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Abstract

The pathogenesis of Kawasaki disease (KD) remains unknown and there is accumulating

evidence for the importance of the innate immune system in initiating and mediating the host

inflammatory response. We compared innate immune responses in KD and toxic shock syn-

drome (TSS) participants more than two years after their acute illness with control partici-

pants to investigate differences in their immune phenotype. Toxic shock syndrome shares

many clinical features with KD; by including both disease groups we endeavoured to explore

changes in innate immune responses following acute inflammatory illnesses more broadly.

We measured the in vitro production of interferon (IFN)-γ, tumour necrosis factor (TNF)-α,

interleukin (IL)-1β, IL-6, IL-1 receptor antagonist (IL-1ra), and IL-10 following whole blood

stimulation with toll-like receptor and inflammasome ligands in 52 KD, 20 TSS, and 53 con-

trol participants in a case-control study. Analyses were adjusted for age, sex, and unstimu-

lated cytokine concentrations. Compared to controls, KD participants have reduced IL-1ra

production in response to stimulation with double stranded RNA (geometric mean ratio

(GMR) 0.37, 95% CI 0.15, 0.89, p = 0.03) and increased IL-6 production in response to incu-

bation with Lyovec™ (GMR 5.48, 95% CI 1.77, 16.98, p = 0.004). Compared to controls,

TSS participants have increased IFN-γ production in response to peptidoglycan (GMR 4.07,

95% CI 1.82, 9.11, p = 0.001), increased IL-1β production to lipopolysaccharide (GMR 1.64,

95% CI 1.13, 2.38, p = 0.01) and peptidoglycan (GMR 1.61, 95% CI 1.11, 2.33, p = 0.01),

and increased IL-6 production to peptidoglycan (GMR 1.45, 95% CI 1.10, 1.92, p = 0.01).

Years following the acute illness, individuals with previous KD or TSS exhibit a pro-inflam-

matory innate immune phenotype suggesting a possible underlying immunological suscepti-

bility or innate immune memory.
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Introduction

Kawasaki disease (KD) is a systemic vasculitis most commonly affecting pre-school children

characterised by fever, rash, conjunctivitis, lymphadenopathy, mucosal and peripheral changes

in the hands and feet.[1] Its pathogenesis remains unknown, leading to many uncertainties in

the diagnosis and treatment of the disease. The main complication of KD is the development

of coronary artery aneurysms.[2] It is the leading cause of acquired heart disease in children

living in industrialised countries.

Although it is widely believed that KD is caused by an infectious trigger, there is growing

evidence that genetic factors play a role in determining susceptibility and severity of the dis-

ease.[2] Evidence for host susceptibility comes from epidemiological data. The incidence of

KD remains highest in children of Asian ethnicity with Japan reporting over 10 times the

incidence rate compared to United States for children under five years of age.[3, 4] This

increased incidence is evident in children of Asian migrants living in low incidence coun-

tries, and in first degree relatives of KD patients. [5–7] Furthermore, genome-wide asso-

ciation and candidate gene studies have identified a number of associations with genes

involved in the regulation of the inflammatory process, including ITPKC and ORAI1, which

regulate intracellular calcium-signalling pathways.[8–11] These genetic associations support

the widely accepted hypothesis that KD occurs in genetically susceptible individuals in

whom microbial pathogens or environmental agents trigger an aberrant inflammatory

response.[2]

There is increasing interest in the role of the innate immune system in the generation of

this aberrant inflammatory response in KD.[12] During the acute illness, peripheral neutro-

phils and monocytes increase and infiltrate affected arterial walls, leading to acute self-limited

necrotising arteritis.[13–16] Acutely, KD patients have increased toll-like receptor (TLR)

mRNA levels and upregulation of genes in the IL-1 pathway.[17, 18] Furthermore, human and

murine data implicate a critical role for nucleotide-binding domain and leucine-rich repeat

pyrin domain contain 3 (NLRP3) inflammasome activation in acute KD, and in the develop-

ment of coronary artery aneurysms. Modulation of IL-1 is therefore a potential therapeutic tar-

get.[19–22]

Little is known about the immune responses to microbial pathogens years after an acute

episode of KD. We hypothesised that an abnormal inflammatory phenotype in KD patients,

measured years after the acute illness, might provide clues to the nature of the aberrant

immune response in acute KD and reveal targets for anti-inflammatory treatment.

Toxic shock syndrome (TSS), a prototypical illness caused by bacterial superantigens,

shares many clinical and immunological features with KD.[23] In particular, KD shock

syndrome, characterised by myocardial dysfunction, coronary artery involvement and

resistance to standard therapy, is the most difficult to clinically differentiate from TSS.[24]

There is also emerging interest in the role of the innate immune system in initiating and

mediating the host inflammatory response in the development of sepsis.[25] Similar to KD,

there is likely an underlying host immunological susceptibility as not all individuals exposed

to the causative exotoxin develop TSS.[26, 27] By including both diseases, we were able to

study changes in innate immune responses following acute inflammatory illnesses more

broadly.

We compared the innate immune responses in participants with previous KD or TSS with

control participants at least two years after their acute illness. Our aim was to define an innate

immune phenotype that might suggest either an underlying immunological susceptibility and/

or evidence of innate immune memory.
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Material and methods

Participants and enrolment

Participants between six and 30 years of age who had KD or TSS at least two years previously

were recruited from The Royal Children’s Hospital (RCH) and Monash Medical Centre

(MMC), Melbourne, Australia. A research letter of invitation was sent out to families meeting

the inclusion criteria following a medical record search.

The KD group included participants with a history of acute KD that fulfilled either the

American Heart Association diagnostic criteria for KD,[28] and/or had abnormal coronary

artery dimensions that met the Japanese Ministry of Health Criteria for abnormal dilatation

[29] on an echocardiogram performed within two months of disease onset. Height is not rou-

tinely measured on children acutely hospitalised in Australia and so it was not possible to gen-

erate coronary artery z-scores, which are based on calculated body surface area.[30] The KD

group were therefore defined by widely accepted and robust criteria.

The TSS group included patients who fulfilled the Centers for Disease Control and Preven-

tion case definition for either probable or definite TSS.[31] Control participants were unre-

lated healthy individuals of similar age and sex recruited from The Royal Children’s Hospital

Melbourne clinics, or unrelated friends of KD and TSS participants. Exclusion criteria for all

groups were treatment for hypertension and/or dyslipidaemia, or chronic auto-inflammatory

conditions. Assessments were deferred for at least four weeks following an acute febrile illness.

The study was approved by the human research ethics committee at RCH (Approval No

31090) and Monash (11293X) and written informed consent was obtained from the parents or

adult participants at enrolment. Participants attended the Murdoch Children’s Research Insti-

tute (Melbourne, Australia) on a single occasion between September 2013 and December 2015

during which anthropometric measurements (BC 418, Tanita, Tokyo, Japan), as well as demo-

graphic and clinical details were obtained. Venous blood was collected into lipopolysaccharide

(LPS)-free sodium heparin, serum gel, and ethylenediamine tetraacetic acid (EDTA) tubes

(Sarstedt, Germany). High sensitivity C-reactive protein (hsCRP) (Abbott Architect, IL, USA)

was measured from the serum gel tube according to manufacturer’s protocol.

In vitro stimulation assays

To standardise assays, all TLR and inflammasome ligands were pre-prepared in robotically-

filled 8-well strips within 96-well plates (Corning, USA) at the University of British Columbia,

Vancouver, as previously described.[32] The wells in the TLR strips contained the following

ligands: 3.5 μg/mL R848 (Resiquimod) (TLR 7/8 ligand, InvivoGen, USA); 100 ng/ml LPS

(TLR 4, InvivoGen); 10 μg/ml peptidoglycan (PGN) (nucleotide-binding oligomerization

domain (NOD) 1/2, InvivoGen); 100 μg/ml polyinosinic-polycytidylic acid (Poly I:C) (TLR 3,

Amersham Biosciences, UK); 20 μg/ml cyclic guanosine monophosphate-adenosine mono-

phosphate (cGAMP) (Stimulator of the interferon gamma gene (STING) ligand, InvivoGen)

with Lyovec™ (InvivoGen); 2 ng/mL double stranded RNA (dsRNA) (Retinoic acid-inducible

gene (RIG) 1, InvivoGen) with Lyovec™; and RPMI 1640 (Gibco, USA) and Lyovec™ (unstimu-

lated). The NLRP3 inflammasome strip-wells contained 100 μg/ml Zymosan (Sigma-Aldrich),

100 ng/ml LPS (InvivoGen), 5 mM/mL adenosine triphosphate (ATP) (InvivoGen), and RPMI

(unstimulated).

One hour after collection, heparinised fresh blood was diluted with RPMI to a final 1:1 dilu-

tion by adding 180 μl of the diluted blood to each well of the pre-prepared thawed and centri-

fuged strips containing 20 μl of the specific ligand per well. Samples stimulated with NLRP3

inflammasome ligands were incubated for two hours, while samples containing TLR ligands
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were incubated for 24 hours at 37˚C in 5% CO2. Pre-prepared ATP was thawed and added to

the Zymosan and LPS wells on the inflammasome strips 30 minutes before harvesting.[33] Fol-

lowing incubation, the strip-wells were centrifuged at 600 g for 5 minutes and the supernatants

stored in microtubes (VWR, USA) at -80˚C for future batched analysis.

Cytokine analysis

The choice of cytokines measured was based on innate immune pathways for each ligand.

Cytokine concentrations from TLR ligand-stimulated supernatants were measured using an x-

MAP immunobead-based multiplexed assay (Bio-Plex Pro Human Cytokine Group 1 Assay,

Bio-Rad, USA) according to manufacturer’s protocol. Samples from KD, TSS, and control par-

ticipants were scrambled across plates. To ensure that cytokine concentrations of stimulated

samples were within the detectable range, samples were diluted 1:4 for the measurement of

interferon (IFN)-γ, tumour necrosis factor (TNF)-α, and interleukin (IL)-10 and 1:100 for the

measurement of IL-1β, IL-1 receptor antagonist (IL-1ra), and IL-6. In preliminary experi-

ments, IFN-α and IFN-β concentrations from samples diluted 1:4 were below the detection

limit for the majority of samples in 8 out of 10 participants (3 KD, 3 TSS and 4 control partici-

pants) despite measurable concentrations for other cytokines. These two cytokines were there-

fore not measured for the remaining participants.

Interleukin-1β levels were measured in the NLRP3 inflammasome ligand-stimulated super-

natant using an enzyme-linked immunosorbent assay (Mabtech, Australia) according to the

manufacturer’s protocol using samples diluted 1:50.

Statistical analysis

Statistical analysis was done using Stata 13.0 (Stata Corporation, Texas). Cytokine concentra-

tions below the detection limit were designated a value half the lowest detection limit for that

specific cytokine. Outlier participants were defined as those having two or more unstimulated

cytokine concentrations greater than two standard deviations above the mean value of the

other participants and were excluded.

Cytokine concentrations were analysed as continuous variables and were log transformed

to achieve a normal distribution. Geometric mean (95% CI) is the mean of the logarithmic val-

ues retransformed back to picogram/ml (pg/ml) using the exponential function. Univariate

comparisons of cytokine concentrations were done using 2-tailed t-test.

Multi-variable linear regression was used to quantify the differences between groups adjust-

ing for unstimulated cytokine concentrations (either with RPMI or Lyovec™), age and sex with

results expressed as geometric mean ratio (GMR).

Cytokine concentrations from the inflammasome strip-wells could not be transformed into

a normal distribution and, therefore, comparisons between participant groups were done

using the Kruskal-Wallis test after nil correction.

Results

In total, 60 KD, 22 TSS, and 60 control participants were recruited. Ninety two eligible KD par-

ticipants were approached and 60 were recruited. The number of participants with coronary

artery abnormalities in the recruited (35/60 (58.3%)) and the declined group (18/32 (56.3%)

were similar.

Two participants (one TSS and one control) were considered outliers and another two KD

participants were excluded on the basis that they had a febrile illness on the day of the assess-

ment. A further 13 participants (6 KD, 1 TSS, 6 controls) were excluded due to insufficient

blood to complete stimulations assays. There were, therefore, 52 KD, 20 TSS, and 53 control

Immune responses post Kawasaki disease and toxic shock syndrome

PLOS ONE | https://doi.org/10.1371/journal.pone.0191830 February 15, 2018 4 / 13

https://doi.org/10.1371/journal.pone.0191830


participants included in the final analysis. There were no differences in age, sex, anthropome-

try, pubertal status and hsCRP levels between the groups (Table 1).

Thirty nine (75%) participants met the American Heart Association complete diagnostic

criteria for KD. Thirteen participants (25%) met the incomplete diagnostic criteria and fulfilled

the Japanese Ministry of Health echocardiogram criteria for coronary artery abnormality.

There were 20 (38.5%) participants with no history of coronary artery abnormalities, 18

(34.6%) with resolved dilatation or coronary artery aneurysms, and 14 (26.9%) with persistent

coronary artery aneurysms. Ten (19.2%) were resistant to the first dose of intravenous immu-

noglobulin. All received a second dose of intravenous immunoglobulin and two (3.8%)

received steroids in addition.

Of the 20 TSS participants in the final analysis nine (45%) met the definite TSS diagnostic

criteria and 11 (55%) met the probable TSS criteria.

Toll-like receptor ligand stimulation

Compared to controls, KD participants had reduced IL-1ra production in response to dsRNA

(GMR 0.37, 95% CI 0.15, 0.89, p = 0.03). There were no differences in pro-inflammatory cyto-

kine production in response to TLR ligands between KD and control participants (Fig 1).

Compared to controls, TSS participants had increased IFN-γ production in response to

PGN stimulation (GMR 4.07, 95% CI 1.82, 9.11, p = 0.001), increased IL-1β production to LPS

(GMR 1.64, 95% CI 1.13, 2.38, p = 0.01) and PGN (GMR 1.61, 95% CI 1.11, 2.33, p = 0.01),

and increased IL-6 production to PGN (GMR 1.45, 95% CI 1.10, 1.92, p = 0.01) after adjusting

for unstimulated cytokine concentrations, age and sex. There were no differences in anti-

inflammatory cytokine production between TSS and control participants (Fig 1).

Unadjusted geometric means of cytokines following TLR ligand stimulations are shown in

S1 Table. The direction and magnitude of change were similar to the adjusted analysis with

one exception. In the unadjusted analysis, there was an increased production of IL-6 in re-

sponse to dsRNA stimulation in KD participants which was not statistically significant after

adjusting for unstimulated cytokine concentrations, age and sex.

Table 1. Participant characteristics.

Kawasaki disease (n = 52) Toxic shock syndrome (n = 20) Control

(n = 53)

Age (years) 15.5 ± 5.8 15.6 ± 5.6 14.9 ± 6.1

Sex (male (%)) 30 (57.7%) 12 (57.1%) 26 (48.2%)

Height (cm) 158.7 ± 19.2 162.2 ± 19.5 155.3 ± 17.1

Weight (kg) 54.0 ± 18.1 59.7 ± 23.3 51.1 ± 18.3

Post-pubertala (n %) 24 (46.2%) 10 (47.6%) 20 (37.0%)

Age at acute illness (years) 3.3 ± 3.0 8.7 ± 4.5 N/A

Time since acute illness (years) 12.2 ± 5.8 5.9 ± 3.1 N/A

High sensitive CRP (mg/L) 0.6 (0.3–1.4) 0.5 (0.3–0.7) 0.4 (0.2–0.8)

Ethnicity (n%)

Caucasians 40 (69.8%) 37 (73.3%)

Asians 9 (17.0%) 9 (17.1%)

Others 7 (13.2%) 3 (9.6%)

Mean ± SD for normally distributed data, median (interquartile range) for skewed data
aself-reported Tanner stage 5

CRP = C-reactive protein

https://doi.org/10.1371/journal.pone.0191830.t001
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Cytokine responses in the ‘unstimulated’ wells incubated with Lyovec™ were consistently

higher than those observed in the wells incubated with RPMI with the notable exception of

IFN-γ (S1 Table). Compared with the controls, KD participants had a higher geometric mean

IL-6 concentration in samples incubated with Lyovec™, and the TSS participant group had a

higher geometric mean IL-1ra concentration in samples incubated with RPMI (S1 Table and

Fig 2).

Fig 1. Geometric mean ratio (GMR) and 95% CI of in vitro toll-like receptor induced cytokine concentrations in

52 Kawasaki disease (KD), 20 toxic shock syndrome (TSS) and 53 control participants adjusted for age, sex and

unstimulated cytokine concentrations. Abbreviations: IFN, interferon; TNF, tumour necrosis factor; IL, interleukin;

IL-1ra, receptor antagonist; R848, Resiquimod; LPS, lipopolysaccharide; PGN, peptidoglycan; pI:C, polyinosinic-

polycytidylic acid; cGAMP, cyclic guanosine monophosphate-adenosine monophosphate; dsRNA, double stranded

RNA.

https://doi.org/10.1371/journal.pone.0191830.g001

Fig 2. Geometric mean ratio (GMR) and 95% CI of in vitro cytokine concentrations in the unstimulated RPMI and Lyovec™ wells of 52 Kawasaki disease (KD), 20

toxic shock syndrome (TSS) and 53 control participants. Abbreviations: IFN, interferon; TNF, tumour necrosis factor; IL, interleukin; IL-1ra, receptor antagonist.

https://doi.org/10.1371/journal.pone.0191830.g002
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Inflammasome ligand stimulation

No differences were found in IL-1β production between KD, TSS, and control participants in

response to Zymosan plus ATP (median (IQR): 4388.25 (3189.00, 5785.25) vs 3249.85

(1559.53, 5276.95) vs 4229.20 (1304.70, 7185.30) pg/ml, p = 0.6) and LPS plus ATP (5760.10

(3632.55, 7941.00) vs 3777.48 (2843.43, 9021.60) vs 5995.10 (2396.80, 10032.40) pg/ml, p = 0.7)

stimulations of the NLRP3 inflammasome (Fig 3).

Discussion

This is the first study to report the innate immune responses in individuals with previous KD

and TSS years after the acute illness. The observed decreased IL-1ra production in KD partici-

pants with a prototypical viral ligand stimulation is consistent with data implicating the role of

IL-1β in the pathogenesis of KD. Studies have shown elevated IL-1β in acute KD especially in

treatment resistant individuals, increased transcript abundance for IL-1β related genes, and

protection from coronary arteritis in IL-1βreceptor-deficient mice.[19, 20, 34] Randomised

controlled trials using an IL-1β receptor antagonist and monoclonal antibody inhibition of IL-

1β in KD are underway.[19–22] We found no differences in IL-1β production in KD partici-

pants following both TLR and inflammasome stimulation, which is consistent with studies in

convalescent KD.[19] Inflammasome activation and resulting elevated levels of IL-1β are most

likely transient acute inflammatory responses.

The observation that cytokine concentrations in samples incubated with Lyovec™ were

higher than those incubated with RPMI suggests that this lyophilized cationic lipid-based

transfection reagent stimulates cytokine responses. Cationic lipids such as Lyovec™ are able to

activate pro-inflammatory pathways, in particular, intracellular calcium-signalling pathways.

[35] These pathways have been implicated in the pathogenesis of KD.[9, 19] The finding that

Lyovec™ was associated with a greater IL-6 response in the KD group compared to the control

group may point to a genetically determined difference in the response to intracellular pattern

recognition receptor stimulation by lipids from the cell wall of bacteria or fungi. This might

Fig 3. Scatter plot of interleukin (IL)-1β concentrations in 52 Kawasaki disease (KD), 20 toxic shock syndrome (TSS) and 53 control participants following in
vitro stimulations of the nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome. The median and interquartile

ranges are marked by the bars. Abbreviations: pg, picogram; ATP, adenosine triphosphate.

https://doi.org/10.1371/journal.pone.0191830.g003
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suggest that KD patients have an underlying different inflammatory response involving these

pathways.

This study does not provide evidence for either a conventional or superantigen as the initial

trigger for KD as superantigens were not used as a ligand in our study. Superantigens will

likely be neutralised with the use of whole blood required to activate the innate immune sys-

tem in our study.

Toxic shock syndrome participants had an increased pro-inflammatory cytokine response

to bacterial ligands, which is consistent with reported cytokine responses to TSS toxin (TSST)-

1 in vitro.[36] Most cases of TSS are caused by exotoxins produced by Staphylococcus aureus
and Streptococcus pyogenes, which act as ‘superantigens’ binding directly to the major histo-

compatibility complex class II molecule and T-cell receptor, bypassing the conventional anti-

gen-binding sites.[23] Conceivably, similar to LPS and PGN ligand stimulation in our study,

these bacteria would also stimulate the host innate immune system through activation of TLR

2 and NOD receptors[37]

The underlying immunological and/or genetic susceptibility determinants of TSS are

poorly understood. The prevalence of antibody to TSST-1 in the population far outweighs the

number of TSS cases.[26, 27] The observed increased pro-inflammatory cytokine response to

TLR 2 and NOD receptor stimulation in TSS may be due to either an underlying genetic

immunological susceptibility or an altered immune response secondary to the past TSS illness.

The possibility that our results reflect an underlying genetic immunological susceptibility is

supported by the finding of a strong genetic influence on in vitro LPS-induced cytokine

responses in meningococcal disease in a study of first degree relatives.[38]

Of note, compared to control participants, IL-1β production following inflammasome stim-

ulation was not increased in TSS participants despite increased production following TLR

stimulation, which theoretically share the same pathway for IL-1 activation. It is possible that

LPS and PGN may have stimulated the activation of caspase (which in turn activates IL-1)

through other less well characterised pathways, such as RIG-I or IFN-γ inducible protein 16.

[39] Furthermore, differences in methodologies between the TLR and NLRP3 inflammasome

strip stimulation assays, especially in the incubation time, make direct comparison of results

difficult.

The strengths of our study are the use of well-characterised KD and TSS participants, and

rigorously standardised assays. Limitations of our study include its retrospective design and

therefore inability to differentiate whether the innate immune response differences preceded

KD or TSS (reflecting potential underlying immunosusceptibility) versus those attributable to

the effect of diseases (innate immune memory). We are also unable to ascertain whether these

innate immune responses persist into later life and were related to time following the acute ill-

ness. Furthermore, the purpose of this study was to explore whether there are changes in the

innate immune response in two acute illnesses with overlapping clinical features, rather than

to directly compare KD and TSS, moreover, the sample size is insufficient.

As this is an exploratory study, analyses have not been adjusted for multiple comparisons.

The exploratory nature of this study necessarily required the inclusion of numerous cytokines

measures to investigate multiple innate immune pathways. We did not adjust each measure by

severity indicators (such as coronary artery status, peak inflammatory markers, duration of

fever, and treatment resistance) as the small number of participants in this subset analysis

would risk Type 1 and Type 2 errors. The impact of disease severity on innate immune

responses would best be explored in future studies with sufficient sample size focusing on a

small number of implicated cytokines.

There is increasing interest in the concept that innate immune cells also have the capacity

to enhance their response following repeated stimulation by microbial pathogens through
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epigenetic programming.[40] Innate immune memory has important implications for under-

standing host response to pathogens and auto-inflammatory conditions. Hyper-inflammatory

innate immune responses, particularly noted in TSS participants, may indicate innate immune

memory and warrant further investigation.

In summary, years following the acute illness, individuals with previous KD and TSS have a

decreased anti-inflammatory and increased pro-inflammatory response respectively to innate

immune stimulation, suggesting a possible underlying immunological susceptibility or innate

immune memory. Further genetic and immunological studies may unravel the mechanisms

underlying these responses, which have implications for improved diagnostics and treatment.
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