this itinerary by Convention 2.8 (c)).

We say that f is of normal (endpoint) type if it is either of right endpoint type, or of tent-like left

strict endpoint type. (These are the only endpoint types which occur for tent maps.)

In the rational interior case we say that f is of (rational) NBT type if fn+2(c) = c — in which case

κ(f) = NBT(m/n) — and of (rational) general type otherwise.

In the special case m/n = 0 (i.e. κ(f) = 10∞), we declare f to be of tent-like strict left endpoint

type.

Remark 2.26. To explain the terminology in the rational left endpoint case, consider a full monotonic

family {ft} of unimodal maps such as the quadratic family, and let t1 = inf{t : κ(ft) = lhe(m/n)}.
Then a saddle-node bifurcation occurs at t = t1 creating a semi-stable period n orbit, which contains

a point of itinerary lhe(m/n) and attracts the orbit of the turning point. As t increases, this periodic

orbit splits into a stable-unstable pair of periodic orbits, both containing points of itinerary lhe(m/n).

We follow this pair of periodic orbits until at t = t2 the stable orbit contains the turning point. We

still have κ(ft2) = lhe(m/n), but now fnt2(a) = a. When we increase the parameter further, the stable

periodic orbit passes through the turning point and the kneading sequence becomes (wq0)
∞

. Therefore

ft is of early endpoint type for t ∈ [t1, t2), of strict quadratic-like endpoint type for t = t2, and of late

endpoint type for t > t2 sufficiently close to t2. There is no corresponding distinction at the right hand

endpoint of the height interval since, by Convention 2.8 (b), if κ(f) = rhe(m/n), which is not periodic,

then f(a) is necessarily periodic of period n since it has the same itinerary (ŵq1)
∞

as fn+1(a).

In the tent family, by contrast, κ(f) = lhe(m/n) only if fn(a) = a, κ(f) is never equal to (cq0)
∞

,

and there is only ever one point of any given itinerary. Therefore only the strict tent-like left hand

endpoint case occurs. That is, only the first three rows of Figure 7 are relevant for tent maps.

The reason for the distinction between rational general and rational NBT types will become apparent

in Section 5.
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Figure 7. Types of unimodal maps.

3. The unwrapping

In this section we construct an explicit unwrapping f : T → T of an arbitrary unimodal map

f : [a, b] → [a, b]. This construction provides explicit descriptions of the sphere T̂ , the embedded

inverse limit Î, and the homeomorphism Ĥ : T̂ → T̂ which restricts to the natural extension f̂ on Î.

The construction proceeds in two steps. In Section 3.1 we recall from [21] the outside map B : S → S

corresponding to f , which is obtained by “fattening up” the interval to give it some two-dimensional

structure (a closely related construction also appears in [17]). The unwrapping f itself is then con-

structed in Section 3.2. It is the product of the outside map and the identity on {(y, s) : s ≤ 1/2} ⊂ T ,

and is gradually changed in {(y, s) : s ≥ 1/2} so that it satisfies the conditions of an unwrapping

(Lemma 3.4). We finish with a description of the elements of T̂ \ Î (Definition 3.6 and Lemma 3.7).

3.1. The outside map. Let f : [a, b]→ [a, b] be a unimodal map with turning point c ∈ (a, b). Recall

that we denote by α the unique point of (c, b] with f(α) = f(a).

Recall from Section 2.2 that S denotes the circle obtained by gluing together two copies of I at

their endpoints; that points of S are denoted xu or x` for x ∈ I; and that we write a = au = a`

and b = bu = b` ∈ S. We will use standard interval notation (x, y), [x, y], etc. for subintervals of S,

the interval consisting of the arc which goes counterclockwise, in the model of Figure 5, from the first

point listed to the second. Thus, for example, the interval [a, b] contains x` for all x ∈ I, while the

interval [b, a] contains xu for all x ∈ I.

The intuitive motivation for the definition of the outside map B : S → S is illustrated in Figure 8.

We add some two-dimensional structure to the unimodal map f as depicted on the left of the figure,

regarding the image of [a, c) as lying underneath the image of (c, b]. Then points which are above the

interval, lying in (a, α), get folded into the interior – that is, they no longer remain on the outside.

These points correspond to the interior of the interval γ = [αu, a] in S depicted on the right hand side

of the figure, which is collapsed to a point by the outside map. Other points above the interval, and

all points below the interval, remain on the outside after one iteration, with points below [a, c) and

above [α, b] being sent below the interval, and points below (c, b] being sent above the interval.

This intuition leads to the following definition:
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Figure 8. The outside map B corresponding to a unimodal map f .

Definition 3.1 (The outside map). Let f : [a, b] → [a, b] be a unimodal map. The outside map

B : S → S corresponding to f is defined by

B(x`) = f(x)` if x ∈ [a, c]
B(x`) = f(x)u if x ∈ [c, b]
B(xu) = f(x)` if x ∈ [α, b], and
B(xu) = f(a)` for all x ∈ [a, α].

(2)

The dynamics of the outside map plays a key role in the paper, and is discussed in detail in Section 4.4

below. For now we note that, by the first three equations of (2),

τ ◦B(y) = f ◦ τ(y) for all y ∈ S \ ◦γ, (3)

where
◦
γ = (αu, a) and τ : S → I is the projection of Definition 2.11, satisfying τ(x`) = τ(xu) = x.

3.2. Definition of the unwrapping. We now use the outside map to define an unwrapping of the

unimodal map f . Figure 9 shows the sphere T (with ∂ opened out into the circle S), the interval I ⊂ T ,

the circle S × {1/2} (dashed line), and segments of some of the arcs ηy (dotted lines). It also depicts

an interval J with endpoints (f(a)`, 1/2) and (b, 1). The unwrapping will be constructed so that as

x runs from a to c, f(x`, 1) runs along J with Υ(f(x`, 1)) = (f(x), 1); while as x runs from c to b,

f(x`, 1) = (f(x), 1) ∈ I. The interval J is defined by J = {(φ(s)`, s) : s ∈ [1/2, 1]}, where φ is the

affine map of Definition 3.2 below.

a b

cu

αu

cℓ

I

J

s=1/2

f(a)ℓ=B(γ)

Figure 9. Construction of the unwrapping f .
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Definition 3.2 (The map φ : [1/2, 1]→ [f(a), b] and the unwrapping f of a unimodal map f).

Let φ : [1/2, 1]→ [f(a), b] be the affine map

φ(s) = f(a) + (2s− 1)(b− f(a))

with φ(1/2) = f(a) and φ(1) = b. We define f : T → T as follows:

(U1) f(y, s) = (B(y), s) for all (y, s) ∈ S × [0, 1/2].

(U2) If y ∈ [c`, αu] then f(y, s) = (B(y), s) for all s ∈ [0, 1].

(U3) If y ∈ [αu, cu] then

f(y, s) =

{
(φ(s)`, s) if s ∈ [1/2, φ−1(f(τ(y)))],

(f(τ(y))`, s) if s ∈ [φ−1(f(τ(y))), 1].

(U4) If y ∈ [cu, a] then

f(y, s) =

{
(φ(s)`, s) if s ∈ [1/2, φ−1(f(τ(y)))],

(f(τ(y))`, φ
−1(f(τ(y))) if s ∈ [φ−1(f(τ(y))), 1].

(U5) If y ∈ [a, c`] then

f(y, s) =

{
(B(y), s) if s ∈ [1/2, φ−1(τ(B(y)))],

(B(y), φ−1(τ(B(y)))) if s ∈ [φ−1(τ(B(y))), 1].

Remarks 3.3.

(a) If y 6∈ ◦
γ then the first component of f(y, s) is equal to B(y) for all s ∈ [0, 1] by (U1), (U2),

and (U5).

(b) When parsing this definition, it is helpful to recall that, in order for f to be an unwrapping, we must

have Υ(f(y, 1)) = f(τ(y)) for each y ∈ S (Definition 2.12 (b)). The value s = φ−1(f(τ(y))) which

appears in (U3), (U4), and (U5) — noting that in (U5) we have y 6∈ ◦γ, so that τ(B(y)) = f(τ(y))

by (3) — is the parameter of the point jy of J which retracts to f(τ(y)): therefore f(y, 1) must

lie on the decomposition arc η which passes through this point. According to the definition,

(U3) When y ∈ [αu, cu], the path {f(y, s) : s ∈ [1/2, 1]} moves along J from (f(a)`, 1/2) until it

reaches jy, and then moves along η until it reaches I;

(U4) When y ∈ [cu, a], the path {f(y, s) : s ∈ [1/2, 1]} moves along J from (f(a)`, 1/2) until it

reaches jy, and then remains at this point;

(U5) When y ∈ [a, c`], the path {f(y, s) : s ∈ [1/2, 1]} moves along η from (B(y), 1/2) until it

reaches jy, and then remains at this point.

Lemma 3.4. f is an unwrapping of f .

Proof. A theorem of Youngs [42] states that any continuous monotone surjection T → T is a near-

homeomorphism. Therefore f is a near-homeomorphism (which is clearly orientation-preserving), since

the preimage of each point of T under f is either a point or an arc. In fact, the only points of T whose

preimages are not points are

• For each s ∈ (0, 1/2), the point (f(a)`, s), whose preimage is the arc [αu, a]× {s}, and

• For each s ∈ [1/2, 1), the point (φ(s)`, s) of J , whose preimage is the arc

[z(s)u, w(s)u]× {s} ∪ {w(s)u} × [s, 1] ∪ {w(s)`} × [s, 1],
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where w(s) and z(s) denote the points of [a, c] and of [c, b] respectively with f(w(s)) = f(z(s)) =

φ(s). The first set in this union comes from (U3) and (U4), the second from (U4), and the

third from (U5).

Moreover, f satisfies condition a) of Definition 2.12, since f |I is injective, with f(y, 1) ∈ I ∪J for all

y ∈ S by (U2) – (U5); it satisfies condition b) since Υ ◦ f(y, 1) = f ◦ τ(y) for all y ∈ S by (U2) – (U5)

and (3); and it satisfies condition c) by (U1). It is therefore an unwrapping of f as required. �

Definitions 3.5 (H, T̂ , U , Ĥ : T̂ → T̂ , B̂ : Ŝ → Ŝ). As in Section 2.2, set H = Υ ◦ f : T → T , and

observe that H|I = f . Write

T̂ = lim←−(T,H) (a topological sphere),

Î = lim←−(I,H) = lim←−(I, f), and

U = T̂ \ Î .

Let Ĥ : T̂ → T̂ be the natural extension of H : T → T , so that Ĥ|Î = f̂ , the natural extension of

f : I → I.

Let B̂ : Ŝ → Ŝ denote the natural extension of the outside map B : S → S. This is a circle

homeomorphism, since Ŝ is a topological circle by Brown’s theorem.

We next introduce some notation for the elements of U . The key fact here is that if y ∈ S and

s ∈ [0, 1/2), then H(y, s) = Υ ◦ f(y, s) = Υ(B(y), s) = (B(y), 2s). Recall that we denote by ∂ the

element 〈∂, ∂, . . .〉 of T̂ .

Definition 3.6 (Threads T(y, s) and T(y, s, k) in U).

(a) For each y ∈ Ŝ and s ∈ (0, 1), define

T(y, s) = 〈(y0, s), (y1, s/2), (y2, s/4), . . .〉 ∈ U. (4)

(b) For each y ∈ Ŝ, s ∈ [1/2, 1), and k ≥ 0, define

T(y, s, k) =
〈
fk(H(y0, s)), . . . , f(H(y0, s)), H(y0, s), (y0, s), (y1, s/2), (y2, s/4), . . .

〉
∈ U. (5)

Lemma 3.7. Every element of U \ {∂} is equal to exactly one of the threads of Definition 3.6.

Proof. Let x ∈ U \ {∂}. Since x 6∈ Î, there is some least k ≥ 0 with xk 6∈ I: therefore xk = (y, s) for

some y ∈ S and s ∈ (0, 1).

If k = 0 then x = T(y, s), where yi is the first component of xi for each i. On the other hand,

if k ≥ 1 then, since H(xk) ∈ I, we have s ∈ [1/2, 1); and x = T(y, s, k − 1) where yi is the first

component of xk+i for each i. �

The interesting entry of the threads T(y, s, k) is H(y0, s) ∈ I, which is where the transition takes

place from the dynamics of the outside map to the dynamics of the unimodal map.

Remark 3.8. The unwrapping f varies continuously with the unimodal map f . It follows from Theo-

rem 2.14 that if {ft} is a continuously varying family of unimodal maps, then the spheres constructed

above can be identified with a standard model in such a way that the homeomorphisms Ĥt and the

attractors Ît vary continuously.



22 PHILIP BOYLAND, ANDRÉ DE CARVALHO, AND TOBY HALL

4. Calculation of prime ends

In this section we determine the prime ends of (T̂ , Î) for any unimodal map f satisfying the conditions

of Convention 2.8. The main tool that we use is an explicit homeomorphism Ψ from the open disk

D = Ŝ × [0,∞)/(Ŝ ×{0}) to U = T̂ \ Î, which is defined in Section 4.1. We will see that Ψ conjugates

Ĥ|U to the product of B̂ and a simple push on D (Corollary 4.10).

In Section 4.2 we define the locally uniformly landing set R, a subset of Ŝ with the property that Ψ

extends continuously over R× {∞}. In Section 4.3 we impose some additional conditions (which we

show later are always satisfied), and use these to construct a homeomorphism between Ŝ and the

circle P of prime ends.

The structure of the locally uniformly landing set for a specific unimodal map f depends on the

dynamics of the outside map B : S → S, which is discussed in Section 4.4. Armed with the results of

that section, we will be able to complete the calculation of prime ends. The details of this calculation

depend on whether f is of irrational type, of rational interior type, or of rational endpoint type, and

these cases are presented in Sections 4.5, 4.6, and 4.7 respectively.

4.1. The homeomorphism Ψ: D → U .

Definitions 4.1 (D, D, ∂′, Ŝ∞, X∞, the push λ, the homeomorphisms G : D → D and G : D → D).

Write D = Ŝ × [0,∞)/(Ŝ × {0}) and D = Ŝ × [0,∞]/(Ŝ × {0}). We regard D as a subset of D,

and use coordinates (y, s) ∈ Ŝ × [0,∞] on D and D: these coordinates are singular at ∂′, the point

corresponding to Ŝ × {0}.
Write Ŝ∞ = Ŝ × {∞} ⊂ D, the circle at infinity. Similarly, given any subset X of Ŝ, we write

X∞ = X × {∞} ⊂ Ŝ∞.

Let λ : [0,∞]→ [0,∞] be defined by

λ(s) =


2s if s ∈ [0, 1],

s+ 1 if s ∈ [1,∞),

∞ if s =∞,

and G : D → D be the homeomorphism defined by G(y, s) = (B̂(y), λ(s)). We denote the restriction

to D with the same symbol, G : D → D.

In this section we define an explicit homeomorphism Ψ: D → U , which is constructed in such a way

that it conjugates G : D → D to Ĥ : U → U , thereby providing a coordinate system on U in which

the action of Ĥ is very easy to understand. We will see in subsequent sections that Ψ extends over an

open dense subset of the circle Ŝ∞ as a homeomorphism into T̂ . The non-trivial prime ends of (T̂ , Î)

can be understood in terms of the action of Ψ on rays in D which converge to points of Ŝ∞ at which Ψ

is discontinuous or not defined.
The surjectivity of Ψ will be an immediate consequence of its definition (Lemma 4.7). To show that

it is continuous and injective, we first establish that it semi-conjugates G and Ĥ (Lemma 4.8), and

then use this semi-conjugacy to extend the obvious continuity and injectivity on Ŝ × (0, 1) over the

rest of D (Corollary 4.9).

In order to define Ψ, it will be convenient to introduce the following notation (in which it should be

noted carefully that v is not the fractional part of s).
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Definition 4.2 (Splitting s into parts). We define P : [0,∞) → N × [1/2, 1) by P (s) = (t, v), where

t = bsc is the integer part of s and v = (u+ 1)/2, where u = s− t is the fractional part of s.

Definition 4.3 (Ψ: D → U). Define Ψ: D → U by Ψ(∂′) = ∂ and

Ψ(y, s) =

{
T(y, s) if s ∈ (0, 1),

T(B̂−t(y), v, t− 1), where (t, v) = P (s), if s ≥ 1.
(6)

Substituting (5) into the formula for Ψ(y, s) in the case s ≥ 1 yields the useful alternative expression

Ψ(y, s) =
〈
f t−1(H(yt, v)), . . . , f(H(yt, v)), H(yt, v), (yt, v), (yt+1, v/2), . . .

〉
when s ≥ 1. (7)

Therefore the number of entries of Ψ(y, s) which are in I is equal to the integer part t of s. We will

frequently use the following immediate consequence of (7):

Ψ(y, s)r = f t−1−r(H(yt, v)) for 0 ≤ r ≤ t− 1, where P (s) = (t, v). (8)

When y ∈ γ, the definition of f(y, s), and hence of H(y, s), depends on whether s is smaller or

greater than φ−1(f(τ(y))) (see (U3) and (U4) of Definition 3.2). By (7), the behavior of Ψ(y, s)

therefore depends on whether v = (u + 1)/2 is smaller or greater than this value; that is, on whether

the fractional part u of s is smaller or greater than 2φ−1(f(τ(yt))) − 1. This value will frequently be

significant in the remainder of the paper, and the following notation will be useful.

Definition 4.4 (The function u : S → [0, 1]). Define u : S → [0, 1] by

u(y) =

{
2φ−1(f(τ(y)))− 1 if y ∈ γ,
0 otherwise.

In particular u(cu) = 1 and u(a) = u(αu) = 0. The following lemma gives the key property of the

function u.

Lemma 4.5. Let y ∈ S and v ∈ [1/2, 1), and write u = 2v − 1 ∈ [0, 1). Then

H(y, v) =

{
f(τ(y)) if u ≥ u(y),

φ(v) if u < u(y).

Proof. If y 6∈ γ then necessarily u ≥ u(y), and H(y, v) = τ(B(y)) = f(τ(y)) by Remark 3.3 (a) and (3).

If y ∈ γ and u ≥ u(y), then v ≥ φ−1(f(τ(y))), and hence the first component of f(y, v) is f(τ(y))`

by (U3) and (U4) of Definition 3.2. Therefore H(y, v) = Υ ◦ f(y, v) = f(τ(y)) as required.

If y ∈ γ and u < u(y), then v < φ−1(f(τ(y))), and hence the first component of f(y, v) is φ(v)`

by (U3) and (U4) of Definition 3.2. Therefore H(y, v) = φ(v) as required. �

Remark 4.6. If y ∈ γ and u = u(y) then H(y, v) = f(τ(y)) = φ(v). On the other hand, if y 6∈ γ
and u = u(y) = 0, then it need not be the case that H(y, v) = φ(v): we have H(y, v) = f(τ(y)), while

φ(v) = φ(1/2) = f(a).

Lemma 4.7. Ψ: D → U is surjective.

Proof. Recall (Lemma 3.7) that every element of U \ {∂} is either of the form T(y, s) for some y ∈ Ŝ
and s ∈ (0, 1); or of the form T(y, s, k) for some y ∈ Ŝ, s ∈ [1/2, 1) and k ≥ 0. In the former case

we have T(y, s) = Ψ(y, s); while in the latter case T(y, s, k) = Ψ(B̂k+1(y), k + 1 + (2s− 1)) by direct

substitution into (6), since P (k + 1 + (2s− 1)) = (k + 1, s).

Since ∂ = Ψ(∂′), this establishes the surjectivity of Ψ. �
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Lemma 4.8. Ĥ ◦Ψ = Ψ ◦G : D → U .

Proof. The proof is a straightforward calculation by cases. Let (y, s) ∈ D. If s = 0 then (y, s) = ∂′,

and Ĥ(Ψ(∂′)) = Ψ(G(∂′)) = ∂. We therefore assume that s > 0.

(a) If s ∈ (0, 1/2) then H(y0, s) = Υ ◦ f(y0, s) = (B(y0), 2s) by (U1) of Definition 3.2 and Defini-

tion 2.11. Therefore

Ĥ(Ψ(y, s)) = Ĥ(T(y, s)) = 〈(B(y0), 2s), (y0, s), (y1, s/2), . . .〉 = T(B̂(y), 2s) = Ψ(G(y, s)).

(b) If s ∈ [1/2, 1) then P (λ(s)) = P (2s) = P (1 + (2s− 1)) = (1, s), so that

Ψ(G(y, s)) = Ψ(B̂(y), λ(s)) = T(B̂−1(B̂(y)), s, 0) = T(y, s, 0) = 〈H(y0, s), (y0, s), . . .〉 = Ĥ(Ψ(y, s)).

(c) If s ∈ [1,∞) then λ(s) = s+ 1, so that if P (s) = (t, v) then P (λ(s)) = (t+ 1, v). Therefore

Ψ(G(y, s)) = Ψ(B̂(y), λ(s)) = T(B̂−(t+1)(B̂(y)), v, t) = T(B̂−t(y), v, t) = Ĥ(Ψ(y, s)),

since H(f t−1(H(yt, v))) = f t(H(yt, v)).

�

Corollary 4.9. Ψ: D → U is a homeomorphism.

Proof. For each N ≥ 1, the restriction of G−N to Ŝ × [0, N + 1) is a homeomorphism onto Ŝ × [0, 1).

Lemma 4.8 gives

Ψ|Ŝ×[0,N+1) = ĤN ◦Ψ|Ŝ×[0,1) ◦G
−N |Ŝ×[0,N+1). (9)

Since Ψ is evidently continuous and injective on Ŝ×[0, 1), it is continuous and injective on Ŝ×[0, N+1)

for each N , and hence on D. Therefore (using Lemma 4.7) Ψ is a continuous bijection.

Ψ−1 is clearly continuous on Ψ(Ŝ × [0, 1)), and it is continuous on Ψ(Ŝ × (0,∞)) by invariance of

domain. �

Combining Lemma 4.8 and Corollary 4.9 gives:

Corollary 4.10. Ψ is a topological conjugacy between G : D → D and Ĥ : U → U . �

4.2. Extension to the circle at infinity. We now investigate the extension of Ψ to points (y,∞) ∈ Ŝ∞.

Definitions 4.11 (The rays Ry, the landing set L, the landing function ω : L → Î, D†, Ψ: D† → T̂ ).

For each y ∈ Ŝ, let Ry : [0,∞) → U be the ray defined by Ry(s) = Ψ(y, s). Define the landing set

L ⊂ Ŝ to be the set of y ∈ Ŝ for which Ry lands; and let ω : L → Î denote the landing function, which

takes each y ∈ L to the landing point of Ry. We write D† = D ∪ L∞ ⊂ D, and extend Ψ: D → U to

a function Ψ: D† → T̂ by setting Ψ(y,∞) = ω(y) for each y ∈ L.

The main results of this section are:

(a) If all of the entries of the thread y after the (N + 1)st lie in S \ ◦γ, then the first N + 1 entries

of the thread Ψ(y, s) are independent of s, provided that s ≥ N + 1 (Lemma 4.13). In particular

(Corollary 4.14), y ∈ L. For this reason we say that an element y of Ŝ satisfying this condition is

landing of level N . We also show (Lemma 4.16) that the landing function ω is injective on the set

of all points which are landing of some level.

(b) If all threads sufficiently close to y are also landing of level N (that is, if y has a locally uniformly

landing neighborhood), then Ψ is continuous at (y,∞) (see Lemma 4.17 and Corollary 4.19).
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Definitions 4.12 (Landing, LN , uniformly landing, locally uniformly landing set R). Let N ∈ N. We

say that y ∈ Ŝ is landing of level N if yi 6∈
◦
γ for all i > N ; and we write LN ⊂ Ŝ for the set of such

points. (Therefore L0 ⊂ L1 ⊂ L2 ⊂ · · · .) We say that a subset J of Ŝ is uniformly landing (of level N)

if J ⊂ LN . We write R for the set of elements of Ŝ which have a uniformly landing neighborhood in Ŝ.

Lemma 4.13. Let y ∈ LN , and let s ≥ N + 1. Then, writing P (s) = (t, v),

Ψ(y, s) =
〈
fN (τ(yN )), . . . , f(τ(yN )), τ(yN ), τ(yN+1), . . . , τ(yt−2), τ(yt−1), (yt, v), (yt+1, v/2), . . .

〉
.

Proof. We have t ≥ N + 1. Now

Ψ(y, s) =
〈
f t−1(H(yt, v)), . . . , f(H(yt, v)), H(yt, v), (yt, v), (yt+1, v/2), . . .

〉
=

〈
f t−1(τ(yt−1)), . . . , f(τ(yt−1)), τ(yt−1), (yt, v), (yt+1, v/2), . . .

〉
=

〈
fN (τ(yN )), . . . , f(τ(yN )), τ(yN ), τ(yN+1), . . . , τ(yt−2), τ(yt−1), (yt, v), (yt+1, v/2), . . .

〉
as required. Here the first equality is (7); for the second, we use Remark 3.3 (a) to give that f(yt, v)1 =

B(yt) = yt−1, since yt 6∈
◦
γ, so that H(yt, v) = Υ(f(yt, v)) = τ(yt−1); and for the third, we use that

f(τ(yi)) = τ(B(yi)) = τ(yi−1) for all i > N by (3), since yi 6∈
◦
γ for these values of i. �

Corollary 4.14. Let y ∈ LN . Then y ∈ L and

ω(y) =
〈
fN (τ(yN )), . . . , f(τ(yN )), τ(yN ), τ(yN+1), τ(yN+2), . . .

〉
. (10)

In particular, R ⊂ L. �

Remark 4.15. Therefore
⋃
N≥0 LN ⊂ L. We will see later that these two sets are equal, except in

the late left endpoint case: see Remark 4.70.

Lemma 4.16. Let L′ =
⋃
N≥0 LN . Then ω : L′ → Î is injective.

Proof. Let y, z ∈ L′ be such that ω(y) = ω(z). Pick N such that y, z ∈ LN . Then τ(yN+r) = τ(zN+r)

for all r ≥ 0 by (10). However, at least one of any two successive entries of a thread of Î must lie

in [a, α) (as f([α, b]) = [a, f(a)], and f(a) < α since κ(f) � 101∞). Since yN+r, zN+r 6∈
◦
γ for all r, it

follows that yN+r = zN+r for arbitrarily large r, so that y = z as required. �

Lemma 4.17. Let J be a uniformly landing subset of Ŝ. Then Ψ|J×[0,∞] is continuous.

Proof. Since Ψ is continuous on D (Corollary 4.9), it suffices to prove continuity at points of J∞. So

let y ∈ J , and let N be such that J ⊂ LN . Pick sequences y(i) → y in J and s(i) →∞ in [0,∞).

Let P (s(i)) = (t(i), v(i)). Lemma 4.13 gives that, for sufficiently large i,

Ψ(y(i), s(i)) =
〈
fN (τ(y

(i)
N )), . . . , f(τ(y

(i)
N )), τ(y

(i)
N ), τ(y

(i)
N+1), . . . , τ(y

(i)

t(i)−2
), τ(y

(i)

t(i)−1
), (y

(i)

t(i)
, v(i)), . . .

〉
,

which converges to Ψ(y,∞) = ω(y) as i→∞. Similarly, it follows from (10) that Ψ(y(i),∞) →
Ψ(y,∞) as i→∞. �

If J is uniformly landing but not open in Ŝ, then Ψ (as opposed to its restriction to J × [0,∞]) may

not be continuous at (y,∞) when y is a boundary point of J . However, Ψ is continuous at interior

points of J∞, and in particular is continuous at (y,∞) for all y in the locally uniformly landing set R.

The following immediate corollary, which will be used frequently in the remainder of the paper,

states that Ψ extends continuously and injectively from the disk D over the locally uniformly landing

set at ∞. We will see later that this is the maximal set over which Ψ has such an extension.
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Definition 4.18 (D̃). We write D̃ = D ∪R∞ ⊂ D† ⊂ D.

Corollary 4.19. Ψ: D̃ → T̂ is injective and continuous. In particular, its restriction to any compact

subset of D̃ is a homeomorphism onto its image.

Proof. Ψ is injective since it is injective on D and on R∞ (Corollary 4.9 and Lemma 4.16), and

Ψ(y, s) ∈ Î if and only if s = ∞. It is continuous since it is continuous on D (Corollary 4.9) and on

R× [0,∞] (Lemma 4.17). �

So far in this section we have been concerned with the behavior of Ψ(y, s) as s → ∞. Our final

result is a technical lemma with a different flavor: it states that if there are several consecutive entries

in a thread y which do not lie in
◦
γ, then one entry (and hence all earlier entries) of the thread Ψ(y, s)

is constant for s in a corresponding interval.

Lemma 4.20. Let y ∈ Ŝ, and suppose that r ≥ 1 and k ≥ 1 are such that yr+i 6∈
◦
γ for all 1 ≤ i ≤ k.

Then

Ψ(y, s)r−1 = f(τ(yr)) for all s ∈ [r + u(yr), r + k + 1].

In particular, if y ∈ Lr, so that yr+i 6∈
◦
γ for all i ≥ 1, then Ψ(y, s)r−1 = f(τ(yr)) for all s ≥ r+u(yr).

Proof. Suppose first that s ∈ [r + u(yr), r + 1), so that P (s) = (r, v) for some v ≥ u(yr)+1
2 . Then

Ψ(y, s)r−1 = H(yr, v) by (8); and H(yr, v) = f(τ(yr)) by Lemma 4.5.

Next suppose that s ∈ [t, t + 1) for some integer t with r + 1 ≤ t ≤ r + k, so that P (s) = (t, v)

for some v ∈ [1/2, 1). Then Ψ(y, s)r−1 = f t−r(H(yt, v)) = f t−r(τ(B(yt))) = f t−r(τ(yt−1)) = f(τ(yr))

as required. Here the first equality uses (8), the second uses Remark 3.3 (a), and the fourth uses (3)

applied t− r − 1 times.

That Ψ(y, r + k + 1)r−1 = f(τ(yr)) follows from the continuity of Ψ. �

4.3. Good chains of crosscuts. In this section we establish (Theorem 4.28) that there is a natural

homeomorphism between Ŝ and the circle P of prime ends of (T̂ , Î), with the property that, for each

y ∈ Ŝ, the ray Ry converges (in the sense of Section 1.2.4) to the prime end corresponding to y.

Moreover (Lemma 4.30), this homeomorphism conjugates the natural extension B̂ : Ŝ → Ŝ of the

outside map to the action of Ĥ on P, so that the prime end rotation number of (T̂ , Î) is equal to the

Poincaré rotation number of B̂.
The arguments require two conditions which, while they always hold, we will only be able to establish,

on a case by case basis, later. We therefore treat them as hypotheses for the time being. The first is that

the locally uniformly landing set R is dense in Ŝ. The second is that there exist chains of crosscuts

in (D, Ŝ∞) whose images under Ψ are well-behaved chains of crosscuts in (T̂ , Î), as expressed by

Definition 4.22 below. We carry over the definitions and notation of Section 1.2.4 to the (topologically

trivial) pair (D, Ŝ∞): a crosscut in (D, Ŝ∞) is an arc ξ′ in D, disjoint from ∂′, which intersects Ŝ∞
exactly at its endpoints; U(ξ′) denotes the component of D\ξ′ which doesn’t contain ∂′; ξ′2 < ξ′1 means

that U(ξ′2) ⊂ U(ξ′1); and (ξ′k) is a chain of crosscuts in (D, Ŝ∞) if the ξ′k are disjoint crosscuts with

ξ′k+1 < ξ′k for each k and diam(ξ′k)→ 0 as k →∞.

Remark 4.21. If a crosscut ξ′k in (D, Ŝ∞) has endpoints in R∞ then, by Corollary 4.19, Ψ|ξ′k is a

homeomorphism onto its image ξk, which is therefore a crosscut in (T̂ , Î).
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Definition 4.22 (Good chain of crosscuts). Let y ∈ Ŝ. A chain (ξ′k) of crosscuts in (D, Ŝ∞) is called

a good chain for y if

(a) The endpoints of each ξ′k are in R∞, so that ξk = Ψ(ξ′k) is a crosscut in (T̂ , Î) by Remark 4.21;

(b) (y,∞) ∈ U(ξ′k) for each k, so in particular ξ′k → (y,∞) as k →∞;

(c) diam(ξk)→ 0 as k →∞; and

(d) if y 6∈ L, then (ξk) does not converge to a point x of Î.

Remarks 4.23.

(a) By Definition 4.22 (a) and (c), if (ξ′k) is a good chain of crosscuts for y, then (ξk) is a chain of

crosscuts in (T̂ , Î).

(b) Suppose that there is a good chain of crosscuts (ξ′k) for y ∈ Ŝ.

• If y ∈ L then, since Ry lands at ω(y) and intersects every ξk, we have ξk → ω(y) as k →∞.

It follows that for every ray σ′ : [0,∞)→ D which lands at (y,∞), the ray σ = Ψ ◦ σ′ either

lands at ω(y), or does not land.

• If y 6∈ L, then for every such ray σ′, the ray σ = Ψ ◦σ′ intersects ξk for all sufficiently large k,

and therefore does not land, by condition (d) of the definition.

(c) By Corollary 4.19, there is a good chain of crosscuts for every y ∈ R.

(d) We will continue to use the notational convention introduced above: functions f ′ : X → D̃

and subsets Y ′ ⊂ D̃ will be denoted with primed symbols, and the corresponding functions

f = Ψ ◦ f ′ : X → T̂ and subsets Y = Ψ(Y ′) ⊂ T̂ with the corresponding unprimed symbols.

Lemma 4.24. Suppose that R is dense in Ŝ, and let σ : [0,∞) → U be a ray which lands at a point

of Î. Then the ray σ′ = Ψ−1 ◦ σ lands at a point of Ŝ∞.

Proof. The remainder Rem(σ′) is a connected subset of Ŝ∞, so if σ′ didn’t land then, since R is

open and dense in Ŝ, there would be a non-trivial closed subinterval J of R with J∞ ⊂ Rem(σ′).

This would contradict the fact that σ lands, since Ψ|J×[0,∞] is a homeomorphism onto its image by

Corollary 4.19. �

Corollary 4.25. Suppose that R is dense in Ŝ. If ξ is a crosscut in (T̂ , Î), then ξ′ = Ψ−1(ξ) is a

crosscut in (D, Ŝ∞). Moreover, if ξ2 < ξ1 are crosscuts in (T̂ , Î), then ξ′2 < ξ′1

Proof. Immediate from Lemma 4.24 and the fact that U(ξ′) = Ψ−1(U(ξ)). �

We now associate a point of Ŝ with each prime end P in (T̂ , Î), under the assumption that R is dense

in Ŝ. Suppose that P is represented by a chain (ξk), and write Uk = U(ξk). Then each ξ′k = Ψ−1(ξk)

is a crosscut in (D, Ŝ∞), and U ′k := U(ξ′k) = Ψ−1(Uk).

Let J ′k = U ′k ∩ Ŝ∞, a compact arc with endpoints the endpoints of ξ′k. Then
⋂
k≥0 J

′
k is a sin-

gle point. For if not then, since R is open and dense in Ŝ, the intersection would contain K∞ for

some K = [y1,y2] ⊂ R, and every ξk would intersect both Ψ({y1} × [0,∞]) and Ψ({y2} × [0,∞]),

contradicting diam(ξk)→ 0 as Ψ|K×[0,∞] is a homeomorphism onto its image by Corollary 4.19.

Since the point of
⋂
k≥0 J

′
k is independent of the choice of chain representing P, we can make the

following definition:
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Definition 4.26 (y : P→ Ŝ). Suppose that R is dense in Ŝ. Let P be a prime end of (T̂ , Î). We write

y(P) for the element of Ŝ defined by⋂
k≥0

(
Ψ−1(U(ξk)) ∩ Ŝ∞

)
= {(y(P),∞)},

where (ξk) is a chain representing P.

Lemma 4.27. Suppose that R is dense in Ŝ. Then y : P→ Ŝ is continuous.

Proof. Let J be an open subset of Ŝ, and let P ∈ y−1(J) be represented by a chain (ξk). Then there

is some k such that Ψ−1(U(ξk))∩ Ŝ∞ ⊂ J , and we have P ∈ B(ξk) ⊂ y−1(J), where B(ξk) is the basic

open subset defined in Section 1.2.4. �

Theorem 4.28. Suppose that R is dense in Ŝ, and that there is a good chain of crosscuts for every

y ∈ Ŝ. Then

(a) y : P→ Ŝ is a homeomorphism;

(b) For each y ∈ Ŝ, the unique prime end P with y(P) = y is defined by the chain (Ψ(ξ′k)), where (ξ′k)

is any good chain of crosscuts for y: or, indeed, any chain of crosscuts which satisfies (a) – (c) of

Definition 4.22.

(c) For each y ∈ Ŝ, the ray Ry converges to the unique prime end P with y(P) = y; and

(d) the set of accessible points of Î is {ω(y) : y ∈ L}.

Proof. (a) Let y ∈ Ŝ, and let (ξ′k) be a good chain of crosscuts for y. Write U ′k = U(ξ′k), ξk = Ψ(ξ′k),

and Uk = U(ξk) = Ψ(U ′k). By Remark 4.23 (a), (ξk) is a chain of crosscuts in (T̂ , Î), which

therefore represents a prime end P ∈ P. By condition (b) of Definition 4.22 we have y(P) = y. In

particular, y : P→ Ŝ is surjective.

To show injectivity, suppose that (Ξk) is another chain of crosscuts in (T̂ , Î) which defines a prime

end Q ∈ P with y(Q) = y(P) = y. Write Vk = U(Ξk), and V ′k = Ψ−1(Vk). By Corollary 4.25,

each Ξ′k = Ψ−1(Ξk) is a crosscut in (D, Ŝ∞). In order to show that Q = P, we need to show that

each V` contains all but finitely many Uk, and each U` contains all but finitely many Vk.

Now for each `, since y(Q) = y, we have that V ′` contains an arc J ′` in Ŝ∞ with (y,∞) ∈ J ′`.
Moreover, since the Ξk are mutually disjoint, so are the Ξ′k by Remark 4.23 (b) (this is where we

use condition (d) of Definition 4.22). Therefore (y,∞) cannot be an endpoint of more than one of

the crosscuts Ξ′k, and hence is in the interior of J ′`. Since ξ′k → (y,∞), it follows that U ′k ⊂ V ′` —

and hence Uk ⊂ V` — for all sufficiently large k.

To show that each U` contains all but finitely many Vk, let ξ′ < ξ′` be a crosscut disjoint

from ξ′` whose endpoints are in the same components of R∞ as the endpoints of ξ′`, and which

satisfies (y,∞) ∈ U(ξ′). Let X be the compact subset of D bounded by ξ′` and ξ′. Since Ψ|X
is a homeomorphism onto its image, arcs which intersect both Ψ(U(ξ′)) and the complement of

Ψ(U ′`) have diameter bounded below. Now Ξk intersects Ψ(U(ξ′)) for all sufficiently large k (since

y(Q) = y), and diam(Ξk) → 0, so that Int(Ξk) ⊂ Ψ(U ′`) = U` — and hence Vk ⊂ U` — for all

sufficiently large k as required.

(b) Follows immediately from the first paragraph of the proof of (a), which doesn’t make use of

condition (d) of Definition 4.22.
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(c) For each k there is some t with {y} × [t,∞) ⊂ U(ξ′k), and therefore

Ry([t,∞)) = Ψ({y} × [t,∞)) ⊂ Ψ(U(ξ′k)) = U(Ψ(ξ′k)),

so that Ry converges to the prime end defined by the chain (Ψ(ξ′k)) as required.

(d) Clearly ω(y) is accessible for all y ∈ L, since it is the landing point of the ray Ry.

Let x be an accessible point of Î, so that there is a ray σ : [0,∞) → U which lands at x. By

Lemma 4.24, the ray σ′ = Ψ−1 ◦ σ lands at some (y,∞) ∈ Ŝ∞. By Remark 4.23 (b), y ∈ L and

x = ω(y).

�

Definition 4.29 (P : Ŝ → P). Suppose that R is dense in Ŝ, and that there is a good chain of crosscuts

for every y ∈ Ŝ. Then we write P : Ŝ → P for the inverse of the homeomorphism y : P→ Ŝ.

Lemma 4.30. Suppose that R is dense in Ŝ, and that there is a good chain of crosscuts for every

y ∈ Ŝ. Then P : Ŝ → P conjugates B̂ : Ŝ → Ŝ to Ĥ : P → P. In particular, the prime end rotation

number of Ĥ : (T̂ , Î)→ (T̂ , Î) is equal to ρ(B̂).

Proof. Let y ∈ Ŝ. By Theorem 4.28 (c), the ray Ry converges to P(y), and hence Ĥ ◦ Ry converges

to Ĥ(P(y)). By Lemma 4.8, Ĥ ◦Ry(s) = RB̂(y)(λ(s)), so that the image of Ĥ ◦Ry coincides with the

image of RB̂(y), which converges to P(B̂(y)) by Theorem 4.28 (c). Therefore Ĥ(P(y)) = P(B̂(y)) as

required. �

We will see later (Corollary 4.36) that ρ(B̂) = ρ(B) = q(κ(f)). The following lemma summarizes

those parts of the results above which are relevant to the classification of prime ends, for future

reference.

Lemma 4.31. Suppose that R is dense in Ŝ, and that there is a good chain of crosscuts for every

y ∈ Ŝ. Then

(a) If y ∈ L then Π(P(y)) = {ω(y)}.
(b) If y ∈ R then I(P(y)) = {ω(y)}.
In particular, a prime end P ∈ P is of the first kind if y(P) ∈ R; and is of the first or second kind if

y(P) ∈ L.

Proof. (a) follows from the fact that Ry converges to P(y) and lands at ω(y) (see Section 1.2.4). (b) is

immediate from the homeomorphism established in Corollary 4.19. �

4.4. Dynamics of the outside map. In order to determine the prime ends of (T̂ , Î), it suffices, in

view of the homeomorphism between P and Ŝ (Theorem 4.28) and the triviality of prime ends P(y)

with y ∈ R (Lemma 4.31), to prove that R is dense in Ŝ and that there is a good chain of crosscuts

for every y ∈ Ŝ; and then to analyze the prime ends which the rays Ry converge to in the cases when

y 6∈ R. The arguments and conclusions are quite different depending on whether f is of rational or

irrational type, and we will consider these cases separately.

In this section we state and prove the main result which will be needed about the dynamics of the

outside map B : S → S. Because the locally uniformly landing set R of Definitions 4.12 depends on

occurrences of elements of
◦
γ in the threads y ∈ Ŝ, it is primarily necessary to understand the recurrence

properties of γ. Since B collapses γ to the single point B(a), the main question is: when does the
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orbit of B(a) first enter γ? We will see that if f is of rational type with q(κ(f)) = m/n, then n is the

smallest positive integer with Bn(a) ∈ γ, except when f is of early left endpoint type; while if f is of

irrational type, or of early left endpoint type, then the orbit of B(a) is disjoint from γ.

Definition 4.32 (N(f)). Let f : [a, b]→ [a, b] be a unimodal map, and B : S → S be the corresponding

outside map. We define N(f) ∈ N ∪ {∞} by N(f) =∞ if Br(a) 6∈ γ for all r ≥ 1, and otherwise

N(f) = min{r ≥ 1 : Br(a) ∈ γ}.

Theorem 4.33 below is an extension (both to more general hypotheses and to stronger conclusions)

of a result of [21]. Because of the central role which this theorem plays in the paper, we prove it in

full, although we do rely on some technical lemmas from [21].

Before stating the theorem, we remark that the outside map B : S → S is a monotone degree 1

circle map, and therefore has a Poincaré rotation number ρ(B). Recall that we denote by α the unique

element of (c, b] with f(α) = f(a). The reader is encouraged to review the notation and results of

Section 2.4 before proceeding.

Theorem 4.33 (Dynamics of the outside map). Let f : [a, b]→ [a, b] be a unimodal map with kneading

sequence κ(f) = µ, and let B : S → S be the corresponding outside map. Then

(a) ρ(B) = q(µ).

(b) If q(µ) = m/n is rational and f is not of early left endpoint type, then

(i) N(f) = n;

(ii) Bn(a) = a ⇐⇒ µ = lhe(m/n) and Bn(a) = αu ⇐⇒ µ = rhe(m/n); and

(iii) The set S \
⋃
r≥0B

−r(γ) of points whose orbits never fall into γ is:

• empty if f is of normal endpoint type;

• the union of n half-open intervals, with open endpoint at a point of the orbit of B(a)

and closed endpoint at a point of a second period n orbit of B, if f is of quadratic-like

strict left endpoint type; and

• a single period n orbit of B otherwise.

(c) If q(µ) = m/n is rational and f is of early left endpoint type, then

(i) N(f) =∞; and

(ii) B has a period n orbit Q disjoint from γ which attracts the orbit of B(a).

(d) If q(µ) is irrational, then

(i) N(f) =∞;

(ii) The set
⋃
r≥0B

−r(γ) of points whose orbits fall into γ is dense in S; and

(iii) The orbit {Br(a) : r ≥ 1} of B(a) is dense in S \
⋃
r≥0B

−r(γ).

We will use two lemmas. The first, Lemma 4.34 below, provides tools for determining N(f) and the

rotation number ρ(B). Although the lemma is straightforward, its statement may be hard to parse,

and we start with an informal description. For r ≤ N(f) we have that τ(Br(a)) = fr(a) by (3). In

order to determine whether or not Br(a) ∈ γ, we need to decide whether Br(a) is equal to fr(a)u or

to fr(a)`; and, in the former case, whether or not fr(a) ≤ α. The set J defined in the statement

of the lemma has the property that, for 1 ≤ r ≤ N(f), Br(a) = fr(a)u if and only if r ∈ J . Since

ι(fr(a)) = σr+1(κ(f)) and ι(α) = 1σ2(κ(f)), the smallest r with Br(a) ∈ γ is equal to the smallest r

for which r ∈ J and σr+1(κ(f)) � 1σ2(κ(f)): this is the content of parts (a) and (b). We will see that

ρ(B) depends on how many points of the orbit of B(a) lie in the upper half of the circle, and part (c)
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of the lemma enables us to calculate this. Finally, part (d) extends the ideas of (a) and (b) to give

conditions under which there is a periodic orbit of B, disjoint from γ, above a periodic orbit of f .

Lemma 4.34. Let f : [a, b] → [a, b] be a unimodal map with kneading sequence κ(f) = µ, and let

B : S → S be the corresponding outside map. Write

J = {r ∈ N : there is some 0 ≤ k ≤ (r − 1)/2 such that σr−(2k+1)(µ) = 012k+1σr+1(µ)}. (11)

(a) Suppose that σr+1(µ) � 1σ2(µ) for all r ∈ J . Then N(f) = ∞, provided that c is not a periodic

point of f .

(b) Otherwise, let r be least such that r ∈ J and σr+1(µ) � 1σ2(µ). Then N(f) = r, provided that

f i(a) 6= c for 1 ≤ i < r.

(c) For each N ≤ N(f) we have

# {r ≤ N : Br(a) = fr(a)u} = # {r ≤ N : r ∈ J },

provided that f i(a) 6= c for 1 ≤ i < N(f).

(d) Suppose that f has a period N point x whose orbit does not contain c; and that ι(x) = W∞, where

W = 10V 012j+1 for some j ≥ 0 and some word V of length N − 2j − 4. Suppose, moreover, that

whenever σi(W∞) = 012k+1ν for some k ≥ 0 and ν ∈ {0, 1}N, we have ν � 1σ2(µ). Then xu is a

period N point of B whose orbit is disjoint from γ.

Proof. By (3) we have τ(Br(a)) = fr(a) for r ≤ N(f), so that Br(a) is either fr(a)` or fr(a)u when

r ≤ N(f). By the definition (2) of the outside map we have that, for 1 ≤ r ≤ N(f),

Br(a) = fr(a)u ⇐⇒ Br−1(a) = fr−1(a)` and fr−1(a) ≥ c.

Provided that fr−1(a) 6= c for r ≤ N(f) (so that there is no ambiguity in the corresponding entries

of µ) it follows that, for r ≤ N(f), we have Br(a) = fr(a)u if and only if there is some k ≥ 0 with

fr−2k−2(a) < c and f j(a) > c for r − 2k − 1 ≤ j < r (there is an odd number of 1s in µ preceding

the entry corresponding to fr(a)). This in turn is equivalent to the existence of k ≥ 0 such that

σr−(2k+1)(µ) = 012k+1σr+1(µ). By definition of J we therefore have, under the assumption that

fr−1(a) 6= c for 1 ≤ r ≤ N(f),

Br(a) = fr(a)u ⇐⇒ r ∈ J (1 ≤ r ≤ N(f)). (12)

(a) If c is not a periodic point of f then fr(a) 6= c for all r ≥ 0. Since σr+1(µ) � 1σ2(µ) = ι(α)

whenever r ∈ J we have fr(a) > α whenever Br(a) = fr(a)u (note that α has a unique itinerary

since fr(α) = fr(a) 6= c for all r ≥ 1). Therefore Br(a) 6∈ γ for all r ≥ 1, i.e. N(f) = ∞ as

required.

(b) Let r be least such that r ∈ J and σr+1(µ) � 1σ2(µ), and suppose that f i(a) 6= c for 1 ≤
i < r. As in (a), we have Bi(a) 6∈ γ for 1 ≤ i < r. On the other hand, Br(a) = fr(a)u and

ι(fr(a)) = σr+1(µ) � 1σ2(µ) = ι(α). Therefore fr(a) ≤ α (in the borderline case ι(fr(a)) =

σr+1(µ) = 1σ2(µ) we have µ = 10 (µ2µ3 . . . µr1)
∞

, which is not periodic, so that fr(a) = α by

Convention 2.8 (b)). Hence Br(a) ∈ γ, and N(f) = r as required.

(c) Immediate from (12).

(d) The proof is similar to that of (a) and (b): the condition that ν � 1σ2(µ) whenever σi(W∞) =

012k+1ν ensures that every point of the orbit of xu which lies on the upper half of S is not in γ.

�
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It is clear from Lemma 4.34 that a key question is how certain sequences compare with 1σ2(µ) in

the unimodal order. The next lemma, which contains and extends results of [21], addresses this and

related issues.

Lemma 4.35.

(a) Let q = m/n ∈ Q ∩ (0, 1/2). For each integer j with 1 ≤ j ≤ m, the word

10κj(q)110κj+1(q)11 . . . 110κm(q)1

disagrees with the word

10κ1(q)−1110κ2(q)11 . . . 110κm(q)1

within the shorter of their lengths, and is greater than it in the unimodal order.

(b) Let q = m/n ∈ Q ∩ (0, 1/2) and µ ∈ KS(q). If µ = cqd for some d ∈ {0, 1}N, then d � 1σ2(µ).

(c) Let q = m/n ∈ Q∩ (0, 1/2) and µ ∈ KS(q) \ {rhe(q)}. Let ν ∈ {0, 1}N be on the σ-orbit of (wq1)
∞

and of the form ν = 1k0 . . . with k odd. Then ν � 1σ2(µ).

(d) Let q ∈ (0, 1/2) be irrational. Then for each integer j ≥ 1 we have

10κj(q)110κj+1(q)11 . . . � 10κ1(q)−1110κ2(q)11 . . . .

(e) Let q ∈ (0, 1/2) be irrational. Then for every N ≥ 1 there is an r ≥ 1 such that κr+i(q) = κi(q)

for 1 ≤ i ≤ N ; and there is an s ≥ 1 such that κs+1(q) = κ1(q) − 1, and κs+i(q) = κi(q) for

2 ≤ i ≤ N .

Proof. Statements (a) and (b) are lemmas 7 and 8 of [21]. Statement (c) is closely related to lemma 9

of [21], whose hypotheses allow µ to be rhe(q), and whose conclusion is that ν � 1σ2(µ). It is easily

shown that ν = 1σ2(µ) is only possible when µ = rhe(q). (The statements of lemmas 8 and 9 in [21]

have an additional hypothesis relevant to that paper, but this hypothesis is not used in their proofs.)

To prove (d), observe that:

(i) It is impossible to have 10κj(q)110κj+1(q)11 . . . = 10κ1(q)−1110κ2(q)11 . . ., since then the sequence

(κi(q)) would be eventually periodic, and limr→∞
∑r

i=1(κi(q)+2)

r would be rational: but this limit

is equal to 1/q by (1).

(ii) It is impossible to have 10κj(q)110κj+1(q)11 . . . ≺ 10κ1(q)−1110κ2(q)11 . . ., since then there would

be some M such that

10κj(q)110κj+1(q)11 . . . 110κM (q)1 ≺ 10κ1(q)−1110κ2(q)11 . . . 110κM (q)1.

Taking a rational approximation m/n to q with m ≥ M and κi(m/n) = κi(q) for i ≤ M would

give a contradiction to (a).

For (e), recall (Definition 2.16) that the κi(q) are defined by intersections of a straight line Lq of

slope q with lines of the coordinate grid. Since Lq passes arbitrarily close to integer lattice points below

the lattice point, any initial segment of the sequence (κi(q)) occurs infinitely often in the sequence;

and since it passes arbitrarily close to lattice points above the lattice point, the same is true of the

sequence in which κ1(q) is replaced by κ1(q)− 1. �

Proof of Theorem 4.33. Recall (Lemma 2.22 (b)) that q(µ) = 0 if and only if µ = 10∞, and that then f

is of tent-like strict left endpoint type by Definition 2.25, and µ = lhe(0) by Definitions 2.23. In this

case, by Convention 2.8 (b) and the fact that µ is not periodic, we have B(a) = a, and statements (a)

and (b) are immediate, using γ = [b, a]. We therefore assume in the remainder of the proof that

q(µ) ∈ (0, 1/2).
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Assume first that q = q(µ) = m/n is rational and f is not of early endpoint type. We will suppose

for the proof of (b)(i) that µ 6= lhe(q), so that µ = cqd for some d ∈ {0, 1}N by Lemma 2.22 (c): a

similar argument applies when µ = lhe(q) (noting that in this case we have fn(a) = a ∈ γ, since f

is not of early endpoint type, so that it is only necessary to show that Br(a) 6∈ γ for 1 ≤ r < n). In

particular, if c is periodic then it has period at least n + 2 by Lemma 2.22 (c) (if µ = (wq0)
∞

then c

is not a period n point by Definition 2.4). Therefore fr(a) 6= c for r < n.

Recall that cq = 10κ1(q)110κ2(q)11 . . . 110κm(q)1 is a word of length n + 1. Defining J by (11), the

values of r ≤ n with r ∈ J are

ri = (2i− 1) +

i∑
j=1

κj , (1 ≤ i ≤ m),

and the corresponding itineraries νi = σri+1(µ) are

νi = 10κi+1(q)110κr+2(q)11 . . . 110κm(q)1d (1 ≤ i ≤ m− 1), and νm = d.

Observe that this statement is true whether or not all of the κi(q) are positive: if κi(q) > 0, then

σri−(2k+1)(µ) = 012k+1νi with k = 0, while if κi(q) = 0 then this equality holds for some k > 0.

Now Lemma 4.35 (a) gives νi � 1σ2(µ) for 1 ≤ i < m, while Lemma 4.35 (b) gives νm � 1σ2(µ).

Since rm = n, statement (b)(i) follows from Lemma 4.34 (b).

Since B(γ) = B(a), it follows that B(a) is a period n point of B. Therefore ρ(B) is the rotation

number of this periodic point, which we now determine.

Let π : R→ S be a universal covering with fundamental domain F = [0, 1) and covering transforma-

tion group {x 7→ x+ n : n ∈ Z} such that π(0) = π(1) = a, π(1/2) = b, and π(x) is in the lower half

of S for x ∈ [0, 1/2]. Let B̃ : R→ R be the lift of B with B̃(0) ∈ F . It follows from (2) that B̃(x) ∈ F
for x ∈ [0, 1/2), while B̃(x) ∈ F + 1 for x ∈ [1/2, 1).

Now there are exactly m points on the periodic orbit containing B(a) which lie in π([1/2, 1)) by

Lemma 4.34 (c). Therefore ρ(B) = m/n, establishing (a) in the rational non-early endpoint case.

For (b)(ii), observe first that since Br(a) 6∈ ◦
γ for 0 ≤ r < n, it follows from (3) that τ(Bn(a)) =

fn(τ(a)) = fn(a). Therefore Bn(a) = a ⇐⇒ τ(Bn(a)) = a ⇐⇒ fn(a) = a, and similarly

Bn(a) = αu ⇐⇒ τ(Bn(a)) = α ⇐⇒ fn(a) = α (where, for the first equivalence, we use that

Bn(a) ∈ γ).

Now if µ = lhe(m/n) then, since f is not of early endpoint type, we have fn(a) = a. Conversely, if

fn(a) = a then fn−1(a) = b (since µ 6= 10∞, so that a has only one preimage), and hence fn(b) = b

and fn(c) = c. Therefore µ is a periodic kneading sequence of period n and height m/n, and so is

equal either to lhe(m/n) or to
(
wm/n0

)∞
by Lemma 2.22 (c). However, since c itself is periodic, the

latter case is impossible (Definition 2.4).

If µ = rhe(m/n) = 10
(
ŵm/n1

)∞
then ι(fn(a)) = σn+1(µ) =

(
1ŵm/n

)∞
= 1σ2(µ) = ι(α), so that

fn(a) = α by Convention 2.8 (b). Conversely, suppose that fn(a) = α. By the previous paragraph we

have µ 6= lhe(m/n), so that µ = cm/nd for some d ∈ {0, 1}N by Lemma 2.22 (c). Therefore

d = ι(fn(a)) = ι(α) = 10κ1(m/n)−1110κ2(m/n)11 . . . 110κm(m/n)1d,

so that d =
(
10κ1(m/n)−1110κ2(m/n)11 . . . 110κm(m/n)1

)∞
=
(
1ŵm/n

)∞
, and it follows that µ = cqd =

10ŵm/n
(
1ŵm/n

)∞
= 10

(
ŵm/n1

)∞
= rhe(m/n) as required.
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For (b)(iii), write Λ = S \
⋃
r≥0B

−r(γ), and suppose first that µ 6∈ {lhe(m/n), rhe(m/n)}, so

that Bn(a) ∈ ◦
γ by (b)(ii). We need to show that Λ = P , where P is a period n orbit of B. Since

κ(f) � lhe(q) = (wq1)
∞

, f has a period n point x with this itinerary. By Lemma 4.34 (d) and

Lemma 4.35 (c) (and the fact that (wq1)
∞

only contains blocks of 1s of even length), xu lies on a

period n orbit P ⊂ Λ of B.

Since B is a monotone degree one circle map and the orbit of B(a) is an attracting periodic orbit

(as B is locally constant at Bn(a)), it only remains to show that B has no other periodic orbits.

Suppose for a contradiction that B has another periodic orbit R, which must be disjoint from γ,

have period n, and have one point between each pair of consecutive points of P . By (3), since R is

disjoint from γ, it lies above a periodic orbit of f . Now every point of P and R in the upper half

of S lies to the right of αu, and hence of cu, so there is only one point of R which could lie either

to the right or to the left of c, namely the one between the two points of P which bound an interval

containing c`. Therefore the periodic orbit of f corresponding to R contains a point y with either

ι(y) = ι(x) = lhe(m/n) = (wq1)
∞

, or ι(y) = (wq0)
∞

=
(
10κ1(m/n)11 . . . 110κm(m/n)

)∞
. The former

is impossible by Convention 2.8 (c), since µ � lhe(m/n); while the latter is impossible since ι(y) has

an isolated 1 and so cannot be the itinerary of a point in Λ (we would have fn−1(y) < c, so the point

of R above y = fn(y) would be y`; but then B(y`) = f(y)u since y > c, and hence B(y`) ∈ γ since

f(y) < c). This contradiction completes the proof of (b)(iii) in the rational interior case.

We next consider (b)(iii) in the case where µ = lhe(m/n), so that f is of strict left endpoint type. In

this case the period n orbit Q of a is disjoint from
◦
γ, so that τ(Br(a)) = fr(a) for all r ≥ 0. As in the

interior case, any other periodic orbit P of B must lie above a second period n orbit of f containing a

point of itinerary lhe(m/n).

If f is of tent-like type, then there is no such periodic orbit, so that Q is the only periodic orbit

of B, and is semi-stable. Since a ∈ Q is stable through γ, the orbit of any point of S eventually falls

into γ.

If f is of quadratic-like type, then f has exactly one such periodic orbit, and there is an unstable

periodic orbit P of B above it by Lemma 4.34 (d) and Lemma 4.35 (c). The Bn-orbits of points on

one side of a ∈ Q converge to a through γ, and so enter γ; while those on the other side have orbits

which remain in the lower half of the circle, and so lie in Λ.

The proof of (b)(iii) when µ = rhe(m/n) is similar: in this case, since κ(f) is not periodic, there is

only one point of itinerary lhe(m/n), which lies on the orbit of B(a) by Lemma 2.22 (d): therefore the

orbit of B(a) is the only periodic orbit of B, and since αu lies on this orbit and is stable through γ,

we have Λ = ∅. This completes the proof of (b).

For (c), assume that q = q(µ) = m/n and f is of early endpoint type, so that µ = (wq1)
∞

and

fn(a) 6= a. There is therefore a non-trivial fn-invariant subinterval J of I, containing a and fn(a),

consisting of all points with itinerary σ(µ). Now fn|J : J → J is increasing, since wq1 contains an

even number of 1s, so that there is a periodic point z 6= a in J with frn(a) → z as r → ∞. By the

same argument as in the previous case, every x ∈ J has the property that {Br(x`) : r ≥ 1} is disjoint

from γ, and in particular B has a periodic orbit Q, containing z`, which attracts the orbit of B(a) and

is disjoint from γ. The rotation number of this periodic orbit is m/n by the same argument as in the

previous case, and hence ρ(B) = m/n. This establishes (c), and (a) in the early endpoint case.
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For (d), and (a) in the irrational case, assume that q = q(µ) is irrational, so that µ = 10κ1(q)110κ2(q)11 . . .

by Lemma 2.22 (a). That Br(a) 6∈ γ for all r ≥ 1 is immediate from Lemma 4.34 (a), Lemma 4.35 (d),

and the fact that c is not periodic. By the same argument as in the rational case, using Lemma 4.34 (c),

we have

ρ(B) = lim
m→∞

m∑m
i=1(κi(q) + 2)

,

since m of the first
∑m
i=1(κi(q) + 2) points of the orbit of a lie in [b, a). Therefore ρ(B) = q by (1).

To show that
⋃
r≥0B

−r(γ) is dense in S assume, for a contradiction, that there is a non-trivial

interval J = [x, y] in S whose orbit is disjoint from γ. Neither a nor b is in J , since B(b) = a and

a ∈ γ. Therefore τ(x) 6= τ(y) and, since κ(f) isn’t periodic, we have ι(τ(x)) 6= ι(τ(y)). Therefore,

if r is least with ι(τ(x))r 6= ι(τ(y))r, then Br(J) contains either c` or cu. In the former case we have

Br+2(J) ∩ γ 6= ∅, and in the latter we have Br(J) ∩ γ 6= ∅, which is the required contradiction.

Finally, to show that the orbit of B(a) is dense in S \
⋃
r≥0B

−r(γ), observe that the ω-limit set

ω(B(a), B) contains both a and αu by Lemma 4.35 (e) and the fact that distinct points have distinct

itineraries. Let U be any interval in S which contains a point of S \
⋃
r≥0B

−r(γ). Since it also contains

points of the dense set
⋃
r≥0B

−r(γ), there is some r ≥ 0 such that Br(U) contains a neighborhood

either of a or of αu, and hence contains the point BR(a) for some R > r. Therefore BR−r(a) ∈ U as

required.

�

Corollary 4.36. Suppose that R is dense in Ŝ, and that there is a good chain of crosscuts for every

y ∈ Ŝ. Then the prime end rotation number of Ĥ : (T̂ , Î)→ (T̂ , Î) is q(κ(f)).

Proof. We have ρ(B̂) = q(κ(f)) by Theorem 4.33 (a), since B is a factor of B̂ by the degree one

semi-conjugacy y 7→ y0. The result follows from Lemma 4.30. �

4.5. The irrational case. Let f : [a, b]→ [a, b] be a unimodal map whose kneading sequence µ = κ(f)

has irrational height q = q(µ) ∈ (0, 1/2). In this section we determine the prime ends of (T̂ , Î).

We first use Theorem 4.33 to analyze the dynamics of the natural extension B̂ : Ŝ → Ŝ, showing

that it is a Denjoy counterexample (i.e. it has an orbit of wandering intervals). It is straightforward

to show that the landing set L = Ŝ (Lemma 4.38), and that the locally uniformly landing set R is the

union of the interiors of the wandering intervals (Lemma 4.42), the complement of R being a Cantor

set Λ.

In particular, this establishes that R is dense in Ŝ. Lemma 4.44 asserts the existence of a good

chain of crosscuts for every y ∈ Ŝ. Therefore, by Lemma 4.31, the prime ends P(y) with y 6∈ Λ are

of the first kind, while those with y ∈ Λ are of the first or second kind. We complete the analysis by

showing that these are of the second kind, and that in fact I(P(y)) = Î when y ∈ Λ (Lemma 4.45).

Let O = {Br(a) : r ≥ 1} be the orbit of B(a), which is disjoint from γ by Theorem 4.33. Since

B(γ) = B(a), and B is injective away from γ, the backwards orbit {B−r(y) : r ≥ 0} of any point

y ∈ S \O is well-defined, and is disjoint from γ except perhaps at its first point y. On the other hand,

the backwards orbits of points of O are ill-defined at one point only: the preimage of B(a) is γ. The

elements of Ŝ can therefore be described straightforwardly.

Definitions 4.37 (Threads t(y, r) and t(y) in Ŝ).
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(a) For every y ∈ γ and r ∈ Z, define t(y, r) ∈ Ŝ by

t(y, r) =

{〈
Br(a), . . . , B(a), y, B−1(y), B−2(y), . . .

〉
if r > 0,〈

Br(y), Br−1(y), Br−2(y), . . .
〉

if r ≤ 0.
(13)

(b) For every y ∈ S \
⋃
r∈ZB

−r(γ), define t(y) ∈ Ŝ by

t(y) =
〈
y,B−1(y), B−2(y), . . .

〉
. (14)

Every element y of Ŝ can be written in exactly one way as either t(y, r) or t(y): y is of the form (13)

if and only if there is some (unique) r ∈ Z with B̂r(y)0 ∈ γ, in which case y = t(B̂r(y)0,−r); and

y = t(y0) otherwise. We have B̂(t(y, r)) = t(y, r + 1), and B̂(t(y)) = t(B(y)).

Lemma 4.38. L = Ŝ.

Proof. t(y, r) is landing of level at most max(r, 0) (it is landing of level exactly max(r, 0) if y ∈ ◦γ, and

of level 0 if y = a or y = α), and t(y) is landing of level 0. The result follows from Corollary 4.14. �

Definition 4.39 (The gaps Gr). For each r ∈ Z, define the gap Gr ⊂ Ŝ by Gr = {t(y, r) : y ∈ γ}.

The gaps are compact intervals, since the functions y 7→ t(y, r) are homeomorphisms γ → Gr. Since

B̂(Gr) = Gr+1 for each r, and the Gr are mutually disjoint, the gaps form an orbit of wandering

intervals of B̂, which is therefore a Denjoy counterexample.

Remark 4.40. The map π0 : Ŝ → S defined by π0(y) = y0 is continuous and surjective. Moreover,

π0(y) = π0(y′) for y 6= y′ if and only if y and y′ belong to the same gap Gr for some r > 0. Therefore

π0 is a monotone circle map which collapses these gaps. It follows that threads are ordered around Ŝ

in the same way that points are ordered around S, except that the points Br(a) of S for r > 0 are

blown up into gaps Gr.

Definition 4.41 (The set Λ). The set Λ ⊂ Ŝ is defined by

Λ = Ŝ \
⋃
r∈Z

◦
Gr.

Lemma 4.42. Λ is a Cantor set, and R = Ŝ \ Λ =
⋃
r∈Z

◦
Gr. In particular, R is dense in Ŝ.

Proof. Λ is compact, and is perfect since it is the complement of a union of open intervals with disjoint

closures. To show that it is totally disconnected, it is enough to show that
⋃
r∈ZGr is dense in Ŝ. To

do this, let t(y) be a point in the complement of this set. By Theorem 4.33 (d)(ii), there is a sequence

yi → y in S with Bri(yi) ∈ γ for some ri ≥ 0. Then the sequence t(Bri(yi),−ri) =
〈
yi, B

−1(yi), . . .
〉

in
⋃
r∈ZGr converges to t(y) =

〈
y,B−1(y), . . .

〉
. (Note that, for each k > 0, when i is sufficiently

large yi lies in a neighborhood N of y which doesn’t contain any point Br(a) with r ≤ k, so that B−r

is well-defined and continuous in N for all r ≤ k.)

Each
◦
Gr is uniformly landing of level max(r, 0), so that

⋃
r∈Z

◦
Gr ⊂ R. For the converse, suppose

that y ∈ Λ. Consider first the case where y is not a gap endpoint, so that y = t(y) for some

y ∈ S \
⋃
r∈ZB

−r(γ). By Theorem 4.33 (d)(iii) there is a sequence ri → ∞ of positive integers with

Bri(a) → y. Then for any z ∈ ◦
γ, (t(z, ri))i≥0 =

(〈
Bri(a), . . . , B(a), z, B−1(z), . . .

〉)
i≥0

is a sequence

converging to y which is not uniformly landing.



NATURAL EXTENSIONS OF UNIMODAL MAPS 37

The proof in the case where y is a gap endpoint is similar. We have y = t(e, r) where e = a

or e = αu, and r ∈ Z. As in the proof of Theorem 4.33 (d)(iii), there is a sequence ri → ∞ with

Bri(a)→ e (and Bri(a) 6∈ γ). Then for any z ∈ ◦γ, (t(z, ri + r))i≥0 is a sequence converging to y which

is not uniformly landing. �

We next show that there is a good chain of crosscuts for every y ∈ Ŝ. The following notation will

be convenient when defining chains of crosscuts.

Definition 4.43 (The crosscuts ξ′(J, s) and ξ(J, s)). Let J be an interval in Ŝ with endpoints

y1,y2 ∈ L, and let s ∈ (0,∞). Write ξ′(J, s) for the crosscut

ξ′(J, s) = ({y1} × [s,∞]) ∪ (J× {s}) ∪ ({y2} × [s,∞])

in (D, Ŝ∞); and ξ(J, s) for the crosscut Ψ(ξ′(J, s)) in (T̂ , Î).

The requirement that y1,y2 ∈ L is automatically satisfied in the irrational case, but this definition

will be used later in situations in which L 6= Ŝ.

Lemma 4.44. Let y ∈ Ŝ. Then there is a good chain of crosscuts for y.

Proof. We can assume that y 6∈ R, i.e. that y ∈ Λ (Remark 4.23 (c)), so that y is either a gap endpoint

or is in the complement of the gaps.

Case 1: y = t(y) for some y ∈ S \
⋃
r∈ZB

−r(γ), that is, y is in the complement of the gaps. We

construct crosscuts ξ′k in (D, Ŝ∞) inductively for k ≥ 1.

(a) Choose εk > 0 small enough that if x, z ∈ I with |x − z| < 2εk then |fr(x) − fr(z)| < 1/2k for

0 ≤ r ≤ k.

(b) Pick a closed interval Jk ⊂ S with y in its interior, of length less than εk, which is small enough

that it doesn’t contain any of the points Br(a) with 1 ≤ r ≤ 2k; and that Jk ⊂ Int(Jk−1) if k > 1.

We may shrink Jk in step (c), and we do this in such a way that y remains in its interior.

(c) It follows that B−k is well-defined and continuous on Jk, and we make Jk smaller if necessary in

order to ensure that |τ(B−k(η))− τ(B−k(y))| < εk for all η ∈ Jk. We shrink Jk again so that its

endpoints L and R are preimages of cu (which is possible by Theorem 4.33 (d)(ii)). Let i and j be

such that Bi(L) = cu and Bj(R) = cu.

(d) Let Jk be the interval in Ŝ, containing y, with endpoints t(cu,−i) = 〈L, . . .〉 and t(cu,−j) = 〈R, . . .〉.
(e) Set ξ′k = ξ′(Jk, 2k).

By Remark 4.40 and (b) above, the points v ∈ Jk are exactly the following:

(i) v = t(v) = 〈v, . . .〉, for v ∈ Jk \
⋃
r∈ZB

−r(γ);

(ii) v = t(Br(v),−r) = 〈v, . . .〉 where v ∈ Jk and Br(v) ∈ γ for some r ≥ 0; and

(iii) v = t(Y, r) = 〈Br(a), . . .〉 where Y ∈ γ and Br(a) ∈ Jk for some r > 2k.

In particular, Jk ⊂ Int Jk−1 when k > 1, so that (ξ′k) is a chain of crosscuts in (D, Ŝ∞).

(ξ′k) satisfies conditions (a) and (b) of Definition 4.22, so, since L = Ŝ, it only remains to show

that diam(ξk)→ 0 as k → ∞, where ξk = Ψ(ξ′k). To do this we will show that for all x ∈ ξk we have

|xk − τ(B−k(y))| < εk. It will follow that if x, z ∈ ξk we have |xk − zk| < 2εk, so that |xr − zr| < 1/2k

for all r ≤ k by choice of εk, establishing the result.
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Consider first points x = Ψ(v, 2k) ∈ Ψ(Jk × {2k}). By (8) we have xk = fk−1(H(v2k, 1/2)), and

H(v2k, 1/2) = Υ ◦ f(v2k, 1/2) = τ(B(v2k)) by (U1) of Definition 3.2. Therefore

xk = fk−1(τ(B(v2k))) = τ(Bk(v2k)) = τ(B−k(v0)),

where we use (3) together with the fact that vr 6∈
◦
γ for 0 ≤ r ≤ 2k.

By (i) – (iii) above, every v ∈ Jk satisfies v0 ∈ Jk, so that

|xk − τ(B−k(y))| = |τ(B−k(v0))− τ(B−k(y))| < εk

by (c) as required.

Now consider points x = Ψ(t(cu,−i), s) or x = Ψ(t(cu,−j), s) with s ∈ [2k,∞]. Since t(cu,−i)
and t(cu,−j) are landing of level 0 and s > k, Lemma 4.13 gives xk = τ(B−k(L)) or xk = τ(B−k(R)),

and the argument goes through as before.

Case 2: y = t(e, r) (with e = a or e = αu), i.e. y is an endpoint of Gr for some r. Choose Jk to

have one endpoint t(cu,−i) as above, and the other endpoint t(vk, r), where (vk) is a sequence in
◦
γ

converging to e. Then diam(ξk ∩Ψ(Gr× [0,∞])) converges to 0 since Ψ|Gr×[0,∞] is a homeomorphism;

while diam
(
ξk \Ψ(Gr × [0,∞])

)
converges to 0 by the same argument as in case 1. �

It follows from Theorem 4.28 and Lemma 4.31 that P : Ŝ → P is a homeomorphism; that the prime

end P(y) is of the first kind if y 6∈ Λ; and that Π(P(y)) = {ω(y)} for all y. It therefore only remains

to calculate the impressions of the prime ends P(y) for y ∈ Λ.

Lemma 4.45. I(P(y)) = Î for all y ∈ Λ.

Proof. By Theorem 4.28 (b), P = P(y) is defined by the chain (Ψ(ξ′k)), where (ξ′k) is the good chain

of crosscuts constructed in the proof of Lemma 4.44. Write ξk = Ψ(ξ′k) and Uk = U(ξk). Fix k, and

any element x ∈ Î. We show that x ∈ Uk, which will establish the result. We use the notation of the

proof of Lemma 4.44.

By Lemma B.1 in Appendix B, there is some N with fN ([a, c]) = I. For each i ≥ 1 there exists, by

Theorem 4.33 (d)(iii), an integer ri > i + N with Bri(a) ∈ Jk, so that Gri ⊂ Jk. Since ri − i > N ,

there is some z ∈ [a, c] with fri−i(z) = xi. Then t(zu, ri) ∈ Gri ⊂ Jk, and by Corollary 4.14 we have

ω(t(zu, ri))i = fri−i(τ(zu)) = xi.

Therefore ω(t(zu, ri))→ x as i→∞: since all points of this sequence are in Uk, we have x ∈ Uk as

required. �

The following theorem provides a summary of what we have proved in the irrational case.

Theorem 4.46 (Prime ends in the irrational case). Let f be a unimodal map satisfying the conditions

of Convention 2.8, and suppose that f is of irrational type. Then

(a) There is a Cantor set of prime ends of (T̂ , Î) of the second kind, for which the impression is Î.

All of the other prime ends are of the first kind.

(b) The prime end rotation number is q(κ(f)).

Remark 4.47. By Theorem 4.28 (d), the set of accessible points of Î is precisely {ω(y) : y ∈ Ŝ}.
This set is partitioned into countably many compact arcs ω(Gr) for r ∈ Z, and uncountably many

points ω(t(y)) for y ∈ S \
⋃
r∈ZB

−r(γ).
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4.6. The rational interior case. Let f : [a, b]→ [a, b] be a unimodal map whose kneading sequence

µ = κ(f) has rational height q = q(µ) = m/n ∈ (0, 1/2); and suppose that (wq0)
∞ ≺ µ ≺ rhe(q), so

that f is of rational interior type. In this section we determine the prime ends of (T̂ , Î).

By Theorem 4.33 (b)(i) we have that Br(a) 6∈ γ for 1 ≤ r < n, and Bn(a) ∈ γ. Therefore B(a) is

a period n point of B, whose orbit Q contains a single point of γ. There is a corresponding period n

orbit Q of the natural extension B̂ : Ŝ → Ŝ. By Theorem 4.33 (b)(iii), B has exactly one other periodic

orbit P , which has period n and is disjoint from γ; and therefore B̂ has exactly one other periodic

orbit P, of period n.

After describing the threads of Ŝ, we will show that the points of Q are not landing, and that every

other point of Ŝ is locally uniformly landing, so that R is dense in Ŝ (Lemma 4.52). We then construct

good chains of crosscuts for each y ∈ Ŝ (Lemma 4.59). In the irrational case the construction of the

good chains was rather ad hoc; here, by contrast, there are natural choices for the crosscuts about the

points of Q, which form an invariant system of subsets of stable sets (Lemmas 4.56 and 4.57).

By Lemma 4.31, all of the prime ends P(y) with y 6∈ Q are of the first kind. We show that if

y ∈ Q then I(P(y)) = Î (Lemma 4.60); and that Π(P(y)) is equal to Î except in the case where f

can be subjected to a particular type of renormalization, in which case Π(P(y)) is homeomorphic to

the inverse limit of the renormalized map (Lemmas 4.61 and 4.62). Therefore these prime ends may

be of either the third or the fourth kind.

Write qi = Bi+1(a) for 0 ≤ i ≤ n − 1. By Theorem 4.33 (b)(ii) we have qn−1 6∈ {a, αu}, so

that qn−1 ∈
◦
γ, while the other qi are not in γ. We have B(qi) = qi+1 mod n for each i, so that

Q = {q0, q1, . . . , qn−1} is a period n orbit of B. Since B−1 is well defined on S \ {q0}, the backwards

orbit {B−r(y) : r ≥ 0} of any point y ∈ S \Q is well-defined. Moreover, B−r(y) 6∈ γ for all r ≥ 1 for

such points y.

Since ρ(B) = m/n, there are m− 1 points of Q in each interval (qi, qi+1 mod n), and the first point

of Q which is encountered when moving counterclockwise around S from qi is qi+m−1 mod n. Write p0

for the point of P between q0 and qm−1 mod n, and pi = Bi(p0) for 1 ≤ i ≤ n− 1.

Definitions 4.48 (Threads qi, pi, and t(y, k, i) in Ŝ; the periodic orbits Q and P).

(a) For each 0 ≤ i ≤ n− 1, define qi,pi ∈ Ŝ by

qi = 〈(qi, qi−1, . . . , q0, qn−1, . . . , qi+1)∞〉 and

pi = 〈(pi, pi−1, . . . , p0, pn−1, . . . , pi+1)∞〉 .

(b) For each y ∈ γ\{qn−1}, k ∈ Z, and 0 ≤ i ≤ n−1, define t(y, k, i) = B̂kn+i
(〈
q0, y, B

−1(y), . . .
〉)
∈ Ŝ,

so that

t(y, k, i) =
〈
qi, qi−1, . . . , q0, (qn−1, . . . , q0)k, y, B−1(y), . . .

〉
when k ≥ 0. (15)

Write Q = {q0, . . . ,qn−1} and P = {p0, . . . ,pn−1}, period n orbits of B̂.

Every element y of Ŝ can be written in exactly one way as qi, pi, or t(y, k, i). To see this, observe

that the set Z(y) = {r ∈ Z : B̂−(r+1)(y)0 ∈ γ} is empty if and only if y ∈ P, and is not bounded

above if and only if y ∈ Q. For any other y ∈ Ŝ, let R = maxZ(y), and let y = B̂−(R+1)(y)0 ∈ γ.

Then y = t(y, bR/nc , R mod n).
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Definitions 4.49 (The intervals Lk,i and Rk,i). For each k ∈ Z and 0 ≤ i ≤ n− 1, define subsets Lk,i

and Rk,i of Ŝ by

Lk,i = {t(y, k, i) : y ∈ (qn−1, a]} and Rk,i = {t(y, k, i) : y ∈ [αu, qn−1)}.

These subsets partition Ŝ \ (Q ∪P), and are half-open intervals since y 7→ t(y, k, i) defines homeo-

morphisms (qn−1, a]→ Lk,i and [αu, qn−1)→ Rk,i.

The following lemma, which describes the ordering of the intervals Lk,i, and Rk,i around the circle Ŝ,

is illustrated by Figure 10.

Lemma 4.50. Let 0 ≤ i ≤ n− 1, and write j = i−m−1 mod n.

(a) For each k ∈ Z, the open endpoint of Lk,i (respectively Rk,i) is equal to the closed endpoint of

Lk+1,i (respectively Rk+1,i).

(b) As k →∞ we have Lk,i → qi and Rk,i → qi; while as k → −∞ we have Lk,i → pi and Rk,i → pj.

Proof. (a) is a straightforward computation of the open endpoints of the intervals, using the facts that

B−1(y)→ a as y → q0 through (q0, b), and B−1(y)→ αu as y → q0 through (a, q0). For (b), the limits

as k → ∞ are immediate from (15) and those as k → −∞ from the choice of labeling of the pi (and

hence of the pi). �

R−1,i R0,i R1,i R2,i qi L1,i L0,i L−1,i pipj

Figure 10. Ordering of intervals around the circle in the rational interior case.

Remark 4.51. For each y ∈ γ \ {qn−1}, k ∈ Z, and 0 ≤ i ≤ n− 1 we have

B̂(t(y, k, i)) =

{
t(y, k, i+ 1) if i < n− 1,

t(y, k + 1, 0) if i = n− 1.

Therefore

B̂(Lk,i) =

{
Lk,i+1 if i < n− 1,

Lk+1,0 if i = n− 1,
(16)

and analogously for B̂(Rk,i).

Lemma 4.52. R = L = Ŝ \Q. In particular, R is dense in Ŝ.

Proof. Points of Lk,i and Rk,i are landing of level max(kn + i + 1, 0), and points of P are landing of

level 0. Therefore, by Lemma 4.50, every point of Ŝ \Q has a uniformly landing neighborhood, so that

Ŝ \Q ⊂ R ⊂ L.

We next show that qn−1 6∈ L (and hence qn−1 6∈ R). Write θ = min(fn(a), f̂n(a)) ∈ (a, c], and let x

and z be any two distinct elements of [a, θ]. By Lemma B.2 (a), if µ � wq0 (wq1)
∞

then fn([a, θ)) =

[a, θ]; and by Lemma B.2 (b), if µ � wq0 (wq1)
∞

then there is some N with fN ([a, θ)) = [a, b], so that

fN+i([a, θ)) ⊃ [a, θ] for all i ≥ 0. Hence in either case there are sequences (x(k)) and (z(k)) in [a, θ)

with fkn(x(k)) = x and fkn(z(k)) = z for all sufficiently large k.

Since x(k) ∈ [a, θ) and θ ≤ c, we have f(a) ≤ f(x(k)) < f(θ) = fn+1(a), and hence, by Defini-

tion 3.2, there is some v
(k)
1 ∈ [1/2, φ−1(fn+1(a))] with φ(v

(k)
1 ) = f(x(k)). Since τ(qn−1) = fn(a),
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it follows from (U3) and (U4) of Definition 3.2 that f(qn−1, v
(k)
1 ) = (f(x(k))`, v

(k)
1 ), and hence that

H(qn−1, v
(k)
1 ) = f(x(k)). Similarly, there is a sequence (v

(k)
2 ) in [1/2, 1) with H(qn−1, v

(k)
2 ) = f(z(k))

for each k.

By (8) we have that, for sufficiently large k, Rqn−1
(kn+ 2v

(k)
1 − 1)0 = fkn(x(k)) = x and similarly

Rqn−1(kn+ 2v
(k)
2 − 1)0 = fkn(z(k)) = z. Therefore Rqn−1 does not land, so that qn−1 6∈ L as required.

Since Ĥi+1 maps Rqn−1
onto Rqi

for 0 ≤ i < n− 1, it follows that qi 6∈ L for all i. �

For future reference, we record the landing points corresponding to the elements t(y, k, i) of Ŝ with

k ≥ 0 which are given, using (10) together with t(y, k, i) ∈ Lkn+i+1 and t(y, k, i)kn+i+1 = y, by

ω(t(y, k, i)) =
〈
fkn+i+1(τ(y)), . . . , f(τ(y)), τ(y), τ(B−1(y)), . . .

〉
(k ≥ 0). (17)

We next define some good chains of crosscuts for each qi. The class of crosscuts which we use is

introduced in Definition 4.54, and it will be shown in Lemma 4.59 how these combine to give good

chains.

Definitions 4.53 (ŷ, min(y, ŷ).). For each y ∈ γ, denote by ŷ the “symmetric” element of γ satisfying

(a) f(τ(ŷ)) = f(τ(y)), and

(b) ŷ 6= y unless y = cu.

We set min(y, ŷ) = y if y ∈ [cu, a], and min(y, ŷ) = ŷ otherwise. (This convention is so that

τ(min(y, ŷ)) = min(τ(y), τ(ŷ))).

Definition 4.54 (The crosscuts Γ′(y, k, i) and Γ(y, k, i)). For each y ∈ (cu, a] \ {min(qn−1, q̂n−1)},
each k ∈ Z, and each 0 ≤ i ≤ n− 1, we define a crosscut Γ′(y, k, i) in (D, Ŝ∞) by

Γ′(y, k, i) =

{
ξ′([t(ŷ, k, i), t(y, k, i)], kn+ i+ 1 + u(y)) if k ≥ 0,

ξ′([t(ŷ, k, i), t(y, k, i)], (1 + u(y))/2|nk+i|) if k < 0,

where u(y) is given by Definition 4.4 and ξ′(J, s) is as in Definition 4.43. Here [t(ŷ, k, i), t(y, k, i)] is

the interval in Ŝ with the given endpoints which is disjoint from P.

We define Γ(y, k, i) = Ψ(Γ′(y, k, i)), a crosscut in (T̂ , Î).

Remark 4.55. (qi,∞) ∈ U(Γ′(y, k, i)) if and only if y ∈ (min(qn−1, q̂n−1), a]. See Figure 11.

Lemma 4.56. For each y ∈ (cu, a] \ {min(qn−1, q̂n−1)}, each k ∈ Z, and each 0 ≤ i ≤ n− 1, we have

Γ(y, k, i) = Ĥkn+i(Γ(y, 0, 0)).

Proof. By Corollary 4.10 we have Ĥkn+i(Γ(y, 0, 0)) = Ψ(Gkn+i(Γ′(y, 0, 0)), where G : D → D is given

(see Definition 4.1) by G(y, s) = (B̂(y), λ(s)). Now Gkn+i(Γ′(y, 0, 0)) = Γ′(y, k, i) by Remark 4.51 and

the fact that λ(s) = s+ 1 for s ≥ 1 and λ(s) = 2s for s < 1. The result follows. �

The following is a key lemma for the remainder of the paper. It implies, in particular, that each cross-

cut Γ(y, k, i) is contained in a stable set for Ĥ; and hence, by Lemma 4.56, that diam(Γ(y, k, i))→ 0

as k →∞.

Lemma 4.57. Let y ∈ (cu, a] \ {min(qn−1, q̂n−1)}, k ≥ 0, and 0 ≤ i ≤ n− 1. Then every x ∈ Γ(y, k, i)

has xkn+i = f(τ(y)).
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kn+i+1

kn+i+1

+u(qn−1)

kn+i+2

αu q̂n−1 cu (qi,∞) a

Rk,i Lk,i

Figure 11. The crosscuts Γ′(y, k, i), in the case k ≥ 0, drawn under the assump-
tion that qn−1 ∈ (cu, a], so that the interval Lk,i is shorter than the interval Rk,i.
In this figure the labels αu, q̂n−1, cu, and a are abbreviations of (t(αu, k, i),∞),
(t(q̂n−1, k, i),∞), (t(cu, k, i),∞), and (t(a, k, i),∞). The dotted lines represent limits
of the crosscuts, which are not themselves of the form Γ′(y, k, i): see Remark 4.58.

Proof. In view of Lemma 4.56, we need only show that every x ∈ Γ(y, 0, 0) has x0 = f(τ(y)). Now

Γ(y, 0, 0) = Ψ (ξ′([t(ŷ, 0, 0), t(y, 0, 0)], 1 + u(y)))

= Ψ
(
ξ′([
〈
q0, ŷ, B

−1(ŷ), . . .
〉
,
〈
q0, y, B

−1(y), . . .
〉
], 1 + u(y))

)
.

(a) Since t(y, 0, 0)1 = y and t(y, 0, 0)1+i 6∈
◦
γ for all i ≥ 1, Lemma 4.20 gives that Ψ(t(y, 0, 0), s)0 =

f(τ(y)) for all s ≥ 1 + u(y); similarly Ψ(t(ŷ, 0, 0), s)0 = f(τ(ŷ)) = f(τ(y)) for all s ≥ 1 + u(y).

(b) It remains to show that Ψ(y, 1 + u(y))0 = f(τ(y)) for all y ∈ [t(ŷ, 0, 0), t(y, 0, 0)]. Now in the case

y ∈ (min(qn−1, q̂n−1), a] we have, by Lemma 4.50,

[t(ŷ, 0, 0), t(y, 0, 0)] = {t(y′, 0, 0) : y′ ∈ [ŷ, y] \ {qn−1}} ∪ {q0} ∪
∞⋃
k=1

(Lk,0 ∪Rk,0),

while in the case y ∈ (cu,min(qn−1, q̂n−1)) we have [t(ŷ, 0, 0), t(y, 0, 0)] = {t(y′, 0, 0) : y′ ∈ [ŷ, y]}.
If y′ ∈ [ŷ, y] with y′ 6= qn−1 then

Ψ(t(y′, 0, 0), 1 + u(y))0 = H(y′, φ−1(f(τ(y))))

= f(τ(y))

as required. Here the first equality uses (8) and that (1+u(y))/2 = φ−1(f(τ(y))), while the second

uses Lemma 4.5 and the fact that u(y) ≤ u(y′), since y′ ∈ [ŷ, y].
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On the other hand, if we are in the case y ∈ (min(qn−1, q̂n−1), a], and if y = q0 or y is in Lk,0

or Rk,0 for some k ≥ 1, then y1 = qn−1, and (8) and Lemma 4.5 give

Ψ(y, 1 + u(y))0 = H(qn−1, φ
−1(f(τ(y)))) = f(τ(y))

as required, since φ−1(f(τ(y))) ≤ u(qn−1).

�

Remark 4.58. There are two connected components of dotted lines on Figure 11, which are limits of

the crosscuts Γ′(y, k, i). One is the arc {t(cu, k, i)} × [kn+ i+ 2,∞], and the other is the union of the

crosscut ξ′([t(q̂n−1, k, i), t(a, k+ 1, i)], kn+ i+ 1 +u(qn−1)) and the crosscut ξ′([t(q̂n−1, k, i), t(αu, k+

1, i)], kn+ i+ 1 + u(qn−1)), each interval in Ŝ being the one which contains qi.

By the continuity of Ψ on D̃, every point (y, s) of the former has Ψ(y, s)kn+i = f(τ(cu)) = b, and

every point (y, s) of the latter has Ψ(y, s)kn+i = f(τ(qn−1)) = fn+1(a).

Lemma 4.59.

(a) Let 0 ≤ i ≤ n−1. For every sequence (y(k)) in (min(qn−1, q̂n−1), a], the sequence (Γ′(y(k), k, i))k≥0

satisfies conditions (a) – (c) of Definition 4.22 (of a good chain of crosscuts for qi).

(b) Let y ∈ Ŝ. Then there is a good chain of crosscuts for y.

Proof. The sequence (Γ′(y(k), k, i))k≥0 is a chain of crosscuts in (D, Ŝ∞) which satisfies condition (a)

of Definition 4.22 by Lemma 4.52; it satisfies condition (b) by Lemma 4.50 (see Remark 4.55); and it

satisfies condition (c) by Lemma 4.57, which gives that diam(Γ(y, k, i)) ≤ |b− a|/2kn+i.

For part (b) of the lemma, it suffices by Remark 4.23 (c) to find a good chain of crosscuts for each qi;

that is, to show that we can choose the sequence (y(k)) in such a way that (Γ(y(k), k, i))k≥0 does not

converge to a point of Î. The argument is similar to that used in the proof of Lemma 4.52.

Pick two distinct points x, z ∈ [a,min(τ(qn−1), τ(q̂n−1))) = [a, θ), where θ = min(fn(a), f̂n(a)). By

Lemma B.2, there are sequences (x(k)) and (z(k)) in [a, θ) with fkn(x(k)) = x and fkn(z(k)) = z for all

sufficiently large k. Since x(k), z(k) ∈ [a, θ) we have x
(k)
u , z

(k)
u ∈ (min(qn−1, q̂n−1), a] for each k. Then,

by Lemma 4.57, every x ∈ Γ(x
(k)
u , k, i) has xi+1 = x, and every x ∈ Γ(z

(k)
u , k, i) has xi+1 = z, provided

that k is sufficiently large.

Choosing y(k) = x
(k)
u when k is even, and y(k) = z

(k)
u when k is odd therefore gives a good chain of

crosscuts. �

It follows from Theorem 4.28 and Lemma 4.31 that P : Ŝ → P is a homeomorphism, and that the

prime end P(y) is of the first kind for all y 6∈ Q. It therefore only remains to calculate the principal

sets and impressions of the prime ends P(qi). We will do this for P(qn−1): the analogous results for

the other P(qi) follow on observing that P(qi) = Ĥi+1(P(qn−1)) for each i by Lemmas 4.56 and 4.59.

Lemma 4.60. Let f be of rational interior type, with q(κ(f)) = m/n. Then I(P(qn−1)) = Î.

Proof. By Theorem 4.28 (b) and Lemma 4.59, P(qn−1) is defined by the chain (Γ(a, k, n− 1))k≥0, so

it suffices to show that for every fixed x ∈ Î and k ≥ 0, we have x ∈ U(Γ(a, k, n− 1)).

By Lemma B.1 there is some N (which we take to be at least 3) with fN ([a, α]) ⊃ fN ([a, c]) = [a, b].

For each j with jn ≥ N , we can therefore choose z(j) ∈ [a, α] \ {τ(qn−1)} with fN (z(j)) = xjn−N .

(If xjn−N = fN (τ(qn−1)) then we also have xjn−N = fN (τ(q̂n−1)), and either τ(q̂n−1) 6= τ(qn−1)
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or xjn−N = fN (c). In the latter case we have xjn−N = fN−2(a) = fN−2(α), and since α has two

f -preimages there is some z(j) 6= c with fN (z(j)) = xjn−N .)

For each such j, let

y(j) = t(z(j)
u , j − 1, n− 1) =

〈
(qn−1, . . . , q0)j , z(j)

u , B−1(z(j)
u ), . . .

〉
,

which is landing of level jn. By (17) we have ω(y(j))jn−N = fN (z(j)) = xjn−N , so that ω(y(j)) → x

as j →∞. Since (y(j),∞) ∈ U(Γ′(a, k, n− 1) for all j > k, we have ω(y(j)) ∈ U(Γ(a, k, n− 1)) for all

j > k, and hence x ∈ U(Γ(a, k, n− 1)) as required. �

Lemma 4.61. Let f be of rational interior type, with q(κ(f)) = q = m/n. If κ(f) � wq0 (wq1)
∞

then

Π(P(qn−1)) = Î.

Proof. Let x ∈ Î. We show that x ∈ Π(P(qn−1)) by exhibiting a chain of crosscuts defining P(qn−1)

which converges to x.

By Lemma B.2 (b), there is some N ∈ N with fN ([a, θ)) = [a, b], where θ = min(fn(a), f̂n(a)).

For each k with kn ≥ N , pick z(k) ∈ [a, θ) with fN (z(k)) = xkn−N . Since z(k) ∈ [a, θ) we have

z
(k)
u ∈ (min(qn−1, q̂n−1), a] for each k. Therefore, by Lemma 4.59 (a), P(qn−1) is defined by the chain

(Γ(z
(k)
u , k − 1, n− 1))k≥N/n.

By Lemma 4.57, every v ∈ Γ(z
(k)
u , k − 1, n − 1) has vkn−1 = f(z(k)), and hence vkn−N = xkn−N .

Therefore Γ(z
(k)
u , k − 1, n− 1)→ x as k →∞ as required. �

Lemma 4.62. Let f be of rational interior type, with q(κ(f)) = q = m/n. If κ(f) � wq0 (wq1)
∞

then

Π(P(qn−1)) = {x ∈ Î : x`n ∈ [a, fn(a)] for all ` ≥ 0}.

Proof. This is a consequence of Lemma B.2 (a), which states that fn([a, fn(a))) = [a, fn(a)] whenever

(wq0)
∞ ≺ κ(f) � wq0 (wq1)

∞
.

Write X = {x ∈ Î : x`n ∈ [a, fn(a)] for all ` ≥ 0}. To show that X ⊂ Π(P(qn−1)), we exhibit,

for each x ∈ X, a chain of crosscuts defining P(qn−1) which converges to x. By Lemma B.2 (a),

fn(a)u = min(qn−1, q̂n−1), and for each k ≥ 0 there is some z(k) ∈ [a, fn(a)) with fn(z(k)) = xkn.

By Lemma 4.57, every v ∈ Γ(z
(k)
u , k, n − 1) has v(k+1)n−1 = f(z(k)), and hence vkn = xkn. Therefore

(Γ(z(k), k, n− 1))k≥0 is a chain of crosscuts defining P(qn−1) which converges to x.

To show that Π(P(qn−1)) ⊂ X, it is enough, by Theorem 4.28 (c), to show that Rem(Rqn−1
) ⊂ X.

To do this, we fix ` ≥ 0 and show that Rqn−1
(s)`n ∈ [a, fn(a)] for all s ≥ `n+ 1.

We therefore fix s ≥ `n + 1, and write P (s) = (t, v). Recalling that qn−1 = 〈(qn−1, . . . , q0)∞〉,
using (8), and abbreviating Rqn−1 to R:

(a) If t = rn for some r ≥ `+ 1 then

R(s)rn−1 = H(qn−1, v) ∈ [f(a), f(τ(qn−1))] = [f(a), fn+1(a)].

Since fn−1([f(a), fn+1(a)]) = [a, fn(a)] by Lemma B.2 (a), we have R(s)(r−1)n ∈ [a, fn(a)], and

hence R(s)`n ∈ [a, fn(a)] as required.

(b) If t = rn+ i for some r ≥ ` and 1 ≤ i ≤ n− 1 then

R(s)rn+i−1 = R(s)t−1 = H(qn−1−i, v) = τ(B(qn−1−i)) = τ(qn−i) = fn−i+1(a),
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since qn−1−i 6∈
◦
γ. Therefore R(s)rn = fn(a), and hence R(s)`n ∈ [a, fn(a)] as required.

�

Remark 4.63. Since P(qi) = Ĥi+1(P(qn−1)) for 0 ≤ i < n − 1, it follows that, whenever we have

(wq0)
∞ ≺ κ(f) � wq0 (wq1)

∞
,

Π(P(qi)) = {x ∈ Î : x`n+i+1 ∈ [a, fn(a)] for all ` ≥ 0}.

These principal sets are therefore homeomorphic to the inverse limit lim←−([a, fn(a)], fn) of the renor-

malized map.

The following theorem provides a summary of what we have proved in the rational interior case.

Theorem 4.64 (Prime ends in the rational interior case). Let f be a unimodal map satisfying the

conditions of Convention 2.8, and suppose that q(κ(f)) = m/n ∈ (0, 1/2) is rational, and that κ(f) 6∈
{lhe(m/n), (wm/n0)∞, rhe(m/n)}. Then

(a) All except n of the prime ends of (T̂ , Î) are of the first kind;

(b) If κ(f) � wm/n0
(
wm/n1

)∞
, then the n remaining prime ends are of the fourth kind, with principal

set lim←−([a, fn(a)], fn) and impression Î;

(c) If κ(f) � wm/n0
(
wm/n1

)∞
, then the n remaining prime ends are of the third kind, with principal

set and impression Î; and

(d) The prime end rotation number is m/n. �

Remark 4.65. By Theorem 4.28 (d), the set of accessible points of Î is precisely {ω(y) : y ∈ Ŝ \Q}.
This set is partitioned into n immersed copies of the line.

4.7. The rational endpoint case. We finish by considering the rational endpoint case, where µ = κ(f)

has rational height q = q(µ) ∈ (0, 1/2) and µ = lhe(q), µ = rhe(q), or µ = (wq0)
∞

; or where q = 0.

The following theorem summarizes this case.

Theorem 4.66 (Prime ends in the rational endpoint case). Let f be a unimodal map satisfying

the conditions of Convention 2.8, and suppose that q(κ(f)) = m/n ∈ [0, 1/2) is rational, and that

κ(f) ∈ {lhe(m/n), (wm/n0)∞, rhe(m/n)}. Then

(a) All except n of the prime ends of (T̂ , Î) are of the first kind;

(b) The n remaining prime ends are of the second kind, with impression Î; and

(c) The prime end rotation number is m/n.

The arguments in the four cases where f is of early endpoint, normal endpoint, quadratic-like strict

left endpoint, or late endpoint type are different, and we consider each of them briefly in turn, pointing

out how they differ from similar arguments in the rational interior and irrational cases, and leaving

the reader to fill in some details.

4.7.1. The normal endpoint case. In this case either µ = lhe(m/n) and Bn(a) = a, or µ = rhe(m/n)

and Bn(a) = αu; and the orbit of B(a) is the only periodic orbit of B. We will consider the case where

µ = lhe(m/n): the other case can be treated in exactly the same way. Minor modifications are needed

in the particular case m/n = 0 (i.e. when µ = 10∞): we will assume that m/n > 0.

The analysis starts in the same way as the rational interior case. We write qi = Bi+1(a) for

0 ≤ i ≤ n− 1, so that Q = {q0, q1, . . . , qn−1} is a period n orbit of B, with qn−1 = a ∈ γ. Threads qi

and t(y, k, i) in Ŝ, and the periodic orbit Q of B̂, are introduced exactly as in Definitions 4.48.
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Intervals Rk,i can then be constructed as in Definitions 4.49. However, since qn−1 = a, the inter-

vals Lk,i of the rational interior case are empty. This means that the intervals Rk,i converge to qi as

k →∞, and to qj as k → −∞, where j = i−m−1 mod n (Figure 12).

qj R−2,i R−1,i R0,i R1,i R2,i qi

Figure 12. The intervals Rk,i in the normal endpoint case when Bn(a) = a.

Since the threads qi do not contain any entries from
◦
γ, the points of Q are landing of level 0, and

hence L = Ŝ. On the other hand, R = Ŝ \Q, since the interior points of Rk,i are not landing of any

level less than kn+ i+ 1.

The construction of good chains of crosscuts for each qi is reminiscent of the irrational gap endpoint
case.

Lemma 4.67. Let 0 ≤ i ≤ n − 1. Write V =
⋃
k<0Rk,i+m−1 mod n, and let

(
y(k)

)
be any sequence

in V which converges strictly monotonically to qi. For each k ≥ 1, let Jk be the interval in Ŝ with

endpoints y(k) and t(αu, k, i) which contains qi. Let

ξ′k = ξ′(Jk, nk + i).

Then (ξ′k) is a good chain of crosscuts for qi.

Proof. Conditions (a) and (b) of Definition 4.22 are immediate, and condition (d) is vacuous. It is

therefore only necessary to show that diam(ξk)→ 0 as k →∞, where ξk = Ψ(ξ′k).

We have diam(ξk ∩ Ψ
(
V × [0,∞]

)
) → 0, since Ψ is continuous on V × [0,∞] by Lemma 4.17. To

show that the diameters of the remaining parts of ξk go to zero, we will show that every x belonging

to the arc Ψ({t(αu, k, i)} × [nk + i,∞]) or to the arc Ψ((Jk \ V )× {nk + i}) has xnk+i−1 = τ(q1).

For the former, we have Ψ(t(αu, k, i), s)nk+i−1 = τ(t(αu, k, i)nk+i−1) = τ(q1) for all s ≥ nk + i by

Lemma 4.13, since t(αu, k, i) is landing of level 0 (and hence of level nk + i− 1).

For the latter, observe that if y ∈ Jk \V then y =
〈
qi, . . . , q0, (qn−1, . . . , q0)k, . . .

〉
and so ynk+i = q0.

Therefore, by (8), Ψ(y, nk + i)nk+i−1 = H(q0, 1/2) = τ(q1) as required. �

It follows from Theorem 4.28 and Lemma 4.31 that P : Ŝ → P is a homeomorphism; that the prime

end P(y) is of the first kind for all y 6∈ Q; and that Π(P(y)) = {ω(y)} is a point for y ∈ Q. It therefore

only remains to calculate the impressions of the prime ends P(qi). The proof of the following result

works in exactly the same way as that of Lemma 4.60, using the chain of crosscuts from Lemma 4.67

in place of the chain (Γ(a, k, n− 1))k≥0.

Lemma 4.68. Let f be of normal endpoint type, with q(κ(f)) = m/n. Then I(P(qn−1)) = Î. �

4.7.2. The quadratic-like strict left endpoint case. In this case µ = lhe(m/n) and Bn(a) = a, but B has

a second period n orbit P in addition to the orbit of B(a). As in the rational interior case, we write

qi = Bi+1(a) for 0 ≤ i ≤ n− 1, p0 for the point of P between q0 and qm−1 mod n, and pi = Bi(p0) for

1 ≤ i ≤ n− 1. Threads qi, pi, and t(y, k, i) in Ŝ, and the periodic orbits Q and P of B̂ are introduced

exactly as in Definitions 4.48. However, since the B-orbits of points in each interval (qi, pi] are disjoint

from γ, there are threads

t(y) =
〈
y,B−1(y), B−2(y), . . .

〉
for y ∈

n−1⋃
i=0

(qi, pi]
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in Ŝ (with t(pi) = pi). We write Ii = {t(y) : y ∈ (qi, pi]} for 0 ≤ i ≤ n − 1, half-open intervals

in Ŝ with B̂(Ii) = Ii+1 mod n. Defining half-open intervals Rk,i as in Definitions 4.49, the intervals are

arranged around Ŝ as depicted in Figure 13 (where j = i−m−1 mod n).

pjqj Ij R−2,i R−1,i R0,i R1,i R2,i qi

Figure 13. Intervals around Ŝ in the quadratic-like left strict endpoint case.

The remainder of the analysis proceeds exactly as in the normal endpoint case, except that in the

statement of Lemma 4.67 we take V = Ii rather than V =
⋃
k<0Rk,i+m−1 mod n.

4.7.3. The late endpoint case. Here q = m/n > 0 and µ = (wq0)
∞

. In this case qn−1 = Bn(a) ∈ ◦
γ

by Theorem 4.33 (b)(ii), and the treatment is identical to that of the rational interior case up until

Lemma 4.52. Here, because Lemma B.2 doesn’t apply when κ(f) = (wq0)
∞

, the proof that L = Ŝ \Q

breaks down. Instead we have:

Lemma 4.69. Let f be of late endpoint type. Then L = Ŝ.

Proof. The points a and fn(a) are distinct, but both have itinerary σ((wq0)
∞

). Since wq0 is a word

of length n with an odd number of 1s, fn|[a,fn(a)] is decreasing, with a < f2n(a) < fn(a). There is

therefore a unique fixed point p of fn in [a, fn(a)]. Now the increasing map f2n : [a, fn(a)]→ [a, fn(a)]

also has p as its unique fixed point (any other fixed points would be period 2 points of fn and so would

come in pairs, contradicting Convention 2.8 (c)), so that fkn(x)→ p as k →∞ for every x ∈ [a, fn(a)].

Since every point of Ŝ \Q is landing of some level, it is only necessary to prove that the rays Rqi

land. It is enough to show this for i = n− 1 since Rqi
= Ĥi+1 ◦Rqn−1

for 0 ≤ i ≤ n− 2.

Fix r ≥ 0 and let s ≥ r + 1. Write P (s) = (t, v) and t = kn + i with 0 ≤ i ≤ n − 1: then (8)

gives Ψ(qn−1, s)r = f t−1−r(H(qn−1−i, v)). If i 6= 0 then H(qn−1−i, v) = τ(qn−i) = fn−i+1(a), so

that Ψ(qn−1, s)r = f (k+1)n−r(a). On the other hand, if i = 0 then H(qn−1−i, v) ∈ [f(a), fn+1(a)] by

Definition 3.2, so that Ψ(qn−1, s)r = fkn−r(x) for some x ∈ [a, fn(a)].

Therefore Ψ(qn−1, s)r → fn−r(p) as s→∞. It follows that

Ψ(qn−1, s)→ ω(qn−1) =
〈
(p, fn−1(p), . . . , f(p))∞

〉
as s→∞,

so that qn−1 ∈ L as required. �

Remark 4.70. Thus, in the late endpoint case, the points of Q are landing, despite not being landing

of any level. This is the only case in which L 6=
⋃
N≥0 LN .

Since the interior points of Rk,i are not landing of any level less than kn+i+1, the locally uniformly

landing set is given by R = Ŝ \Q. The proof of Lemma 4.59 (a) goes through without change to show

that (Γ′(a, k, i))k≥0 is a good chain of crosscuts for qi (observing that condition (d) of Definition 4.22

is vacuous); and the proof of Lemma 4.60 likewise carries over to show that I(P(qn−1)) = Î.

4.7.4. The early endpoint case. In this case q = m/n > 0 and µ = lhe(m/n), but fn(a) 6= a. According

to Theorem 4.33 (c)(ii), the orbit O = {Br(a) : r ≥ 1} is disjoint from γ, and is attracted to a period n

orbit Q ⊂ S \ γ of B: in particular, B−r(y) is defined for all r ≥ 0 provided that y 6∈ O. There are two

possibilities: either Q is semi-stable and is the only periodic orbit of B, in which case the backwards
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orbit {B−r(γ) : r ≥ 0} of γ is attracted to Q; or Q is stable, and there is a repelling period n

orbit P ⊂ S \ γ of B, which attracts the backwards orbit of γ.

The analysis initially follows that of the irrational case. Elements of Ŝ can be written either as t(y, r),

with y ∈ γ and r ∈ Z; or as t(y) with y ∈ S \
⋃
r∈ZB

−r(γ), these threads being defined exactly as in

Definitions 4.37. It follows, as in the proof of Lemma 4.38, that L = Ŝ. “Gaps” Gr = {t(y, r) : y ∈ γ}
can be defined as in Definition 4.39.

The difference with the irrational case is that the gaps Gr converge as r →∞ to the periodic orbit Q

of B̂ corresponding to Q; and they converge as r → −∞ either to Q from the other side (in the case

where Q is the unique periodic orbit of B), or to the periodic orbit P of B̂ corresponding to P . Since

Gr is uniformly landing of level max(r, 0), we have in either case that R = Ŝ \Q.

The construction of a good chain of crosscuts for each point q of Q can be carried out in exactly

the same way as in the irrational case (Lemma 4.44); and the proof that I(P(q)) = Î for each such q

is identical to the proof of Lemma 4.45.

Remark 4.71. By Theorem 4.28 (d), the set of accessible points of Î is precisely {ω(y) : y ∈ Ŝ}.
Since the landing function ω is continuous from one side, but not from the other, at the points of Q,

the set of accessible points is partitioned into n immersed copies of [0,∞).

5. Semi-conjugacy to sphere homeomorphisms

In this section we will prove (Theorem 5.19) that if {ft} is a continuously varying family of unimodal

maps, then there is a corresponding family {χt : S2 → S2} of sphere homeomorphisms such that each

χt is a factor of f̂t : Ît → Ît by a semi-conjugacy with mild point preimages. In order to simplify the

exposition, we start by treating the case of a single unimodal map f (Theorem 5.15).

We will also show (Theorem 5.31) that if {ft} is a family of tent maps, then χt is a generalized

pseudo-Anosov map for those values of t for which ft is post-critically finite (and is pseudo-Anosov

when ft is of NBT type). Therefore, in the tent map case, {χt} is a completion of the family of

generalized pseudo-Anosovs constructed in [21].

In order to construct the semi-conjugacy, we will define a non-separating monotone upper semi-

continuous decomposition G of T̂ , whose elements are permuted by Ĥ, and each of which intersects Î.

By Moore’s theorem [32], the quotient space Σ = T̂ /G is again a sphere, and F = Ĥ/G : Σ → Σ is a

homeomorphism. Since each of the decomposition elements intersects Î, the natural projection T̂ → Σ

induces a surjection Î → Σ, which semi-conjugates f̂ = Ĥ|Î to F .

To define the decomposition G, we first introduce the strongly stable equivalence relation on D†

(Definition 5.1). (Recall that D† = D ∪ L∞ ⊂ D is the maximal domain of Ψ.) The idea is that

a strongly stable component of T̂ is a maximal connected subset X of T̂ with the property that, for

all x(1),x(2) ∈ X, there is some N ≥ 0 with ĤN (x(1))0 = ĤN (x(2))0. A consequence of this is that

d(Ĥi(x(1)), Ĥi(x(2))) → 0 as i → ∞, so that strongly stable sets are stable: the converse is not true

in general, since the unimodal map f may itself have non-trivial connected stable sets. Now such a

subset X may intersect Î (and hence leave the image of Ψ) many times. A strongly stable component

of D† is a component of the preimage Ψ−1(X). Our decomposition will be based on these components.

In Lemmas 5.3, 5.5, 5.6, 5.7, and 5.8 we describe the structure of the strongly stable equivalence

classes for each of the types of unimodal map of Definition 2.25. We then use these to construct a
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decomposition G′ of D: one of the decomposition elements is the union of ∂′ and all of the strongly

stable equivalence classes whose closure contains ∂′, while all of the other decomposition elements are

single strongly stable equivalence classes or single points not in D†. The decomposition G is obtained

by carrying over G′ with Ψ, and adding single inaccessible points of Î (which, by Theorem 4.28 (d),

are precisely the points which are not in the image of Ψ).

Definition 5.1 (Strongly stable, strongly stable component). A subset Y of D† is said to be strongly

stable if, for all η1, η2 ∈ Y , there is some N ≥ 0 such that ĤN (Ψ(η1))0 = ĤN (Ψ(η2))0.

The strongly stable component of η ∈ D† is the largest connected strongly stable set which contains η

(i.e. the union of all such connected strongly stable sets).

Remarks 5.2.

(a) Since G and Ĥ are topologically conjugate (Corollary 4.10), the homeomorphism G : D† → D†

permutes the strongly stable components.

(b) {∂′} is a strongly stable component, since if (y, s) 6= ∂′ then ĤN (Ψ(∂′))0 = ∂ 6= ĤN (Ψ(y, s))0 for

all N ≥ 0.

5.1. Strongly stable components in the irrational and the rational early endpoint cases.

Recall from Section 4.5 that if f is of irrational type then L = Ŝ, so that D† = D; that B̂ : Ŝ → Ŝ is a

Denjoy counterexample, having an orbit {Gr : r ∈ Z} of wandering intervals; and that the complement

of the union of the interiors of these intervals is a Cantor set Λ, which is the set of points which are

not locally uniformly landing.

If f is of rational early endpoint type (Section 4.7.4) then the description is the same as in the

irrational case, except that the orbit of the intervals Gr converges as r → ∞ and as r → −∞ to

periodic orbits Q and P of B̂, and R = Ŝ \Q. If Q and P are distinct, then the former is stable and

the latter is unstable; while if P = Q, then this is a semi-stable orbit, which is the limit on one side of

the intervals Gr as r →∞, and on the other side of the intervals Gr as r → −∞.

The following lemma is illustrated in the irrational case by Figure 14. The picture in the early

endpoint case is discussed in Remark 5.4.

Lemma 5.3. Let f be of irrational type or of rational early endpoint type. Then the strongly stable

components of D† are {∂′} and:

(a) for each y ∈ Ŝ \
⋃
r∈ZGr, the line Ly = {y} × (0,∞];

(b) for each r ∈ Z:

(i) the arc Ar = {t(cu, r)} × [sr,∞]; where sr = λr(1), i.e.

sr =

{
r + 1 if r ≥ 1,

1/2|r| if r ≤ 0.

(ii) for each y ∈ (cu, a), the crosscut Cr,y = ξ′(Jr,y, tr,y); where Jr,y ⊂ Gr has endpoints t(y, r)

and t(ŷ, r), and tr,y = λr((1 + u(y))/2), i.e.

tr,y =

{
r + u(y) if r ≥ 1,

(1 + u(y))/2|r|+1 if r ≤ 0.
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(iii) the union Dr of the arcs t(a, r) × [ur,∞] and t(αu, r) × [ur,∞], and the set Gr × (0, ur];

where ur = sr−1 = λr(1/2), i.e.

ur =

{
r if r ≥ 1,

1/2|r|+1 if r ≤ 0.

1/2r+1

1

2

r

r+1

s

G−r G1 Gr
y

Figure 14. Strongly stable components in the irrational case. The types of com-
ponents are: (a) vertical lines Ly above the buried points y of the Cantor set Λ;
(b) packets of crosscuts Cr,y above each gap Gr, together with the “central” arc Ar
which only intersects Ŝ∞ at a single point; and (c) for each gap Gr, the set Dr consist-
ing of the outermost crosscut above Gr together with the rectangle above this crosscut
extending up to (but not including) s = 0. Each set Dr is shown as the union of a
shaded rectangle and the bold arcs which intersect it.

Proof. We first show that each of the sets listed is strongly stable.

(a) Let y ∈ Ŝ\
⋃
r∈ZGr, so that y =

〈
y,B−1(y), B−2(y), . . .

〉
for some y whose orbit under B is disjoint

from γ. Since y is landing of level 0, Lemma 4.13 gives Ψ(y, s)0 = τ(y) for all s ≥ 1. Applying G

repeatedly (or arguing directly using that Ψ(y, s) =
〈
(y, s), (B−1(y), s/2), . . .

〉
for s ∈ [0, 1)) gives

that, for each m ≥ 1, Ĥm(Ψ(y, s))0 = fm(τ(y)) for all s ∈ [1/2m,∞]. Therefore Ly is strongly

stable.
(b) G(Ar) = Ar+1, G(Cr,y) = Cr+1,y, and G(Dr) = Dr+1 for all r ∈ Z and y ∈ (cu, a). Since G

permutes strongly stable components, it suffices to consider the case r = 1.

(i) We have t(cu, 1) =
〈
B(a), cu, B

−1(cu), . . .
〉
, which is landing of level 1. By Lemma 4.13,

Ψ(t(cu, 1), s)0 = f(τ(cu)) = b for all s ∈ [2,∞] = [s1,∞], so that A1 is strongly stable.

(ii) Let y ∈ (cu, a). Since t(y, 1)1 = y and t(y, 1)1+i 6∈
◦
γ for all i ≥ 1, Lemma 4.20 gives that

Ψ(t(y, 1), s)0 = f(τ(y)) for all s ≥ 1 + u(y); similarly Ψ(t(ŷ, 1), s)0 = f(τ(ŷ)) = f(τ(y)) for

all such s.
Now let z ∈ [ŷ, y], so that (t(z, 1), 1+u(y)) is on the horizontal segment of the crosscut. Then

Ψ(t(z, 1), 1 + u(y))0 = H(z, φ−1(f(τ(y)))) by (8) and the definition of u(y). Since z ∈ [ŷ, y]
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we have φ−1(f(τ(y))) ≤ φ−1(f(τ(z))), so that H(z, φ−1(f(τ(y)))) = f(τ(y)) by Lemma 4.5,

as required.

Therefore Ψ(η)0 = f(τ(y)) for all η ∈ C1,y, so that C1,y is strongly stable.

(iii) We have Ψ(y, s)0 = f(τ(a)) = f(a) for (y, s) ∈ {t(a, 1), t(αu, 1)}× [1,∞] as in (ii), and hence

(Ĥm(Ψ(y, s)))0 = fm+1(a) for all such (y, s) and all m ≥ 0.

Now suppose that s ∈ [1/2m, 1/2m−1) for some m ≥ 1, and that y ∈ G1, so that we have

y =
〈
B(a), y, B−1(y), . . .

〉
for some y ∈ γ. Then Ψ(y, s)0 = (B(a), s) by (6), so that

Ĥm(Ψ(y, s))0 = τ(Bm+1(a)) = fm+1(a),

using (3) and that the orbit of B(a) is disjoint from γ. Therefore D1 is strongly stable.

The proof that there are no connected strongly stable sets which strictly contain one of these sets is

a routine consideration of cases. We will only show that A1 is a strongly stable component, and omit

the entirely analogous proofs in the other cases.

From the argument above, we have Ψ(η)0 = b for all η ∈ A1. Therefore, if η′ ∈ D† satisfies

ĤN (Ψ(η′))0 = ĤN (Ψ(η))0 for some N ≥ 0 then fN (Ψ(η′)0) = fN (b). There are therefore only count-

ably many possible values which Ψ(η′)0 can take if η′ is in the strongly stable component containing A1.

Now any connected set Y which strictly contains A1 must intersect C1,y for all y in some interval

(cu, e) ⊂ (cu, a). Since Ψ(η′)0 = f(τ(y)) for all η′ ∈ C1,y, and since f is not locally constant, it follows

that {Ψ(η′)0 : η′ ∈ Y } is uncountable, and hence Y cannot be strongly stable. �

Remark 5.4. In the early endpoint case, the strongly stable components above each interval Gr, and

above points y of Ŝ \
⋃
r∈ZGr, are exactly as depicted in Figure 14, but the intervals Gr are arranged

differently. For each 0 ≤ i ≤ n − 1, the intervals Gi+kn converge strictly monotonically to a point

of Q as k → ∞, and the intervals Gi−kn converge strictly monotonically to a point of P. The open

intervals between each Gi+kn and Gi+(k+1)n are contained in Ŝ \
⋃
r∈ZGr, so that the strongly stable

components above them are vertical lines. If Q and P are distinct, then there are also intervals with

one endpoint in Q and one in P which are likewise contained in Ŝ \
⋃
r∈ZGr.

5.2. Strongly stable components in the rational case. Consider now the case where f is of

rational type but not of early endpoint type, and let q(κ(f)) = m/n ∈ Q ∩ [0, 1/2). Recall that we

write qn−1 = Bn(a) ∈ γ. We will treat in turn the general case together with the late endpoint case

(Lemma 5.5), the NBT case (Lemma 5.6), the normal endpoint case (Lemma 5.7), and the quadratic-

like strict left endpoint case (Lemma 5.8).

Recall that in the interior case, we have L = R = Ŝ \Q, while in the endpoint case we have L = Ŝ

and R = Ŝ \Q; and that in the interior, quadratic-like endpoint, and late endpoint cases, there is a

second period n orbit P of B̂ : Ŝ → Ŝ, while in the normal endpoint case Q is the only periodic orbit

of B̂.
The following lemma is illustrated by Figure 15.

Lemma 5.5. Let f be of rational general or late endpoint type, with q(κ(f)) = m/n ∈ (0, 1/2) ∩ Q.

Then the strongly stable components of D† are {∂′} and:

(a) for each p ∈ P, the line Lp = {p} × (0,∞];

(b) for each k ∈ Z and 0 ≤ i ≤ n− 1:
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(i) the arc Ak,i = {t(cu, k, i)} × [rk,i,∞], where rk,i = λkn+i(2), i.e.

rk,i =

{
kn+ i+ 2 if k ≥ 0,

1/2|k|n−i−1 if k < 0.

(ii) for each y ∈ (cu, a] \ {min(qn−1, q̂n−1)}, the crosscut Γ′(y, k, i).

(iii) the union Dk,i of

• the crosscut ξ′([t(q̂n−1, k, i), t(a, k + 1, i)], uk,i);

• the crosscut ξ′([t(q̂n−1, k, i), t(αu, k + 1, i)], uk,i); and

• the set [t(a, k + 1, i), t(αu, k + 1, i)] × [uk,i, vk,i].

Here uk,i = λkn+i(1 + u(qn−1)), vk,i = λkn+i(n + 1), and all three of the intervals in Ŝ are

those with the given endpoints which are disjoint from P.

kn+i+1

kn+i+1

+u(qn−1)

kn+i+2

(k+1)n+i+1

qi

Rk,i Rk+1,i Lk,iLk+1,i LpLp′

Figure 15. Strongly stable components in the rational general or late endpoint cases.
The types of components are: (a) vertical lines Lp above the points p of the periodic
orbit P; (b) crosscuts Γ′(y, k, i) joining points of each Rk,i to the corresponding points
of Lk,i; (c) packets of crosscuts Γ′(y, k, i) above the subinterval of Rk,i consisting of
points which don’t correspond to points of Lk,i, together with the “central” arc Ak,i
which only intersects Ŝ∞ at a single point; and (d) the sets Dk,i which consist of a

shaded region together with the bold arcs connected to it, and which intersect Ŝ∞ at
three points. The figure depicts the case where qn−1 ∈ (cu, a); if qn−1 ∈ (αu, cu), then
the packets of crosscuts are in Lk,i rather than in Rk,i. The labeling on the s-axis is
for the case k ≥ 0.

Proof. (a) If p ∈ P then p is landing of level 0, and the proof that Lp is strongly stable is identical to

that of part (a) of Lemma 5.3.

(b) Since Ak,i = Gkn+i(A0,0), Γ′(y, k, i) = Gkn+i(Γ′(y, 0, 0)), and Dk,i = Gkn+i(D0,0) for all k ∈ Z,

0 ≤ i ≤ n− 1, and y ∈ (cu, a] \ {min(qn−1, q̂n−1)}, it suffices to consider the case k = i = 0.
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That the sets A0,0 and Γ′(y, 0, 0), and the crosscuts of D0,0, are strongly stable is immediate

from Lemma 4.57 and Remark 4.58, which gives that Ψ(η)0 = b for all η ∈ A0,0; Ψ(η)0 = f(τ(y))

for all η ∈ Γ′(y, 0, 0); and Ψ(η)0 = f(τ(qn−1)) for all η in the crosscuts of D0,0.

To complete the proof that D0,0 is strongly stable, it is therefore only required to show that for

all y ∈ [t(a, 1, 0), t(αu, 1, 0)] and all s ∈ [1 +u(qn−1), n+ 1] we have Ψ(y, s)0 = f(τ(qn−1)). Given

y ∈ [t(a, 1, 0), t(αu, 1, 0)] = {q0}∪
⋃∞
k=1(Lk,0∪Rk,0), we have y0 = q0 and yr = qn−r for 1 ≤ r ≤ n.

Since y1 = qn−1 and y1+i 6∈
◦
γ for 1 ≤ i ≤ n− 1, Lemma 4.20 gives that Ψ(y, s)0 = f(τ(qn−1)) for

all s ∈ [1 + u(qn−1), n+ 1] as required.

The proof that there are no connected strongly stable sets which strictly contain one of these sets

proceeds in the same way as in the proof of Lemma 5.3. �

In the NBT case, where qn−1 = cu, the interval (cu,min(qn−1, q̂n−1)) degenerates, leaving the

simpler situation described in the following lemma, whose proof works in exactly the same way as that

of Lemma 5.5. Its conclusions are illustrated by Figure 16.

Lemma 5.6. Let f be of rational NBT type, with q(κ(f)) = m/n ∈ (0, 1/2) ∩ Q. Then the strongly

stable components of D† are {∂′} and:

(a) for each p ∈ P, the line Lp = {p} × (0,∞];

(b) for each k ∈ Z and 0 ≤ i ≤ n− 1:

(i) for each y ∈ (cu, a], the crosscut Γ′(y, k, i).

(ii) the union Dk,i of

• the crosscut ξ′([t(αu, k + 1, i), t(a, k + 1, i)], uk,i), and

• the set [t(a, k + 1, i), t(αu, k + 1, i)] × [uk,i, vk,i].

Here uk,i = λkn+i(2), vk,i = λkn+i(n + 1), and both of the intervals in Ŝ are those with the

given endpoints which are disjoint from P. �

In the rational normal endpoint case, on the other hand, the interval (min(qn−1, q̂n−1), a] degen-

erates, giving rise to a more substantial modification to the description. The following lemma is

illustrated by Figure 17.

Lemma 5.7. Let f be of rational normal endpoint type, with q(κ(f)) = m/n ∈ [0, 1/2) ∩ Q, and

suppose that f is of right hand endpoint type, so that qn−1 = αu (the modifications in the left hand

endpoint case are given at the end of the lemma statement). Then the strongly stable components of

D† are {∂′} and:

(a) for each k ∈ Z and 0 ≤ i ≤ n− 1:

(i) the arc Ak,i = {t(cu, k, i)} × [rk,i,∞], where rk,i = λkn+i(2), i.e.

rk,i =

{
kn+ i+ 2 if k ≥ 0,

1/2|k|n−i−1 if k < 0.

(ii) for each y ∈ (cu, a), the crosscut Γ′(y, k, i).

(b) For each 0 ≤ i ≤ n− 1, the set

Di = Lqi
∪
⋃
k∈Z

Lt(a,k,i) ∪
⋃
k∈Z

Bk,i,
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kn+i+1

kn+i+2

(k+1)n+i+1

qi

Rk,i Rk+1,i Lk,iLk+1,i

Figure 16. Strongly stable components in the rational NBT case. The packets of
crosscuts which do not surround qi have degenerated, and every component except

for the lines Lp (p ∈ P) touches Ŝ∞ at two points. The labeling on the s-axis is for
the case k ≥ 0.

where Ly is the line {y} × (0,∞] and Bk,i = Lk,i × (0, uk,i] with uk,i = λkn+i(1), i.e.

uk,i =

{
kn+ i+ 1 if k ≥ 0,

1/2|k|n−i if k < 0.

In the left hand endpoint case qn−1 = a, the strongly stable components are given by replacing qi with

qi−m−1 mod n, t(a, k, i) with t(αu, k, i), and Lk,i with Rk,i in (b).

Proof. We suppose that qn−1 = αu, so that m/n > 0. The modifications needed for the case qn−1 = a

are straightforward (including for the special sub-case m/n = 0, when q0 = a is fixed by B, and

αu = b). Notice that, since the orbit of a is disjoint from
◦
γ, we have τ(Br(a)) = fr(a) for all r ≥ 0

by (3) (here the a on the left hand side is a ∈ S, while the a on the right hand side is a ∈ I). In

particular, fn(a) = τ(αu) = α, f(a) is periodic of period n, and τ(qi) = f i+1(a) for 0 ≤ i ≤ n− 1.

That the sets Ak,i and Γ′(y, k, i) are strongly stable is immediate from Lemma 4.57 and Remark 4.58.

To show that the sets Di are strongly stable it suffices, since G(Di) = Di+1 mod n, to consider the

case i = 0.

(i) Let y = q0 = 〈(q0, qn−1, qn−2, . . . , q1)
∞〉. Since y1 = qn−1 = αu and y1+i 6∈

◦
γ for all i ≥ 1,

Lemma 4.20 gives that Ψ(y, s)0 = f(τ(αu)) = f(a) for all s ∈ [1,∞]. On the other hand, if

s ∈ [1/2r, 1/2r−1) for some r ≥ 1, then Ψ(y, s)0 = (q0, s), and hence Ĥr(Ψ(y, s))0 = τ(Br(q0)) =

τ(qr mod n) = fr+1(a). Therefore, for each r ≥ 0,

Ĥr(Ψ(q0, s))0 = fr+1(a) for all s ∈ [1/2r,∞].
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PSfrag replacements

q0 qr

1/2n

1

n+1

L1,0 L0,0 L−1,0

Figure 17. Strongly stable components in the normal right hand endpoint case. The
types of components are: (a) packets of crosscuts Γ′(y, k, i) above each interval Lk,i,

together with the “central” arc Ak,i which only intersects Ŝ∞ at a single point; and
(b), for each i, the set Di consisting of the outermost crosscut above each Lk,i, the
rectangles above these crosscuts extending up to (but not including) s = 0, and the
line Lqi

above qi. In the figure, D0 is the union of the shaded region and all of the

bold arcs: it intersects Ŝ∞ at infinitely many points.

(ii) By a similar argument applied to y = t(a, 0, 0) =
〈
q0, a, B

−1(a), . . .
〉
, we obtain that, for

each r ≥ 0, Ĥr(Ψ(t(a, 0, 0), s))0 = fr+1(a) for all s ∈ [1/2r,∞].

Now for each k ∈ Z we have Gkn(t(a, 0, 0), s) = (t(a, k, 0), λkn(s)). By Corollary 4.10, we

obtain that for all k ∈ Z and all r ≥ 0,

Ĥr(Ψ(t(a, k, 0), s))0 = Ĥr(Ψ(Gkn(t(a, 0, 0), λ−kn(s))))0

= Ĥkn+r(Ψ(t(a, 0, 0), λ−kn(s)))0

= fkn(fr+1(a)) = fr+1(a) provided that λ−kn(s) ∈ [1/2r,∞].

Therefore, for each k ∈ Z and each r ≥ 0, we have

Ĥr(Ψ(t(a, k, 0), s))0 = fr+1(a) for all s ∈ [λkn(1/2r),∞].

(iii) Now let y = t(y, 0, 0) =
〈
q0, y, B

−1(y), . . .
〉
∈ L0,0, where y ∈ [a, αu). Then Ψ(y, 1)0 =

H(y, 1/2) = f(a) by (8) and (U1) of Definition 3.2. On the other hand, if s ∈ (0, 1) we

have Ψ(y, s) = 〈(q0, s), . . .〉 and hence, as in (i), if s ∈ [1/2r, 1/2r−1) for some r ≥ 1 then

Ĥr(Ψ(y, s))0 = fr+1(a). Therefore, for each r ≥ 0,

Ĥr(Ψ(y, s))0 = fr+1(a) for all s ∈ [1/2r, 1] and all y ∈ L0,0.

Since Gkn(L0,0) = Lk,0 for each k ∈ Z, a similar argument to that of part (ii) establishes that for

all k ∈ Z and all r ≥ 0,

Ĥr(Ψ(y, s))0 = fr+1(a) for all s ∈ [λkn(1/2r), uk,0] and all y ∈ Lk,0,
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where we have used that λkn(1) = uk,0 for all k ∈ Z.

Therefore, for all η1, η2 ∈ D0, there is some r ≥ 0 such that Ĥr(Ψ(η1))0 = Ĥr(Ψ(η2))0 = fr+1(a),

establishing that D0 is strongly stable as required.

The proof that there are no connected strongly stable sets which strictly contain one of these sets

proceeds in the same way as in the proof of Lemma 5.3. �

The quadratic-like strict left endpoint case (Section 4.7.2) is identical to the normal endpoint case,

except that there are additional half-open intervals Ii = {t(y) : y ∈ (qi, pi]} in Ŝ (for 0 ≤ i ≤ n − 1)

whose points satisfy B̂r(t(y))0 6∈ γ for all r ∈ Z. The strongly stable component containing (t(y),∞)

is the line {t(y)} × (0,∞], exactly as in the irrational case; and other strongly stable components are

as in the normal endpoint case. We therefore have the following description.

Lemma 5.8. Let f be of rational quadratic-like strict left endpoint type, with q(κ(f)) = m/n ∈
(0, 1/2) ∩Q. Then the strongly stable components of D† are {∂′} and:

(a) for each k ∈ Z and 0 ≤ i ≤ n− 1:

(i) the arc Ak,i = {t(cu, k, i)} × [rk,i,∞], where rk,i = λkn+i(2), i.e.

rk,i =

{
kn+ i+ 2 if k ≥ 0,

1/2|k|n−i−1 if k < 0.

(ii) for each y ∈ (cu, a), the crosscut Γ′(y, k, i).

(b) For each 0 ≤ i ≤ n− 1, the set

Di = Lqi−m−1 mod n
∪
⋃
k∈Z

Lt(αu,k,i) ∪
⋃
k∈Z

Bk,i,

where Ly is the line {y} × (0,∞] and Bk,i = Rk,i × (0, uk,i] with uk,i = λkn+i(1), i.e.

uk,i =

{
kn+ i+ 1 if k ≥ 0,

1/2|k|n−i if k < 0.

(c) For each 0 ≤ i ≤ n− 1 and each y ∈ (qi, pi], the line Lt(y).

The following straightforward consequence of the above proofs will be useful in Section 5.4.

Lemma 5.9.

(a) Let f be of irrational or rational early endpoint type. Then for each r ≥ 1 and each y ∈ (cu, a),

the diameters of the strongly stable component images Ψ(Ar) and Ψ(Cr,y) are bounded above by

|b− a|/2r−1.

(b) Let f be of rational interior or late endpoint type with q(κ(f)) = m/n ∈ (0, 1/2)∩Q. Then for each

k ≥ 0, each 0 ≤ i ≤ n− 1, and each y ∈ (cu, a] \ {min(qn−1, q̂n−1)}, the diameters of the strongly

stable component images Ψ(Ak,i), Ψ(Γ′(y, k, i)) and Ψ(Dk,i) are bounded above by |b− a|/2kn+i.

(c) Let f be of rational normal endpoint type or quadratic-like strict left endpoint type, with q(κ(f)) =

m/n ∈ (0, 1/2)∩Q. Then for each k ≥ 0, each 0 ≤ i ≤ n−1, and each y ∈ (cu, a), the diameters of

the strongly stable component images Ψ(Ak,i) and Ψ(Γ′(y, k, i)) are bounded above by |b−a|/2kn+i.

Proof. In the irrational or early endpoint case, the proof of Lemma 5.3 shows that every element ξ of

Ψ(A1) (respectively Ψ(C1,y)) has ξ0 = b (respectively ξ0 = f(τ(y))). Therefore any two elements of

Ψ(Ar) or of Ψ(Cr,y) have equal (r− 1)th entries, and so are within distance |b− a|/2r−1 of each other.
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This establishes (a). Parts (b) and (c) follow similarly from the proofs of Lemmas 5.5 and 5.7, which

show that every element ξ of Ψ(A0,0) (respectively Ψ(Γ′(y, 0, 0)), Ψ(D0,0)) has ξ0 = b (respectively

ξ0 = f(τ(y)), ξ0 = f(τ(qn−1))). �

5.3. Construction of the sphere homeomorphism.

Definition 5.10 (The decomposition G′ of D). Let G′ be the decomposition of D whose elements are:

• {η} for each η ∈ D \D†;
• Strongly stable components whose closures don’t contain ∂′; and

• The set X which is the union of the strongly stable components whose closures contain ∂′

(including the strongly stable component {∂′} itself).

Remark 5.11. It follows from the explicit descriptions of the strongly stable components that those

whose closures don’t contain ∂′ are compact; and that the set X is also compact. Therefore G′ is the

largest partition of D into compact sets with the property that every strongly stable component is

contained in a single partition element.

Moreover, the elements of G′ are connected, and are permuted by G, since G(X) = X.

Lemma 5.12. The restriction of Ψ to each element of G′, apart from the single points of D \ D†

(where it is not defined), is a homeomorphism onto its image.

Proof. This is immediate from the descriptions of the strongly stable components and Corollary 4.19

in all cases except for the element X of G′ in the irrational, early endpoint, normal endpoint, and

quadratic-like strict left endpoint cases.

Suppose that f is of irrational type, so that the strongly stable components are given by Lemma 5.3.

Then X∩ Ŝ∞ is the Cantor set Λ∞. Ψ|X is injective since Ψ is injective on D and on Λ∞ (Corollary 4.9

and Lemma 4.16), and Ψ(η) ∈ Î if and only if η ∈ Ŝ∞. Since Ψ is continuous away from Ŝ∞
(Corollary 4.9), it is only necessary to show that Ψ|X is continuous at the points of Λ∞ (of course, Ψ

itself is not continuous at these points).

Now Ψ|Λ×[0,∞] is continuous by Lemma 4.17, since Λ is uniformly landing of level 0. Thus it

suffices to show that if (y, s) ∈
⋃
r∈Z(Gr × (0, ur]) is sufficiently close to a point (y′,∞) of Λ∞, then

Ψ(y, s) is close to Ψ(y′,∞), where Gr × (0, ur] are the rectangles of Lemma 5.3 (b)(iii). In order

to do this we will show that, for all N ≥ 2, if (y, s) ∈ Gr × (0, ur] for some r, and s > N , then

Ψ(y, s)N−2 = Ψ(t(a, r),∞)N−2. This will establish the result, since if (y, s) is close to (y′,∞) then

(t(a, r),∞) ∈ Λ∞ is also close to (y′,∞).

Recall that ur < 1 for r < 1, and ur = r for r ≥ 1. So if (y, s) ∈ Gr × (0, ur] and s > N , we have

N < s ≤ r. Observe that G−(r−1)(y, s) =
(
B̂−(r−1)(y), λ−(r−1)(s)

)
∈ G1 × (0, 1].

Let m ≥ 0 be such that r − m ≤ s < r − m + 1, so that λ−(r−1)(s) ∈ [1/2m, 1/2m−1). By the

proof of Lemma 5.3 (b)(iii), we have Ĥm(Ψ(G−(r−1)(y, s)))0 = fm+1(a): therefore, by Corollary 4.10,

Ĥm−r+1(Ψ(y, s))0 = fm+1(a), and so Ψ(y, s)r−m−1 = fm+1(a). Since r −m− 1 > s− 2 > N − 2, it

follows that

Ψ(y, s)N−2 = fr−(N−2)(a) whenever (y, s) ∈ Gr × (0, r] with s > N.

On the other hand, Ψ(t(a, r),∞) = ω(t(a, r)) =
〈
fr(a), . . . , f(a), a, τ(B−1(a)), . . .

〉
by (10), since

t(a, r) ∈ Lr. Therefore Ψ(t(a, r),∞)N−2 = fr−(N−2)(a), as required.
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The proof when f is of early endpoint type is identical, with the periodic orbit Q in place of the

Cantor set Λ; and the proof when f is of normal endpoint or quadratic-like strict left endpoint type

involves only minor modifications. �

Definition 5.13 (The decomposition G of T̂ ). Let G be the decomposition of T̂ whose elements are:

• the images under Ψ of the elements of G′, other than points of D \D†; and

• single points which are not in the image of Ψ.

By Corollary 4.10 and Remark 5.11, the elements of G are permuted by Ĥ.

Lemma 5.14. G is a non-separating monotone upper semi-continuous decomposition of T̂ .

Proof. The elements of G are compact, connected, and do not separate T̂ since the elements of G′ are

compact, connected, and contractible, and the restriction of Ψ to each of them is a homeomorphism

by Lemma 5.12.

That G is upper semi-continuous is a special case of Lemma 5.26 below (where G is a single slice of

a sliced decomposition which is shown to be upper semi-continuous). �

Theorem 5.15 (Semi-conjugacy to sphere homeomorphisms). Let f be a unimodal map satisfying the

conditions of Convention 2.8. Then there is a sphere homeomorphism F : Σ → Σ and a continuous

surjection g : Î → Σ which semi-conjugates f̂ : Î → Î to F : Σ→ Σ.

Every fiber of g except for at most one contains three or fewer points, and only countably many

fibers contain three points.

Proof. By Lemma 5.14 and Moore’s theorem, Σ = T̂ /G is a sphere; and since Ĥ permutes the elements

of G, the map F = Ĥ/G : Σ → Σ is a homeomorphism. Since every element of G intersects Î, and

Ĥ|Î = f̂ , it follows that Σ is also the quotient of Î by the equivalence relation ∼G|Î on Î induced by G;

and the canonical projection g : Î → Î/∼G|Î = Σ is a semi-conjugacy between f̂ and F .

The statement about the cardinalities of the fibers of g is immediate from the descriptions of the

elements of G′ (Definition 5.10 and Lemmas 5.3, 5.5, 5.6, 5.7, and 5.8), every one of which except for X

intersects Ŝ∞ in three or fewer points, and only countably many of which can intersect Ŝ∞ in three

points. �

Remark 5.16. Since Ψ|X is a homeomorphism onto its image (Lemma 5.12), the restriction of f̂ to the

exceptional fiber Ψ(X∩Ŝ∞) of g is topologically conjugate to the action of the circle homeomorphism B̂

on an invariant subset in the circle, and therefore has topological entropy zero. It follows from a result

of Bowen (Theorem 17 of [13]), using the fact that all other fibers are finite, that f̂ : Î → Î and

F : Σ → Σ have the same topological entropy. Since f̂ and f also have the same topological entropy

(this follows from the same result of Bowen), we conclude that the sphere homeomorphism F : Σ→ Σ

has the same topological entropy as the unimodal map f : I → I.

Remark 5.17. By the proof of Theorem 5.15, the fibers of the semi-conjugacy g : Î → Σ can be

described explicitly. Every non-trivial fiber is contained in the set of accessible points and, conversely,

all but countably many trivial fibers are contained in the set of inaccessible points.

The accessible fibers of g are as follows:
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(a) In the irrational case, there is one fiber equal to ω(Λ), where Λ is the Cantor set of Definition 4.41;

and there are countably many accessible trivial fibers {ω(t(cu, r))} for r ∈ Z. All other accessible

fibers are of the form {ω(t(y, r)), ω(t(ŷ, r))}, where y ∈ ◦γ \ {cu} and r ∈ Z.

(b) In the early endpoint case there is one fiber

ω(Ŝ∞) \ {ω(t(y, r)) : y ∈ ◦γ, r ∈ Z}

which is either a countable union of disjoint intervals, or such a union together with finitely many

isolated points; and there are countably many accessible trivial fibers {ω(t(cu, r))} for r ∈ Z. All

other accessible fibers are of the form {ω(t(y, r)), ω(t(ŷ, r))}, where y ∈ ◦γ \ {cu} and r ∈ Z.

(c) In the normal endpoint case with q(κ(f)) = m/n there is one countable fiber

ω(Q) ∪ {ω(t(A, k, i)) : k ∈ Z, 0 ≤ i ≤ n− 1},

where A = a if κ(f) = rhe(m/n), and A = αu if κ(f) = lhe(m/n); and there are countably many

accessible trivial fibers {ω(t(cu, k, i))} for k ∈ Z and 0 ≤ i ≤ n− 1. All other accessible fibers are

of the form {ω(t(y, k, i)), ω(t(ŷ, k, i))}, where y ∈ ◦γ \ {cu}, k ∈ Z and 0 ≤ i ≤ n− 1.

(d) In the quadratic-like strict left end point case with q(κ(f)) = m/n, there is one fiber

ω(Q) ∪
n−1⋃
i=0

ω(Ii) ∪ {ω(t(αu, k, i)) : k ∈ Z, 0 ≤ i ≤ n− 1}

which is the union of n disjoint compact intervals and countably many points; and there are

countably many accessible trivial fibers {ω(t(cu, k, i))} for k ∈ Z and 0 ≤ i ≤ n − 1. All other

accessible fibers are of the form {ω(t(y, k, i)), ω(t(ŷ, k, i))}, where y ∈ ◦γ \ {cu}, k ∈ Z and 0 ≤ i ≤
n− 1.

(e) In the rational general and late endpoint cases with q(κ(f)) = m/n, there is one fiber ω(P) of

cardinality n; countably many 3-element fibers of the form

{ω(t(q̂n−1, k, i)), ω(t(a, k + 1, i)), ω(t(αu, k + 1, i))} for k ∈ Z and 0 ≤ i ≤ n− 1;

and countably many accessible trivial fibers {ω(t(cu, k, i))} for k ∈ Z and 0 ≤ i ≤ n− 1. All other

accessible fibers are of the form {ω(t(y, k, i)), ω(t(ŷ, k, i))}, where y ∈ ◦γ \ {qn−1, q̂n−1, cu}, k ∈ Z,

and 0 ≤ i ≤ n− 1.

(f) In the rational NBT case with q(κ(f)) = m/n, there is one fiber ω(P) of cardinality n. All

other accessible fibers are of the form {ω(t(y, k, i)), ω(t(ŷ, k, i))}, where y ∈ γ \ {cu}, k ∈ Z, and

0 ≤ i ≤ n− 1.

Note that the exceptional fiber of g can only be infinite when f is of irrational or endpoint type. In

particular, for the tent family {ft}, the semi-conjugacy has only finite fibers for an open dense subset

of parameters.

An immediate consequence of Theorem 5.15 is that any unimodal map with topological entropy

greater than 1
2 log 2 has natural extension semi-conjugate to a sphere homeomorphism, although the

fibers of the semi-conjugacy may not be so well behaved when the conditions of Convention 2.8 are

not satisfied.

Corollary 5.18. Let f be any unimodal map (not necessarily satisfying the conditions of Conven-

tion 2.8) with topological entropy h(f) > 1
2 log 2. Then the natural extension f̂ is semi-conjugate to a

sphere homeomorphism with the same topological entropy as f .
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Proof. h(f) > 1
2 log 2 is equivalent to κ(f) � 101∞. Now f is semi-conjugate to a tent map F with

κ(F ) = κ(f) and h(F ) = h(f) (see [31, 36]), and hence f̂ : Îf → Îf is semi-conjugate to F̂ : ÎF → ÎF ,

which is semi-conjugate to a sphere homeomorphism of topological entropy h(F ) by Theorem 5.15 and

Remark 5.16. �

5.4. Continuously varying families. Our aim in this section is the following result, which shows

that the above construction of sphere homeomorphisms can be carried out continuously.

Theorem 5.19. Let J be a compact parameter interval, and {ft}t∈J be a continuously varying family

of unimodal maps, all of which are defined on the same core interval I and satisfy the conditions of

Convention 2.8. For each t, let Ft : Σt → Σt be the sphere homeomorphism constructed from ft in

the proof of Theorem 5.15. Then there is a continuously varying family {χt : S2 → S2}t∈J of sphere

homeomorphisms such that χt is topologically conjugate to Ft for each t.

In particular, each natural extension f̂t : Ît → Ît is semi-conjugate to χt, by a semi-conjugacy all

but one of whose fibers contains three or fewer points, and only countably many of whose fibers contain

three points.

Remark 5.20. If ft : It → It, where {It} is a continuously varying family of compact intervals —

as occurs naturally when families of unimodal maps are restricted to their core intervals — then the

theorem applies after conjugating by a continuously varying affine coordinate change.

Throughout this section, {ft}t∈J will denote a fixed family of unimodal maps as in the statement

of Theorem 5.19. Because the domain I = [a, b] is fixed, the circle S and the sphere T are independent

of the parameter t. However, almost every other object is parameter dependent. This dependence

will generally be indicated with a subscript t, but will sometimes be suppressed, particularly when it

doesn’t serve to illuminate continuity or convergence arguments, in order to avoid excessive notation.

For example, we will not normally make explicit the parameter dependence of cu and αu.

Recall that {f t : T → T} is a continuously varying family of unwrappings of {ft}, and that the

homeomorphisms Ĥt : T̂t → T̂t are the natural extensions of the near-homeomorphisms

Ht = Υ ◦ f t : T → T.

Let

T̂∗ =
⊔
t∈J

(
T̂t × {t}

)
,

topologized as a compact subset of TN × J . The following result from [14] — which is the key lemma

used in the proof of Theorem 2.14 — tells us that T̂∗ is homeomorphic to S2 × J .

Theorem 5.21. There is a slice-preserving homeomorphism β : T̂∗ → T × J .

Here slice-preserving means that β(T̂t × {t}) = T × {t} for each t. In [14] this result is stated not

for T̂∗, but for the inverse limit T̂ × J of the fat map T × J → T × J defined by (x, t) 7→ (Ht(x), t).

However T̂∗ and T̂ × J are homeomorphic by the slice-preserving homeomorphism (〈x0, x1, . . .〉 , t) 7→
〈(x0, t), (x1, t), . . .〉.

Let Ĥ∗ : T̂∗ → T̂∗ be the slice-preserving homeomorphism defined by Ĥ∗(x, t) = (Ĥt(x), t), and G∗
be the Ĥ∗-invariant decomposition of T̂∗ induced in each slice by Gt: that is,

G∗ = {g × {t} : t ∈ J and g ∈ Gt}.
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The elements of G∗ are each contained in a slice of T̂∗, and moreover are compact, connected, and do

not separate their slices, since these properties are inherited from the Gt (see Lemma 5.14). Lemma 5.26

below states that G∗ is upper semi-continuous. We now assume this lemma and show how to complete

the proof of the Theorem 5.19. The key ingredient is the following theorem of Dyer and Hamstrom [23]

(both statement and proof of this result are contained in the proof of Theorem 8 of [23]: note that a

decomposition is upper semi-continuous if and only if its quotient mapping is closed).

Theorem 5.22 (Dyer – Hamstrom). Let G be a monotone upper semi-continuous decomposition of

S2×J into compact subsets, each of whose elements lies in, and does not separate, some slice S2×{t}.
Suppose also that there is an arc L in S2 × J which intersects each slice S2 × {t} in a singleton

decomposition element. Then there is a slice-preserving homeomorphism K : (S2 × J)/G → S2 × J .

It follows that, assuming the upper semi-continuity of G∗, we have the commutative diagram of

Figure 18. Here π is the quotient mapping of the decomposition G∗; K is the homeomorphism of

Theorem 5.22 (which exists since, by Theorem 5.21, T̂∗ is slice-preserving homeomorphic to S2 × J : a

suitable arc L is the one which intersects each T̂t ×{t} at (zt, t), where zt ∈ Ît is the fixed point of Ĥt

which lies above the fixed point zt of ft in (c, b)); and Ĥ∗/G∗, and χ∗ are the homeomorphisms which

make the diagram commute. All of the maps in the diagram are slice-preserving, and in particular

χ∗ : S2 × J → S2 × J defines a continuously varying family {χt}t∈J of sphere homeomorphisms.

Restricting the diagram to a single slice, we see that χt is topologically conjugate to the homeomorphism

Ft = Ĥt/Gt of Theorem 5.15, which completes the proof of Theorem 5.19.

T̂∗
Ĥ∗−−−−→ T̂∗

π

y yπ
T̂∗/G∗

Ĥ∗/G∗−−−−→ T̂∗/G∗

K

y yK
S2 × J χ∗−−−−→ S2 × J.

Figure 18. Construction of the continuous family of sphere homeomorphisms.

It therefore only remains to show that the decomposition G∗ of T̂∗ is upper semi-continuous. We do

this by first considering the decompositions G′t of the spaces Dt — which are described explicitly by

Lemmas 5.3, 5.5, 5.6, 5.7, and 5.8 — and then transferring the results using the maps Ψt.

Recall from Definition 5.10 that, for each t ∈ J , the decomposition G′t of Dt has as elements

• Strongly stable components whose closures are disjoint from ∂′t,

• The union Xt of strongly stable components whose closures contain ∂′t, and

• Single points at which Ψt is not defined.

We write

D∗ =
⊔
t∈J

(
Dt × {t}

)
,

topologized as a compact subset of
(
SN × [0,∞]

)
/
(
SN × {0}

)
× J , and define

G′∗ = {g′ × {t} : t ∈ J and g′ ∈ G′t}
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to be the sliced decomposition of D∗ induced on each slice by the decompositions G′t.
Recall also (Definitions 4.11) that, for each t, we denote by D†t the subset of Dt on which Ψt is

defined: that is, D†t = Dt if ft is of irrational or rational endpoint type, and otherwise D†t = Dt \Qt.

Writing D†∗ for the subset
⊔
t∈J(D†t × {t}) of D∗, we can then define the function Ψ∗ : D†∗ → T̂∗ by

Ψ∗(η, t) = (Ψt(η), t). With these definitions, the non-trivial elements of the decomposition G∗ of T̂∗
are precisely the images under Ψ∗ of the non-trivial elements of G′∗.

The proof of the following is essentially the same as that of Corollary 4.9.

Lemma 5.23. Ψ∗ is continuous at ((y, s), t) ∈ D†∗ whenever s <∞.

Proof. For each N ∈ N, we have that, whenever s < N + 1,

Ψ∗ ((y, s), t) =
〈
HN
t (yN , λ

−N (s)), HN
t (yN+1, λ

−(N+1)(s)), . . .
〉

by (9), (6), and (4). This expression is clearly continuous in ((y, s), t). �

The main technique in the proof of upper semi-continuity of G∗ is to take certain convergent se-

quences in T̂∗, transfer them to D†∗ using Ψ−1
∗ , draw conclusions about the limit in D†∗, and transfer

back to T̂∗. In order to do this, we need to know that Ψ∗ respects the limits of certain sequences,

although it may not be continuous at those limits. The following lemma enables us to do this: parts (a)

and (b) are natural, while part (c), which is more esoteric, is motivated by the specific requirements

of the proof.

Lemma 5.24. Let
(
(y(j), sj), tj

)
→ ((y, s), t) be a convergent sequence in D†∗. Then Ψ∗

(
(y(j), sj), tj

)
→

Ψ∗ ((y, s), t) if one of the following holds:

(a) s <∞;

(b) y and all of the y(j) are landing of level 1; or

(c) y is landing of level 1, and there is a sequence nj → ∞ such that for each j we have sj ≤ nj + 1

and y
(j)
i 6∈

◦
γtj for 2 ≤ i ≤ nj.

Proof.

(a) By Lemma 5.23.

(b) We can assume that s = ∞ since otherwise (a) applies. Fix r ≥ 1. Since y ∈ Lr, Corollary 4.14

gives Ψt(y,∞)r = τ(yr); and since y(j) ∈ Lr, Lemma 4.13 gives Ψtj (y(j), sj)r = τ(y
(j)
r ), provided

that j is large enough that sj ≥ r+1. Therefore for each r ≥ 1 we have Ψtj (y(j), sj)r → Ψt(y,∞)r

as j →∞, and the result follows.

(c) We can again assume that s = ∞. Fix r ≥ 1. As for (b), we have Ψt(y,∞)r = τ(yr). For each j

large enough that nj ≥ r+ 2, we have y
(j)
(r+1)+i 6∈

◦
γtj for 1 ≤ i ≤ nj − (r+ 1), so that Lemma 4.20

gives

Ψtj (y(j), s′)r = ftj (τ(y
(j)
r+1)) = τ(y(j)

r ) for all s′ ∈ [r + 2, nj + 1].

In particular, since sj ≤ nj+1 for all j, we have Ψtj (y(j), sj)r = τ(y
(j)
r ) whenever j is large enough

that sj ≥ r + 2, so that Ψtj (y(j), sj)r → Ψt(y,∞)r as j →∞.

�

The following abbreviated language will be convenient.
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Definition 5.25 (Type and height of a parameter). We say that a parameter t ∈ J is of irrational,

rational, and rational interior, early endpoint, normal endpoint, quadratic-like strict left endpoint, or

late endpoint type according as ft is. We define the height of t to be q(κ(ft)).

Lemma 5.26. The decomposition G∗ of T̂∗ is upper semi-continuous.

Proof. Let (tj) be a sequence in J converging to t ∈ J , and for each j, let gj be a decomposition

element of Gtj . We need to show that there is a decomposition element g ∈ Gt with the property that,

whenever (ξj , tj) is a sequence in T̂∗ with (ξj , tj)→ (ξ, t) and ξj ∈ gj for all j, then we have ξ ∈ g.

This is clearly the case if infinitely many of the gj are singletons, so we can assume that there are

decomposition elements g′j ∈ G′tj with Ψtj (g′j) = gj for each j.

Observe that if the required property holds for some subsequence of (tj , gj), then it also holds for

the full sequence. By taking such a subsequence, we can therefore further assume that all of the tj

are of rational interior or late endpoint type (type A); or that they are all of rational normal or

quadratic-like endpoint type (type B); or that they are all of irrational or rational early endpoint type

(type C). We will consider each of these three cases in turn. The arguments will also depend on the

type of the limiting parameter t. We note that t can only be of type A if the tj are also of type A,

and if the sequence mj/nj of their heights is eventually constant, since the set Jq of parameters t

of rational interior or late endpoint type with prescribed height q is open in J . This is because

Jq = {t ∈ J : (wq1)∞ ≺ κ(ft) ≺ 10(ŵq1)∞} (see Definitions 2.23 and 2.25); because if κ(ft) = (wq0)∞

then the turning point of ft is not periodic by Definition 2.4; and because 10(ŵq1)∞ is not a periodic

sequence by Lemma 2.22 (d).

The method of proof is the same in all three cases. We first use the explicit description of the

decompositions G′t provided by Lemmas 5.3, 5.5, 5.6, 5.7, and 5.8 to show that either (i) the diameters

of (a subsequence of) the decomposition elements gj converge to zero, in which case the result is

obvious; or (ii) there is a decomposition element g′ ∈ G′t with the property that, whenever (ηj , tj) is

a sequence in D†∗ with (ηj , tj) → (η, t) and ηj ∈ g′j for all j, we have η ∈ g′. Then if (ξj , tj) → (ξ, t)

with ξj ∈ gj for all j, we define ηj = Ψ−1
tj (ξj) ∈ g′j , and take a subsequence if necessary to ensure that

(ηj , tj) → (η, t) with η ∈ g′. Writing g = Ψt(g
′), it only remains to show, using Lemma 5.24, that

(ξj , tj) = Ψ∗(ηj , tj)→ Ψ∗(η, t), so that ξ ∈ g as required.

We will therefore assume, in each case, that (ηj , tj) =
(
(y(j), sj), tj

)
→ (η, t) = ((y, s), t) is a

sequence in D†∗, and show that the decomposition element g′ ∈ G′t which contains η only depends on

the decomposition elements g′j ∈ G′tj which contain the ηj . The proof in the given case will then be

completed by showing (or observing) that one of the conditions of Lemma 5.24 holds.

The decomposition elements Xt ∈ G′t (see Definition 5.10) which contain ∂′ play a special role in the

arguments. Observe that in all cases these contain the verticals {y} × [0,∞] above the points y ∈ Ŝt
which have the property that B̂rt (y)0 6∈

◦
γt for all r ∈ Z; and that in the rational interior and late

endpoint cases, Xt is equal to the union of these verticals.

If infinitely many of the sj are equal to 0 then s = 0, and hence (using Lemma 5.24 (a)), ξ ∈ Ψt(Xt).

We will therefore always assume that s > 0 and that sj > 0 for all j.

Sequences of type A are the hardest to treat, mainly because there are decomposition elements (other

than Xt) which are not uniformly landing. They also involve the most subcases, since limits of type A

are possible, and because limits of type B can be approached in two quite different ways, either from
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within their height interval or from outside it. We will treat this case in detail — although methods

of arguments will be successively abbreviated as they recur — and treat sequences of types B and C

more briefly. Although the proof is quite long, it involves nothing more than the careful enumeration

of cases and their analysis using the explicit description of the decomposition G′∗.

Case A: All tj are of rational interior or late endpoint type.

In this case the decompositions G′tj are given by Lemma 5.5 or, in the NBT case, by Lemma 5.6.

Let the height of tj be mj/nj . Suppose first that infinitely many (and so, without loss of generality,

all) of the ηj are contained in the nj-stars Xtj , so that for each j we have B̂rtj (y(j))0 6∈
◦
γtj for all r ∈ Z.

Since B̂t and γt vary continuously with t, it follows that B̂rt (y)0 6∈
◦
γt for all r ∈ Z: therefore η ∈ Xt.

Observing that y and y(j) are landing of level 0, and hence of level 1, completes the proof using

Lemma 5.24 (b).

We can therefore assume that none of the ηj lie in Xtj , and so can define kj ∈ Z and 0 ≤ ij ≤ nj−1

such that

ηj ∈ Akj ,ij ∪Dkj ,ij ∪
⋃

y∈(cu,a]\{min(qnj−1,q̂nj−1)}
Γ′(y, kj , ij)

for each j, where Akj ,ij , Dkj ,ij , and Γ′(y, kj , ij) are the elements of G′tj defined in the statements of

Lemmas 5.5 and 5.6 (we suppress the dependence of these decomposition elements, as well as that

of cu and qnj−1, on tj).

There are three possibilities:

(a) The sequence (njkj + ij) is not bounded above. Then, by Lemma 5.9 (b), there is a subsequence

of the ξj = Ψtj (ηj) contained in decomposition elements whose diameters go to zero.

(b) The sequence (njkj + ij) is not bounded below so that, taking a subsequence, we can assume that

kj < 0 for all j and that njkj+ij → −∞. For each j, we therefore have either that B̂rtj (y(j))0 6∈
◦
γtj

for all r ∈ Z with r ≤ −(njkj + ij + 1), or that sj ≤ 2njkj+ij+1 (depending on whether ηj is in

a vertical of its decomposition element, or is in one of the horizontals, or disks of Dkj ,ij ). Since

s 6= 0 it follows that B̂rt (y)0 6∈
◦
γt for all r ∈ Z. Thus η ∈ Xt and the proof is completed using

Lemma 5.24 (b).

(c) The sequence (njkj + ij) is bounded so that, taking a subsequence, we can assume it to be a

constant N . Acting on T̂∗ by the decomposition-preserving homeomorphism Ĥ−N∗ , we can further

assume that N = 0 (i.e. that kj = ij = 0 for all j), so that

ηj ∈ A0,0 ∪D0,0 ∪
⋃

y∈(cu,a]\{min(qnj−1,q̂nj−1)}
Γ′(y, 0, 0) for all j.

Taking another subsequence, we can assume that ηj ∈ A0,0 for all j; or ηj ∈ D0,0 for all j; or

ηj ∈
⋃
y Γ′(y, 0, 0) for all j.

1. If ηj ∈ A0,0 for all j, then y(j) = t(cu, 0, 0) =
〈
Btj (a), cu, B

−1
tj (cu), B−2

tj (cu), . . .
〉

(Defini-

tion 4.48 (b)) and sj ∈ [2,∞]. Therefore s ∈ [2,∞], and since Bt : S → S, B−1
t : S \ {Bt(a)} → S,

and cu all depend continuously on t, we have y =
〈
Bt(a), cu, B

−1
t (cu), B−2

t (cu), . . .
〉

provided that

cu is not in the Bt-orbit of a: that is, provided that t is not of NBT type.
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If t is of rational interior, late endpoint, or normal or quadratic-like endpoint type but not

of NBT type, then y = t(cu, 0, 0), and hence η ∈ A0,0 (compare with Definition 4.48 (b) and

Lemmas 5.5, 5.7, and 5.8); while if t is of irrational or early endpoint type then y = t(cu, 1) and

hence η ∈ A1,t (compare with Definition 4.37 (a) and Lemma 5.3). If t is of NBT type, then t and ti

(for sufficiently large i) all have the same height m/n, and by taking a subsequence we can assume

that either Bntj (a) ∈ (cu, a] for all i, or that Bntj (a) ∈ [αu, cu) for all i (it is impossible to have

Bntj (a) = cu, since there is no decomposition element A0,0 in the NBT case). In the former case we

have that B−ntj (cu) → αu, so that y =
〈
Bt(a), cu, B

−1
t (cu), . . . , B

−(n−1)
t (cu), αu, B

−1
t (αu), . . .

〉
=〈

q0, qn−1, qn−2, . . . , q0, αu, B
−1
t (αu), . . .

〉
= t(αu, 1, 0); and in the latter case we have B−ntj (cu)→ a,

so that y = t(a, 1, 0). Hence η ∈ D0,0 (compare with Lemma 5.6).

Since y and all of the y(j) are landing of level 1, the proof when ηj ∈ A0,0 for all j is complete

by Lemma 5.24 (b).

2. If ηj ∈ D0,0 for all j, then, referring to the descriptions of D0,0 in the statements of Lemmas 5.5

and 5.6, we have that for each j one of the following occurs (and so, taking a subsequence, one of

them occurs for all j):

(i) ηj is in one of the verticals of the crosscuts in the description of D0,0: that is, y(j) is one of

t(q̂nj−1, 0, 0), t(a, 1, 0), and t(αu, 1, 0), and sj ∈ [1+u(qnj−1),∞] (with the case t(q̂nj−1, 0, 0)

omitted if tj is of NBT type). By Definition 4.48, we have

t(q̂nj−1, 0, 0) =
〈
Btj (a), q̂nj−1, B

−1
tj (q̂nj−1), B−2

tj (q̂nj−1), . . .
〉
,

t(a, 1, 0) =
〈
Btj (a), qnj−1, . . . , q1, q0, a, B

−1
tj (a), B−2

tj (a), . . .
〉
, and

t(αu, 1, 0) =
〈
Btj (a), qnj−1, . . . , q1, q0, αu, B

−1
tj (αu), B−2

tj (αu), . . .
〉
.

Note also that the function u = ut : S → [0, 1] of Definition 4.4 varies continuously with t.

(ii) ηj is in a horizontal of the crosscuts in the description of D0,0, but does not lie in the set

[t(a, 1, 0), t(αu, 1, 0)] × [u0,0, v0,0]: that is, y(j) = t(y, 0, 0) =
〈
Btj (a), y, B−1

tj (y), . . .
〉

for

some y between qnj−1 and q̂nj−1, and sj = 1 + u(qnj−1). (This case does not occur if tj is of

NBT type.)

(iii) y(j) ∈ [t(a, 1, 0), t(αu, 1, 0)] and sj ∈ [1 + u(qnj−1), nj + 1]. (Here the interval is the one with

the given endpoints which contains q0: therefore y(j) lies in this interval if and only if its

first nj + 1 entries are
〈
Btj (a), B

nj

tj (a), . . . Btj (a), . . .
〉

.)

Consider first the case where t is of rational interior or late endpoint type with height m/n, so

that mj/nj = m/n for all (sufficiently large) j. Since nj = n, sequences (ηj) of type (i) converge

to (y, s) with y ∈ {t(q̂n−1, 0, 0), t(a, 1, 0), t(αu, 1, 0)} and s ∈ [1 + u(qn−1),∞] (notice that if t is

of NBT type and tj is not, then sequences of the form t(q̂n−1, 0, 0) — which depend on j since

both qn−1 and Btj do — converge either to t(a, 1, 0) or t(αu, 1, 0)). Sequences (ηj) of type (ii)

converge either to (t(y, 0, 0), s) with y between qn−1 and q̂n−1 and s = 1 + u(qn−1), or to limits of

type (i). Finally, sequences (ηj) of type (iii) converge to (y, s) with y ∈ [t(a, 1, 0), t(αu, 1, 0)] and

s ∈ [1 + u(qn−1), n+ 1].
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Therefore η ∈ D0,0. Since y and all of the y(j) are landing of level 1 in type (i), and s <∞ in

types (ii) and (iii), the proof in this case is complete.

Now suppose that t is of rational normal or quadratic-like endpoint type with height m/n. We

will assume that this is a right hand endpoint, so that qn−1 = Bnt (a) = αu: the left hand endpoint

cases are similar. By taking a subsequence, we can reduce to one of two possibilities: first, that

mj/nj = m/n for all j (we approach the endpoint from inside the height interval); or second, that

nj →∞ as j →∞ (we approach the endpoint from outside the height interval).

• Suppose that we approach the endpoint from inside the height interval. Then sequences (ηj)

of type (i) converge to (y, s) with y ∈ {t(a, 0, 0), t(a, 1, 0), t(a, 2, 0)} and s ∈ [1,∞]. Se-

quences (ηj) of type (ii) converge either to (t(y, 0, 0), 1) for some y ∈ ◦
γt, or to limits of

type (i). Finally, sequences (ηj) of type (iii) converge to (y, s) with s ∈ [1, n + 1] and the

first n+ 1 entries of y being 〈Bt(a), αu, . . . , Bt(a), . . .〉: that is, y ∈
⋃
k≥1 Lk,0.

Therefore η is in the set D0 of Lemma 5.7 (or of Lemma 5.8 in the quadratic-like endpoint

case), and hence η ∈ Xt, and the proof is completed since y and all of the y(j) are landing of

level 1 in type (i), and s <∞ in types (ii) and (iii).

• Suppose that we approach the endpoint from outside of the height interval, so that nj →∞
as j →∞. By taking a subsequence, we can assume that qnj−1 → y ∈ γt. Since the qnj−1 are

determined by the tj , i.e. by the decomposition elements g′j containing the ηj , it is enough to

show that the decomposition element containing η depends only on y: in fact, we will show

that this decomposition element is A0,0 if y = cu; is Xt if y = a or y = αu; and is Γ′(y, 0, 0)

otherwise.

If y ∈ ◦
γt, then sequences (ηj) of type (i) converge to η = (y, s) with y = t(y, 0, 0) or

y = t(ŷ, 0, 0), and s ∈ [1+u(y),∞]: therefore η is contained in Γ′(y, 0, 0) if y 6= cu, and in A0,0

if y = cu (see Lemma 5.7). Sequences (ηj) of type (ii) converge to η = (t(z, 0, 0), 1 + u(y)) for

some z between y and ŷ: therefore η is contained in Γ′(y, 0, 0) if y 6= cu, and in A0,0 if y = cu (in

which case z = y). Sequences (ηj) of type (iii) converge to (t(y, 0, 0), s) with s ∈ [1+u(y),∞],

since the first nj + 1 entries of y(j) are
〈
Btj (a), qnj−1, B

−1
tj (qnj−1), . . . B

−(nj−1)
tj (qnj−1), . . .

〉
,

and again η is in Γ′(y, 0, 0) if y 6= cu, and in A0,0 if y = cu.

As before, y and all of the y(j) are landing of level 1 in type (i), and s < ∞ in type (ii).

For sequences of type (iii), we have that y = t(y, 0, 0) is landing of level 1, sj ≤ nj + 1, and

y
(j)
i 6∈

◦
γtj for 2 ≤ i ≤ nj , so that the proof is completed using Lemma 5.24 (c).

If y = a or y = αu, then sequences of type (i) and of type (iii) converge to η = (y, s) with

B̂rt (y)0 6∈
◦
γt for all r ∈ Z (and with s ∈ [1,∞]): that is, to η ∈ Xt; while sequences of type (ii)

converge to η = (t(z, 0, 0), 1) for some z ∈ γt, which is contained in the set B0,0 of Lemma 5.7,

and hence in Xt. That Ψtj (y(j), sj)→ Ψt(y, s) follows as when y ∈ ◦γt.

The argument when t is of irrational or rational early endpoint type is similar. In this case we

must have nj → ∞. Taking a subsequence so that qnj−1 → y ∈ γt, and referring to the notation

of Lemma 5.3, we see that:

• If y = cu, then sequences of types (i), (ii), and (iii) all converge to elements of A1;

• If y ∈ ◦γt \ {a, αu}, then sequences of all three types converge to elements of C1,min(y,ŷ); and

• If y ∈ {a, αu}, then sequences of all three types converge to elements of D1 ⊂ Xt.
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The argument that Ψtj (y(j), sj)→ Ψt(y, s) for sequences of types (i), (ii), and (iii) uses parts (b), (a),

and (c) of Lemma 5.24 respectively.

3. If ηj = (y(j), sj) ∈
⋃
y Γ′(y, 0, 0) for all j, then let yj ∈ (cu, a] \ {min(qnj−1, q̂nj−1)} be such

that ηj ∈ Γ′(yj , 0, 0), and take a subsequence so that yj → y ∈ [cu, a] (as usual, cu and qnj−1 have

a suppressed dependence on tj). Taking a further subsequence if necessary, we can assume that

one of the following occurs for all j:

(i) y(j) is either t(yj , 0, 0) or t(ŷj , 0, 0), and sj ∈ [1 + u(yj),∞]; or

(ii) y(j) ∈ [t(yj , 0, 0), t(ŷj , 0, 0)], and sj = 1 + u(yj). (The interval, as usual, is the one with the

given endpoints which is disjoint from P.)

If t is of irrational or early endpoint type; or if t is of rational interior or normal or quadratic-like

endpoint type with height m/n and y 6= min(qn−1, q̂n−1), it then follows straightforwardly that:

• If t is of rational interior or late endpoint type, then the limit η lies in A0,0 if y = cu; in D0,0

if y = a; and in Γ′(y, 0, 0) otherwise.

• If t is of rational normal or quadratic-like endpoint type, then η lies in A0,0 if y = cu; in Xt

if y = a; and in Γ′(y, 0, 0) otherwise.

• If t is of irrational or rational early endpoint type, then η lies in A1 if y = cu; in Xt if y = a;

and in C1,y otherwise.

Suppose, then, that t is of rational interior or normal or quadratic-like endpoint type with height m/n,

and that we have y = min(qn−1, q̂n−1).

• If t is of interior type, then mj/nj = m/n for all sufficiently large j. Sequences y(j) of type (i)

converge to t(a, 1, 0), to t(αu, 1, 0), or to t(q̂n−1, 0, 0), while sj → s ∈ [1 + u(qn−1),∞], and hence

ηj → η ∈ D0,0. Similarly, sequences of type (ii) converge to η = (y, 1 + u(qn−1)), where y ∈
[t(q̂n−1, 0, 0), t(a, 1, 0)] ∪ [t(q̂n−1, 0, 0), t(αu, 1, 0)], so that η ∈ D0,0.

• If t is of endpoint type and mj/nj = m/n for all sufficiently large j, then similarly η ∈ D0 ⊂ Xt.

• If t is of endpoint type and nj →∞, then sequences of both types (i) and (ii) converge to η = (y, s)

with B̂r
t (y)0 6∈ ◦γt for all r ∈ Z: that is, to η ∈ Xt.

In all cases either s < ∞, or y and the y(j) are all landing of level 1, so that Ψtj (y(j), sj) → Ψt(y, s)

as j →∞ by Lemma 5.24 (a) and (b).

Case B: All tj are of rational normal or quadratic-like endpoint type.

In this case the decompositions G′tj are given by Lemmas 5.7 and 5.8, and the limit parameter t

cannot be of rational interior or late endpoint type. We will assume that all of the tj are of strict left

hand endpoint type (either tent-like or quadratic-like): the right hand endpoint case is similar. Let the

height of tj be mj/nj . Suppose first that infinitely many (and so, taking a subsequence, all) of the ηj

are contained in the decomposition elements Xtj : that is, in one of the sets Di of Lemmas 5.7 (b)

or 5.8 (b), or in one of the verticals Lt(y) of Lemma 5.8 (c). We will show that η ∈ Xt.

If infinitely many of the ηj are contained in the lines Lqi−m−1
j mod nj

, Lt(αu,k,i), or Lt(y) then

B̂rt (y)0 6∈
◦
γt for all r ∈ Z, so that η ∈ Xt as required. We can therefore assume that there are kj ∈ Z

and 0 ≤ ij ≤ nj − 1 such that ηj = (y(j), sj) satisfies y(j) ∈
◦
Rkj ,ij (that is, y(j) = t(yj , kj , ij) for some
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yj ∈
◦
γtj ), and sj ∈ (0, ukj ,ij ], where

ukj ,ij =

{
kjn+ ij + 1 if kj ≥ 0,

1/2|kj |n−ij if kj < 0.

The sequence (njkj + ij) must therefore be bounded below since s > 0. If it is not bounded above

then, since the first njkj + ij + 1 entries of t(yj , kj , ij) are disjoint from
◦
γtj , we have B̂rt (y)0 6∈

◦
γt for

all r ∈ Z, and hence η ∈ Xt. We can therefore assume that njkj + ij is constant and, acting on T̂∗ by

the decomposition-preserving homeomorphism Ĥ
−njkj−ij
∗ , that it is equal to 0, so that kj = ij = 0, for

all j, and s ∈ (0, 1]. Take a subsequence so that yj → y ∈ γt, and either mj/nj is constant or nj →∞.

If mj/nj is constant, then t is of rational endpoint type and either ηj → (t(y, 0, 0), s) ∈ B0,0, or (if

y 6∈ ◦γt) B̂rt (y)0 6∈
◦
γt for all r ∈ Z. Therefore η ∈ Xt.

Suppose then that nj → ∞ as j → ∞. If y is not on the Bt-orbit of Bt(a) then η = (y, s)

with s ∈ (0, 1] and y =
〈
Bt(a), y, B−1

t (y), B−2
t (y), . . .

〉
. If t is of rational normal endpoint type then

η ∈ B0,0 ⊂ Xt, while if t is of irrational or rational early endpoint type then y = t(y, 1) and (see

Lemma 5.3) η ∈ D1 ⊂ Xt. On the other hand, if y is on the Bt-orbit of Bt(a), then t is of rational

normal endpoint type and y ∈ {a, αu}, so that B̂rt (y)0 6∈
◦
γt for all r ∈ Z. Therefore η ∈ Xt.

This completes the proof that if ηj ∈ Xtj for all j, then η ∈ Xt. We can therefore assume that there

are kj ∈ Z and 0 ≤ ij ≤ nj − 1 such that

ηj ∈ Akj ,ij ∪
⋃

y∈(cu,a)

Γ′(y, kj , ij)

for each j. The remainder of the proof is now similar to but simpler than that in case A. By the same

argument as in that case (using part (c) rather than part (b) of Lemma 5.9), we can reduce to having

kj = ij = 0 for all j.

• If ηj ∈ A0,0 for all j then η ∈ A0,0 if t is of rational normal or quadratic-like endpoint type,

and η ∈ A1 if t is of irrational or rational early endpoint type.

• If ηj ∈
⋃
y Γ′(yj , 0, 0) for some sequence yj ∈ (cu, a), then take a subsequence so that yj → y ∈

[cu, a]. If y = a then η ∈ Xt. If y = cu then η ∈ A0,0 if t is of rational normal or quadratic-like

endpoint type, and η ∈ A1 if t is of irrational or rational early endpoint type. If y ∈ (cu, a),

then η ∈ Γ′(y, 0, 0) if t is of rational normal or quadratic-like endpoint type, and η ∈ C1,y if t

is of irrational or rational early endpoint type.

Case C: All tj are of irrational or rational early endpoint type.

In this case the decompositions G′tj are given by Lemma 5.3. If all of the ηj are contained in the

decomposition elements Xtj , then η ∈ Xt by an argument exactly analogous to that in case B. We can

therefore assume that there are integers rj such that

ηj ∈ Arj ∪
⋃

y∈(cu,a)

Crj ,y

for each j. If (rj) is not bounded above, then by Lemma 5.9 (a) there is a subsequence of the

ξj = Ψtj (ηj) contained in decomposition elements whose diameters go to zero; while if (rj) is not

bounded below then B̂rt (y)0 6∈
◦
γt for all r ∈ Z, so that η ∈ Xt. We can therefore assume that rj is
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constant and, acting on T̂∗ by the decomposition-preserving homeomorphism Ĥ
1−rj
∗ , that rj = 1 for

all j. The analysis of the different cases then proceeds exactly as in case B. �

This completes the proof of Theorem 5.19.

5.5. The post-critically finite tent map case. In this section we consider the case in which f is a

tent map (of slope t >
√

2) for which the orbit of b is either periodic or preperiodic. In particular (see

Lemma 2.22 (a) and Remark 2.26), q(κ(f)) = m/n is rational, and f is of interior or normal endpoint

type.

We will show that the sphere homeomorphism F : Σ→ Σ constructed in the proof of Theorem 5.15

is pseudo-Anosov when κ(f) = NBT(m/n); and otherwise is generalized pseudo-Anosov, in the sense

of the following definition from [21].

Definition 5.27 (Generalized pseudo-Anosov). A sphere homeomorphism Φ: S2 → S2 is generalized

pseudo-Anosov if there exist

(a) a finite Φ-invariant set Z;

(b) a pair (Fs, µs), (Fu, µu) of transverse measured foliations of S2 \ Z (whose transverse measures

are non-atomic and positive on open subsets on transversals) with countably many pronged sin-

gularities, which accumulate on each point of Z and have no other accumulation points; and

(c) a real number λ > 1 such that Φ(Fs, µs) = (Fs, 1
λ µ

s) and Φ(Fu, µu) = (Fu, λ µu).

We will do this by proving (Theorem 5.31) that F is topologically conjugate to the explicit general-

ized pseudo-Anosov Φ constructed in [21] corresponding to the kneading sequence κ(f). The existence

of the conjugacy will be a consequence of the following list of properties of Φ (see Figure 19).

(P1) The homeomorphism Φ is given by Φ = Φ∗/∼ : R/∼→ R/∼, where Φ∗ : R → R is a continuous

self-map of a metric disk R, and ∼ is a Φ∗-invariant equivalence relation on R for which R/∼ is

a sphere.

(P2) There is a projection π : R→ [a, b] which semi-conjugates Φ∗ to the tent map f .

(P3) For each x ∈ [a, b], the fiber Fx := π−1(x) is a compact interval if x is not on the (finite) orbit

of b, and is a dendrite otherwise.

(P4) The map x 7→ Fx is upper semi-continuous with respect to the Hausdorff metric (that is, for

every x0 ∈ [a, b] and every neighborhood U of Fx0
, there is a neighborhood V of x0 with Fx ⊂ U

for all x ∈ V ).

(P5) Φ∗ is injective on each fiber Fx, and contracts it uniformly by a factor 1/t (where t is the slope

of the tent map f).

(P6) The dynamics of Φ∗ on the boundary ∂R is given by the outside map B : S → S corresponding

to f . More precisely (Lemma 16 of [21]), there is a homeomorphism θ : S → ∂R with the

property that Φ∗(θ(y)) ∈ ∂R if and only if y 6∈ ◦γ, and in this case Φ∗(θ(y)) = θ(B(y)). Moreover,

τ(y) = π(θ(y)) for each y ∈ S. We will suppress the homeomorphism θ, and label points and

subsets of ∂R with the same symbols as the corresponding points and subsets of S. With this

convention, we have Φ∗ = B on ∂R \ ◦γ.

(P7) If x ∈ [a, f(a)) or x = b then Φ∗(Fz) = Fx, where z is the unique element of [a, b] with f(z) = x.

(P8) If x ∈ [f(a), b), then x has two f -preimages z, ẑ ∈ [a, α]. We have Φ∗(Fz) ∪ Φ∗(Fẑ) = Fx;

and Φ∗(Fz) and Φ∗(Fẑ) intersect at exactly one point, which is Φ∗(zu) = Φ∗(ẑu). (Notice that

zu, ẑu ∈ γ.)
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(P9) The equivalence relation ∼ is defined as follows: if ξ, ξ′ ∈ R, then ξ ∼ ξ′ if and only if there is

some r ≥ 0 such that either Φr∗(ξ) = Φr∗(ξ
′), or Φr∗(ξ) and Φr∗(ξ

′) both belong to the periodic

orbit P of Φ∗ on ∂R. (This periodic orbit is given by Theorem 4.33 (b)(iii) in the interior case;

and is the orbit of B(a) in the endpoint case.)

We will also use the following consequences of these properties:

(P10) It follows from (P7) and (P8) that Φ∗ is injective away from γ \ {cu}, while if y ∈ γ \ {cu} then

Φ−1
∗ (Φ∗(y)) = {y, ŷ}. In particular the only point of ∂R which has more than one preimage is q0.

(P11) It follows from (P7) and (P8) that Φ∗ is surjective; and

(P12) It follows from (P6), (P9), and (P10) that all of the non-trivial equivalence classes of ∼ are

contained in ∂R.

a
R

cu αu

Φ∗(cu)

Φ∗

ππ

f

B(a)

Figure 19. Schematic representation of Φ∗ : R→ R. The boundary of R is identified
with the circle S. The map Φ∗ is injective except on γ \ {cu} = [αu, a] \ {cu}, where
it is two-to-one. We have Φ∗(a) = Φ∗(αu) = B(a), where B is the outside map.

Definitions 5.28 (Φ̂∗ : R̂→ R̂, π̂ : R̂→ Î). Write R̂ = lim←−(R,Φ∗), and let Φ̂∗ : R̂→ R̂ be the natural

extension of Φ∗. Let π̂ : R̂→ Î be the function induced by the semi-conjugacy π : R→ I of (P2), that

is, π̂(ξ)i = π(ξi).

We will show (Theorem 5.31) that F : Σ → Σ is topologically conjugate to Φ: R/∼→ R/∼.

The proof is structured as follows. We first show (Lemma 5.29) that π̂ is a homeomorphism which

conjugates Φ̂∗ and f̂ . There are therefore commutative diagrams

R̂
Φ̂∗−−−−→ R̂

π̂

y yπ̂
Î

f̂−−−−→ Î

g

y yg
Σ

F−−−−→ Σ

and

R̂
Φ̂∗−−−−→ R̂

p0

y yp0
R

Φ∗−−−−→ R

p∼

y yp∼
R/∼ Φ−−−−→ R/∼

(18)

where p0(ξ) = ξ0, and p∼ is the canonical projection of ∼. In order to show that F and Φ are conjugate,

it therefore suffices to show that the fibers of g ◦ π̂ agree with those of p∼ ◦ p0: in other words, that

g(π̂(ξ)) = g(π̂(ξ′)) if and only if ξ0 ∼ ξ′0. This will be done using the description of the fibers of g

given in Remark 5.17, together with the technical Lemma 5.30.

Lemma 5.29. π̂ is a homeomorphism which conjugates Φ̂∗ and f̂ .
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Proof. π̂ is clearly continuous, and semi-conjugates Φ̂∗ and f̂ since π semi-conjugates Φ∗ and f . We

will exhibit an explicit inverse v : Î → R̂ of π̂, which will establish the result since R̂ and Î are compact

metric spaces.

To do this, we first define a function h : Î → R. Let x ∈ Î. Then Fx0
⊃ Φ∗(Fx1

) ⊃ Φ2
∗(Fx2

) ⊃ · · ·
by (P7) and (P8). Since each Φj∗(Fxj

) is compact and non-empty by (P3) and (P1), the intersection⋂
j≥0 Φj∗(Fxj ) is non-empty; moreover, it contains a single point by (P5). We define h(x) ∈ Fx0

to be the unique point of this intersection. Then h ◦ f̂ = Φ∗ ◦ h by construction. Moreover, h is

continuous: for if U is a neighborhood of h(x), then by (P5) and the definition of h there is some N

with ΦN∗ (FxN
) ⊂ U . By (P4), if x′ is sufficiently close to x then we have also ΦN∗ (Fx′N ) ⊂ U , and

hence h(x′) ∈ U .

Define v : Î → R̂ by v(x)i = h(f̂−i(x)). That v(x) ∈ R̂ follows from Φ∗ ◦ h = h ◦ f̂ , which gives

Φ∗(h(f̂−(i+1)(x))) = h(f̂−i(x)) for each i.

We now show that v is inverse to π̂. First, let x ∈ Î. Then for each i ≥ 0,

π̂(v(x))i = π(v(x)i) = π(h(f̂−i(x))) = xi,

since h(f̂−i(x)) = h(〈xi, xi+1, . . .〉) ∈ Fxi
. On the other hand, if ξ ∈ R̂, then for each i ≥ 0,

v(π̂(ξ))i = h(f̂−i(π̂(ξ))) = h(〈π(ξi), π(ξi+1), . . .〉) = ξi,

since for every j ≥ 0 we have ξi = Φj∗(ξi+j) ∈ Φj∗(Fπ(ξi+j)), so that ξi is the unique element of⋂
j≥0 Φj∗(Fπ(ξi+j)). �

The following lemma expresses the connection between the equivalence relation ∼ defined in (P9)

and the identifications on Î described in Remark 5.17.

Lemma 5.30. Let ξ, ξ′ ∈ R̂.

(a) If f is of rational general type, then ξ0 = ξ′0 but ξ1 6= ξ′1 if and only if either

{π̂(ξ), π̂(ξ′)} = {ω(t(y, 0, 0)), ω(t(ŷ, 0, 0))} for some y ∈ γ \ {cu, qn−1, q̂n−1}; or

{π̂(ξ), π̂(ξ′)} = {ω(t(q̂n−1, 0, 0)), ω(t(a, 1, 0))}; or

{π̂(ξ), π̂(ξ′)} = {ω(t(q̂n−1, 0, 0)), ω(t(αu, 1, 0))}.

(b) If f is of rational NBT type, then ξ0 = ξ′0 but ξ1 6= ξ′1 if and only if

{π̂(ξ), π̂(ξ′)} = {ω(t(y, 0, 0)), ω(t(ŷ, 0, 0))} for some y ∈ γ \ {cu}.

(c) If f is of rational (normal) endpoint type, then ξ0 = ξ′0 but ξ1 6= ξ′1 if and only if either

{π̂(ξ), π̂(ξ′)} = {ω(t(y, 0, 0)), ω(t(ŷ, 0, 0))} for some y ∈ ◦γ \ {cu}; or

{π̂(ξ), π̂(ξ′)} = {ω(t(A, 0, 0)), ω(t(A, `, 0))} for some ` > 0; or

{π̂(ξ), π̂(ξ′)} = {ω(t(A, 0, 0)), ω(q0)},

where A = a if κ(f) = rhe(m/n), and A = αu if κ(f) = lhe(m/n).

(d) If f is of rational (normal) endpoint type, then there is some r ≥ 0 with Φr∗(ξ0) ∈ P (the periodic

orbit of (P9)) if and only if there is some i with 0 ≤ i ≤ n − 1 such that either π̂(ξ) = ω(qi),

or π̂(ξ) = ω(t(A, k, i)) for some k ∈ Z, where A = a if κ(f) = rhe(m/n), and A = αu if

κ(f) = lhe(m/n).
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Proof. Assume first that f is of general type. By (P10), we have ξ0 = ξ′0 but ξ1 6= ξ′1 if and only

if {ξ1, ξ′1} = {y, ŷ} for some y ∈ γ \ {cu}.
Since (i) Φ−1

∗ (∂R) ⊂ ∂R; (ii) the only point of ∂R which has more than one preimage is q0 = Φ∗(a) =

Φ∗(αu); and (iii) the only point of γ on the orbit of q0 is qn−1, it follows that, for y ∈ γ\{cu, qn−1, q̂n−1},
we have

{ξ1, ξ′1} = {y, ŷ} ⇐⇒ {ξ, ξ′} = {
〈
Φ∗(y), y, B−1(y), . . .

〉
,
〈
Φ∗(y), ŷ, B−1(ŷ), . . .

〉
}

⇐⇒ {π̂(ξ), π̂(ξ′)} = {
〈
f(τ(y)), τ(y), τ(B−1(y)), . . .

〉
,
〈
f(τ(y)), τ(ŷ), τ(B−1(ŷ)), . . .

〉
}

⇐⇒ {π̂(ξ), π̂(ξ′)} = {ω(t(y, 0, 0)), ω(t(ŷ, 0, 0))}.

Here we have used (P6) (in particular that Φ∗ = B on S \ ◦γ in the first line, and that π = τ on S in

the second line); we have used that π ◦ Φ∗ = f ◦ π in the second line; and we have used (17) in the

final line.
In the case y ∈ {qn−1, q̂n−1}, we have ξ1 = qn−1 if and only if

ξ =
〈
Φ∗(qn−1), qn−1, qn−2, . . . , q0, a, B

−1(a), . . .
〉

or ξ =
〈
Φ∗(qn−1), qn−1, qn−2, . . . , q0, αu, B

−1(αu), . . .
〉

;

while ξ1 = q̂n−1 if and only if ξ =
〈
Φ∗(q̂n−1), q̂n−1, B

−1(q̂n−1), . . .
〉
. These give the other two possibil-

ities in the statement of (a), using (17).

The argument in the NBT case is identical, except that the case y ∈ {qn−1, q̂n−1} does not arise

since qn−1 = cu.

Suppose then that f is of normal endpoint type. As in the general case, we have ξ0 = ξ′0 but ξ1 6= ξ′1
if and only if {ξ1, ξ′1} = {y, ŷ} for some y ∈ γ \ {cu}. The argument for y 6∈ {cu, qn−1, q̂n−1} (i.e. for

y ∈ ◦γ \ {cu}) is identical to the general case. Suppose then, without loss of generality, that ξ1 = a and

ξ′1 = αu.

Consider first the case where κ(f) = rhe(m/n), so that we have Bn(a) = Bn(αu) = αu. Then

ξ =
〈
q0, a, B

−1(a), . . .
〉
,

while either

ξ′ = 〈(q0, αu, qn−2, . . . , q1)∞〉 or ξ′ =
〈
(q0, αu, qn−2, . . . , q1)`, q0, a, B

−1(a), . . .
〉

for some ` > 0.

Therefore π̂(ξ) = ω(t(a, 0, 0)); while either π̂(ξ′) = ω(qi) or π̂(ξ′) = ω(t(a, `, 0)) for some ` > 0. Here

we have used (17); and we have used (10) to show that π̂(〈(q0, αu, qn−2, . . . , q1)∞〉) = ω(qi).

The case where κ(f) = lhe(m/n) works analogously, and the result follows.

For (d), there is some r ≥ 0 with Φr∗(ξ0) ∈ P if and only if either ξ0 ∈ P (i.e. ξ0 = qi for some i), or

ξ0 = B−s(A) for some s ≥ 0. This is equivalent to

ξ = 〈(qi, qi−1, . . . , q0, qn−1, . . . , qi+1)∞〉 for some i, or

ξ =
〈
qi, qi−1, . . . , q0, (qn−1, . . . , q0)k, A,B−1(A), . . .

〉
for some i and some k ≥ 0, or

ξ =
〈
B−s(A), B−(s+1)(A), . . .

〉
for some s ≥ 0.

The first of these is equivalent to π̂(ξ) = ω(qi) for some i; the second to π̂(ξ) = ω(t(A, k, i)) for

some i and some k ≥ 0; and the third (noting Remark 4.51) to π̂(ξ) = ω(t(A, k, i)) for some i and

some k < 0. �
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Theorem 5.31. Let f be a post-critically finite tent map of slope t >
√

2. Then the sphere homeo-

morphism F : Σ→ Σ constructed in the proof of Theorem 5.15 is topologically conjugate to the gener-

alized pseudo-Anosov Φ: R/∼→ R/∼ constructed in [21].

Proof. By (18) and the accompanying discussion, it is only necessary to show that for all pairs ξ, ξ′ of

distinct elements of R̂, we have g(π̂(ξ)) = g(π̂(ξ′)) if and only if ξ0 ∼ ξ′0.

We start with the case where f is of general type. In this case the points of P (the periodic orbit

of (P9)) have unique Φ∗-preimages — which are, of course, in P — and hence, by (P9), ξ0 ∼ ξ′0 if and

only if either

(i) Φr∗(ξ0) = Φr∗(ξ
′
0) for some r ≥ 0; or

(ii) ξ0, ξ
′
0 ∈ P .

Since ξ 6= ξ′, condition (i) is equivalent to the condition

There is some s ∈ Z with Φ̂s∗(ξ)0 = Φ̂s∗(ξ
′)0, but Φ̂s∗(ξ)1 6= Φ̂s∗(ξ

′)1. (19)

For if (19) holds, then either s ≤ 0, in which case ξ0 = ξ′0; or s > 0, in which case Φr∗(ξ0) = Φr∗(ξ
′
0)

for r = s. Conversely, suppose that there is some r ≥ 0 for which Φr∗(ξ0) = Φr∗(ξ
′
0), and pick this r

to be as small as possible. If r > 0 then we have Φ̂r∗(ξ)0 = Φ̂r∗(ξ
′)0, but Φr−1

∗ (ξ0) 6= Φr−1
∗ (ξ′0), so

that Φ̂r−1
∗ (ξ)0 6= Φ̂r−1

∗ (ξ′)0; that is, Φ̂r∗(ξ)1 6= Φ̂r∗(ξ
′)1, and hence (19) holds with s = r. On the other

hand, if r = 0 then ξ0 = ξ′0. Since ξ 6= ξ′, there is some greatest i ≥ 0 with ξi = ξ′i. Then we have

Φ̂−i∗ (ξ)0 = Φ̂−i∗ (ξ′)0 but Φ̂−i∗ (ξ)1 6= Φ̂−i∗ (ξ′)1, so that (19) holds with s = −i.
Therefore condition (i) holds if and only if there is some s ∈ Z such that {π̂(Φ̂s∗(ξ)), π̂(Φ̂s∗(ξ

′))}
is one of the pairs from the statement of Lemma 5.30 (a). By Lemma 5.29, this is equivalent to the

existence of s ∈ Z such that {f̂s(π̂(ξ)), f̂s(π̂(ξ′))} is one of these pairs. Setting r = −s, this in turn

is equivalent to the existence of r ∈ Z such that {π̂(ξ), π̂(ξ′)} is the image under f̂r of one of these

pairs. That is, condition (i) holds if and only if there is some k ∈ Z and 0 ≤ i ≤ n− 1 such that

{π̂(ξ), π̂(ξ′)} = {ω(t(y, k, i)), ω(t(ŷ, k, i))} for some y ∈ γ \ {cu, qn−1, q̂n−1}; or

{π̂(ξ), π̂(ξ′)} = {ω(t(q̂n−1, k, i), ω(t(a, k + 1, i))}; or

{π̂(ξ), π̂(ξ′)} = {ω(t(q̂n−1, k, i), ω(t(αu, k + 1, i))}.

Observing that condition (ii) holds if and only if π̂(ξ), π̂(ξ′) ∈ ω(P) and comparing with Remark 5.17 (e),

we see that ξ0 ∼ ξ′0 if and only if g(π̂(ξ)) = g(π̂(ξ′)).

The proof in the NBT case is similar, using Lemma 5.30 (b) and Remark 5.17 (f).

Suppose, then, than f is of (normal) endpoint type, so that qn−1 is either a or αu: as before, we

will write A = q̂n−1, so that qn−1 = αu and A = a when κ(f) = rhe(m/n); while qn−1 = a and A = αu

when κ(f) = lhe(m/n). The periodic orbit P of Φ∗ on ∂R is therefore P = {q0, q1, . . . , qn−1} (that is,

it is equal to Q), and the two Φ∗-preimages of q0 are a and αu. By (P9), ξ0 ∼ ξ′0 if and only if either

(i) Φr∗(ξ0) = Φr∗(ξ
′
0) for some r ≥ 0; or

(ii) Φr∗(ξ0),Φr∗(ξ
′
0) ∈ P for some r ≥ 0.

As in the general case, condition (i) is equivalent to (19), which in turn is equivalent to the existence

of r ∈ Z such that {π̂(ξ), π̂(ξ′)} is the image under f̂r of one of the pairs from the statement of
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Lemma 5.30 (c). That is, condition (i) holds if and only if there is some k ∈ Z and 0 ≤ i ≤ n− 1 such

that

{π̂(ξ), π̂(ξ′)} = {ω(t(y, k, i)), ω(t(ŷ, k, i))} for some y ∈ ◦γ \ {cu}; or

{π̂(ξ), π̂(ξ′)} = {ω(t(A, k, i), ω(t(A, k + `, i))} for some ` > 0; or

{π̂(ξ), π̂(ξ′)} = {ω(t(A, k, i), ω(qi)}.

On the other hand, by Lemma 5.30 (d), condition (ii) holds if and only if there are integers k

and k′, and 0 ≤ i, i′ ≤ n − 1 such that π̂(ξ) = ω(qi) or π̂(ξ) = ω(t(A, k, i)); and π̂(ξ′) = ω(qi′) or

π̂(ξ′) = ω(t(A, k′, i′)).

Combining conditions (i) and (ii), we obtain that ξ0 ∼ ξ′0 if and only if either there exist y ∈ ◦γ\{cu},
k ∈ Z, and 0 ≤ i ≤ n− 1 such that {π̂(ξ), π̂(ξ′)} = {ω(t(y, k, i)), ω(t(ŷ, k, i))}; or

{π̂(ξ), π̂(ξ′)} ⊂ ω(Q) ∪ {ω(t(A, k, i)) : k ∈ Z, 0 ≤ i ≤ n− 1}.

Comparing with Remark 5.17 (c), we see that ξ0 ∼ ξ′0 if and only if g(π̂(ξ)) = g(π̂(ξ′)), as required. �

A detailed description of the dynamics of the sphere homeomorphism F in the case where f is

a tent map but is not post-critically finite is the subject of ongoing research. Here we only give a

straightforward statement about the way in which dynamical properties of a general f carry over to F .

Recall that a Borel probability measure on a topological manifold M is called an Oxtoby-Ulam measure,

or OU-measure, if it is non-atomic, positive on open sets, and assigns zero measure to the boundary

of M (if it has one).

Theorem 5.32 (Sphere homeomorphism dynamics). Let f be a unimodal map satisfying the conditions

of Convention 2.8, and F : Σ→ Σ be the corresponding sphere homeomorphism given by Theorem 5.15.

Then

(a) if f is topologically transitive then so is F ;

(b) if f has dense periodic points, then so does F ;

(c) f and F have the same number of periodic orbits of each period, with the exception that, provided

κ(f) 6= 10∞,

• F has one more fixed point than f , and

• if f is of rational type with q(κ(f)) = m/n ∈ (0, 1/2), then F has either one or two fewer

period n orbits than f .

(d) f and F have the same topological entropy; and

(e) if f preserves an ergodic OU-measure, then F preserves an ergodic OU-measure with the same

metric entropy.

In particular, if f is a tent map of slope t ∈ (
√

2, 2] restricted to its dynamical interval, then F is

topologically transitive, has dense periodic points, has topological entropy log(t), and has an invariant

ergodic OU-measure with metric entropy log(t).

Proof. It is well known that if f is topologically transitive or has dense periodic points, then the same

is true of its natural extension f̂ . Since these properties are preserved by semi-conjugacy, (a) and (b)

follow.

(c) follows from the explicit descriptions of the fibers of the semi-conjugacy g : Î → Σ given in

Remark 5.17. The only fiber which contains periodic points is the exceptional fiber in the rational

case: in the normal endpoint case this fiber contains the period n orbit ω(Q); in the interior and late

endpoint cases it is equal to the period n orbit ω(P); and in the early or quadratic-like strict endpoint
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cases, it contains both period n orbits ω(P) and ω(Q) (or the single semi-stable orbit ω(P) = ω(Q)).

In all cases, the exceptional fiber is collapsed to a fixed point of F .

(d) is established in Remark 5.16.

For (e), it is also well known that if µ is an f -invariant Borel probability measure, then there is

a unique f̂ -invariant Borel probability measure µ̂ on Î characterized by (πn)∗(µ̂) = µ for all n (here

πn : Î → I is defined by πn(x) = xn); moreover, µ̂ is ergodic if and only if µ is; and µ and µ̂ have

the same metric entropy. If µ̂ were atomic then µ would be also. Moreover, since a base for the

topology on Î is given by the set of all π−1
n (U), where U is non-empty and open in I, and since

µ̂(π−1
n (U)) = µ(U), we have that µ̂ is positive on open sets if µ is.

Write µ̃ = g∗(µ̂), so that µ̃ is F -invariant and ergodic. Since g is continuous, µ̃ is also positive on

open sets. To show that µ̃ is non-atomic, suppose for a contradiction that there were some z ∈ Σ with

µ̃(z) > 0. Then, since µ̃ is F -invariant and ergodic, z would belong to a periodic orbit of full measure,

a contradiction since the complement of this periodic orbit would be open and non-empty.

Except perhaps for a single point (which we now know has µ̃-measure zero), the point preimages of

the semi-conjugacy g are finite. Thus g has finite preimages µ̃-almost everywhere and so µ̂ and µ̃ have

the same metric entropy.

Therefore µ̃ is an F -invariant ergodic OU-measure as required. Since tent maps of slope t >
√

2

restricted to their dynamical intervals are transitive, have dense periodic points, have topological

entropy log(t), and have invariant ergodic OU-measures with metric entropy log(t), the final statement

follows. �

Remark 5.33. A theorem of Oxtoby and Ulam (see [35] and Appendix 2 of [3]) states that if m1 and

m2 are OU-measures on a manifold M , then there is a homeomorphism h : M →M with h∗(m1) = m2.

Therefore by conjugating the sphere homeomorphism F , we can make it preserve any OU-measure; in

particular, one coming from an area form on Σ.

Appendix A. The embedding is independent of the unwrapping

In this appendix we will prove the following result, which establishes that the prime ends of (T̂ , Î)

are independent of the choice of unwrapping of the unimodal map f .

Theorem 2.15. Any two unwrappings of a unimodal map f are equivalent.

Recall that unwrappings f0 and f1 of f , which have associated Barge-Martin homeomorphisms

Ĥ0 : (T̂0, Î)→ (T̂0, Î) and Ĥ1 : (T̂1, Î)→ (T̂1, Î), are equivalent if there is a homeomorphism λ : T̂0 → T̂1

which restricts to the identity on Î. Theorem 2.15 is a consequence of the following recent deep result

(Theorem 7.3 of [34]).

Theorem A.1 (Oversteegen–Tymchatyn). Let K be a continuum and {αt}t∈[0,1] : K → S2 be an

isotopy of embeddings of K into the sphere. Then there is an ambient isotopy {At}t∈[0,1] : S
2 → S2

with A0 = id and αt = At ◦ α0 for all t.

Definition A.2 (Weak unwrapping). A weak unwrapping of a unimodal map f is an orientation-

preserving near-homeomorphism f : T → T which is injective on I with f(I) ⊂ {(y, s) : s ≥ 1/2}, and

satisfies Υ ◦ f |I = f .

Remark A.3. A weak unwrapping differs from an unwrapping in that it is not required that the

second component of f(y, s) is equal to s whenever s ∈ [0, 1/2]. A Barge-Martin homeomorphism can
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be associated to a weak unwrapping in exactly the same way as to an unwrapping, although it may

not have Î as a global attractor (if f pushes points with s ∈ [0, 1/2] outwards more strongly than the

smash Υ pulls them inwards).

Definition A.4 (u-near-isotopy). A homotopy {f t} : T → T of weak unwrappings of a fixed unimodal

map f is called a u-near-isotopy (for “unwrapping near-isotopy”).

Remark A.5. It is not obvious that a homotopy of near-homeomorphisms of T can be uniformly

approximated by isotopies, and therefore merits the name near-isotopy. That this is the case follows

from a theorem of Edwards and Kirby (Corollary 1.1 of [24]), which states that the homeomorphism

group of any manifold is locally contractible, and hence locally path connected.

Lemma A.6. Any two u-near-isotopic unwrappings f0 : T → T and f1 : T → T of a unimodal map f

are equivalent.

Proof. Let {f t} be a u-near isotopy from f0 to f1, and for each t let Ĥt : (T̂t, Î)→ (T̂t, Î) be the Barge-

Martin homeomorphism associated with f t. By Theorem 2.14, there are homeomorphisms ht : T̂t → S2

with the property that {Φt = ht ◦ Ĥt ◦h−1
t } : S2 → S2 is an isotopy. It follows from the construction of

the homeomorphisms ht (as compositions ht = p1 ◦β ◦ ιt) in the proof of Corollary 2.3 of [14] — which

applies equally well to weak unwrappings as to unwrappings — that ht|Î varies continuously with t,

so that {ht|Î} is an isotopy of embeddings of the continuum Î into S2.

By Theorem A.1, there is an isotopy {At} : S2 → S2 with A0 = id and ht|Î = At ◦ h0|Î for all t.

Let λ = h−1
1 ◦A1 ◦h0 : T̂0 → T̂1. Then λ is the required homeomorphism which restricts to the identity

on Î. �

Remark A.7. Lemma A.6 extends to apply to any continuous surjection f : K → K, where K

is a Peano non-separating planar continuum. A theorem of Brechner and Brown [15] states that

such a continuum K has a Disk Mapping Cylinder Neighborhood: that is, it can be embedded in a

disk D in such a way that there is a continuous map φ : S1 × [0, 1] → D with K = φ(S1 × {1}), and

φ(y1, s1) = φ(y2, s2) =⇒ s1 = s2 = 1. (In fact, Brechner and Brown show that a planar continuum

has a Disk Mapping Cylinder Neighborhood if and only if it is Peano and non-separating.) Using the

associated “coordinates” (y, s), the Barge-Martin construction can be carried out exactly as in the

case K = I, and the proof of Lemma A.6 goes through without change.

We next show that there are only two u-near-isotopy classes of unwrappings of a given unimodal

map f . Since a weak unwrapping f is injective on I, one of the following two cases must occur

(a) For every x ∈ [a, c) either f(x) = (f(x)u, s1) and f(x̂) = (f(x)`, s2); or f(x) = (f(x)u, s1) and

f(x̂) = (f(x)u, s2) with s1 < s2; or f(x) = (f(x)`, s1) and f(x̂) = (f(x)`, s2) with s1 > s2.

(b) For every x ∈ [a, c) either f(x) = (f(x)`, s1) and f(x̂) = (f(x)u, s2); or f(x) = (f(x)u, s1) and

f(x̂) = (f(x)u, s2) with s1 > s2; or f(x) = (f(x)`, s1) and f(x̂) = (f(x)`, s2) with s1 < s2.

We say that f is of type “up” in case (a), and of type “down” in case (b) (our preferred unwrapping

is therefore of type “down”).

Lemma A.8. If two unwrappings f0 and f1 of a unimodal map f are of the same type, then they are

u-near-isotopic.
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Proof. We show first that any unwrapping f of f is u-near-isotopic to a weak unwrapping which is a

homeomorphism, and which has the same type as f . Since f is a near-homeomorphism, it follows from

the theorem of Edwards and Kirby stated in Remark A.5 that it is the endpoint of a pseudo-isotopy:

that is, that there is a homotopy {gt} : T → T with g0 = f and gt a homeomorphism for t > 0. Define

αt = gt|I : I → T . Since f |I is a homeomorphism by definition, {αt} is an isotopy of embeddings. By

Theorem A.1, there is an isotopy {At} : T → T with A0 = id and αt = At ◦ α0 for all t. Define gt =

A−1
t ◦gt, so that g0 = f . If t > 0 then gt is a homeomorphism with gt|I = A−1

t ◦αt = α0 = f |I , so that

gt is a weak unwrapping. Therefore f is u-near-isotopic to the homeomorphism weak unwrapping g1,

which is clearly of the same type as f .

We can therefore complete the proof by showing that if f0 and f1 are homeomorphism weak un-

wrappings of the same type, then they are u-near-isotopic. Write ζ : T → I for the map (y, s) 7→ (y, 1).

A fiber in T is an arc of the form ζ−1(x) for some x ∈ I. Since f0 and f1 have the same type, we

can slide from one to the other along fibers to produce an isotopy of embeddings {αt} : I → T with

α0 = f0|I , α1 = f1|I , and ζ ◦ αt = f for all t. By Theorem A.1 there is an isotopy {At} : T → T with

A0 = id and αt = At ◦ α0 for all t. Let {Bt} : T → T be the isotopy defined by Bt = At ◦ f0. Now

τ ◦Bt|I = τ ◦At ◦ f0|I = τ ◦At ◦ α0 = τ ◦ αt = f.

Therefore {Bt} is a u-near-isotopy (consisting of homeomorphisms) from f0 to B1.

Now B1|I = A1 ◦ f0|I = A1 ◦ α0 = α1 = f1|I . Therefore B1 and f1 are orientation-preserving

homeomorphisms T → T which agree on the embedded arc I: by the Alexander trick, they are isotopic

by an isotopy which is constant on I. This isotopy is a u-near-isotopy from B1 to f1, so that f0 and

f1 are u-near-isotopic as required. �

Proof of Theorem 2.15. Let f be a unimodal map. By Lemmas A.6 and A.8, any two unwrappings

of f of the same type are equivalent. It therefore only remains to show that there exist unwrappings

f0 and f1 of different types which are equivalent.

Let Γ: T → T be the involution defined by Γ(xu, s) = (x`, s) and Γ(x`, s) = (xu, s). Let f0 be any

unwrapping of type “down”, and let f1 = Γ ◦ f0 ◦ Γ, which is of type “up”. Since Γ commutes with

the smash, if Hi = Υ ◦ f i : T → T for each i, then H1 = Γ ◦H0 ◦ Γ.

It follows that the map λ : T̂0 → T̂1 defined by λ(〈x0, x1, . . .〉) = 〈Γ(x0),Γ(x1), . . .〉 is a homeo-

morphism which restricts to the identity on Î. �

Appendix B. Technical lemmas

In this appendix we prove two lemmas about the dynamics of unimodal maps. As is the case

throughout the paper, we assume that unimodal maps satisfy the conditions of Definition 2.1 and

Convention 2.8.

Lemma B.1. Let f : [a, b]→ [a, b] be unimodal with turning point c. Then there is some N such that

fN ([a, c]) = [a, b].

Proof. κ(f) � 101∞ by Convention 2.8 (a), so that κ(f) = 10(11)`0 . . . for some ` ≥ 0. We shall show

that f2`+2([a, c]) = [a, b].
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We first show by finite induction on i that [a, c] ⊂ f2i([a, c]) for 0 ≤ i ≤ `. The base case is trivial.

If 1 ≤ i ≤ ` then in particular ` ≥ 1, so that f2(a) ≥ c. We have by the inductive hypothesis that

f2i−2([a, c]) ⊃ [a, c]. Therefore f2i−1([a, c]) ⊃ [f(a), b], and f2i([a, c]) ⊃ [a, f2(a)] ⊃ [a, c] as required.

Therefore f2`([a, c]) ⊃ [a, c]. Since f2`(a) ∈ f2`([a, c]), it follows that f2`([a, c]) ⊃ [c, f2`(a)] and

so f2`+1([a, c]) ⊃ [f2l+1(a), b] ⊃ [c, b], the latter inclusion coming from the fact that κ(f)2`+2 = 0.

Therefore f2`+2([a, c]) = [a, b] as required. �

If {ft} is a monotonic family of unimodal maps then, for each rationalm/n ∈ (0, 1/2), the heightm/n

parameter interval starts when the kneading sequence is (wq1)
∞

(with the saddle-node creation of a

periodic orbit whose rightmost point has this itinerary). In a full family, this is followed by an interval

of parameters in which ft is renormalizable (starting with a period-doubling cascade). This interval

ends when the kneading sequence exceeds wq0 (wq1)
∞

. In the tent family, by contrast, kneading

sequences κ with (wq1)
∞ ≺ κ � wq0 (wq1)

∞
do not occur.

Lemma B.2. Let f : [a, b] → [a, b] be unimodal with q(κ(f)) = q = m/n ∈ (0, 1/2), and write

θ = min(fn(a), f̂n(a)).

(a) If (wq0)
∞ ≺ κ(f) � wq0 (wq1)

∞
then θ = fn(a) and fn([a, fn(a))) = [a, fn(a)].

Moreover, fn−1([f(a), fn+1(a)]) = [a, fn(a)].

(b) If wq0 (wq1)
∞ ≺ κ(f) ≺ rhe(q) then there is some N ∈ N with fN ([a, θ)) = [a, b].

Proof. Recall that wq = 10κ1(q)110κ2(q)11 . . . 110κm−1(q)110κm(q)−1 is a word of length n−1 containing

an odd number of 1s. Moreover κ1(q) = b1/qc − 1 > 0 so that wq = 10 . . ..

(a) Since (wq0)
∞

and (wq0wq1)
∞

are consecutive kneading sequences (the latter is obtained from the

former by period doubling), we have (wq0wq1)
∞ � κ(f) � wq0 (wq1)

∞
, and hence κ(f) = wq0wq1 . . ..

In particular, ι(fn(a)) = 0 . . ., so that fn(a) ≤ c and θ = fn(a).

We will first show that fn−1(a) ≤ f2n−1(a). If κ(f) = wq0 (wq1)
∞

then both fn−1(a) and

f2n−1(a) have itinerary (wq1)
∞

, and since κ(f) is not periodic it follows from Convention 2.8 (b)

that fn−1(a) = f2n−1(a). On the other hand, if κ(f) 6= wq0 (wq1)
∞

, then let ` ≥ 1 and ν ∈
{0, 1}N be such that κ(f) = wq0(wq1)`ν, where ν does not start with the symbols wq1. Since

κ(f) ≺ wq0 (wq1)
∞

we have ν � (wq1)
∞

. Then ι(fn−1(a)) = (wq1)`ν ≺ (wq1)`−1ν = ι(f2n−1(a)),

so that fn−1(a) ≤ f2n−1(a) as required.

Now ι(a) = σ(wq0wq1 . . .) and ι(fn(a)) = σ(wq1 . . .). Therefore f i(a) and f i(fn(a)) lie in the

same monotone piece of f for 0 ≤ i ≤ n − 3, and they lie in the decreasing piece of f for an

even number of values of i. Therefore fn−2([a, fn(a))) = [fn−2(a), f2n−2(a)). Since fn−2(a) ≤
c ≤ f2n−2(a) (as κ(f)n−1 = 0 and κ(f)2n−1 = 1), and c ≤ fn−1(a) ≤ f2n−1(a) (as shown in

the previous paragraph), it follows that fn−1([a, fn(a))) = [fn−1(a), b] and hence fn([a, fn(a))) =

[a, fn(a)] as required. Since f([a, fn(a)) = [f(a), fn+1(a)), the final statement is immediate.

(b) Recall that rhe(q) = 10 (ŵq1)
∞

. Using 10ŵq = wq01 (which is true since cq = wq01 is palindromic),

we have

wq0 (wq1)
∞ ≺ κ(f) � wq01 (1ŵq)

∞
.

In particular, κ(f) = wq01 . . .. We consider separately the case where κ(f) = wq010 . . . (so that

θ = fn(a)), and the case where κ(f) = wq011 . . . (so that θ = f̂n(a)).
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Case 1: κ(f) = wq010 . . . and θ = fn(a).

Let ` ≥ 0 and ν ∈ {0, 1}N be such that

κ(f) = wq0(wq1)`ν,

where ν does not start with the symbols wq1. Since κ(f) � wq0 (wq1)
∞

we have ν ≺ (wq1)
∞

.

Step 1: We will show that

f `n([a, θ)) =

{
[a, b] if ν = 0 . . . ,

[a, σ(ν)) if ν = 1 . . . .
(20)

(Here, [a, σ(ν)) means an interval whose left hand endpoint is a, and whose right hand endpoint

has itinerary σ(ν): the fact that there may be more than one point with this itinerary will not be

important. We will use this notation throughout the remainder of the proof.)

If ` = 0 then this is immediate: θ = fn(a) has itinerary σ(ν), and ν = 1 . . . since κ(f) =

wq010 . . .. We therefore suppose that ` ≥ 1, so that

ι(a) = σ(wq)0(wq1)`ν and ι(θ) = σ(wq)1(wq1)`−1ν.

We show by finite induction on i that

f (i+1)n−2([a, θ)) = [0(wq1)`ν, 1(wq1)`−i−1ν) for 0 ≤ i ≤ `− 1.

The case i = 0 is straightforward, since the first n− 2 symbols of ι(a) and ι(θ) agree, and contain

an even number of 1s. Suppose then that 0 < i ≤ `− 1, and assume, by the inductive hypothesis,

that f in−2([a, θ)) = [0(wq1)`ν, 1(wq1)`−iν). Since ν ≺ (wq1)
∞

we have (wq1)`−iν ≺ (wq1)`ν, and

hence f in−1([a, θ)) = ((wq1)`−iν, b], and

f in([a, θ)) = [a, σ(wq)1(wq1)`−i−1ν) = [σ(wq)0(wq1)`ν, σ(wq)1(wq1)`−i−1ν).

Applying fn−2 gives the required result.

Setting i = ` − 1 gives f `n−2([a, θ)) = [0(wq1)`ν, 1ν) and hence f `n−1([a, θ)) = (ν, b] (since

ν ≺ (wq1)`ν). Applying f once more gives (20).

Step 2: We therefore assume that ν = 1 . . ., and show that fN ([a, σ(ν))) = [a, b] for some N , which

will complete the proof in case 1.

Recall that

wq1 = 10κ1110κ211 . . . 110κm−1110κm−11,

where κi = κi(q) is given by (1). Since ν does not begin with the symbols wq1, and satisfies

ν ≺ (wq1)
∞

, one of the following possibilities must occur:

(i) There is some i with 1 ≤ i ≤ m, and an integer k with 0 ≤ k < κi (or 0 ≤ k < κm − 1 in the

case i = m), such that

ν = 10κ1110κ211 . . . 110κi−1110k1 . . . .

(ii) There is some i with 1 ≤ i < m such that

ν = 10κ1110κ211 . . . 110κi10 . . . .

For (i), write M = k +
∑i−1
j=1(κj + 2). If i < m we have

fM ([a, σ(ν))) = [0κi−k11 . . . , 1 . . .).



80 PHILIP BOYLAND, ANDRÉ DE CARVALHO, AND TOBY HALL

Therefore fM+1([a, σ(ν))) ⊃ [0κi−k−111 . . . , b]. If κi > k+1 then we have fM+2([a, σ(ν))) = [a, b],

while if κi = k + 1 then fM+2([a, σ(ν))) ⊃ [a, 1 . . .] ⊃ [a, c], and the result follows by Lemma B.1.

The case i = m works similarly, remembering that ι(a) starts with the word σ(wq)0: we always

have fM+2([a.σ(ν))) = [a, b] in this case.

For (ii), write M =
(∑i

j=1(κj + 2)
)
− 1. Then fM ([a, σ(ν))) = (0 . . . , 12r+10 . . .] for some r ≥ 0

(which will be greater than 0 if and only if κi+1 = 0). Therefore fM+1([a, σ(ν))) ⊃ [12r0 . . . , b].

If r = 0 then fM+2([a, σ(ν))) = [a, b]; while if r > 0 then fM+2([a, σ(ν))) = [a, 1 . . .] ⊃ [a, c], and

the result follows by Lemma B.1.

Case 2: κ(f) = wq011 . . . and θ = f̂n(a).

We have κ(f) = wq011 . . . ≺ rhe(q) = wq01 (1ŵq)
∞

: equivalently κ(f) = 10ŵq1 . . . ≺ 10 (ŵq1)
∞

,

since wq01 = 10ŵq. Let ` ≥ 1 and ν ∈ {0, 1}N be such that

κ(f) = 10(ŵq1)`ν,

where ν does not start with the symbols ŵq1. Since κ(f) ≺ 10 (ŵq1)
∞

we have ν � (ŵq1)
∞

.

Now ι(a) = 0(ŵq1)`ν, and ι(fn(a)) = 1(ŵq1)`−1ν, so that ι(θ) = 0(ŵq1)`−1ν. Therefore

f (`−1)n+1([a, θ)) = [ŵq1ν, ν).

We have

ŵq1 = 0κm−1110κm−111 . . . 110κ2110κ111.

Since ν does not begin with the symbols ŵq1 and ν � (ŵq1)
∞

, one of the following possibilities

must occur:
(i) There is some i with 1 ≤ i ≤ m and an integer k with 0 ≤ k < κi (or 0 ≤ k < κm − 1 in the

case i = m), such that

ν = 0κm−1110κm−111 . . . 110κi+1110k1 . . . .

(ii) There is some i with 1 ≤ i ≤ m such that

ν = 0κm−1110κm−111 . . . 110κi10 . . . .

For (i), we suppose that i < m to avoid complicating the notation: the case i = m is similar.

Write M =
(
(`− 1)n+ 1

)
+
(
k − 1 +

∑m
j=i+1(κj + 2)

)
. Then

fM ([a, θ)) = [0κi−k11 . . . , 1 . . .),

so that fM+1([a, θ)) ⊃ [0κi−k−111 . . . , b]. If κi > k + 1 then we have fM+2([a, θ)) = [a, b], while if

κi = k + 1 then fM+2([a, θ)) ⊃ [a, 1 . . .] ⊃ [a, c], and the result follows by Lemma B.1.

For (ii), write M =
(
(`− 1)n+ 1

)
+
(∑m

j=i(κj + 2))− 2
)
. Then fM ([a, θ)) = (0 . . . , 12r+10 . . .]

for some r ≥ 0. Therefore fM+1([a, θ)) ⊃ [12r0 . . . , b]. If r = 0 then fM+2([a, θ)) = [a, b]; while if

r > 0 then fM+2([a, θ)) = [a, 1 . . .] ⊃ [a, c], and the result follows by Lemma B.1.

�
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4. A. Anušić, H. Bruin, and J. Činč, The core Ingram conjecture for non-recurrent critical points, Fund. Math. 241

(2018), no. 3, 209–235.
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Departamento de Matemática Aplicada, IME-USP, Rua Do Matão 1010, Cidade Universitária, 05508-090
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